Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.
Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J
2011-12-01
Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.
Burlon, A A; Girola, S; Valda, A A; Minsky, D M; Kreiner, A J; Sánchez, G
2011-12-01
This work reports on the characterisation of a neutron beam shaping assembly (BSA) prototype and on the preliminary modelling of a treatment room for BNCT within the framework of a research programme for the development and construction of an accelerator-based BNCT irradiation facility in Buenos Aires, Argentina. The BSA prototype constructed has been characterised by means of MCNP simulations as well as a set of experimental measurements performed at the Tandar accelerator at the National Atomic Energy Commission of Argentina. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira
2015-07-01
At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.
Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.
Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A
2009-07-01
In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.
A Project of Boron Neutron Capture Therapy System based on a Proton Linac Neutron Source
NASA Astrophysics Data System (ADS)
Kiyanagi, Yoshikai; Asano, Kenji; Arakawa, Akihiro; Fukuchi, Shin; Hiraga, Fujio; Kimura, Kenju; Kobayashi, Hitoshi; Kubota, Michio; Kumada, Hiroaki; Matsumoto, Hiroshi; Matsumoto, Akira; Sakae, Takeji; Saitoh, Kimiaki; Shibata, Tokushi; Yoshioka, Masakazu
At present, the clinical trials of Boron Neutron Capture Therapy (BNCT) are being performed at research reactor facilities. However, an accelerator based BNCT has a merit that it can be built in a hospital. So, we just launched a development project for the BNCT based on an accelerator in order to establish and to spread the BNCT as an effective therapy in the near future. In the project, a compact proton linac installed in a hospital will be applied as a neutron source, and energy of the proton beam is planned to be less than about 10 MeV to reduce the radioactivity. The BNCT requires epithermal neutron beam with an intensity of around 1x109 (n/cm2/sec) to deliver the therapeutic dose to a deeper region in a body and to complete the irradiation within an hour. From this condition, the current of the proton beam required is estimated to be a few mA on average. Enormous heat deposition in the target is a big issue. We are aiming at total optimization of the accelerator based BNCT from the linac to the irradiation position. Here, the outline of the project is introduced and the moderator design is presented.
Shielding analyses of an AB-BNCT facility using Monte Carlo simulations and simplified methods
NASA Astrophysics Data System (ADS)
Lai, Bo-Lun; Sheu, Rong-Jiun
2017-09-01
Accurate Monte Carlo simulations and simplified methods were used to investigate the shielding requirements of a hypothetical accelerator-based boron neutron capture therapy (AB-BNCT) facility that included an accelerator room and a patient treatment room. The epithermal neutron beam for BNCT purpose was generated by coupling a neutron production target with a specially designed beam shaping assembly (BSA), which was embedded in the partition wall between the two rooms. Neutrons were produced from a beryllium target bombarded by 1-mA 30-MeV protons. The MCNP6-generated surface sources around all the exterior surfaces of the BSA were established to facilitate repeated Monte Carlo shielding calculations. In addition, three simplified models based on a point-source line-of-sight approximation were developed and their predictions were compared with the reference Monte Carlo results. The comparison determined which model resulted in better dose estimation, forming the basis of future design activities for the first ABBNCT facility in Taiwan.
Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J
2011-12-01
Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.
Project for the development of the linac based NCT facility in University of Tsukuba.
Kumada, H; Matsumura, A; Sakurai, H; Sakae, T; Yoshioka, M; Kobayashi, H; Matsumoto, H; Kiyanagi, Y; Shibata, T; Nakashima, H
2014-06-01
A project team headed by University of Tsukuba launched the development of a new accelerator based BNCT facility. In the project, we have adopted Radio-Frequency Quadrupole (RFQ)+Drift Tube Linac (DTL) type linac as proton accelerators. Proton energy generated from the linac was set to 8MeV and average current was 10mA. The linac tube has been constructed by Mitsubishi Heavy Industry Co. For neutron generator device, beryllium is selected as neutron target material; high intensity neutrons are generated by the reaction with beryllium and the 80kW proton beam. Our team chose beryllium as the neutron target material. At present beryllium target system is being designed with Monte-Carlo estimations and heat analysis with ANSYS. The neutron generator consists of moderator, collimator and shielding. It is being designed together with the beryllium target system. We also acquired a building in Tokai village; the building has been renovated for use as BNCT treatment facility. It is noteworthy that the linac tube had been installed in the facility in September 2012. In BNCT procedure, several medical devices are required for BNCT treatment such as treatment planning system, patient positioning device and radiation monitors. Thus these are being developed together with the linac based neutron source. For treatment planning system, we are now developing a new multi-modal Monte-Carlo treatment planning system based on JCDS. The system allows us to perform dose estimation for BNCT as well as particle radiotherapy and X-ray therapy. And the patient positioning device can navigate a patient to irradiation position quickly and properly. Furthermore the device is able to monitor movement of the patient׳s position during irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.
An accelerator-based Boron Neutron Capture Therapy (BNCT) facility based on the 7Li(p,n)7Be
NASA Astrophysics Data System (ADS)
Musacchio González, Elizabeth; Martín Hernández, Guido
2017-09-01
BNCT (Boron Neutron Capture Therapy) is a therapeutic modality used to irradiate tumors cells previously loaded with the stable isotope 10B, with thermal or epithermal neutrons. This technique is capable of delivering a high dose to the tumor cells while the healthy surrounding tissue receive a much lower dose depending on the 10B biodistribution. In this study, therapeutic gain and tumor dose per target power, as parameters to evaluate the treatment quality, were calculated. The common neutron-producing reaction 7Li(p,n)7Be for accelerator-based BNCT, having a reaction threshold of 1880.4 keV, was considered as the primary source of neutrons. Energies near the reaction threshold for deep-seated brain tumors were employed. These calculations were performed with the Monte Carlo N-Particle (MCNP) code. A simple but effective beam shaping assembly (BSA) was calculated producing a high therapeutic gain compared to previously proposed facilities with the same nuclear reaction.
Progress on the accelerator based SPES-BNCT project at INFN Legnaro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esposito, J.; Colautti, P.; Pisent, A.
2007-02-12
In the framework of an advanced Exotic Ion Beam facility, named SPES (Study and Production of Exotic Species), that will allow a frontier program both in nuclear and interdisciplinary physics, an intense thermal neutron beam facility, devoted to perform Boron Neutron Capture Therapy (BNCT) experimental treatments on skin melanoma tumor, is currently under construction based on the SPES proton driver. A vast radiobiological investigation in vitro and in vivo has started with the new 10B carriers developed. Special microdosimetric detectors have been constructed to properly measure all the BNCT dose components and their qualities. Both microdosimetric and radiobiological measurements aremore » being performed at the new HYTHOR beam shaping assembly at the Enea-Casaccia TAPIRO reactor.« less
Present status of Accelerator-Based BNCT.
Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A; Minsky, Daniel M; Debray, Mario E; Somacal, Hector R; Capoulat, María Eugenia; Herrera, María S; Del Grosso, Mariela F; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán
2016-01-01
This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Endothermic (7)Li(p,n)(7)Be and (9)Be(p,n)(9)B and exothermic (9)Be(d,n)(10)B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. (9)Be(p,n)(9)B needs at least 4-5 MeV bombarding energy to have a sufficient yield, while (9)Be(d,n)(10)B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. (7)Li(p,n)(7)Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. (9)Be(d,n)(10)B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions.
Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M
2015-12-01
A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O
2014-06-01
The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. © 2013 Elsevier Ltd. All rights reserved.
Progress In The Development Of A Tomographic SPECT System For Online Dosimetry In BNCT
NASA Astrophysics Data System (ADS)
Minsky, D. M.; Valda, A.; Kreiner, A. J.; Burlon, A. A.; Green, S.; Wojnecki, C.; Ghani, Z.
2010-08-01
In boron neutron capture therapy (BNCT) the delivered dose to the patient depends both on the neutron beam characteristics and on the 10B body distribution which, in turn, is governed by the tumor specificity of the 10B drug-carrier. BNCT dosimetry is a complex matter due to the several interactions that neutrons can undergo with the different nuclei present in tissue. However the boron capture reaction 10B(n,α)7Li accounts for about 80 % of the total dose in a tumor with 40 ppm in 10B concentration. Present dosimetric methods are indirect, based on drug biodistribution statistical data and subjected to inter and intra-patient variability. In order to overcome the consequences of the concomitant high dosimetric uncertainties, we propose a SPECT (Single Photon Emission Tomography) approach based on the detection of the prompt gamma-ray (478 keV) emitted in 94 % of the cases from 7Li. For this purpose we designed, built and tested a prototype based on LaBr3(Ce) scintillators. Measurements on a head and tumor phantom were performed in the accelerator-based BNCT facility of the University of Birmingham (UK). They result in the first tomographic image of the 10B capture distribution obtained in a BNCT facility.
Present status of Accelerator-Based BNCT
Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A.; Minsky, Daniel M.; Debray, Mario E.; Somacal, Hector R.; Capoulat, María Eugenia; Herrera, María S.; del Grosso, Mariela F.; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán
2016-01-01
Aim This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). Background There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. Materials and methods A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Results Endothermic 7Li(p,n)7Be and 9Be(p,n)9B and exothermic 9Be(d,n)10B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. 9Be(p,n)9B needs at least 4–5 MeV bombarding energy to have a sufficient yield, while 9Be(d,n)10B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. Conclusions 7Li(p,n)7Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. 9Be(d,n)10B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions. PMID:26933390
The accelerator neutron source for boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Kasatov, D.; Koshkarev, A.; Kuznetsov, A.; Makarov, A.; Ostreinov, Yu; Shchudlo, I.; Sorokin, I.; Sycheva, T.; Taskaev, S.; Zaidi, L.
2016-11-01
The accelerator based epithermal neutron source for Boron Neutron Capture Therapy (BNCT) is proposed, created and used in the Budker Institute of Nuclear Physics. In 2014, with the support of the Russian Science Foundation created the BNCT laboratory for the purpose to the end of 2016 get the neutron flux, suitable for BNCT. For getting 3 mA 2.3 MeV proton beam, was created a new type accelerator - tandem accelerator with vacuum isolation. On this moment, we have a stationary proton beam with 2.3 MeV and current 1.75 mA. Generation of neutrons is carried out by dropping proton beam on to lithium target as a result of threshold reaction 7Li(p,n)7Be. Established facility is a unique scientific installation. It provides a generating of neutron flux, including a monochromatic energy neutrons, gamma radiation, alpha-particles and positrons, and may be used by other research groups for carrying out scientific researches. The article describes an accelerator neutron source, presents and discusses the result of experiments and declares future plans.
Progress In The Development Of A Tomographic SPECT System For Online Dosimetry In BNCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minsky, D. M.; Kreiner, A. J.; ECyT, UNSAM, M. de Irigoyen 3100
2010-08-04
In boron neutron capture therapy (BNCT) the delivered dose to the patient depends both on the neutron beam characteristics and on the {sup 10}B body distribution which, in turn, is governed by the tumor specificity of the {sup 10}B drug-carrier. BNCT dosimetry is a complex matter due to the several interactions that neutrons can undergo with the different nuclei present in tissue. However the boron capture reaction {sup 10}B(n,{alpha}){sup 7}Li accounts for about 80 % of the total dose in a tumor with 40 ppm in {sup 10}B concentration. Present dosimetric methods are indirect, based on drug biodistribution statistical datamore » and subjected to inter and intra-patient variability. In order to overcome the consequences of the concomitant high dosimetric uncertainties, we propose a SPECT (Single Photon Emission Tomography) approach based on the detection of the prompt gamma-ray (478 keV) emitted in 94 % of the cases from {sup 7}Li. For this purpose we designed, built and tested a prototype based on LaBr{sub 3}(Ce) scintillators. Measurements on a head and tumor phantom were performed in the accelerator-based BNCT facility of the University of Birmingham (UK). They result in the first tomographic image of the 10B capture distribution obtained in a BNCT facility.« less
Kreiner, A J; Castell, W; Di Paolo, H; Baldo, M; Bergueiro, J; Burlon, A A; Cartelli, D; Vento, V Thatar; Kesque, J M; Erhardt, J; Ilardo, J C; Valda, A A; Debray, M E; Somacal, H R; Sandin, J C Suarez; Igarzabal, M; Huck, H; Estrada, L; Repetto, M; Obligado, M; Padulo, J; Minsky, D M; Herrera, M; Gonzalez, S J; Capoulat, M E
2011-12-01
We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tandem-ESQ for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreiner, A. J.; Escuela de Ciencia y Tecnologia, Universidad de Gral San Martin; CONICET,
2007-02-12
A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed as a machine for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT). The machine is shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the on the 7Li(p,n)7Be reaction, to perform BNCT treatment for deep seated tumors in less than an hour.
Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.
Blue, Thomas E; Yanch, Jacquelyn C
2003-01-01
This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and the use of microchannels have emerged as viable target cooling options. Neutron fields for reactor-based neutron sources provide an obvious basis of comparison for ABNS field quality. This paper compares Monte Carlo calculations of neutron field quality for an ABNS and an idealized standard reactor neutron field (ISRNF). The comparison shows that with lithium as a target, an ABNS can create a neutron field with a field quality that is significantly better (by a factor of approximately 1.2, as judged by the relative biological effectiveness (RBE)-dose that can be delivered to a tumor at a depth of 6cm) than that for the ISRNF. Also, for a beam current of 10 mA, the treatment time is calculated to be reasonable (approximately 30 min) for the boron concentrations that have been assumed.
Mirzajani, N; Ciolini, R; Di Fulvio, A; Esposito, J; d'Errico, F
2014-06-01
Experimental activities are underway at INFN Legnaro National Laboratories (LNL) (Padua, Italy) and Pisa University aimed at angular-dependent neutron energy spectra measurements produced by the (9)Be(p,xn) reaction, under a 5MeV proton beam. This work has been performed in the framework of INFN TRASCO-BNCT project. Bonner Sphere Spectrometer (BSS), based on (6)LiI (Eu) scintillator, was used with the shadow-cone technique. Proper unfolding codes, coupled to BSS response function calculated by Monte Carlo code, were finally used. The main results are reported here. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Neutron medical treatment of tumours — a survey of facilities
NASA Astrophysics Data System (ADS)
Wagner, F. M.; Loeper-Kabasakal, B.; Breitkreutz, H.
2012-03-01
Neutron therapy has two branches: Fast Neutron Therapy (FNT) and Boron Neutron Capture Therapy (BNCT). The mean neutron energies used for FNT range from 2 MeV to 25 MeV whereas the maximum energy for BNCT is about 10 keV. Neutron generators for FNT have been cyclotrons, accelerators and reactors, whereas BNCT is so far bound to reactors. Both therapies use the effects of high-LET radiation (secondary recoil protons and alpha particles, respectively) and can attack otherwise radioresistant tumours, however, with the hazard of adverse effects for irradiated healthy tissue. FNT has been administered to about 30,000 patients world-wide. From formerly 40 facilities, only eight are operational or stand-by today. The reasons for this development have been, on the one hand, related to technical and economical conditions; on the other hand, strong side effects and insufficient proof of clinical results in the early years as well as increasing competition with new clinical methods have reduced patient numbers. In fact, strict observations of indications, appropriate therapy-planning including low-LET radiation, and consequent treatment of side effects have lead to remarkable results in the meantime. BNCT initially was developed for the treatment of extremely aggressive forms of brain tumour, taking advantage of the action of the blood-brain-barrier which allows for a boronated compound to be selectively enriched in tumour cells. Meanwhile, also malignant melanoma (MM) and Head-and-Neck (H&T) tumours are treated because of their relative radioresistance. At present, epithermal beams with sufficient flux are available only at two facilities. Existing research reactors were indispensable in the development of BNCT, but are to be replaced by hospital-based epithermal neutron sources. Clinical results indicate significantly increased survival times, but the number of patients ever treated is still below 1,000. 3D-dose calculation systems have been developed at several facilities and guarantee a high safety for both therapies, FNT and BNCT.
Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy
NASA Astrophysics Data System (ADS)
Herrera, María S.; González, Sara J.; Minsky, Daniel M.; Kreiner, Andrés J.
2010-08-01
Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.
Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, Maria S.; Gonzalez, Sara J.; Minsky, Daniel M.
2010-08-04
Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a realmore » patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigg, D.W.; Mitchell, H.E.; Harker, Y.D.
Therapeutically-useful epithermal-neutron beams for BNCT are currently generated by nuclear reactors. Various accelerator-based neutron sources for BNCT have been proposed and some low intensity prototypes of such sources, generally featuring the use of proton beams and beryllium or lithium targets have been constructed. This paper describes an alternate approach to the realization of a clinically useful accelerator-based source of epithermal neutrons for BNCT that reconciles the often conflicting objectives of target cooling, neutron beam intensity, and neutron beam spectral purity via a two stage photoneutron production process.
NASA Astrophysics Data System (ADS)
Guan, X. C.; Gong, Y.; Murata, I.; Wang, T. S.
2018-05-01
The performance of the neutron flux monitors from 20 keV to 1 MeV developed for boron neutron capture therapy (BNCT) is studied by Monte Carlo simulations using accelerator-based neutron sources (ABNSs). The results show that the performance of the neutron flux monitors is very satisfactory and they can be efficiently used in practical applications to measure the neutron fluxes from 20 keV to 1 MeV of ABNSs for BNCT to high accuracy.
Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.
Minsky, D M; Kreiner, A J
2014-06-01
Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors. © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fujii, R.; Imahori, Y.; Nakakmura, M.; Takada, M.; Kamada, S.; Hamano, T.; Hoshi, M.; Sato, H.; Itami, J.; Abe, Y.; Fuse, M.
2012-12-01
The neutron source for Boron Neutron Capture Therapy (BNCT) is in the transition stage from nuclear reactor to accelerator based neutron source. Generation of low energy neutron can be achieved by 7Li (p, n) 7Be reaction using accelerator based neutron source. Development of small-scale and safe neutron source is within reach. The melting point of lithium that is used for the target is low, and durability is questioned for an extended use at a high current proton beam. In order to test its durability, we have irradiated lithium with proton beam at the same level as the actual current density, and found no deterioration after 3 hours of continuous irradiation. As a result, it is suggested that lithium target can withstand proton irradiation at high current, confirming suitability as accelerator based neutron source for BNCT.
NASA Astrophysics Data System (ADS)
Rahmani, Faezeh; Shahriari, Majid; Minoochehr, Abdolhamid; Nedaie, Hasan
2011-06-01
A hybrid photoneutron target including natural uranium has been studied for a 20 MeV linear electron accelerator (Linac) based Boron Neutron Capture Therapy (BNCT) facility. In this study the possibility of using uranium to increase the neutron intensity has been investigated by focusing on the time dependence behavior of the build-up and decay of the delayed gamma rays from fission fragments and activation products through photo-fission reactions in the BSA (Beam Shaping Assembly) configuration design. Delayed components of neutrons and photons were calculated. The obtained BSA parameters are in agreement with the IAEA recommendation and compared to the hybrid photoneutron target without U. The epithermal flux in the suggested design is 2.67E9 (n/cm 2s/mA).
NASA Astrophysics Data System (ADS)
Guan, X.; Murata, I.; Wang, T.
2017-09-01
The performance of an epithermal neutron flux monitor developed for boron neutron capture therapy (BNCT) is verified by Monte Carlo simulations using accelerator-based neutron sources (ABNSs). The results indicate that the developed epithermal neutron flux monitor works well and it can be efficiently used in practical applications to measure the epithermal neutron fluxes of ABNSs in a high accuracy.
NAKAMURA, Satoshi; IMAMICHI, Shoji; MASUMOTO, Kazuyoshi; ITO, Masashi; WAKITA, Akihisa; OKAMOTO, Hiroyuki; NISHIOKA, Shie; IIJIMA, Kotaro; KOBAYASHI, Kazuma; ABE, Yoshihisa; IGAKI, Hiroshi; KURITA, Kazuyoshi; NISHIO, Teiji; MASUTANI, Mitsuko; ITAMI, Jun
2017-01-01
This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24Na, 38Cl, 80mBr, 82Br, 56Mn, and 42K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 102, (2.2 ± 0.1) × 101, (3.4 ± 0.4) × 102, 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 101 Bq/g/mA, respectively. The 24Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system. PMID:29225308
Nakamura, Satoshi; Imamichi, Shoji; Masumoto, Kazuyoshi; Ito, Masashi; Wakita, Akihisa; Okamoto, Hiroyuki; Nishioka, Shie; Iijima, Kotaro; Kobayashi, Kazuma; Abe, Yoshihisa; Igaki, Hiroshi; Kurita, Kazuyoshi; Nishio, Teiji; Masutani, Mitsuko; Itami, Jun
2017-01-01
This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24 Na, 38 Cl, 80m Br, 82 Br, 56 Mn, and 42 K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 10 2 , (2.2 ± 0.1) × 10 1 , (3.4 ± 0.4) × 10 2 , 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 10 1 Bq/g/mA, respectively. The 24 Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system.
NASA Astrophysics Data System (ADS)
Burlon, Alejandro A.; Girola, Santiago; Valda, Alejandro A.; Minsky, Daniel M.; Kreiner, Andrés J.
2010-08-01
In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.
Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT).
Moss, Raymond L
2014-06-01
The first BNCT trials took place in the USA in the early 1960's, yet BNCT is still far from mainstream medicine. Nonetheless, in recent years, reported results in the treatment of head and neck cancer and recurrent glioma, coupled with the progress in developing linear accelerators specifically for BNCT applications, have given some optimism to the future of BNCT. This article provides a brief reminder on the ups and downs of the history of BNCT and supports the view that controlled and prospective clinical trials with a modern design will make BNCT an evidence-based treatment modality within the coming decade. © 2013 Elsevier Ltd. All rights reserved.
An Accelerator Neutron Source for BNCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blue, Thomas, E
2006-03-14
The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability,more » and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.« less
Medical Application of the SARAF-Proton/Deuteron 40 MeV Superconducting Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halfon, Shlomi
2007-11-26
The Soreq Applied Research Accelerator Facility (SARAF) is based on a superconducting linear accelerator currently being built at the Soreq research center (Israel). The SARAF is planned to generate a 2 mA 4 MeV proton beam during its first year of operation and up to 40 MeV proton or deuteron beam in 2012. The high intensity beam, together with the linac ability to adjust the ion energy provides opportunities for medical research, such as Boron Neutron Capture Therapy (BNCT) and the production of medical radioisotopes, for instance {sup 103}Pd for prostate brachytherapy.
Design of an epithermal column for BNCT based on D D fusion neutron facility
NASA Astrophysics Data System (ADS)
Durisi, E.; Zanini, A.; Manfredotti, C.; Palamara, F.; Sarotto, M.; Visca, L.; Nastasi, U.
2007-05-01
Boron Neutron Capture Therapy (BNCT) is currently performed on patients at nuclear reactors. At the same time the international BNCT community is engaged in the development of alternative facilities for in-hospital treatments. This paper investigates the potential of a novel high-output D-D neutron generator, developed at Lawrence Berkeley National Laboratory (CA, USA), for BNCT. The simulation code MCNP-4C is used to realize an accurate study of the epithermal column in view of the treatment of deep tumours. Different materials and Beam Shaping Assemblies (BSA) are investigated and an optimized configuration is proposed. The neutron beam quality is defined by the standard free beam parameters, calculated averaging over the collimator aperture. The results are discussed and compared with the performances of other facilities.
Conceptual design of BNCT facility based on the TRR medical room
NASA Astrophysics Data System (ADS)
Golshanian, M.; Rajabi, A. A.; Kasesaz, Y.
2017-10-01
This paper presents a conceptual design of the Boron Neutron Capture Therapy (BNCT) facility based on the medical room of Tehran Research Reactor (TRR). The medical room is located behind the east wall of the reactor pool. The designed beam line is an in-pool Beam Shaping Assembly (BSA) which is considered between the reactor core and the medical room wall. The final designed BSA can provide 2.96× 109 n/cm2ṡs epithermal neutron flux at the irradiation position with acceptable beam contamination to use as a clinical BNCT.
Small Accelerators for the Next Generation of BNCT Irradiation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, T.; Tanaka, K.; Bengua, G.
2005-01-15
The neutron irradiation system for boron neutron capture therapy (BNCT) using compact accelerators installed at hospitals was mainly investigated for the usage of direct neutrons from near-threshold {sup 7}Li(p,n){sup 7}Be, and moderated neutrons from 2.5 MeV {sup 7}Li(p,n){sup 7}Be reactions and other reactions. This kind of system can supply the medical doctors and patients with convenience to carry out BNCT in hospitals. The accelerator system would be regarded as the next-generation of BNCT in the near future.
NASA Astrophysics Data System (ADS)
Tanaka, H.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Kinashi, Y.; Kashino, G.; Liu, Y.; Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Maruhashi, A.; Ono, K.
2009-06-01
At Kyoto University Research Reactor Institute (KURRI), 275 clinical trials of boron neutron capture therapy (BNCT) have been performed as of March 2006, and the effectiveness of BNCT has been revealed. In order to further develop BNCT, it is desirable to supply accelerator-based epithermal-neutron sources that can be installed near the hospital. We proposed the method of filtering and moderating fast neutrons, which are emitted from the reaction between a beryllium target and 30-MeV protons accelerated by a cyclotron accelerator, using an optimum moderator system composed of iron, lead, aluminum and calcium fluoride. At present, an epithermal-neutron source is under construction from June 2008. This system consists of a cyclotron accelerator, beam transport system, neutron-yielding target, filter, moderator and irradiation bed. In this article, an overview of this system and the properties of the treatment neutron beam optimized by the MCNPX Monte Carlo neutron transport code are presented. The distribution of biological effect weighted dose in a head phantom compared with that of Kyoto University Research Reactor (KUR) is shown. It is confirmed that for the accelerator, the biological effect weighted dose for a deeply situated tumor in the phantom is 18% larger than that for KUR, when the limit dose of the normal brain is 10 Gy-eq. The therapeutic time of the cyclotron-based neutron sources are nearly one-quarter of that of KUR. The cyclotron-based epithermal-neutron source is a promising alternative to reactor-based neutron sources for treatments by BNCT.
Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator
NASA Astrophysics Data System (ADS)
Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.
2014-12-01
Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.
Bortolussi, Silva; Postuma, Ian; Protti, Nicoletta; Provenzano, Lucas; Ferrari, Cinzia; Cansolino, Laura; Dionigi, Paolo; Galasso, Olimpio; Gasparini, Giorgio; Altieri, Saverio; Miyatake, Shin-Ichi; González, Sara J
2017-08-15
Osteosarcoma is the most frequent primary malignant bone tumour, and its incidence is higher in children and adolescents, for whom it represents more than 10% of solid cancers. Despite the introduction of adjuvant and neo-adjuvant chemotherapy that markedly increased the success rate in the treatment, aggressive surgery is still needed and a considerable percentage of patients do not survive due to recurrences or early metastases. Boron Neutron Capture Therapy (BNCT), an experimental radiotherapy, was investigated as a treatment that could allow a less aggressive surgery by killing infiltrated tumour cells in the surrounding healthy tissues. BNCT requires an intense neutron beam to ensure irradiation times of the order of 1 h. In Italy, a Radio Frequency Quadrupole (RFQ) proton accelerator has been designed and constructed for BNCT, and a suitable neutron spectrum was tailored by means of Monte Carlo calculations. This paper explores the feasibility of BNCT to treat osteosarcoma using this neutron source based on accelerator. The therapeutic efficacy of BNCT was analysed evaluating the dose distribution obtained in a clinical case of femur osteosarcoma. Mixed field dosimetry was assessed with two different formalisms whose parameters were specifically derived from radiobiological experiments involving in vitro UMR-106 osteosarcoma cell survival assays and boron concentration assessments in an animal model of osteosarcoma. A clinical case of skull osteosarcoma treated with BNCT in Japan was re-evaluated from the point of view of dose calculation and used as a reference for comparison. The results in the case of femur osteosarcoma show that the RFQ beam would ensure a suitable tumour dose painting in a total irradiation time of less than an hour. Comparing the dosimetry between the analysed case and the treated patient in Japan it turns out that doses obtained in the femur tumour are at least as good as the ones delivered in the skull osteosarcoma. The same is concluded when the comparison is carried out taking into account osteosarcoma irradiations with photon radiation therapy. The possibility to apply BNCT to osteosarcoma would allow a multimodal treatment consisting in neo-adjuvant chemotherapy, high-LET selective radiation treatment and a more conservative surgery.
Perspectives of boron-neutron capture therapy of malignant brain tumors
NASA Astrophysics Data System (ADS)
Kanygin, V. V.; Kichigin, A. I.; Krivoshapkin, A. L.; Taskaev, S. Yu.
2017-09-01
Boron neutron capture therapy (BNCT) is characterized by a selective effect directly on the cells of malignant tumors. The carried out research showed the perspective of the given kind of therapy concerning malignant tumors of the brain. However, the introduction of BNCT into clinical practice is hampered by the lack of a single protocol for the treatment of patients and the difficulty in using nuclear reactors to produce a neutron beam. This problem can be solved by using a compact accelerator as a source of neutrons, with the possibility of installation in a medical institution. Such a neutron accelerator for BNCT was developed at Budker Institute of Nuclear Physics, Novosibirsk. A neutron beam was obtained on this accelerator, which fully complies with the requirements of BNCT, as confirmed by studies on cell cultures and experiments with laboratory animals. The conducted experiments showed the relative safety of the method with the absence of negative effects on cell cultures and living organisms, and also confirmed the effectiveness of BNCT for malignant brain tumors.
Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu
2015-01-01
Abstract Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504
Pozzi, E; Nigg, D W; Miller, M; Thorp, S I; Heber, E M; Zarza, L; Estryk, G; Monti Hughes, A; Molinari, A J; Garabalino, M; Itoiz, M E; Aromando, R F; Quintana, J; Trivillin, V A; Schwint, A E
2009-07-01
The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1 x 10(9) n cm(-2)s(-1) and the fast neutron flux was 2.5 x 10(6) n cm(-2)s(-1), indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in (6)Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.
Boron Neutron Capture Therapy for Malignant Brain Tumors
MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji
2016-01-01
Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576
Boron Neutron Capture Therapy for Malignant Brain Tumors.
Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji
2016-07-15
Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.
NASA Astrophysics Data System (ADS)
Kasatov, D. A.; Kolesnikov, J. A.; Koshkarev, A. M.; Kuznetsov, A. S.; Makarov, A. N.; Sokolova, E. O.; Sorokin, I. N.; Sycheva, T. V.; Taskaev, S. Yu.; Shchudlo, I. M.
2016-12-01
An epithermal neutron source that is based on a vacuum insulation tandem accelerator (VITA) and lithium target was created in the Budker Institute of Nuclear Physics for the development of boron neutron capture therapy (BNCT). A stationary proton beam with 2 MeV energy and 1.6 mA current has been obtained. To carry out BNCT, it is necessary to increase the beam parameters up to 2.3 MeV and 3 mA. Ways to increase the parameters of the proton beam have been proposed and discussed in this paper. The results of the experiments are presented.
Characterisation of an accelerator-based neutron source for BNCT versus beam energy
NASA Astrophysics Data System (ADS)
Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.
2002-01-01
Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.
Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira
2015-12-01
The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zahra Ahmadi, Ganjeh; S. Farhad, Masoudi
2014-10-01
Neutron beam optimization for accelerator-based Boron Neutron Capture Therapy (BNCT) is investigated using a 7Li(p,n)7Be reaction. Design and optimization have been carried out for the target, cooling system, moderator, filter, reflector, and collimator to achieve a high flux of epithermal neutron and satisfy the IAEA criteria. Also, the performance of the designed beam in tissue is assessed by using a simulated Snyder head phantom. The results show that the optimization of the collimator and reflector is critical to finding the best neutron beam based on the 7Li(p,n)7Be reaction. Our designed beam has 2.49×109n/cm2s epithermal neutron flux and is suitable for BNCT of deep-seated brain tumors.
MAGIC polymer gel for dosimetric verification in boron neutron capture therapy
Heikkinen, Sami; Kotiluoto, Petri; Serén, Tom; Seppälä, Tiina; Auterinen, Iiro; Savolainen, Sauli
2007-01-01
Radiation‐sensitive polymer gels are among the most promising three‐dimensional dose verification tools developed to date. We tested the normoxic polymer gel dosimeter known by the acronym MAGIC (methacrylic and ascorbic acid in gelatin initiated by copper) to evaluate its use in boron neutron capture therapy (BNCT) dosimetry. We irradiated a large cylindrical gel phantom (diameter: 10 cm; length: 20 cm) in the epithermal neutron beam of the Finnish BNCT facility at the FiR 1 nuclear reactor. Neutron irradiation was simulated with a Monte Carlo radiation transport code MCNP. To compare dose–response, gel samples from the same production batch were also irradiated with 6 MV photons from a medical linear accelerator. Irradiated gel phantoms then underwent magnetic resonance imaging to determine their R2 relaxation rate maps. The measured and normalized dose distribution in the epithermal neutron beam was compared with the dose distribution calculated by computer simulation. The results support the feasibility of using MAGIC gel in BNCT dosimetry. PACS numbers: 87.53.Qc, 87.53.Wz, 87.66.Ff PMID:17592463
NASA Astrophysics Data System (ADS)
Shalbi, Safwan; Salleh, Wan Norhayati Wan; Mohamad Idris, Faridah; Aliff Ashraff Rosdi, Muhammad; Syahir Sarkawi, Muhammad; Liyana Jamsari, Nur; Nasir, Nur Aishah Mohd
2018-01-01
In order to design facilities for boron neutron capture therapy (BNCT), the neutron measurement must be considered to obtain the optimal design of BNCT facility such as collimator and shielding. The previous feasibility study showed that the thermal column could generate higher thermal neutrons yield for BNCT application at the TRIGA MARK II reactor. Currently, the facility for BNCT are planned to be developed at thermal column. Thus, the main objective was focused on the thermal neutron and epithermal neutron flux measurement at the thermal column. In this measurement, pure gold and cadmium were used as a filter to obtain the thermal and epithermal neutron fluxes from inside and outside of the thermal column door of the 200kW reactor power using a gold foil activation method. The results were compared with neutron fluxes using TLD 600 and TLD 700. The outcome of this work will become the benchmark for the design of BNCT collimator and the shielding
Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I
2014-06-01
A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. © 2013 Elsevier Ltd. All rights reserved.
Design of photon converter and photoneutron target for High power electron accelerator based BNCT.
Rahmani, Faezeh; Seifi, Samaneh; Anbaran, Hossein Tavakoli; Ghasemi, Farshad
2015-12-01
An electron accelerator, ILU-14, with current of 10 mA and 100 kW in power has been considered as one of the options for neutron source in Boron Neutron Capture Therapy (BNCT). The final design of neutron target has been obtained using MCNPX to optimize the neutron production. Tungsten in strip shape and D2O in cylindrical form have been proposed as the photon converter and the photoneutron target, respectively. In addition calculation of heat deposition in the photon target design has been considered to ensure mechanical stability of target. The results show that about 8.37×10(12) photoneutron/s with average energy of 615 keV can be produced by this neutron source design. In addition, using an appropriate beam shaping assembly an epithermal neutron flux of the order of 1.24×10(8) cm(-2) s(-1) can be obtained for BNCT applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Design of thermal neutron beam based on an electron linear accelerator for BNCT.
Zolfaghari, Mona; Sedaghatizadeh, Mahmood
2016-12-01
An electron linear accelerator (Linac) can be used for boron neutron capture therapy (BNCT) by producing thermal neutron flux. In this study, we used a Varian 2300 C/D Linac and MCNPX.2.6.0 code to simulate an electron-photoneutron source for use in BNCT. In order to decelerate the produced fast neutrons from the photoneutron source, which optimize the thermal neutron flux, a beam-shaping assembly (BSA) was simulated. After simulations, a thermal neutron flux with sharp peak at the beam exit was obtained in the order of 3.09×10 8 n/cm 2 s and 6.19×10 8 n/cm 2 s for uranium and enriched uranium (10%) as electron-photoneutron sources respectively. Also, in-phantom dose analysis indicates that the simulated thermal neutron beam can be used for treatment of shallow skin melanoma in time of about 85.4 and 43.6min for uranium and enriched uranium (10%) respectively. Copyright © 2016. Published by Elsevier Ltd.
Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method
Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.
1999-05-11
A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.
Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method
Yoon, Woo Y.; Jones, James L.; Nigg, David W.; Harker, Yale D.
1999-01-01
A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.
Feasibility study of using laser-generated neutron beam for BNCT.
Kasesaz, Y; Rahmani, F; Khalafi, H
2015-09-01
The feasibility of using a laser-accelerated proton beam to produce a neutron source, via (p,n) reaction, for Boron Neutron Capture Therapy (BNCT) applications has been studied by MCNPX Monte Carlo code. After optimization of the target material and its thickness, a Beam Shaping Assembly (BSA) has been designed and optimized to provide appropriate neutron beam according to the recommended criteria by International Atomic Energy Agency. It was found that the considered laser-accelerated proton beam can provide epithermal neutron flux of ∼2×10(6) n/cm(2) shot. To achieve an appropriate epithermal neutron flux for BNCT treatment, the laser must operate at repetition rates of 1 kHz, which is rather ambitious at this moment. But it can be used in some BNCT researches field such as biological research. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Avagyan, R. H.; Kerobyan, I. A.
2015-07-01
The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.
Thermal neutron flux mapping in a head phantom
NASA Astrophysics Data System (ADS)
Lee, C. L.; Zhou, X.-L.; Harmon, J. F.; Bartholomay, R. W.; Harker, Y. D.; Kudchadker, R. J.
1999-02-01
Boron neutron capture therapy (BNCT) is a binary cancer treatment modality in which a boron-containing compound is preferentially loaded into a tumor, followed by irradiation by thermal neutrons. In accelerator-based BNCT, neutrons are produced by charged particle-induced reactions such as 7Li(p, n) 7Be. For deeply seated brain tumors, epithermal (1 eV to 10 kev) neutrons are needed to penetrate the skull cap and subsequently thermalize at the tumor location. Cell damage in BNCT is caused by the high linear energy transfer (LET) products from the 10B(n, α) 7Li reaction. Because the cross section for this reaction is of 1/ v character, the dose due to 10B has essentially the same spatial distribution as the thermal neutron flux. A cylindrical acrylic head phantom (15.24 cm diameter by 21.59 cm length) has been constructed to simulate the patient's head and neck, and acrylic spacers of varying width allow placement of small (active sizes: 0.635 cm diameter by 1.27 cm length and 1.5875 cm diameter by 2.54 cm length) BF 3 proportional counters at nearly all radial and axial locations. Measurements of the thermal flux have also been benchmarked with gold and indium foils (bare and cadmium covered), as well as MCNP simulations. Measurement of the thermal neutron flux using these small BF 3 counters is shown to be adequate for experimentally determining the spatial variation of the 10B dose in head phantoms for accelerator-based BNCT.
Hadron Therapy in Latin America
NASA Astrophysics Data System (ADS)
Kreiner, A. J.; Bergueiro, J.; Burlon, A. A.; Di Paolo, H.; Castell, W.; Thatar Vento, V.; Levinas, P.; Cartelli, D.; Kesque, J. M.; Valda, A. A.; Ilardo, J. C.; Baldo, M.; Erhardt, J.; Debray, M. E.; Somacal, H. R.; Minsky, D. M.; Estrada, L.; Hazarabedian, A.; Johann, F.; Suarez Sandin, J. C.; Igarzabal, M.; Huck, H.; Repetto, M.; Obligado, M.; Lell, J.; Padulo, J.; Herrera, M.; Gonzalez, S. R.; Capoulat, M. E.; Davidson, J.; Davidson, M.
2010-08-01
The use of proton and heavy ion beams for radiotherapy is a well established cancer treatment modality in the first world, which is becoming increasingly widespread, due to its clear advantages over conventional photon-based treatments. This strategy is suitable when the tumor is spatially well localized. Also the use of neutrons has tradition. Here Boron Neutron Capture Therapy (BNCT) stands out, though on a much smaller scale, being a promising alternative for tumors which are diffuse and infiltrating. On this sector, so far only nuclear reactors have been used as neutron sources. In this paper we briefly describe the situation in Latin America and in particular we discuss the present status of an ongoing project to develop a folded Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based (AB)-Boron Neutron Capture Therapy (BNCT) at the Atomic Energy Commission of Argentina. The project goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the 7Li(p,n)7Be reaction. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams to perform BNCT for deep-seated tumors in less than an hour. The machine being currently designed and constructed is a folded TESQ with a terminal at 0.6 MV as a smaller scale prototype. Since the concept is modular the same structure will be used for the 1.2 MV final accelerator.
Accelerator based epithermal neutron source
NASA Astrophysics Data System (ADS)
Taskaev, S. Yu.
2015-11-01
We review the current status of the development of accelerator sources of epithermal neutrons for boron neutron capture therapy (BNCT), a promising method of malignant tumor treatment. Particular attention is given to the source of epithermal neutrons on the basis of a new type of charged particle accelerator: tandem accelerator with vacuum insulation and lithium neutron-producing target. It is also shown that the accelerator with specialized targets makes it possible to generate fast and monoenergetic neutrons, resonance and monoenergetic gamma-rays, alpha-particles, and positrons.
Khorshidi, Abdollah
2017-01-01
The reactor has increased its area of application into medicine especially boron neutron capture therapy (BNCT); however, accelerator-driven neutron sources can be used for therapy purposes. The present study aimed to discuss an alternative method in BNCT functions by a small cyclotron with low current protons based on Karaj cyclotron in Iran. An epithermal neutron spectrum generator was simulated with 30 MeV proton energy for BNCT purposes. A low current of 300 μA of the proton beam in spallation target concept via 9Be target was accomplished to model neutron spectrum using 208Pb moderator around the target. The graphite reflector and dual layer collimator were planned to prevent and collimate the neutrons produced from proton interactions. Neutron yield per proton, energy distribution, flux, and dose components in the simulated head phantom were estimated by MCNPX code. The neutron beam quality was investigated by diverse filters thicknesses. The maximum epithermal flux transpired using Fluental, Fe, Li, and Bi filters with thicknesses of 7.4, 3, 0.5, and 4 cm, respectively; as well as the epithermal to thermal neutron flux ratio was 161. Results demonstrated that the induced neutrons from a low energy and low current proton may be effective in tumor therapy using 208Pb moderator with average lethargy and also graphite reflector with low absorption cross section to keep the generated neutrons. Combination of spallation-based BNCT and proton therapy can be especially effective, if a high beam intensity cyclotron becomes available.
NASA Astrophysics Data System (ADS)
Hideghéty, K.; Szabó, E. R.; Polanek, R.; Szabó, Z.; Ughy, B.; Brunner, S.; Tőkés, T.
2017-03-01
There has been a vast development of laser-driven particle acceleration (LDPA) using high power lasers. This has initiated by the radiation oncology community to use the dose distribution and biological advantages of proton/heavy ion therapy in cancer treatment with a much greater accessibility than currently possible with cyclotron/synchrotron acceleration. Up to now, preclinical experiments have only been performed at a few LDPA facilities; technical solutions for clinical LDPA have been theoretically developed but there is still a long way to go for the clinical introduction of LDPA. Therefore, to explore the further potential bio-medical advantages of LDPA has pronounced importance. The main characteristics of LDPA are the ultra-high beam intensity, the flexibility in beam size reduction and the potential particle and energy selection whilst conventional accelerators generate single particle, quasi mono-energetic beams. There is a growing number of studies on the potential advantages and applications of Energy Modulated X-ray Radiotherapy, Modulated Electron Radiotherapy and Very High Energy Electron (VHEE) delivery system. Furthermore, the ultra-high space and/or time resolution of super-intense beams are under intensive investigation at synchrotrons (microbeam radiation and very high dose rate (> 40 Gy/s) electron accelerator flash irradiation) with growing evidence of significant improvement of the therapeutic index. Boron Neutron Capture Therapy (BNCT) is an advanced cell targeted binary treatment modality. Because of the high linear energy transfer (LET) of the two particles (7Li and 4He) released by 10BNC reaction, all of the energy is deposited inside the tumour cells, killing them with high probability, while the neighbouring cells are not damaged. The limited availability of appropriate neutron sources, prevent the more extensive exploration of clinical benefit of BNCT. Another boron-based novel binary approach is the 11B-Proton Fusion, which result in the release of three high LET alpha particles. These promising, innovative approaches for cancer therapy present huge challenges for dose calculation, dosimetry and for investigation of the biological effects. The planned LDPA (photons, VHEE, protons, carbon ions) at ELI facilities has the unique property of ultra-high dose rate (> Gy/s-10), short pulses, and at ELI-ALPS high repetition rate, have the potential to develop and establish encouraging novel methods working towards compact hospital-based clinical applications.
INEEL BNCT research program. Annual report, January 1, 1996--December 31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1997-04-01
This report is a summary of the progress and research produced for the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1996. Contributions from the individual investigators about their projects are included, specifically, physics: treatment planning software, real-time neutron beam measurement dosimetry, measurement of the Finnish research reactor epithermal neutron spectrum, BNCT accelerator technology; and chemistry: analysis of biological samples and preparation of {sup 10}B enriched decaborane.
Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT
NASA Astrophysics Data System (ADS)
Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing
2017-04-01
The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.
NASA Astrophysics Data System (ADS)
Osawa, Yuta; Imoto, Shoichi; Kusaka, Sachie; Sato, Fuminobu; Tanoshita, Masahiro; Murata, Isao
2017-09-01
Boron Neutron Capture Therapy (BNCT) is known to be a new promising cancer therapy suppressing influence against normal cells. In Japan, Accelerator Based Neutron Sources (ABNS) are being developed for BNCT. For the spread of ABNS based BNCT, we should characterize the neutron field beforehand. For this purpose, we have been developing a low-energy neutron spectrometer based on 3He position sensitive proportional counter. In this study, a new intense epi-thermal neutron field was developed with a DT neutron source for verification of validity of the spectrometer. After the development, the neutron field characteristics were experimentally evaluated by using activation foils. As a result, we confirmed that an epi-thermal neutron field was successfully developed suppressing fast neutrons substantially. Thereafter, the neutron spectrometer was verified experimentally. In the verification, although a measured detection depth distribution agreed well with the calculated distribution by MCNP, the unfolded spectrum was significantly different from the calculated neutron spectrum due to contribution of the side neutron incidence. Therefore, we designed a new neutron collimator consisting of a polyethylene pre-collimator and boron carbide neutron absorber and confirmed numerically that it could suppress the side incident neutrons and shape the neutron flux to be like a pencil beam.
Building of scientific information system for sustainable development of BNCT in Bulgaria.
Mitev, M; Ilieva, K; Apostolov, T
2009-07-01
Building a boron neutron capture therapy (BNCT) facility is foreseen within the reconstruction of the Research Reactor IRT (IRT) of the Institute for Nuclear Research and Nuclear Energy of the Bulgaria Academy of Sciences (INRNE). The development of BNCT at IRT plays a very significant role in the plan for sustainable application of the reactor. A centralized scientific information system on BNCT is being built at the INRNE with the purpose to collect and sort new information as knowledge accumulated during more than thirty years history of BNCT. This BNCT information system will help the creation and consolidation of a well informed and interconnected interdisciplinary team of physicists, chemists, biologists, and radio-oncologists for establishing BNCT cancer treatment in Bulgaria. It will strengthen more intensive development of the national network as well as its enlargement to the Balkan region countries. Furthermore, to acquaint the public at large with the opportunity for BNCT cancer treatment will be addressed. Human, social, and economics results due to BNCT for many patients from Balkan region are expected.
Tamaki, S; Sakai, M; Yoshihashi, S; Manabe, M; Zushi, N; Murata, I; Hoashi, E; Kato, I; Kuri, S; Oshiro, S; Nagasaki, M; Horiike, H
2015-12-01
Mock-up experiment for development of accelerator based neutron source for Osaka University BNCT project was carried out at Birmingham University, UK. In this paper, spatial distribution of neutron flux intensity was evaluated by foil activation method. Validity of the design code system was confirmed by comparing measured gold foil activities with calculations. As a result, it was found that the epi-thermal neutron beam was well collimated by our neutron moderator assembly. Also, the design accuracy was evaluated to have less than 20% error. Copyright © 2015 Elsevier Ltd. All rights reserved.
A feasibility study of the Tehran research reactor as a neutron source for BNCT.
Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Monshizadeh, Mahdi
2014-08-01
Investigation on the use of the Tehran Research Reactor (TRR) as a neutron source for Boron Neutron Capture Therapy (BNCT) has been performed by calculating and measuring energy spectrum and the spatial distribution of neutrons in all external irradiation facilities, including six beam tubes, thermal column, and the medical room. Activation methods with multiple foils and a copper wire have been used for the mentioned measurements. The results show that (1) the small diameter and long length beam tubes cannot provide sufficient neutron flux for BNCT; (2) in order to use the medical room, the TRR core should be placed in the open pool position, in this situation the distance between the core and patient position is about 400 cm, so neutron flux cannot be sufficient for BNCT; and (3) the best facility which can be adapted for BNCT application is the thermal column, if all graphite blocks can be removed. The epithermal and fast neutron flux at the beginning of this empty column are 4.12×10(9) and 1.21×10(9) n/cm(2)/s, respectively, which can provide an appropriate neutron beam for BNCT by designing and constructing a proper Beam Shaping Assembly (BSA) structure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of a new multi-modal Monte-Carlo radiotherapy planning system.
Kumada, H; Nakamura, T; Komeda, M; Matsumura, A
2009-07-01
A new multi-modal Monte-Carlo radiotherapy planning system (developing code: JCDS-FX) is under development at Japan Atomic Energy Agency. This system builds on fundamental technologies of JCDS applied to actual boron neutron capture therapy (BNCT) trials in JRR-4. One of features of the JCDS-FX is that PHITS has been applied to particle transport calculation. PHITS is a multi-purpose particle Monte-Carlo transport code. Hence application of PHITS enables to evaluate total doses given to a patient by a combined modality therapy. Moreover, JCDS-FX with PHITS can be used for the study of accelerator based BNCT. To verify calculation accuracy of the JCDS-FX, dose evaluations for neutron irradiation of a cylindrical water phantom and for an actual clinical trial were performed, then the results were compared with calculations by JCDS with MCNP. The verification results demonstrated that JCDS-FX is applicable to BNCT treatment planning in practical use.
Epithermal neutron beam for BNCT research at Washington State University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.; Nigg, D.W.; Wheeler, F.J.
1999-09-01
Veterinary radiation oncology researchers at the Washington State University (WSU) School of Veterinary Medicine have made major contributions to the understanding of the in-vivo radiobiology of boron neutron capture therapy (BNCT) over the years. Recent attention has been focused on the development of a more convenient and cost-effective local epithermal-neutron beam facility for BNCT research and boronated pharmaceutical screening in large-animal models at WSU. The design of such a facility, to be installed in the thermal column region of the TRIGA research reactor at WSU, was performed in a collaborative effort of SWU and the Idaho National Engineering and Environmentalmore » Laboratory. Construction is now underway.« less
A plastic scintillator-based 2D thermal neutron mapping system for use in BNCT studies.
Ghal-Eh, N; Green, S
2016-06-01
In this study, a scintillator-based measurement instrument is proposed which is capable of measuring a two-dimensional map of thermal neutrons within a phantom based on the detection of 2.22MeV gamma rays generated via nth+H→D+γ reaction. The proposed instrument locates around a small rectangular water phantom (14cm×15cm×20cm) used in Birmingham BNCT facility. The whole system has been simulated using MCNPX 2.6. The results confirm that the thermal flux peaks somewhere between 2cm and 4cm distance from the system entrance which is in agreement with previous studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Barth, Rolf F; Vicente, M Graca H; Harling, Otto K; Kiger, W S; Riley, Kent J; Binns, Peter J; Wagner, Franz M; Suzuki, Minoru; Aihara, Teruhito; Kato, Itsuro; Kawabata, Shinji
2012-08-29
Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or "BPA", and sodium borocaptate or "BSH" (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical trials. Finally, we will summarize the critical issues that must be addressed if BNCT is to become a more widely established clinical modality for the treatment of those malignancies for which there currently are no good treatment options.
2012-01-01
Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, the United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical trials. Finally, we will summarize the critical issues that must be addressed if BNCT is to become a more widely established clinical modality for the treatment of those malignancies for which there currently are no good treatment options. PMID:22929110
Savolainen, Sauli; Kortesniemi, Mika; Timonen, Marjut; Reijonen, Vappu; Kuusela, Linda; Uusi-Simola, Jouni; Salli, Eero; Koivunoro, Hanna; Seppälä, Tiina; Lönnroth, Nadja; Välimäki, Petteri; Hyvönen, Heini; Kotiluoto, Petri; Serén, Tom; Kuronen, Antti; Heikkinen, Sami; Kosunen, Antti; Auterinen, Iiro
2013-05-01
Boron Neutron Capture Therapy (BNCT) is a binary radiotherapy method developed to treat patients with certain malignant tumours. To date, over 300 treatments have been carried out at the Finnish BNCT facility in various on-going and past clinical trials. In this technical review, we discuss our research work in the field of medical physics to form the groundwork for the Finnish BNCT patient treatments, as well as the possibilities to further develop and optimize the method in the future. Accordingly, the following aspects are described: neutron sources, beam dosimetry, treatment planning, boron imaging and determination, and finally the possibilities to detect the efficacy and effects of BNCT on patients. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
SERA -- An advanced treatment planning system for neutron therapy and BNCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigg, D.W.; Wemple, C.A.; Wessol, D.E.
1999-09-01
Detailed treatment planning calculations on a patient-specific basis are required for boron neutron capture therapy (BNCT). Two integrated treatment planning systems developed specifically for BNCT have been in clinical use in the United States over the past few years. The MacNCTPLAN BNCT treatment planning system is used in the clinical BNCT trials that are underway at the Massachusetts Institute of Technology. A second system, BNCT{_}rtpe (BNCT radiation therapy planning environment), developed independently by the Idaho national Engineering and Environmental Laboratory (INEEL) in collaboration with Montana State University (MSU), is used for treatment planning in the current series of BNCT clinicalmore » trials for glioblastoma at Brookhaven National Laboratory (BNL). This latter system is also licensed for use at several other BNCT research facilities worldwide. Although the currently available BNCT planning systems have served their purpose well, they suffer from somewhat long computation times (2 to 3 CPU-hours or more per field) relative to standard photon therapy planning software. This is largely due to the need for explicit three-dimensional solutions to the relevant transport equations. The simplifying approximations that work well for photon transport computations are not generally applicable to neutron transport computations. Greater computational speeds for BNCT treatment planning must therefore generally be achieved through the application of improved numerical techniques rather than by simplification of the governing equations. Recent efforts at INEEL and MSU have been directed toward this goal. This has resulted in a new paradigm for this type of calculation and the subsequent creation of the new simulation environment for radiotherapy applications (SERA) treatment planning system for BNCT. SERA is currently in initial clinical testing in connection with the trials at BNL, and it is expected to replace the present BNCT{_}rtpe system upon general release during 1999.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, A.L.
1991-08-01
This Bulletin presents a summary of accomplishments and highlights in the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for August 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.
Evaluation of the effective dose during BNCT at TRR thermal column epithermal facility.
Jarahi, Hossein; Kasesaz, Yaser; Saleh-Koutahi, Seyed Mohsen
2016-04-01
An epithermal neutron beam has been designed for Boron neutron Capture Therapy (BNCT) at the thermal column of Tehran Research Reactor (TRR) recently. In this paper the whole body effective dose, as well as the equivalent doses of several organs have been calculated in this facility using MCNP4C Monte Carlo code. The effective dose has been calculated by using the absorbed doses determined for each individual organ, taking into account the radiation and tissue weighting factors. The ICRP 110 whole body male phantom has been used as a patient model. It was found that the effective dose during BNCT of a brain tumor is equal to 0.90Sv. This effective dose may induce a 4% secondary cancer risk. Copyright © 2016 Elsevier Ltd. All rights reserved.
Garabalino, Marcela A; Monti Hughes, Andrea; Molinari, Ana J; Heber, Elisa M; Pozzi, Emiliano C C; Cardoso, Jorge E; Colombo, Lucas L; Nievas, Susana; Nigg, David W; Aromando, Romina F; Itoiz, Maria E; Trivillin, Verónica A; Schwint, Amanda E
2011-03-01
We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of (10)B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studies at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na(2)(10)B(10)H(10)), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3. © Springer-Verlag 2010
INEL BNCT Program: Volume 5, No. 9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, A.L.
1991-01-01
This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.
Neutron collimator design of neutron radiography based on the BNCT facility
NASA Astrophysics Data System (ADS)
Yang, Xiao-Peng; Yu, Bo-Xiang; Li, Yi-Guo; Peng, Dan; Lu, Jin; Zhang, Gao-Long; Zhao, Hang; Zhang, Ai-Wu; Li, Chun-Yang; Liu, Wan-Jin; Hu, Tao; Lü, Jun-Guang
2014-02-01
For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of the neutron collimator is greater than 1.0×106 n/cm2/s, the maximum collimation ratio (L/D) is 58, the Cd-ratio(Mn) is 160 and the diameter of collimator end is 10 cm. This neutron collimator is considered to be applicable for neutron radiography.
NASA Astrophysics Data System (ADS)
Tamaki, S.; Sato, F.; Murata, I.
2017-10-01
Boron neutron capture therapy (BNCT) is known to be an effective radiation cancer therapy that requires neutron irradiation. A neutron field generated by an accelerator-based neutron source has various energy spectra, and it is necessary to evaluate the neutron spectrum in the treatment field. However, the method used to measure the neutron spectrum in the treatment field is not well established, and many researchers are making efforts to improve the spectrometers used. In the present study, we developed a prototype of a new neutron spectrometer that can measure the neutron spectra more accurately and precisely. The spectrometer is based on the same theory as that of the Bonner sphere spectrometer, and it uses a liquid moderator and an absorber. By carrying out an experimental test of the developed spectrometer, we finally revealed the problems and necessary conditions of the prototype detector.
INEL BNCT Program: Volume 5, No. 9. Bulletin, September 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, A.L.
1991-12-31
This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory`s (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.
Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.
Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O
2015-12-01
BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. Copyright © 2015 Elsevier Ltd. All rights reserved.
An electron linac-based system for BNCT of shallow tumors
NASA Astrophysics Data System (ADS)
Farhad Masoudi, S.; Ghiasi, Hedieh; Harif, Maryam; Rasouli, Fatemeh S.
2018-07-01
Although BNCT has been in existence since the 1950s, it continues to be of special significant and interest for wide groups of researchers. Recent studies, focused on investigating appropriate neutron sources as alternatives for nuclear reactors, revealed the high potential of electron linac-based facilities to improve the efficiency of this treatment method. The present simulation study has been devoted to both designing an optimized and geometrically simple target to be used as a photoneutron source based on an electron linac and designing a configuration composed of arrangement of materials to generate an appropriate beam for BNCT of shallow tumors considering the widely accepted criteria for pre-clinical survey. It has been found that the behavior of photoneutrons' current and their average energy on the surface of the target is independent of the incident energy. Accordingly, we managed to present a formula to predict the average energy of photoneutrons knowing the electron energy to an acceptable approximation avoiding Monte Carlo simulations. Considering the conflict between the beam intensity and its purity in the whole beam designing process, an optimized beam shaping assembly for electron linac of 18 MeV/ mA has been proposed. These results in essence confirm the ability of these sources for BNCT of shallow tumors and are therefore encouraging for further studies. Furthermore, the results show that this configuration, which the corresponding beam fulfills all the medical requirements, is also usable for electron linacs of other energies. This can be of high importance in practical point of view.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcela A. Garabalino; Andrea Monti Hughes; Ana J. Molinari
2011-03-01
Abstract We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of 10B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studiesmore » at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na210B10H10), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3.« less
NASA Astrophysics Data System (ADS)
Badhrees, I.; Alrumayan, F.; Mahube, F.
Boron Neutron Capture Therapy (BNCT) is a binary form of experimental radiotherapy which is based on the administration of a drug able to concentrate the isotopes in a tumor cell that later are irradiated with a neutron beam. Even though the first evidence of the success of this treatment dates back many years ago, BNCT showed successful treatment results in malignant melanoma, and Glioblastoma. In order for BNCT to be successful, a sufficient amount of Boron (10B) must be selectively delivered to the tumor cell, and then irradiated by neutrons of sufficient enough. The CS-30 cyclotron at King Faisal Specialist Hospital & Research Center is a positive-ion machine capable of accelerating protons at 26MeV, and other isotopes as well. Although the peak beam intensity from the CS-30 is low, the key to success of using it for the BNCT is by using a high average beam current at low energy. This work is aimed at testing the capability of the CS-30 Cyclotron to produce a low-energy neutron beam to be used to activate the Boron atoms injected into the tumor cell, through simulation of a compatible moderator. We are also planning to measure the overall dosimetry of the energy dose as well as that for the boron in the tumor cell.
Hsieh, Mindy; Liu, Yingzi; Mostafaei, Farshad; Poulson, Jean M; Nie, Linda H
2017-02-01
Boron neutron capture therapy (BNCT) is a binary treatment modality that uses high LET particles to achieve tumor cell killing. Deuterium-deuterium (DD) compact neutron generators have advantages over nuclear reactors and large accelerators as the BNCT neutron source, such as their compact size, low cost, and relatively easy installation. The purpose of this study is to design a beam shaping assembly (BSA) for a DD neutron generator and assess the potential of a DD-based BNCT system using Monte Carlo (MC) simulations. The MC model consisted of a head phantom, a DD neutron source, and a BSA. The head phantom had tally cylinders along the centerline for computing neutron and photon fluences and calculating the dose as a function of depth. The head phantom was placed at 4 cm from the BSA. The neutron source was modeled to resemble the source of our current DD neutron generator. A BSA was designed to moderate and shape the 2.45-MeV DD neutrons to the epithermal (0.5 eV to 10 keV) range. The BSA had multiple components, including moderator, reflector, collimator, and filter. Various materials and configurations were tested for each component. Each BSA layout was assessed in terms of the in-air and in-phantom parameters. The maximum brain dose was limited to 12.5 Gray-Equivalent (Gy-Eq) and the skin dose to 18 Gy-Eq. The optimized BSA configuration included 30 cm of lead for reflector, 45 cm of LiF, and 10 cm of MgF 2 for moderator, 10 cm of lead for collimator, and 0.1 mm of cadmium for thermal neutron filter. Epithermal flux at the beam aperture was 1.0 × 10 5 n epi /cm 2 -s; thermal-to-epithermal neutron ratio was 0.05; fast neutron dose per epithermal was 5.5 × 10 -13 Gy-cm 2 /φ epi , and photon dose per epithermal was 2.4 × 10 -13 Gy-cm 2 /φ epi . The AD, AR, and the advantage depth dose rate were 12.1 cm, 3.7, and 3.2 × 10 -3 cGy-Eq/min, respectively. The maximum skin dose was 0.56 Gy-Eq. The DD neutron yield that is needed to irradiate in reasonable time was 4.9 × 10 13 n/s. Results demonstrated that a DD-based BNCT system could be designed to produce neutron beams that have acceptable in-air and in-phantom characteristics. The parameter values were comparable to those of existing BNCT facilities. Continuing efforts are ongoing to improve the DD neutron yield. © 2016 American Association of Physicists in Medicine.
High-flux neutron source based on a liquid-lithium target
NASA Astrophysics Data System (ADS)
Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.
2013-04-01
A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.
High-flux neutron source based on a liquid-lithium target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halfon, S.; Feinberg, G.; Paul, M.
2013-04-19
A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generatemore » a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.« less
Michiue, Hiroyuki; Sakurai, Yoshinori; Kondo, Natsuko; Kitamatsu, Mizuki; Bin, Feng; Nakajima, Kiichiro; Hirota, Yuki; Kawabata, Shinji; Nishiki, Tei-ichi; Ohmori, Iori; Tomizawa, Kazuhito; Miyatake, Shin-ichi; Ono, Koji; Matsui, Hideki
2014-03-01
New anti-cancer therapy with boron neutron capture therapy (BNCT) is based on the nuclear reaction of boron-10 with neutron irradiation. The median survival of BNCT patients with glioblastoma was almost twice as long as those receiving standard therapy in a Japanese BNCT clinical trial. In this clinical trial, two boron compounds, BPA (boronophenylalanine) and BSH (sodium borocaptate), were used for BNCT. BPA is taken up into cells through amino acid transporters that are expressed highly in almost all malignant cells, but BSH cannot pass through the cell membrane and remains outside the cell. We simulated the energy transfer against the nucleus at different locations of boron from outside the cell to the nuclear region with neutron irradiation and concluded that there was a marked difference between inside and outside the cell in boron localization. To overcome this disadvantage of BSH in BNCT, we used a cell-penetrating peptide system for transduction of BSH. CPP (cell-membrane penetrating peptide) is very common peptide domains that transduce many physiologically active substances into cells in vitro and in vivo. BSH-fused CPPs can penetrate the cell membrane and localize inside a cell. To increase the boron ratio in one BSH-peptide molecule, 8BSH fused to 11R with a dendritic lysine structure was synthesized and administrated to malignant glioma cells and a brain tumor mouse model. 8BSH-11R localized at the cell nucleus and showed a very high boron value in ICP results. With neutron irradiation, the 8BSH-11R administrated group showed a significant cancer killing effect compared to the 100 times higher concentration of BSH-administrated group. We concluded that BSH-fused CPPs were one of the most improved and potential boron compounds in the next-stage BNCT trial and 8BSH-11R may be applied in the clinical setting. Copyright © 2013 Elsevier Ltd. All rights reserved.
Neutron beams implemented at nuclear research reactors for BNCT
NASA Astrophysics Data System (ADS)
Bavarnegin, E.; Kasesaz, Y.; Wagner, F. M.
2017-05-01
This paper presents a survey of neutron beams which were or are in use at 56 Nuclear Research Reactors (NRRs) in order to be used for BNCT, either for treatment or research purposes in aspects of various combinations of materials that were used in their Beam Shaping Assembly (BSA) design, use of fission converters and optimized beam parameters. All our knowledge about BNCT is indebted to researches that have been done in NRRs. The results of about 60 years research in BNCT and also the successes of this method in medical treatment of tumors show that, for the development of BNCT as a routine cancer therapy method, hospital-based neutron sources are needed. Achieving a physical data collection on BNCT neutron beams based on NRRs will be helpful for beam designers in developing a non-reactor based neutron beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emiliano C. C. Pozzi; Veronica A. Trivilin; Lucas L. Colombo
Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. Employing an experimental model of liver metastases in rats, we recently demonstrated that BNCT mediated by boronophenylalanine (BPA-BNCT) at 13 Gy prescribed to tumor is therapeutically useful at 3-week follow-up. The aim of the present study was to evaluate dose–response at 5-week follow-up, based on retrospective dose assessment in individual rats. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA-BNCT (n = 19), Beam only (n = 8) and Sham (n = 7) (matched manipulation, no treatment). For eachmore » rat, neutron flux was measured in situ and boron content was measured in a pre-irradiation blood sample for retrospective individual dose assessment. For statistical analysis (ANOVA), individual data for the BPA-BNCT group were pooled according to absorbed tumor dose, BPA-BNCT I: 4.5–8.9 Gy and BPA-BNCT II: 9.2–16 Gy. At 5 weeks post-irradiation, the tumor surface area post-treatment/pre-treatment ratio was 12.2 +/- 6.6 for Sham, 7.8 +/- 4.1 for Beam only, 4.4 +/- 5.6 for BPA-BNCT I and 0.45 +/- 0.20 for BPA-BNCT II; tumor nodule weight was 750 +/- 480 mg for Sham, 960 +/- 620 mg for Beam only, 380 +/- 720 mg for BPA-BNCT I and 7.3 +/- 5.9 mg for BPA-BNCT II. The BPA-BNCT II group exhibited statistically significant tumor control with no contributory liver toxicity. Potential threshold doses for tumor response and significant tumor control were established at 6.1 and 9.2 Gy, respectively.« less
Boron Neutron Capture Therapy in the Treatment of Recurrent Laryngeal Cancer.
Haapaniemi, Aaro; Kankaanranta, Leena; Saat, Riste; Koivunoro, Hanna; Saarilahti, Kauko; Mäkitie, Antti; Atula, Timo; Joensuu, Heikki
2016-05-01
To investigate the safety and efficacy of boron neutron capture therapy (BNCT) as a larynx-preserving treatment option for patients with recurrent laryngeal cancer. Six patients with locally recurrent squamous cell laryngeal carcinoma and 3 patients with persistent laryngeal cancer after prior treatment were treated with BNCT at the FiR1 facility (Espoo, Finland) in 2006 to 2012. The patients had received prior radiation therapy with or without concomitant chemotherapy to a cumulative median dose of 66 Gy. The median tumor diameter was 2.9 cm (range, 1.4-10.9 cm) before BNCT. Boron neutron capture therapy was offered on a compassionate basis to patients who either refused laryngectomy (n=7) or had an inoperable tumor (n=2). Boronophenylalanine-fructose (400 mg/kg) was used as the boron carrier and was infused over 2 hours intravenously before neutron irradiation. Six patients received BNCT once and 3 twice. The estimated average gross tumor volume dose ranged from 22 to 38 Gy (W) (mean; 29 Gy [W]). Six of the 8 evaluable patients responded to BNCT; 2 achieved complete and 4 partial response. One patient died early and was not evaluable for response. Most common side effects were stomatitis, fatigue, and oral pain. No life-threatening or grade 4 toxicity was observed. The median time to progression within the target volume was 6.6 months, and the median overall survival time 13.3 months after BNCT. One patient with complete response is alive and disease-free with a functioning larynx 60 months after BNCT. Boron neutron capture therapy given after prior external beam radiation therapy is well tolerated. Most patients responded to BNCT, but long-term survival with larynx preservation was infrequent owing to cancer progression. Selected patients with recurrent laryngeal cancer may benefit from BNCT. Copyright © 2016 Elsevier Inc. All rights reserved.
Boron Neutron Capture Therapy in the Treatment of Recurrent Laryngeal Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haapaniemi, Aaro, E-mail: aaro.haapaniemi@hus.fi; Kankaanranta, Leena; Saat, Riste
2016-05-01
Purpose: To investigate the safety and efficacy of boron neutron capture therapy (BNCT) as a larynx-preserving treatment option for patients with recurrent laryngeal cancer. Methods and Materials: Six patients with locally recurrent squamous cell laryngeal carcinoma and 3 patients with persistent laryngeal cancer after prior treatment were treated with BNCT at the FiR1 facility (Espoo, Finland) in 2006 to 2012. The patients had received prior radiation therapy with or without concomitant chemotherapy to a cumulative median dose of 66 Gy. The median tumor diameter was 2.9 cm (range, 1.4-10.9 cm) before BNCT. Boron neutron capture therapy was offered on a compassionate basis to patientsmore » who either refused laryngectomy (n=7) or had an inoperable tumor (n=2). Boronophenylalanine-fructose (400 mg/kg) was used as the boron carrier and was infused over 2 hours intravenously before neutron irradiation. Results: Six patients received BNCT once and 3 twice. The estimated average gross tumor volume dose ranged from 22 to 38 Gy (W) (mean; 29 Gy [W]). Six of the 8 evaluable patients responded to BNCT; 2 achieved complete and 4 partial response. One patient died early and was not evaluable for response. Most common side effects were stomatitis, fatigue, and oral pain. No life-threatening or grade 4 toxicity was observed. The median time to progression within the target volume was 6.6 months, and the median overall survival time 13.3 months after BNCT. One patient with complete response is alive and disease-free with a functioning larynx 60 months after BNCT. Conclusions: Boron neutron capture therapy given after prior external beam radiation therapy is well tolerated. Most patients responded to BNCT, but long-term survival with larynx preservation was infrequent owing to cancer progression. Selected patients with recurrent laryngeal cancer may benefit from BNCT.« less
Auterinen, I; Kotiluoto, P; Hippeläinen, E; Kortesniemi, M; Seppälä, T; Serén, T; Mannila, V; Pöyry, P; Kankaanranta, L; Collan, J; Kouri, M; Joensuu, H; Savolainen, S
2004-11-01
Improvements have been made at the FiR 1 BNCT facility to ease the positioning of the patient with a tumor in the head and neck region into a lateral neutron beam. Shoulder recesses were constructed horizontally on both sides of the beam aperture. When shoulder recesses are not needed, they are filled with neutron attenuating filling blocks. MCNP simulations using an anthropomorphic human model BOMAB phantom showed that the main contribution to the increase in the effective dose to the patient's body due to the shoulder recesses was from the neutron dose of the arm. In a position when one arm is inside the shoulder recess, the maximal effective dose of the patient was estimated to be 0.7Sv/h. Dose measurements using the twin ionization chamber technique showed that the neutron dose increased on the sides as predicted by the MCNP model but there was no noticeable change in the gamma doses. When making the recesses into the lithium containing neutron shield material tritium contamination was confined using an underpressurized glove box and machine tools with local exhaust. The shoulder recesses give space for more flexible patient positioning and can be considered as a significant improvement of the Finnish BNCT facility.
Pozzi, Emiliano C C; Trivillin, Verónica A; Colombo, Lucas L; Monti Hughes, Andrea; Thorp, Silvia I; Cardoso, Jorge E; Garabalino, Marcela A; Molinari, Ana J; Heber, Elisa M; Curotto, Paula; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Schwint, Amanda E
2013-11-01
Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. Employing an experimental model of liver metastases in rats, we recently demonstrated that BNCT mediated by boronophenylalanine (BPA-BNCT) at 13 Gy prescribed to tumor is therapeutically useful at 3-week follow-up. The aim of the present study was to evaluate dose–response at 5-week follow-up, based on retrospective dose assessment in individual rats. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA-BNCT (n = 19), Beam only (n = 8) and Sham (n = 7) (matched manipulation, no treatment). For each rat, neutron flux was measured in situ and boron content was measured in a pre-irradiation blood sample for retrospective individual dose assessment. For statistical analysis (ANOVA), individual data for the BPA-BNCT group were pooled according to absorbed tumor dose, BPA-BNCT I: 4.5–8.9 Gy and BPA-BNCT II: 9.2–16 Gy. At 5 weeks post-irradiation, the tumor surface area post-treatment/pre-treatment ratio was 12.2 ± 6.6 for Sham, 7.8 ± 4.1 for Beam only, 4.4 ± 5.6 for BPA-BNCT I and 0.45 ± 0.20 for BPA-BNCT II; tumor nodule weight was 750 ± 480 mg for Sham, 960 ± 620 mg for Beam only, 380 ± 720 mg for BPA-BNCT I and 7.3 ± 5.9 mg for BPA-BNCT II. The BPA-BNCT II group exhibited statistically significant tumor control with no contributory liver toxicity. Potential threshold doses for tumor response and significant tumor control were established at 6.1 and 9.2 Gy, respectively.
DEVELOPMENT OF A MULTIMODAL MONTE CARLO BASED TREATMENT PLANNING SYSTEM.
Kumada, Hiroaki; Takada, Kenta; Sakurai, Yoshinori; Suzuki, Minoru; Takata, Takushi; Sakurai, Hideyuki; Matsumura, Akira; Sakae, Takeji
2017-10-26
To establish boron neutron capture therapy (BNCT), the University of Tsukuba is developing a treatment device and peripheral devices required in BNCT, such as a treatment planning system. We are developing a new multimodal Monte Carlo based treatment planning system (developing code: Tsukuba Plan). Tsukuba Plan allows for dose estimation in proton therapy, X-ray therapy and heavy ion therapy in addition to BNCT because the system employs PHITS as the Monte Carlo dose calculation engine. Regarding BNCT, several verifications of the system are being carried out for its practical usage. The verification results demonstrate that Tsukuba Plan allows for accurate estimation of thermal neutron flux and gamma-ray dose as fundamental radiations of dosimetry in BNCT. In addition to the practical use of Tsukuba Plan in BNCT, we are investigating its application to other radiation therapies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maucec, Marko
2000-11-15
The MCNP4B Monte Carlo transport code is used in a feasibility study of the epithermal neutron boron neutron capture therapy facility in the thermalizing column of the 250-kW TRIGA Mark II reactor at the Jozef Stefan Institute (JSI). To boost the epithermal neutron flux at the reference irradiation point, the efficiency of a fission plate with almost 1.5 kg of 20% enriched uranium and 2.3 kW of thermal power is investigated. With the same purpose in mind, the TRIGA reactor core setup is optimized, and standard fresh fuel elements are concentrated partly in the outermost ring of the core. Further,more » a detailed parametric study of the materials and dimensions for all the relevant parts of the irradiation facility is carried out. Some of the standard epithermal neutron filter/moderator materials, as well as 'pressed-only' low-density Al{sub 2}O{sub 3} and AlF{sub 3}, are considered. The proposed version of the BNCT facility, with PbF{sub 2} as the epithermal neutron filter/moderator, provides an epithermal neutron flux of {approx}1.1 x 10{sup 9} n/cm{sup 2}.s, thus enabling patient irradiation times of <60 min. With reasonably low fast neutron and photon contamination ([overdot]D{sub nfast}/{phi}{sub epi} < 5 x 10{sup -13} Gy.cm{sup 2}/n and [overdot]D{sub {gamma}} /{phi}{sub epi} < 3 x 10{sup -13} Gy.cm{sup 2}/n), the in-air performances of the proposed beam are comparable to all existing epithermal BNCT facilities. The design presents an equally efficient alternative to the BNCT beams in TRIGA reactor thermal columns that are more commonly applied. The cavity of the dry cell, a former JSI TRIGA reactor spent-fuel storage facility, adjacent to the thermalizing column, could rather easily be rearranged into a suitable patient treatment room, which would substantially decrease the overall developmental costs.« less
Kageji, Teruyoshi; Nagahiro, Shinji; Mizobuchi, Yoshifumi; Matsuzaki, Kazuhito; Nakagawa, Yoshinobu; Kumada, Hiroaki
2014-01-01
The purpose of this study was to evaluate the clinical outcome of boron neutron capture therapy (BNCT) and conventional treatment in patients with newly diagnosed glioblastoma. Since 1998 we treated 23 newly-diagosed GBM patients with BNCT without any additional chemotherapy. Their median survival time was 19.5 months; the 2-, 3-, and 5-year survival rates were 31.8%, 22.7%, and 9.1%, respectively. The clinical results of BNCT in patients with GBM are similar to those of recent conventional treatments based on radiotherapy with concomitant and adjuvant temozolomide.
Yu, Haiyan; Tang, Xiaobin; Shu, Diyun; Liu, Yuanhao; Geng, Changran; Gong, Chunhui; Hang, Shuang; Chen, Da
2017-03-01
Boron Neutron Capture Therapy (BNCT) is a radiotherapy that combines biological targeting and high Linear Energy Transfer (LET). It is considered a potential therapeutic approach for non-small cell lung cancer (NSCLC). It could avoid the inaccurate treatment caused by the lung motion during radiotherapy, because the dose deposition mainly depends on the boron localization and neutron source. Thus, B concentration and neutron sources are both principal factors of BNCT, and they play significant roles in the curative effect of BNCT for different cases. The purpose was to explore the feasibility of BNCT treatment for NSCLC with either of two neutron sources (the epithermal reactor at the Massachusetts Institute of Technology named "MIT source" and the accelerator neutron source designed in Argentina named "MEC source") and various boron concentrations. Shallow and deeper lung tumors were defined in the Chinese hybrid radiation phantom, and the Monte Carlo method was used to calculate the dose to tumors and healthy organs. The MEC source was more appropriate to treat the shallow tumor (depth of 6 cm) with a shorter treatment time. However, the MIT source was more suitable for deep lung tumor (depth of 9 cm) treatment, as the MEC source is more likely to exceed the skin dose limit. Thus, a neutron source consisting of more fast neutrons is not necessarily suitable for deep treatment of lung tumors. Theoretical distribution of B in tumors and organs at risk (especially skin) was obtained to meet the treatable requirement of BNCT, which may provide the references to identify the feasibility of BNCT for the treatment of lung cancer using these two neutron sources in future clinical applications.
Capoulat, M E; Minsky, D M; Kreiner, A J
2014-03-01
The 9Be(d,n)10B reaction was studied as an epithermal neutron source for brain tumor treatment through Boron Neutron Capture Therapy (BNCT). In BNCT, neutrons are classified according to their energies as thermal (<0.5 eV), epithermal (from 0.5 eV to 10 keV) or fast (>10 keV). For deep-seated tumors epithermal neutrons are needed. Since a fraction of the neutrons produced by this reaction are quite fast (up to 5-6 MeV, even for low-bombarding energies), an efficient beam shaping design is required. This task was carried out (1) by selecting the combinations of bombarding energy and target thickness that minimize the highest-energy neutron production; and (2) by the appropriate choice of the Beam Shaping Assembly (BSA) geometry, for each of the combinations found in (1). The BSA geometry was determined as the configuration that maximized the dose deliverable to the tumor in a 1 h treatment, within the constraints imposed by the healthy tissue dose adopted tolerance. Doses were calculated through the MCNP code. The highest dose deliverable to the tumor was found for an 8 μm target and a deuteron beam of 1.45 MeV. Tumor weighted doses ≥40 Gy can be delivered up to about 5 cm in depth, with a maximum value of 51 Gy at a depth of about 2 cm. This dose performance can be improved by relaxing the treatment time constraint and splitting the treatment into two 1-h sessions. These good treatment capabilities strengthen the prospects for a potential use of this reaction in BNCT. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
2.5 MeV CW 4-vane RFQ accelerator design for BNCT applications
NASA Astrophysics Data System (ADS)
Zhu, Xiaowen; Wang, Hu; Lu, Yuanrong; Wang, Zhi; Zhu, Kun; Zou, Yubin; Guo, Zhiyu
2018-03-01
Boron Neutron Capture Therapy (BNCT) promises a bright future in cancer therapy for its highly selective destruction of cancer cells, using the 10B +n→7Li +4 He reaction. It offers a more satisfactory therapeutic effect than traditional methods for the treatment of malignant brain tumors, head and neck cancer, melanoma, liver cancer and so on. A CW 4-vane RFQ, operating at 162.5 MHz, provides acceleration of a 20 mA proton beam to 2.5 MeV, bombarding a liquid lithium target for neutron production with a soft neutron energy spectrum. The fast neutron yield is about 1.73×1013 n/s. We preliminarily develop and optimize a beam shaping assembly design for the 7Li(p, n)7Be reaction with a 2.5 MeV proton beam. The epithermal neutron flux simulated at the beam port will reach up to 1 . 575 ×109 n/s/cm2. The beam dynamics design, simulation and benchmark for 2.5 MeV BNCT RFQ have been performed with both ParmteqM (V3.05) and Toutatis, with a transmission efficiency higher than 99.6% at 20 mA. To ease the thermal management in the CW RFQ operation, we adopt a modest inter-vane voltage design (U = 65 kV), though this does increase the accelerator length (reaching 5.2 m). Using the well-developed 3D electromagnetic codes, CST MWS and ANSYS HFSS, we are able to deal with the complexity of the BNCT RFQ, taking the contribution of each component in the RF volume into consideration. This allows us to optimize the longitudinal field distribution in a full-length model. Also, the parametric modeling technique is of great benefit to extensive modifications and simulations. In addition, the resonant frequency tuning of this RFQ is studied, giving the tuning sensitivities of vane channel and wall channel as -16.3 kHz/°C and 12.4 kHz/°C, respectively. Finally, both the multipacting level of this RFQ and multipacting suppressing in the coaxial coupler are investigated.
Liquid Li based neutron source for BNCT and science application.
Horiike, H; Murata, I; Iida, T; Yoshihashi, S; Hoashi, E; Kato, I; Hashimoto, N; Kuri, S; Oshiro, S
2015-12-01
Liquid lithium (Li) is a candidate material for a target of intense neutron source, heat transfer medium in space engines and charges stripper. For a medical application of BNCT, epithermal neutrons with least energetic neutrons and γ-ray are required so as to avoid unnecessary doses to a patient. This is enabled by lithium target irradiated by protons at 2.5 MeV range, with utilizing the threshold reaction of (7)Li(p,n)(7)Be at 1.88 MeV. In the system, protons at 2.5 MeV penetrate into Li layer by 0.25 mm with dissipating heat load near the surface. To handle it, thin film flow of high velocity is important for stable operation. For the proton accelerator, electrostatic type of the Schnkel or the tandem is planned to be employed. Neutrons generated at 0.6 MeV are gently moderated to epithermal energy while suppressing accompanying γ-ray minimum by the dedicated moderator assembly. Copyright © 2015 Elsevier Ltd. All rights reserved.
MCNP study for epithermal neutron irradiation of an isolated liver at the Finnish BNCT facility.
Kotiluoto, P; Auterinen, I
2004-11-01
A successful boron neutron capture treatment (BNCT) of a patient with multiple liver metastases has been first given in Italy, by placing the removed organ into the thermal neutron column of the Triga research reactor of the University of Pavia. In Finland, FiR 1 Triga reactor with an epithermal neutron beam well suited for BNCT has been extensively used to irradiate patients with brain tumors such as glioblastoma and recently also head and neck tumors. In this work we have studied by MCNP Monte Carlo simulations, whether it would be beneficial to treat an isolated liver with epithermal neutrons instead of thermal ones. The results show, that the epithermal field penetrates deeper into the liver and creates a build-up distribution of the boron dose. Our results strongly encourage further studying of irradiation arrangement of an isolated liver with epithermal neutron fields.
Compact, inexpensive, epithermal neutron source for BNCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swenson, D. A.
1999-06-10
A new rf-focused linac structure, designed specifically to increase the acceleration efficiency and reduce the cost of linac structures in the few-MeV range, may win the role as the optimum accelerator-based epithermal neutron source for the BNCT application. This new linac structure resembles a drift tube linac (DTL) with radio frequency quadrupole (RFQ) focusing incorporated into each 'drift tube,' hence the name R lowbar f F lowbar ocused D lowbar TL, or RFD. It promises superior acceleration properties, focusing properties, and CW capabilities. We have a proposal under consideration for the development of an epithermal neutron source, based on themore » 2.5-MeV RFD linac system with an average current of 10 mA, having the following components: an ion source, a short low-energy transport system, a short RFQ linac section, an RFD linac section, an rf power system, a high-energy beam transport system, a proton beam target, and a neutron beam moderator system. We propose to develop a solid lithium target for this application in the form of a thin lithium layer on the inner surface of a truncated aluminum cone, cooled by the heavy water moderator, where the proton beam is expanded to a diameter of 3 cm and scanned along a circular path, striking the lithium layer at the cone's half-angle of 30 degrees. We propose to develop a moderator assembly designed to transmit a large fraction of the source neutrons from the target to the patient treatment port, while shifting the neutron energies to an appropriate epithermal energy spectrum and minimizing the gamma-ray dose. The status of this proposal and these plans are presented.« less
Cyclotron-based neutron source for BNCT
NASA Astrophysics Data System (ADS)
Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.
2013-04-01
Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation & treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8×109 neutrons/cm2/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with 10B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.
Cyclotron-based neutron source for BNCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitsumoto, T.; Yajima, S.; Tsutsui, H.
2013-04-19
Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutronmore » collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.« less
Boron neutron capture therapy for malignant melanoma: first clinical case report in China
Yong, Zhong; Song, Zewen; Zhou, Yongmao; Liu, Tong; Zhang, Zizhu; Zhao, Yanzhong; Chen, Yang; Jin, Congjun; Chen, Xiang; Lu, Jianyun; Han, Rui; Li, Pengzhou; Sun, Xulong; Wang, Guohui; Shi, Guangqing; Zhu, Shaihong
2016-01-01
A phase I/II clinical trial for treating malignant melanoma by boron neutron capture therapy (BNCT) was designed to evaluate whether the world’s first in-hospital neutron irradiator (IHNI) was qualified for BNCT. In this clinical trial planning to enroll 30 patients, the first case was treated on August 19, 2014. We present the protocol of this clinical trial, the treating procedure, and the clinical outcome of this first case. Only grade 2 acute radiation injury was observed during the first four weeks after BNCT and the injury healed after treatment. No late radiation injury was found during the 24-month follow-up. Based on positron emission tomography-computed tomography (PET/CT) scan, pathological analysis and gross examination, the patient showed a complete response to BNCT, indicating that BNCT is a potent therapy against malignant melanoma and IHNI has the potential to enable the delivery of BNCT in hospitals. PMID:28174492
NASA Astrophysics Data System (ADS)
Lin, Heng-Xiao; Chen, Wei-Lin; Liu, Yuan-Hao; Sheu, Rong-Jiun
2016-03-01
A set of spherical-type activation detectors was developed aiming to provide better determination of the neutron spectrum at the Tsing Hua Open-pool Reactor (THOR) BNCT facility. An activation foil embedded in a specially designed spherical holder exhibits three advantages: (1) minimizing the effect of neutron angular dependence, (2) creating response functions with broadened coverage of neutron energies by introducing additional moderators or absorbers to the central activation foil, and (3) reducing irradiation time because of improved detection efficiencies to epithermal neutron beam. This paper presents the design concept and the calculated response functions of new detectors. Theoretical and experimental demonstrations of the performance of the detectors are provided through comparisons of the unfolded neutron spectra determined using this method and conventional multiple-foil activation techniques.
Monti Hughes, Andrea; Longhino, Juan; Boggio, Esteban; Medina, Vanina A; Martinel Lamas, Diego J; Garabalino, Marcela A; Heber, Elisa M; Pozzi, Emiliano C C; Itoiz, María E; Aromando, Romina F; Nigg, David W; Trivillin, Verónica A; Schwint, Amanda E
2017-11-01
Boron neutron capture therapy (BNCT) is based on selective accumulation of B-10 carriers in tumor followed by neutron irradiation. We demonstrated, in 2001, the therapeutic effect of BNCT mediated by BPA (boronophenylalanine) in the hamster cheek pouch model of oral cancer, at the RA-6 nuclear reactor. Between 2007 and 2011, the RA-6 was upgraded, leading to an improvement in the performance of the BNCT beam (B2 configuration). Our aim was to evaluate BPA-BNCT radiotoxicity and tumor control in the hamster cheek pouch model of oral cancer at the new "B2" configuration. We also evaluated, for the first time in the oral cancer model, the radioprotective effect of histamine against mucositis in precancerous tissue as the dose-limiting tissue. Cancerized pouches were exposed to: BPA-BNCT; BPA-BNCT + histamine; BO: Beam only; BO + histamine; CONTROL: cancerized, no-treatment. BNCT induced severe mucositis, with an incidence that was slightly higher than in "B1" experiments (86 vs 67%, respectively). BO induced low/moderate mucositis. Histamine slightly reduced the incidence of severe mucositis induced by BPA-BNCT (75 vs 86%) and prevented mucositis altogether in BO animals. Tumor overall response was significantly higher in BNCT (94-96%) than in control (16%) and BO groups (9-38%), and did not differ significantly from the "B1" results (91%). Histamine did not compromise BNCT therapeutic efficacy. BNCT radiotoxicity and therapeutic effect at the B1 and B2 configurations of RA-6 were consistent. Histamine slightly reduced mucositis in precancerous tissue even in this overly aggressive oral cancer model, without compromising tumor control.
Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.
Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro
2015-12-01
The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. Copyright © 2015 Elsevier Ltd. All rights reserved.
Garabalino, Marcela A; Heber, Elisa M; Monti Hughes, Andrea; González, Sara J; Molinari, Ana J; Pozzi, Emiliano C C; Nievas, Susana; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Bauer, William; Trivillin, Verónica A; Schwint, Amanda E
2013-08-01
Boron neutron capture therapy (BNCT) is based on selective accumulation of ¹⁰B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg ¹⁰B/kg) was administered to tumor-bearing hamsters. Groups of 3-5 animals were killed humanely at nine time-points, 3-12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24-35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7-11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible.
Monte Carlo based protocol for cell survival and tumour control probability in BNCT.
Ye, S J
1999-02-01
A mathematical model to calculate the theoretical cell survival probability (nominally, the cell survival fraction) is developed to evaluate preclinical treatment conditions for boron neutron capture therapy (BNCT). A treatment condition is characterized by the neutron beam spectra, single or bilateral exposure, and the choice of boron carrier drug (boronophenylalanine (BPA) or boron sulfhydryl hydride (BSH)). The cell survival probability defined from Poisson statistics is expressed with the cell-killing yield, the 10B(n,alpha)7Li reaction density, and the tolerable neutron fluence. The radiation transport calculation from the neutron source to tumours is carried out using Monte Carlo methods: (i) reactor-based BNCT facility modelling to yield the neutron beam library at an irradiation port; (ii) dosimetry to limit the neutron fluence below a tolerance dose (10.5 Gy-Eq); (iii) calculation of the 10B(n,alpha)7Li reaction density in tumours. A shallow surface tumour could be effectively treated by single exposure producing an average cell survival probability of 10(-3)-10(-5) for probable ranges of the cell-killing yield for the two drugs, while a deep tumour will require bilateral exposure to achieve comparable cell kills at depth. With very pure epithermal beams eliminating thermal, low epithermal and fast neutrons, the cell survival can be decreased by factors of 2-10 compared with the unmodified neutron spectrum. A dominant effect of cell-killing yield on tumour cell survival demonstrates the importance of choice of boron carrier drug. However, these calculations do not indicate an unambiguous preference for one drug, due to the large overlap of tumour cell survival in the probable ranges of the cell-killing yield for the two drugs. The cell survival value averaged over a bulky tumour volume is used to predict the overall BNCT therapeutic efficacy, using a simple model of tumour control probability (TCP).
Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.
Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S
2016-01-01
Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gagetti, Leonardo; Anzorena, Manuel Suarez; Bertolo, Alma; del Grosso, Mariela; Kreiner, Andrés J.
2017-12-01
Thin Be targets for neutron production through Be(d,n) are produced and characterized. We improved and characterized the substrate surface, specifically the roughness, in order to achieve homogeneous and stable deposits. Once well bonded deposits were obtained, some of them were irradiated with a 150 keV proton beam and with a 1.45 MeV deuteron beam. Both deposits, pristine and irradiated, were characterized by profilometry, X-ray diffraction, scanning electron microscopy and electron probe microanalyzer.
Sato, Eisuke; Zaboronok, Alexander; Yamamoto, Tetsuya; Nakai, Kei; Taskaev, Sergey; Volkova, Olga; Mechetina, Ludmila; Taranin, Alexander; Kanygin, Vladimir; Isobe, Tomonori; Mathis, Bryan J; Matsumura, Akira
2018-01-01
Abstract In the current article, we provide in vitro efficacy evaluation of a unique accelerator-based neutron source, constructed at the Budker Institute of Nuclear Physics (Novosibirsk, Russian Federation), for boron neutron capture therapy (BNCT), which is particularly effective in the case of invasive cancers. U251MG, CHO-K1 and V79 cells were incubated and irradiated in various concentrations of boric acid with epithermal neutrons for 2–3 h in a plexiglass phantom, using 2.0 MeV proton energy and 1.5–3.0 mA proton current, resulting in a neutron fluence of 2.16 × 1012 cm−2. The survival curves of cells loaded with boron were normalized to those irradiated without boron (to exclude the influence of the fast neutron and gamma dose components) and fit to the linear–quadratic (LQ) model. Colony formation assays showed the following cell survival rates (means ± SDs): CHO-K1: 0.348 ± 0.069 (10 ppm), 0.058 ± 0.017 (20 ppm), 0.018 ± 0.005 (40 ppm); V79: 0.476 ± 0.160 (10 ppm), 0.346 ± 0.053 (20 ppm), 0.078 ± 0.015 (40 ppm); and U251MG: 0.311 ± 0.061 (10 ppm), 0.131 ± 0.022 (20 ppm), 0.020 ± 0.010 (40 ppm). The difference between treated cells and controls was significant in all cases (P < 0.01) and confirmed that the neutron source and irradiation regimen were sufficient for control over cell colony formation. We believe our study will serve as a model for ongoing in vitro experiments on neutron capture therapy to advance in this area for further development of accelerator-based BNCT into the clinical phase. PMID:29281044
A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koivunoro, H.; Lou, T.P.; Leung, K. N.
2003-04-02
Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the {sup 10}B(n,{alpha}){sup 7}Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based onmore » D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented.« less
Feasibility of BNCT radiobiological experiments at the HYTHOR facility
NASA Astrophysics Data System (ADS)
Esposito, J.; Ceballos, C.; Soncin, M.; Fabris, C.; Friso, E.; Moro, D.; Colautti, P.; Jori, G.; Rosi, G.; Nava, E.
2008-06-01
HYTHOR (HYbrid Thermal spectrum sHifter tapirO Reactor) is a new thermal-neutron irradiation facility, which was installed and became operative in mid 2005 at the TAPIRO (TAratura PIla Rapida potenza 0) fast reactor, in the Casaccia research centre (near Rome) of ENEA (Ente per le Nuove tecnologie Energia ed Ambiente). The facility has been designed for in vivo radiobiological studies. In HYTHOR irradiation cavity, 1-6 mice can be simultaneously irradiated to study skin melanoma treatments with the BNCT (boron neutron capture therapy). The therapeutic effects of HYTHOR radiation field on mouse melanoma has been studied as a preliminary investigation before studying the tumour local control due to boron neutron capture effect after boronated molecule injection. The method to properly irradiate small animals has been precisely defined. Results show that HYTHOR radiation field is by itself effective in reducing the tumour-growth rate. This finding has to be taken into account in studying the effectiveness of new 10B carriers. A method to properly measure the reduction of the tumour-growth rate is reported and discussed.
Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT).
Seki, Ryoichi; Wakisaka, Yushi; Morimoto, Nami; Takashina, Masaaki; Koizumi, Masahiko; Toki, Hiroshi; Fukuda, Mitsuhiro
2017-12-01
The physics of epi-thermal neutrons in the human body is discussed in the effort to clarify the nature of the unique radiologic properties of boron neutron capture therapy (BNCT). This discussion leads to the computational method of Monte Carlo simulation in BNCT. The method is discussed through two examples based on model phantoms. The physics is kept at an introductory level in the discussion in this tutorial review.
Molinari, Ana J; Pozzi, Emiliano C C; Monti Hughes, Andrea; Heber, Elisa M; Garabalino, Marcela A; Thorp, Silvia I; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Quintana, Jorge; Santa Cruz, Gustavo A; Trivillin, Verónica A; Schwint, Amanda E
2011-04-01
In the present study the therapeutic effect and potential toxicity of the novel "Sequential" boron neutron capture therapy (Seq-BNCT) for the treatment of oral cancer was evaluated in the hamster cheek pouch model at the RA-3 Nuclear Reactor. Two groups of animals were treated with "Sequential" BNCT, i.e., BNCT mediated by boronophenylalanine (BPA) followed by BNCT mediated by sodium decahydrodecaborate (GB-10) either 24 h (Seq-24h-BNCT) or 48 h (Seq-48h-BNCT) later. In an additional group of animals, BPA and GB-10 were administered concomitantly [(BPA + GB-10)-BNCT]. The single-application BNCT was to the same total physical tumor dose as the "Sequential" BNCT treatments. At 28 days post-treatment, Seq-24h-BNCT and Seq-48h-BNCT induced, respectively, overall tumor responses of 95 ± 2% and 91 ± 3%, with no statistically significant differences between protocols. Overall response for the single treatment with (BPA + GB-10)-BNCT was 75 ± 5%, significantly lower than for Seq-BNCT. Both Seq-BNCT protocols and (BPA + GB-10)-BNCT induced reversible mucositis in the dose-limiting precancerous tissue around treated tumors, reaching Grade 3/4 mucositis in 47 ± 12% and 60 ± 22% of the animals, respectively. No normal tissue toxicity was associated with tumor response for any of the protocols. "Sequential" BNCT enhanced tumor response without an increase in mucositis in dose-limiting precancerous tissue. © 2011 by Radiation Research Society
Development of a multi-modal Monte-Carlo radiation treatment planning system combined with PHITS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumada, Hiroaki; Nakamura, Takemi; Komeda, Masao
A new multi-modal Monte-Carlo radiation treatment planning system is under development at Japan Atomic Energy Agency. This system (developing code: JCDS-FX) builds on fundamental technologies of JCDS. JCDS was developed by JAEA to perform treatment planning of boron neutron capture therapy (BNCT) which is being conducted at JRR-4 in JAEA. JCDS has many advantages based on practical accomplishments for actual clinical trials of BNCT at JRR-4, the advantages have been taken over to JCDS-FX. One of the features of JCDS-FX is that PHITS has been applied to particle transport calculation. PHITS is a multipurpose particle Monte-Carlo transport code, thus applicationmore » of PHITS enables to evaluate doses for not only BNCT but also several radiotherapies like proton therapy. To verify calculation accuracy of JCDS-FX with PHITS for BNCT, treatment planning of an actual BNCT conducted at JRR-4 was performed retrospectively. The verification results demonstrated the new system was applicable to BNCT clinical trials in practical use. In framework of R and D for laser-driven proton therapy, we begin study for application of JCDS-FX combined with PHITS to proton therapy in addition to BNCT. Several features and performances of the new multimodal Monte-Carlo radiotherapy planning system are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorge E. Cardoso; Elisa M. Heber; David W. Nigg
2007-10-01
The “TAORMINA project” developed a new method for Boron Neutron Capture Therapy (BNCT) of human multifocal unresectable liver metastases based on whole liver ex-situ BNCT mediated by boronophenylalanine (BPA), followed by whole liver autograft. This technique involved a high risk, prolonged anhepatic phase. The Roffo Institute liver surgeons (JEC) herein propose a novel technique to pursue ex-situ liver BNCT studies with a drastically lower surgical risk for the patient. The technique would involve, sequentially, ex-situ BNCT of left liver segments II and III, partial liver autograft, and induction of partial atrophy of the untreated right liver. The working hypothesis ismore » that the atrophy of the right, untreated, diseased liver would stimulate regeneration of the left, treated, “cured” liver to yield a healthy liver mass, allowing for the resection of the remaining portion of diseased liver. This technique does not involve an anhepatic phase and would thus pose a drastically lower surgical risk to the patient but requires sine qua non that BNCT should not impair the regenerative capacity of normal hepatocytes. The aim of the present study was to assess the effect of therapeutic doses of BNCT mediated by BPA, GB-10 (Na2 10B10H10) or (GB- 10 + BPA) on normal liver regeneration in the Wistar rat employing partial hepatectomy as a regenerative stimulus. BNCT did not cause alterations in the outcome of normal liver regeneration, regenerated liver function or histology. We provide proof of principle to support the development of a novel, promising BNCT technique for the treatment of liver metastases.« less
Accelerator-driven boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Edgecock, Rob
2014-05-01
Boron Neutron Capture Therapy is a binary treatment for certain types of cancer. It works by loading the cancerous cells with a boron-10 carrying compound. This isotope has a large cross-section for thermal neutrons, the reaction producing a lithium nucleus and alpha particle that kill the cell in which they are produced. Recent studies of the boron carrier compound indicate that the uptake process works best in particularly aggressive cancers. Most studied is glioblastoma multiforme and a trial using a combination of BNCT and X-ray radiotherapy has shown an increase of nearly a factor of two in mean survival over the state of the art. However, the main technical problem with BNCT remains producing a sufficient flux of neutrons for a reasonable treatment duration in a hospital environment. This paper discusses this issue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ana J. Molinari; Emiliano C. C. Pozzi; Andrea Monti Hughes
In the present study we evaluated the therapeutic effect and/or potential radiotoxicity of the novel “Tandem” Boron Neutron Capture Therapy (T-BNCT) for the treatment of oral cancer in the hamster cheek pouch model at RA-3 Nuclear Reactor. Two groups of animals were treated with “Tandem BNCT”, i.e. BNCT mediated by boronophenylalanine (BPA) followed by BNCT mediated by sodium decahydrodecaborate (GB-10) either 24 h (T-24h-BNCT) or 48 h (T-48h-BNCT) later. A total tumor dose-matched single application of BNCT mediated by BPA and GB-10 administered jointly [(BPA + GB-10)-BNCT] was administered to an additional group of animals. At 28 days post-treatment, T-24h-BNCTmore » and T-48h-BNCT induced, respectively, overall tumor control (OTC) of 95% and 91%, with no statistically significant differences between protocols. Tumor response for the single application of (BPA + GB-10)-BNCT was 75%, significantly lower than for T-BNCT. The T-BNCT protocols and (BPA + GB-10)-BNCT induced reversible mucositis in dose-limiting precancerous tissue around treated tumors, reaching Grade 3/4 mucositis in 47% and 60% of the animals respectively. No normal tissue radiotoxicity was associated to tumor control for any of the protocols. “Tandem” BNCT enhances tumor control in oral cancer and reduces or, at worst, does not increase, mucositis in dose-limiting precancerous tissue.« less
FLUKA simulation studies on in-phantom dosimetric parameters of a LINAC-based BNCT
NASA Astrophysics Data System (ADS)
Ghal-Eh, N.; Goudarzi, H.; Rahmani, F.
2017-12-01
The Monte Carlo simulation code, FLUKA version 2011.2c.5, has been used to estimate the in-phantom dosimetric parameters for use in BNCT studies. The in-phantom parameters of a typical Snyder head, which are necessary information prior to any clinical treatment, have been calculated with both FLUKA and MCNPX codes, which exhibit a promising agreement. The results confirm that FLUKA can be regarded as a good alternative for the MCNPX in BNCT dosimetry simulations.
Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Monti Hughes; ECC Pozzi; S. Thorp
Field-cancerized tissue can give rise to second primary tumours, causing therapeutic failure. Boron neutron capture therapy (BNCT) is based on biological targeting and would serve to treat undetectable foci of malignant transformation. The aim of this study was to optimize BNCT for the integral treatment for oral cancer, with particular emphasis on the inhibitory effect on tumour development originating in precancerous conditions, and radiotoxicity of different BNCT protocols in a hamster cheek pouch oral precancer model.
Brandão, S F; Campos, T P R
2015-07-01
This article proposes a combination of californium-252 ((252)Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Dosimetric evaluations were performed on three protocol set-ups: (252)Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0-5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the (252)Cf source, sparing the normal brain tissue. Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis.
Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab
DOE R&D Accomplishments Database
Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.
2000-06-01
The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.
Achilli, Cesare; Grandi, Stefania; Ciana, Annarita; Guidetti, Gianni F; Malara, Alessandro; Abbonante, Vittorio; Cansolino, Laura; Tomasi, Corrado; Balduini, Alessandra; Fagnoni, Maurizio; Merli, Daniele; Mustarelli, Piercarlo; Canobbio, Ilaria; Balduini, Cesare; Minetti, Giampaolo
2014-04-01
Boron neutron capture therapy (BNCT) is a radiotherapy treatment based on the accumulation in the tumor of a (10)B-containing drug and subsequent irradiation with low energy neutrons, which bring about the decay of (10)B to (7)Li and an α particle, causing the death of the neoplastic cell. The effectiveness of BNCT is limited by the low delivery and accumulation of the used boron-containing compounds. Here we report the development and the characterization of BPO4 nanoparticles (NPs) as a novel possible alternative drug for BNCT. An extensive analysis of BPO4 NP biocompatibility was performed using both mature blood cells (erythrocytes, neutrophils and platelets) and a model of hematopoietic progenitor cells. A time- and concentration-dependent cytotoxicity study was performed on neoplastic coloncarcinoma and osteosarcoma cell lines. BPO4 functionalization with folic acid, introduced to improve the uptake by tumor cells, appeared to effectively limit the unwanted effects of NPs on the analyzed blood components. Boron neutron capture therapy (BNCT) is a radiotherapy treatment modality based on the accumulation of a (10)B-containing drug and subsequent irradiation with low energy neutrons, inducing the decay of (10)B to (7)Li and an α particle, causing neoplastic cell death. This team of authors reports on a folic acid functionalized BPO4 nanoparticle with improved characteristics compared with conventional BNCT approaches, as demonstrated in tumor cell lines, and hopefully to be followed by translational human studies. © 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gryzinski, M.A.; Maciak, M.
MARIA reactor is an open-pool research reactor what gives the chance to install uranium fission converter on the periphery of the core. It could be installed far enough not to induce reactivity of the core but close enough to produce high flux of fast neutrons. Special design of the converter is now under construction. It is planned to set the research stand based on such uranium converter in the near future: in 2015 MARIA reactor infrastructure should be ready (preparation started in 2013), in 2016 the neutron beam starts and in 2017 opening the stand for material and biological researchmore » or for medical training concerning BNCT. Unused for many years, horizontal channel number H2 at MARIA research rector in Poland, is going to be prepared as a part of unique stand. The characteristics of the neutron beam will be significant advantage of the facility. High flux of neutrons at the level of 2x10{sup 9} cm{sup -2}s{sup -1} will be obtainable by uranium neutron converter located 90 cm far from the reactor core fuel elements (still inside reactor core basket between so called core reflectors). Due to reaction of core neutrons with converter U{sub 3}Si{sub 2} material it will produce high flux of fast neutrons. After conversion neutrons will be collimated and moderated in the channel by special set of filters and moderators. At the end of H2 channel i.e. at the entrance to the research room neutron energy will be in the epithermal energy range with neutron intensity at least at the level required for BNCT (2x10{sup 9} cm{sup -2}s{sup -1}). For other purposes density of the neutron flux could be smaller. The possibility to change type and amount of installed filters/moderators which enables getting different properties of the beam (neutron energy spectrum, neutron-gamma ratio and beam profile and shape) is taken into account. H2 channel is located in separate room which is adjacent to two other empty rooms under the preparation for research laboratories (200 m2). It is planned to create fully equipped complex facility possible to perform various experiments on the intensive neutron beam. Epithermal neutron beam enables development across the full spectrum of materials research for example shielding concrete tests or electronic devices construction improvement. Due to recent reports on the construction of the accelerator for the Boron Neutron Capture Therapy (BNCT) it has the opportunity to become useful and successful method in the fight against brain and other types of cancers not treated with well known medical methods. In Europe there is no such epithermal neutron source which could be used throughout the year for training and research for scientist working on BNCT what makes the stand unique in Europe. Also our research group which specializes in mixed radiation dosimetry around nuclear and medical facilities would be able to carry out research on new detectors and methods of measurements for radiological protection and in-beam (therapeutic) dosimetry. Another group of scientists from National Centre for Nuclear Research, where MARIA research reactor is located, is involved in research of gamma detector systems. There is an idea to develop Prompt-gamma Single Photon Emission Computed Tomography (Pg- SPECT). This method could be used as imaging system for compounds emitting gamma rays after nuclear reaction with thermal neutrons e.g. for boron concentration in BNCT. Inside the room, where H2 channel is located, there is another horizontal channel - H1 which is also unused. Simultaneously with the construction of the H2 stand it will be possible to create special pneumatic horizontal mail inside the H1 channel for irradiation material samples in the vicinity of the core i.e. in the distal part of the H1 channel. It might expand the scope of research at the planned neutron station. Secondly it is planned to equip both stands with moveable positioning system, video system and facilities to perform animal experiments (anaesthesia, vital signs control, imaging devices, positioning). These all above make constructed station unique in the world (uranium fission converter-based beam) and the only one of such intense neutron beam in the Europe. Moreover implementation of the station would allow the development of research on a number of issues for researchers from all over the Europe. One of very important advantages of the station is undisturbed exploitation of the reactor and other vertical and horizontal channels. MARIA reactor operates 6000 hours per year and that amount of time will be achievable for research on the neutron station. It have to be underlined that new neutron station will work parallel to all another ventures. (authors)« less
Aromando, Romina F; Trivillin, Verónica A; Heber, Elisa M; Pozzi, Emiliano; Schwint, Amanda E; Itoiz, María E
2010-05-01
Mast cell (MC) activation in the hamster cheek pouch cancerization model is associated with the increase in tumor cell proliferation, mediated in turn by tryptase, a protease released from mast cell granules after activation. Tryptase induces tumor cell proliferation through the activation of PAR-2 (protease activated receptor-2) on the plasma membrane of carcinoma cells. The therapeutic success of boron neutron capture therapy mediated by boronophenylalanine (BPA-BNCT) in tumor control in the hamster cheek pouch oral cancer model has been previously reported by our laboratory. Early effects of BPA-BNCT on tumors of the hamster cheek pouch include a reduction in DNA-synthesis with the concomitant decrease in the proliferation of malignant cells. The aim of the present study was to investigate the early histological changes in mast cells after BPA-BNCT in tumors and premalignant tissue of the hamster cheek pouch. Tumor-bearing pouches were treated with BPA-BNCT or beam only (neutron irradiation without prior administration of the boron compound) and sacrificed 1day after treatment. The samples were fixed in Carnoy fixative and stained with alcian blue-safranin to identify all the populations of mast cells. Total, active and inactive mast cells (MC) were counted in the connective tissue and the adventitious tissue underlying the pouch wall and at the base of the tumors in pouches treated with BPA-BNCT, in keeping with a previously described technique. BPA-BNCT induced a marked reduction in the total number of mast cells in the pouch (p<0.05). This reduction in the total number of mast cells was due to a reduction in mast cells at the base of the tumor (p<0.005) and it occurred at the expense of the active mast cells (p<0.05). A slight reduction that did not reach statistical significance also occurred in the amount of mast cells in the pouch wall (that corresponds to the premalignant tissue in tumor-bearing pouches), and in the adventitious tissue. In this case the reduction was seen in the inactive population. Both BPA-BNCT and beam only elicited a qualitative change in the secretion modality of the granule content. Although further studies are needed to evaluate the subcellular effect of BNCT on mast cell granule secretion, the reduction in cell proliferation induced by BPA-BNCT would be partially due to the decrease in total mast cells in the hamster check pouch. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lai, Chian-Hui; Lai, Nien-Chu; Chuang, Yung-Jen; Chou, Fong-In; Yang, Chia-Min; Lin, Chun-Cheng
2013-09-01
A multi-functional mesoporous silica nanoparticle (MSN)-based boron neutron capture therapy (BNCT) agent, designated as T-Gal-B-Cy3@MSN, was synthesized with hydrophobic mesopores for incorporating a large amount of o-carborane (almost 60% (w/w) boron atoms per MSN), and the amines on the external surface were conjugated with trivalent galactosyl ligands and fluorescent dyes for cell targeting and imaging, respectively. The polar and hydrophilic galactosyl ligands enhance the water dispersibility of the BNCT agent and inhibit the possible leakage of o-carborane loaded in the MSN. Confocal microscopic images showed that T-Gal-B-Cy3@MSNs were endocytosed by cells and were then released from lysosomes into the cytoplasm of cells. Moreover, in comparison with the commonly used clinical BNCT agent, sodium borocaptate (BSH), T-Gal-B-Cy3@MSN provides a higher delivery efficiency (over 40-50 fold) of boron atoms and a better effect of BNCT in neutron irradiation experiments. MTT assays show a very low cytotoxicity for T-Gal-B-Cy3@MSN over a 2 h incubation time. The results are promising for the design of multifunctional MSNs as potential BNCT agents for clinical use.A multi-functional mesoporous silica nanoparticle (MSN)-based boron neutron capture therapy (BNCT) agent, designated as T-Gal-B-Cy3@MSN, was synthesized with hydrophobic mesopores for incorporating a large amount of o-carborane (almost 60% (w/w) boron atoms per MSN), and the amines on the external surface were conjugated with trivalent galactosyl ligands and fluorescent dyes for cell targeting and imaging, respectively. The polar and hydrophilic galactosyl ligands enhance the water dispersibility of the BNCT agent and inhibit the possible leakage of o-carborane loaded in the MSN. Confocal microscopic images showed that T-Gal-B-Cy3@MSNs were endocytosed by cells and were then released from lysosomes into the cytoplasm of cells. Moreover, in comparison with the commonly used clinical BNCT agent, sodium borocaptate (BSH), T-Gal-B-Cy3@MSN provides a higher delivery efficiency (over 40-50 fold) of boron atoms and a better effect of BNCT in neutron irradiation experiments. MTT assays show a very low cytotoxicity for T-Gal-B-Cy3@MSN over a 2 h incubation time. The results are promising for the design of multifunctional MSNs as potential BNCT agents for clinical use. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02594b
Brandão, S F
2015-01-01
Objective: This article proposes a combination of californium-252 (252Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Methods: Dosimetric evaluations were performed on three protocol set-ups: 252Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Results: Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0–5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Conclusion: Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the 252Cf source, sparing the normal brain tissue. Advances in knowledge: Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis. PMID:25927876
NASA Astrophysics Data System (ADS)
Hiramatsu, K.; Yoshihashi, S.; Kusaka, S.; Sato, F.; Hoashi, E.; Murata, I.
2017-09-01
Accelerator based neutron sources (ABNS) are being developed as the next generation neutron irradiation system for BNCT. From the ABNS, unnecessary gamma-rays will be generated by neutron capture reactions, as well as fast neutrons. To control the whole-body radiation dose to the patient, measurement of gamma-ray dose in the irradiation room is necessary. In this study, the objective is to establish a method to measure gamma-ray dose separately in a neutron/gamma mixed field by using RPL glass dosimeter. For this purpose, we proposed a lead filter method which uses a pair of RPL glasses with and without a lead filter outside. In order to realize this method, the basic characteristics of glass dosimeter was verified in the gamma-ray field, before adapting it in the mixture field. From the result of the experiment using the lead filter, the simulation result especially for the case with a lead filter overestimated the absorbed does obtained from measurement. We concluded that the reason of the discrepancy is caused by existence of gradient of the dose distribution in the glass, and the difference of sensitivity to low-energy photon between measurement and theory.
DOSE EFFECT OF THE 33S(n,α) 30SI REACTION IN BNCT USING THE NEW n_TOF-CERN DATA.
Sabaté-Gilarte, M; Praena, J; Porras, I; Quesada, J M
2017-09-23
33S is a stable isotope of sulphur which is being studied as a potential cooperative target for Boron Neutron Capture Therapy (BNCT) in accelerator-based neutron sources because of its large (n,α) cross section in the epithermal neutron energy range. Previous measurements resolved the resonances with a discrepant description of the lowest-lying and strongest one (at 13.5 keV). However, the evaluations of the major databases do not include resonances, except EAF-2010 which shows smaller values in this range than the experimental data. Furthermore, the glaring lack of data below 10 keV down to thermal (25.3 meV) has motivated a new measurement at n_TOF at CERN in order to cover the whole energy range. The inclusion of this new 33S(n,α) cross section in Monte Carlo simulations provides a more accurate estimation of the deposited kerma rate in tissue due to the presence of 33S. The results of those simulations represent the goal of this work. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Masoudi, S. Farhad; Rasouli, Fatemeh S.
2015-08-01
Recent studies in BNCT have focused on investigating appropriate neutron sources as alternatives for nuclear reactors. As the most prominent facilities, the electron linac based photoneutron sources benefit from two consecutive reactions, (e, γ) and (γ, n). The photoneutron sources designed so far are composed of bipartite targets which involve practical problems and are far from the objective of achieving an optimized neutron source. This simulation study deals with designing a compact, optimized, and geometrically simple target for a photoneutron source based on an electron linac. Based on a set of MCNPX simulations, tungsten is found to have the potential of utilizing as both photon converter and photoneutron target. Besides, it is shown that an optimized dimension for such a target slows-down the produced neutrons toward the desired energy range while keeping them economy, which makes achieving the recommended criteria for BNCT of deep-tumors more available. This multi-purpose target does not involve complicated designing, and can be considered as a significant step toward finding application of photoneutron sources for in-hospital treatments. In order to shape the neutron beam emitted from such a target, the beam is planned to pass through an optimized arrangement of materials composed of moderators, filters, reflector, and collimator. By assessment with the recommended in-air parameters, it is shown that the designed beam provides high intensity of desired neutrons, as well as low background contamination. The last section of this study is devoted to investigate the performance of the resultant beam in deep tissue. A typical simulated liver tumor, located within a phantom of human body, was subjected to the irradiation of the designed spectrum. The dosimetric results, including evaluated depth-dose curves and carried out in-phantom parameters show that the proposed configuration establishes acceptable agreement between the appropriate neutron intensity, and penetrating deep in tissue in a reasonable treatment time.
Heber, Elisa M; Kueffer, Peter J; Lee, Mark W; Hawthorne, M Frederick; Garabalino, Marcela A; Molinari, Ana J; Nigg, David W; Bauer, William; Hughes, Andrea Monti; Pozzi, Emiliano C C; Trivillin, Verónica A; Schwint, Amanda E
2012-05-01
Boron neutron capture therapy (BNCT) combines selective accumulation of (10)B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K[nido-7-CH(3)(CH(2))(15)-7,8-C(2)B(9)H(11)] in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K[nido-7-CH(3)(CH(2))(15)-7,8-C(2)B(9)H(11)] in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na(3) [ae-B(20)H(17)NH(3)], administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 ± 16.1 ppm at 48 h and to 43.9 ± 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David W. Nigg
2012-05-01
Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1)more » MAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na3 [ae-B20H17NH3], administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 {+-} 16.1 ppm at 48 h and to 43.9 {+-} 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.« less
Molinari, Ana J; Thorp, Silvia I; Portu, Agustina M; Saint Martin, Gisela; Pozzi, Emiliano C C; Heber, Elisa M; Bortolussi, Silva; Itoiz, Maria E; Aromando, Romina F; Monti Hughes, Andrea; Garabalino, Marcela A; Altieri, Saverio; Trivillin, Verónica A; Schwint, Amanda E
2015-01-01
We previously demonstrated the therapeutic success of sequential boron neutron capture therapy (Seq-BNCT) in the hamster cheek pouch oral cancer model. It consists of BPA-BNCT followed by GB-10-BNCT 24 or 48 hours later. Additionally, we proved that tumor blood vessel normalization with thalidomide prior to BPA-BNCT improves tumor control. The aim of the present study was to evaluate the therapeutic efficacy and explore potential boron microdistribution changes in Seq-BNCT preceded by tumor blood vessel normalization. Tumor bearing animals were treated with thalidomide for tumor blood vessel normalization, followed by Seq-BNCT (Th+ Seq-BNCT) or Seq-Beam Only (Th+ Seq-BO) in the window of normalization. Boron microdistribution was assessed by neutron autoradiography. Th+ Seq-BNCT induced overall tumor response of 100%, with 87 (4)% complete tumor response. No cases of severe mucositis in dose-limiting precancerous tissue were observed. Differences in boron homogeneity between tumors pre-treated and not pre-treated with thalidomide were observed. Th+ Seq-BNCT achieved, for the first time, response in all treated tumors. Increased homogeneity in tumor boron microdistribution is associated to an improvement in tumor control.
Monti Hughes, Andrea; Pozzi, Emiliano C C; Heber, Elisa M; Thorp, Silvia; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Molinari, Ana J; Garabalino, Marcela A; Nigg, David W; Trivillin, Verónica A; Schwint, Amanda E
2011-11-01
Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT); (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA [(GB-10+BPA)-BNCT] or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB-10+BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10+BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrea Monti Hughes; Emiliano C.C. Pozzi; Elisa M. Heber
Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT);more » (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA [(GB-10 + BPA)-BNCT] or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB- 10 + BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10 + BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues.« less
An update on the clinical trial of BNCT at the BMRR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, R.; Capala, J.; Chanana, A.D.
1999-09-01
Boron neutron capture therapy (BNCT) was proposed more than six decades ago. It is a binary treatment modality that requires selective delivery of a {sup 10}B-labeled compound to a tumor and slow neutron irradiation of the tumor-bearing tissues. In order to improve the penetration of the neutron beam, an epithermal neutron beam was developed at the Brookhaven Medical Research Reactor (BMRR). This epithermal neutron beam can deliver relatively high thermal neutron fluence at depth without severe skin damage. Boronophenylalanine-fructose (BPA-F), a nontoxic boron carrier, was found to preferentially accumulate in tumor cells following intravenous infusion in patients with GBM. Inmore » preclinical BNCT studies in rats bearing 9L gliosarcoma, BPA-mediated BNCT was shown to be more efficacious than photon irradiation. In 1994, improvements in the neutron beam and in the understanding of the radiobiology of BPA-mediated BNCT led to the initiation of BNCT trials for human GBM at BMRR using BPA-F and epithermal neutrons. The primary objective of the phase I/II clinical trial of BPA-mediated BNCT at BMRR is to evaluate the safety of the BPA-F-mediated BNCT using epithermal neutrons in patients with GBM at a series of escalating BNCT doses. An incidental objective is to evaluate the therapeutic effectiveness of BNCT at each dose level. For each dose escalation group, the average brain dose (ABD) is escalated, as well as the minimum tumor dose. In summary, the BNCT procedure employed in the phase I/II clinical trial of BPA-F-mediated BNCT for GBM at BNL was found to be safe in all patients. The palliation afforded by a single session of BNCT compares favorably with palliation provided by fractionated photon therapy and adjuvant chemotherapy. If no evidence of radiation-induced brain toxicity is found in the current protocol, BNCT radiation dose will be further escalated.« less
Microdosimetric intercomparison of BNCT beams at BNL and MIT.
Burmeister, Jay; Riley, Kent; Coderre, Jeffrey A; Harling, Otto K; Ma, Ruimei; Wielopolski, Lucian; Kota, Chandrasekhar; Maughan, Richard L
2003-08-01
Microdosimetric measurements have been performed at the clinical beam intensities in two epithermal neutron beams, the Brookhaven Medical Research Reactor and the M67 beam at the Massachusetts Institute of Technology Research Reactor, which have been used to treat patients with Boron Neutron Capture Therapy (BNCT). These measurements offer an independent assessment of the dosimetry used at these two facilities, as well as provide information about the radiation quality not obtainable from conventional macrodosimetric techniques. Moreover, they provide a direct measurement of the absorbed dose resulting from the BNC reaction. BNC absorbed doses measured within this study are approximately 15% lower than those estimated using foil activation at both MIT and BNL. Finally, an intercomparison of the characteristics and radiation quality of these two clinical beams is presented. The techniques described here allow an accurate quantitative comparison of the physical absorbed dose as well as a measure of the biological effectiveness of the absorbed dose delivered by different epithermal beams. No statistically significant differences were observed in the predicted RBEs of these two beams. The methodology presented here can help to facilitate the effective sharing of clinical results in an effort to demonstrate the clinical utility of BNCT.
Monti Hughes, A M; Pozzi, E C C; Thorp, S; Garabalino, M A; Farías, R O; González, S J; Heber, E M; Itoiz, M E; Aromando, R F; Molinari, A J; Miller, M; Nigg, D W; Curotto, P; Trivillin, V A; Schwint, A E
2013-11-01
Field-cancerized tissue can give rise to second primary tumours, causing therapeutic failure. Boron neutron capture therapy (BNCT) is based on biological targeting and would serve to treat undetectable foci of malignant transformation. The aim of this study was to optimize BNCT for the integral treatment for oral cancer, with particular emphasis on the inhibitory effect on tumour development originating in precancerous conditions, and radiotoxicity of different BNCT protocols in a hamster cheek pouch oral precancer model. Groups of cancerized hamsters were locally exposed to single or double (2 or 4 weeks apart) applications of BNCT at different dose levels, mediated by the boron compounds boronophenylalanine (BPA) or BPA and decahydrodecaborate (GB-10) administered jointly. Cancerized, sham-irradiated hamsters served as controls. Clinical status, tumour development from field-cancerized tissue and mucositis were followed for 8 months. A double application (4 weeks apart) of BNCT mediated by GB-10+ BPA at a total dose of 10 Gy in two 5-Gy doses rendered the best therapeutic advantage (63-100% inhibition of tumour development from field-cancerized tissue), minimizing dose-limiting mucositis. BNCT can be optimized for the integral treatment for head and neck cancer, considering the implications for field-cancerized tissue. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Perona, M; Rodríguez, C; Carpano, M; Thomasz, L; Nievas, S; Olivera, M; Thorp, S; Curotto, P; Pozzi, E; Kahl, S; Pisarev, M; Juvenal, G; Dagrosa, A
2013-08-01
We have shown that boron neutron capture therapy (BNCT) could be an alternative for the treatment of poorly differentiated thyroid carcinoma (PDTC). Histone deacetylase inhibitors (HDACI) like sodium butyrate (NaB) cause hyperacetylation of histone proteins and show capacity to increase the gamma irradiation effect. The purpose of these studies was to investigate the use of the NaB as a radiosensitizer of the BNCT for PDTC. Follicular thyroid carcinoma cells (WRO) and rat thyroid epithelial cells (FRTL-5) were incubated with 1 mM NaB and then treated with boronophenylalanine ¹⁰BPA (10 μg ¹⁰B ml⁻¹) + neutrons, or with 2, 4-bis (α,β-dihydroxyethyl)-deutero-porphyrin IX ¹⁰BOPP (10 μg ¹⁰B ml⁻¹) + neutrons, or with a neutron beam alone. The cells were irradiated in the thermal column facility of the RA-3 reactor (flux = (1.0 ± 0.1) × 10¹⁰ n cm⁻² s⁻¹). Cell survival decreased as a function of the physical absorbed dose in both cell lines. Moreover, the addition of NaB decreased cell survival (p < 0.05) in WRO cells incubated with both boron compounds. NaB increased the percentage of necrotic and apoptotic cells in both BNCT groups (p < 0.05). An accumulation of cells in G2/M phase at 24 h was observed for all the irradiated groups and the addition of NaB increased this percentage. Biodistribution studies of BPA (350 mg kg⁻¹ body weight) 24 h after NaB injection were performed. The in vivo studies showed that NaB treatment increases the amount of boron in the tumor at 2-h post-BPA injection (p < 0.01). We conclude that NaB could be used as a radiosensitizer for the treatment of thyroid carcinoma by BNCT.
Masunaga, S; Sakurai, Y; Tanaka, H; Suzuki, M; Liu, Y; Kondo, N; Maruhashi, A; Kinashi, Y; Ono, K
2012-01-01
Objectives To evaluate the effects of employing a 10B-carrier and manipulating intratumour hypoxia on local tumour response and lung metastatic potential in boron neutron capture therapy (BNCT) by measuring the response of intratumour quiescent (Q) cells. Methods B16-BL6 melanoma tumour-bearing C57BL/6 mice were continuously given 5-bromo-2′-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumours received reactor thermal neutron beam irradiation following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)] in combination with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH). Immediately after the irradiation, cells from some tumours were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumour-bearing mice, macroscopic lung metastases were enumerated 17 days after irradiation. Results BPA-BNCT increased the sensitivity of the total tumour cell population more than BSH-BNCT. However, the sensitivity of Q cells treated with BPA was lower than that of BSH-treated Q cells. With or without a 10B–carrier, MTH enhanced the sensitivity of the Q cell population. Without irradiation, nicotinamide treatment decreased the number of lung metastases. With irradiation, BPA-BNCT, especially in combination with nicotinamide treatment, showed the potential to reduce the number of metastases more than BSH-BNCT. Conclusion BSH-BNCT in combination with MTH improves local tumour control, while BPA-BNCT in combination with nicotinamide may reduce the number of lung metastases. PMID:22391496
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wessol, D.E.; Wheeler, F.J.; Babcock, R.S.
Several improvements have been developed for the BNCT radiation treatment planning environment (BNCT-Rtpe) during 1994. These improvements have been incorporated into Version 1.0 of BNCT-Rtpe which is currently installed at the INEL, BNL, Japanese Research Center (JRC), and Finland`s Technical Research Center. Platforms supported by this software include Hewlett-Packard (HP), SUN, International Business Machines (IBM), and Silicon Graphics Incorporated (SGI). A draft version of the BNCT-Rtpe user manual is available. Version 1.1 of BNCT-Rtpe is scheduled for release in March 1995. It is anticipated that Version 2.x of BNCT-Rtpe, which includes the nonproprietary NURBS library and data structures, will bemore » released in September 1995.« less
NASA Astrophysics Data System (ADS)
Sztejnberg Goncalves-Carralves, Manuel Leonardo
This dissertation describes a novel Boron Neutron Capture Therapy (BNCT) application for the treatment of human epidermal growth factor receptor type 2 positive (HER2+) breast cancers. The original contribution of the dissertation is the development of the engineering simulation and the feasibility study of the radiation treatment protocol for this novel combination of BNCT and HER2+ breast cancer treatment. This new concept of BNCT, representing a radiation binary targeted treatment, consists of the combination of two approaches never used in a synergism before. This combination may offer realistic hope for relapsed and/or metastasized breast cancers. This treatment assumes that the boronated anti-HER2 monoclonal antibodies (MABs) are administrated to the patient and accumulate preferentially in the tumor. Then the tumor is destroyed when is exposed to neutron irradiation. Since the use of anti-HER2 MABs yields good and promising results, the proposed concept is expected to amplify the known effect and be considered as a possible additional treatment approach to the most severe breast cancers for patients with metastasized cancer for which the current protocol is not successful and for patients refusing to have the standard treatment protocol. This dissertation makes an original contribution with an integral numerical approach and proves feasible the combination of the aforementioned therapy and disease. With these goals, the dissertation describes the theoretical analysis of the proposed concept providing an integral engineering simulation study of the treatment protocol. An extensive analysis of the potential limitations, capabilities and optimization factors are well studied using simplified models, models based on real CT patients' images, cellular models, and Monte Carlo (MCNP5/X) transport codes. One of the outcomes of the integral dosimetry assessment originally developed for the proposed treatment of advanced breast cancers is the implementation of BNCT for HER2+ breast cancers for deep seated tumors using MITRII-FCB facility with an 8 cm diameter beam (port closest-to-tumor position), with boron concentrations in the tumor higher than 32 mug/g, and for a tumor-to-healthy tissue boron concentration ratio of 8:1. The therapeutic ratios for the proposed treatment would be higher than five for skin and adipose tissue and higher than three for tumor surrounding fibroglandular tissue. The microdosimetry study shows potential improvements in the therapeutic ratios based on the expected sub-cellular boron biodistributions. The engineering simulation study of clinical cases shows the advantages of using BNCT for HER+ breast cancers. Assuming an assured high efficiency of the boron agent delivery, the proposed concept can be considered for stage IV HER2+ breast cancers in treating the metastasized tumors in brain, head and neck, and lungs.
Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joel, D.D.; Coderre, J.A.; Chanana, A.D.
1996-12-31
Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released ismore » microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.« less
Hashimoto, Y; Hiraga, F; Kiyanagi, Y
2015-12-01
We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Futamura, Gen; Kawabata, Shinji; Nonoguchi, Naosuke; Hiramatsu, Ryo; Toho, Taichiro; Tanaka, Hiroki; Masunaga, Shin-Ichiro; Hattori, Yoshihide; Kirihata, Mitsunori; Ono, Koji; Kuroiwa, Toshihiko; Miyatake, Shin-Ichi
2017-01-23
Boron neutron capture therapy (BNCT) is a unique particle radiation therapy based on the nuclear capture reactions in boron-10. We developed a novel boron-10 containing sodium borocaptate (BSH) derivative, 1-amino-3-fluorocyclobutane-1-carboxylic acid (ACBC)-BSH. ACBC is a tumor selective synthetic amino acid. The purpose of this study was to assess the biodistribution of ACBC-BSH and its therapeutic efficacy following Boron Neutron Capture Therapy (BNCT) of the F98 rat glioma. We evaluated the biodistribution of three boron-10 compounds, ACBC-BSH, BSH and boronophenylalanine (BPA), in vitro and in vivo, following intravenous (i.v.) administration and intratumoral (i.t.) convection-enhanced delivery (CED) in F98 rat glioma bearing rats. For BNCT studies, rats were stratified into five groups: untreated controls, neutron-irradiation controls, BNCT with BPA/i.v., BNCT with ACBC-BSH/CED, and BNCT concomitantly using BPA/i.v. and ACBC-BSH/CED. In vitro, ACBC-BSH attained higher cellular uptake F98 rat glioma cells compared with BSH. In vivo biodistribution studies following i.v. administration and i.t. CED of ACBC-BSH attained significantly higher boron concentrations than that of BSH, but much lower than that of BPA. However, following convection enhanced delivery (CED), ACBC-BSH attained significantly higher tumor concentrations than BPA. The i.t. boron-10 concentrations were almost equal between the ACBC-BSH/CED group and BPA/i.v. group of rats. The tumor/brain boron-10 concentration ratio was higher with ACBC-BSH/CED than that of BPA/i.v. group. Based on these data, BNCT studies were carried out in F98 glioma bearing rats using BPA/i.v. and ACBC-BSH/CED as the delivery agents. The corresponding mean survival times were 37.4 ± 2.6d and 44.3 ± 8.0d, respectively, and although modest, these differences were statistically significant. Our findings suggest that further studies are warranted to evaluate ACBC-BSH/CED as a boron delivery agent.
Final Stage in the Design of a Boron Neutron Capture Therapy facility at CEADEN, Cuba
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabal, F. Padilla; Martin, G.
A neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of Boron Neutron Capture Therapy (BNCT). Two figures-of-merit, the therapeutic gain and the neutron fluence are utilized as beam assessment parameters. An irradiation cavity is used instead of a parallel beam port for the therapy. Calculations are performed using the MCNP5 code. After the optimization of our beam-shaper a study of the dose distribution in the head, neck, tyroids, lungs and upper and middle spine had been made. The therapeutic gain is increased whilemore » the current required for one hour treatment is decreased in comparison with the trading prototypes of NG used for BNCT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, D; Jung, J; Suh, T
2014-06-01
Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom.more » The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, Information and Communication Technologies (ICT) and Future Planning (MSIP)(Grant No.200900420) and the Radiation Technology Research and Development program (Grant No.2013043498), Republic of Korea.« less
Designing of the 14 MeV neutron moderator for BNCT
NASA Astrophysics Data System (ADS)
Cheng, Dao-Wen; Lu, Jing-Bin; Yang, Dong; Liu, Yu-Min; Wang, Hui-Dong; Ma, Ke-Yan
2012-09-01
In boron neutron capture therapy (BNCT), the ratio of the fast neutron flux to the neutron flux in the tumor (RFNT) must be less than 3%. If a D-T neutron generator is used in BNCT, the 14 MeV neutron moderator must be optimized to reduce the RFNT. Based on the neutron moderation theory and the simulation results, tungsten, lead and diamond were used to moderate the 14 MeV neutrons. Satisfying RFNT of less than 3%, the maximum neutron flux in the tumor was achieved with a three-layer moderator comprised of a 3 cm thick tungsten layer, a 14 cm thick lead layer and a 21 cm thick diamond layer.
Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subhash Chandra
2008-05-30
The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysismore » of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ana J. Molinari; Andrea Monti Hughes; Elisa M. Heber
2011-04-01
Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10B carriers in tumors followed by irradiation with a thermal or epithermal neutron beam. The minor abundance stable isotope of boron, 10B, interacts with low energy (thermal) neutrons to produce high linear energy transfer (LET) a-particles and 7Li ions. These disintegration products are known to have a high relative biological effectiveness (RBE). Their short range (<10 {micro}m) would limit the damage to cells containing 10B (1,2). Thus, BNCT would target tumor tissue selectively, sparing normal tissue. Clinical trials of BNCT for the treatment ofmore » glioblastoma multiforme and/or melanoma and, more recently, head and neck tumors and liver metastases, using boronophenylalanine (BPA) or sodium mercaptoundecahydrododecaborane (BSH) as the 10B carriers, have been performed or are underway in Argentina, Japan, the US and Europe (e.g. 3-8). To date, the clinical results have shown a potential, albeit inconclusive, therapeutic advantage for this technique. Contributory translational studies have been carried out employing a variety of experimental models based on the implantation of tumor cells in normal tissue (e.g. 5).« less
Pozzi, Emiliano C C; Cardoso, Jorge E; Colombo, Lucas L; Thorp, Silvia; Monti Hughes, Andrea; Molinari, Ana J; Garabalino, Marcela A; Heber, Elisa M; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Quintana, Jorge; Trivillin, Verónica A; Schwint, Amanda E
2012-08-01
Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. The present study evaluates tumor control and potential radiotoxicity of BNCT in an experimental model of liver metastasis. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA-BNCT, boronophenylalanine (BPA) + neutron irradiation; Beam only, neutron irradiation; Sham, matched manipulation. The total absorbed dose administered with BPA-BNCT was 13 ± 3 Gy in tumor and 9 ± 2 Gy in healthy liver. Three weeks post-treatment, the tumor surface area post-treatment/pre-treatment ratio was 0.46 ± 0.20 for BPA-BNCT, 2.7 ± 1.8 for Beam only and 4.5 ± 3.1 for Sham. The pre-treatment tumor nodule mass of 48 ± 19 mg fell significantly to 19 ± 16 mg for BPA-BNCT, but rose significantly to 140 ± 106 mg for Beam only and to 346 ± 302 mg for Sham. For both end points, the differences between the BPA-BNCT group and each of the other groups were statistically significant (ANOVA). No clinical, macroscopic or histological normal liver radiotoxicity was observed. It is concluded that BPA-BNCT induced a significant remission of experimental colorectal tumor nodules in liver with no contributory liver toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David W. Nigg
Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. The present study evaluates tumor control and potential radiotoxicity of BNCT in an experimental model of liver metastasis. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA–BNCT, boronophenylalanine (BPA) ? neutron irradiation; Beam only, neutron irradiation; Sham, matched manipulation. The total absorbed dose administered with BPA–BNCT was 13 ± 3 Gy in tumor and 9 ± 2 Gy in healthy liver. Three weeks posttreatment, the tumor surface area post-treatment/pre-treatment ratio was 0.46 ± 0.20 for BPA–BNCT, 2.7 ± 1.8more » for Beam only and 4.5 ± 3.1 for Sham. The pre-treatment tumor nodule mass of 48 ± 19 mgfell significantly to 19 ± 16 mg for BPA–BNCT, but rose significantly to 140 ± 106 mg for Beam only and to 346 ± 302 mg for Sham. For both end points, the differences between the BPA–BNCT group and each of the other groups were statistically significant (ANOVA). No clinical, macroscopic or histological normal liver radiotoxicity was observed. It is concluded that BPA– BNCT induced a significant remission of experimental colorectal tumor nodules in liver with no contributory liver toxicity.« less
Boron neutron capture therapy: Moving toward targeted cancer therapy.
Mirzaei, Hamid Reza; Sahebkar, Amirhossein; Salehi, Rasoul; Nahand, Javid Sadri; Karimi, Ehsan; Jaafari, Mahmoud Reza; Mirzaei, Hamed
2016-01-01
Boron neutron capture therapy (BNCT) occurs when a stable isotope, boton-10, is irradiated with low-energy thermal neutrons to yield stripped down helium-4 nuclei and lithium-7 nuclei. It is a binary therapy in the treatment of cancer in which a cytotoxic event is triggered when an atom placed in a cancer cell. Here, we provide an overview on the application of BNCT in cancer therapy as well as current preclinical and clinical evidence on the efficacy of BNCT in the treatment of melanoma, brain tumors, head and neck cancer, and thyroid cancer. Several studies have shown that BNCT is effective in patients who had been treated with a full dose of conventional radiotherapy, because of its selectivity. In addition, BNCT is dependent on the normal/tumor tissue ratio of boron distribution. Increasing evidence has shown that BNCT can be combined with different drug delivery systems to enhance the delivery of boron to cancer cells. The flexibility of BNCT to be used in combination with different tumor-targeting approaches has made this strategy a promising option for cancer therapy. This review aims to provide a state-of-the-art overview of the recent advances in the use of BNCT for targeted therapy of cancer.
NASA Astrophysics Data System (ADS)
Bortolussi, S.; Protti, N.; Ferrari, M.; Postuma, I.; Fatemi, S.; Prata, M.; Ballarini, F.; Carante, M. P.; Farias, R.; González, S. J.; Marrale, M.; Gallo, S.; Bartolotta, A.; Iacoviello, G.; Nigg, D.; Altieri, S.
2018-01-01
University of Pavia is equipped with a TRIGA Mark II research nuclear reactor, operating at a maximum steady state power of 250 kW. It has been used for many years to support Boron Neutron Capture Therapy (BNCT) research. An irradiation facility was constructed inside the thermal column of the reactor to produce a sufficient thermal neutron flux with low epithermal and fast neutron components, and low gamma dose. In this irradiation position, the liver of two patients affected by hepatic metastases from colon carcinoma were irradiated after borated drug administration. The facility is currently used for cell cultures and small animal irradiation. Measurements campaigns have been carried out, aimed at characterizing the neutron spectrum and the gamma dose component. The neutron spectrum has been measured by means of multifoil neutron activation spectrometry and a least squares unfolding algorithm; gamma dose was measured using alanine dosimeters. Results show that in a reference position the thermal neutron flux is (1.20 ± 0.03) ×1010 cm-2 s-1 when the reactor is working at the maximum power of 250 kW, with the epithermal and fast components, respectively, 2 and 3 orders of magnitude lower than the thermal component. The ratio of the gamma dose with respect to the thermal neutron fluence is 1.2 ×10-13 Gy/(n/cm2).
NASA Astrophysics Data System (ADS)
Corti, M.; Bonora, M.; Borsa, F.; Bortolussi, S.; Protti, N.; Santoro, D.; Stella, S.; Altieri, S.; Zonta, C.; Clerici, A. M.; Cansolino, L.; Ferrari, C.; Dionigi, P.; Porta, A.; Zanoni, G.; Vidari, G.
2011-04-01
We report the investigation of new organic complexes containing a magnetic moment (Gd-based molecular nanomagnets), which can serve the double purpose of acting as boron neutron capture therapy (BNCT) agents, and at the same time act as contrast agents to detect the molecule in the tissue by a proton magnetic resonance imaging (MRI). We also explore the possibility of monitoring the concentration of the BNCT agent directly via proton and boron NMR relaxation. The absorption of 10B-enriched molecules inside tumoral liver tissues has been shown by NMR measurements and confirmed by α spectroscopy. A new molecular Gd-tagged nanomagnet and BNCT agent (GdBPA) has been synthesized and characterized measuring its relaxivity R1 between 10 kHz and 66 MHz, and its use as a contrast agent in MRI has been demonstrated. The NMR-based evidence of the absorption of GdBPA into living tumoral cells is also shown.
2014-01-01
Background and importance Recurrent malignant gliomas (RMGs) are very difficult to control, and no standard treatments have been established for them. We performed boron neutron capture therapy (BNCT) for patients with RMG. BNCT enables high-dose particle radiation to be applied selectively to tumor cells. However, RMG cases generally receive nearly 60 Gy X-ray irradiation prior to re-irradiation by BNCT. Therefore, even with tumor-selective particle radiation BNCT, radiation necrosis in the brain and symptomatic pseudoprogression may develop. In four of our recent patients with RMG after BNCT, we applied the anti-VEGF antibody bevacizumab to treat two pathological entities. This approach appeared to prolong survival. Here we present the case reports of these four consecutive patients with RMG and discuss the novel use of bevacizumab in this context. Clinical presentation Four patients with RMGs were treated with BNCT at our institutes. Upon the referral for BNCT, they were assessed as belonging to the recursive partitioning analysis (RPA) class 3 (n = 3 patients) or RPA class 4 (n = 1 patient) (the RPA classification for RMG was advocated by Carson et al. in 2007). The estimated median survival times for RPA classes 3 and 4 were 3.8 and 10.8 months, respectively, after some treatment at the recurrence. We applied BNCT for these four patients and administered bevacizumab when the lesions were considered radiation necrosis or symptomatic pseudoprogression. The class 3 patients survived after the BNCT for 14, 16.5 and > 23 months, and the class 4 patient survived > 26 months, with favorable improvements in clinical symptoms. Conclusion BNCT with the addition of bevacizumab for radiation necrosis or symptomatic pseudoprogression improved the clinical symptoms and prolonged the survival in RMG patients. PMID:24387301
The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model.
Takahara, Kiyoshi; Inamoto, Teruo; Minami, Koichiro; Yoshikawa, Yuki; Takai, Tomoaki; Ibuki, Naokazu; Hirano, Hajime; Nomi, Hayahito; Kawabata, Shinji; Kiyama, Satoshi; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko; Suzuki, Minoru; Kirihata, Mitsunori; Azuma, Haruhito
2015-01-01
Boron neutron capture therapy (BNCT) is a selective radiation treatment for tumors that preferentially accumulate drugs carrying the stable boron isotope, 10B. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of brain tumors, and more recently, recurrent advanced head and neck cancer. Here we investigated the effect of BNCT on prostate cancer (PCa) using an in vivo mouse xenograft model that we have developed. Mice bearing the xenotransplanted androgen-independent human PCa cell line, PC3, were divided into four groups: Group 1: untreated controls; Group 2: Boronophenylalanine (BPA); Group 3: neutron; Group 4: BPA-mediated BNCT. We compared xenograft growth among these groups, and the body weight and any motility disturbance were recorded. Immunohistochemical (IHC) studies of the proliferation marker, Ki-67, and TUNEL staining were performed 9 weeks after treatment. The in vivo studies demonstrated that BPA-mediated BNCT significantly delayed tumor growth in comparison with the other groups, without any severe adverse events. There was a significant difference in the rate of freedom from gait abnormalities between the BPA-mediated BNCT group and the other groups. The IHC studies revealed that BNCT treatment significantly reduced the number of Ki-67-positive cells in comparison with the controls (mean ± SD 6.9 ± 1.5 vs 12.7 ± 4.0, p<0.05), while there was no difference in the number of apoptotic cells, suggesting that BPA-mediated BNCT reduced PCa progression without affecting apoptosis at 9 weeks post-treatment. This study has provided the first preclinical proof-of-principle data to indicate that BPA-mediated BNCT reduces the in vivo growth of PCa. Although further studies will be necessary, BNCT might be a novel potential treatment for PCa.
[Possibilities of boron neutron capture therapy in the treatment of malignant brain tumors].
Kanygin, V V; Kichigin, A I; Gubanova, N V; Taskaev, S Yu
2015-01-01
Boron neutron capture therapy (BNCT) that is of the highest attractiveness due to its selective action directly on malignant tumor cells is a promising approach to treating cancers. Clinical interest in BNCT focuses in neuro-oncology on therapy for gliomas, glioblastoma in particular, and BNCT may be used in brain metastatic involvement. This needs an epithermal neutron source that complies with the requirements for BNCT, as well as a 10B-containing agent that will selectively accumulate in tumor tissue. The introduction of BNCT into clinical practice to treat patients with glial tumors will be able to enhance therapeutic efficiency.
Kasatov, D; Makarov, A; Shchudlo, I; Taskaev, S
2015-12-01
Epithermal neutron source based on a tandem accelerator with vacuum insulation and lithium target has been proposed, developed and operated in Budker Institute of Nuclear Physics. The source is regarded as a prototype of a future compact device suitable for carrying out BNCT in oncology centers. In this work the measurements of gamma-ray and neutron radiation are presented for the interaction of a 2 MeV proton beam with various materials (Li, C, F, Al, V, Ti, Cu, Mo, stainless steel, and Ta). The obtained results enabled the optimization of the neutron-generating target and the high energy beam transportation path. Copyright © 2015 Elsevier Ltd. All rights reserved.
Simulating variable source problems via post processing of individual particle tallies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleuel, D.L.; Donahue, R.J.; Ludewigt, B.A.
2000-10-20
Monte Carlo is an extremely powerful method of simulating complex, three dimensional environments without excessive problem simplification. However, it is often time consuming to simulate models in which the source can be highly varied. Similarly difficult are optimization studies involving sources in which many input parameters are variable, such as particle energy, angle, and spatial distribution. Such studies are often approached using brute force methods or intelligent guesswork. One field in which these problems are often encountered is accelerator-driven Boron Neutron Capture Therapy (BNCT) for the treatment of cancers. Solving the reverse problem of determining the best neutron source formore » optimal BNCT treatment can be accomplished by separating the time-consuming particle-tracking process of a full Monte Carlo simulation from the calculation of the source weighting factors which is typically performed at the beginning of a Monte Carlo simulation. By post-processing these weighting factors on a recorded file of individual particle tally information, the effect of changing source variables can be realized in a matter of seconds, instead of requiring hours or days for additional complete simulations. By intelligent source biasing, any number of different source distributions can be calculated quickly from a single Monte Carlo simulation. The source description can be treated as variable and the effect of changing multiple interdependent source variables on the problem's solution can be determined. Though the focus of this study is on BNCT applications, this procedure may be applicable to any problem that involves a variable source.« less
Sakurai, Yoshinori; Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira
2015-11-01
Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a "dual phantom technique" for measuring the fast neutron component of dose is reported. One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % 6LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % 6LiOH solution based on the simulation results. Experimental characterization of the depth dose distributions of the neutron and gamma-ray components along the central axis was performed at Heavy Water Neutron Irradiation Facility installed at Kyoto University Reactor using activation foils and thermoluminescent dosimeters, respectively. Simulation results demonstrated that the absorbing effect for thermal neutrons occurred when the LiOH concentration was over 1%. The most effective Li-6 concentration was determined to be enriched 6LiOH with a solubility approaching its upper limit. Experiments confirmed that the thermal neutron flux and secondary gamma-ray dose rate decreased substantially; however, the fast neutron flux and primary gamma-ray dose rate were hardly affected in the 10%-6LiOH phantom. It was confirmed that the dose contribution of fast neutrons is improved from approximately 10% in the pure water phantom to approximately 50% in the 10%-6LiOH phantom. The dual phantom technique using the combination of a pure water phantom and a 10%-6LiOH phantom developed in this work provides an effective method for dose estimation of the fast neutron component in BNCT. Improvement in the accuracy achieved with the proposed technique results in improved RBE estimation for biological experiments and clinical practice.
A new AMS facility at Inter University Accelerator Centre, New Delhi
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Chopra, S.; Pattanaik, J. K.; Ojha, S.; Gargari, S.; Joshi, R.; Kanjilal, D.
2015-10-01
Inter University Accelerator Centre (IUAC), a national facility of government of India, is having a 15UD Pelletron accelerator for multidisciplinary ion beam based research programs. Recently, a new accelerator mass spectrometry (AMS) facility has been developed after incorporating many changes in the existing 15UD Pelletron accelerator. A clean chemistry laboratory for 10Be and 26Al with all the modern facilities has also been developed for the chemical processing of samples. 10Be measurements on sediment samples, inter laboratory comparison results and 26Al measurements on standard samples are presented in this paper. In addition to the 10Be and 26Al AMS facilities, a new 14C AMS facility based on a dedicated 500 kV tandem ion accelerator with two cesium sputter ion sources, is also being setup at IUAC.
Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.
1999-01-01
In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.
Baba, H; Onizuka, Y; Nakao, M; Fukahori, M; Sato, T; Sakurai, Y; Tanaka, H; Endo, S
2011-02-01
In this study, microdosimetric energy distributions of secondary charged particles from the (10)B(n,α)(7)Li reaction in boron-neutron capture therapy (BNCT) field were calculated using the Particle and Heavy Ion Transport code System (PHITS). The PHITS simulation was performed to reproduce the geometrical set-up of an experiment that measured the microdosimetric energy distributions at the Kyoto University Reactor where two types of tissue-equivalent proportional counters were used, one with A-150 wall alone and another with a 50-ppm-boron-loaded A-150 wall. It was found that the PHITS code is a useful tool for the simulation of the energy deposited in tissue in BNCT based on the comparisons with experimental results.
Near threshold ⁷Li(p,n) ⁷Be reaction as neutron source for BNCT.
Minsky, D M; Kreiner, A J
2015-12-01
(7)Li(p,n)(7)Be is an endothermic reaction and working near its threshold (1.88 MeV) has the advantage of neutron spectra with maximum energies of about 100 keV, considerably lower than at higher beam energies, or than using other neutron-producing reactions or as for the uranium fission spectrum, relevant for BNCT based on nuclear reactors. With this primary energy it is much easier to obtain the energies needed for treating deep seated tumors by BNCT (about 10 keV). This work studies bombarding energies up to 2.05 MeV, different beam incidence angles and the effect of the undesirable gamma production via the (7)Li(p,γp') (7)Li reaction. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model
Yoshikawa, Yuki; Takai, Tomoaki; Ibuki, Naokazu; Hirano, Hajime; Nomi, Hayahito; Kawabata, Shinji; Kiyama, Satoshi; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko; Suzuki, Minoru; Kirihata, Mitsunori; Azuma, Haruhito
2015-01-01
Purpose Boron neutron capture therapy (BNCT) is a selective radiation treatment for tumors that preferentially accumulate drugs carrying the stable boron isotope, 10B. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of brain tumors, and more recently, recurrent advanced head and neck cancer. Here we investigated the effect of BNCT on prostate cancer (PCa) using an in vivo mouse xenograft model that we have developed. Materials and Methods Mice bearing the xenotransplanted androgen-independent human PCa cell line, PC3, were divided into four groups: Group 1: untreated controls; Group 2: Boronophenylalanine (BPA); Group 3: neutron; Group 4: BPA-mediated BNCT. We compared xenograft growth among these groups, and the body weight and any motility disturbance were recorded. Immunohistochemical (IHC) studies of the proliferation marker, Ki-67, and TUNEL staining were performed 9 weeks after treatment. Results The in vivo studies demonstrated that BPA-mediated BNCT significantly delayed tumor growth in comparison with the other groups, without any severe adverse events. There was a significant difference in the rate of freedom from gait abnormalities between the BPA-mediated BNCT group and the other groups. The IHC studies revealed that BNCT treatment significantly reduced the number of Ki-67-positive cells in comparison with the controls (mean±SD 6.9±1.5 vs 12.7±4.0, p<0.05), while there was no difference in the number of apoptotic cells, suggesting that BPA-mediated BNCT reduced PCa progression without affecting apoptosis at 9 weeks post-treatment. Conclusions This study has provided the first preclinical proof-of-principle data to indicate that BPA-mediated BNCT reduces the in vivo growth of PCa. Although further studies will be necessary, BNCT might be a novel potential treatment for PCa. PMID:26325195
Trivillin, Verónica A; Pozzi, Emiliano C C; Colombo, Lucas L; Thorp, Silvia I; Garabalino, Marcela A; Monti Hughes, Andrea; González, Sara J; Farías, Rubén O; Curotto, Paula; Santa Cruz, Gustavo A; Carando, Daniel G; Schwint, Amanda E
2017-11-01
The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 × 10 6 DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 × 10 6 DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm 3 . In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm 3 . The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect.
Lin, Sy-Yu; Lin, Chen-Jou; Liao, Jiunn-Wang; Peir, Jinn-Jer; Chen, Wei-Lin; Chi, Chin-Wen; Lin, Yung-Chang; Liu, Yu-Ming; Chou, Fong-In
2013-11-01
Hepatocellular carcinoma (HCC) is a common malignant tumor with poor prognosis. Boron neutron capture therapy (BNCT) may provide an alternative therapy for HCC. This study investigated the therapeutic efficacy of boric acid (BA)-mediated BNCT for HCC in a rat model. The pharmacokinetic and biodistribution of BA in N1S1 tumor-bearing rats were analyzed. Rats were injected with 25 mg B/kg body weight via tail veins before neutron irradiation at the Tsing Hua Open-pool Reactor, and the efficacy of BNCT was evaluated from the tumor size, tumor blood flow, and biochemical analyses. HCC-bearing rats administered BNCT showed reductions in tumor size on ultrasound imaging, as well as an obvious reduction in the distribution of tumor blood flow. The lesion located in livers had disappeared on the 80th day after BNCT; a recovery of values to normal levels was also recorded. BA-mediated BNCT is a promising alternative for liver cancer therapy since the present study demonstrated the feasibility of curing a liver tumor and restoring liver function in rats. Efforts are underway to investigate the histopathological features and the detailed mechanisms of BA-mediated BNCT.
MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy
NASA Astrophysics Data System (ADS)
Krstic, Dragana; Jovanovic, Zoran; Markovic, Vladimir; Nikezic, Dragoslav; Urosevic, Vlade
2014-10-01
The Boron Neutron Capture Therapy ( BNCT) is based on selective uptake of boron in tumour tissue compared to the surrounding normal tissue. Infusion of compounds with boron is followed by irradiation with neutrons. Neutron capture on 10B, which gives rise to an alpha particle and recoiled 7Li ion, enables the therapeutic dose to be delivered to tumour tissue while healthy tissue can be spared. Here, therapeutic abilities of BNCT were studied for possible treatment of liver cancer using thermal and epithermal neutron beam. For neutron transport MCNP software was used and doses in organs of interest in ORNL phantom were evaluated. Phantom organs were filled with voxels in order to obtain depth-dose distributions in them. The result suggests that BNCT using an epithermal neutron beam could be applied for liver cancer treatment.
Sato, Tatsuhiko; Masunaga, Shin-Ichiro; Kumada, Hiroaki; Hamada, Nobuyuki
2018-01-17
We here propose a new model for estimating the biological effectiveness for boron neutron capture therapy (BNCT) considering intra- and intercellular heterogeneity in 10 B distribution. The new model was developed from our previously established stochastic microdosimetric kinetic model that determines the surviving fraction of cells irradiated with any radiations. In the model, the probability density of the absorbed doses in microscopic scales is the fundamental physical index for characterizing the radiation fields. A new computational method was established to determine the probability density for application to BNCT using the Particle and Heavy Ion Transport code System PHITS. The parameters used in the model were determined from the measured surviving fraction of tumor cells administrated with two kinds of 10 B compounds. The model quantitatively highlighted the indispensable need to consider the synergetic effect and the dose dependence of the biological effectiveness in the estimate of the therapeutic effect of BNCT. The model can predict the biological effectiveness of newly developed 10 B compounds based on their intra- and intercellular distributions, and thus, it can play important roles not only in treatment planning but also in drug discovery research for future BNCT.
MASUNAGA, SHIN-ICHIRO; SAKURAI, YOSHINORI; TANO, KEIZO; TANAKA, HIROKI; SUZUKI, MINORU; KONDO, NATSUKO; NARABAYASHI, MASARU; WATANABE, TSUBASA; NAKAGAWA, YOSUKE; MARUHASHI, AKIRA; ONO, KOJI
2014-01-01
The aim of the present study was to evaluate the effect of bevacizumab on local tumor response and lung metastatic potential during boron neutron capture therapy (BNCT) and in particular, the response of intratumor quiescent (Q) cells. B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously administered bromodeoxyuridine (BrdU) to label all proliferating (P) tumor cells. The tumors were irradiated with thermal neutron beams following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)], with or without the administration of bevacizumab. This was further combined with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH, 40°C for 60 min). Immediately following the irradiation, cells from certain tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q cells and the total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days following irradiation, lung metastases were enumerated. Three days following bevacizumab administration, the sensitivity of the total tumor cell population following BPA-BNCT had increased more than that following BSH-BNCT. The combination with MTH, but not with nicotinamide, further enhanced total tumor cell population sensitivity. Regardless of the presence of a 10B-carrier, MTH enhanced the sensitivity of the Q cell population. Regardless of irradiation, the administration of bevacizumab, as well as nicotinamide treatment, demonstrated certain potential in reducing the number of lung metastases especially in BPA-BNCT compared with BSH-BNCT. Thus, the current study revealed that BNCT combined with bevacizumab has the potential to sensitize total tumor cells and cause a reduction in the number of lung metastases to a similar level as nicotinamide. PMID:24944637
Measurements of the thermal neutron flux for an accelerator-based photoneutron source.
Taheri, Ali; Pazirandeh, Ali
2016-12-01
To have access to an appropriate neutron source is one of the most demanding requirements for neutron studies. This is important specially in laboratory and clinical applications, which need more compact and accessible sources. The most known neutron sources are fission reactors and natural isotopes, but there is an increasing interest for using accelerator based neutron sources because of their advantages. In this paper, we shall present a photo-neutron source prototype which is designed and fabricated to be used for different neutron researches including in-laboratory neutron activation analysis and neutron imaging, and also preliminary studies in boron neutron capture therapy (BNCT). Series of experimental tests were conducted to examine the intensity and quality of the neutron field produced by this source. Monte-Carlo simulations were also utilized to provide more detailed evaluation of the neutron spectrum, and determine the accuracy of the experiments. The experiments demonstrated a thermal neutron flux in the order of 10 7 (n/cm 2 .s), while simulations affirmed this flux and showed a neutron spectrum with a sharp peak at thermal energy region. According to the results, about 60 % of produced neutrons are in the range of thermal to epithermal neutrons.
Fujimoto, Takuya; Andoh, Tooru; Sudo, Tamotsu; Fujita, Ikuo; Fukase, Naomasa; Takeuchi, Tamotsu; Sonobe, Hiroshi; Inoue, Masayoshi; Hirose, Tkanori; Sakuma, Toshiko; Moritake, Hiroshi; Sugimoto, Tohru; Kawamoto, Teruya; Fukumori, Yoshinobu; Yamamoto, Satomi; Atagi, Shinji; Sakurai, Yoshinori; Kurosaka, Masahiro; Ono, Koji; Ichikawa, Hideki; Suzuki, Minoru
2015-12-01
Malignant peripheral nerve sheath tumors (MPNST) are relatively rare neoplasms with poor prognosis. At present there is no effective treatment for MPNST other than surgical resection. Nonetheless, the anti-tumor effect of boron neutron capture therapy (BNCT) was recently demonstrated in two patients with MPNST. Subsequently, tumor-bearing nude mice subcutaneously transplanted with a human MPNST cell line were injected with p-borono-L-phenylalanine (L-BPA) and subjected to BNCT. Pathological studies then revealed that the MPNST cells were selectively destroyed by BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.W. Nigg; William Bauer; Various Others
Sodium mercaptoundecahydro-closo-dodecaborate (BSH) is being investigated clinically for BNCT. We examined the biodistribution of BSH and BPA administered jointly in different proportions in the hamster cheek pouch oral cancer model. The 3 assayed protocols were non-toxic, and showed preferential tumor boron uptake versus precancerous and normal tissue and therapeutic tumor boron concentration values (70–85 ppm). All 3 protocols warrant assessment in BNCT studies to contribute to the knowledge of (BSH+BPA)-BNCT radiobiology for head and neck cancer and optimize therapeutic efficacy.
Antitumor effect of boron nitride nanotubes in combination with thermal neutron irradiation on BNCT.
Nakamura, Hiroyuki; Koganei, Hayato; Miyoshi, Tatsuro; Sakurai, Yoshinori; Ono, Koji; Suzuki, Minoru
2015-01-15
The first BNCT antitumor effects of BNNTs toward B16 melanoma cells were demonstrated. The use of DSPE-PEG2000 was effective for preparation of the BNNT-suspended aqueous solution. BNNT-DSPE-PEG2000 accumulated in B16 melanoma cells approximately three times higher than BSH and the higher BNCT antitumor effect was observed in the cells treated with BNNT-DSPE-PEG2000 compared to those treated with BSH, indicating that BNNT-DSPE-PEG2000 would be a possible candidate as a boron delivery vehicle for BNCT. Copyright © 2014 Elsevier Ltd. All rights reserved.
Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax
2010-01-01
Background Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU) in China. Human glioma cells (the U87, U251, and SHG44 cell lines) were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine)-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM). The apoptosis rate was detected by flow cytometer (FCM). The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P < 0.01). Nuclear condensation was determined using both a fluorescence technique and electron microscopy in all cell lines treated with BPA-BNCT. Furthermore, the cellular apoptotic rates in Group D and Group E treated with BPA-BNCT were significantly higher than those in Group B and Group C irradiated by [60Co] γ-rays (P < 0.01). The clonogenicity of glioma cells was reduced by BPA-BNCT compared with cells treated in the reactor (Group F, G, H, I), and with the control cells (P < 0.01). Upon BPA-BNCT treatment, the Bax level increased in glioma cells, whereas Bcl-2 expression decreased. Conclusions Compared with γ-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by BNCT may be related to activation of Bax and downregulation of Bcl-2. PMID:21122152
DOE Office of Scientific and Technical Information (OSTI.GOV)
Church, M.; Edwards, H.; Harms, E.
2013-10-01
Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support themore » accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the OHEP mission of Accelerator Stewardship.« less
Histamine reduces boron neutron capture therapy-induced mucositis in an oral precancer model.
Monti Hughes, A; Pozzi, Ecc; Thorp, S I; Curotto, P; Medina, V A; Martinel Lamas, D J; Rivera, E S; Garabalino, M A; Farías, R O; Gonzalez, S J; Heber, E M; Itoiz, M E; Aromando, R F; Nigg, D W; Trivillin, V A; Schwint, A E
2015-09-01
Searching for more effective and selective therapies for head and neck cancer, we demonstrated the therapeutic effect of boron neutron capture therapy (BNCT) to treat oral cancer and inhibit long-term tumor development from field-cancerized tissue in the hamster cheek pouch model. However, BNCT-induced mucositis in field-cancerized tissue was dose limiting. In a clinical scenario, oral mucositis affects patients' treatment and quality of life. Our aim was to evaluate different radioprotectors, seeking to reduce the incidence of BNCT-induced severe mucositis in field-cancerized tissue. Cancerized pouches treated with BNCT mediated by boronophenylalanine at 5 Gy were treated as follows: control: saline solution; Hishigh : histamine 5 mg kg(-1) ; Hislow : histamine 1 mg kg(-1) ; and JNJ7777120: 10 mg kg(-1). Hislow reduced the incidence of severe mucositis in field-cancerized tissue to 17% vs 55%; Hishigh : 67%; JNJ7777120: 57%. Hislow was non-toxic and did not compromise the long-term therapeutic effect of BNCT or alter gross boron concentration. Histamine reduces BNCT-induced mucositis in experimental oral precancer without jeopardizing therapeutic efficacy. The fact that both histamine and boronophenylalanine are approved for use in humans bridges the gap between experimental work and potential clinical application to reduce BNCT-induced radiotoxicity in patients with head and neck cancer. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
An evaluation on the design of beam shaping assembly based on the D-T reaction for BNCT
NASA Astrophysics Data System (ADS)
Asnal, M.; Liamsuwan, T.; Onjun, T.
2015-05-01
Boron Neutron Capture Therapy (BNCT) can be achieved by using a compact neutron generator such as a compact D-T neutron source, in which neutron energy must be in the epithermal energy range with sufficient flux. For these requirements, a Beam Shaping Assembly (BSA) is needed. In this paper, three BSA designs based on the D-T reaction for BNCT are discussed. It is found that the BSA configuration designed by Rasouli et al. satisfies all of the International Atomic Energy Agency (IAEA) criteria. It consists of 14 cm uranium as multiplier, 23 cm TiF3 and 36 cm Fluental as moderator, 4 cm Fe as fast neutron filter, 1 mm Li as thermal neutron filter, 2.6 cm Bi as gamma ray filter, and Pb as collimator and reflector. It is also found that use of specific filters is important for removing the fast and thermal neutrons and gamma contamination. Moreover, an appropriate neutron source plays a key role in providing a proper epithermal flux.
Yang, C H; Lin, Y T; Hung, Y H; Liao, J W; Peir, J J; Liu, H M; Lin, Y L; Liu, Y M; Chen, Y W; Chuang, K S; Chou, F I
2015-12-01
Hepatoma is a malignant tumor that responds poorly to conventional therapies. Boron neutron capture therapy (BNCT) may provide a better way for hepatoma therapy. In this research, (10)B-enriched boric acid (BA, 99% (10)B) was used as the boron drug. A multifocal hepatic VX2 tumor-bearing rabbit model was used to study the mechanisms of BA-mediated BNCT. Autoradiography demonstrated that BA was selectively targeted to tumors and tumor vessels. Histopathological examination revealed the radiation damage to tumor-bearing liver was concentrated in the tumor regions during BNCT treatment. The selective killing of tumor cells and the destruction of the blood vessels in tumor masses may be responsible for the success of BA-mediated BNCT for liver tumors. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakurai, Yoshinori, E-mail: yosakura@rri.kyoto-u.ac.jp; Tanaka, Hiroki; Kondo, Natsuko
2015-11-15
Purpose: Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditionsmore » in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a “dual phantom technique” for measuring the fast neutron component of dose is reported. Methods: One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % {sup 6}LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % {sup 6}LiOH solution based on the simulation results. Experimental characterization of the depth dose distributions of the neutron and gamma-ray components along the central axis was performed at Heavy Water Neutron Irradiation Facility installed at Kyoto University Reactor using activation foils and thermoluminescent dosimeters, respectively. Results: Simulation results demonstrated that the absorbing effect for thermal neutrons occurred when the LiOH concentration was over 1%. The most effective Li-6 concentration was determined to be enriched {sup 6}LiOH with a solubility approaching its upper limit. Experiments confirmed that the thermal neutron flux and secondary gamma-ray dose rate decreased substantially; however, the fast neutron flux and primary gamma-ray dose rate were hardly affected in the 10%-{sup 6}LiOH phantom. It was confirmed that the dose contribution of fast neutrons is improved from approximately 10% in the pure water phantom to approximately 50% in the 10%-{sup 6}LiOH phantom. Conclusions: The dual phantom technique using the combination of a pure water phantom and a 10%-{sup 6}LiOH phantom developed in this work provides an effective method for dose estimation of the fast neutron component in BNCT. Improvement in the accuracy achieved with the proposed technique results in improved RBE estimation for biological experiments and clinical practice.« less
Boron microlocalization in oral mucosal tissue: implications for boron neutron capture therapy
Morris, G M; Smith, D R; Patel, H; Chandra, S; Morrison, G H; Hopewell, J W; Rezvani, M; Micca, P L; Coderre, J A
2000-01-01
Clinical studies of the treatment of glioma and cutaneous melanoma using boron neutron capture therapy (BNCT) are currently taking place in the USA, Europe and Japan. New BNCT clinical facilities are under construction in Finland, Sweden, England and California. The observation of transient acute effects in the oral mucosa of a number of glioma patients involved in the American clinical trials, suggests that radiation damage of the oral mucosa could be a potential complication in future BNCT clinical protocols, involving higher doses and larger irradiation field sizes. The present investigation is the first to use a high resolution surface analytical technique to relate the microdistribution of boron-10 (10B) in the oral mucosa to the biological effectiveness of the 10B(n,α)7Li neutron capture reaction in this tissue. The two boron delivery agents used clinically in Europe/Japan and the USA, borocaptate sodium (BSH) and p-boronophenylalanine (BPA), respectively, were evaluated using a rat ventral tongue model. 10B concentrations in various regions of the tongue mucosa were estimated using ion microscopy. In the epithelium, levels of 10B were appreciably lower after the administration of BSH than was the case after BPA. The epithelium:blood 10B partition ratios were 0.2:1 and 1:1 for BSH and BPA respectively. The 10B content of the lamina propria was higher than that measured in the epithelium for both BSH and BPA. The difference was most marked for BSH, where 10B levels were a factor of six higher in the lamina propria than in the epithelium. The concentration of 10B was also measured in blood vessel walls where relatively low levels of accumulation of BSH, as compared with BPA, was demonstrated in blood vessel endothelial cells and muscle. Vessel wall:blood 10B partition ratios were 0.3:1 and 0.9:1 for BSH and BPA respectively. Evaluation of tongue mucosal response (ulceration) to BNC irradiation indicated a considerably reduced radiation sensitivity using BSH as the boron delivery agent relative to BPA. The compound biological effectiveness (CBE) factor for BSH was estimated at 0.29 ± 0.02. This compares with a previously published CBE factor for BPA of 4.87 ± 0.16. It was concluded that variations in the microdistribution profile of 10B, using the two boron delivery agents, had a significant effect on the response of oral mucosa to BNC irradiation. From a clinical perspective, based on the findings of the present study, it is probable that potential radiation-induced oral mucositis will be restricted to BNCT protocols involving BPA. However, a thorough high resolution analysis of 10B microdistribution in human oral mucosal tissue, using a technique such as ion microscopy, is a prerequisite for the use of experimentally derived CBE factors in clinical BNCT. © 2000 Cancer Research Campaign PMID:10839288
Fujimoto, T; Andoh, T; Sudo, T; Fujita, I; Imabori, M; Moritake, H; Sugimoto, T; Sakuma, Y; Takeuchi, T; Sonobe, H; Epstein, Alan L; Akisue, T; Kirihata, M; Kurosaka, M; Fukumori, Y; Ichikawa, H
2011-12-01
Clear cell sarcoma (CCS), a rare malignant tumor with a predilection for young adults, is of poor prognosis. Recently however, boron neutron capture therapy (BNCT) with the use of p-borono-L-phenylalanine (BPA) for malignant melanoma has provided good results. CCS also produces melanin; therefore, the uptake of BPA is the key to the application of BNCT to CCS. We describe, for the first time, the high accumulation of boron in CCS and the CCS tumor-bearing animal model generated for BNCT studies. Copyright © 2011 Elsevier Ltd. All rights reserved.
GPU-based prompt gamma ray imaging from boron neutron capture therapy.
Yoon, Do-Kun; Jung, Joo-Young; Jo Hong, Key; Sil Lee, Keum; Suk Suh, Tae
2015-01-01
The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.
NASA Astrophysics Data System (ADS)
Jenkins, Peter Anthony
A novel Boron Neutron Capture Therapy (BNCT) regimen for the treatment of HER2+ breast cancers has been proposed as an alternative to whole breast irradiation for breast conservation therapy patients. The proposed therapy regimen is based on the assumed production of boron delivery agents that would be synthesized from compounds of Trastuzumab (Herceptin ®) and oligomeric phosphate diesters (OPDs). The combination of the anti-HER2 monoclonal antibody and the high boron loading capability of OPDs has led to the assumption that boron could be delivered to the HER2+ cancer cells at Tumor to Healthy Tissue ratios (T:H) of up to 35:1 and boron concentrations above 50 μg/g. This significantly increased boron delivery efficiency has opened new BNCT possibilities. This proof of concept study examined treatment parameters derived as the results in previous efforts in the context of patient-specific geometry and compared calculated dose results to those observed during actual patient therapy. These results were based on dose calculations performed with a set of calculated Kerma coefficients derived from tissues specific to the regions of interest for breast cancer. A comparison was made of the dose to the tumor region, the patient's skin, and the peripheral organs. The results of this study demonstrated that, given the performance of the proposed boron delivery agent, the BNCT treatment regimen is feasible. The feasibility is based on the findings that the equivalent dose could be delivered to the treatment volume with less dose to the skin and peripheral organs. This is anticipated to improve the treatment outcomes by maintaining local control of tumor cells while reducing dose to healthy tissues.
Bench, Bennie J; Johnson, Rebecca; Hamilton, Craig; Gooch, Joey; Wright, John R
2004-02-15
It has been shown in preliminary studies that the antibacterial protein avidin self-associates with the boric acid gel polymer, and avidin-coated gel particles in the micrometer and submicrometer size ranges are of interest for boron neutron-capture therapy (BNCT), which is neutron-induced fission of boron-10 to produce intense alpha radiation for tumor destruction. The gel particles carry large amounts of boron-10 and are theoretically able effect a meaningful tissue dosing through BNCT. A gross precipitation of gel particles occurs within 46 min of mixing when the avidin/colloid ratio is about 0.34 g avidin/g colloid. This is a minimum time if gel and avidin concentrations are in the low microgram/milliliter range, but at higher proportions of avidin the time delay to precipitation increases significantly; i.e., the colloid surface becomes blocked, inhibiting lattice formation. The avidin-coated gel particles eventually cross-link, forming a solid matrix and precipitating on a timescale measured on the order of an hour. At shorter exposure times rapid agglutination-like reactions were observed with biotinylated bovine albumin, suggesting that two-stage pretargeting of specific tissues should be possible with biotinylated antitumor antibodies. However, for BNCT to be practical, avidin's interaction with the gel needs to be strengthened, and all aryl-B(OH)(2) groups on the particle surfaces must be blocked, or else the particles will interact strongly and nonspecifically with each other and with the carbohydrate groups present on most cell surfaces. Glyceric acid delays the precipitation of the particle suspensions while most simple and complex carbohydrates accelerate it.
Yanagie, Hironobu; Higashi, Syushi; Seguchi, Koji; Ikushima, Ichiro; Fujihara, Mituteru; Nonaka, Yasumasa; Oyama, Kazuyuki; Maruyama, Syoji; Hatae, Ryo; Suzuki, Minoru; Masunaga, Shin-ichiro; Kinashi, Tomoko; Sakurai, Yoshinori; Tanaka, Hiroki; Kondo, Natsuko; Narabayashi, Masaru; Kajiyama, Tetsuya; Maruhashi, Akira; Ono, Koji; Nakajima, Jun; Ono, Minoru; Takahashi, Hiroyuki; Eriguchi, Masazumi
2014-06-01
A 63-year-old man with multiple HCC in his left liver lobe was enrolled as the first patient in a pilot study of boron neutron capture therapy (BNCT) involving the selective intra-arterial infusion of a (10)BSH-containing water-in-oil-in-water emulsion ((10)BSH-WOW). The size of the tumorous region remained stable during the 3 months after the BNCT. No adverse effects of the BNCT were observed. The present results show that (10)BSH-WOW can be used as novel intra-arterial boron carriers during BNCT for HCC. Copyright © 2014 Elsevier Ltd. All rights reserved.
Boron Neutron Capture Therapy - A Literature Review
Nedunchezhian, Kavitaa; Thiruppathy, Manigandan; Thirugnanamurthy, Sarumathi
2016-01-01
Boron Neutron Capture Therapy (BNCT) is a radiation science which is emerging as a hopeful tool in treating cancer, by selectively concentrating boron compounds in tumour cells and then subjecting the tumour cells to epithermal neutron beam radiation. BNCT bestows upon the nuclear reaction that occurs when Boron-10, a stable isotope, is irradiated with low-energy thermal neutrons to yield α particles (Helium-4) and recoiling lithium-7 nuclei. A large number of 10 Boron (10B) atoms have to be localized on or within neoplastic cells for BNCT to be effective, and an adequate number of thermal neutrons have to be absorbed by the 10B atoms to maintain a lethal 10B (n, α) lithium-7 reaction. The most exclusive property of BNCT is that it can deposit an immense dose gradient between the tumour cells and normal cells. BNCT integrates the fundamental focusing perception of chemotherapy and the gross anatomical localization proposition of traditional radiotherapy. PMID:28209015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albertson, B.; Binney, S.
This paper describes research on the following: the structure of {sup 10}B{sub 10}-ovine corticotropin releasing hormone and {sup 10}B{sub 10}-growth hormone releasing hormone; the BNCT effect on AtT-20 cell {sup 10}B{sub 10}-CRH incubations in vitro; BNCT effects on GH{sub 4}C{sub 1} cell {sup 10}B{sub 10} growth hormone releasing factor incubation in vitro; and competitive inhibition of AtT-20 cell BNCT effect.
Sun, Ting; Zhang, Zizhu; Li, Bin; Chen, Guilin; Xie, Xueshun; Wei, Yongxin; Wu, Jie; Zhou, Youxin; Du, Ziwei
2013-08-06
Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma.
Miyatake, Shin-Ichi; Furuse, Motomasa; Kawabata, Shinji; Maruyama, Takashi; Kumabe, Toshihiro; Kuroiwa, Toshihiko; Ono, Koji
2013-06-01
Bevacizumab, an anti-vascular endothelial growth factor antibody, has been used for the treatment of radiation necrosis. Thus far, however, there has been no definitive report on its use for the treatment of symptomatic pseudoprogression. Here we report 2 cases of successful treatment with bevacizumab for symptomatic pseudoprogression after boron neutron capture therapy (BNCT) was applied for recurrent malignant gliomas. Two recurrent malignant gliomas received BNCT. Both cases were treated with intravenous administration of bevacizumab at the deterioration that seemed to be symptomatic pseudoprogression. The first case was recurrent glioblastoma multiforme and the second was recurrent anaplastic oligoastrocytoma. Both cases recurred after standard chemoradiotherapy and were referred to our institute for BNCT, which is tumor-selective particle radiation. Just prior to neutron irradiation, PET with an amino acid tracer was applied in each case to confirm tumor recurrence. Both cases showed deterioration in symptoms, as well as on MRI, at intervals of 4 months and 2 months, respectively, after BNCT. For the first case, a second PET was applied in order to confirm no increase in tracer uptake. We diagnosed both cases as symptomatic pseudoprogression and started the intravenous administration of 5 mg/kg bevacizumab biweekly with 6 cycles. Both cases responded well to this, showing rapid and dramatic improvement in neuroimaging and clinical symptoms. No tumor progression was observed 8 months after BNCT. Bevacizumab showed marked effects on symptomatic pseudoprogression after BNCT. BNCT combined with bevacizumab may prolong the survival of patients with recurrent malignant gliomas.
Miyatake, Shin-Ichi; Furuse, Motomasa; Kawabata, Shinji; Maruyama, Takashi; Kumabe, Toshihiro; Kuroiwa, Toshihiko; Ono, Koji
2013-01-01
Background Bevacizumab, an anti–vascular endothelial growth factor antibody, has been used for the treatment of radiation necrosis. Thus far, however, there has been no definitive report on its use for the treatment of symptomatic pseudoprogression. Here we report 2 cases of successful treatment with bevacizumab for symptomatic pseudoprogression after boron neutron capture therapy (BNCT) was applied for recurrent malignant gliomas. Methods Two recurrent malignant gliomas received BNCT. Both cases were treated with intravenous administration of bevacizumab at the deterioration that seemed to be symptomatic pseudoprogression. Results The first case was recurrent glioblastoma multiforme and the second was recurrent anaplastic oligoastrocytoma. Both cases recurred after standard chemoradiotherapy and were referred to our institute for BNCT, which is tumor-selective particle radiation. Just prior to neutron irradiation, PET with an amino acid tracer was applied in each case to confirm tumor recurrence. Both cases showed deterioration in symptoms, as well as on MRI, at intervals of 4 months and 2 months, respectively, after BNCT. For the first case, a second PET was applied in order to confirm no increase in tracer uptake. We diagnosed both cases as symptomatic pseudoprogression and started the intravenous administration of 5 mg/kg bevacizumab biweekly with 6 cycles. Both cases responded well to this, showing rapid and dramatic improvement in neuroimaging and clinical symptoms. No tumor progression was observed 8 months after BNCT. Conclusions Bevacizumab showed marked effects on symptomatic pseudoprogression after BNCT. BNCT combined with bevacizumab may prolong the survival of patients with recurrent malignant gliomas. PMID:23460324
2013-01-01
Background Radiologic response of brain tumors is traditionally assessed according to the Macdonald criteria 10 weeks from the start of therapy. Because glioblastoma (GB) responds in days rather than weeks after boron neutron capture therapy (BNCT) that is a form of tumor-selective particle radiation, it is inconvenient to use the Macdonald criteria to assess the therapeutic efficacy of BNCT by gadolinium-magnetic resonance imaging (Gd-MRI). Our study assessed the utility of functional diffusion map (fDM) for evaluating response patterns in GB treated by BNCT. Methods The fDM is an image assessment using time-dependent changes of apparent diffusion coefficient (ADC) in tumors on a voxel-by-voxel approach. Other than time-dependent changes of ADC, fDM can automatically assess minimum/maximum ADC, Response Evaluation Criteria In Solid Tumors (RECIST), and the volume of enhanced lesions on Gd-MRI over time. We assessed 17 GB patients treated by BNCT using fDM. Additionally, in order to verify our results, we performed a histopathological examination using F98 rat glioma models. Results Only the volume of tumor with decreased ADC by fDM at 2 days after BNCT was a good predictor for GB patients treated by BNCT (P value = 0.022 by log-rank test and 0.033 by wilcoxon test). In a histopathological examination, brain sections of F98 rat glioma models treated by BNCT showed cell swelling of both the nuclei and the cytoplasm compared with untreated rat glioma models. Conclusions The fDM could identify response patterns in BNCT-treated GB earlier than a standard radiographic assessment. Early detection of treatment failure can allow a change or supplementation before tumor progression and might lead to an improvement of GB patients’ prognosis. PMID:23915330
Boron neutron capture therapy for recurrent high-grade meningiomas.
Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Ono, Koji; Miyatake, Shin-Ichi
2013-10-01
Similar to glioblastomas, high-grade meningiomas are difficult pathologies to control. In this study, the authors used boron neutron capture therapy (BNCT), a tumor-selective intensive particle radiation modality, to treat high-grade meningioma. From June 2005 to September 2011, BNCT was applied 28 times in 20 cases of recurrent high-grade meningioma. All patients had previously undergone intensive treatments such as repetitive surgeries and multiple sessions of radiation therapy. Fluorine-18-labeled boronophenylalanine ((18)F-BPA) PET was performed before BNCT in 19 of the 20 cases; BPA is itself a therapeutic compound. Compound uptake, tumor shrinkage, long-term control rate including survival time, and failure pattern of the treated patients were all evaluated. Eighteen of 19 cases studied using (18)F-BPA PET showed good BPA uptake, with ratios of tumor to normal brain greater than 2.7. These ratios indicated the likely effects of BNCT prior to neutron irradiation. The original tumor sizes were between 4.3 cm(3) and 109 cm(3). A mean tumor volume reduction of 64.5% was obtained after BNCT within just 2 months. The median follow-up duration was 13 months. Six patients are still alive; at present, the median survival times after BNCT and diagnosis are 14.1 months (95% CI 8.6-40.4 months) and 45.7 months (95% CI 32.4-70.7 months), respectively. Clinical symptoms before BNCT, such as hemiparesis and facial pain, were improved after BNCT in symptomatic cases. Systemic metastasis, intracranial distant recurrence outside the radiation field, CSF dissemination, and local tumor progression were observed in 6, 7, 3, and 3 cases, respectively, during the clinical course. Apparent pseudoprogression was observed in at least 3 cases. Symptomatic radiation injuries occurred in 6 cases, and were controllable in all but 1 case. Boron neutron capture therapy may be especially effective in cases of high-grade meningioma.
DOT National Transportation Integrated Search
2008-03-01
The main objective of this study was to determine the most beneficial and cost-effective accelerated load facility that can be used in conjunction with LTRCs Accelerated Load Facility (ALF). The facility will be used primarily for conducting preli...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farías, R. O.; Trivillin, V. A.; Portu, A. M.
Purpose: Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (L)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Methods: Twomore » kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Results: Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and indirect quantification of the estimated value in the explanted healthy lung. The proposed preclinical animal model allowed for the study of the explanted lung. As expected, the boron concentration values fell as a result of the application of the preservation protocol required to preserve the lung function. The distribution of the boron concentration retention factor was obtained for healthy lung, with a mean value of 0.46 ± 0.14 consistent with that reported for metastatic colon carcinoma model in rat perfused lung. Considering the human lung model and suitable tumor control probability for lung cancer, a promising average fraction of controlled lesions higher than 85% was obtained even for a low tumor-to-normal boron concentration ratio of 2. Conclusions: This work reports for the first time data supporting the validity of the ovine model as an adequate human surrogate in terms of boron kinetics and uptake in clinically relevant tissues. Collectively, the results and analysis presented would strongly suggest that ex situ whole lung BNCT irradiation is a feasible and highly promising technique that could greatly contribute to the treatment of metastatic lung disease in those patients without extrapulmonary spread, increasing not only the expected overall survival but also the resulting quality of life.« less
Farías, R O; Garabalino, M A; Ferraris, S; Santa María, J; Rovati, O; Lange, F; Trivillin, V A; Monti Hughes, A; Pozzi, E C C; Thorp, S I; Curotto, P; Miller, M E; Santa Cruz, G A; Bortolussi, S; Altieri, S; Portu, A M; Saint Martin, G; Schwint, A E; González, S J
2015-07-01
Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (l)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Two kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and indirect quantification of the estimated value in the explanted healthy lung. The proposed preclinical animal model allowed for the study of the explanted lung. As expected, the boron concentration values fell as a result of the application of the preservation protocol required to preserve the lung function. The distribution of the boron concentration retention factor was obtained for healthy lung, with a mean value of 0.46 ± 0.14 consistent with that reported for metastatic colon carcinoma model in rat perfused lung. Considering the human lung model and suitable tumor control probability for lung cancer, a promising average fraction of controlled lesions higher than 85% was obtained even for a low tumor-to-normal boron concentration ratio of 2. This work reports for the first time data supporting the validity of the ovine model as an adequate human surrogate in terms of boron kinetics and uptake in clinically relevant tissues. Collectively, the results and analysis presented would strongly suggest that ex situ whole lung BNCT irradiation is a feasible and highly promising technique that could greatly contribute to the treatment of metastatic lung disease in those patients without extrapulmonary spread, increasing not only the expected overall survival but also the resulting quality of life.
Molinari, Ana J; Pozzi, Emiliano C C; Monti Hughes, Andrea; Heber, Elisa M; Garabalino, Marcela A; Thorp, Silvia I; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Trivillin, Verónica A; Schwint, Amanda E
2012-01-01
We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer. Blood vessel normalization was induced by two doses of thalidomide in tumor-bearing hamsters on 2 consecutive days. All studies in thalidomide-treated animals were performed 48 h after the first dose of thalidomide, previously established as the window of normalization. Biodistribution studies were performed with BPA at a dose of 15.5 mg (10)B/kg in thalidomide-treated (Th+) and untreated (Th-) tumor-bearing hamsters. The effect of blood vessel normalization prior to BPA administration on the efficacy of BNCT was assessed in in vivo BNCT studies at the RA-3 Nuclear Reactor in tumor-bearing hamsters. Group I was treated with BPA-BNCT after treatment with thalidomide (Th+ BPA-BNCT). Group II was treated with BPA-BNCT alone (Th- BPA-BNCT). Group III was treated with the beam only after treatment with thalidomide (Th+ BO), and Group IV was treated with the beam only (Th- BO). Groups I and II were given the same dose of BPA (15.5 mg (10)B/kg), and all groups (I-IV) were exposed to the same neutron fluence. Two additional groups were treated with the beam only at a higher dose to exacerbate mucositis in precancerous tissue and to explore the potential direct protective effect of thalidomide on radiation-induced mucositis in a scenario of more severe toxicity, i.e. Group V (Th+ hdBO) and Group VI (Th- hdBO). The animals were followed for 28 days. Biodistribution studies revealed no statistically significant differences in gross boron content between Th+ and Th- animals. Overall tumor control (complete response + partial response) at 28 days post-treatment was significantly higher for Group I (Th+ BPA-BNCT) than for Group II (Th- BPA-BNCT): 84 ± 3% compared to 67 ± 5%. Pretreatment with thalidomide did not induce statistically significant changes in overall tumor control induced by the beam only, i.e. 15 ± 5% in Group III (Th+ BO) and 18 ± 5% in Group IV (Th- BO), or in overall tumor control induced by the high-dose beam only, i.e. 60 ± 7% in Group V (Th+ hdBO) and 47 ± 10% in Group VI (Th- hdBO). BPA-BNCT alone (Group II) induced mucositis in precancerous tissue that reached Grades 3-4 in 80% of the animals, whereas pretreatment with thalidomide (Group I) prevented mucositis Grades 3 and 4 completely. Beam-only Group III (Th+ BO) exhibited only Grade 1 mucositis in precancerous tissue, whereas 17% of the animals in beam-only Group IV (Th- BO) reached Grade 2 mucositis. High-dose beam-only group V (Th+ hdBO) exhibited only Grade 2 mucositis, whereas high-dose beam-only group VI (Th- hdBO) reached Grade 3 mucositis in 83% of the animals. In all cases mucositis in precancerous tissue was reversible. No normal tissue radiotoxicity was observed with any of the protocols. Pretreatment with thalidomide enhanced the therapeutic efficacy of BNCT and reduced precancerous tissue toxicity.
A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, A.M.M.; Paulson, C.C.; Peacock, M.A.
1995-10-01
A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decisionmore » has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less
A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.
1995-09-15
A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. Amore » decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less
A neutron beam facility for radioactive ion beams and other applications
NASA Astrophysics Data System (ADS)
Tecchio, L. B.
1999-06-01
In the framework of the Italian participation in the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involved in the design and construction of same prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has already been supported financially and the work is in progress. In this context LNL has proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by means of the ISOL method. The final goal is the production of neutron rich RIBs with masses ranging from 30 to 150 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is expected to be developed in about 10 years from new and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). During that period the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production and to the neutron physics, is proposed. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed. Besides the RIBs production, neutron beams for the BNCT applications and neutron physics are also planned.
The radioactive ion beams facility project for the legnaro laboratories
NASA Astrophysics Data System (ADS)
Tecchio, Luigi B.
1999-04-01
In the frame work of the Italian participation to the project of a high intensity proton facility for the energy amplifier and nuclear waste transmutations, LNL is involving in the design and construction of prototypes of the injection system of the 1 GeV linac that consists of a RFQ (5 MeV, 30 mA) followed by a 100 MeV linac. This program has been already financially supported and the work is actually in progress. In this context, the LNL has been proposed a project for the construction of a second generation facility for the production of radioactive ion beams (RIBs) by using the ISOL method. The final goal consists in the production of neutron rich RIBs with masses ranging from 80 to 160 by using primary beams of protons, deuterons and light ions with energy of 100 MeV and 100 kW power. This project is proposed to be developed in about 10 years from now and intermediate milestones and experiments are foreseen and under consideration for the next INFN five year plan (1999-2003). In such period of time is proposed the construction of a proton/deuteron accelerator of 10 MeV energy and 10 mA current, consisting of a RFQ (5 MeV, 30 mA) and a linac (10 MeV, 10 mA), and of a neutron area dedicated to the RIBs production, to the BNCT applications and to the neutron physics. Some remarks on the production methods will be presented. The possibility of producing radioisotopes by means of the fission induced by neutrons will be investigated and the methods of production of neutrons will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. W. Nigg
2012-01-01
We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in themore » hamster cheek pouch model of oral cancer.« less
GPU-based prompt gamma ray imaging from boron neutron capture therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae, E-mail: suhsanta@catholic.ac.kr
Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.« less
TU-FG-BRB-07: GPU-Based Prompt Gamma Ray Imaging From Boron Neutron Capture Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S; Suh, T; Yoon, D
Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusion: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray reconstruction using the GPU computation for BNCT simulations.« less
Wortmann, Birgit; Knorr, Jürgen
2012-08-01
In 2001 and 2003, at the University of Pavia, Italy, boron neutron capture therapy (BNCT) has been successfully used in the treatment of hepatic colorectal metastases (Pinelli et al., 2002; Zonta et al., 2006). The treatment procedure (TAOrMINA protocol) is characterised by the auto-transplantation and extracorporeal irradiation of the liver using a thermal neutron beam. The clinical use of this approach requires well founded data and an optimized irradiation facility. In order to start with this work and to decide upon its feasibility at the research reactor TRIGA Mainz, basic data and requirements have been considered (Wortmann, 2008). Computer calculations using the ATTILA (Transpire Inc. 2006) and MCNP (LANL, 2005) codes have been performed, including data from conventional radiation therapy, from the TAOrMINA approach, resulting in reasonable estimations. Basic data and requirements and optimal parameters have been worked out, especially for use at an optimized TRIGA irradiation facility (Wortmann, 2008). Advantages of the extracorporeal irradiation with auto-transplantation and the potential of an optimized irradiation facility could be identified. Within the requirements, turning the explanted organ over by 180° appears preferable to a whole side source, similar to a permanent rotation of the organ. The design study and the parameter optimization confirm the potential of this approach to treat metastases in explanted organs. The results do not represent actual treatment data but a first estimation. Although all specific values refer to the TRIGA Mainz, they may act as a useful guide for other types of neutron sources. The recommended modifications (Wortmann, 2008) show the suitability of TRIGA reactors as a radiation source for BNCT of extracorporeal irradiated and auto-transplanted organs. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
González, S. J.; Pozzi, E. C. C.; Monti Hughes, A.; Provenzano, L.; Koivunoro, H.; Carando, D. G.; Thorp, S. I.; Casal, M. R.; Bortolussi, S.; Trivillin, V. A.; Garabalino, M. A.; Curotto, P.; Heber, E. M.; Santa Cruz, G. A.; Kankaanranta, L.; Joensuu, H.; Schwint, A. E.
2017-10-01
Boron neutron capture therapy (BNCT) is a treatment modality that combines different radiation qualities. Since the severity of biological damage following irradiation depends on the radiation type, a quantity different from absorbed dose is required to explain the effects observed in the clinical BNCT in terms of outcome compared with conventional photon radiation therapy. A new approach for calculating photon iso-effective doses in BNCT was introduced previously. The present work extends this model to include information from dose-response assessments in animal models and humans. Parameters of the model were determined for tumour and precancerous tissue using dose-response curves obtained from BNCT and photon studies performed in the hamster cheek pouch in vivo models of oral cancer and/or pre-cancer, and from head and neck cancer radiotherapy data with photons. To this end, suitable expressions of the dose-limiting Normal Tissue Complication and Tumour Control Probabilities for the reference radiation and for the mixed field BNCT radiation were developed. Pearson’s correlation coefficients and p-values showed that TCP and NTCP models agreed with experimental data (with r > 0.87 and p-values >0.57). The photon iso-effective dose model was applied retrospectively to evaluate the dosimetry in tumours and mucosa for head and neck cancer patients treated with BNCT in Finland. Photon iso-effective doses in tumour were lower than those obtained with the standard RBE-weighted model (between 10% to 45%). The results also suggested that the probabilities of tumour control derived from photon iso-effective doses are more adequate to explain the clinical responses than those obtained with the RBE-weighted values. The dosimetry in the mucosa revealed that the photon iso-effective doses were about 30% to 50% higher than the corresponding RBE-weighted values. While the RBE-weighted doses are unable to predict mucosa toxicity, predictions based on the proposed model are compatible with the observed clinical outcome. The extension of the photon iso-effective dose model has allowed, for the first time, the determination of the photon iso-effective dose for unacceptable complications in the dose-limiting normal tissue. Finally, the formalism developed in this work to compute photon-equivalent doses can be applied to other therapies that combine mixed radiation fields, such as hadron therapy.
González, S J; Pozzi, E C C; Monti Hughes, A; Provenzano, L; Koivunoro, H; Carando, D G; Thorp, S I; Casal, M R; Bortolussi, S; Trivillin, V A; Garabalino, M A; Curotto, P; Heber, E M; Santa Cruz, G A; Kankaanranta, L; Joensuu, H; Schwint, A E
2017-10-03
Boron neutron capture therapy (BNCT) is a treatment modality that combines different radiation qualities. Since the severity of biological damage following irradiation depends on the radiation type, a quantity different from absorbed dose is required to explain the effects observed in the clinical BNCT in terms of outcome compared with conventional photon radiation therapy. A new approach for calculating photon iso-effective doses in BNCT was introduced previously. The present work extends this model to include information from dose-response assessments in animal models and humans. Parameters of the model were determined for tumour and precancerous tissue using dose-response curves obtained from BNCT and photon studies performed in the hamster cheek pouch in vivo models of oral cancer and/or pre-cancer, and from head and neck cancer radiotherapy data with photons. To this end, suitable expressions of the dose-limiting Normal Tissue Complication and Tumour Control Probabilities for the reference radiation and for the mixed field BNCT radiation were developed. Pearson's correlation coefficients and p-values showed that TCP and NTCP models agreed with experimental data (with r > 0.87 and p-values >0.57). The photon iso-effective dose model was applied retrospectively to evaluate the dosimetry in tumours and mucosa for head and neck cancer patients treated with BNCT in Finland. Photon iso-effective doses in tumour were lower than those obtained with the standard RBE-weighted model (between 10% to 45%). The results also suggested that the probabilities of tumour control derived from photon iso-effective doses are more adequate to explain the clinical responses than those obtained with the RBE-weighted values. The dosimetry in the mucosa revealed that the photon iso-effective doses were about 30% to 50% higher than the corresponding RBE-weighted values. While the RBE-weighted doses are unable to predict mucosa toxicity, predictions based on the proposed model are compatible with the observed clinical outcome. The extension of the photon iso-effective dose model has allowed, for the first time, the determination of the photon iso-effective dose for unacceptable complications in the dose-limiting normal tissue. Finally, the formalism developed in this work to compute photon-equivalent doses can be applied to other therapies that combine mixed radiation fields, such as hadron therapy.
A 13C(d,n)-based epithermal neutron source for Boron Neutron Capture Therapy.
Capoulat, M E; Kreiner, A J
2017-01-01
Boron Neutron Capture Therapy (BNCT) requires neutron sources suitable for in-hospital siting. Low-energy particle accelerators working in conjunction with a neutron producing reaction are the most appropriate choice for this purpose. One of the possible nuclear reactions is 13 C(d,n) 14 N. The aim of this work is to evaluate the therapeutic capabilities of the neutron beam produced by this reaction, through a 30mA beam of deuterons of 1.45MeV. A Beam Shaping Assembly design was computationally optimized. Depth dose profiles in a Snyder head phantom were simulated with the MCNP code for a number of BSA configurations. In order to optimize the treatment capabilities, the BSA configuration was determined as the one that allows maximizing both the tumor dose and the penetration depth while keeping doses to healthy tissues under the tolerance limits. Significant doses to tumor tissues were achieved up to ∼6cm in depth. Peak doses up to 57Gy-Eq can be delivered in a fractionated scheme of 2 irradiations of approximately 1h each. In a single 1h irradiation, lower but still acceptable doses to tumor are also feasible. Treatment capabilities obtained here are comparable to those achieved with other accelerator-based neutron sources, making of the 13 C(d,n) 14 N reaction a realistic option for producing therapeutic neutron beams through a low-energy particle accelerator. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Sköld, K; Gorlia, T; Pellettieri, L; Giusti, V; H-Stenstam, B; Hopewell, J W
2010-01-01
The purpose of this study was to assess the potential of boron neutron capture therapy (BNCT), with a 6-h infusion of the boron carrier l-boronophenylalanine as a fructose preparation (BPA-f), as first-line radiotherapy for newly diagnosed glioblastoma multiforme (GBM). Patient survival data from a Phase II study using BNCT were compared with retrospective data from the two arms of a Phase III study using conventional radiotherapy (RT) in the reference arm and using RT plus concomitant and adjuvant medication with temozolomide (TMZ) in the experimental arm, and were also compared with small subgroups of these patients for whom the methylation status of the MGMT (O6-methylguanine–DNA methyltransferase) DNA repair gene was known. Differences in the baseline characteristics, salvage therapy after recurrence and levels of severe adverse events were also considered. The results indicate that BNCT offers a treatment that is at least as effective as conventional RT alone. For patients with an unmethylated MGMT DNA repair gene, a possible clinical advantage of BNCT over RT/TMZ was suggested. BNCT is a single-day treatment, which is of convenience to patients, with mild side effects, which would offer an initial 6 weeks of good-quality life during the time when patients would otherwise be undergoing daily treatments with RT and TMZ. It is suggested that the use of BNCT with a 6-h infusion of BPA-f should be explored in a stratified randomised Phase II trial in which patients with the unmethylated MGMT DNA repair gene are offered BNCT in the experimental arm and RT plus TMZ in the reference arm. PMID:20603410
2013-01-01
Background Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. Methods The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. Results The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Conclusions Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma. PMID:23915425
Hiramatsu, Ryo; Kawabata, Shinji; Tanaka, Hiroki; Sakurai, Yoshinori; Suzuki, Minoru; Ono, Koji; Miyatake, Shin-ichi; Kuroiwa, Toshihiko; Hao, Erhong; Vicente, M Graça H
2015-03-01
Carboranyl-containing chlorins have emerged as promising dual sensitizers for use in both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT), by virtue of their known tumor affinity, low cytotoxicity in dark conditions, and their strong absorptions in the red region of the optical spectrum. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC) is a new synthetic carboranyl-containing chlorin of high boron content (24% by weight). To evaluate TPFC's applicability as sensitizer for both PDT and BNCT, we performed an in vitro and in vivo study using F98 rat glioma cells and F98 rat glioma-bearing brain tumor models. For the in vivo BNCT study, we used boronophenylalanine (BPA), which is currently used in clinical BNCT studies, via intravenous administration (i.v.) and/or used TPFC via convection-enhanced delivery (CED), a method for local drug infusion directly into the brain. In the in vitro PDT study, the cell surviving fraction following laser irradiation (9 J/cm(2) ) was 0.035 whereas in the in vitro BNCT study, the cell surviving fraction following neutron irradiation (thermal neutron = 1.73 × 10(12) n/cm(2) ) was 0.04. In the in vivo BNCT study, the median survival time following concomitant administration of BPA (i.v.) and TPFC (CED) was 42 days (95% confidence interval; 37-43 days). © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
HIRAMATSU, RYO; KAWABATA, SHINJI; TANAKA, HIROKI; SAKURAI, YOSHINORI; SUZUKI, MINORU; ONO, KOJI; MIYATAKE, SHIN-ICHI; KUROIWA, TOSHIHIKO; HAO, ERHONG; VICENTE, M. GRAÇA H.
2015-01-01
Carboranyl-containing chlorins have emerged as promising dual sensitizers for use in both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT), by virtue of their known tumor affinity, low cytotoxicity in dark conditions, and their strong absorptions in the red region of the optical spectrum. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC) is a new synthetic carboranyl-containing chlorin of high boron content (24% by weight). To evaluate TPFC’s applicability as sensitizer for both PDT and BNCT, we performed an in vitro and in vivo study using F98 rat glioma cells and F98 rat glioma-bearing brain tumor models. For the in vivo BNCT study, we used boronophenylalanine (BPA), which is currently used in clinical BNCT studies, via intravenous administration (i.v.) and/or used TPFC via convection-enhanced delivery (CED), a method for local drug infusion directly into the brain. In the in vitro PDT study, the cell surviving fraction following laser irradiation (9 J/cm2) was 0.035 whereas in the in vitro BNCT study, the cell surviving fraction following neutron irradiation (thermal neutron = 1.73 × 1012 n/cm2) was 0.04. In the in vivo BNCT study, the median survival time following concomitant administration of BPA (i.v.) and TPFC (CED) was 42 days (95% confidence interval; 37–43 days). PMID:25546823
NASA Astrophysics Data System (ADS)
Trivedi, T.; Patel, Shiv P.; Chandra, P.; Bajpai, P. K.
A 3.0 MV (Pelletron 9 SDH 4, NEC, USA) low energy ion accelerator has been recently installed as the National Centre for Accelerator based Research (NCAR) at the Department of Pure & Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, India. The facility is aimed to carried out interdisciplinary researches using ion beams with high current TORVIS (for H, He ions) and SNICS (for heavy ions) ion sources. The facility includes two dedicated beam lines, one for ion beam analysis (IBA) and other for ion implantation/ irradiation corresponding to switching magnet at +20 and -10 degree, respectively. Ions with 60 kV energy are injected into the accelerator tank where after stripping positively charged ions are accelerated up to 29 MeV for Au. The installed ion beam analysis techniques include RBS, PIXE, ERDA and channelling.
Sasai, Masao; Nakamura, Hiroyuki; Sougawa, Nagako; Sakurai, Yoshinori; Suzuki, Minoru; Lee, Chun Man
2016-03-01
Malignant pleural mesothelioma (MPM) is a refractory cancer of the pleura caused by asbestos exposure. MPM is difficult to treat because it easily disseminates. Boron neutron capture therapy (BNCT) is a radiotherapy in which cancer cells that selectively take up (10)Boron-containing compounds are destroyed, and normal cells are uninjured. Hyaluronan (HA) is a ligand of cluster of differentiation 44 (CD44), that is expressed on MPM cells. In order to enhance BNCT for MPM tumors, we developed a novel HA-containing (10)B (sodium borocaptate: BSH) formulation (HA-BND-S). We examined the efficacy of HA-BND-S using MPM cells and a mouse MPM model. HA-BND-S preferentially bound MPM cells dose-dependently, and increased the cytotoxicity of BNCT compared to BSH in vitro. HA-BND-S administration significantly increased the survival of MPM tumor-bearing mice compared to BSH at the same (10)B dosage in BNCT. Modifying BSH with HA is a promising strategy for enhancing the efficacy of BNCT for therapy of MPM. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Hattori, Yoshihide; Kusaka, Shintaro; Mukumoto, Mari; Ishimura, Miki; Ohta, Yoichiro; Takenaka, Hiroshi; Uehara, Kouki; Asano, Tomoyuki; Suzuki, Minoru; Masunaga, Shin-Ichiro; Ono, Koji; Tanimori, Shinji; Kirihata, Mitsunori
2014-12-01
Boron-neutron capture therapy (BNCT) is an attractive technique for cancer treatment. As such, α, α-cycloalkyl amino acids containing thiododecaborate ([B12H11](2-)-S-) units were designed and synthesized as novel boron delivery agents for BNCT. In the present study, new thiododecaborate α, α-cycloalkyl amino acids were synthesized, and biological evaluation of the boron compounds as boron carrier for BNCT was carried out.
78 FR 73144 - Acceleration of Broadband Deployment by Improving Wireless Facilities Siting Policies
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-05
..., ground-based enclosures, battery back-up power systems, grounding equipment, power transfer switch, and... No. 11-59; FCC 13-122] Acceleration of Broadband Deployment by Improving Wireless Facilities Siting... of new wireless facilities and on rules to implement statutory provisions governing State and local...
Performance characteristics of the MIT fission converter based epithermal neutron beam.
Riley, K J; Binns, P J; Harling, O K
2003-04-07
A pre-clinical characterization of the first fission converter based epithermal neutron beam (FCB) designed for boron neutron capture therapy (BNCT) has been performed. Calculated design parameters describing the physical performance of the aluminium and Teflon filtered beam were confirmed from neutron fluence and absorbed dose rate measurements performed with activation foils and paired ionization chambers. The facility currently provides an epithermal neutron flux of 4.6 x 10(9) n cm(-2) s(-1) in-air at the patient position that makes it the most intense BNCT source in the world. This epithermal neutron flux is accompanied by very low specific photon and fast neutron absorbed doses of 3.5 +/- 0.5 and 1.4 +/- 0.2 x 10(-13) Gy cm2, respectively. A therapeutic dose rate of 1.7 RBE Gy min(-1) is achievable at the advantage depth of 97 mm when boronated phenylalanine (BPA) is used as the delivery agent, giving an average therapeutic ratio of 5.7. In clinical trials of normal tissue tolerance when using the FCB, the effective prescribed dose is due principally to neutron interactions with the nonselectively absorbed BPA present in brain. If an advanced compound is considered, the dose to brain would instead be predominately from the photon kerma induced by thermal neutron capture in hydrogen and advantage parameters of 0.88 Gy min(-1), 121 mm and 10.8 would be realized for the therapeutic dose rate, advantage depth and therapeutic ratio, respectively. This study confirms the success of a new approach to producing a high intensity, high purity epithermal neutron source that attains near optimal physical performance and which is well suited to exploit the next generation of boron delivery agents.
Pseudoprogression in boron neutron capture therapy for malignant gliomas and meningiomas
Miyatake, Shin-Ichi; Kawabata, Shinji; Nonoguchi, Naosuke; Yokoyama, Kunio; Kuroiwa, Toshihiko; Matsui, Hideki; Ono, Koji
2009-01-01
Pseudoprogression has been recognized and widely accepted in the treatment of malignant gliomas, as transient increases in the volume of the enhanced area just after chemoradiotherapy, especially using temozolomide. We experienced a similar phenomenon in the treatment of malignant gliomas and meningiomas using boron neutron capture therapy (BNCT), a cell-selective form of particle radiation. Here, we introduce representative cases and analyze the pathogenesis. Fifty-two cases of malignant glioma and 13 cases of malignant meningioma who were treated by BNCT were reviewed retrospectively mainly via MR images. Eleven of 52 malignant gliomas and 3 of 13 malignant meningiomas showed transient increases of enhanced volume in MR images within 3 months after BNCT. Among these cases, five patients with glioma underwent surgery because of suspicion of relapse. In histology, most of the specimens showed necrosis with small amounts of residual tumor cells. Ki-67 labeling showed decreased positivity compared with previous samples from the individuals. Fluoride-labeled boronophenylalanine PET was applied in four and two cases of malignant gliomas and meningiomas, respectively, at the time of transient increase of lesions. These PET scans showed decreased lesion:normal brain ratios in all cases compared with scans obtained prior to BNCT. With or without surgery, all lesions were decreased or stable in size during observation. Transient increases in enhanced volume in malignant gliomas and meningiomas immediately after BNCT seemed to be pseudoprogression. This pathogenesis was considered as treatment-related intratumoral necrosis in the subacute phase after BNCT. PMID:19289492
2011-01-01
Background Boron neutron capture therapy (BNCT) is a cell-selective radiation therapy that uses the alpha particles and lithium nuclei produced by the boron neutron capture reaction. BNCT is a relatively safe tool for treating multiple or diffuse malignant tumors with little injury to normal tissue. The success or failure of BNCT depends upon the 10B compound accumulation within tumor cells and the proximity of the tumor cells to the body surface. To extend the therapeutic use of BNCT from surface tumors to visceral tumors will require 10B compounds that accumulate strongly in tumor cells without significant accumulation in normal cells, and an appropriate delivery method for deeper tissues. Hemagglutinating Virus of Japan Envelope (HVJ-E) is used as a vehicle for gene delivery because of its high ability to fuse with cells. However, its strong hemagglutination activity makes HVJ-E unsuitable for systemic administration. In this study, we developed a novel vector for 10B (sodium borocaptate: BSH) delivery using HVJ-E and cationized gelatin for treating multiple liver tumors with BNCT without severe adverse events. Methods We developed cationized gelatin conjugate HVJ-E combined with BSH (CG-HVJ-E-BSH), and evaluated its characteristics (toxicity, affinity for tumor cells, accumulation and retention in tumor cells, boron-carrying capacity to multiple liver tumors in vivo, and bio-distribution) and effectiveness in BNCT therapy in a murine model of multiple liver tumors. Results CG-HVJ-E reduced hemagglutination activity by half and was significantly less toxic in mice than HVJ-E. Higher 10B concentrations in murine osteosarcoma cells (LM8G5) were achieved with CG-HVJ-E-BSH than with BSH. When administered into mice bearing multiple LM8G5 liver tumors, the tumor/normal liver ratios of CG-HVJ-E-BSH were significantly higher than those of BSH for the first 48 hours (p < 0.05). In suppressing the spread of tumor cells in mice, BNCT treatment was as effective with CG-HVJ-E-BSH as with BSH containing a 35-fold higher 10B dose. Furthermore, CG-HVJ-E-BSH significantly increased the survival time of tumor-bearing mice compared to BSH at a comparable dosage of 10B. Conclusion CG-HVJ-E-BSH is a promising strategy for the BNCT treatment of visceral tumors without severe adverse events to surrounding normal tissues. PMID:21247507
Faião-Flores, Fernanda; Coelho, Paulo Rogério Pinto; Toledo Arruda-Neto, João Dias; Maria-Engler, Silvya Stuchi; Tiago, Manoela; Capelozzi, Vera Luiza; Giorgi, Ricardo Rodrigues; Maria, Durvanei Augusto
2013-01-01
Boron neutron capture therapy (BNCT) is a binary treatment involving selective accumulation of boron carriers in a tumor followed by irradiation with a thermal or epithermal neutron beam. The neutron capture reaction with a boron-10 nucleus yields high linear energy transfer (LET) particles, alpha and 7Li, with a range of 5 to 9 µm. These particles can only travel very short distances and release their damaging energy directly into the cells containing the boron compound. We aimed to evaluate proliferation, apoptosis and extracellular matrix (ECM) modifications of B16F10 melanoma and normal human melanocytes after BNCT. The amounts of soluble collagen and Hsp47, indicating collagen synthesis in the ECM, as well as the cellular markers of apoptosis, were investigated. BNCT decreased proliferation, altered the ECM by decreasing collagen synthesis and induced apoptosis by regulating Bcl-2/Bax in melanoma. Additionally, BNCT also increased the levels of TNF receptor and the cleaved caspases 3, 7, 8 and 9 in melanoma. These results suggest that multiple pathways related to cell death and cell cycle arrest are involved in the treatment of melanoma by BNCT. PMID:23527236
Yeh, Chun-Nan; Chang, Chi-Wei; Chung, Yi-Hsiu; Tien, Shi-Wei; Chen, Yong-Ren; Chen, Tsung-Wen; Huang, Ying-Cheng; Wang, Hsin-Ell; Chou, You-Cheng; Chen, Ming-Huang; Chiang, Kun-Chun; Huang, Wen-Sheng; Yu, Chung-Shan
2017-09-30
Boron neutron capture therapy (BNCT) is a binary therapy that employs neutron irradiation on the boron agents to release high-energy helium and alpha particles to kill cancer cells. An optimal response to BNCT depends critically on the time point of maximal 10 B accumulation and highest tumor to normal ratio (T/N) for performing the neutron irradiation. The aggressive cholangiocarcinoma (CCA) representing a liver cancer that overexpresses COX-2 enzyme is aimed to be targeted by COX-2 selective boron carrier, fenbufen boronopinacol (FBPin). Two main works were performed including: 1) chemical synthesis of FBPin as the boron carrier and 2) radiochemical labeling with F-18 to provide the radiofluoro congener, m-[ 18 F]fluorofenbufen ester boronopinacol (m-[ 18 F]FFBPin), to assess the binding affinity, cellular accumulation level and distribution profile in CCA rats. FBPin was prepared from bromofenbufen via 3 steps with 82% yield. The binding assay employed [ 18 F]FFBPin to compete FBPin for binding to COX-1 (IC 50 =0.91±0.68μM) and COX-2 (IC 50 =0.33±0.24μM). [ 18 F]FFBPin-derived 60-min dynamic PET scans predict the 10 B-accumulation of 0.8-1.2ppm in liver and 1.2-1.8ppm in tumor and tumor to normal ratio=1.38±0.12. BNCT was performed 40-55min post intravenous administration of FBPin (20-30mg) in the CCA rats. CCA rats treated with BNCT display more tumor reduction than that by NCT with respect of 2-[ 18 F]fluoro-2-deoxy glucose uptake in the tumor region of interest, 20.83±3.00% (n=12) vs. 12.83±3.79% (n=10), P=0.05. The visualizing agent [ 18 F]FFBPin resembles FBPin to generate the time-dependent boron concentration profile. Optimal neutron irradiation period is thus determinable for BNCT. A boron-substituted agent based on COX-2-binding features has been prepared. The moderate COX-2/COX-1 selectivity index of 2.78 allows a fair tumor selectivity index of 1.38 with a mild cardiovascular effect. The therapeutic effect from FBPin with BNCT warrants a proper COX-2 targeting of boron NSAIDs. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laramore, G.E.; Griffin, B.R.; Spence, A.
The purpose of this work is to establish and maintain a database for patients from the United States who have received BNCT in Japan for malignant gliomas of the brain. This database will serve as a resource for the DOE to aid in decisions relating to BNCT research in the United States, as well as assisting the design and implementation of clinical trials of BNCT for brain cancer patients in this country. The database will also serve as an information resource for patients with brain tumors and their families who are considering this form of therapy.
A critical assessment of boron target compounds for boron neutron capture therapy.
Hawthorne, M Frederick; Lee, Mark W
2003-01-01
Boron neutron capture therapy (BNCT) has undergone dramatic developments since its inception by Locher in 1936 and the development of nuclear energy during World War II. The ensuing Cold War spawned the entirely new field of polyhedral borane chemistry, rapid advances in nuclear reactor technology and a corresponding increase in the number to reactors potentially available for BNCT. This effort has been largely oriented toward the eradication of glioblastoma multiforme (GBM) and melanoma with reduced interest in other types of malignancies. The design and synthesis of boron-10 target compounds needed for BNCT was not channeled to those types of compounds specifically required for GBM or melanoma. Consequently, a number of potentially useful boron agents are known which have not been biologically evaluated beyond a cursory examination and only three boron-10 enriched target species are approved for human use following their Investigational New Drug classification by the US Food and Drug Administration; BSH, BPA and GB-10. All ongoing clinical trials with GBM and melanoma are necessarily conducted with one of these three species and most often with BPA. The further development of BNCT is presently stalled by the absence of strong support for advanced compound evaluation and compound discovery driven by recent advances in biology and chemistry. A rigorous demonstration of BNCT efficacy surpassing that of currently available protocols has yet to be achieved. This article discusses the past history of compound development, contemporary problems such as compound classification and those problems which impede future advances. The latter include means for biological evaluation of new (and existing) boron target candidates at all stages of their development and the large-scale synthesis of boron target species for clinical trials and beyond. The future of BNCT is bright if latitude is given to the choice of clinical disease to be treated and if a recognized study demonstrating improved efficacy is completed. Eventually, BNCT in some form will be commercialized.
Henriksson, Roger; Capala, Jacek; Michanek, Annika; Lindahl, Sten-Ake; Salford, Leif G; Franzén, Lars; Blomquist, Erik; Westlin, Jan-Erik; Bergenheim, A Tommy
2008-08-01
To evaluate the efficacy and safety of boron neutron capture therapy (BNCT) for glioblastoma multiforme (GBM) using a novel protocol for the boronophenylalanine-fructose (BPA-F) infusion. This phase II study included 30 patients, 26-69 years old, with a good performance status of which 27 have undergone debulking surgery. BPA-F (900 mg BPA/kg body weight) was given i.v. over 6h. Neutron irradiation started 2h after the completion of the infusion. Follow-up reports were monitored by an independent clinical research institute. The boron-blood concentration during irradiation was 15.2-33.7 microg/g. The average weighted absorbed dose to normal brain was 3.2-6.1 Gy (W). The minimum dose to the tumour volume ranged from 15.4 to 54.3 Gy (W). Seven patients suffered from seizures, 8 from skin/mucous problem, 5 patients were stricken by thromboembolism and 4 from abdominal disturbances in close relation to BNCT. Four patients displayed 9 episodes of grade 3-4 events (WHO). At the time for follow-up, minimum ten months, 23 out of the 29 evaluable patients were dead. The median time from BNCT treatment to tumour progression was 5.8 months and the median survival time after BNCT was 14.2 months. Following progression, 13 patients were given temozolomide, two patients were re-irradiated, and two were re-operated. Patients treated with temozolomide lived considerably longer (17.7 vs. 11.6 months). The quality of life analysis demonstrated a progressive deterioration after BNCT. Although, the efficacy of BNCT in the present protocol seems to be comparable with conventional radiotherapy and the treatment time is shorter, the observed side effects and the requirement of complex infrastructure and higher resources emphasize the need of further phase I and II studies, especially directed to improve the accumulation of (10)B in tumour cells.
Wang, Ling-Wei; Liu, Yen-Wan Hsueh; Chou, Fong-In; Jiang, Shiang-Huei
2018-06-19
Head and neck (HN) cancer is an endemic disease in Taiwan, China. Locally recurrent HN cancer after full-dose irradiation poses a therapeutic challenge, and boron neutron capture therapy (BNCT) may be a solution that could provide durable local control with tolerable toxicity. The Tsing-Hua Open Pool Reactor (THOR) at National Tsing-Hua University in Hsin-Chu, provides a high-quality epithermal neutron source for basic and clinical BNCT research. Our first clinical trial, entitled "A phase I/II trial of boron neutron capture therapy for recurrent head and neck cancer at THOR", was carried out between 2010 and 2013. A total of 17 patients with 23 recurrent HN tumors who had received high-dose photon irradiation were enrolled in the study. The fructose complex of L-boronophenylalanine was used as a boron carrier, and a two-fraction BNCT treatment regimen at 28-day intervals was used for each patient. Toxicity was acceptable, and although the response rate was high (12/17), re-recurrence within or near the radiation site was common. To obtain better local control, another clinical trial entitled "A phase I/II trial of boron neutron capture therapy combined with image-guided intensity-modulated radiotherapy (IG-IMRT) for locally recurrent HN cancer" was initiated in 2014. The first administration of BNCT was performed according to our previous protocol, and IG-IMRT was initiated 28 days after BNCT. As of May 2017, seven patients have been treated with this combination. The treatment-related toxicity was similar to that previously observed with two BNCT applications. Three patients had a complete response, but locoregional recurrence was the major cause of failure despite initially good responses. Future clinical trials combining BNCT with other local or systemic treatments will be carried out for recurrent HN cancer patients at THOR.
An ion beam facility based on a 3 MV tandetron accelerator in Sichuan University, China
NASA Astrophysics Data System (ADS)
Han, Jifeng; An, Zhu; Zheng, Gaoqun; Bai, Fan; Li, Zhihui; Wang, Peng; Liao, Xiaodong; Liu, Mantian; Chen, Shunli; Song, Mingjiang; Zhang, Jun
2018-03-01
A new ion beam facility based on a 3 MV tandetron accelerator system has been installed in Sichuan University, China. The facility was developed by High Voltage Engineering Europa and consists of three high-energy beam lines including the ion beam analysis, ion implantation and nuclear physics experiment end stations, respectively. The terminal voltage stability of the accelerator is better than ±30 V, and the brightness of the proton beam is approximately 5.06 A/rad2/m2/eV. The system demonstrates a great application potential in fields such as nuclear, material and environmental studies.
Study on optimization of multiionization-chamber system for BNCT.
Fujii, T; Tanaka, H; Maruhashi, A; Ono, K; Sakurai, Y
2011-12-01
In order to monitor stability of doses from the four components such as thermal, epi-thermal, fast neutron and gamma-ray during BNCT irradiation, we are developing a multiionization-chamber system. This system is consisted of four kinds of ionization chamber, which have specific sensitivity for each component, respectively. Since a suitable structure for each chamber depends on the energy spectrum of the irradiation field, the optimization study of the chamber structures for the epi-thermal neutron beam of cyclotron-based epi-thermal neutron source (C-BENS) was performed by using a Monte Carlo simulation code "PHITS" and suitable chamber-structures were determined. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2001-11-01
This report describes the test results of the first project at the Louisiana Transportation Research Center's Accelerated Loading Facility (ALF). In 1995, 9 test lanes were constructed at the Louisiana Pavement Research Facility in Port Allen. These ...
Future HEP Accelerators: The US Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, Pushpalatha; Shiltsev, Vladimir
2015-11-02
Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN throughmore » its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.« less
Marshak Lectureship: The Turkish Accelerator Center, TAC
NASA Astrophysics Data System (ADS)
Yavas, Omer
2012-02-01
The Turkish Accelerator Center (TAC) project is comprised of five different electron and proton accelerator complexes, to be built over 15 years, with a phased approach. The Turkish Government funds the project. Currently there are 23 Universities in Turkey associated with the TAC project. The current funded project, which is to run until 2013 aims *To establish a superconducting linac based infra-red free electron laser and Bremsstrahlung Facility (TARLA) at the Golbasi Campus of Ankara University, *To establish the Institute of Accelerator Technologies in Ankara University, and *To complete the Technical Design Report of TAC. The proposed facilities are a 3^rd generation Synchrotron Radiation facility, SASE-FEL facility, a GeV scale Proton Accelerator facility and an electron-positron collider as a super charm factory. In this talk, an overview on the general status and road map of TAC project will be given. National and regional importance of TAC will be expressed and the structure of national and internatonal collaborations will be explained.
Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy
Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay
2016-01-01
Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT. PMID:27759052
Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy
NASA Astrophysics Data System (ADS)
Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay
2016-10-01
Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zasneda, Sabriani; Widita, Rena
2010-06-22
Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometricalmore » factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna
2012-01-01
Purpose: To investigate the efficacy and safety of boron neutron capture therapy (BNCT) in the treatment of inoperable head-and-neck cancers that recur locally after conventional photon radiation therapy. Methods and Materials: In this prospective, single-center Phase I/II study, 30 patients with inoperable, locally recurred head-and-neck cancer (29 carcinomas and 1 sarcoma) were treated with BNCT. Prior treatments consisted of surgery and conventionally fractionated photon irradiation to a cumulative dose of 50 to 98 Gy administered with or without concomitant chemotherapy. Tumor responses were assessed by use of the RECIST (Response Evaluation Criteria in Solid Tumors) and adverse effects by usemore » of the National Cancer Institute common terminology criteria version 3.0. Intravenously administered L-boronophenylalanine-fructose (400 mg/kg) was administered as the boron carrier. Each patient was scheduled to be treated twice with BNCT. Results: Twenty-six patients received BNCT twice; four were treated once. Of the 29 evaluable patients, 22 (76%) responded to BNCT, 6 (21%) had tumor growth stabilization for 5.1 and 20.3 months, and 1 (3%) progressed. The median progression-free survival time was 7.5 months (95% confidence interval, 5.4-9.6 months). Two-year progression-free survival and overall survival were 20% and 30%, respectively, and 27% of the patients survived for 2 years without locoregional recurrence. The most common acute Grade 3 adverse effects were mucositis (54% of patients), oral pain (54%), and fatigue (32%). Three patients were diagnosed with osteoradionecrosis (each Grade 3) and one patient with soft-tissue necrosis (Grade 4). Late Grade 3 xerostomia was present in 3 of the 15 evaluable patients (20%). Conclusions: Most patients who have inoperable, locally advanced head-and-neck carcinoma that has recurred at a previously irradiated site respond to boronophenylalanine-mediated BNCT, but cancer recurrence after BNCT remains frequent. Toxicity was acceptable. Further research on novel modifications of the method is warranted.« less
Towards ion beam therapy based on laser plasma accelerators.
Karsch, Leonhard; Beyreuther, Elke; Enghardt, Wolfgang; Gotz, Malte; Masood, Umar; Schramm, Ulrich; Zeil, Karl; Pawelke, Jörg
2017-11-01
Only few ten radiotherapy facilities worldwide provide ion beams, in spite of their physical advantage of better achievable tumor conformity of the dose compared to conventional photon beams. Since, mainly the large size and high costs hinder their wider spread, great efforts are ongoing to develop more compact ion therapy facilities. One promising approach for smaller facilities is the acceleration of ions on micrometre scale by high intensity lasers. Laser accelerators deliver pulsed beams with a low pulse repetition rate, but a high number of ions per pulse, broad energy spectra and high divergences. A clinical use of a laser based ion beam facility requires not only a laser accelerator providing beams of therapeutic quality, but also new approaches for beam transport, dosimetric control and tumor conformal dose delivery procedure together with the knowledge of the radiobiological effectiveness of laser-driven beams. Over the last decade research was mainly focused on protons and progress was achieved in all important challenges. Although currently the maximum proton energy is not yet high enough for patient irradiation, suggestions and solutions have been reported for compact beam transport and dose delivery procedures, respectively, as well as for precise dosimetric control. Radiobiological in vitro and in vivo studies show no indications of an altered biological effectiveness of laser-driven beams. Laser based facilities will hardly improve the availability of ion beams for patient treatment in the next decade. Nevertheless, there are possibilities for a need of laser based therapy facilities in future.
Andoh, Tooru; Fujimoto, Takuya; Suzuki, Minoru; Sudo, Tamotsu; Sakurai, Yoshinori; Tanaka, Hiroki; Fujita, Ikuo; Fukase, Naomasa; Moritake, Hiroshi; Sugimoto, Tohru; Sakuma, Toshiko; Sasai, Hiroshi; Kawamoto, Teruya; Kirihata, Mitsunori; Fukumori, Yoshinobu; Akisue, Toshihiro; Ono, Koji; Ichikawa, Hideki
2015-12-01
Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In the present study, we established a lung metastasis animal model of CCS and investigated the therapeutic effect of boron neutron capture therapy (BNCT) using p-borono-L-phenylalanine (L-BPA). Biodistribution data revealed tumor-selective accumulation of (10)B. Unlike conventional gamma-ray irradiation, BNCT significantly suppressed tumor growth without damaging normal tissues, suggesting that it may be a potential new therapeutic option to treat CCS lung metastases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Trivillin, V A; Garabalino, M A; Colombo, L L; González, S J; Farías, R O; Monti Hughes, A; Pozzi, E C C; Bortolussi, S; Altieri, S; Itoiz, M E; Aromando, R F; Nigg, D W; Schwint, A E
2014-06-01
BNCT was proposed for the treatment of diffuse, non-resectable tumors in the lung. We performed boron biodistribution studies with 5 administration protocols employing the boron carriers BPA and/or GB-10 in an experimental model of disseminated lung metastases in rats. All 5 protocols were non-toxic and showed preferential tumor boron uptake versus lung. Absolute tumor boron concentration values were therapeutically useful (25-76ppm) for 3 protocols. Dosimetric calculations indicate that BNCT at RA-3 would be potentially therapeutic without exceeding radiotolerance in the lung. © 2013 Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.W. Nigg; Various Others
BNCT was proposed for the treatment of diffuse, non-resectable tumors in the lung. We performed boron biodistribution studies with 5 administration protocols employing the boron carriers BPA and/or GB-10 in an experimental model of disseminated lung metastases in rats. All 5 protocols were non-toxic and showed preferential tumor boron uptake versus lung. Absolute tumor boron concentration values were therapeutically useful (25–76 ppm) for 3 protocols. Dosimetric calculations indicate that BNCT at RA-3 would be potentially therapeutic without exceeding radiotolerance in the lung.
Development of magnetic resonance technology for noninvasive boron quantification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradshaw, K.M.
1990-11-01
Boron magnetic resonance imaging (MRI) and spectroscopy (MRS) were developed in support of the noninvasive boron quantification task of the Idaho National Engineering Laboratory (INEL) Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) program. The hardware and software described in this report are modifications specific to a GE Signa{trademark} MRI system, release 3.X and are necessary for boron magnetic resonance operation. The technology developed in this task has been applied to obtaining animal pharmacokinetic data of boron compounds (drug time response) and the in-vivo localization of boron in animal tissue noninvasively. 9 refs., 21 figs.
An Overview on the Developments and Improvements of a Treatment Planning System for BNCT
NASA Astrophysics Data System (ADS)
Cerullo, N.; Daquino, G. G.; Muzi, L.
2006-06-01
Boron Neutron Capture Therapy (BNCT) is a radiation therapy for cancer that employs a neutron beam and a /sup 10/B-loaded drug to selectively kill tumor cells whilst sparing surrounding healthy tissues (HT). In conventional radiation therapy, treatment planning systems (TPSs) implementing simplified models of radiation transport and dose deposition allow to efficiently optimize all the relevant parameters prior to the patient's irradiation. This simplified approach is not feasible in BNCT, because the presence of neutrons requires the use of more complex radiation transport models. For this reason, current BNCT TPSs routinely perform several radiation transport simulations based on the Monte Carlo method. Our team has been involved in BNCT TPS research since 1996, introducing the original trait of employing in the simulation a three-dimensional map of the highly heterogeneous boron distribution in tissues, obtained through PET scanning of the target region. This approach differs markedly from the standard one, in which boron concentration is assumed to be uniform in each "macro region" within the patient's head, and its value is estimated on the basis of blood sampling. The first result of this research was the prototype software CARONTE, employed to test the feasibility of the new approach and to carry out a comparative study by applying the two different approaches to the same test case. The results, presented in this paper in terms of the computed physical dose rate due to the /sup 10/B reaction, show how the different assumptions made in the two approaches can significantly influence important TP parameters. This led to the development of Boron Distribution TP Software (BDTPS), an original and complete TPS. The different phases of the experimental validation of BDTPS, which included the design and construction of an ad hoc phantom able to host a number of vials loaded with /sup 10/B solutions, is presented here. The phantom, which subsequently underwent computed tomography (CT) and positron emission tomography (PET) scanning, was irradiated in the High Flux Reactor (HFR) at JRC, Petten, The Netherlands.
Boron neutron capture therapy outcomes for advanced or recurrent head and neck cancer.
Suzuki, Minoru; Kato, Ituro; Aihara, Teruhito; Hiratsuka, Junichi; Yoshimura, Kenichi; Niimi, Miyuki; Kimura, Yoshihiro; Ariyoshi, Yasunori; Haginomori, Shin-Ichi; Sakurai, Yoshinori; Kinashi, Yuko; Masunaga, Shin-Ichiro; Fukushima, Masanori; Ono, Koji; Maruhashi, Akira
2014-01-01
We retrospectively review outcomes of applying boron neutron capture therapy (BNCT) to unresectable advanced or recurrent head and neck cancers. Patients who were treated with BNCT for either local recurrent or newly diagnosed unresectable head or neck cancers between December 2001 and September 2007 were included. Clinicopathological characteristics and clinical outcomes were retrieved from hospital records. Either a combination of borocaptate sodium and boronophenylalanine (BPA) or BPA alone were used as boron compounds. In all the treatment cases, the dose constraint was set to deliver a dose <10-12 Gy-eq to the skin or oral mucosa. There was a patient cohort of 62, with a median follow-up of 18.7 months (range, 0.7-40.8). A total of 87 BNCT procedures were performed. The overall response rate was 58% within 6 months after BNCT. The median survival time was 10.1 months from the time of BNCT. The 1- and 2-year overall survival (OS) rates were 43.1% and 24.2%, respectively. The major acute Grade 3 or 4 toxicities were hyperamylasemia (38.6%), fatigue (6.5%), mucositis/stomatitis (9.7%) and pain (9.7%), all of which were manageable. Three patients died of treatment-related toxicity. Three patients experienced carotid artery hemorrhage, two of whom had coexistent infection of the carotid artery. This study confirmed the feasibility of our dose-estimation method and that controlled trials are warranted.
First BNCT treatment of a skin melanoma in Argentina: dosimetric analysis and clinical outcome.
González, S J; Bonomi, M R; Santa Cruz, G A; Blaumann, H R; Calzetta Larrieu, O A; Menéndez, P; Jiménez Rebagliati, R; Longhino, J; Feld, D B; Dagrosa, M A; Argerich, C; Castiglia, S G; Batistoni, D A; Liberman, S J; Roth, B M C
2004-11-01
A Phase I/II protocol for treating cutaneuos melanomas with BNCT was designed in Argentina by the Comisión Nacional de Energía Atómica and the medical center Instituto Roffo. The first of a cohort of thirty planned patients was treated on October 9, 2003. This article depicts the protocol-based procedure and describes the first clinical case, treatment regime and planning, patient irradiation, retrospective dosimetric analysis and clinical outcome. Considering the low acute skin toxicity and the complete response in 21 of the 25 subcutaneous melanoma nodules treated, a second irradiation was performed in a different location of the extremity of the same patient. The corresponding clinical outcome is still under evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capuani, Silvia; Enrico Fermi Center, Rome; Gili, Tommaso
Purpose: Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on {sup 10}B(n,{alpha}){sup 7}Li reaction, for the treatment of malignant gliomas. One of the main limitations for BNCT effectiveness is the insufficient intake of {sup 10}B nuclei in the tumor cells. This work was aimed at investigating the use of L-DOPA as a putative enhancer for {sup 10}B-drug 4-dihydroxy-borylphenylalanine (BPA) uptake in the C6-glioma model. The investigation was first performed in vitro and then extended to the animal model. Methods and Materials: BPA accumulation in C6-glioma cells was assessed using radiowave dielectric spectroscopy, with and without L-DOPA preloading. Twomore » L-DOPA incubation times (2 and 4 hours) were investigated, and the corresponding effects on BPA accumulation were quantified. C6-glioma cells were also implanted in the brain of 32 rats, and tumor growth was monitored by magnetic resonance imaging. Rats were assigned to two experimental branches: (1) BPA administration; (2) BPA administration after pretreatment with L-DOPA. All animals were sacrificed, and assessments of BPA concentrations in tumor tissue, normal brain, and blood samples were performed using high-performance liquid chromatography. Results: L-DOPA preloading induced a massive increase of BPA concentration in C6-glioma cells only after a 4-hour incubation. In the animal model, L-DOPA pretreatment produced a significantly higher accumulation of BPA in tumor tissue but not in normal brain and blood samples. Conclusions: This study suggests the potential use of L-DOPA as enhancer for BPA accumulation in malignant gliomas eligible for BNCT. L-DOPA preloading effect is discussed in terms of membrane transport mechanisms.« less
Nuclotron-Based Ion Collider Facility (nica)
NASA Astrophysics Data System (ADS)
Meshkov, I.; Sissakian, A.; Sorin, A.
2008-09-01
The project of an ion collider accelerator complex NICA that is under development at JINR is presented. The article is based on the Conceptual Design Report (CDR)1 of the NICA project delivered in January 2008. The article contains NICA facility scheme, the facility operation scenario, its elements parameters, the proposed methods of intense ion beam acceleration and achievement of the required luminosity of the collider. The symmetric mode of the collider operation is considered here and most attention is concentrated on the luminosity provision in collisions of uranium ions (nuclei).
CONVECTION ENHANCED DELIVERY OF CARBORANYLPORPHYRINS FOR NEUTRON CAPTURE THERAPY OF BRAIN TUMORS
Kawabata, Shinji; Yang, Weilian; Wu, Gong; Huo, Tianyao; Binns, Peter J.; Riley, Kent J.; Ongayi, Owendi; Gottumukkala, Vijay; Vicente, M. Graça H.
2010-01-01
Boron neutron capture therapy (BNCT) is based on the nuclear capture and fission reactions that occur when non-radioactive 10B is irradiated with low energy thermal neutrons to produce α-particles (10B[n,α]7Li). Carboranylporphyrins are a class of substituted porphyrins containing multiple carborane clusters. Three of these have been evaluated in the present study: 5,10,15,20-tetra-(4-nido-carboranyphenyl)tetrabenzoporphyrin (H2TBP), 5,10,15,20-tetra-(4-nido-carboranylphenyl)porphyrin (H2TCP) and 5,15-di-[3,5-(nido-carboranylmethyl)phenyl]-porphyrin (H2DCP). The goals of this study were two-fold. First, to determine the biodistribution of H2TBP, H2TCP and H2DCP following intracerebral (i.c.) administration by means of short term (30 min) convection enhanced delivery (CED) or sustained delivery over 24 h by osmotic pumps to F98 glioma bearing rats. Second, to determine the efficacy of H2TCP and H2TBP as boron delivery agents for BNCT in F98 glioma bearing rats. Tumor boron concentrations immediately after i.c. osmotic pump delivery were high (36–88 µg/g) and they remained so at 24 h (62–103 µg/g) The corresponding normal brain concentrations were low (0.8–5.2 µg/g) and the blood and liver concentrations were all undetectable. Based on these data, therapy studies were initiated at the Massachusetts Institute of Technology (MIT) Research Reactor (MITRR) with H2TCP and H2TBP 24 h after CED or osmotic pump delivery. Mean survival times (MST) of untreated and irradiated control rats were 23±3 and 27±3 d, respectively, while animals that received H2TCP or H2TBP, followed by BNCT, had a MST of 35±4 d and 44±10 d, respectively, which were better than those obtained following i.v. administration of boronophenylalanine (37±3 d). However, since the tumor boron concentrations of the carboranylporphyrins were 3–5X > i.v. BPA (~25 µg/g), we had expected that the MSTs would have been greater. Histopathologic examination of brains of BNCT treated rats revealed that there were large numbers of porphyrin-laden macrophages, as well as extracellular accumulations of porphyrins indicating that the seemingly high tumor boron concentrations did not represent the true tumor cellular uptake. Our data are the first to show that carboranyl porphyrins are effective delivery agents for BNCT of an experimental brain tumor. Based on these results, we now are in the process of evaluating carboranylporphyrins that could have enhanced cellular uptake following administration and improved therapeutic efficacy. PMID:20848301
NASA Astrophysics Data System (ADS)
Faghihi, F.; Khalili, S.
2013-08-01
This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D-T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D-T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor.
Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser
2016-01-01
Determination of in-phantom quality factors of Tehran research reactor (TRR) boron neutron capture therapy (BNCT) beam. The doses from thermal neutron reactions with 14N and 10B are calculated by kinetic energy released per unit mass approach, after measuring thermal neutron flux using neutron activation technique. Gamma dose is measured using TLD-700 dosimeter. Different dose components have been measured in a head phantom which has been designed and constructed for BNCT purpose in TRR. Different in-phantom beam quality factors have also been determined. This study demonstrates that the TRR BNCT beam line has potential for treatment of superficial tumors.
Boron-containing amino carboxylic acid compounds and uses thereof
Kabalka, George W.; Srivastava, Rajiv R.
2000-03-14
Novel compounds which are useful for boron neutron capture therapy (BNCT) are disclosed. The compounds comprise a stable boron-containing group and an aminocycloalkane carboxylic acid group or a boronated acyclic hydrocarbon-linked amino carboxylic acid. Methods for synthesis of the compounds and for use of the compounds in BNCT are disclosed.
Fermilab | Science | Particle Accelerators | Advanced Superconducting Test
Accelerators for science and society Particle Physics 101 Science of matter, energy, space and time How Technology (FAST) Facility is America's only test bed for cutting-edge, record high-intensity particle beams in the United States as a particle beam research facility based on superconducting radio-frequency
Boron neutron capture therapy outcomes for advanced or recurrent head and neck cancer
Suzuki, Minoru; Kato, Ituro; Aihara, Teruhito; Hiratsuka, Junichi; Yoshimura, Kenichi; Niimi, Miyuki; Kimura, Yoshihiro; Ariyoshi, Yasunori; Haginomori, Shin-ichi; Sakurai, Yoshinori; Kinashi, Yuko; Masunaga, Shin-ichiro; Fukushima, Masanori; Ono, Koji; Maruhashi, Akira
2014-01-01
We retrospectively review outcomes of applying boron neutron capture therapy (BNCT) to unresectable advanced or recurrent head and neck cancers. Patients who were treated with BNCT for either local recurrent or newly diagnosed unresectable head or neck cancers between December 2001 and September 2007 were included. Clinicopathological characteristics and clinical outcomes were retrieved from hospital records. Either a combination of borocaptate sodium and boronophenylalanine (BPA) or BPA alone were used as boron compounds. In all the treatment cases, the dose constraint was set to deliver a dose <10–12 Gy-eq to the skin or oral mucosa. There was a patient cohort of 62, with a median follow-up of 18.7 months (range, 0.7–40.8). A total of 87 BNCT procedures were performed. The overall response rate was 58% within 6 months after BNCT. The median survival time was 10.1 months from the time of BNCT. The 1- and 2-year overall survival (OS) rates were 43.1% and 24.2%, respectively. The major acute Grade 3 or 4 toxicities were hyperamylasemia (38.6%), fatigue (6.5%), mucositis/stomatitis (9.7%) and pain (9.7%), all of which were manageable. Three patients died of treatment-related toxicity. Three patients experienced carotid artery hemorrhage, two of whom had coexistent infection of the carotid artery. This study confirmed the feasibility of our dose-estimation method and that controlled trials are warranted. PMID:23955053
Characteristics of a heavy water photoneutron source in boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Danial, Salehi; Dariush, Sardari; M. Salehi, Jozani
2013-07-01
Bremsstrahlung photon beams produced by medical linear accelerators are currently the most commonly used method of radiation therapy for cancerous tumors. Photons with energies greater than 8-10 MeV potentially generate neutrons through photonuclear interactions in the accelerator's treatment head, patient's body, and treatment room ambient. Electrons impinging on a heavy target generate a cascade shower of bremsstrahlung photons, the energy spectrum of which shows an end point equal to the electron beam energy. By varying the target thickness, an optimum thickness exists for which, at the given electron energy, maximum photon flux is achievable. If a source of high-energy photons i.e. bremsstrahlung, is conveniently directed to a suitable D2O target, a novel approach for production of an acceptable flux of filterable photoneturons for boron neutron capture therapy (BNCT) application is possible. This study consists of two parts. 1. Comparison and assessment of deuterium photonuclear cross section data. 2. Evaluation of the heavy water photonuclear source.
A Hypoxia-Targeted Boron Neutron Capture Therapy Agent for the Treatment of Glioma.
Luderer, Micah John; Muz, Barbara; de la Puente, Pilar; Chavalmane, Sanmathi; Kapoor, Vaishali; Marcelo, Raymundo; Biswas, Pratim; Thotala, Dinesh; Rogers, Buck; Azab, Abdel Kareem
2016-10-01
Boron neutron capture therapy (BNCT) has the potential to become a viable cancer treatment modality, but its clinical translation has been limited by the poor tumor selectivity of agents. To address this unmet need, a boronated 2-nitroimidazole derivative (B-381) was synthesized and evaluated for its capability of targeting hypoxic glioma cells. B-381 has been synthesized from a 1-step reaction. Using D54 and U87 glioma cell lines, the in vitro cytotoxicity and cellular accumulation of B-381 has been evaluated under normoxic and hypoxic conditions compared to L-boronophenylalanine (BPA). Furthermore, tumor retention of B-381 was evaluated in vivo. B-381 had low cytotoxicity in normal and cancer cells. Unlike BPA, B-381 illustrated preferential retention in hypoxic glioma cells compared to normoxic glioma cells and normal tissues in vitro. In vivo, B-381 illustrated significantly higher long-term tumor retention compared to BPA, with 9.5-fold and 6.5-fold higher boron levels at 24 and 48 h, respectively. B-381 represents a new class of BNCT agents in which their selectivity to tumors is based on hypoxic tumor metabolism. Further studies are warranted to evaluate B-381 and similar compounds as preclinical candidates for future BNCT clinical trials for the treatment of glioma.
Investigation on the reflector/moderator geometry and its effect on the neutron beam design in BNCT.
Kasesaz, Y; Rahmani, F; Khalafi, H
2015-12-01
In order to provide an appropriate neutron beam for Boron Neutron Capture Therapy (BNCT), a special Beam Shaping Assembly (BSA) must be designed based on the neutron source specifications. A typical BSA includes moderator, reflector, collimator, thermal neutron filter, and gamma filter. In common BSA, the reflector is considered as a layer which covers the sides of the moderator materials. In this paper, new reflector/moderator geometries including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. It was found that the proposed configurations have a significant effect to improve the thermal to epithermal neutron flux ratio which is an important neutron beam parameter. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Petrasso, R.; Gatu Johnson, M.; Armstrong, E.; Han, H. W.; Kabadi, N.; Lahmann, B.; Orozco, D.; Rojas Herrera, J.; Sio, H.; Sutcliffe, G.; Frenje, J.; Li, C. K.; Séguin, F. H.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.
2015-11-01
The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, a D-T neutron source and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The ion accelerator generates D-D and D-3He fusion products through acceleration of D ions onto a 3He-doped Erbium-Deuteride target. Fusion reaction rates around 106 s-1 are routinely achieved, and fluence and energy of the fusion products have been accurately characterized. The D-T neutron source generates up to 6 × 108 neutrons/s. The two x-ray generators produce spectra with peak energies of 35 keV and 225 keV and maximum dose rates of 0.5 Gy/min and 12 Gy/min, respectively. Diagnostics developed and calibrated at this facility include CR-39 based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a vital tool in the education of graduate and undergraduate students at MIT. This work was supported in part by SNL, DOE, LLE and LLNL.
Dose factor entry and display tool for BNCT radiotherapy
Wessol, Daniel E.; Wheeler, Floyd J.; Cook, Jeremy L.
1999-01-01
A system for use in Boron Neutron Capture Therapy (BNCT) radiotherapy planning where a biological distribution is calculated using a combination of conversion factors and a previously calculated physical distribution. Conversion factors are presented in a graphical spreadsheet so that a planner can easily view and modify the conversion factors. For radiotherapy in multi-component modalities, such as Fast-Neutron and BNCT, it is necessary to combine each conversion factor component to form an effective dose which is used in radiotherapy planning and evaluation. The Dose Factor Entry and Display System is designed to facilitate planner entry of appropriate conversion factors in a straightforward manner for each component. The effective isodose is then immediately computed and displayed over the appropriate background (e.g. digitized image).
NASA Astrophysics Data System (ADS)
Swenson, Donald A.
A new company, Ion Linac Systems, Inc., has been formed to promote the development, manufacture, and marketing of intense, RFI-based, Ion Linac Systems. The Rf Focused Interdigital (RFI) linac structure was invented by the author while at Linac Systems, LLC. The first step, for the new company, will be to correct a flaw in an existing RFI-based linac system and to demonstrate "good transmission" through the system. The existing system, aimed at the BNCT medical application, is designed to produce a beam of 2.5 MeV protons with an average beam current of 20 mA. In conjunction with a lithium target, it will produce an intense beam of epithermal neutrons. This system is very efficient, requiring only 180 kW of rf power to produce a 50 kW proton beam. In addition to the BNCT medical application, the RFI-based systems should represent a powerful neutron generator for homeland security, defence applications, cargo container inspection, and contraband detection. The timescale to the demonstration of "good transmission" is early fall of this year. Our website is www.ionlinacs.com.
Reliability Considerations for the Operation of Large Accelerator User Facilities
Willeke, F. J.
2016-01-29
The lecture provides an overview of considerations relevant for achieving highly reliable operation of accelerator based user facilities. The article starts with an overview of statistical reliability formalism which is followed by high reliability design considerations with examples. Finally, the article closes with operational aspects of high reliability such as preventive maintenance and spares inventory.
Unifying dose specification between clinical BNCT centers in the Americas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, K. J.; Binns, P. J.; Harling, O. K.
2008-04-15
A dosimetry intercomparison between the boron neutron capture therapy groups of the Massachusetts Institute of Technology (MIT) and the Comision Nacional de Energia Atomica (CNEA), Argentina was performed to enable combined analyses of NCT patient data between the different centers. In-air and dose versus depth measurements in a rectangular water phantom were performed at the hyperthermal neutron beam facility of the RA-6 reactor, Bariloche. Calculated dose profiles from the CNEA treatment planning system NCTPlan that were calibrated against in-house measurements required normalizations of 1.0 (thermal neutrons), 1.13 (photons), and 0.74 (fast neutrons) to match the dosimetry of MIT.
Accelerator Physics Working Group Summary
NASA Astrophysics Data System (ADS)
Li, D.; Uesugi, T.; Wildnerc, E.
2010-03-01
The Accelerator Physics Working Group addressed the worldwide R&D activities performed in support of future neutrino facilities. These studies cover R&D activities for Super Beam, Beta Beam and muon-based Neutrino Factory facilities. Beta Beam activities reported the important progress made, together with the research activity planned for the coming years. Discussion sessions were also organized jointly with other working groups in order to define common ground for the optimization of a future neutrino facility. Lessons learned from already operating neutrino facilities provide key information for the design of any future neutrino facility, and were also discussed in this meeting. Radiation damage, remote handling for equipment maintenance and exchange, and primary proton beam stability and monitoring were among the important subjects presented and discussed. Status reports for each of the facility subsystems were presented: proton drivers, targets, capture systems, and muon cooling and acceleration systems. The preferred scenario for each type of possible future facility was presented, together with the challenges and remaining issues. The baseline specification for the muon-based Neutrino Factory was reviewed and updated where required. This report will emphasize new results and ideas and discuss possible changes in the baseline scenarios of the facilities. A list of possible future steps is proposed that should be followed up at NuFact10.
First neutron generation in the BINP accelerator based neutron source.
Bayanov, B; Burdakov, A; Chudaev, V; Ivanov, A; Konstantinov, S; Kuznetsov, A; Makarov, A; Malyshkin, G; Mekler, K; Sorokin, I; Sulyaev, Yu; Taskaev, S
2009-07-01
Pilot innovative facility for neutron capture therapy was built at Budker Institute of Nuclear Physics, Novosibirsk. This facility is based on a compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. The results of the first experiments on neutron generation are reported and discussed.
Bergueiro, J; Igarzabal, M; Sandin, J C Suarez; Somacal, H R; Vento, V Thatar; Huck, H; Valda, A A; Repetto, M; Kreiner, A J
2011-12-01
Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Measurement and simulation of the TRR BNCT beam parameters
NASA Astrophysics Data System (ADS)
Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser; Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad
2016-09-01
Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.
Sonoporation as an enhancing method for boron neutron capture therapy for squamous cell carcinomas
2013-01-01
Background Boron neutron capture therapy (BNCT) is a selective radiotherapy that is dependent on the accumulation of 10B compound in tumors. Low-intensity ultrasound produces a transient pore on cell membranes, sonoporation, which enables extracellular materials to enter cells. The effect of sonoporation on BNCT was examined in oral squamous cell carcinoma (SCC) xenografts in nude mice. Materials and methods Tumor-bearing mice were administrated boronophenylalanine (BPA) or boronocaptate sodium (BSH) intraperitoneally. Two hours later, tumors were subjected to sonoporation using microbubbles followed by neutron irradiation. Results The 10B concentration was higher in tumors treated with sonoporation than in untreated tumors, although the difference was not significant in BPA. When tumors in mice that received BPA intraperitoneally were treated with sonoporation followed by exposure to thermal neutrons, tumor volume was markedly reduced and the survival rate was prolonged. Such enhancements by sonoporation were not observed in mice treated with BSH-mediated BNCT. Conclusions These results indicate that sonoporation enhances the efficiency of BPA-mediated BNCT for oral SCC. Sonoporation may modulate the microlocalization of BPA and BSH in tumors and increase their intracellular levels. PMID:24295213
The Alto Tandem and Isol Facility at IPN Orsay
NASA Astrophysics Data System (ADS)
Franchoo, Serge
Alto is an infrastructure for experimental nuclear physics in France that comprises both an on-line isotope-separation facility based on the photofission of uranium and a stable-ion beam facility based on a 14.5-MV tandem accelerator. The isotope-separation on-line section of Alto is dedicated to the production of neutron-rich radioactive ion beams (RIB) from the interaction of the γ-flux induced by a 50-MeV 10-µA electron beam in a uranium-carbide target. It is dimensioned for 1011 fissions per second. The RIB facility is exploited in alternating mode with the tandem-based section of Alto, capable of accelerating both light ions for nuclear astrophysics and heavy ions for γ-spectroscopy. The facility thereby offers the opportunity to deliver beams to a large range of physics programmes from nuclear to interdisciplinary physics. In this article, we present the Alto facility as well as some of the highlights and prospects of the experimental programme.
Development of a Dielectric-Loaded Accelerator Test Facility Based on an X-Band Magnicon Amplifier
NASA Astrophysics Data System (ADS)
Gold, S. H.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.; Tantawi, S. G.; Nantista, C. D.; Hu, Y.; Du, X.; Tang, C.; Lin, Y.; Bruce, R. W.; Bruce, R. L.; Fliflet, A. W.; Lewis, D.
2006-01-01
The Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), are developing a dielectric-loaded accelerator (DLA) test facility powered by the 11.424-GHz magnicon amplifier that was developed jointly by NRL and Omega-P, Inc. Thus far, DLA structures developed by ANL have been tested at the NRL Magnicon Facility without injected electrons, including tests of alumina and magnesium calcium titanate structures at gradients up to ˜8 MV/m. The next step is to inject electrons in order to build a compact DLA test accelerator. The Accelerator Laboratory of Tsinghua University in Beijing, China has developed a 5-MeV electron injector for the accelerator, and SLAC is developing a means to combine the two magnicon output arms, and to drive the injector and an accelerator section with separate control of the power ratio and relative phase. Also, RWBruce Associates, working with NRL, is developing a means to join ceramic tubes to produce long accelerating sections using a microwave brazing process. The installation and commissioning of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year.
Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryne, Robert D.
2006-08-10
Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now takemore » hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.« less
NASA Astrophysics Data System (ADS)
Ryne, Robert D.
2006-09-01
Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.
Fifty years of accelerator based physics at Chalk River
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKay, John W.
1999-04-26
The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.
Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field.
Nguyen, Thanh Tat; Kajimoto, Tsuyoshi; Tanaka, Kenichi; Nguyen, Chien Cong; Endo, Satoru
2016-11-01
Fast neutron, gamma-ray, and boron doses have different relative biological effectiveness (RBE). In boron neutron capture therapy (BNCT), the clinical dose is the total of these dose components multiplied by their RBE. Clinical dose monitoring is necessary for quality assurance of the irradiation profile; therefore, the fast neutron, gamma-ray, and boron doses should be separately monitored. To estimate these doses separately, and to monitor the boron dose without monitoring the thermal neutron fluence, the authors propose a triple ionization chamber method using graphite-walled carbon dioxide gas (C-CO 2 ), tissue-equivalent plastic-walled tissue-equivalent gas (TE-TE), and boron-loaded tissue-equivalent plastic-walled tissue-equivalent gas [TE(B)-TE] chambers. To use this method for dose monitoring for a neutron and gamma-ray field moderated by D 2 O from a Be-covered Li target (Be-covered Li BNCT field), the relative sensitivities of these ionization chambers are required. The relative sensitivities of the TE-TE, C-CO 2 , and TE(B)-TE chambers to fast neutron, gamma-ray, and boron doses are calculated with the particle and heavy-ion transport code system (PHITS). The relative sensitivity of the TE(B)-TE chamber is calculated with the same method as for the TE-TE and C-CO 2 chambers in the paired chamber method. In the Be-covered Li BNCT field, the relative sensitivities of the ionization chambers to fast neutron, gamma-ray, and boron doses are calculated from the kerma ratios, mass attenuation coefficient tissue-to-wall ratios, and W-values. The Be-covered Li BNCT field consists of neutrons and gamma-rays which are emitted from a Be-covered Li target, and this resultant field is simulated by using PHITS with the cross section library of ENDF-VII. The kerma ratios and mass attenuation coefficient tissue-to-wall ratios are determined from the energy spectra of neutrons and gamma-rays in the Be-covered Li BNCT field. The W-value is calculated from recoil charged particle spectra by the collision of neutrons and gamma-rays with the wall and gas materials of the ionization chambers in the gas cavities of TE-TE, C-CO 2 , and TE(B)-TE chambers ( 10 B concentrations of 10, 50, and 100 ppm in the TE-wall). The calculated relative sensitivity of the C-CO 2 chamber to the fast neutron dose in the Be-covered Li BNCT field is 0.029, and those of the TE-TE and TE(B)-TE chambers are both equal to 0.965. The relative sensitivities of the C-CO 2 , TE-TE, and TE(B)-TE chambers to the gamma-ray dose in the Be-covered Li BNCT field are all 1 within the 1% calculation uncertainty. The relative sensitivities of TE(B)-TE to boron dose with concentrations of 10, 50, and 100 ppm 10 B are calculated to be 0.865 times the ratio of the in-tumor to in-chamber wall boron concentration. The fast neutron, gamma-ray, and boron doses of a tumor in-air can be separately monitored by the triple ionization chamber method in the Be-covered Li BNCT field. The results show that these doses can be easily converted to the clinical dose with the depth correction factor in the body and the RBE.
Bortolussi, Silva; Ciani, Laura; Postuma, Ian; Protti, Nicoletta; Luca Reversi; Bruschi, Piero; Ferrari, Cinzia; Cansolino, Laura; Panza, Luigi; Ristori, Sandra; Altieri, Saverio
2014-06-01
The possibility to measure boron concentration with high precision in tissues that will be irradiated represents a fundamental step for a safe and effective BNCT treatment. In Pavia, two techniques have been used for this purpose, a quantitative method based on charged particles spectrometry and a boron biodistribution imaging based on neutron autoradiography. A quantitative method to determine boron concentration by neutron autoradiography has been recently set-up and calibrated for the measurement of biological samples, both solid and liquid, in the frame of the feasibility study of BNCT. This technique was calibrated and the obtained results were cross checked with those of α spectrometry, in order to validate them. The comparisons were performed using tissues taken form animals treated with different boron administration protocols. Subsequently the quantitative neutron autoradiography was employed to measure osteosarcoma cell samples treated with BPA and with new boronated formulations. © 2013 Published by Elsevier Ltd.
Monte Carlo based dosimetry for neutron capture therapy of brain tumors
NASA Astrophysics Data System (ADS)
Zaidi, Lilia; Belgaid, Mohamed; Khelifi, Rachid
2016-11-01
Boron Neutron Capture Therapy (BNCT) is a biologically targeted, radiation therapy for cancer which combines neutron irradiation with a tumor targeting agent labeled with a boron10 having a high thermal neutron capture cross section. The tumor area is subjected to the neutron irradiation. After a thermal neutron capture, the excited 11B nucleus fissions into an alpha particle and lithium recoil nucleus. The high Linear Energy Transfer (LET) emitted particles deposit their energy in a range of about 10μm, which is of the same order of cell diameter [1], at the same time other reactions due to neutron activation with body component are produced. In-phantom measurement of physical dose distribution is very important for BNCT planning validation. Determination of total absorbed dose requires complex calculations which were carried out using the Monte Carlo MCNP code [2].
Nizioł, Joanna; Uram, Łukasz; Szuster, Magdalena; Sekuła, Justyna; Ruman, Tomasz
2015-10-01
Boron-neutron capture therapy (BNCT) is a binary anticancer therapy that requires boron compound for nuclear reaction during which high energy alpha particles and lithium nuclei are formed. Unnatural, boron-containing nucleoside with hydrophobic pinacol moiety was investigated as a potential BNCT boron delivery agent. Biological properties of this compound are presented for the first time and prove that boron nucleoside has low cytotoxicity and that observed apoptotic effects suggest alteration of important functions of cancer cells. Mass spectrometry analysis of DNA from cancer cells proved that boron nucleoside is inserted into nucleic acids as a functional nucleotide derivative. NMR studies present very high degree of similarity of natural dG-dC base pair with dG-boron nucleoside system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optimization of the photoneutron target geometry for e-accelerator based BNCT.
Chegeni, Nahid; Pur, Saleh Boveiry; Razmjoo, Sasan; Hoseini, Seydeh Khadijed
2017-06-01
Today, electron accelerators are taken into consideration as photoneutron sources. Therefore, for maximum production of epithermal neutron flux, designing a photoneutron target is of significant importance. In this paper, the effect of thickness and geometric shape of a photoneutron target on neutron output were investigated. In this study, a pencil photon source with 13, 15, 18, 20 and 25 MeV energies and a diameter of 2 mm was investigated using Monte Carlo simulation method using MCNP code. To optimize the design of the photoneutron target, the tungsten target with various geometries and thicknesses was investigated. The maximum neutron flux produced for all target geometries and thicknesses occurred at neutron energy peak of around 0.46 MeV. As the thickness increased to 2 cm, neutron flux increased and then a decreasing trend was observed. For various geometrical shapes, the determining factor in photoneutron output was the effective target thickness in the photon interaction path that increased by the increase in the area of interaction. Another factor was the angle of the photon's incidence with the target surface that resulted in a significant decrease in photoneutron output in cone-shaped targets. Three factors including the total neutron flux, neutrons energy spectrum, and convergence of neutrons plays an important role in the selection of geometry and shape of the target that should be investigated considering beam shaping assembly (BSA) shape.
Principles for timing at spallation neutron sources based on developments at LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, R. O.; Merl, R. B.; Rose, C. R.
2001-01-01
Due to AC-power-grid frequency fluctuations, the designers for accelerator-based spallation-neutron facilities have worked to optimize the conflicting demands of accelerator and neutron chopper performance. For the first time, we are able to quantitatively access the tradeoffs between these two constraints and design or upgrade a facility to optimize total system performance using powerful new simulation techniques. We have modeled timing systems that integrate chopper controllers and chopper hardware and built new systems. Thus, at LANSCE, we now operate multiple chopper systems and the accelerator as simple slaves to a single master-timing-reference generator. Based on this experience we recommend that spallationmore » neutron sources adhere to three principles. First, timing for pulsed sources should be planned starting with extraction at a fixed phase and working backwards toward the leading edge of the beam pulse. Second, accelerator triggers and storage ring extraction commands from neutron choppers offer only marginal benefits to accelerator-based spallation sources. Third, the storage-ring RF should be phase synchronized with neutron choppers to provide extraction without the one orbit timing uncertainty.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, C.; Gavin, P.
This report describes research performed at the WSU College of Veterinary Medicine in which a large animal model was developed and used to study the effects of boron neutron capture therapy (BNCT) on normal and neoplastic canine brain tissue. The studies were performed using borocaptate sodium (BSH) and epithermal neutrons and had two major foci: biodistribution of BSH in animals with spontaneously occurring brain tumors; and effects of BNCT in normal and neoplastic brain tissue.
The MIT HEDP Accelerator Facility for Diagnostic Development for OMEGA, Z, and the NIF
NASA Astrophysics Data System (ADS)
Parker, C. E.; Gatu Johnson, M.; Birkel, A.; Kabadi, N. V.; Lahmann, B.; Milanese, L. M.; Simpson, R. A.; Sio, H.; Sutcliffe, G. D.; Wink, C.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.
2016-10-01
The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, DT and DD neutron sources, and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The accelerator generates DD and D3He fusion products through the acceleration of D+ ions onto a 3He-doped Erbium-Deuteride target. Accurately characterized fusion product rates of around 106 s-1 are routinely achieved. The DT and DD neutron sources generate up to 6x108, and 1x107 neutrons/s, respectively. One x-ray generator is a thick-target W source with a peak energy of 225 keV and a maximum dose rate of 12 Gy/min; the other uses Cu, Mo, or Ti elemental tubes to generate x-rays with a maximum energy of 40 keV. Diagnostics developed and calibrated at this facility include CR-39-based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a valuable hands-on tool for graduate and undergraduate education at MIT. This work was supported in part by the U.S. DoE, SNL, LLE and LLNL.
The MIT HEDP Accelerator Facility for Diagnostic Development for OMEGA, Z, and the NIF
NASA Astrophysics Data System (ADS)
Sio, H.; Gatu Johnson, M.; Birkel, A.; Doeg, E.; Frankel, R.; Kabadi, N. V.; Lahmann, B.; Manzin, M.; Simpson, R. A.; Parker, C. E.; Sutcliffe, G. D.; Wink, C.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Leeper, R.; Hahn, K.; Ruiz, C. L.; Sangster, T. C.; Hilsabeck, T.
2017-10-01
The MIT HEDP Accelerator Facility utilizes a 135-keV, linear electrostatic ion accelerator; DT and DD neutron sources; and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The accelerator generates DD and D3He fusion products through the acceleration of D+ ions onto a 3He-doped Erbium-Deuteride target. Accurately characterized fusion product rates of around 106 s- 1 are routinely achieved. The DT and DD neutron sources generate up to 6×108 and 1×107 neutrons/s, respectively. One x-ray generator is a thick-target W source with a peak energy of 225 keV and a maximum dose rate of 12 Gy/min; the other uses Cu, Mo, or Ti elemental tubes to generate x-rays with a maximum energy of 40 keV. Diagnostics developed and calibrated at this facility include CR-39-based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a valuable hands-on tool for graduate and undergraduate education at MIT. This work was supported in part by the U.S. DoE, SNL, LLE and LLNL.
Thymidine kinase 1 as a molecular target for boron neutron capture therapy of brain tumors
Barth, Rolf F.; Yang, Weilian; Wu, Gong; Swindall, Michele; Byun, Youngjoo; Narayanasamy, Sureshbabu; Tjarks, Werner; Tordoff, Kevin; Moeschberger, Melvin L.; Eriksson, Staffan; Binns, Peter J.; Riley, Kent J.
2008-01-01
The purpose of the present study was to evaluate the effectiveness of a 3-carboranyl thymidine analogue (3CTA), 3-[5-{2-(2,3-dihydroxyprop-1-yl)-o-carboran-1-yl}pentan-1-yl] thymidine, designated N5–2OH, for boron neutron capture therapy (BNCT) of brain tumors using the RG2 rat glioma model. Target validation was established using the thymidine kinase (TK) 1(+) wild-type, murine L929 cell line and its TK1(−) mutant counterpart, which were implanted s.c. (s.c.) into nude mice. Two intratumoral (i.t.) injections of 10B-enriched N5–2OH were administered to tumor-bearing mice at 2-hour intervals, after which BNCT was carried out at the Massachusetts Institute of Technology (MIT) Research Reactor. Thirty days after BNCT, mice bearing TK1(+) L929 tumors had a 15× reduction in tumor volume compared with TK1(−) controls. Based on these favorable results, BNCT studies were then initiated in rats bearing intracerebral (i.c.) RG2 gliomas, after i.c. administration of N5–2OH by Alzet osmotic pumps, either alone or in combination with i.v. (i.v.) boronophenylalanine (BPA), a drug that has been used clinically. The mean survival times (MSTs) of RG2 glioma bearing rats were 45.6 ± 7.2 days, 35.0 ± 3.3days, and 52.9 ± 8.9 days, respectively, for animals that received N5–2OH, BPA, or both. The differences between the survival plots of rats that received N5–2OH and BPA alone were highly significant (P = 0.0003). These data provide proof-of-principle that a 3CTA can function as a boron delivery agent for NCT. Further studies are planned to design and synthesize 3CTAs with enhanced chemical and biological properties, and increased therapeutic efficacy. PMID:18981415
A Hypoxia-Targeted Boron Neutron Capture Therapy Agent for the Treatment of Glioma
Luderer, Micah John; Muz, Barbara; de la Puente, Pilar; Chavalmane, Sanmathi; Kapoor, Vaishali; Marcelo, Raymundo; Biswas, Pratim; Thotala, Dinesh; Rogers, Buck; Azab, Abdel Kareem
2016-01-01
Purpose Boron neutron capture therapy (BNCT) has the potential to become a viable cancer treatment modality, but its clinical translation has been limited by the poor tumor selectivity of agents. To address this unmet need, a boronated 2-nitroimidazole derivative (B-381) was synthesized and evaluated for its capability of targeting hypoxic glioma cells. Methods B-381 has been synthesized from a 1-step reaction. Using D54 and U87 glioma cell lines, the in vitro cytotoxicity and cellular accumulation of B-381 has been evaluated under normoxic and hypoxic conditions compared to L-boronophenylalanine (BPA). Furthermore, tumor retention of B-381 was evaluated in vivo. Results B-381 had low cytotoxicity in normal and cancer cells. Unlike BPA, B-381 illustrated preferential retention in hypoxic glioma cells compared to normoxic glioma cells and normal tissues in vitro. In vivo, B-381 illustrated significantly higher long-term tumor retention compared to BPA, with 9.5-fold and 6.5-fold higher boron levels at 24 and 48 h, respectively. Conclusions B-381 represents a new class of BNCT agents in which their selectivity to tumors is based on tumor hypoxic metabolism, and further studies are warranted to evaluate this compound and similar compounds as preclinical candidates for future BNCT clinical trials for the treatment of glioma. PMID:27401411
Exploring Boron Neutron Capture Therapy for non-small cell lung cancer.
Farías, Rubén O; Bortolussi, Silva; Menéndez, Pablo R; González, Sara J
2014-12-01
Boron Neutron Capture Therapy (BNCT) is a radiotherapy that combines biological targeting and high LET radiation. It consists in the enrichment of tumour with (10)B and in the successive irradiation of the target with low energy neutrons producing charged particles that mainly cause non-repairable damages to the cells. The feasibility to treat Non Small Cells Lung Cancer (NSCLC) with BNCT was explored. This paper proposes a new approach to determine treatment plans, introducing the possibility to choose the irradiation start and duration to maximize the tumour dose. A Tumour Control Probability (TCP) suited for lung BNCT as well as other high dose radiotherapy schemes was also introduced. Treatment plans were evaluated in localized and disseminated lung tumours. Semi-ideal and real energy spectra beams were employed to assess the best energy range and the performance of non-tailored neutron sources for lung tumour treatments. The optimal neutron energy is within [500 eV-3 keV], lower than the 10 keV suggested for the treatment of deep-seated tumours in the brain. TCPs higher than 0.6 and up to 0.95 are obtained for all cases. Conclusions drawn from [Suzuki et al., Int Canc Conf J 1 (4) (2012) 235-238] supporting the feasibility of BNCT for shallow lung tumours are confirmed, however discussions favouring the treatment of deeper lesions and disseminated disease are also opened. Since BNCT gives the possibility to deliver a safe and potentially effective treatment for NSCLC, it can be considered a suitable alternative for patients with few or no treatment options. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Boron Neutron Capture Therapy in the Treatment of Locally Recurred Head and Neck Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna
2007-10-01
Purpose: Head and neck carcinomas that recur locally after conventional irradiation pose a difficult therapeutic problem. We evaluated safety and efficacy of boron neutron capture therapy (BNCT) in the treatment of such cancers. Methods and Materials: Twelve patients with inoperable, recurred, locally advanced (rT3, rT4, or rN2) head and neck cancer were treated with BNCT in a prospective, single-center Phase I-II study. Prior treatments consisted of surgery and conventionally fractionated photon irradiation to a cumulative dose of 56-74 Gy administered with or without concomitant chemotherapy. Tumor responses were assessed using the RECIST (Response Evaluation Criteria in Solid Tumors) criteria andmore » adverse effects using the National Cancer Institute common toxicity grading v3.0. Intravenously administered boronophenylalanine-fructose (BPA-F, 400 mg/kg) was used as the boron carrier. Each patient was scheduled to be treated twice with BNCT. Results: Ten patients received BNCT twice; 2 were treated once. Ten (83%) patients responded to BNCT, and 2 (17%) had tumor growth stabilization for 5.5 and 7.6 months. The median duration of response was 12.1 months; six responses were ongoing at the time of analysis or death (range, 4.9-19.2 months). Four (33%) patients were alive without recurrence with a median follow-up of 14.0 months (range, 12.8-19.2 months). The most common acute adverse effects were mucositis, fatigue, and local pain; 2 patients had a severe (Grade 3) late adverse effect (xerostomia, 1; dysphagia, 1). Conclusions: Boron neutron capture therapy is effective and safe in the treatment of inoperable, locally advanced head and neck carcinomas that recur at previously irradiated sites.« less
Accelerator Facilities for Radiation Research
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
1999-01-01
HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).
Plasma wakefield acceleration experiments at FACET II
NASA Astrophysics Data System (ADS)
Joshi, C.; Adli, E.; An, W.; Clayton, C. E.; Corde, S.; Gessner, S.; Hogan, M. J.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; O'shea, B.; Xu, Xinlu; White, G.; Yakimenko, V.
2018-03-01
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the ‘blow-out regime’ have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currently under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. We then briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.
Plasma wakefield acceleration experiments at FACET II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, C.; Adli, E.; An, W.
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less
Plasma wakefield acceleration experiments at FACET II
Joshi, C.; Adli, E.; An, W.; ...
2018-01-12
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less
Shu, Di-Yun; Geng, Chang-Ran; Tang, Xiao-Bin; Gong, Chun-Hui; Shao, Wen-Cheng; Ai, Yao
2018-07-01
This paper was aimed to explore the physics of Cherenkov radiation and its potential application in boron neutron capture therapy (BNCT). The Monte Carlo toolkit Geant4 was used to simulate the interaction between the epithermal neutron beam and the phantom containing boron-10. Results showed that Cherenkov photons can only be generated from secondary charged particles of gamma rays in BNCT, in which the 2.223 MeV prompt gamma rays are the main contributor. The number of Cherenkov photons per unit mass generated in the measurement region decreases linearly with the increase of boron concentration in both water and tissue phantom. The work presented the fundamental basis for applications of Cherenkov radiation in BNCT. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.
2011-12-15
Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with themore » well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global thermal and mixed-field thermal neutron sensitivities derived from measurements performed at the RA-6 were compared and no significant differences were found. Global RA-6-based thermal neutron sensitivity showed agreement with pure thermal neutron sensitivity measurements performed in the RA-3 spectrum. Additionally, the detector response proved nearly unchanged by differences in neutron spectra from real (RA-6 BNCT beam) and ideal (considered for calibration calculations at RA-3) neutron source descriptions. The results confirm that the special design of the Rh SPND can be considered as having a pure thermal response for neutron spectra with epithermal-to-thermal flux ratios up to 12%. In addition, the linear response of the detector to thermal flux allows the use of a mixed-field thermal neutron sensitivity of 1.95 {+-} 0.05 x 10{sup -21} A n{sup -1}{center_dot}cm{sup 2}{center_dot}s. This sensitivity can be used in spectra with up to 21% epithermal-to-thermal flux ratio without significant error due to epithermal neutron and gamma induced effects. The values of the measured fluxes in clinical applications had discrepancies with calculated results that were in the range of -25% to +30%, which shows the importance of a local on-line independent measurement as part of a treatment planning quality control system. Conclusions: The usefulness of the CNEA Rh SPND for the on-line local measurement of thermal neutron flux on BNCT patients has been demonstrated based on an appropriate neutron spectra calibration and clinical applications.« less
Miller, Marcelo E; Sztejnberg, Manuel L; González, Sara J; Thorp, Silvia I; Longhino, Juan M; Estryk, Guillermo
2011-12-01
A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comisión Nacional de Energía Atómica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Local mixed-field thermal neutron sensitivities and global thermal and mixed-field thermal neutron sensitivities derived from measurements performed at the RA-6 were compared and no significant differences were found. Global RA-6-based thermal neutron sensitivity showed agreement with pure thermal neutron sensitivity measurements performed in the RA-3 spectrum. Additionally, the detector response proved nearly unchanged by differences in neutron spectra from real (RA-6 BNCT beam) and ideal (considered for calibration calculations at RA-3) neutron source descriptions. The results confirm that the special design of the Rh SPND can be considered as having a pure thermal response for neutron spectra with epithermal-to-thermal flux ratios up to 12%. In addition, the linear response of the detector to thermal flux allows the use of a mixed-field thermal neutron sensitivity of 1.95 ± 0.05 × 10(-21) A n(-1)[middle dot]cm² [middle dot]s. This sensitivity can be used in spectra with up to 21% epithermal-to-thermal flux ratio without significant error due to epithermal neutron and gamma induced effects. The values of the measured fluxes in clinical applications had discrepancies with calculated results that were in the range of -25% to +30%, which shows the importance of a local on-line independent measurement as part of a treatment planning quality control system. The usefulness of the CNEA Rh SPND for the on-line local measurement of thermal neutron flux on BNCT patients has been demonstrated based on an appropriate neutron spectra calibration and clinical applications.
USDA-ARS?s Scientific Manuscript database
The applications of the octa-anionic 5,10,15,20-tetra[3,5-(nidocarboranylmethyl) phenyl]porphyrin (H2OCP) as a boron delivery agent in boron neutron capture therapy (BNCT) and a photosensitizer in photodynamic therapy (PDT) have been investigated. Using F98 Rat glioma cells, we evaluated the cytotox...
NASA Astrophysics Data System (ADS)
Sakurai, Yoshinori; Ono, Koji; Miyatake, Shin-ichi; Maruhashi, Akira
2006-03-01
Boron neutron capture therapy (BNCT) without craniotomy for malignant brain tumours was started using an epi-thermal neutron beam at the Kyoto University Reactor in June 2002. We have tried some techniques to overcome the treatable-depth limit in BNCT. One of the effective techniques is void formation utilizing a tumour-removed cavity. The tumorous part is removed by craniotomy about 1 week before a BNCT treatment in our protocol. Just before the BNCT irradiation, the cerebro-spinal fluid (CSF) in the tumour-removed cavity is drained out, air is infused to the cavity and then the void is made. This void improves the neutron penetration, and the thermal neutron flux at depth increases. The phantom experiments and survey simulations modelling the CSF drainage and air infusion of the tumour-removed cavity were performed for the size and shape of the void. The advantage of the CSF drainage and air infusion is confirmed for the improvement in the depth-dose distribution. From the parametric surveys, it was confirmed that the cavity volume had good correlation with the improvement effect, and the larger effect was expected as the cavity volume was larger.
Sakurai, Yoshinori; Ono, Koji; Miyatake, Shin-Ichi; Maruhashi, Akira
2006-03-07
Boron neutron capture therapy (BNCT) without craniotomy for malignant brain tumours was started using an epi-thermal neutron beam at the Kyoto University Reactor in June 2002. We have tried some techniques to overcome the treatable-depth limit in BNCT. One of the effective techniques is void formation utilizing a tumour-removed cavity. The tumorous part is removed by craniotomy about 1 week before a BNCT treatment in our protocol. Just before the BNCT irradiation, the cerebro-spinal fluid (CSF) in the tumour-removed cavity is drained out, air is infused to the cavity and then the void is made. This void improves the neutron penetration, and the thermal neutron flux at depth increases. The phantom experiments and survey simulations modelling the CSF drainage and air infusion of the tumour-removed cavity were performed for the size and shape of the void. The advantage of the CSF drainage and air infusion is confirmed for the improvement in the depth-dose distribution. From the parametric surveys, it was confirmed that the cavity volume had good correlation with the improvement effect, and the larger effect was expected as the cavity volume was larger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ziqing; Kruska, Karen; Toloczko, Mychailo B.
Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for the 21% and 31%CW CLT specimens loaded at their yield stress after ~9,220 h, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showed DCPD-indicated crack initiationmore » after 10,400h exposure at constant stress intensity, which resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Interestingly, post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and will discuss their effects on crack initiation in CW alloy 690.« less
Watanabe, Tsubasa; Tanaka, Hiroki; Fukutani, Satoshi; Suzuki, Minoru; Hiraoka, Masahiro; Ono, Koji
2016-01-01
Boron neutron capture therapy (BNCT) is a cellular-level particle radiation therapy that combines the selective delivery of boron compounds to tumour tissue with neutron irradiation. Previously, high doses of one of the boron compounds used for BNCT, L-BPA, were found to reduce the boron-derived irradiation dose to the central nervous system. However, injection with a high dose of L-BPA is not feasible in clinical settings. We aimed to find an alternative method to improve the therapeutic efficacy of this therapy. We examined the effects of oral preloading with various analogues of L-BPA in a xenograft tumour model and found that high-dose L-phenylalanine reduced the accumulation of L-BPA in the normal brain relative to tumour tissue. As a result, the maximum irradiation dose in the normal brain was 19.2% lower in the L-phenylalanine group relative to the control group. This study provides a simple strategy to improve the therapeutic efficacy of conventional boron compounds for BNCT for brain tumours and the possibility to widen the indication of BNCT to various kinds of other tumours. Copyright © 2015. Published by Elsevier Ireland Ltd.
Unifying dose specification between clinical BNCT centers in the Americas.
Riley, K J; Binns, P J; Harling, O K; Kiger, W S; González, S J; Casal, M R; Longhino, J; Larrieu, O A Calzetta; Blaumann, H R
2008-04-01
A dosimetry intercomparison between the boron neutron capture therapy groups of the Massachusetts Institute of Technology (MIT) and the Comisión Nacional de Energía Atómica (CNEA), Argentina was performed to enable combined analyses of NCT patient data between the different centers. In-air and dose versus depth measurements in a rectangular water phantom were performed at the hyperthermal neutron beam facility of the RA-6 reactor, Bariloche. Calculated dose profiles from the CNEA treatment planning system NCTPlan that were calibrated against in-house measurements required normalizations of 1.0 (thermal neutrons), 1.13 (photons), and 0.74 (fast neutrons) to match the dosimetry of MIT.
Commissioning for the European XFEL facility
NASA Astrophysics Data System (ADS)
Nölle, D.
2017-06-01
The European XFEL is a 4th generation light source based on the Self Amplified Spontaneous Emission (SASE) FreeElectron-Laser concept. It is currently being commissioned in North- Germany. The core installation is a 17.5 GeV superconducting accelerator driving 3 SASE lines with photon energies from 1 to beyond 20 keV range with a maximum of 27.000 pulses per second. The international facility is organized as a limited liability company with shareholders from the contributing countries. DESY has taken over the leadership of the accelerator construction consortium, and will be in charge of the operation of the accelerator complex. The facility was set up with contributions from the 11 shareholder countries, either being hardware systems and/or staff or cash contributions. The construction is almost complete, and the commissioning phase has started by the end of 2015. This contribution will report the status of the accelerator complex with emphasis on the commissioning of the accelerator and an outlook to the commissioning of the SASE 1 FEL line.
a New Method to Measure 10B Uptake in Lung Adenocarcinoma in Hospital Bnct
NASA Astrophysics Data System (ADS)
Donegani, E. M.; Basilico, F.; Bolognini, D.; Borasio, P.; Capelli, E.; Cappelletti, P.; Chiari, P.; Frigerio, M.; Gelosa, S.; Giannini, G.; Hasan, S.; Mattera, A.; Mauri, P.; Monti, A. F.; Ostinelli, A.; Prest, M.; Vallazza, E.; Zanini, A.
2010-04-01
Boron Neutron Capture Therapy (BNCT) is a radiotherapic technique still under development that could become crucial in the fight against some types of cancer (extended ones, located near vital organs or radio resistant). This binary technique requires the administration to the patient of a boron delivery agent and the irradiation with a thermal neutron beam. The high LET particles produced in the 10B(n,α)7Li reaction are exploited to destroy the tumour cells. This work presents a new system based on neutron autoradiography with a non-depleted self-triggering microstrip silicon detector, using a neutron beam produced by a hospital Linac. The system is fast, real time and allows the detection of 10B contents down to 25 ng. The main results on the study of 10B uptake in biological samples will be described in terms of kinetic curves (10B uptake as a function of time).
Beam manipulation with velocity bunching for PWFA applications
NASA Astrophysics Data System (ADS)
Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Galletti, M.; Gallo, A.; Giribono, A.; Li, W.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Petrillo, V.; Di Pirro, G.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zhu, J.
2016-09-01
The activity of the SPARC_LAB test-facility (LNF-INFN, Frascati) is currently focused on the development of new plasma-based accelerators. Particle accelerators are used in many fields of science, with applications ranging from particle physics research to advanced radiation sources (e.g. FEL). The demand to accelerate particles to higher and higher energies is currently limited by the effective efficiency in the acceleration process that requires the development of km-size facilities. By increasing the accelerating gradient, the compactness can be improved and costs reduced. Recently, the new technique which attracts main efforts relies on plasma acceleration. In the following, the current status of plasma-based activities at SPARC_LAB is presented. Both laser- and beam-driven schemes will be adopted with the aim to provide an adequate accelerating gradient (1-10 GV/m) while preserving the brightness of the accelerated beams to the level of conventional photo-injectors. This aspect, in particular, requires the use of ultra-short (< 100 fs) electron beams, consisting in one or more bunches. We show, with the support of simulations and experimental results, that such beams can be produced using RF compression by velocity-bunching.
Observation of Neutron Skyshine from an Accelerator Based Neutron Source
NASA Astrophysics Data System (ADS)
Franklyn, C. B.
2011-12-01
A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >1011 nṡs-1. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.
Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.
2014-01-01
Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a low phenylalanine diet prior to the initiation of BNCT. Since BPA currently is used clinically for BNCT, our observations may have direct relevance to future clinical studies utilizing this agent and provides support for individualized treatment planning regimens rather than the use of fixed BPA infusion protocols. PMID:24684609
Chandra, S; Ahmad, T; Barth, R F; Kabalka, G W
2014-06-01
Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 ((10)B) atoms to individual tumour cells. Cell killing results from the (10)B (n, α)(7) Li neutron capture and fission reactions that occur if a sufficient number of (10)B atoms are localized in the tumour cells. Intranuclear (10)B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of (10)B atoms reflects both bound and free pools of boron in individual tumour cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular-scale resolution by clinically applicable techniques such as positron emission tomography and magnetic resonance imaging. In this study, a secondary ion mass spectrometry based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high-grade gliomas, recurrent tumours of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumour cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a low phenylalanine diet prior to the initiation of BNCT. Since BPA currently is used clinically for BNCT, our observations may have direct relevance to future clinical studies utilizing this agent and provides support for individualized treatment planning regimens rather than the use of fixed BPA infusion protocols. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Hyaluronic acid as a potential boron carrier for BNCT: Preliminary evaluation.
Zaboronok, A; Yamamoto, T; Nakai, K; Yoshida, F; Uspenskii, S; Selyanin, M; Zelenetskii, A; Matsumura, Akira
2015-12-01
Hyaluronic acid (HA), a nonimmunogenic, biocompatible polymer found in different biological tissues, has the potential to attach to CD44 receptors on the surface of certain cancer cells, where the receptor is overexpressed compared with normal cells. Boron-hyaluronic acid (BHA) was tested for its feasibility as a potential agent for BNCT. BHA with low-viscosity 30 kDa HA could be administered by intravenous injection. The compound showed a certain degree of cytotoxicity and accumulation in C6 rat glioma cells in vitro. Instability of the chelate bonds between boron and HA and/or insufficient specificity of CD44 receptors on C6 cells to BHA could account for the insufficient in vitro accumulation. To ensure the future eligibility of BHA for BNCT experiments, using alternative tumor cell lines and chemically securing the chelate bonds or synthesizing BHA with boron covalently attached to HA might be required. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Zheng; Li, Gang; Liu, Linmao
2014-04-01
This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini
Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.
Plasma density characterization at SPARC_LAB through Stark broadening of Hydrogen spectral lines
NASA Astrophysics Data System (ADS)
Filippi, F.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.
2016-09-01
Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC_LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC_LAB is presented.
Horiguchi, Hironori; Sato, Tatsuhiko; Kumada, Hiroaki; Yamamoto, Tetsuya; Sakae, Takeji
2015-01-01
Abstract The absorbed doses deposited by boron neutron capture therapy (BNCT) can be categorized into four components: α and 7Li particles from the 10B(n, α)7Li reaction, 0.54-MeV protons from the 14N(n, p)14C reaction, the recoiled protons from the 1H(n, n) 1H reaction, and photons from the neutron beam and 1H(n, γ)2H reaction. For evaluating the irradiation effect in tumors and the surrounding normal tissues in BNCT, it is of great importance to estimate the relative biological effectiveness (RBE) for each dose component in the same framework. We have, therefore, established a new method for estimating the RBE of all BNCT dose components on the basis of the microdosimetric kinetic model. This method employs the probability density of lineal energy, y, in a subcellular structure as the index for expressing RBE, which can be calculated using the microdosimetric function implemented in the particle transport simulation code (PHITS). The accuracy of this method was tested by comparing the calculated RBE values with corresponding measured data in a water phantom irradiated with an epithermal neutron beam. The calculation technique developed in this study will be useful for biological dose estimation in treatment planning for BNCT. PMID:25428243
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Ziqing; Toloczko, Mychailo; Kruska, Karen
Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 (UNS N06690) materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for either the 21% or 31%CW CLT specimens loaded at their yield stress after ~9,220 hours, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showedmore » DCPD-indicated crack initiation after 10,400 hours of exposure at constant stress intensity, which was resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and discusses their effects on crack initiation in CW alloy 690.« less
NASA Astrophysics Data System (ADS)
Suharyana; Riyatun; Octaviana, E. F.
2016-11-01
We have successfully proposed a simulation of a neutron beam-shaping assembly using MCNPX Code. This simulation study deals with designing a compact, optimized, and geometrically simple beam shaping assembly for a neutron source based on a proton cyclotron for BNCT purpose. Shifting method was applied in order to lower the fast neutron energy to the epithermal energy range by choosing appropriate materials. Based on a set of MCNPX simulations, it has been found that the best materials for beam shaping assembly are 3 cm Ni layered with 7 cm Pb as the reflector and 13 cm AlF3 the moderator. Our proposed beam shaping assembly configuration satisfies 2 of 5 of the IAEA criteria, namely the epithermal neutron flux 1.25 × 109 n.cm-2 s-1 and the gamma dose over the epithermal neutron flux is 0.18×10 -13 Gy.cm 2 n -1. However, the ratio of the fast neutron dose rate over neutron epithermal flux is still too high. We recommended that the shifting method must be accompanied by the filter method to reduce the fast neutron flux.
BINP accelerator based epithermal neutron source.
Aleynik, V; Burdakov, A; Davydenko, V; Ivanov, A; Kanygin, V; Kuznetsov, A; Makarov, A; Sorokin, I; Taskaev, S
2011-12-01
Innovative facility for neutron capture therapy has been built at BINP. This facility is based on compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915-2.5 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. In the article, diagnostic techniques for proton beam and neutrons developed are described, results of experiments on proton beam transport and neutron generation are shown, discussed, and plans are presented. Copyright © 2011 Elsevier Ltd. All rights reserved.
Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm
Terzić, Balša; Hofler, Alicia S.; Reeves, Cody J.; ...
2014-10-15
In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab's Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.
Fixed Base Modal Testing Using the NASA GRC Mechanical Vibration Facility
NASA Technical Reports Server (NTRS)
Staab, Lucas D.; Winkel, James P.; Suarez, Vicente J.; Jones, Trevor M.; Napolitano, Kevin L.
2016-01-01
The Space Power Facility at NASA's Plum Brook Station houses the world's largest and most powerful space environment simulation facilities, including the Mechanical Vibration Facility (MVF), which offers the world's highest-capacity multi-axis spacecraft shaker system. The MVF was designed to perform sine vibration testing of a Crew Exploration Vehicle (CEV)-class spacecraft with a total mass of 75,000 pounds, center of gravity (cg) height above the table of 284 inches, diameter of 18 feet, and capability of 1.25 gravity units peak acceleration in the vertical and 1.0 gravity units peak acceleration in the lateral directions. The MVF is a six-degree-of-freedom, servo-hydraulic, sinusoidal base-shake vibration system that has the advantage of being able to perform single-axis sine vibration testing of large structures in the vertical and two lateral axes without the need to reconfigure the test article for each axis. This paper discusses efforts to extend the MVF's capabilities so that it can also be used to determine fixed base modes of its test article without the need for an expensive test-correlated facility simulation.
Optimization of the photoneutron target geometry for e-accelerator based BNCT
Chegeni, Nahid; Pur, Saleh Boveiry; Razmjoo, Sasan; Hoseini, Seydeh Khadijed
2017-01-01
Background and aim Today, electron accelerators are taken into consideration as photoneutron sources. Therefore, for maximum production of epithermal neutron flux, designing a photoneutron target is of significant importance. In this paper, the effect of thickness and geometric shape of a photoneutron target on neutron output were investigated. Methods In this study, a pencil photon source with 13, 15, 18, 20 and 25 MeV energies and a diameter of 2 mm was investigated using Monte Carlo simulation method using MCNP code. To optimize the design of the photoneutron target, the tungsten target with various geometries and thicknesses was investigated. Results The maximum neutron flux produced for all target geometries and thicknesses occurred at neutron energy peak of around 0.46 MeV. As the thickness increased to 2 cm, neutron flux increased and then a decreasing trend was observed. For various geometrical shapes, the determining factor in photoneutron output was the effective target thickness in the photon interaction path that increased by the increase in the area of interaction. Another factor was the angle of the photon’s incidence with the target surface that resulted in a significant decrease in photoneutron output in cone-shaped targets Conclusion Three factors including the total neutron flux, neutrons energy spectrum, and convergence of neutrons plays an important role in the selection of geometry and shape of the target that should be investigated considering beam shaping assembly (BSA) shape. PMID:28848635
NASA Astrophysics Data System (ADS)
Nilsson, Thomas
2015-03-01
The FAIR (Facility for Antiproton and Ion Beams), under construction at the GSI site in Darmstadt, Germany, will be addressing a wealth of outstanding questions within the realm of subatomic, atomic and plasma physics through a combination of novel accelerators, storage rings and innovative experimental setups. The envisaged programme of FAIR yields a breadth that is unprecedented at an accelerator-based infrastructure. A brief review of the FAIR infrastructure and scientific reach is made, together with an update of the status of the construction.
Barth, Rolf F.; Miyatake, Shin-Ichi; Kawabata, Shinji; Suzuki, Minoru; Ono, Koji
2017-01-01
We have used boron neutron capture therapy (BNCT) to treat patients in Japan with newly diagnosed or recurrent high-grade gliomas and have observed a significant increase in median survival time following BNCT. Although cerebrospinal fluid dissemination (CSFD) is not usually seen with the current standard therapy of patients with glioblastoma (GBM), here we report that subarachnoid or intraventricular CSFD was the most frequent cause of death for a cohort of our patients with high-grade gliomas who had been treated with BNCT. The study population consisted of 87 patients with supratentorial high-grade gliomas; 41 had newly diagnosed tumors and 46 had recurrent tumors. Thirty of 87 patients who were treated between January 2002 and July 2013 developed CSFD. Tumor histology before BNCT and immunohistochemical staining for two molecular markers, Ki-67 and IDH1R132H, were evaluated for 20 of the 30 patients for whom pathology slides were available. Fluorescence in situ hybridization (FISH) was performed on 3 IDH1R132H-positive and 1 control IDH1R132H-negative tumors in order to determine chromosome 1p and 19q status. Histopathologic evaluation revealed that 10 of the 20 patients’ tumors were IDH1R132H-negative small cell GBMs. The remaining patients had tumors consisting of other IDH1R132H-negative GBM variants, an IDH1R132H-positive GBM and two anaplastic oligodendrogliomas. Ki-67 immunopositivity ranged from 2 to 75%. In summary, IDH1R132H-negative GBMs, especially small cell GBMs, accounted for a disproportionately large number of patients who had CSF dissemination. This suggests that these tumor types had an increased propensity to disseminate via the CSF following BNCT and that these patients are at high risk for this clinically serious event. PMID:28534152
Kondo, Natsuko; Barth, Rolf F; Miyatake, Shin-Ichi; Kawabata, Shinji; Suzuki, Minoru; Ono, Koji; Lehman, Norman L
2017-05-01
We have used boron neutron capture therapy (BNCT) to treat patients in Japan with newly diagnosed or recurrent high-grade gliomas and have observed a significant increase in median survival time following BNCT. Although cerebrospinal fluid dissemination (CSFD) is not usually seen with the current standard therapy of patients with glioblastoma (GBM), here we report that subarachnoid or intraventricular CSFD was the most frequent cause of death for a cohort of our patients with high-grade gliomas who had been treated with BNCT. The study population consisted of 87 patients with supratentorial high-grade gliomas; 41 had newly diagnosed tumors and 46 had recurrent tumors. Thirty of 87 patients who were treated between January 2002 and July 2013 developed CSFD. Tumor histology before BNCT and immunohistochemical staining for two molecular markers, Ki-67 and IDH1 R132H , were evaluated for 20 of the 30 patients for whom pathology slides were available. Fluorescence in situ hybridization (FISH) was performed on 3 IDH1 R132H -positive and 1 control IDH1 R132H -negative tumors in order to determine chromosome 1p and 19q status. Histopathologic evaluation revealed that 10 of the 20 patients' tumors were IDH1 R132H -negative small cell GBMs. The remaining patients had tumors consisting of other IDH1 R132H -negative GBM variants, an IDH1 R132H -positive GBM and two anaplastic oligodendrogliomas. Ki-67 immunopositivity ranged from 2 to 75%. In summary, IDH1 R132H -negative GBMs, especially small cell GBMs, accounted for a disproportionately large number of patients who had CSF dissemination. This suggests that these tumor types had an increased propensity to disseminate via the CSF following BNCT and that these patients are at high risk for this clinically serious event.
Dose-rate effect was observed in T98G glioma cells following BNCT.
Kinashi, Yuko; Okumura, Kakuji; Kubota, Yoshihisa; Kitajima, Erika; Okayasu, Ryuichi; Ono, Koji; Takahashi, Sentaro
2014-06-01
It is generally said that low LET radiation produce high dose-rate effect, on the other hand, no significant dose rate effect is observed in high LET radiation. Although high LET radiations are produced in BNCT, little is known about dose-rate effect of BNCT. T98G cells, which were tumor cells, were irradiated by neutron mixed beam with BPA. As normal tissue derived cells, Chinese hamster ovary (CHO-K1) cells and DNA double strand breaks (DNA-DSBs) repair deficient cells, xrs5 cells were irradiated by the neutrons (not including BPA). To DNA-DSBs analysis, T98G cells were stained immunochemically with 53BP1 antibody. The number of DNA-DSBs was determined by counting 53BP1 foci. There was no dose-rate effect in xrs5 cells. D0 difference between 4cGy/min and 20cGy/min irradiation were 0.5 and 5.9 at the neutron and gamma-ray irradiation for CHO-K1, and 0.3 at the neutron for T98G cells. D0 difference between 20cGy/min and 80cGy/min irradiation for T98G cells were 1.2 and 0.6 at neutron irradiation plus BPA and gamma-ray. The differences between neutron irradiations at the dose rate in T98G cells were supported by not only the cell viability but also 53BP1 foci assay at 24h following irradiation to monitor DNA-DSBs. Dose-rate effect of BNCT when T98G cells include 20ppm BPA was greater than that of gamma-ray irradiation. Moreover, Dose-rate effect of the neutron beam when CHO-K1 cells did not include BPA was less than that of gamma-ray irradiation These present results may suggest the importance of dose-rate effect for more efficient BNCT and the side effect reduction. © 2013 Published by Elsevier Ltd.
Ishikawa, Masayori; Yamamoto, Tetsuya; Matsumura, Akira; Hiratsuka, Junichi; Miyatake, Shin-Ichi; Kato, Itsuro; Sakurai, Yoshinori; Kumada, Hiroaki; Shrestha, Shubhechha J; Ono, Koji
2016-08-09
Real-time measurement of thermal neutrons in the tumor region is essential for proper evaluation of the absorbed dose in boron neutron capture therapy (BNCT) treatment. The gold wire activation method has been routinely used to measure the neutron flux distribution in BNCT irradiation, but a real-time measurement using gold wire is not possible. To overcome this issue, the scintillator with optical fiber (SOF) detector has been developed. The purpose of this study is to demonstrate the feasibility of the SOF detector as a real-time thermal neutron monitor in clinical BNCT treatment and also to report issues in the use of SOF detectors in clinical practice and their solutions. Clinical measurements using the SOF detector were carried out in 16 BNCT clinical trial patients from December 2002 until end of 2006 at the Japanese Atomic Energy Agency (JAEA) and Kyoto University Research Reactor Institute (KURRI). The SOF detector worked effectively as a real-time thermal neutron monitor. The neutron fluence obtained by the gold wire activation method was found to differ from that obtained by the SOF detector. The neutron fluence obtained by the SOF detector was in better agreement with the expected fluence than with gold wire activation. The estimation error for the SOF detector was small in comparison to the gold wire measurement. In addition, real-time monitoring suggested that the neutron flux distribution and intensity at the region of interest (ROI) may vary due to the reactor condition, patient motion and dislocation of the SOF detector. Clinical measurements using the SOF detector to measure thermal neutron flux during BNCT confirmed that SOF detectors are effective as a real-time thermal neutron monitor. To minimize the estimation error due to the displacement of the SOF probe during treatment, a loop-type SOF probe was developed.
Novel neutron sources at the Radiological Research Accelerator Facility
Xu, Yanping; Garty, Guy; Marino, Stephen A.; Massey, Thomas N.; Randers-Pehrson, Gerhard; Johnson, Gary W.; Brenner, David J.
2012-01-01
Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10–20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components. PMID:22545061
Novel neutron sources at the Radiological Research Accelerator Facility.
Xu, Yanping; Garty, Guy; Marino, Stephen A; Massey, Thomas N; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J
2012-03-16
Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons.We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target.A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the (7)Li(p,n)(7)Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.
Novel neutron sources at the Radiological Research Accelerator Facility
Xu, Yanping; Garty, G.; Marino, S. A.; ...
2012-03-16
Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will bemore » based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the Li-7(p,n)Be-7 reaction. Lastly, this novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.« less
Novel neutron sources at the Radiological Research Accelerator Facility
NASA Astrophysics Data System (ADS)
Xu, Y.; Garty, G.; Marino, S. A.; Massey, T. N.; Randers-Pehrson, G.; Johnson, G. W.; Brenner, D. J.
2012-03-01
Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.
High Intensity Proton Accelerator Project in Japan (J-PARC).
Tanaka, Shun-ichi
2005-01-01
The High Intensity Proton Accelerator Project, named as J-PARC, was started on 1 April 2001 at Tokai-site of JAERI. The accelerator complex of J-PARC consists of three accelerators: 400 MeV Linac, 3 GeV rapid cycle synchrotron and 50 GeV synchrotron; and four major experimental facilities: Material and Life Science Facility, Nuclear and Particle Physics Facility, Nuclear Transmutation Experiment Facility and Neutrino Facility. The outline of the J-PARC is presented with the current status of construction.
Design of carbon therapy facility based on 10 years experience at HIMAC
NASA Astrophysics Data System (ADS)
Noda, K.; Furukawa, T.; Iwata, Y.; Kanai, T.; Kanazawa, M.; Kanematsu, N.; Kitagawa, A.; Komori, M.; Minohara, S.; Murakami, T.; Muramatsu, M.; Sato, S.; Sato, Y.; Shibuya, S.; Torikoshi, M.; Yamada, S.
2006-06-01
Since 1994, the clinical trial for cancer therapy with HIMAC has successfully progressed, and more than 2100 cancer patients have been treated with a carbon beam. Based on the development of the accelerator and irradiation technologies for 10 years, we have designed a new carbon-therapy facility for widespread use in Japan, and key technologies for the new facility have been developed. We describe the conceptual design of the new facility and the status of development for the key technologies.
A Benders based rolling horizon algorithm for a dynamic facility location problem
Marufuzzaman,, Mohammad; Gedik, Ridvan; Roni, Mohammad S.
2016-06-28
This study presents a well-known capacitated dynamic facility location problem (DFLP) that satisfies the customer demand at a minimum cost by determining the time period for opening, closing, or retaining an existing facility in a given location. To solve this challenging NP-hard problem, this paper develops a unique hybrid solution algorithm that combines a rolling horizon algorithm with an accelerated Benders decomposition algorithm. Extensive computational experiments are performed on benchmark test instances to evaluate the hybrid algorithm’s efficiency and robustness in solving the DFLP problem. Computational results indicate that the hybrid Benders based rolling horizon algorithm consistently offers high qualitymore » feasible solutions in a much shorter computational time period than the standalone rolling horizon and accelerated Benders decomposition algorithms in the experimental range.« less
DOT National Transportation Integrated Search
1998-08-01
The report describes the first testing series, Phase, of the first project, Experiment 1, with the Louisiana Transportation Research Center Accelerated Loading Facility. The background to the project is described and details of the trial pavements si...
Observation of Neutron Skyshine from an Accelerator Based Neutron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklyn, C. B.
2011-12-13
A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It ismore » further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.« less
124Sb-Be photo-neutron source for BNCT: Is it possible?
NASA Astrophysics Data System (ADS)
Golshanian, Mohadeseh; Rajabi, Ali Akbar; Kasesaz, Yaser
2016-11-01
In this research a computational feasibility study has been done on the use of 124SbBe photo-neutron source for Boron Neutron Capture Therapy (BNCT) using MCNPX Monte Carlo code. For this purpose, a special beam shaping assembly has been designed to provide an appropriate epithermal neutron beam suitable for BNCT. The final result shows that using 150 kCi of 124Sb, the epithermal neutron flux at the designed beam exit is 0.23×109 (n/cm2 s). In-phantom dose analysis indicates that treatment time for a brain tumor is about 40 min which is a reasonable time. This high activity 124Sb could be achieved using three 50 kCi rods of 124Sb which can be produced in a research reactor. It is clear, that as this activity is several hundred times the activity of a typical cobalt radiotherapy source, issues related to handling, safety and security must be addressed.
Preparing the MAX IV storage rings for timing-based experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stråhlman, C., E-mail: Christian.Strahlman@maxlab.lu.se; Olsson, T., E-mail: Teresia.Olsson@maxlab.lu.se; Leemann, S. C.
2016-07-27
Time-resolved experimental techniques are increasingly abundant at storage ring facilities. Recent developments in accelerator technology and beamline instrumentation allow for simultaneous operation of high-intensity and timing-based experiments. The MAX IV facility is a state-of-the-art synchrotron light source in Lund, Sweden, that will come into operation in 2016. As many storage ring facilities are pursuing upgrade programs employing strong-focusing multibend achromats and passive harmonic cavities (HCs) in high-current operation, it is of broad interest to study the accelerator and instrumentation developments required to enable timing-based experiments at such machines. In particular, the use of hybrid filling modes combined with pulse pickingmore » by resonant excitation or pseudo single bunch has shown promising results. These methods can be combined with novel beamline instrumentation, such as choppers and instrument gating. In this paper we discuss how these techniques can be implemented and employed at MAX IV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Minoru; Sakurai, Yoshinori; Masunaga, Shinichiro
Purpose: To investigate the feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma (MPM) from a viewpoint of dose distribution analysis using Simulation Environment for Radiotherapy Applications (SERA), a currently available BNCT treatment planning system. Methods and Materials: The BNCT treatment plans were constructed for 3 patients with MPM using the SERA system, with 2 opposed anterior-posterior beams. The {sup 1}B concentrations in the tumor and normal lung in this study were assumed to be 84 and 24 ppm, respectively, and were derived from data observed in clinical trials. The maximum, mean, and minimum doses to the tumorsmore » and the normal lung were assessed for each plan. The doses delivered to 5% and 95% of the tumor volume, D{sub 05} and D{sub 95}, were adopted as the representative dose for the maximum and minimum dose, respectively. Results: When the D{sub 05} to the normal ipsilateral lung was 5 Gy-Eq, the D{sub 95} and mean doses delivered to the normal lung were 2.2-3.6 and 3.5-4.2 Gy-Eq, respectively. The mean doses delivered to the tumors were 22.4-27.2 Gy-Eq. The D{sub 05} and D{sub 95} doses to the tumors were 9.6-15.0 and 31.5-39.5 Gy-Eq, respectively. Conclusions: From a viewpoint of the dose-distribution analysis, BNCT has the possibility to be a promising treatment for MPM patients who are inoperable because of age and other medical illnesses.« less
Horiguchi, Hironori; Sato, Tatsuhiko; Kumada, Hiroaki; Yamamoto, Tetsuya; Sakae, Takeji
2015-03-01
The absorbed doses deposited by boron neutron capture therapy (BNCT) can be categorized into four components: α and (7)Li particles from the (10)B(n, α)(7)Li reaction, 0.54-MeV protons from the (14)N(n, p)(14)C reaction, the recoiled protons from the (1)H(n, n) (1)H reaction, and photons from the neutron beam and (1)H(n, γ)(2)H reaction. For evaluating the irradiation effect in tumors and the surrounding normal tissues in BNCT, it is of great importance to estimate the relative biological effectiveness (RBE) for each dose component in the same framework. We have, therefore, established a new method for estimating the RBE of all BNCT dose components on the basis of the microdosimetric kinetic model. This method employs the probability density of lineal energy, y, in a subcellular structure as the index for expressing RBE, which can be calculated using the microdosimetric function implemented in the particle transport simulation code (PHITS). The accuracy of this method was tested by comparing the calculated RBE values with corresponding measured data in a water phantom irradiated with an epithermal neutron beam. The calculation technique developed in this study will be useful for biological dose estimation in treatment planning for BNCT. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
INEL BNCT Research Program annual report, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1993-05-01
This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potentialmore » toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database.« less
Reifschneider, Olga; Schütz, Christian L; Brochhausen, Christoph; Hampel, Gabriele; Ross, Tobias; Sperling, Michael; Karst, Uwe
2015-03-01
An analytical method using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was developed and applied to assess enrichment of 10B-containing p-boronophenylalanine-fructose (BPA-f) and its pharmacokinetic distribution in human tissues after application for boron neutron capture therapy (BNCT). High spatial resolution (50 μm) and limits of detection in the low parts-per-billion range were achieved using a Nd:YAG laser of 213 nm wavelength. External calibration by means of 10B-enriched standards based on whole blood proved to yield precise quantification results. Using this calibration method, quantification of 10B in cancerous and healthy tissue was carried out. Additionally, the distribution of 11B was investigated, providing 10B enrichment in the investigated tissues. Quantitative imaging of 10B by means of LA-ICP-MS was demonstrated as a new option to characterise the efficacy of boron compounds for BNCT.
Geant4 beam model for boron neutron capture therapy: investigation of neutron dose components.
Moghaddasi, Leyla; Bezak, Eva
2018-03-01
Boron neutron capture therapy (BNCT) is a biochemically-targeted type of radiotherapy, selectively delivering localized dose to tumour cells diffused in normal tissue, while minimizing normal tissue toxicity. BNCT is based on thermal neutron capture by stable [Formula: see text]B nuclei resulting in emission of short-ranged alpha particles and recoil [Formula: see text]Li nuclei. The purpose of the current work was to develop and validate a Monte Carlo BNCT beam model and to investigate contribution of individual dose components resulting of neutron interactions. A neutron beam model was developed in Geant4 and validated against published data. The neutron beam spectrum, obtained from literature for a cyclotron-produced beam, was irradiated to a water phantom with boron concentrations of 100 μg/g. The calculated percentage depth dose curves (PDDs) in the phantom were compared with published data to validate the beam model in terms of total and boron depth dose deposition. Subsequently, two sensitivity studies were conducted to quantify the impact of: (1) neutron beam spectrum, and (2) various boron concentrations on the boron dose component. Good agreement was achieved between the calculated and measured neutron beam PDDs (within 1%). The resulting boron depth dose deposition was also in agreement with measured data. The sensitivity study of several boron concentrations showed that the calculated boron dose gradually converged beyond 100 μg/g boron concentration. This results suggest that 100μg/g tumour boron concentration may be optimal and above this value limited increase in boron dose is expected for a given neutron flux.
Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT.
Kobayashi, Tooru; Miura, Kuniaki; Hayashizaki, Noriyosu; Aritomi, Masanori
2014-06-01
A feasibility study on liquid lithium target in the form of a flowing film was performed to evaluate its potential use as a neutron generation target of (7)Li(p,n)(7)Be reaction in BNCT. The target is a windowless-type flowing film on a concave wall. Its configuration was adapted for a proton beam which is 30mm in diameter and with energy and current of up to 3MeV and 20mA, respectively. The flowing film of liquid lithium was 0.6mm in thickness, 50mm in width and 50mm in length. The shapes of the nozzle and concave back wall, which create a stable flowing film jet, were decided based on water experiments. A lithium hydrodynamic experiment was performed to observe the stability of liquid lithium flow behavior. The flowing film of liquid lithium was found to be feasible at temperatures below the liquid lithium boiling saturation of 342°C at the surface pressure of 1×10(-3)Pa. Using a proto-type liquid lithium-circulating loop for BNCT, the stability of the film flow was confirmed for velocities up to 30m/s at 220°C and 250°C in vacuum at a pressure lower than 10(-3) Pa. It is expected that for practical use, a flowing liquid lithium target of a windowless type can solve the problem of radiation damage and target cooling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Low Earth orbital atomic oxygen environmental simulation facility for space materials evaluation
NASA Technical Reports Server (NTRS)
Stidham, Curtis R.; Banks, Bruce A.; Stueber, Thomas J.; Dever, Joyce A.; Rutledge, Sharon K.; Bruckner, Eric J.
1993-01-01
Simulation of low Earth orbit atomic oxygen for accelerated exposure in ground-based facilities is necessary for the durability evaluation of space power system component materials for Space Station Freedom (SSF) and future missions. A facility developed at the National Aeronautics and Space Administrations's (NASA) Lewis Research Center provides accelerated rates of exposure to a directed or scattered oxygen beam, vacuum ultraviolet (VUV) radiation, and offers in-situ optical characterization. The facility utilizes an electron-cyclotron resonance (ECR) plasma source to generate a low energy oxygen beam. Total hemispherical spectral reflectance of samples can be measured in situ over the wavelength range of 250 to 2500 nm. Deuterium lamps provide VUV radiation intensity levels in the 115 to 200 nm range of three to five equivalent suns. Retarding potential analyses show distributed ion energies below 30 electron volts (eV) for the operating conditions most suited for high flux, low energy testing. Peak ion energies are below the sputter threshold energy (approximately 30 eV) of the protective coatings on polymers that are evaluated in the facility, thus allowing long duration exposure without sputter erosion. Neutral species are expected to be at thermal energies of approximately .04 eV to .1 eV. The maximum effective flux level based on polyimide Kapton mass loss is 4.4 x 10 exp 6 atoms/((sq. cm)*s), thus providing a highly accelerated testing capability.
Ion, X-ray, UV and Neutron Microbeam Systems for Cell Irradiation.
Bigelow, A W; Randers-Pehrson, G; Garty, G; Geard, C R; Xu, Y; Harken, A D; Johnson, G W; Brenner, D J
2010-08-08
The array of microbeam cell-irradiation systems, available to users at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University, is expanding. The HVE 5MV Singletron particle accelerator at the facility provides particles to two focused ion microbeam lines: the sub-micron microbeam II and the permanent magnetic microbeam (PMM). Both the electrostatic quadrupole lenses on the microbeam II system and the magnetic quadrupole lenses on the PMM system are arranged as compound lenses consisting of two quadrupole triplets with "Russian" symmetry. Also, the RARAF accelerator is a source for a proton-induced x-ray microbeam (undergoing testing) and is projected to supply protons to a neutron microbeam based on the (7)Li(p, n)(7)Be nuclear reaction (under development). Leveraging from the multiphoton microscope technology integrated within the microbeam II endstation, a UV microspot irradiator - based on multiphoton excitation - is available for facility users. Highlights from radiation-biology demonstrations on single living mammalian cells are included in this review of microbeam systems for cell irradiation at RARAF.
Development work for a superconducting linear collider
NASA Technical Reports Server (NTRS)
Matheisen, Axel
1995-01-01
For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in a reproducible way.
Purdue University National Biomedical Tracer Facility: Project definition phase. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, M.A.
The proposed National Biomedical Tracer Facility (NBTF) will house a high-current accelerator dedicated to production of short-lived radionuclides for biomedical and scientific research. The NBTF will play a vital role in repairing and maintaining the United States` research infrastructure for generation of essential accelerator-based radioisotopes. If properly designed and managed, the NBTF should also achieve international recognition as a Center-of-Excellence for research on radioisotope production methods and for associated education and training. The current report documents the results of a DOE-funded NBTF Project Definition Phase study carried out to better define the technical feasibility and projected costs of establishing andmore » operating the NBTF. This report provides an overview of recommended Facility Design and Specifications, including Accelerator Design, Building Design, and the associated Construction Cost Estimates and Schedule. It is recommended that the NBTF be established as an integrated, comprehensive facility for meeting the diverse production, research, and educational missions set forth in previous documents. Based on an analysis of the projected production demands that will be placed on the NBTF, it appears that a 70 MeV, 1 mA, negative ion cyclotron will offer a good balance between production capabilities and the costs of accelerator purchase and operation. A preliminary architectural plan is presented for a facility designed specifically to fulfill the functions of the NBTF in a cost-effective manner. This report also presents a detailed analysis of the Required Federal State, and Local Permits that may be needed to establish the NBTF, along with schedules and cost estimates for obtaining these permits. The Handling, Storage, and Disposal of Radioactive Waste will pose some significant challenges in the operation of the NBTF, but at this stage of planning the associated problems do not appear to be prohibitive.« less
Preliminary study of MAGAT polymer gel dosimetry for boron-neutron capture therapy
NASA Astrophysics Data System (ADS)
Hayashi, Shin-ichiro; Sakurai, Yoshinori; Uchida, Ryohei; Suzuki, Minoru; Usui, Shuji; Tominaga, Takahiro
2015-01-01
MAGAT gel dosimeter with boron is irradiated in Heavy Water Neutron Irradiation Facility (HWNIF) of Kyoto University Research Reactor (KUR). The cylindrical gel phantoms are exposed to neutron beams of three different energy spectra (thermal neutron rich, epithermal and fast neutron rich and the mixed modes) in air. Preliminary results corresponding to depth-dose responses are obtained as the transverse relaxation rate (R2=1/T2) from magnetic resonance imaging data. As the results MAGAT gel dosimeter has the higher sensitivity on thermal neutron than on epi-thermal and fast neutron, and the gel with boron showed an enhancement and a change in the depth-R2 response explicitly. From these results, it is suggested that MAGAT gel dosimeter can be an effective tool in BNCT dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halavanau, A.; Piot, P.
2015-12-01
Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.
The accelerator facility of the Heidelberg Ion-Beam Therapy Centre (HIT)
NASA Astrophysics Data System (ADS)
Peters, Andreas
The following sections are included: * Introduction * Beam parameters * General layout of the HIT facility * The accelerator chain in detail * Operational aspects of a particle therapy facility * 24/7 accelerator operation at 335 days per year * Safety and regulatory aspects * Status and perspectives * References
NASA Astrophysics Data System (ADS)
Takada, M.; Kamada, S.; Suda, M.; Fujii, R.; Nakamura, M.; Hoshi, M.; Sato, H.; Endo, S.; Hamano, T.; Arai, S.; Higashimata, A.
2012-10-01
We developed a real-time and non-destructive method of beam profile measurement on a target under large beam current irradiation, and without any complex radiation detectors or electrical circuits. We measured the beam profiles on a target by observing the target temperature using an infrared-radiation thermometer camera. The target temperatures were increased and decreased quickly by starting and stopping the beam irradiation within 1 s in response speed. Our method could trace beam movements rapidly. The beam size and position were calibrated by measuring O-ring heat on the target. Our method has the potential to measure beam profiles at beam current over 1 mA for proton and deuteron with the energy around 3 MeV and allows accelerator operators to adjust the beam location during beam irradiation experiments without decreasing the beam current.
Induced radioactivity in the blood of cancer patients following Boron Neutron Capture Therapy
Fujiwara, Keiko; Kinashi, Yuko; Takahashi, Tomoyuki; Yashima, Hiroshi; Kurihara, Kouta; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Takahashi, Sentaro
2013-01-01
Since 1990, Boron Neutron Capture Therapy (BNCT) has been used for over 400 cancer patients at the Kyoto University Research Reactor Institute (KURRI). After BNCT, the patients are radioactive and their 24Na and 38Cl levels can be detected via a Na-I scintillation counter. This activity is predominantly due to 24Na, which has a half-life of 14.96 h and thus remains in the body for extended time periods. Radioactive 24Na is mainly generated from 23Na in the target tissue that is exposed to the neutron beam in BNCT. The purpose of this study is to evaluate the relationship between the radioactivity of blood 24Na following BNCT and the absorbed gamma ray dose in the irradiated field. To assess blood 24Na, 1 ml of peripheral blood was collected from 30 patients immediately after the exposure, and the radioactivity of blood 24Na was determined using a germanium counter. The activity of 24Na in the blood correlated with the absorbed gamma ray doses in the irradiated field. For the same absorbed gamma ray dose in the irradiated field, the activity of blood 24Na was higher in patients with neck or lung tumors than in patients with brain or skin tumors. The reasons for these findings are not readily apparent, but the difference in the blood volume and the ratio of bone to soft tissue in the irradiated field, as well as the dose that leaked through the clinical collimator, may be responsible. PMID:23392825
Induced radioactivity in the blood of cancer patients following Boron Neutron Capture Therapy.
Fujiwara, Keiko; Kinashi, Yuko; Takahashi, Tomoyuki; Yashima, Hiroshi; Kurihara, Kouta; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Takahashi, Sentaro
2013-07-01
Since 1990, Boron Neutron Capture Therapy (BNCT) has been used for over 400 cancer patients at the Kyoto University Research Reactor Institute (KURRI). After BNCT, the patients are radioactive and their (24)Na and (38)Cl levels can be detected via a Na-I scintillation counter. This activity is predominantly due to (24)Na, which has a half-life of 14.96 h and thus remains in the body for extended time periods. Radioactive (24)Na is mainly generated from (23)Na in the target tissue that is exposed to the neutron beam in BNCT. The purpose of this study is to evaluate the relationship between the radioactivity of blood (24)Na following BNCT and the absorbed gamma ray dose in the irradiated field. To assess blood (24)Na, 1 ml of peripheral blood was collected from 30 patients immediately after the exposure, and the radioactivity of blood (24)Na was determined using a germanium counter. The activity of (24)Na in the blood correlated with the absorbed gamma ray doses in the irradiated field. For the same absorbed gamma ray dose in the irradiated field, the activity of blood (24)Na was higher in patients with neck or lung tumors than in patients with brain or skin tumors. The reasons for these findings are not readily apparent, but the difference in the blood volume and the ratio of bone to soft tissue in the irradiated field, as well as the dose that leaked through the clinical collimator, may be responsible.
NASA Astrophysics Data System (ADS)
Daum, Eric
2000-12-01
The accelerator-based intense D-Li neutron source International Fusion Materials Irradiation Facility (IFMIF) provides very suitable irradiation conditions for fusion materials development with the attractive option of accelerated irradiations. Investigations show that a neutron moderator made of tungsten and placed in the IFMIF test cell can further improve the irradiation conditions. The moderator softens the IFMIF neutron spectrum by enhancing the fraction of low energy neutrons. For displacement damage, the ratio of point defects to cascades is more DEMO relevant and for tritium production in Li-based breeding ceramic materials it leads to a preferred production via the 6Li(n,t) 4He channel as it occurs in a DEMO breeding blanket.
Influence of p53 status on the effects of boron neutron capture therapy in glioblastoma.
Seki, Keiko; Kinashi, Yuko; Takahashi, Sentaro
2015-01-01
The tumor suppressor gene p53 is mutated in glioblastoma. We studied the relationship between the p53 gene and the biological effects of boron neutron capture therapy (BNCT). The human glioblastoma cells; A172, expressing wild-type p53, and T98G, with mutant p53, were irradiated by the Kyoto University Research Reactor (KUR). The biological effects after neutron irradiation were evaluated by the cell killing effect, 53BP1 foci assay and apoptosis induction. The survival-fraction data revealed that A172 was more radiosensitive than T98G, but the difference was reduced when boronophenylalanine (BPA) was present. Both cell lines exhibited similar numbers of foci, suggesting that the initial levels of DNA damage did not depend on p53 function. Detection of apoptosis revealed a lower rate of apoptosis in the T98G. BNCT causes cell death in glioblastoma cells, regardless of p53 mutation status. In T98G cells, cell killing and apoptosis occurred effectively following BNCT. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Lee, Pei-Yi; Liu, Yuan-Hao; Jiang, Shiang-Huei
2014-06-01
High energy proton beam (>8MeV) is favorable for producing neutrons with high yield. However, the produced neutrons are of high energies. These high energy neutrons can cause severe fast neutron contamination and degrade the BNCT treatment quality if they are not appropriately moderated. Hence, this study aims to briefly discuss the issue, from the viewpoint of fast neutron contamination control, whether high energy proton beam is ideal for AB-BNCT or not. In this study, D2O, PbF4, CaF2, and Fluental(™) were used standalone as moderator materials to slow down 1-, 6-, and 10-MeV parallelly incident neutrons. From the calculated results, we concluded that neutrons produced by high energy proton beam could not be easily moderated by a single moderator to an acceptable contamination level and still with reasonable epithermal neutron beam intensity. Hence, much more complicated and sophisticated designs of beam shaping assembly have to be developed when using high energy proton beams. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
1996-11-01
The Louisiana Transportation Research Center's (LTRC) Pavement Research Facility (PRF) is a permanent, outdoor, full-scale testing laboratory located on a six site in Port Allen, Louisiana. The purpose of this facility is to test and quantify full-sc...
The CSU Accelerator and FEL Facility
NASA Astrophysics Data System (ADS)
Biedron, Sandra; Milton, Stephen; D'Audney, Alex; Edelen, Jonathan; Einstein, Josh; Harris, John; Hall, Chris; Horovitz, Kahren; Martinez, Jorge; Morin, Auralee; Sipahi, Nihan; Sipahi, Taylan; Williams, Joel
2014-03-01
The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode drive linac will be used in conjunction with a hybrid undulator capable of producing THz radiation. Details of the systems used in CSU Accelerator Facility are discussed.
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Lizee, Arnaud
1996-01-01
The object of this work, started in March of 1995, is to approach the problem of determining the transport conditions (and effects of residual acceleration) during the plane-front directional solidification of a tin-bismuth alloy under low gravity conditions. The work involves using a combination of 2- and 3-D numerical models, scaling analyses, 1-D models and the results of ground-based and low-gravity experiments. The experiments conducted in the MEPHISTO furnace facility during the USMP-3 spaceflight which took place earlier this year (22 Feb. - 6 Mar. 1996). This experiment represents an unprecedented opportunity to make a quantitative correlation between residual accelerations and the response of an actual experimental solidification system
Poster - Thur Eve - 02: Regulatory oversight of the robotic radiosurgery facilities.
Broda, K
2012-07-01
Following a recent review of the Class II Nuclear Facilities and Prescribed Equipment Regulations and regulatory oversight of particle accelerators, the Canadian Nuclear Safety Commission (CNSC) has changed its policy concerning the regulation of particle accelerators. In November 2011, the CNSC began to exercise its regulatory authority with respect to all particle accelerators operating at a beam energy of 1 (one) MeV or greater. The CNSC already licences and inspects particle accelerators capable of operating at or above 10 MeV. The decision to now include low energy particle accelerators (i.e., those operating at or above 1 MeV) ensures adequate, uniform and consistent regulatory oversight for all Class II accelerators. The CNSC expects these facilities to comply with CNSC requirements by December 2013. Besides conventional linear accelerators of lower energy (6 MeV or below) typically found in cancer clinics, two types of equipment now fall under the CNSC's regulatory oversight as a result of the above change: robotic radiosurgery and tomotherapy equipment and facilities. A number of clinics in Canada already operates these types of equipment and facilities. The safety aspects of radiosurgery equipment differ slightly from those for conventional linear accelerators. This poster aims to present an approach taken by the CNSC to regulate robotic radiosurgery equipment and facilities. The presentation will explain how to meet regulatory requirements of the Class II Nuclear Facilities and Prescribed Equipment Regulations by licensees operating or planning to acquire these types of equipment and facilities. © 2012 American Association of Physicists in Medicine.
Radiation absorbed dose estimates for 18F-BPA PET.
Kono, Yuzuru; Kurihara, Hiroaki; Kawamoto, Hiroshi; Yasui, Naoko; Honda, Naoki; Igaki, Hiroshi; Itami, Jun
2017-09-01
Background Boron neutron capture therapy (BNCT) is a molecular radiation therapy approach based on the 10 B (n, α) 7 Li nuclear reaction in cancer cells. In BNCT, delivery of 10 B in the form of 4-borono-phenylalanine conjugated with fructose (BPA-fr) to the cancer cells is important. The PET tracer 4-borono-2-18F-fluoro-phenylalanine (FBPA) has been used to predict the accumulation of BPA-fr before BNCT. Purpose To determine the biodistribution and dosimetric parameters in 18F-BPA PET/CT studies. Material and Methods Human biokinetic data were obtained during clinical 18F-BPA PET studies between February and June 2015 at one institution. Nine consecutive patients were studied prospectively. The internal radiation dose was calculated on the basis of radioactivity data from blood, urine, and normal tissue of the heart, liver, spleen, kidney, and other parts of the body at each time point using OLINDA/EXM1.1 program. We compared our calculations with published 18F-FDG data. Results Adult patients (3 men, 3 women; age range, 28-68 years) had significantly smaller absorbed doses than pediatric patients (3 patients; age range, 5-12 years) ( P = 0.003). The mean effective dose was 57% lower in adult patients compared with pediatric patients. Mean effective doses for 18F-BPA were 25% lower than those for 18F-FDG presented in International Commission of Radiation Protection (ICRP) publication 106. Conclusion We found significant differences in organ absorbed doses for 18F-BPA against those for 18F-FDG presented in ICRP publication 106. Mean effective doses for 18F-BPA were smaller than those for 18F-FDG in the publication by 0.5-38% (mean difference, 25%).
Kageji, T; Mizobuchi, Y; Nagahiro, S; Nakagawa, Y; Kumada, H
2014-06-01
The purpose of this study was to clarify the correlation between the radiation dose and histopathological findings in patients with glioblastoma multiforme (GBM) treated with boron neutron capture therapy (BNCT). Histopathological studies were performed on specimens from 8 patients, 3 had undergone salvage surgery and 5 were autopsied. For histopathological cure of GBM at the primary site, the optimal minimal dose to the gross tumor volume (GTV) and the clinical target volume (CTV) were 68Gy(w) and 44Gy(w), respectively. Copyright © 2014. Published by Elsevier Ltd.
Andoh, Tooru; Fujimoto, Takuya; Sudo, Tamotsu; Suzuki, Minoru; Sakurai, Yoshinori; Sakuma, Toshiko; Moritake, Hiroshi; Sugimoto, Tohru; Takeuchi, Tamotsu; Sonobe, Hiroshi; Epstein, Alan L; Fukumori, Yoshinobu; Ono, Koji; Ichikawa, Hideki
2014-06-01
Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In our previous study, the tumor disappeared under boron neutron capture therapy (BNCT) on subcutaneously-transplanted CCS-bearing animals. In the present study, the tumor disappeared under this therapy on model mice intramuscularly implanted with three different human CCS cells. BNCT led to the suppression of tumor-growth in each of the different model mice, suggesting its potentiality as an alternative to, or integrative option for, the treatment of CCS. Copyright © 2013 Elsevier Ltd. All rights reserved.
Erosion rate diagnostics in ion thrusters using laser-induced fluorescence
NASA Technical Reports Server (NTRS)
Gaeta, C. J.; Matossian, J. N.; Turley, R. S.; Beattie, J. R.; Williams, J. D.; Williamson, W. S.
1993-01-01
We have used laser-induced fluorescence (LIF) to monitor the charge-exchange ion erosion of the molybdenum accelerator electrode in ion thrusters. This real-time, nonintrusive method was implemented by operating a 30cm-diam ring-cusp thruster using xenon propellant. With the thruster operating at a total power of 5 kW, laser radiation at a wavelength of 390 nm (corresponding to a ground state atomic transition of molybdenum) was directed through the extracted ion beam adjacent to the downstream surface of the molybdenum accelerator electrode. Molybdenum atoms, sputtered from this surface as a result of charge-exchange ion erosion, were excited by the laser radiation. The intensity of the laser-induced fluorescence radiation, which is proportional to the sputter rate of the molybdenum atoms, was measured and correlated with variations in thruster operating conditions such as accelerator electrode voltage, accelerator electrode current, and test facility background pressure. We also demonstrated that the LIF technique has sufficient sensitivity and spatial resolution to evaluate accelerator electrode lifetime in ground-based test facilities.
State of the art in electromagnetic modeling for the Compact Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, Arno; Kabel, Andreas; Lee, Lie-Quan
SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefieldmore » damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.« less
The status and road map of Turkish Accelerator Center (TAC)
NASA Astrophysics Data System (ADS)
Yavaş, Ö.
2012-02-01
Turkish Accelerator Center (TAC) project is supported by the State Planning Organization (SPO) of Turkey and coordinated by Ankara University. After having completed the Feasibility Report (FR) in 2000 and the Conceptual Design Report (CDR) in 2005, third phase of the project started in 2006 as an inter-universities project including ten Turkish Universities with the support of SPO. Third phase of the project has two main scientific goals: to prepare the Technical Design Report (TDR) of TAC and to establish an Infrared Free Electron Laser (IR FEL) facility, named as Turkish Accelerator and Radiation Laboratory at Ankara (TARLA) as a first step. The facility is planned to be completed in 2015 and will be based on 15-40 MeV superconducting linac. In this paper, main aims, national and regional importance, main parts main parameters, status and road map of Turkish Accelerator Center will be presented.
Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments
NASA Astrophysics Data System (ADS)
Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.
2016-09-01
Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.
DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.
Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji
2016-03-01
Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV.
Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi
2013-02-01
Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.
Kueffer, Peter J.; Maitz, Charles A.; Khan, Aslam A.; Schuster, Seth A.; Shlyakhtina, Natalia I.; Jalisatgi, Satish S.; Brockman, John D.; Nigg, David W.; Hawthorne, M. Frederick
2013-01-01
The application of boron neutron capture therapy (BNCT) following liposomal delivery of a 10B-enriched polyhedral borane and a carborane against mouse mammary adenocarcinoma solid tumors was investigated. Unilamellar liposomes with a mean diameter of 134 nm or less, composed of an equimolar mixture of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine and incorporating Na3[1-(2′-B10H9)-2-NH3B10H8] in the aqueous interior and K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer, were injected into the tail veins of female BALB/c mice bearing right flank EMT6 tumors. Biodistribution studies indicated that two identical injections given 24 h apart resulted in tumor boron levels exceeding 67 µg/g tumor at 54 h—with tumor/blood boron ratios being greatest at 96 h (5.68:1; 43 µg boron/g tumor)—following the initial injection. For BNCT experiments, tumor-bearing mice were irradiated 54 h after the initial injection for 30 min with thermal neutrons, resulting in a total fluence of 1.6 × 1012 neutrons per cm2 (±7%). Significant suppression of tumor growth was observed in mice given BNCT vs. control mice (only 424% increase in tumor volume at 14 d post irradiation vs. 1551% in untreated controls). In a separate experiment in which mice were given a second injection/irradiation treatment 7 d after the first, the tumor growth was vastly diminished (186% tumor volume increase at 14 d). A similar response was obtained for mice irradiated for 60 min (169% increase at 14 d), suggesting that neutron fluence was the limiting factor controlling BNCT efficacy in this study. PMID:23536304
Wada, Yuki; Hirose, Katsumi; Harada, Takaomi; Sato, Mariko; Watanabe, Tsubasa; Anbai, Akira; Hashimoto, Manabu; Takai, Yoshihiro
2018-01-01
Abstract Boron neutron capture therapy (BNCT) can potentially deliver high linear energy transfer particles to tumor cells without causing severe damage to surrounding normal tissue, and may thus be beneficial for cases with characteristics of infiltrative growth, which need a wider irradiation field, such as glioblastoma multiforme. Hypoxia is an important factor contributing to resistance to anticancer therapies such as radiotherapy and chemotherapy. In this study, we investigated the impact of oxygen status on 10B uptake in glioblastoma cells in vitro in order to evaluate the potential impact of local hypoxia on BNCT. T98G and A172 glioblastoma cells were used in the present study, and we examined the influence of oxygen concentration on cell viability, mRNA expression of L-amino acid transporter 1 (LAT1), and the uptake amount of 10B-BPA. T98G and A172 glioblastoma cells became quiescent after 72 h under 1% hypoxia but remained viable. Uptake of 10B-BPA, which is one of the agents for BNCT in clinical use, decreased linearly as oxygen levels were reduced from 20% through to 10%, 3% and 1%. Hypoxia with <10% O2 significantly decreased mRNA expression of LAT1 in both cell lines, indicating that reduced uptake of 10B-BPA in glioblastoma in hypoxic conditions may be due to reduced expression of this important transporter protein. Hypoxia inhibits 10B-BPA uptake in glioblastoma cells in a linear fashion, meaning that approaches to overcoming local tumor hypoxia may be an effective method of improving the success of BNCT treatment. PMID:29315429
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santa Cruz, G. A.; Gonzalez, S. J.; Bertotti, J.
2009-10-15
Purpose: The purpose of this study is to assess the potential of dynamic infrared imaging (DIRI) as a functional, noninvasive technique for evaluating the skin acute toxicity and tumor control within the framework of the Argentine boron neutron capture therapy (BNCT) program for cutaneous malignant melanoma. Methods: Two patients enrolled in the Argentine phase I/II BNCT clinical trial for cutaneous malignant melanoma were studied with DIRI. An uncooled infrared camera, providing a video output signal, was employed to register the temperature evolution of the normal skin and tumor regions in patients subjected to a mild local cooling (cold stimulus). Inmore » order to study the spatial correlation between dose and acute skin reactions, three-dimensional representations of the superficial dose delivered to skin were constructed and cameralike projections of the dose distribution were coregistered with visible and infrared images. Results: The main erythematous reaction was observed clinically between the second and fifth week post-BNCT. Concurrently, with its clinical onset, a reactive increase above the basal skin temperature was observed with DIRI in the third week post-BNCT within regions that received therapeutic doses. Melanoma nodules appeared as highly localized hyperthermic regions. 2 min after stimulus, these regions reached a temperature plateau and increased in size. Temperature differences with respect to normal skin up to 10 deg. C were observed in the larger nodules. Conclusions: Preliminary results suggest that DIRI, enhanced by the application of cold stimuli, may provide useful functional information associated with the metabolism and vasculature of tumors and inflammatory processes related to radiation-induced changes in the skin as well. These capabilities are aimed at complementing the clinical observations and standard imaging techniques, such as CT and Doppler ultrasound.« less
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as inpatient rehabilitation...) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient.... (2) Approval of payment. An inpatient rehabilitation facility's request for an accelerated payment...
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as inpatient rehabilitation...) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient.... (2) Approval of payment. An inpatient rehabilitation facility's request for an accelerated payment...
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as inpatient rehabilitation...) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient.... (2) Approval of payment. An inpatient rehabilitation facility's request for an accelerated payment...
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as inpatient rehabilitation...) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient.... (2) Approval of payment. An inpatient rehabilitation facility's request for an accelerated payment...
Real time spectrometer for thermal neutrons from radiotherapic accelerators
NASA Astrophysics Data System (ADS)
Mozzanica, A.; Bartesaghi, G.; Bolognini, D.; Conti, V.; Mascagna, V.; Prest, M.; Scazzi, S.; Cappelletti, P.; Frigerio, M.; Gelosa, S.; Monti, A.; Ostinelli, A.; Bevilacqua, R.; Giannini, G.; Totaro, P.; Vallazza, E.
2007-10-01
Radiotherapy accelerators can produce high energy photon beams for deep tumour treatments. Photons with energies greater than 8 MeV produce neutrons via photoproduction. The PHONES (PHOto NEutron Source) project is developing a neutron moderator to use the photoproduced neutrons for BNCT (Boron Neutron Capture Therapy) in hospital environments. In this framework we are developing a real time spectrometer for thermal neutrons exploiting the bunch structure of the beam. Since the beam is produced by a linear accelerator, in fact, particles are sent to the patient in bunches with a rate of 150-300 Hz depending on the beam type and energy. The neutron spectrum is usually measured with integrating detectors such as bubble dosimeters or TLDs, which integrate over a time interval and an energy one. We are developing a scintillator detector to measure the neutron spectrum in real time in the interval between bunches, that is in the thermal region. The signals from the scintillator are discriminated and sampled by a dedicated clock in a Cyclone II FPGA by Altera, thus obtaining the neutron time of flight spectrum. The exploited physical process in ordinary plastic scintillators is neutron capture by H with a subsequent γ emission. The measured TOF spectrum has been compared with a BF 3 counter one. A dedicated simulation with MCNP is being developed to extract the energy spectrum from the TOF one. The paper will present the results of the prototype measurements and the status of the simulation.
Kumar, Sandeep; Kumar, Sugam; Katharria, Y S; Safvan, C P; Kanjilal, D
2008-05-01
A computerized system for in situ deep level characterization during irradiation in semiconductors has been set up and tested in the beam line for materials science studies of the 15 MV Pelletron accelerator at the Inter-University Accelerator Centre, New Delhi. This is a new facility for in situ irradiation-induced deep level studies, available in the beam line of an accelerator laboratory. It is based on the well-known deep level transient spectroscopy (DLTS) technique. High versatility for data manipulation is achieved through multifunction data acquisition card and LABVIEW. In situ DLTS studies of deep levels produced by impact of 100 MeV Si ions on Aun-Si(100) Schottky barrier diode are presented to illustrate performance of the automated DLTS facility in the beam line.
Thomas Jefferson National Accelerator Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh
The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. Themore » technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Young Min; Green, A.; Lumpkin, A. H.
2016-09-16
A short bunch of relativistic particles or a short-pulse laser perturbs the density state of conduction electrons in a solid crystal and excites wakefields along atomic lattices in a crystal. Under a coupling condition the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients in principle since the density of charge carriers (conduction electrons) in solids n 0 = ~ 10 20 – 10 23 cm -3 is significantly higher than what can be obtained in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The dechanneling rate can be reduced andmore » the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and NIU. In the FAST facility, the electron beamline was successfully commissioned at 50 MeV and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration POC test. Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a stable generation of single-cycle laser pulses with tens of Petawatt power based on thin film compression (TFC) technique has been investigated for target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA). The experimental plan with a nanometer foil is discussed with an available test facility such as Extreme Light Infrastructure – Nuclear Physics (ELI-NP).« less
NASA Astrophysics Data System (ADS)
Shin, Y. M.; Green, A.; Lumpkin, A. H.; Thurman-Keup, R. M.; Shiltsev, V.; Zhang, X.; Farinella, D. M.-A.; Taborek, P.; Tajima, T.; Wheeler, J. A.; Mourou, G.
2017-03-01
A short bunch of relativistic particles, or a short-pulse laser, perturb the density state of conduction electrons in a solid crystal and excite wakefields along atomic lattices in a crystal. Under a coupling condition between a driver and plasma, the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients [1], in principle, since the density of charge carriers (conduction electrons) in solids n0 = 1020 - 1023 cm-3 is significantly higher than what was considered above in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The de-channeling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from the Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and Northern Illinois University (NIU). In the FAST facility, the electron beamline was successfully commissioned at 50 MeV, and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration proof-of-concept (POC). Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a stable generation of single-cycle laser pulses with tens of Petawatt power based on the thin film compression (TFC) technique has been investigated for target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA). The experimental plan with a nanometer foil is discussed with an available test facility such as Extreme Light Infrastructure - Nuclear Physics (ELI-NP).
Design study of multi-imaging plate system for BNCT irradiation field at Kyoto university reactor.
Tanaka, Kenichi; Sakurai, Yoshinori; Kajimoto, Tsuyoshi; Tanaka, Hiroki; Takata, Takushi; Endo, Satoru
2016-09-01
The converter configuration for a multi-imaging plate system was investigated for the application of quality assurance in the irradiation field profile for boron neutron capture therapy. This was performed by the simulation calculation using the PHITS code in the fields at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. The converter constituents investigated were carbon for gamma rays, and polyethylene with and without LiF at varied (6)Li concentration for thermal, epithermal, and fast neutrons. Consequently, potential combinations of the converters were found for two components, gamma rays and thermal neutrons, for the standard thermal neutron mode and three components of gamma rays, epithermal neutrons, and thermal or fast neutrons, for the standard mixed or epithermal neutron modes, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Present Status of Radiotherapy in Clinical Practice
NASA Astrophysics Data System (ADS)
Duehmke, Eckhart
Aims of radiation oncology are cure from malignant diseases and - at the same time preservation of anatomy (e.g. female breast, uterus, prostate) and organ functions (e.g. brain, eye, voice, sphincter ani). At present, methods and results of clinical radiotherapy (RT) are based on experiences with natural history and radiobiology of malignant tumors in properly defined situations as well as on technical developments since World War II in geometrical and biological treatment planning in teletherapy and brachytherapy. Radiobiological research revealed tolerance limits of healthy tissues to be respected, effective total treatment doses of high cure probability depending on histology and tumor volume, and - more recently - altered fractionation schemes to be adapted to specific growth fractions and intrinsic radiosensitivities of clonogenic tumor cells. In addition, Biological Response Modifiers (BRM), such as cis-platinum, oxygen and hyperthermia may steepen cell survival curves of hypoxic tumor cells, others - such as tetrachiordekaoxid (TCDO) - may enhance repair of normal tissues. Computer assisted techniques in geometrical RT-planning based on individual healthy and pathologic anatomy (CT, MRT) provide high precision RT for well defined brain lesions by using dedicated linear accelerators (Stereotaxy). CT-based individual tissue compensators help with homogenization of distorted dose distributions in magna field irradiation for malignant lymphomas and with total body irradiation (TBI) before allogeneic bone marrow transplantation, e.g. for leukemia. RT with fast neutrons, Boron Neutron Capture Therapy (BNCT), RT with protons and heavy ions need to be tested in randomized trials before implementation into clinical routine.
Jung, Joo-Young; Yoon, Do-Kun; Barraclough, Brendan; Lee, Heui Chang; Suh, Tae Suk; Lu, Bo
2017-06-13
The aim of this study is to compare between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT) and to analyze dose escalation using a Monte Carlo simulation. We simulated a proton beam passing through the water with a boron uptake region (BUR) in MCNPX. To estimate the interaction between neutrons/protons and borons by the alpha particle, the simulation yielded with a variation of the center of the BUR location and proton energies. The variation and influence about the alpha particle were observed from the percent depth dose (PDD) and cross-plane dose profile of both the neutron and proton beams. The peak value of the maximum dose level when the boron particle was accurately labeled at the region was 192.4% among the energies. In all, we confirmed that prompt gamma rays of 478 keV and 719 keV were generated by the nuclear reactions in PBFT and BNCT, respectively. We validated the dramatic effectiveness of the alpha particle, especially in PBFT. The utility of PBFT was verified using the simulation and it has a potential for application in radiotherapy.
Barraclough, Brendan; Lee, Heui Chang; Suh, Tae Suk; Lu, Bo
2017-01-01
The aim of this study is to compare between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT) and to analyze dose escalation using a Monte Carlo simulation. We simulated a proton beam passing through the water with a boron uptake region (BUR) in MCNPX. To estimate the interaction between neutrons/protons and borons by the alpha particle, the simulation yielded with a variation of the center of the BUR location and proton energies. The variation and influence about the alpha particle were observed from the percent depth dose (PDD) and cross-plane dose profile of both the neutron and proton beams. The peak value of the maximum dose level when the boron particle was accurately labeled at the region was 192.4% among the energies. In all, we confirmed that prompt gamma rays of 478 keV and 719 keV were generated by the nuclear reactions in PBFT and BNCT, respectively. We validated the dramatic effectiveness of the alpha particle, especially in PBFT. The utility of PBFT was verified using the simulation and it has a potential for application in radiotherapy. PMID:28427153
Beam-Dynamics Analysis of Long-Range Wakefield Effects on the SCRF Cavities at the Fast Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Young-Min; Bishofberger, Kip; Carlsten, Bruce
Long-range wakefields in superconducting RF (SCRF) cavities create complicated effects on beam dynamics in SCRF-based FEL beamlines. The driving bunch excites effectively an infinite number of structure modes (including HOMs) which oscillate within the SCRF cavity. Couplers with loads are used to damp the HOMs. However, these HOMs can persist for long periods of time in superconducting structures, which leads to long-range wakefields. Clear understanding of the long-range wakefield effects is a critical element for risk mitigation of future SCRF accelerators such as XFEL at DESY, LCLS-II XFEL, and MaRIE XFEL. We are currently developing numerical tools for simulating long-rangemore » wakefields in SCRF accelerators and plan to experimentally verify the tools by measuring these wakefields at the Fermilab Accelerator Science and Technology (FAST) facility. This paper previews the experimental conditions at the FAST 50 MeV beamline based on the simulation results.« less
An international dosimetry exchange for BNCT part II: computational dosimetry normalizations.
Riley, K J; Binns, P J; Harling, O K; Albritton, J R; Kiger, W S; Rezaei, A; Sköld, K; Seppälä, T; Savolainen, S; Auterinen, I; Marek, M; Viererbl, L; Nievaart, V A; Moss, R L
2008-12-01
The meaningful sharing and combining of clinical results from different centers in the world performing boron neutron capture therapy (BNCT) requires improved precision in dose specification between programs. To this end absorbed dose normalizations were performed for the European clinical centers at the Joint Research Centre of the European Commission, Petten (The Netherlands), Nuclear Research Institute, Rez (Czech Republic), VTT, Espoo (Finland), and Studsvik, Nyköping (Sweden). Each European group prepared a treatment plan calculation that was bench-marked against Massachusetts Institute of Technology (MIT) dosimetry performed in a large, water-filled phantom to uniformly evaluate dose specifications with an estimated precision of +/-2%-3%. These normalizations were compared with those derived from an earlier exchange between Brookhaven National Laboratory (BNL) and MIT in the USA. Neglecting the uncertainties related to biological weighting factors, large variations between calculated and measured dose are apparent that depend upon the 10B uptake in tissue. Assuming a boron concentration of 15 microg g(-1) in normal tissue, differences in the evaluated maximum dose to brain for the same nominal specification of 10 Gy(w) at the different facilities range between 7.6 and 13.2 Gy(w) in the trials using boronophenylalanine (BPA) as the boron delivery compound and between 8.9 and 11.1 Gy(w) in the two boron sulfhydryl (BSH) studies. Most notably, the value for the same specified dose of 10 Gy(w) determined at the different participating centers using BPA is significantly higher than at BNL by 32% (MIT), 43% (VTT), 49% (JRC), and 74% (Studsvik). Conversion of dose specification is now possible between all active participants and should be incorporated into future multi-center patient analyses.
Design considerations and test facilities for accelerated radiation effects testing
NASA Technical Reports Server (NTRS)
Price, W. E.; Miller, C. G.; Parker, R. H.
1972-01-01
Test design parameters for accelerated dose rate radiation effects tests for spacecraft parts and subsystems used in long term mission (years) are detailed. A facility for use in long term accelerated and unaccelerated testing is described.
Production of negatively charged radioactive ion beams
Liu, Y.; Stracener, D. W.; Stora, T.
2017-02-15
Beams of short-lived radioactive nuclei are needed for frontier experimental research in nuclear structure, reactions, and astrophysics. Negatively charged radioactive ion beams have unique advantages and allow for the use of a tandem accelerator for post-acceleration, which can provide the highest beam quality and continuously variable energies. Negative ion beams can be obtained with high intensity and some unique beam purification techniques based on differences in electronegativity and chemical reactivity can be used to provide beams with high purity. This article describes the production of negative radioactive ion beams at the former holifield radioactive ion beam facility at Oak Ridgemore » National Laboratory and at the CERN ISOLDE facility with emphasis on the development of the negative ion sources employed at these two facilities.« less
Suter, Martin
2010-01-01
Accelerator mass spectrometry (AMS) was invented for the detection of radiocarbon at natural isotopic concentrations (10(-12) to 10(-15)) more than 30 years ago. Meanwhile this method has also been applied for the analysis of many other long-lived radioisotopes, which are found at very low concentrations. The first investigations were made at large tandem accelerators originally built for nuclear physics research and operating at voltages of 6-12 MV. Today dedicated instruments are mostly used for AMS, which are optimized for associated applications. In the past 15 years, a new generation of much smaller instruments has been developed. For many years it was believed that accelerators with voltages of 2 MV or higher are needed to eliminate the molecular interferences. At these energies the ions are predominantly stripped to charge state 3+, thereby removing the binding electrons of the molecules. In contrast, the new compact facilities use 1+ or 2+ ions. In this case the molecular destruction process is based on molecule-atom collisions in the gas cell. The cross sections for this destruction are sufficiently large that the intensity of molecular components such as (12)CH(2) and (13)CH can be reduced by 10 orders of magnitude. These new facilities can be built much smaller due to the lower energies. Universal instruments providing analysis for many isotopes over the whole range of periodic table have a space requirement of about 4 x 6 m(2); dedicated radiocarbon facilities based on a 200 kV accelerator have a footprint of about 2.5 x 3 m(2). This smallest category of instruments use special technologies: The high voltage terminal with the gas stripper canal is vacuum insulated and the gas is pumped to ground potential through a ceramic pipe. A conventional 200 kV power supply provides the terminal voltage from outside. A review of this new generation of compact AMS facilities is given. Design considerations and performance of these new instruments will be presented. With these developments, new AMS instruments are not much larger than conventional mass spectrometers, allowing a significant reduction in cost.
NASA Astrophysics Data System (ADS)
Eguiraun, M.; Jugo, J.; Arredondo, I.; del Campo, M.; Feuchtwanger, J.; Etxebarria, V.; Bermejo, F. J.
2013-04-01
ISHN (Ion Source Hydrogen Negative) consists of a Penning type ion source in operation at ESS-Bilbao facilities. From the control point of view, this source is representative of the first steps and decisions taken towards the general control architecture of the whole accelerator to be built. The ISHN main control system is based on a PXI architecture, under a real-time controller which is programmed using LabVIEW. This system, with additional elements, is connected to the general control system. The whole system is based on EPICS for the control network, and the modularization of the communication layers of the accelerator plays an important role in the proposed control architecture.
Nakamura, T; Uwamino, Y
1986-02-01
The neutron leakage from medical and industrial electron accelerators has become an important problem and its detection and shielding is being performed in their facilities. This study provides a new simple method of design calculation for neutron shielding of those electron accelerator facilities by dividing into the following five categories; neutron dose distribution in the accelerator room, neutron attenuation through the wall and the door in the accelerator room, neutron and secondary photon dose distributions in the maze, neutron and secondary photon attenuation through the door at the end of the maze, neutron leakage outside the facility-skyshine.
Induction launcher design considerations
NASA Technical Reports Server (NTRS)
Driga, M. D.; Weldon, W. F.
1989-01-01
New concepts in the design of induction accelerators and their power supplies for space and military applications are discussed. Particular attention is given to a piecewise-rising-frequency power supply in which each elementary generator (normal compulsator or rising frequency generator) has a different base frequency. A preliminary design of a coaxial induction accelerator for a hypersonic real gas facility is discussed to illustrate the concepts described.
Review of the Elementary Particles Physics in the External Electromagnetic Fields Studies at KEK
NASA Astrophysics Data System (ADS)
Konstantinova, O. Tanaka
2017-03-01
High Energy Accelerator Research Organization (KEK [1]) is a world class accelerator-based research laboratory. The field of its scientific interests spreads widely from the study of fundamental properties of matter, particle physics, nuclear physics to materials science, life science, technical researches, and industrial applications. Research outcomes from the laboratory achieved making use of high-energy particle beams and synchrotron radiation. Two synchrotron facilities of KEK, the Photon Factory (PF) ring and the Photon Factory Advanced Ring (PF-AR) are the second biggest synchrotron light source in Japan. A very wide range of the radiated light, from visible light to X-ray, is provided for a variety of materials science, biology, and life science [2]. KEK strives to work closely with national and international research institutions, promoting collaborative research activities. Advanced research and facilities provision are key factors to be at the frontier of the accelerator science. In this review I am going to discuss KEK overall accelerator-based science, and to consider light sources research and development. The state of arts of the current projects with respect to the elementary particles physics in the external electromagnetic fields is also stressed here.
Wakefield Computations for the CLIC PETS using the Parallel Finite Element Time-Domain Code T3P
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, A; Kabel, A.; Lee, L.
In recent years, SLAC's Advanced Computations Department (ACD) has developed the high-performance parallel 3D electromagnetic time-domain code, T3P, for simulations of wakefields and transients in complex accelerator structures. T3P is based on advanced higher-order Finite Element methods on unstructured grids with quadratic surface approximation. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with unprecedented accuracy, aiding the design of the next generation of accelerator facilities. Applications to the Compact Linear Collider (CLIC) Power Extraction and Transfer Structure (PETS) are presented.
Testing new technologies for the LISA Gravitational Reference Senso
NASA Astrophysics Data System (ADS)
Conklin, John; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Ciani, Giacomo; Mueller, Guido
2015-01-01
LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement of < 3×10-15 m/sec2Hz1/2 for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the summer of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements and for understanding the dozens of acceleration noise sources that affect the performance of the GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.
Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy.
Krstic, D; Markovic, V M; Jovanovic, Z; Milenkovic, B; Nikezic, D; Atanackovic, J
2014-10-01
Monte Carlo simulations were performed to evaluate dose for possible treatment of cancers by boron neutron capture therapy (BNCT). The computational model of male Oak Ridge National Laboratory (ORNL) phantom was used to simulate tumours in the lung. Calculations have been performed by means of the MCNP5/X code. In this simulation, two opposite neutron beams were considered, in order to obtain uniform neutron flux distribution inside the lung. The obtained results indicate that the lung cancer could be treated by BNCT under the assumptions of calculations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Measuring the stopping power of α particles in compact bone for BNCT
NASA Astrophysics Data System (ADS)
Provenzano, L.; Rodríguez, L. M.; Fregenal, D.; Bernardi, G.; Olivares, C.; Altieri, S.; Bortolussi, S.; González, S. J.
2015-01-01
The stopping power of α particles in thin films of decalcified sheep femur, in the range of 1.5 to 5.0 MeV incident energy, was measured by transmission of a backscattered beam from a heavy target. Additionally, the film elemental composition was determined by Rutherford Backscattering Spectrometry (RBS). These data will be used to measure boron concentration in thin films of bone using a spectrometry technique developed by the University of Pavia, since the concentration ratio between healthy tissue and tumor is of fundamental importance in Boron Neutron Capture Therapy (BNCT). The present experimental data are compared with numerical simulation results and with tabulated stopping power data of non-decalcified human bone.
Kulvik, Martti; Kallio, Merja; Laakso, Juha; Vähätalo, Jyrki; Hermans, Raine; Järviluoma, Eija; Paetau, Anders; Rasilainen, Merja; Ruokonen, Inkeri; Seppälä, Matti; Jääskeläinen, Juha
2015-12-01
We studied the uptake of boron after 100 mg/kg BPA infusion in three meningioma and five schwannoma patients as a pre-BNCT feasibility study. With average tumour-to-whole blood boron concentrations of 2.5, we discuss why BNCT could, and probably should, be developed to treat severe forms of the studied tumours. However, analysing 72 tumour and 250 blood samples yielded another finding: the plasma-to-whole blood boron concentrations varied with time, suggesting that the assumed constant boron ratio of 1:1 between normal brain tissue and whole blood deserves re-assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Holifield Heavy-Ion Research Facility at Oak Ridge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, C.M.
1977-01-01
A new heavy-ion accelerator facility is now under construction at the Oak Ridge National Laboratory. A brief description of the scope and schedule of this project is given, and the new large tandem accelerator, which will be a major element of the facility is discussed in some detail. Several studies which have been made or are in progress in Oak Ridge in preparation for operation of the tandem accelerator are briefly described.
The Neutrons for Science Facility at SPIRAL-2
NASA Astrophysics Data System (ADS)
Ledoux, X.; Aïche, M.; Avrigeanu, M.; Avrigeanu, V.; Audouin, L.; Balanzat, E.; Ban-détat, B.; Ban, G.; Barreau, G.; Bauge, E.; Bélier, G.; Bem, P.; Blideanu, V.; Borcea, C.; Bouffard, S.; Caillaud, T.; Chatillon, A.; Czajkowski, S.; Dessagne, P.; Doré, D.; Fallot, M.; Farget, F.; Fischer, U.; Giot, L.; Granier, T.; Guillous, S.; Gunsing, F.; Gustavsson, C.; Jacquot, B.; Jansson, K.; Jurado, B.; Kerveno, M.; Klix, A.; Landoas, O.; Lecolley, F. R.; Lecouey, J. L.; Majerle, M.; Marie, N.; Materna, T.; Mrazek, J.; Negoita, F.; Novak, J.; Oberstedt, S.; Oberstedt, A.; Panebianco, S.; Perrot, L.; Plompen, A. J. M.; Pomp, S.; Ramillon, J. M.; Ridikas, D.; Rossé, B.; Rudolf, G.; Serot, O.; Simakov, S. P.; Simeckova, E.; Smith, A. G.; Sublet, J. C.; Taieb, J.; Tassan-Got, L.; Tarrio, D.; Takibayev, A.; Thfoin, I.; Tsekhanovich, I.; Varignon, C.
2014-05-01
The Neutrons For Science (NFS) facility is a component of SPIRAL-2 laboratory under construction at Caen (France). SPIRAL-2 is dedicated to the production of high intensity Radioactive Ions Beams (RIB). It is based on a high-power linear accelerator (LINAG) to accelerate deuterons beams in order to produce neutrons by breakup reactions on a C converter. These neutrons will induce fission in 238U for production of radioactive isotopes. Additionally to the RIB production, the proton and deuteron beams delivered by the accelerator will be used in the NFS facility. NFS is composed of a pulsed neutron beam and irradiation stations for cross-section measurements and material studies. The beams delivered by the LINAG will allow producing intense neutron beams in the 100 keV-40 MeV energy range with either a continuous or quasi-mono-energetic spectrum. At NFS available average fluxes will be up to 2 orders of magnitude higher than those of other existing time-of-flight facilities in the 1 MeV - 40 MeV range. NFS will be a very powerful tool for fundamental physics and application related research in support of the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. The facility and its characteristics are described, and several examples of the first potential experiments are presented.
A feasibility study of a hypersonic real-gas facility
NASA Technical Reports Server (NTRS)
Gully, J. H.; Driga, M. D.; Weldon, W. F.
1987-01-01
A four month feasibility study of a hypersonic real-gas free flight test facility for NASA Langley Research Center (LARC) was performed. The feasibility of using a high-energy electromagnetic launcher (EML) to accelerate complex models (lifting and nonlifting) in the hypersonic, real-gas facility was examined. Issues addressed include: design and performance of the accelerator; design and performance of the power supply; design and operation of the sabot and payload during acceleration and separation; effects of high current, magnetic fields, temperature, and stress on the sabot and payload; and survivability of payload instrumentation during acceleration, flight, and soft catch.
A new ion beam facility based on a 3 MV Tandetron™ at IFIN-HH, Romania
NASA Astrophysics Data System (ADS)
Burducea, I.; Straticiuc, M.; Ghiță, D. G.; Moșu, D. V.; Călinescu, C. I.; Podaru, N. C.; Mous, D. J. W.; Ursu, I.; Zamfir, N. V.
2015-09-01
A 3 MV Tandetron™ accelerator system has been installed and commissioned at the "Horia Hulubei" National Institute for Physics and Nuclear Engineering - IFIN-HH, Măgurele, Romania. The main purpose of this machine is to strengthen applied nuclear physics research ongoing in our institute for more than four decades. The accelerator system was developed by High Voltage Engineering Europa B.V. (HVE) and comprises three high energy beam lines. The first beam line is dedicated to ion beam analysis (IBA) techniques: Rutherford Backscattering Spectrometry - RBS, Nuclear Reaction Analysis - NRA, Particle Induced X-ray and γ-ray Emission - PIXE and PIGE and micro-beam experiments - μ-PIXE. The second beam line is dedicated to high energy ion implantation experiments and the third beam line was designed mainly for nuclear cross-sections measurements used in nuclear astrophysics. A unique feature, the first time in operation at an accelerator facility is the Na charge exchange canal (CEC), which is used to obtain high intensity beams of He- of at least 3 μA. The results of the acceptance tests demonstrate the huge potential of this new facility in various fields, from IBA to radiation hardness studies and from medical or environmental applications to astrophysics. The main features of the accelerator are presented in this paper.
NASA Astrophysics Data System (ADS)
Agoritsas, V.; Beck, F.; Benincasa, G. P.; Bovigny, J. P.
1986-06-01
This paper describes a new beam loss monitor system which has been installed in the PS and PSB machines, replacing an earlier system. The new system is controlled by a microprocessor which can operate independently of the accelerator control system, though setting up and central display are usually done remotely, using the standard control system facilities.
Ulrici, Luisa; Algoet, Yvon; Bruno, Luca; Magistris, Matteo
2015-04-01
The European Laboratory for Particle Physics (CERN) has operated high-energy accelerators for fundamental physics research for nearly 60 y. The side-product of this activity is the radioactive waste, which is mainly generated as a result of preventive and corrective maintenance, upgrading activities and the dismantling of experiments or accelerator facilities. Prior to treatment and disposal, it is common practice to temporarily store radioactive waste on CERN's premises and it is a legal requirement that these storage facilities are safe and secure. Waste treatment typically includes sorting, segregation, volume and size reduction and packaging, which will depend on the type of component, its chemical composition, residual activity and possible surface contamination. At CERN, these activities are performed in a dedicated waste treatment centre under the supervision of the Radiation Protection Group. This paper gives an overview of the radiation protection challenges in the conception of a temporary storage and treatment centre for radioactive waste in an accelerator facility, based on the experience gained at CERN. The CERN approach consists of the classification of waste items into 'families' with similar radiological and physical-chemical properties. This classification allows the use of specific, family-dependent techniques for radiological characterisation and treatment, which are simultaneously efficient and compliant with best practices in radiation protection. The storage was planned on the basis of radiological and other possible hazards such as toxicity, pollution and fire load. Examples are given of technical choices for the treatment and radiological characterisation of selected waste families, which could be of interest to other accelerator facilities. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A button - type beam position monitor design for TARLA facility
NASA Astrophysics Data System (ADS)
Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.
2016-03-01
Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.
Study of thermal scattering for organic tissues through molecular dynamics
NASA Astrophysics Data System (ADS)
Ramos, Ricardo; Cantargi, Florencia; Marquez Damian, Jose Ignacio; Gonçalves-Carralves, Manuel Sztejnberg
2017-09-01
Boron Neutron Capture Therapy (BNCT) is an experimental therapy for tumors which is based on the nuclear reaction that occurs when 10B is irradiated with thermal neutrons. Calculations for BNCT with Monte Carlo N-Particle (MCNP) take into account the thermal scattering treatment for hydrogen bound in bulk water for any organic tissue. However, in these tissues, hydrogen is also present in macromolecules (protein, lipids, etc.) and in confined water. Thermal scattering cross section for hydrogen in an organic tissue can be determined by calculating the scattering law S(α,β). This function can be obtained with the nuclear data processing system NJOY from the vibrational frequency spectrum of an atom in a molecular system. We performed calculations of the frequency spectrum from molecular dynamics simulations using the program GROMACS. Systems composed of a peptide in a water box were considered, with different proportions of water molecules. All-atom potentials for modeling this molecules were used in order to represent the internal vibrational normal modes for the atoms of hydrogen. The results showed several internal normal modes that in the case of hydrogen bound in bulk water do not appear.
COBRA accelerator for Sandia ICF diode research at Cornell University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.L.; Ingwersen, P.; Bennett, L.F.
1995-05-01
The new COBRA accelerator is being built in stages at the Laboratory of Plasma Studies in Cornell University where its applications will include extraction diode and ion beam research in support of the light ion inertial confinement fusion (ICF) program at Sandia National Laboratories. The 4- to 5-MV, 125- to 250-kA accelerator is based on a four-cavity inductive voltage adder (IVA) design. It is a combination of new ferromagnetically-isolated cavities and self magnetically insulated transmission line (MITL) hardware and components from existing Sandia and Cornell facilities: Marx generator capacitors, hardware, and power supply from the DEMON facility; water pulse formingmore » lines (PFL) and gas switch from the Subsystem Test Facility (STF); a HERMES-III intermediate store capacitor (ISC); and a modified ion diode from Cornell`s LION. The present accelerator consists of a single modified cavity similar to those of the Sandia SABRE accelerator and will be used to establish an operating system for the first stage initial lower voltage testing. Four new cavities will be fabricated and delivered in the first half of FY96 to complete the COBRA accelerator. COBRA is unique in the sense that each cavity is driven by a single pulse forming line, and the IVA output polarity may be reversed by rotating the cavities 180{degrees} about their vertical axis. The site preparations, tank construction, and diode design and development are taking place at Cornell with growing enthusiasm as this machine becomes a reality. Preliminary results with the single cavity and short positive inner cylinder MITL configuration will soon be available.« less
Gifford, Ian; Vreeland, Wyatt; Grdanovska, Slavica; Burgett, Eric; Kalinich, John; Vergara, Vernieda; Wang, C-K Chris; Maimon, Eric; Poster, Dianne; Al-Sheikhly, Mohamad
2014-06-01
The efficacy of a boron-containing cholesteryl ester compound (BCH) as a boron neutron capture therapy (BNCT) agent for the targeted irradiation of PC-3 human prostate cancer cells was examined. Liposome-based delivery of BCH was quantified with inductively coupled plasma-mass spectrometry (ICP-MS) and high-performance liquid chromatography (HPLC). Cytotoxicity of the BCH-containing liposomes was evaluated with neutral red, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), and lactate dehydrogenase assays. Colony formation assays were utilized to evaluate the decrease in cell survival due to high-linear energy transfer (LET) particles resulting from (10)B thermal neutron capture. BCH delivery by means of encapsulation in a lipid bilayer resulted in a boron uptake of 35.2 ± 4.3 μg/10(9) cells, with minimal cytotoxic effects. PC-3 cells treated with BCH and exposed to a 9.4 × 10(11) n/cm(2) thermal neutron fluence yielded a 20-25% decrease in clonogenic capacity. The decreased survival is attributed to the generation of high-LET α particles and (7)Li nuclei that deposit energy in densely ionizing radiation tracks. Liposome-based delivery of BCH is capable of introducing sufficient boron to PC-3 cells for BNCT. High-LET α particles and (7)Li nuclei generated from (10)B thermal neutron capture significantly decrease colony formation ability in the targeted PC-3 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamani, M.; End of North Kargar st, Atomic Energy Organization of Iran, P.O. Box: 14155-1339, Tehran; Kasesaz, Y.
2015-07-01
In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials withmore » different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)« less
Yokoyama, Kunio; Miyatake, Shin-Ichi; Kajimoto, Yoshinaga; Kawabata, Shinji; Doi, Atsushi; Yoshida, Toshiko; Okabe, Motonori; Kirihata, Mitsunori; Ono, Koji; Kuroiwa, Toshihiko
2007-01-01
The efficiency of boron neutron capture therapy (BNCT) for malignant gliomas depends on the selective and absolute accumulation of (10)B atoms in tumor tissues. Only two boron compounds, BPA and BSH, currently can be used clinically. However, the detailed distributions of these compounds have not been determined. Here we used secondary ion mass spectrometry (SIMS) to determine the histological distribution of (10)B atoms derived from the boron compounds BSH and BPA. C6 tumor-bearing rats were given 500 mg/kg of BPA or 100 mg/kg of BSH intraperitoneally; 2.5 h later, their brains were sectioned and subjected to SIMS. In the main tumor mass, BPA accumulated heterogeneously, while BSH accumulated homogeneously. In the peritumoral area, both BPA and BSH accumulated measurably. Interestingly, in this area, BSH accumulated distinctively in a diffuse manner even 800 microm distant from the interface between the main tumor and normal brain. In the contralateral brain, BPA accumulated measurably, while BSH did not. In conclusion, both BPA and BSH each have advantages and disadvantages. These compounds are considered to be essential as boron delivery agents independently for clinical BNCT. There is some rationale for the simultaneous use of both compounds in clinical BNCT for malignant gliomas.
Accelerator Production of Isotopes for Medical Use
NASA Astrophysics Data System (ADS)
Lapi, Suzanne
2014-03-01
The increase in use of radioisotopes for medical imaging and therapy has led to the development of novel routes of isotope production. For example, the production and purification of longer-lived position emitting radiometals has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller medical cyclotrons at dedicated facilities. Recently, isotope harvesting from heavy ion accelerator facilities has also been suggested. The Facility for Rare Isotope Beams (FRIB) will be a new national user facility for nuclear science to be completed in 2020. Radioisotopes could be produced by dedicated runs by primary users or may be collected synergistically from the water in cooling-loops for the primary beam dump that cycle the water at flow rates in excess of hundreds of gallons per minute. A liquid water target system for harvesting radioisotopes at the National Superconducting Cyclotron Laboratory (NSCL) was designed and constructed as the initial step in proof-of-principle experiments to harvest useful radioisotopes in this manner. This talk will provide an overview of isotope production using both dedicated machines and harvesting from larger accelerators typically used for nuclear physics. Funding from Department of Energy under DESC0007352 and DESC0006862.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, R.F.; Matalka, K.Z.; Bailey, M.Q.
The present study was carried out to determine the efficacy of Boron Neutron Capture Therapy (BNCT) for intracerebral melanoma using nude rats, the human melanoma cell line MRA 27, and boronophenylalanine as the capture agent. MRA 27 cells (2 [times] 10[sup 5]) were implanted intracerebrally, and 30 days later, 120 mg of [sup 10]B-L-BPA were injected intraperitoneally into nude rats. Thirty days following implantation, tumor bearing rats were irradiated at the Brookhaven Medical Research Reactor. Six hours following administration of BPA, tumor, blood, and normal brain boron-10 levels were 23.7, 9.4, and 8.4 [mu]g/g respectively. Median survival time of untreatedmore » rats was 44 days compared to 76 days and 93 days for those receiving physical doses of 2.73 Gy and 3.64 Gy, respectively. Rats that have received both [sup 10]B-BPA and physical doses of 1.82, 2.73, or 3.64 Gy had median survival times of 170, 182, and 262 days, respectively. Forty percent of rats that had received the highest tumor dose (10.1 Gy) survived for > 300 days and in a replicate experiment 21% of the rats were longterm survivors (>220 days). Animals that received 12 Gy in a single dose or 18 Gy fractionated (2 Gy [times] 9) of gamma photons from a [sup 137]Cs source had median survival times of 86 and 79 days, respectively, compared to 47 days for untreated animals. Histopathologic examination of the brains of longterm surviving rats, euthanized at 8 or 16 months following BNCT, showed no residual tumor, but dense accumulations of melanin laden macrophages and minimal gliosis were observed. Significant prolongations in median survival time were noted in nude rats with intracerebral human melanoma that had received BNCT, thereby suggesting therapeutic efficacy. Large animal studies should be carried out to further assess BNCT of intracerebral melanoma before any human trials are contemplated. 49 refs., 7 figs., 2 tabs.« less
Maitz, Charles A.; Khan, Aslam A.; Kueffer, Peter J.; ...
2017-08-01
Boron neutron capture therapy (BNCT) was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. We implanted mice with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH 3(CH 2) 15–7,8-C 2B 9H 11] in the lipid bilayer and encapsulated Na 3[1-(2`-B 10H 9)-2-NH 3B 10H 8] within the liposomal core. Mice were irradiated 30 hours after the second injection inmore » a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. In spite of relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.« less
Optimization of Boron Neutron Capture Therapy for the Treatment of Undifferentiated Thyroid Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagrosa, Maria Alejandra; Thomasz, Lisa M.Sc.; Longhino, Juan
Purpose: To analyze the possible increase in efficacy of boron neutron capture therapy (BNCT) for undifferentiated thyroid carcinoma (UTC) by using p-boronophenylalanine (BPA) plus 2,4-bis ({alpha},{beta}-dihydroxyethyl)-deutero-porphyrin IX (BOPP) and BPA plus nicotinamide (NA) as a radiosensitizer of the BNCT reaction. Methods and Materials: Nude mice were transplanted with a human UTC cell line (ARO), and after 15 days they were treated as follows: (1) control, (2) NCT (neutrons alone), (3) NCT plus NA (100 mg/kg body weight [bw]/day for 3 days), (4) BPA (350 mg/kg bw) + neutrons, (5) BPA + NA + neutrons, and (6) BPA + BOPP (60more » mg/kg bw) + neutrons. The flux of the mixed (thermal + epithermal) neutron beam was 2.8 x 10{sup 8} n/cm{sup 2}/sec for 83.4 min. Results: Neutrons alone or with NA caused some tumor growth delay, whereas in the BPA, BPA + NA, and BPA + BOPP groups a 100% halt of tumor growth was observed in all mice at 26 days after irradiation. When the initial tumor volume was 50 mm{sup 3} or less, complete remission was found with BPA + NA (2 of 2 mice), BPA (1 of 4), and BPA + BOPP (7 of 7). After 90 days of complete regression, recurrence of the tumor was observed in BPA + NA (2 of 2) and BPA + BOPP (1 of 7). The determination of apoptosis in tumor samples by measurements of caspase-3 activity showed an increase in the BNCT (BPA + NA) group at 24 h (p < 0.05 vs. controls) and after the first week after irradiation in the three BNCT groups. Terminal transferase dUTP nick end labeling analysis confirmed these results. Conclusions: Although NA combined with BPA showed an increase of apoptosis at early times, only the group irradiated after the combined administration of BPA and BOPP showed a significantly improved therapeutic response.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maitz, Charles A.; Khan, Aslam A.; Kueffer, Peter J.
Boron neutron capture therapy (BNCT) was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. We implanted mice with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH 3(CH 2) 15–7,8-C 2B 9H 11] in the lipid bilayer and encapsulated Na 3[1-(2`-B 10H 9)-2-NH 3B 10H 8] within the liposomal core. Mice were irradiated 30 hours after the second injection inmore » a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. In spite of relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.« less
Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; ...
2015-10-01
Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less
NASA Astrophysics Data System (ADS)
Hodges, M.; Barzilov, A.; Chen, Y.; Lowe, D.
2016-10-01
The bremsstrahlung photon flux from the UNLV particle accelerator (Varian M6 model) was determined using MCNP5 code for 3 MeV and 6 MeV incident electrons. Human biological equivalent dose rates due to accelerator operation were evaluated using the photon flux with the flux-to-dose conversion factors. Dose rates were computed for the accelerator facility for M6 linac use under different operating conditions. The results showed that the use of collimators and linac internal shielding significantly reduced the dose rates throughout the facility. It was shown that the walls of the facility, in addition to the earthen berm enveloping the building, provide equivalent shielding to reduce dose rates outside to below the 2 mrem/h limit.
NASA Astrophysics Data System (ADS)
Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.
2016-09-01
Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.
SPES and the neutron facilities at Laboratori Nazionali di Legnaro
NASA Astrophysics Data System (ADS)
Silvestrin, L.; Bisello, D.; Esposito, J.; Mastinu, P.; Prete, G.; Wyss, J.
2016-03-01
The SPES Radioactive Ion Beam (RIB) facility, now in the construction phase at INFN-LNL, has the aim to provide high-intensity and high-quality beams of neutron-rich nuclei for nuclear physics research as well as to develop an interdisciplinary research center based on the cyclotron proton beam. The SPES system is based on a dual-exit high-current cyclotron, with tunable proton beam energy 35-70MeV and 0.20-0.75mA. The first exit is used as proton driver to supply an ISOL system with an UCx Direct Target able to sustain a power of 10kW. The expected fission rate in the target is of the order of 10^{13} fissions per second. The exotic isotopes will be re-accelerated by the ALPI superconducting LINAC at energies of 10 A MeV and higher, for masses around A=130 amu, with an expected beam intensity of 10^7 - 10^9 pps. The second exit will be used for applied physics: radioisotope production for medicine and neutrons for material studies. Fast neutron spectra will be produced by the proton beam interaction with a conversion target. A production rate in excess of 10^{14} n/s can be achieved: this opens up the prospect of a high-flux neutron irradiation facility (NEPIR) to produce both discrete and continuous energy neutrons. A direct proton beam line is also envisaged. NEPIR and the direct proton line would dramatically increase the wide range of irradiation facilities presently available at LNL. We also present LENOS, a proposed project dedicated to accurate neutron cross-sections measurements using intense, well-characterized, broad energy neutron beams. Other activities already in operation at LNL are briefly reviewed: the SIRAD facility for proton and heavy-ion irradiation at the TANDEM-ALPI accelerator and the BELINA test facility at CN van de Graaff accelerator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilheux, Hassina Z; Bilheux, Jean-Christophe; Tremsin, Anton S
2015-01-01
The Oak Ridge National Laboratory (ORNL) Neutron Sciences Directorate (NScD) has installed a neutron imaging (NI) beam line at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beam line produces cold neutrons for a broad range of user research spanning from engineering to material research, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. Recent efforts have focused on increasing flux and spatial resolution. A series of selected engineering applications is presented here. Historically and for more than four decades, neutron imaging (NI) facilities have been installed exclusively at continuous (i.e. reactor-based) neutron sources rather than atmore » pulsed sources. This is mainly due to (1) the limited number of accelerator-based facilities and therefore the fierce competition for beam lines with neutron scattering instruments, (2) the limited flux available at accelerator-based neutron sources and finally, (3) the lack of high efficiency imaging detector technology capable of time-stamping pulsed neutrons with sufficient time resolution. Recently completed high flux pulsed proton-driven neutron sources such as the ORNL Spallation Neutron Source (SNS) at ORNL and the Japanese Spallation Neutron Source (JSNS) of the Japan Proton Accelerator Research Complex (J-PARC) in Japan produce high neutron fluxes that offer new and unique opportunities for NI techniques. Pulsed-based neutron imaging facilities RADEN and IMAT are currently being built at J-PARC and the Rutherford National Laboratory in the U.K., respectively. ORNL is building a pulsed neutron imaging beam line called VENUS to respond to the U.S. based scientific community. A team composed of engineers, scientists and designers has developed a conceptual design of the future VENUS imaging instrument at the SNS.« less
INEL BNCT Research Program, March/April 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venhuizen, J.R.
1992-09-01
This report presents summaries for two months of current research for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murino screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor call culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronopheoylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, andmore » noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.« less
Beam Position Monitoring in the CSU Accelerator Facility
NASA Astrophysics Data System (ADS)
Einstein, Joshua; Vankeuren, Max; Watras, Stephen
2014-03-01
A Beam Position Monitoring (BPM) system is an integral part of an accelerator beamline, and modern accelerators can take advantage of newer technologies and designs when creating a BPM system. The Colorado State University (CSU) Accelerator Facility will include four stripline detectors mounted around the beamline, a low-noise analog front-end, and digitization and interface circuitry. The design will support a sampling rate greater than 10 Hz and sub-100 μm accuracy.
NASA Astrophysics Data System (ADS)
Mardor, Israel; Aviv, Ofer; Avrigeanu, Marilena; Berkovits, Dan; Dahan, Adi; Dickel, Timo; Eliyahu, Ilan; Gai, Moshe; Gavish-Segev, Inbal; Halfon, Shlomi; Hass, Michael; Hirsh, Tsviki; Kaiser, Boaz; Kijel, Daniel; Kreisel, Arik; Mishnayot, Yonatan; Mukul, Ish; Ohayon, Ben; Paul, Michael; Perry, Amichay; Rahangdale, Hitesh; Rodnizki, Jacob; Ron, Guy; Sasson-Zukran, Revital; Shor, Asher; Silverman, Ido; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo
2018-05-01
The Soreq Applied Research Accelerator Facility (SARAF) is under construction in the Soreq Nuclear Research Center at Yavne, Israel. When completed at the beginning of the next decade, SARAF will be a user facility for basic and applied nuclear physics, based on a 40 MeV, 5 mA CW proton/deuteron superconducting linear accelerator. Phase I of SARAF (SARAF-I, 4 MeV, 2 mA CW protons, 5 MeV 1 mA CW deuterons) is already in operation, generating scientific results in several fields of interest. The main ongoing program at SARAF-I is the production of 30 keV neutrons and measurement of Maxwellian Averaged Cross Sections (MACS), important for the astrophysical s-process. The world leading Maxwellian epithermal neutron yield at SARAF-I (5 × 10^{10} epithermal neutrons/s), generated by a novel Liquid-Lithium Target (LiLiT), enables improved precision of known MACSs, and new measurements of low-abundance and radioactive isotopes. Research plans for SARAF-II span several disciplines: precision studies of beyond-Standard-Model effects by trapping light exotic radioisotopes, such as 6He, 8Li and 18, 19, 23Ne, in unprecedented amounts (including meaningful studies already at SARAF-I); extended nuclear astrophysics research with higher energy neutrons, including generation and studies of exotic neutron-rich isotopes relevant to the rapid (r-) process; nuclear structure of exotic isotopes; high energy neutron cross sections for basic nuclear physics and material science research, including neutron induced radiation damage; neutron based imaging and therapy; and novel radiopharmaceuticals development and production. In this paper we present a technical overview of SARAF-I and II, including a description of the accelerator and its irradiation targets; a survey of existing research programs at SARAF-I; and the research potential at the completed facility (SARAF-II).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, A. L.; Biedron, S. G.; Milton, S. V.
At present, a variety of image-based diagnostics are used in particle accelerator systems. Often times, these are viewed by a human operator who then makes appropriate adjustments to the machine. Given recent advances in using convolutional neural networks (CNNs) for image processing, it should be possible to use image diagnostics directly in control routines (NN-based or otherwise). This is especially appealing for non-intercepting diagnostics that could run continuously during beam operation. Here, we show results of a first step toward implementing such a controller: our trained CNN can predict multiple simulated downstream beam parameters at the Fermilab Accelerator Science andmore » Technology (FAST) facility's low energy beamline using simulated virtual cathode laser images, gun phases, and solenoid strengths.« less
High gradient RF test results of S-band and C-band cavities for medical linear accelerators
NASA Astrophysics Data System (ADS)
Degiovanni, A.; Bonomi, R.; Garlasché, M.; Verdú-Andrés, S.; Wegner, R.; Amaldi, U.
2018-05-01
TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structures to direct the design of medical accelerators based on high gradient linacs. This paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.
Linear accelerator radiosurgery for arteriovenous malformations: Updated literature review.
Yahya, S; Heyes, G; Nightingale, P; Lamin, S; Chavda, S; Geh, I; Spooner, D; Cruickshank, G; Sanghera, P
2017-04-01
Arteriovenous malformations (AVMs) are the leading causing of intra-cerebral haemorrhage. Stereotactic radiosurgery (SRS) is an established treatment for arteriovenous malformations (AVM) and commonly delivered using Gamma Knife within dedicated radiosurgery units. Linear accelerator (LINAC) SRS is increasingly available however debate remains over whether it offers an equivalent outcome. The aim of this project is to evaluate the outcomes using LINAC SRS for AVMs used within a UK neurosciences unit and review the literature to aid decision making across various SRS platforms. Results have shown comparability across platforms and strongly supports that an adapted LINAC based SRS facility within a dynamic regional neuro-oncology department delivers similar outcomes (in terms of obliteration and toxicity) to any other dedicated radio-surgical platform. Locally available facilities can facilitate discussion between options however throughput will inevitably be lower than centrally based dedicated national radiosurgery units. Copyright © 2016. Published by Elsevier Ltd.
Next Generation H- Ion Sources for the SNS
NASA Astrophysics Data System (ADS)
Welton, R. F.; Stockli, M. P.; Murray, S. N.; Crisp, D.; Carmichael, J.; Goulding, R. H.; Han, B.; Tarvainen, O.; Pennisi, T.; Santana, M.
2009-03-01
The U.S. Spallation Neutron Source (SNS) is the leading accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure meeting operational requirements as well as providing for future facility beam power upgrades, a multifaceted H- ion source development program is ongoing. This work discusses several aspects of this program, specifically the design and first beam measurements of an RF-driven, external antenna H- ion source based on an A1N ceramic plasma chamber, elemental and chromate Cs-systems, and plasma ignition gun. Unanalyzed beam currents of up to ˜100 mA (60 Hz, 1 ms) have been observed and sustained currents >60 mA (60 Hz, 1 ms) have been demonstrated on the test stand. Accelerated beam currents of ˜40 mA have also been demonstrated into the SNS front end. Data are also presented describing the first H- beam extraction experiments from a helicon plasma generator based on the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine design.
Consortium of accelerated pavement testers (CAPT).
DOT National Transportation Integrated Search
2016-05-01
FHWA and a group of state Departments of Transportation from nine of the 14 US Accelerated : Pavement Testing (APT) facilities have proposed the creation of a joint or pooled funded program to : encourage coordination among the various facilities and...
The compact AMS facility at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences
NASA Astrophysics Data System (ADS)
Zhu, Sanyuan; Ding, Ping; Wang, Ning; Shen, Chengde; Jia, Guodong; Zhang, Gan
2015-10-01
A compact 14C AMS facility manufactured by the National Electrostatics Corporation (NEC) has been installed at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (GIGCAS). The system is based on a Model 1.5SDH-1 Pelletron accelerator with a maximum terminal volt 0.6 MV. This paper reports the performance and the operation of this machine in the first several months after installation.
Neutron Imaging Development at China Academy of Engineering Physics (CAEP)
NASA Astrophysics Data System (ADS)
Li, Hang; Wang, Sheng; Cao, Chao; Huo, Heyong; Tang, Bin
Based the China Mianyang Research Reactor (CMRR) and D-T accelerator neutron source, thermal neutron, cold neutron and fast neutron imaging facilities are all installed at China Academy of Engineering Physics (CAEP). Various samples have been imaged by different energy neutrons and shown the neutron imaging application in industry, aerospace and so on. The facilities parameters and recent neutron imaging development will be shown in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gündoğan, M. Tural, E-mail: mugetural@yahoo.com; Yavaş, Ö., E-mail: yavas@ankara.edu.tr; Kaya, Ç., E-mail: c.kaya@ankara.edu.tr
Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC.more » The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.« less
Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C.; Marino, Stephen A.; Geard, Charles R.; Brenner, David J.; Garty, Guy
2015-01-01
We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507
Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy
2015-10-01
We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields.
Cross sections for the γp→K*0Σ+ reaction at Eγ=1.7 3.0 GeV
NASA Astrophysics Data System (ADS)
Hleiqawi, I.; Hicks, K.; Carman, D. S.; Mibe, T.; Niculescu, G.; Tkabladze, A.; Amarian, M.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Batourine, V.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bellis, M.; Benmouna, N.; Berman, B. L.; Biselli, A. S.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carnahan, B.; Chen, S.; Cole, P. L.; Collins, P.; Coltharp, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; Masi, R. De; Vita, R. De; Sanctis, E. De; Degtyarenko, P. V.; Dennis, L.; Deur, A.; Djalali, C.; Dickson, R.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Feldman, G.; Fersch, R.; Feuerbach, R.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gonenc, A.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Kellie, J. D.; Khandaker, M.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Kossov, M.; Krahn, Z.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Li, J.; Livingston, K.; Lu, H. Y.; Lukashin, K.; MacCormick, M.; McAleer, S.; McKinnon, B.; McNabb, J.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Moriya, K.; Morrow, S. A.; Moteabbed, M.; Mutchler, G. S.; Munevar, E.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Pierce, J.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Preedom, B.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Todor, L.; Tkachenko, S.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weygand, D. P.; Whisnant, S.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z.
2007-04-01
Differential cross sections for the reaction γp→K*0Σ+ are presented in the photon energy range of 1.7 to 3.0 GeV. The K*0 was detected by its decay products, K+π-, in the Continuous Electron Beam Accelerator Facility's large acceptance spectrometer (CLAS) detector at the Thomas Jefferson National Accelerator Facility. These data are the first K*0 photoproduction cross sections ever published over a broad range of angles. Comparison with a theoretical model based on the vector and tensor K*-quark couplings shows good agreement with the data, except at forward angles, suggesting that the role of scalar κ meson exchange should be investigated.
The future SwissFEL facility - challenges from a radiation protection point of view
NASA Astrophysics Data System (ADS)
Strabel, Claudia; Fuchs, Albert; Galev, Roman; Hohmann, Eike; Lüscher, Roland; Musto, Elisa; Mayer, Sabine
2017-09-01
The Swiss Free Electron Laser is a new large-scale facility currently under construction at the Paul Scherrer Institute. Accessible areas surrounding the 720 m long accelerator tunnel, together with the pulsed time structure of the primary beam, lead to new challenges for ensuring that the radiation level in these areas remains in compliance with the legal constraints. For this purpose an online survey system based on the monitoring of the ambient dose rate arising from neutrons inside of the accelerator tunnel and opportunely calibrated to indicate the total dose rate outside of the tunnel, will be installed. The presented study provides a conceptual overview of this system, its underlying assumptions and measurements so far performed to validate its concept.
IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program
NASA Astrophysics Data System (ADS)
Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.
2017-03-01
The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.
Seismic risk analysis for the Babcock and Wilcox facility, Leechburg, Pennsylvania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-10-21
The results of a detailed seismic risk analysis of the Babcock and Wilcox Plutonium Fuel Fabrication facility at Leechburg, Pennsylvania are presented. This report focuses on earthquakes; the other natural hazards, being addressed in separate reports, are severe weather (strong winds and tornados) and floods. The calculational method used is based on Cornell's work (1968); it has been previously applied to safety evaluations of major projects. The historical seismic record was established after a review of available literature, consultation with operators of local seismic arrays and examination of appropriate seismic data bases. Because of the aseismicity of the region aroundmore » the site, an analysis different from the conventional closest approach in a tectonic province was adapted. Earthquakes as far from the site as 1,000 km were included, as were the possibility of earthquakes at the site. In addition, various uncertainties in the input were explicitly considered in the analysis. The results of the risk analysis, which include a Bayesian estimate of the uncertainties, are presented, expressed as return period accelerations. The best estimate curve indicates that the Babcock and Wilcox facility will experience 0.05 g every 220 years and 0.10 g every 1400 years. The bounding curves roughly represent the one standard deviation confidence limits about the best estimate, reflecting the uncertainty in certain of the input. Detailed examination of the results show that the accelerations are very insensitive to the details of the source region geometries or the historical earthquake statistics in each region and that each of the source regions contributes almost equally to the cumulative risk at the site. If required for structural analysis, acceleration response spectra for the site can be constructed by scaling the mean response spectrum for alluvium in WASH 1255 by these peak accelerations.« less
Study on High Speed Lithium Jet For Neutron Source of Boron Neutron Capture Therapy (BNCT)
NASA Astrophysics Data System (ADS)
Takahashi, Minoru; Kobayashi, Tooru; Zhang, Mingguang; Mák, Michael; Štefanica, Jirí; Dostál, Václav; Zhao, Wei
The feasibility study of a liquid lithium type proton beam target was performed for the neutron source of the boron neutron capture therapy (BNCT). As the candidates of the liquid lithium target, a thin sheet jet and a thin film flow on a concave wall were chosen, and a lithium flow experiment was conducted to investigate the hydrodynamic stability of the targets. The surfaces of the jets and film flows with a thickness of 0.5 mm and a width of 50 mm were observed by means of photography. It has been found that a stable sheet jet and a stable film flow on a concave wall can be formed up to certain velocities by using a straight nozzle and a curved nozzle with the concave wall, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Brockman; D. W. Nigg; M. F. Hawthorne
2009-07-01
Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The calculated and measured thermal neutron fluxes produced at the irradiation location are 9.6x108 and 8.8x108 neutrons/cm2-s, respectively. Calculated and measured cadmium ratios (Au foils) are 217 and 132. These results indicate a well-thermalized neutron spectrum with sufficient thermal neutron flux formore » a variety of small animal BNCT studies.« less
NASA Astrophysics Data System (ADS)
Khorshidi, A.; Ghafoori-Fard, H.; Sadeghi, M.
2014-05-01
Low-energy protons from the cyclotron in the range of 15-30 MeV and low current have been simulated on beryllium (Be) target with a lead moderator around the target. This research was accomplished to design an epithermal neutron beam for Boron Neutron Capture Therapy (BNCT) using the moderated neutron on the average produced from 9Be target via (p, xn) reaction in Adiabatic Resonance Crossing (ARC) concept. Generation of neutron to proton ratio, energy distribution, flux and dose components in head phantom have been simulated by MCNP5 code. The reflector and collimator were designed in prevention and collimation of derivation neutrons from proton bombarding. The scalp-skull-brain phantom consisting of bone and brain equivalent material has been simulated in order to evaluate the dosimetric effect on the brain. Results of this analysis demonstrated while the proton energy decreased, the dose factor altered according to filters thickness. The maximum epithermal flux revealed using fluental, Fe and bismuth (Bi) filters with thicknesses of 9.4, 3 and 2 cm, respectively and also the epithermal to thermal neutron flux ratio was 103.85. The potential of the ARC method to replace or complement the current reactor-based supply sources of BNCT purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nawrocki, G.J.; Seaver, C.L.; Kowalkowski, J.B.
As controls needs at the Advanced Photon Source matured from an installation phase to an operational phase, the need to monitor the existing conventional facilities control system with the EPICS-based accelerator control system was realized. This existing conventional facilities control network is based on a proprietary system from Johnson Controls called Metasys. Initially read-only monitoring of the Metasys parameters will be provided; however, the ability for possible future expansion to full control is available. This paper describes a method of using commercially available hardware and existing EPICS software as a bridge between the Metasys and EPICS control systems.
Accelerator boom hones China's engineering expertise
NASA Astrophysics Data System (ADS)
Normile, Dennis
2018-02-01
In raising the curtain on the China Spallation Neutron Source, China has joined just four other nations in having mastered the technology of accelerating and controlling beams of protons. The $277 million facility, set to open to users this spring in Dongguan, is expected to yield big dividends in materials science, chemistry, and biology. More world class machines are on the way, as China this year starts construction on four other major accelerator facilities. The building boom is prompting a scramble to find enough engineers and technicians to finish the projects. But if they all come off as planned, the facilities would position China to tackle the next global megaproject: a giant accelerator that would pick up where Europe's Large Hadron Collider leaves off.
Operational and design aspects of accelerators for medical applications
NASA Astrophysics Data System (ADS)
Schippers, Jacobus Maarten; Seidel, Mike
2015-03-01
Originally, the typical particle accelerators as well as their associated beam transport equipment were designed for particle and nuclear physics research and applications in isotope production. In the past few decades, such accelerators and related equipment have also been applied for medical use. This can be in the original physics laboratory environment, but for the past 20 years also in hospital-based or purely clinical environments for particle therapy. The most important specific requirements of accelerators for radiation therapy with protons or ions will be discussed. The focus will be on accelerator design, operational, and formal aspects. We will discuss the special requirements to reach a high reliability for patient treatments as well as an accurate delivery of the dose at the correct position in the patient using modern techniques like pencil beam scanning. It will be shown that the technical requirements, safety aspects, and required reliability of the accelerated beam differ substantially from those in a nuclear physics laboratory. It will be shown that this difference has significant implications on the safety and interlock systems. The operation of such a medical facility should be possible by nonaccelerator specialists at different operating sites (treatment rooms). The organization and role of the control and interlock systems can be considered as being the most crucially important issue, and therefore a special, dedicated design is absolutely necessary in a facility providing particle therapy.
NASA Astrophysics Data System (ADS)
Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui
2016-08-01
To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply.
Alberti, Diego; Protti, Nicoletta; Toppino, Antonio; Deagostino, Annamaria; Lanzardo, Stefania; Bortolussi, Silva; Altieri, Saverio; Voena, Claudia; Chiarle, Roberto; Geninatti Crich, Simonetta; Aime, Silvio
2015-04-01
This study aims at developing an innovative theranostic approach for lung tumor and metastases treatment, based on Boron Neutron Capture Therapy (BNCT). It relies on to the use of low density lipoproteins (LDL) as carriers able to maximize the selective uptake of boron atoms in tumor cells and, at the same time, to quantify the in vivo boron distribution by magnetic resonance imaging (MRI). Tumor cells uptake was initially assessed by ICP-MS and MRI on four types of tumor (TUBO, B16-F10, MCF-7, A549) and one healthy (N-MUG) cell lines. Lung metastases were generated by intravenous injection of a Her2+ breast cancer cell line (i.e. TUBO) in BALB/c mice and transgenic EML4-ALK mice were used as primary tumor model. After neutron irradiation, tumor growth was followed for 30-40 days by MRI. Tumor masses of boron treated mice increased markedly slowly than the control group. From the clinical editor: In this article, the authors described an improvement to existing boron neutron capture therapy. The dual MRI/BNCT agent, carried by LDLs, was able to maximize the selective uptake of boron in tumor cells, and, at the same time, quantify boron distribution in tumor and in other tissues using MRI. Subsequent in vitro and in vivo experiments showed tumor cell killing after neutron irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.
High gradient RF test results of S-band and C-band cavities for medical linear accelerators
Degiovanni, A.; Bonomi, R.; Garlasche, M.; ...
2018-02-09
TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less
Zha, Hao; Latina, Andrea; Grudiev, Alexej; ...
2016-01-20
The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. Furthermore,more » the experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V/(pC mm m).« less
High gradient RF test results of S-band and C-band cavities for medical linear accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degiovanni, A.; Bonomi, R.; Garlasche, M.
TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less
A compact tunable polarized X-ray source based on laser-plasma helical undulators
Luo, J.; Chen, M.; Zeng, M.; Vieira, J.; Yu, L. L.; Weng, S. M.; Silva, L. O.; Jaroszynski, D. A.; Sheng, Z. M.; Zhang, J.
2016-01-01
Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 1019 photons/s/mm2/mrad2/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications. PMID:27377126
Single-Event Effect Testing of the Linear Technology LTC6103HMS8#PBF Current Sense Amplifier
NASA Technical Reports Server (NTRS)
Yau, Ka-Yen; Campola, Michael J.; Wilcox, Edward
2016-01-01
The LTC6103HMS8#PBF (henceforth abbreviated as LTC6103) current sense amplifier from Linear Technology was tested for both destructive and non-destructive single-event effects (SEE) using the heavy-ion cyclotron accelerator beam at Lawrence Berkeley National Laboratory (LBNL) Berkeley Accelerator Effects (BASE) facility. During testing, the input voltages and output currents were monitored to detect single event latch-up (SEL) and single-event transients (SETs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence Cardman
2006-09-01
The Continuous Electron Accelerator Facility, CEBAF, located at the Thomas Jefferson National Accelerator Facility, is devoted to the investigation of the electromagnetic structure of mesons, nucleons, and nuclei using high energy, high duty-cycle electron and photon beams. Selected experimental results of particular interest to the MAMI community are presented.
Electromagnetic propulsion test facility
NASA Technical Reports Server (NTRS)
Gooder, S. T.
1984-01-01
A test facility for the exploration of electromagnetic propulsion concept is described. The facility is designed to accommodate electromagnetic rail accelerators of various lengths (1 to 10 meters) and to provide accelerating energies of up to 240 kiloJoules. This accelerating energy is supplied as a current pulse of hundreds of kiloAmps lasting as long as 1 millisecond. The design, installation, and operating characteristics of the pulsed energy system are discussed. The test chamber and its operation at pressures down to 1300 Pascals (10 mm of mercury) are described. Some aspects of safety (interlocking, personnel protection, and operating procedures) are included.
System integration of RF based negative ion experimental facility at IPR
NASA Astrophysics Data System (ADS)
Bansal, G.; Bandyopadhyay, M.; Singh, M. J.; Gahlaut, A.; Soni, J.; Pandya, K.; Parmar, K. G.; Sonara, J.; Chakraborty, A.
2010-02-01
The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ~5 × 1012 cm-3. The source can deliver a negative ion beam of ~10 A with a current density of ~30 mA/cm2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.
The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose
NASA Astrophysics Data System (ADS)
Grebe, A.; Leveling, A.; Lu, T.; Mokhov, N.; Pronskikh, V.
2018-01-01
The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay γ-quanta by the residuals in the activated structures and scoring the prompt doses of these γ-quanta at arbitrary distances from those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and against experimental data from the CERF facility at CERN, and FermiCORD showed reasonable agreement with these. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.
National Biomedical Tracer Facility. Project definition study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schafer, R.
We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research:more » fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.« less
Wang, Ling-Wei; Chen, Yi-Wei; Ho, Ching-Yin; Hsueh Liu, Yen-Wan; Chou, Fong-In; Liu, Yuan-Hao; Liu, Hong-Ming; Peir, Jinn-Jer; Jiang, Shiang-Huei; Chang, Chi-Wei; Liu, Ching-Sheng; Lin, Ko-Han; Wang, Shyh-Jen; Chu, Pen-Yuan; Lo, Wen-Liang; Kao, Shou-Yen; Yen, Sang-Hue
2016-05-01
To investigate the efficacy and safety of fractionated boron neutron capture therapy (BNCT) for recurrent head and neck (H&N) cancer after photon radiation therapy. In this prospective phase 1/2 trial, 2-fraction BNCT with intravenous L-boronophenylalanine (L-BPA, 400 mg/kg) was administered at a 28-day interval. Before each fraction, fluorine-18-labeled-BPA-positron emission tomography was conducted to determine the tumor/normal tissue ratio of an individual tumor. The prescription dose (D80) of 20 Gy-Eq per fraction was selected to cover 80% of the gross tumor volume by using a dose volume histogram, while minimizing the volume of oral mucosa receiving >10 Gy-Eq. Tumor responses and adverse effects were assessed using the Response Evaluation Criteria in Solid Tumors v1.1 and the Common Terminology Criteria for Adverse Events v3.0, respectively. Seventeen patients with a previous cumulative radiation dose of 63-165 Gy were enrolled. All but 2 participants received 2 fractions of BNCT. The median tumor/normal tissue ratio was 3.4 for the first fraction and 2.5 for the second, whereas the median D80 for the first and second fraction was 19.8 and 14.6 Gy-Eq, respectively. After a median follow-up period of 19.7 months (range, 5.2-52 mo), 6 participants exhibited a complete response and 6 exhibited a partial response. Regarding acute toxicity, 5 participants showed grade 3 mucositis and 1 participant showed grade 4 laryngeal edema and carotid hemorrhage. Regarding late toxicity, 2 participants exhibited grade 3 cranial neuropathy. Four of six participants (67%) receiving total D80 > 40 Gy-Eq had a complete response. Two-year overall survival was 47%. Two-year locoregional control was 28%. Our results suggested that 2-fraction BNCT with adaptive dose prescription was effective and safe in locally recurrent H&N cancer. Modifications to our protocol may yield more satisfactory results in the future. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpano, Marina; Perona, Marina; Rodriguez, Carla
Purpose: Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina ({sup 10}BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. Methods and Materials: The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 10{sup 6} MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a speciallymore » modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. Results: The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (P<.001 for MEL-J and A375 vs M8 cells). The in vivo studies showed a maximum average boron concentration of 25.9 ± 2.6 μg/g in tumor, with individual values ranging between 11.7 and 52.0 μg/g of {sup 10}B 2 hours after the injection of BPA. Tumor temperature always decreased as the tumors increased in size, with values ranging between 37°C and 23°C. A significant correlation between tumor temperature and tumor-to-blood boron concentration ratio was found (R{sup 2} = 0.7, rational function fit). The immunohistochemical studies revealed, in tumors with extensive areas of viability, a high number of positive cells for Ki-67, blood vessels of large diameter evidenced by the marker CD31, and a direct logistic correlation between proliferative status and boron concentration difference between tumor and blood (R{sup 2} = 0.81, logistic function fit). Conclusion: We propose that these methods could be suitable for designing new screening protocols applied before melanoma BNCT treatment for each individual patient and lesion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ling-Wei, E-mail: lwwang@vghtpe.gov.tw; National Yang-Ming University, Taiwan; Chen, Yi-Wei
Purpose: To investigate the efficacy and safety of fractionated boron neutron capture therapy (BNCT) for recurrent head and neck (H&N) cancer after photon radiation therapy. Methods and Materials: In this prospective phase 1/2 trial, 2-fraction BNCT with intravenous L-boronophenylalanine (L-BPA, 400 mg/kg) was administered at a 28-day interval. Before each fraction, fluorine-18-labeled-BPA–positron emission tomography was conducted to determine the tumor/normal tissue ratio of an individual tumor. The prescription dose (D80) of 20 Gy-Eq per fraction was selected to cover 80% of the gross tumor volume by using a dose volume histogram, while minimizing the volume of oral mucosa receiving >10 Gy-Eq.more » Tumor responses and adverse effects were assessed using the Response Evaluation Criteria in Solid Tumors v1.1 and the Common Terminology Criteria for Adverse Events v3.0, respectively. Results: Seventeen patients with a previous cumulative radiation dose of 63-165 Gy were enrolled. All but 2 participants received 2 fractions of BNCT. The median tumor/normal tissue ratio was 3.4 for the first fraction and 2.5 for the second, whereas the median D80 for the first and second fraction was 19.8 and 14.6 Gy-Eq, respectively. After a median follow-up period of 19.7 months (range, 5.2-52 mo), 6 participants exhibited a complete response and 6 exhibited a partial response. Regarding acute toxicity, 5 participants showed grade 3 mucositis and 1 participant showed grade 4 laryngeal edema and carotid hemorrhage. Regarding late toxicity, 2 participants exhibited grade 3 cranial neuropathy. Four of six participants (67%) receiving total D80 > 40 Gy-Eq had a complete response. Two-year overall survival was 47%. Two-year locoregional control was 28%. Conclusions: Our results suggested that 2-fraction BNCT with adaptive dose prescription was effective and safe in locally recurrent H&N cancer. Modifications to our protocol may yield more satisfactory results in the future.« less
Carpano, Marina; Perona, Marina; Rodriguez, Carla; Nievas, Susana; Olivera, Maria; Santa Cruz, Gustavo A; Brandizzi, Daniel; Cabrini, Romulo; Pisarev, Mario; Juvenal, Guillermo Juan; Dagrosa, Maria Alejandra
2015-10-01
Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina ((10)BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 10(6) MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a specially modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (P<.001 for MEL-J and A375 vs M8 cells). The in vivo studies showed a maximum average boron concentration of 25.9 ± 2.6 μg/g in tumor, with individual values ranging between 11.7 and 52.0 μg/g of (10)B 2 hours after the injection of BPA. Tumor temperature always decreased as the tumors increased in size, with values ranging between 37 °C and 23 °C. A significant correlation between tumor temperature and tumor-to-blood boron concentration ratio was found (R(2) = 0.7, rational function fit). The immunohistochemical studies revealed, in tumors with extensive areas of viability, a high number of positive cells for Ki-67, blood vessels of large diameter evidenced by the marker CD31, and a direct logistic correlation between proliferative status and boron concentration difference between tumor and blood (R(2) = 0.81, logistic function fit). We propose that these methods could be suitable for designing new screening protocols applied before melanoma BNCT treatment for each individual patient and lesion. Copyright © 2015 Elsevier Inc. All rights reserved.
Compact D-D/D-T neutron generators and their applications
NASA Astrophysics Data System (ADS)
Lou, Tak Pui
2003-10-01
Neutron generators based on the 2H(d,n)3He and 3H(d,n)4He fusion reactions are the most commonly available neutron sources. The applications of current commercial neutron generators are often limited by their low neutron yield and their short operational lifetime. A new generation of D-D/D-T fusion-based neutron generators has been designed at Lawrence Berkeley National Laboratory (LBNL) by using high current ion beams hitting on a self-loading target that has a large surface area to dissipate the heat load. This thesis describes the rationale behind the new designs and their potential applications. A survey of other neutron sources is presented to show their advantages and disadvantages compared to the fusion-based neutron generator. A prototype neutron facility was built at LBNL to test these neutron generators. High current ion beams were extracted from an RF-driven ion source to produce neutrons. With an average deuteron beam current of 24 mA and an energy of 100 keV, a neutron yield of >109 n/s has been obtained with a D-D coaxial neutron source. Several potential applications were investigated by using computer simulations. The computer code used for simulations and the variance reduction techniques employed were discussed. A study was carried out to determine the neutron flux and resolution of a D-T neutron source in thermal neutron scattering applications for condensed matter experiments. An error analysis was performed to validate the scheme used to predict the resolution. With a D-T neutron yield of 1014 n/s, the thermal neutron flux at the sample was predicted to be 7.3 x 105 n/cm2s. It was found that the resolution of cold neutrons was better than that of thermal neutrons when the duty factor is high. This neutron generator could be efficiently used for research and educational purposes at universities. Additional applications studied were positron production and Boron Neutron Capture Therapy (BNCT). The neutron flux required for positron production could not be provided with a single D-T neutron generator. Therefore, a subcritical fission multiplier was designed to increase the neutron yield. The neutron flux was increased by a factor of 25. A D-D driven fission multiplier was also studied for BNCT and a gain of 17 was obtained. The fission multiplier system gain was shown to be limited by the neutron absorption in the fuel and the reduction of source brightness. A brief discussion was also given regarding the neutron generator applications for fast neutron brachytherapy and neutron interrogation systems. It was concluded that new designs of compact D-D/D-T neutron generators are feasible and that superior quality neutron beams could be produced and used for various applications.
NASA Astrophysics Data System (ADS)
Lee, A.; Jung, N. S.; Mokhtari Oranj, L.; Lee, H. S.
2018-06-01
The leakage of radioactive materials generated at particle accelerator facilities is one of the important issues in the view of radiation safety. In this study, fire and flooding at particle accelerator facilities were considered as the non-radiation disasters which result in the leakage of radioactive materials. To analyse the expected effects at each disaster, the case study on fired and flooded particle accelerator facilities was carried out with the property investigation of interesting materials presented in the accelerator tunnel and the activity estimation. Five major materials in the tunnel were investigated: dust, insulators, concrete, metals and paints. The activation levels on the concerned materials were calculated using several Monte Carlo codes (MCNPX 2.7+SP-FISPACT 2007, FLUKA 2011.4c and PHITS 2.64+DCHAIN-SP 2001). The impact weight to environment was estimated for the different beam particles (electron, proton, carbon and uranium) and the different beam energies (100, 430, 600 and 1000 MeV/nucleon). With the consideration of the leakage path of radioactive materials due to fire and flooding, the activation level of selected materials, and the impacts to the environment were evaluated. In the case of flooding, dust, concrete and metal were found as a considerable object. In the case of fire event, dust, insulator and paint were the major concerns. As expected, the influence of normal fire and flooding at electron accelerator facilities would be relatively low for both cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staller, G.E.; Hamilton, I.D.; Aker, M.F.
1978-02-01
A single-unit electron beam accelerator was designed, fabricated, and assembled in Sandia's Technical Area V to conduct magnetically insulated transmission experiments. Results of these experiments will be utilized in the future design of larger, more complex accelerators. This design makes optimum use of existing facilities and equipment. When designing new components, possible future applications were considered as well as compatibility with existing facilities and hardware.
AMS implications of charge-changing during acceleration
NASA Astrophysics Data System (ADS)
Knies, D. L.; Grabowski, K. S.; Cetina, C.; Demoranville, L. T.; Dougherty, M. R.; Mignerey, A. C.; Taylor, C. L.
2007-08-01
The NRL Accelerator Mass Spectrometer facility was recently reconfigured to incorporate a modified Cameca IMS 6f Secondary Ion Mass Spectrometer as a high-performance ion source. The NRL accelerator facility supplants the mass spectrometer portion of the IMS 6f instrument. As part of the initial testing of the combined instrument, charge-state scans were performed under various conditions. These provided the basis for studying the effects of terminal gas pressure on the process of charge-changing during acceleration. A combined system of transmission-micro-channel plate and energy detector was found to remove ghost beams produced from Pd charge-changing events in the accelerator tube.
Evaluating the Performance of the NASA LaRC CMF Motion Base Safety Devices
NASA Technical Reports Server (NTRS)
Gupton, Lawrence E.; Bryant, Richard B., Jr.; Carrelli, David J.
2006-01-01
This paper describes the initial measured performance results of the previously documented NASA Langley Research Center (LaRC) Cockpit Motion Facility (CMF) motion base hardware safety devices. These safety systems are required to prevent excessive accelerations that could injure personnel and damage simulator cockpits or the motion base structure. Excessive accelerations may be caused by erroneous commands or hardware failures driving an actuator to the end of its travel at high velocity, stepping a servo valve, or instantly reversing servo direction. Such commands may result from single order failures of electrical or hydraulic components within the control system itself, or from aggressive or improper cueing commands from the host simulation computer. The safety systems must mitigate these high acceleration events while minimizing the negative performance impacts. The system accomplishes this by controlling the rate of change of valve signals to limit excessive commanded accelerations. It also aids hydraulic cushion performance by limiting valve command authority as the actuator approaches its end of travel. The design takes advantage of inherent motion base hydraulic characteristics to implement all safety features using hardware only solutions.
IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David
The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less
IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program
Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; ...
2017-03-06
The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less
High current polarized electron source
NASA Astrophysics Data System (ADS)
Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.
2018-05-01
Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.
A new sliding joint to accommodate recoil of a free-piston-driven expansion tube facility
NASA Astrophysics Data System (ADS)
Gildfind, D. E.; Morgan, R. G.
2016-11-01
This paper describes a new device to decouple free-piston driver recoil and its associated mechanical vibration from the acceleration tube and test section of The University of Queensland's X3 expansion tube. A sliding joint is introduced to the acceleration tube which axially decouples the facility at this station. When the facility is fired, the upstream section of the facility, which includes the free-piston driver, can recoil upstream freely. The downstream acceleration tube remains stationary. This arrangement provides two important benefits. Firstly, it eliminates nozzle movement relative to the test section before and during the experiment. This has benefits in terms of experimental setup and alignment. Secondly, it prevents transmission of mechanical disturbances from the free-piston driver to the acceleration tube, thereby eliminating mechanically-induced transducer noise in the sensitive pressure transducers installed in this low-pressure tube. This paper details the new design, and presents experimental confirmation of its performance.
NASA Astrophysics Data System (ADS)
Kolesnikov, V. I.
2017-06-01
The NICA (Nuclotron-based Ion Collider fAcility) project is aimed in the construction at JINR (Dubna) a modern accelerator complex equipped with three detectors: the MultiPurpose Detector (MPD) and the Spin Physics Detector (SPD) at the NICA collider, as well as a fixed target experiment BM&N which will be use extracted beams from the Nuclotron accelerator. In this report, an overview of the main physics objectives of the NICA heavy-ion program will be given and the recent progress in the NICA construction (both accelerator complex and detectors) will be described.
DOT National Transportation Integrated Search
2001-03-01
Three test lanes were constructed at the Louisiana Pavement Research Facility to study the performance of Reclaimed Asphalt Pavement (RAP) as a stress relieving layer between the cement treated base and asphalt concrete layers in lieu of crushed ston...
Boron absorption imaging in rat lung colon adenocarcinoma metastases
NASA Astrophysics Data System (ADS)
Altieri, S.; Bortolussi, S.; Bruschi, P.; Fossati, F.; Vittor, K.; Nano, R.; Facoetti, A.; Chiari, P.; Bakeine, J.; Clerici, A.; Ferrari, C.; Salvucci, O.
2006-05-01
Given the encouraging results from our previous work on the clinical application of BNCT on non-resectable, chemotherapy resistant liver metastases, we explore the possibility to extend our technique to lung metastases. A fundamental requirement for BNCT is achieving higher 10B concentrations in the metastases compared to those in healthy tissue. For this reason we developed a rat model with lung metastases in order to study the temporal distribution of 10B concentration in tissues and tumoral cells. Rats with induced lung metastases from colon adenocarcinoma were sacrificed two hours after intraperitoneal Boronphenylalanine infusion. The lungs were harvested, frozen in liquid nitrogen and subsequently histological sections underwent neutron autoradiography in the nuclear reactor Triga Mark II, University of Pavia. Our findings demonstrate higher Boron uptake in tumoral nodules compared to healthy lung parenchyma 2 hours after Boronphenylalanine infusion.
An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy.
Ferreira, Tiago H; Miranda, Marcelo C; Rocha, Zildete; Leal, Alexandre S; Gomes, Dawidson A; Sousa, Edesia M B
2017-04-12
Currently, nanostructured compounds have been standing out for their optical, mechanical, and chemical features and for the possibilities of manipulation and regulation of complex biological processes. One of these compounds is boron nitride nanotubes (BNNTs), which are a nanostructured material analog to carbon nanotubes, but formed of nitrogen and boron atoms. BNNTs present high thermal stability along with high chemical inertia. Among biological applications, its biocompatibility, cellular uptake, and functionalization potential can be highlighted, in addition to its eased utilization due to its nanometric size and tumor cell internalization. When it comes to new forms of therapy, we can draw attention to boron neutron capture therapy (BNCT), an experimental radiotherapy characterized by a boron-10 isotope carrier inside the target and a thermal neutron beam focused on it. The activation of the boron-10 atom by a neutron generates a lithium atom, a gamma ray, and an alpha particle, which can be used to destroy tumor tissues. The aim of this work was to use BNNTs as a boron-10 carrier for BNCT and to demonstrate its potential. The nanomaterial was characterized through XRD, FTIR, and SEM. The WST-8 assay was performed to confirm the cell viability of BNNTs. The cells treated with BNNTs were irradiated with the neutron beam of a Triga reactor, and the apoptosis caused by the activation of the BNNTs was measured with a calcein AM/propidium iodide test. The results demonstrate that this nanomaterial is a promising candidate for cancer therapy through BNCT.
NASA Astrophysics Data System (ADS)
Giannini, G.; Gribkov, V.; Longo, F.; Ramos Aruca, M.; Tuniz, C.
2012-11-01
The use of short and powerful neutron pulses for boron neutron capture therapy (BNCT) can potentially increase selectivity and reduce the total dose absorbed by the patient. The biological effects of radiation depend on the dose, the dose power and the spatial distribution of the microscopic energy deposition. A dense plasma focus (DPF) device emits very short (in the nanosecond range) and extremely intense pulses of fast neutrons (2.5 or 14 MeV neutrons—from D-D or D-T nuclear reactions) and x-rays. Optimal spectra of neutrons formed for use in BNCT must contain an epithermal part to ensure a reasonable penetration depth into tissues at high enough cross-section on boron. So the powerful nanosecond pulses of fast neutrons generated by DPF must be moderated. After this moderation, the pulse duration must be shorter compared with the duration of the reaction with free radicals, that is, ⩾1 μs. In this work we focus on the development of a detailed simulation of interaction of short-pulse radiation from a DPF with the device's materials and with different types of moderators to estimate the dose power at the cells for this dynamic case. The simulation was carried out by means of the Geant4 toolkit in two main steps: the modeling of the pulsed neutron source device itself; the study of the interaction of fast mono-energetic neutrons with a moderator specific for BNCT.
Dynamic infrared imaging for biological and medical applications in Boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Santa Cruz, Gustavo A.; González, Sara J.; Dagrosa, Alejandra; Schwint, Amanda E.; Carpano, Marina; Trivillin, Verónica A.; Boggio, Esteban F.; Bertotti, José; Marín, Julio; Monti Hughes, Andrea; Molinari, Ana J.; Albero, Miguel
2011-05-01
Boron Neutron Capture Therapy (BNCT) is a treatment modality, currently focused on the treatment of cancer, which involves a tumor selective 10B compound and a specially tuned neutron beam to produce a lethal nuclear reaction. BNCT kills target cells with microscopic selectivity while sparing normal tissues from potentially lethal doses of radiation. In the context of the Argentine clinical and research BNCT projects at the National Atomic Energy Commission and in a strong collaboration with INVAP SE, we successfully implemented Dynamic Infrared Imaging (DIRI) in the clinical setting for the observation of cutaneous melanoma patients and included DIRI as a non invasive methodology in several research protocols involving small animals. We were able to characterize melanoma lesions in terms of temperature and temperature rate-of-recovery after applying a mild cold thermal stress, distinguishing melanoma from other skin pigmented lesions. We observed a spatial and temporal correlation between skin acute reactions after irradiation, the temperature pattern and the dose distribution. We studied temperature distribution as a function of tumor growth in mouse xenografts, observing a significant correlation between tumor temperature and drug uptake; we investigated temperature evolution in the limbs of Wistar rats for a protocol of induced rheumatoid arthritis (RA), DIRI being especially sensitive to RA induction even before the development of clinical signs and studied surface characteristics of tumors, precancerous and normal tissues in a model of oral cancer in the hamster cheek pouch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, S. P., E-mail: denisov@ihep.ru; Kozelov, A. V.; Petrov, V. A.
Elastic-scattering data were analyzed, and it was concluded on the basis of this analysis that precisionmeasurements of differential cross sections for elastic proton–proton scattering at the accelerator of the Institute for High Energy Physics (IHEP, Protvino, Russia) over a broad momentum-transfer range are of importance and topical interest. The layout of the respective experimental facility detecting the scattered particle and recoil proton and possessing a high momentum-transfer resolution was examined along with the equipment constituting this facility. The facility in question is able to record up to a billion events of elastic proton–proton scattering per IHEP accelerator run (20 days).more » Other lines of physics research with this facility are briefly discussed.« less
Surrogate Final Technical Report for "Solar: A Photovoltaic Manufacturing Development Facility"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, Paul
2014-06-27
The project goal to create a first-of-a-kind crystalline Silicon (c-Si) photovoltaic (PV) Manufacturing & Technology Development Facility (MDF) that will support the growth and maturation of a strong domestic PV manufacturing industry, based on innovative and differentiated technology, by ensuring industry participants can, in a timely and cost-effective manner, access cutting-edge manufacturing equipment and production expertise needed to accelerate the transition of innovative technologies from R&D into manufacturing.
Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans
NASA Astrophysics Data System (ADS)
Pogorelsky, I. V.; Ben-Zvi, I.
2014-08-01
The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.
LISA technology development using the UF precision torsion pendulum
NASA Astrophysics Data System (ADS)
Apple, Stephen; Chilton, Andrew; Olatunde, Taiwo; Ciani, Giacomo; Mueller, Guido; Conklin, John
2015-04-01
LISA will directly observe low-frequency gravitational waves emitted by sources ranging from super-massive black hole mergers to compact galactic binaries. A laser interferometer will measure picometer changes in the distances between free falling test masses separated by millions of kilometers. A test mass and its associated sensing, actuation, charge control and caging subsystems are referred to as a gravitational reference sensor (GRS). The demanding acceleration noise requirement for the LISA GRS has motivated a rigorous testing campaign in Europe and a dedicated technology mission, LISA Pathfinder, scheduled for launch in the fall of 2015. At the University of Florida we are developing a nearly thermally noise limited torsion pendulum for testing GRS technology enhancements that may improve the performance and/or reduce the cost of the LISA GRS. This experimental facility is based on the design of a similar facility at the University of Trento, and consists of a vacuum enclosed torsion pendulum that suspends mock-ups of the LISA test masses, surrounded by electrode housings. Some of the technologies that will be demonstrated by this facility include a novel TM charge control scheme based on ultraviolet LEDs, an all-optical TM position and attitude sensor, and drift mode operation. This presentation will describe the design of the torsion pendulum facility, its current acceleration noise performance, and the status of the GRS technologies under development.
Desirable limits of accelerative forces in a space-based materials processing facility
NASA Technical Reports Server (NTRS)
Naumann, Robert J.
1990-01-01
There are three categories of accelerations to be encountered on orbiting spacecraft: (1) quasi-steady accelerations, caused by atmospheric drag or by gravity gradients, 10(exp -6) to 10(exp -7) g sub o; (2) transient accelerations, caused by movements of the astronauts, mass translocations, landing and departure of other spacecraft, etc.; and (3) oscillary accelerations, caused by running machinery (fans, pumps, generators). Steady accelerations cause continuing displacements; transients cause time-limited displacements. The important aspect is the area under the acceleration curve, measured over a certain time interval. Note that this quantity is not equivalent to a velocity because of friction effects. Transient motions are probably less important than steady accelerations because they only produce constant displacements. If the accelerative forces were not equal and opposite, the displacement would increase with time. A steady acceleration will produce an increasing velocity of a particle, but eventually an equilibrium value will be reached where drag and acceleration forces are equal. From then on, the velocity will remain constant, and the displacement will increase linearly with time.
Potential applications of the dielectric wakefield accelerators in the SINBAD facility at DESY
NASA Astrophysics Data System (ADS)
Nie, Y. C.; Assmann, R.; Dorda, U.; Marchetti, B.; Weikum, M.; Zhu, J.; Hüning, M.
2016-09-01
Short, high-brightness relativistic electron bunches can drive ultra-high wakefields in the dielectric wakefield accelerators (DWFAs). This effect can be used to generate high power THz coherent Cherenkov radiation, accelerate a witness bunch with gradient two or three orders of magnitude larger than that in the conventional RF linear accelerators, introduce energy modulation within the driving bunch itself, etc. The paper studies potential applications of the DWFAs in the SINBAD facility at DESY. The simulations show that the ultra-short relativistic bunches from the SINBAD injector ARES can excite accelerating wakefields with peak amplitudes as high as GV/m at THz frequencies in proper DWFA structures. In addition, it illustrates that the DWFA structure can serve as a dechirper to compensate the correlated energy spread of the bunches accelerated by the laser plasma wakefield accelerator.
Feasibility study of a cyclotron complex for hadron therapy
NASA Astrophysics Data System (ADS)
Smirnov, V.; Vorozhtsov, S.
2018-04-01
An accelerator complex for hadron therapy based on a chain of cyclotrons is under development at JINR (Dubna, Russia), and the corresponding conceptual design is under preparation. The complex mainly consists of two superconducting cyclotrons. The first accelerator is a compact cyclotron used as an injector to the main accelerator, which is a six-fold separated sector machine. The facility is intended for generation of protons and carbon beams. The H2+ and 12C6+ ions from the corresponding ECR ion sources are accelerated in the injector-cyclotron up to the output energy of 70 MeV/u. Then, the H2+ ions are extracted from the injector by a stripping foil, and the resulting proton beam with the energy of 70 MeV is used for medical purposes. After acceleration in the main cyclotron, the carbon beam can be either used directly for therapy or introduced to the main cyclotron for obtaining the final energy of 400 MeV/u. The basic requirements to the project are the following: compliance to medical requirements, compact size, feasible design, and high reliability of all systems of the complex. The advantages of the dual cyclotron design can help reaching these goals. The initial calculations show that this design is technically feasible with acceptable beam dynamics. The accelerator complex with a relatively compact size can be a good solution for medical applications. The basic parameters of the facility and detailed investigation of the magnetic system and beam dynamics are described.
DOT National Transportation Integrated Search
2009-06-01
Since 1996, the Louisiana Department of Transportation and Development (LADOTD) has : utilized the Louisiana Transportation and Research Centers (LTRCs) Accelerated Loading : Facility (ALF) at the Pavement Research Facility to determine the eff...
View of new centrifuge at Flight Acceleration Facility
NASA Technical Reports Server (NTRS)
1966-01-01
View of the new centrifuge at the Manned Spacecraft Center (MSC), located in the Flight Acceleration Facility, bldg 29. The 50-ft. arm can swing the three man gondola to create g-forces astronauts will experience during controlled flight and during reentry. The centrifuge was designed primarily for training Apollo astronauts.
Behind the Scenes of the Spallation Neutron Source â The Linear Accelerator
Galambos, John
2018-06-25
The Spallation Neutron Source at Oak Ridge National Laboratory is a one-of-a-kind research facility that provides the most intense pulsed neutron beams in the world for scientific research and industrial development. Take a look inside the facility's linear accelerator.
An accelerator-based neutron microbeam system for studies of radiation effects
Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A.; Bigelow, Alan W.; Akselrod, Mark S.; Sykora, Jeff G.; Brenner, David J.
2011-01-01
A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies. The neutron microbeam design here is based on the existing charged particle microbeam technology at the RARAF. The principle of the neutron microbeam is to use the proton beam with a micrometre-sized diameter impinging on a very thin lithium fluoride target system. From the kinematics of the 7Li(p,n)7Be reaction near the threshold of 1.881 MeV, the neutron beam is confined within a narrow, forward solid angle. Calculations show that the neutron spot using a target with a 17-µm thick gold backing foil will be <20 µm in diameter for cells attached to a 3.8-µm thick propylene-bottomed cell dish in contact with the target backing. The neutron flux will roughly be 2000 per second based on the current beam setup at the RARAF singleton accelerator. The dose rate will be about 200 mGy min−1. The principle of this neutron microbeam system has been preliminarily tested at the RARAF using a collimated proton beam. The imaging of the neutron beam was performed using novel fluorescent nuclear track detector technology based on Mg-doped luminescent aluminum oxide single crystals and confocal laser scanning fluorescent microscopy. PMID:21131327
Varnell, Gayle; Haas, Barbara; Duke, Gloria; Hudson, Kathy
2008-01-01
Transitioning to an evidence-based practice (EBP) environment is a new and often overwhelming challenge for many organisations. The most effective strategies to implement EBP have yet to be determined. In this study an accelerated development EBP program, which was administered to nurses from five hospitals was evaluated. At each hospital, nurses were selected as an "EBP champion" whose role would be to help facilitate the transition within that organisation. The purpose of this study was to evaluate the effectiveness of an accelerated educational program on the attitudes toward and implementation of EBP among nurses employed in acute-care facilities. Forty-nine nurses from five acute-care facilities participated in an 8-week program to develop into EBP champions. Participants attended a 2-hour class each week conducted by four faculty members of a local university. Pre- and post-test mean scores of the EBP barriers (EBPB) and EBP implementation (EBPI) scales were compared using paired t tests to determine the effect of the accelerated development program. Respondents reported higher scores on both the beliefs and implementation scales at the end of the program. Paired t tests indicated a significant difference in means for both the EBPB (p < .01) and EBPI (p < .01). Nurses who attend an accelerated educational program have the potential to significantly improve beliefs and attitudes about EBP. Administrative support and collaboration between academia and service are essential for successful intervention.
High Gradient Accelerator Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temkin, Richard
The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave coldmore » test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syphers, M. J.; Chattopadhyay, S.
An overview is provided of the currently envisaged landscape of charged particle accelerators at the energy and intensity frontiers to explore particle physics beyond the standard model via 1-100 TeV-scale lepton and hadron colliders and multi-Megawatt proton accelerators for short- and long- baseline neutrino experiments. The particle beam physics, associated technological challenges and progress to date for these accelerator facilities (LHC, HL-LHC, future 100 TeV p-p colliders, Tev-scale linear and circular electron-positron colliders, high intensity proton accelerator complex PIP-II for DUNE and future upgrade to PIP-III) are outlined. Potential and prospects for advanced “nonlinear dynamic techniques” at the multi-MW levelmore » intensity frontier and advanced “plasma- wakefield-based techniques” at the TeV-scale energy frontier and are also described.« less
Present Status and Future Developments in Proton Therapy
NASA Astrophysics Data System (ADS)
Smith, Alfred R.
2009-07-01
Within the past few years, interest in proton therapy has significantly increased. This interest has been generated by a number of factors including: 1) the reporting of positive clinical results using proton beams; 2) approval of reimbursement for delivery of proton therapy; 3) the success of hospital-based proton therapy centers; and 4) the availability of modern, integrated proton therapy technology for hospital-based facilities. In the United States, this increased interest has occurred particularly at the level of smaller academic hospitals, community medical centers, and large private practices; however, interest from large academic centers continues to be strong. Particular interest exists regarding smaller and less-expensive proton therapy systems, especially the so-called "single-room" systems. In this paper, the advantages and disadvantages of 1-room proton therapy systems will be discussed. The emphasis on smaller and cheaper proton therapy facilities has also generated interest in new proton-accelerating technologies such as superconducting cyclotrons and synchrocyclotrons, laser acceleration, and dielectric-wall accelerators. Superconducting magnets are also being developed to decrease the size and weight of isocentric gantries. Another important technical development is spot-beam scanning, which offers the ability to deliver intensity-modulated proton treatments (IMPT). IMPT has the potential to provide dose distributions that are superior to those for photon intensity modulation techniques (IMXT) and to improve clinical outcomes for patients undergoing cancer therapy. At the present time, only two facilities—one in Europe and one in the United States—have the ability to deliver IMPT treatments, however, within the next year or two several additional facilities are expected to achieve this capability.
Acceleration Environment of the International Space Station
NASA Technical Reports Server (NTRS)
McPherson, Kevin; Kelly, Eric; Keller, Jennifer
2009-01-01
Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available to the International Space Station scientific community, introduces plans for extending microgravity analysis results to the newly arrived scientific laboratories, and provides summary information for known microgravity environment disturbers.
Improvement of the High Fluence Irradiation Facility at the University of Tokyo
NASA Astrophysics Data System (ADS)
Murakami, Kenta; Iwai, Takeo; Abe, Hiroaki; Sekimura, Naoto
2016-08-01
This paper reports the modification of the High Fluence Irradiation Facility at the University of Tokyo (HIT). The HIT facility was severely damaged during the 2011 earthquake, which occurred off the Pacific coast of Tohoku. A damaged 1.0 MV tandem Cockcroft-Walton accelerator was replaced with a 1.7 MV accelerator, which was formerly used in another campus of the university. A decision was made to maintain dual-beam irradiation capability by repairing the 3.75 MV single-ended Van de Graaff accelerator and reconstructing the related beamlines. A new beamline was connected with a 200 kV transmission electron microscope (TEM) to perform in-situ TEM observation under ion irradiation.
Application of real-time digitization techniques in beam measurement for accelerators
NASA Astrophysics Data System (ADS)
Zhao, Lei; Zhan, Lin-Song; Gao, Xing-Shun; Liu, Shu-Bin; An, Qi
2016-04-01
Beam measurement is very important for accelerators. In this paper, modern digital beam measurement techniques based on IQ (In-phase & Quadrature-phase) analysis are discussed. Based on this method and high-speed high-resolution analog-to-digital conversion, we have completed three beam measurement electronics systems designed for the China Spallation Neutron Source (CSNS), Shanghai Synchrotron Radiation Facility (SSRF), and Accelerator Driven Sub-critical system (ADS). Core techniques of hardware design and real-time system calibration are discussed, and performance test results of these three instruments are also presented. Supported by National Natural Science Foundation of China (11205153, 10875119), Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the Fundamental Research Funds for the Central Universities (WK2030040029),and the CAS Center for Excellence in Particle Physics (CCEPP).
Magnetohydrodynamic Augmented Propulsion Experiment
NASA Technical Reports Server (NTRS)
Litchford, Ron J.
2008-01-01
Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing
Status of Magnetohydrodynamic Augmented Propulsion Experiment
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Lineberry, John T.
2007-01-01
Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems, The baseline configuration for this high-power experimental facility utilizes a 1,5-MW, multi-gas arc-heater as a thermal driver for a 2-MW, MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable beat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing
Physics through the 1990s: Nuclear physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume begins with a non-mathematical introduction to nuclear physics. A description of the major advances in the field follows, with chapters on nuclear structure and dynamics, fundamental forces in the nucleus, and nuclei under extreme conditions of temperature, density, and spin. Impacts of nuclear physics on astrophysics and the scientific and societal benefits of nuclear physics are then discussed. Another section deals with scientific frontiers, describing research into the realm of the quark-gluon plasma; the changing description of nuclear matter, specifically the use of the quark model; and the implications of the standard model and grand unified theories of elementary-particle physics; and finishes with recommendations and priorities for nuclear physics research facilities, instrumentation, accelerators, theory, education, and data bases. Appended are a list of national accelerator facilities, a list of reviewers, a bibliography, and a glossary.
DEEP UNDERGROUND NEUTRINO EXPERIMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Robert J.
2016-03-03
The Deep Underground Neutrino Experiment (DUNE) collaboration will perform an experiment centered on accelerator-based long-baseline neutrino studies along with nucleon decay and topics in neutrino astrophysics. It will consist of a modular 40-kt (fiducial) mass liquid argon TPC detector located deep underground at the Sanford Underground Research Facility in South Dakota and a high-resolution near detector at Fermilab in Illinois. This conguration provides a 1300-km baseline in a megawatt-scale neutrino beam provided by the Fermilab- hosted international Long-Baseline Neutrino Facility.
The ISOLDE facility and the HIE-HISOLDE project: Recent highlights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borge, M. J. G.
2014-07-23
The ISOLDE facility at CERN has as objective the production, study and research of nuclei far from stability. The facility provides low energy radioactive beams and post-accelerated beams. In the last 45 years the ISOLDE facility has gathered unique expertise in research with radioactive beams. Over 700 isotopes of more than 70 elements have been used in a wide range of research domains, including cutting edge studies in nuclear structure, atomic physics, nuclear astrophysics, and fundamental interactions. These nuclear probes are also used to do frontier research in solid state and life sciences. There is an on-going upgrade of themore » facility, the HIE-ISOLDE project, which aims to improve the ISOLDE capabilities in a wide front, from an energy increase of the post-accelerated beam to improvements in beam quality and beam purity. The first phase of HIE-ISOLDE will start for physics in the autumn of 2015 with an upgrade of energy for all post-accelerated ISOLDE beams up to 5.5 MeV/u. In this contribution the most recent highlights of the facility are presented.« less
Dual-TRACER: High resolution fMRI with constrained evolution reconstruction.
Li, Xuesong; Ma, Xiaodong; Li, Lyu; Zhang, Zhe; Zhang, Xue; Tong, Yan; Wang, Lihong; Sen Song; Guo, Hua
2018-01-01
fMRI with high spatial resolution is beneficial for studies in psychology and neuroscience, but is limited by various factors such as prolonged imaging time, low signal to noise ratio and scarcity of advanced facilities. Compressed Sensing (CS) based methods for accelerating fMRI data acquisition are promising. Other advanced algorithms like k-t FOCUSS or PICCS have been developed to improve performance. This study aims to investigate a new method, Dual-TRACER, based on Temporal Resolution Acceleration with Constrained Evolution Reconstruction (TRACER), for accelerating fMRI acquisitions using golden angle variable density spiral. Both numerical simulations and in vivo experiments at 3T were conducted to evaluate and characterize this method. Results show that Dual-TRACER can provide functional images with a high spatial resolution (1×1mm 2 ) under an acceleration factor of 20 while maintaining hemodynamic signals well. Compared with other investigated methods, dual-TRACER provides a better signal recovery, higher fMRI sensitivity and more reliable activation detection. Copyright © 2017 Elsevier Inc. All rights reserved.
Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik
2014-02-01
An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E < 12.47% for 99% particles). The whole linac comprises mainly E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.