Science.gov

Sample records for accelerator-based bnct facility

  1. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases.

  2. Development of an accelerator-based BNCT facility at the Berkeley Lab

    SciTech Connect

    Ludewigt, B.A.; Bleuel, D.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Reginato, L.L.; Wells, R.P.

    1998-03-01

    An accelerator-based BNCT facility is under construction at the Berkeley Lab. An electrostatic-quadrupole (ESQ) accelerator is under development for the production of neutrons via the {sup 7}Li(p,n){sup 7}Be reaction at proton energies between 2.3 and 2.5 MeV. A novel type of power supply, an air-core coupled transformer power supply, is being built for the acceleration of beam currents exceeding 50 mA. A metallic lithium target has been developed for handling such high beam currents. Moderator, reflector and neutron beam delimiter have extensively been modeled and designs have been identified which produce epithermal neutron spectra sharply peaked between 10 and 20 keV. These. neutron beams are predicted to deliver significantly higher doses to deep seated brain tumors, up to 50% more near the midline of the brain than is possible with currently available reactor beams. The accelerator neutron source will be suitable for future installation at hospitals.

  3. Evaluation of performance of an accelerator-based BNCT facility for the treatment of different tumor targets.

    PubMed

    Herrera, M S; González, S J; Minsky, D M; Kreiner, A J

    2013-09-01

    Encouraging Boron Neutron Capture Therapy (BNCT) clinical results obtained in recent years have stimulated intense research to develop accelerator-based neutron sources to be installed in clinical facilities. In this work an assessment of an accelerator-based BNCT facility for the treatment of different tumor targets was performed, comparing the accelerator-derived results with reported reactor-based trials under similar conditions and subjected to the same clinical protocols. A set of real image studies was used to cover clinical-like cases of brain and head-and-neck tumors. In addition, two clinical cases of malignant nodular melanoma treated at the RA-6 BNCT facility in Argentina were used to thoroughly compare the clinical dosimetry with the accelerator-derived results. The minimum weighted dose delivered to the clinical target volume was higher than 30 Gy and 14 Gy for the brain tumor and head-and-neck cases, respectively, in agreement with those achieved in clinical applications. For the melanoma cases, the minimum tumor doses were equal or higher than those achieved with the RA-6 reactor for identical field orientation and protocol. The whole-body dose assessment showed that the maximum photon-equivalent doses for those normal organs close to the beam direction were below the upper limits considered in the protocols used in the present work. The obtained results indicate not only the good performance of the proposed beam shaping assembly design associated to the facility but also the potential applicability of accelerator-based BNCT in the treatment of both superficial and deep-seated tumors. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. The BSA modeling for the accelerator-based BNCT facility at INFN LNL for treating shallow skin melanoma.

    PubMed

    Ceballos, C; Esposito, J

    2009-07-01

    The SPES-BNCT ongoing project of the Istituto Nazionale di Fisica Nucleare (INFN) is aimed at the construction at the Laboratori Nazionali di Legnaro (LNL) of an accelerator-based (AB), high-flux thermal neutron beam facility devoted to boron neutron capture therapy (BNCT) experimental treatment of extended skin melanoma, in the framework of SPES (selective production of exotic species) project. The neutron source will be produced via the (9)Be(p,xn) reactions by a 5 MeV, 30 mA proton beam into a thick beryllium target. The resulting neutron spectrum is slowed down using a beam shaping assembly (BSA), for which modeling is in an advanced neutronic design stage. An overview on the BSA current status, based on the Be neutron converter prototype designed and already constructed, is reported.

  5. Present status of Accelerator-Based BNCT

    PubMed Central

    Kreiner, Andres Juan; Bergueiro, Javier; Cartelli, Daniel; Baldo, Matias; Castell, Walter; Asoia, Javier Gomez; Padulo, Javier; Suárez Sandín, Juan Carlos; Igarzabal, Marcelo; Erhardt, Julian; Mercuri, Daniel; Valda, Alejandro A.; Minsky, Daniel M.; Debray, Mario E.; Somacal, Hector R.; Capoulat, María Eugenia; Herrera, María S.; del Grosso, Mariela F.; Gagetti, Leonardo; Anzorena, Manuel Suarez; Canepa, Nicolas; Real, Nicolas; Gun, Marcelo; Tacca, Hernán

    2016-01-01

    Aim This work aims at giving an updated report of the worldwide status of Accelerator-Based BNCT (AB-BNCT). Background There is a generalized perception that the availability of accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of BNCT. Accordingly, in recent years a significant effort has started to develop such machines. Materials and methods A variety of possible charged-particle induced nuclear reactions and the characteristics of the resulting neutron spectra are discussed along with the worldwide activity in suitable accelerator development. Results Endothermic 7Li(p,n)7Be and 9Be(p,n)9B and exothermic 9Be(d,n)10B are compared. In addition to having much better thermo-mechanical properties than Li, Be as a target leads to stable products. This is a significant advantage for a hospital-based facility. 9Be(p,n)9B needs at least 4–5 MeV bombarding energy to have a sufficient yield, while 9Be(d,n)10B can be utilized at about 1.4 MeV, implying the smallest possible accelerator. This reaction operating with a thin target can produce a sufficiently soft spectrum to be viable for AB-BNCT. The machines considered are electrostatic single ended or tandem accelerators or radiofrequency quadrupoles plus drift tube Linacs. Conclusions 7Li(p,n)7Be provides one of the best solutions for the production of epithermal neutron beams for deep-seated tumors. However, a Li-based target poses significant technological challenges. Hence, Be has been considered as an alternative target, both in combination with (p,n) and (d,n) reactions. 9Be(d,n)10B at 1.4 MeV, with a thin target has been shown to be a realistic option for the treatment of deep-seated lesions. PMID:26933390

  6. Neutronics analysis of three beam-filter assemblies for an accelerator-based BNCT facility

    SciTech Connect

    Bleuel, D.L.; Costes, S.V.; Donahue, R.J.; Ludewigt, B.A.

    1997-08-01

    Three moderator materials, AlF{sub 3}/Al, D{sub 2}O and LiF, have been analyzed for clinical usefulness using the reaction {sup 7}Li(p,n) as an accelerator driven neutron source. Proton energies between 2.1 MeV and 2.6 MeV have been investigated. Radiation transport in the reflector/moderator assembly is simulated using the MCNP program. Depth-dose distributions in a head phanton are calculated with the BNCT-RTPE patient treatment planning program from INEEL using the MCNP generated neutron and photon spectra as the subsequent source. Clinical efficacy is compared using the current BMRR protocol for all designs. Depth-dose distributions are compared for a fixed normal tissue tolerance dose of 12.5 Gy-Eq. Radiation analyses also include a complete anthropomorphic phantom. Results of organ and whole body dose components are presented for several designs. Results indicate that high quality accelerator beams may produce clinically favorable treatments to deep-seated tumors when compared to the BMRR beam. Also discussed are problems identified in comparing accelerator and reactor based designs using in-air figures of merit as well as some results of spectrum-averaged RBE`s.

  7. Advances in boron neutron capture therapy (BNCT) at kyoto university - From reactor-based BNCT to accelerator-based BNCT

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira

    2015-07-01

    At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.

  8. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT.

    PubMed

    Evans, J F; Blue, T E

    1996-11-01

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions "How much?" and "What kind?" of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room , patient "scatterer," and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h-1 was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel.

  9. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT

    SciTech Connect

    Evans, J.F.; Blue, T.E.

    1996-11-01

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions {open_quotes}How much?{close_quotes} and {open_quotes}What kind?{close_quotes} of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room, patient {open_quotes}scatterer,{close_quotes} and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h{sup {minus}1} was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel. 20 refs., 8 figs., 2 tabs.

  10. An accelerator-based epithermal photoneutron source for BNCT

    SciTech Connect

    Nigg, D.W.; Mitchell, H.E.; Harker, Y.D.; Yoon, W.Y.

    1995-11-01

    Therapeutically-useful epithermal-neutron beams for BNCT are currently generated by nuclear reactors. Various accelerator-based neutron sources for BNCT have been proposed and some low intensity prototypes of such sources, generally featuring the use of proton beams and beryllium or lithium targets have been constructed. This paper describes an alternate approach to the realization of a clinically useful accelerator-based source of epithermal neutrons for BNCT that reconciles the often conflicting objectives of target cooling, neutron beam intensity, and neutron beam spectral purity via a two stage photoneutron production process.

  11. Shielding design of a treatment room for an accelerator-based neutron source for BNCT

    SciTech Connect

    Evans, J.F.; Blue, T.E.

    1995-12-31

    For several years, research has been ongoing in the Ohio State University (OSU) Nuclear Engineering Program toward the development of an accelerator-based irradiation facility (ANIF) neutron source for boron neutron capture therapy (BNCT). The ANIF, which is planned to be built in a hospital, has been conceptually designed and analyzed. After Qu, an OSU researcher, determined that the shielding design of a 6-MV X-ray treatment room was inadequate to protect personnel from an accelerator neutron source operating at 30 mA, we decided to analyze and determine the shielding requirements of a treatment room for an ANIF. We determined the amount of shielding that would be sufficient to protect facility personnel from excessive radiation exposure caused by operation of the accelerator at 30 mA.

  12. Tandem-ESQ for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT)

    SciTech Connect

    Kreiner, A. J.; Kwan, J. W.; Henestroza, E.; Burlon, A. A.; Di Paolo, H.; Minsky, D.; Debray, M.; Valda, A.; Somacal, H. R.

    2007-02-12

    A folded tandem, with 1.25 MV terminal voltage, combined with an ElectroStatic Quadrupole (ESQ) chain is being proposed as a machine for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT). The machine is shown to be capable of accelerating a 30 mA proton beam to 2.5 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the on the 7Li(p,n)7Be reaction, to perform BNCT treatment for deep seated tumors in less than an hour.

  13. Analysis of accelerator based neutron spectra for BNCT using proton recoil spectroscopy

    SciTech Connect

    Wielopolski, L.; Ludewig, H.; Powell, J.R.; Raparia, D.; Alessi, J.G.; Lowenstein, D.I.

    1999-03-01

    Boron Neutron Capture Therapy (BNCT) is a promising binary treatment modality for high-grade primary brain tumors (glioblastoma multiforme, GM) and other cancers. BNCT employs a boron-10 containing compound that preferentially accumulates in the cancer cells in the brain. Upon neutron capture by {sup 10}B energetic alpha particles and triton released at the absorption site kill the cancer cell. In order to gain penetration depth in the brain Fairchild proposed, for this purpose, the use of energetic epithermal neutrons at about 10 keV. Phase 1/2 clinical trials of BNCT for GM are underway at the Brookhaven Medical Research Reactor (BMRR) and at the MIT Reactor, using these nuclear reactors as the source for epithermal neutrons. In light of the limitations of new reactor installations, e.g. cost, safety and licensing, and limited capability for modulating the reactor based neutron beam energy spectra, alternative neutron sources are being contemplated for wider implementation of this modality in a hospital environment. For example, accelerator based neutron sources offer the possibility of tailoring the neutron beams, in terms of improved depth-dose distributions, to the individual and offer, with relative ease, the capability of modifying the neutron beam energy and port size. In previous work new concepts for compact accelerator/target configuration were published. In this work, using the Van de Graaff accelerator the authors have explored different materials for filtering and reflecting neutron beams produced by irradiating a thick Li target with 1.8 to 2.5 MeV proton beams. However, since the yield and the maximum neutron energy emerging from the Li-7(p,n)Be-7 reaction increase with increase in the proton beam energy, there is a need for optimization of the proton energy versus filter and shielding requirements to obtain the desired epithermal neutron beam. The MCNP-4A computer code was used for the initial design studies that were verified with benchmark

  14. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.

    PubMed

    Minsky, D M; Kreiner, A J

    2014-06-01

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30mA at about 2.5MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the (7)Li(p,n)(7)Be neutron production reaction to obtain neutron beams to treat deep seated tumors.

  15. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.

    2002-01-01

    Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  16. Progress on the accelerator based SPES-BNCT project at INFN Legnaro

    SciTech Connect

    Esposito, J.; Colautti, P.; Pisent, A.; Conte, V.; Moro, D.; De Nardo, L.; Agosteo, S.; Rosi, G.

    2007-02-12

    In the framework of an advanced Exotic Ion Beam facility, named SPES (Study and Production of Exotic Species), that will allow a frontier program both in nuclear and interdisciplinary physics, an intense thermal neutron beam facility, devoted to perform Boron Neutron Capture Therapy (BNCT) experimental treatments on skin melanoma tumor, is currently under construction based on the SPES proton driver. A vast radiobiological investigation in vitro and in vivo has started with the new 10B carriers developed. Special microdosimetric detectors have been constructed to properly measure all the BNCT dose components and their qualities. Both microdosimetric and radiobiological measurements are being performed at the new HYTHOR beam shaping assembly at the Enea-Casaccia TAPIRO reactor.

  17. High neutronic efficiency, low current targets for accelerator-based BNCT applications

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1998-08-01

    The neutronic efficiency of target/filters for accelerator-based BNCT applications is measured by the proton current required to achieve a desirable neutron current at the treatment port (10{sup 9} n/cm{sup 2}/s). In this paper the authors describe two possible targeyt/filter concepts wihch minimize the required current. Both concepts are based on the Li-7 (p,n)Be-7 reaction. Targets that operate near the threshold energy generate neutrons that are close tothe desired energy for BNCT treatment. Thus, the filter can be extremely thin ({approximately} 5 cm iron). However, this approach has an extremely low neutron yield (n/p {approximately} 1.0({minus}6)), thus requiring a high proton current. The proposed solutino is to design a target consisting of multiple extremely thin targets (proton energy loss per target {approximately} 10 keV), and re-accelerate the protons between each target. Targets operating at ihgher proton energies ({approximately} 2.5 MeV) have a much higher yield (n/p {approximately} 1.0({minus}4)). However, at these energies the maximum neutron energy is approximately 800 keV, and thus a neutron filter is required to degrade the average neutron energy to the range of interest for BNCT (10--20 keV). A neutron filter consisting of fluorine compounds and iron has been investigated for this case. Typically a proton current of approximately 5 mA is required to generate the desired neutron current at the treatment port. The efficiency of these filter designs can be further increased by incorporating neutron reflectors that are co-axial with the neutron source. These reflectors are made of materials which have high scattering cross sections in the range 0.1--1.0 MeV.

  18. An optimized neutron-beam shaping assembly for accelerator-based BNCT.

    PubMed

    Burlon, A A; Kreiner, A J; Valda, A A; Minsky, D M

    2004-11-01

    Different materials and proton beam energies have been studied in order to search for an optimized neutron production target and beam shaping assembly for accelerator-based BNCT. The solution proposed in this work consists of successive stacks of Al, polytetrafluoroethylene, commercially known as Teflon, and LiF as moderator and neutron absorber, and Pb as reflector. This assembly is easy to build and its cost is relatively low. An exhaustive Monte Carlo simulation study has been performed evaluating the doses delivered to a Snyder model head phantom by a neutron production Li-metal target based on the (7)Li(p,n)(7)Be reaction for proton bombarding energies of 1.92, 2.0, 2.3 and 2.5 MeV. Three moderator thicknesses have been studied and the figures of merit show the advantage of irradiating with near-resonance-energy protons (2.3 MeV) because of the relatively high neutron yield at this energy, which at the same time keeps the fast neutron healthy tissue dose limited and leads to the lowest treatment times. A moderator of 34 cm length has shown the best performance among the studied cases.

  19. Neutron spectral fluence measurements using a Bonner sphere spectrometer in the development of the iBNCT accelerator-based neutron source.

    PubMed

    Masuda, Akihiko; Matsumoto, Tetsuro; Takada, Kenta; Onishi, Takahiro; Kotaki, Kohei; Sugimoto, Hidenori; Kumada, Hiroaki; Harano, Hideki; Sakae, Takeji

    2017-09-01

    The neutron spectral fluence of an accelerator-based neutron source facility for boron neutron capture therapy (BNCT) based on a proton linac and a beryllium target was evaluated by the unfolding method using a Bonner sphere spectrometer (BSS). A (3)He-proportional-counter-based BSS was used with weak beam during the development of the facility. The measured epithermal neutron spectra were consistent with calculations. The epithermal neutron intensity at the beam port was estimated and the results gave a numerical target for the enhancement of the proton beam intensity and will be used as reference data for measurements performed after the completion of the facility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Design of photon converter and photoneutron target for High power electron accelerator based BNCT.

    PubMed

    Rahmani, Faezeh; Seifi, Samaneh; Anbaran, Hossein Tavakoli; Ghasemi, Farshad

    2015-12-01

    An electron accelerator, ILU-14, with current of 10 mA and 100 kW in power has been considered as one of the options for neutron source in Boron Neutron Capture Therapy (BNCT). The final design of neutron target has been obtained using MCNPX to optimize the neutron production. Tungsten in strip shape and D2O in cylindrical form have been proposed as the photon converter and the photoneutron target, respectively. In addition calculation of heat deposition in the photon target design has been considered to ensure mechanical stability of target. The results show that about 8.37×10(12) photoneutron/s with average energy of 615 keV can be produced by this neutron source design. In addition, using an appropriate beam shaping assembly an epithermal neutron flux of the order of 1.24×10(8) cm(-2) s(-1) can be obtained for BNCT applications.

  1. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, Woo Y.; Jones, James L.; Nigg, David W.; Harker, Yale D.

    1999-01-01

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.

  2. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    DOEpatents

    Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.

    1999-05-11

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.

  3. BNL ACCELERATOR-BASED RADIOBIOLOGY FACILITIES

    SciTech Connect

    LOWENSTEIN,D.I.

    2000-05-28

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40--3,000 MeV/nucleon with maximum beam intensities of 10{sup 10} to 10{sup 11} ions per pulse. The BAF Project is described and the future AGS and BAF operation plans are presented.

  4. BNL accelerator-based radiobiology facilities

    NASA Technical Reports Server (NTRS)

    Lowenstein, D. I.

    2001-01-01

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40-3000 MeV/nucleon with maximum beam intensities of 10(10) to 10(11) ions per pulse. The BAF Project will be described and the future AGS and BAF operation plans will be presented.

  5. Shielding analyses of an AB-BNCT facility using Monte Carlo simulations and simplified methods

    NASA Astrophysics Data System (ADS)

    Lai, Bo-Lun; Sheu, Rong-Jiun

    2017-09-01

    Accurate Monte Carlo simulations and simplified methods were used to investigate the shielding requirements of a hypothetical accelerator-based boron neutron capture therapy (AB-BNCT) facility that included an accelerator room and a patient treatment room. The epithermal neutron beam for BNCT purpose was generated by coupling a neutron production target with a specially designed beam shaping assembly (BSA), which was embedded in the partition wall between the two rooms. Neutrons were produced from a beryllium target bombarded by 1-mA 30-MeV protons. The MCNP6-generated surface sources around all the exterior surfaces of the BSA were established to facilitate repeated Monte Carlo shielding calculations. In addition, three simplified models based on a point-source line-of-sight approximation were developed and their predictions were compared with the reference Monte Carlo results. The comparison determined which model resulted in better dose estimation, forming the basis of future design activities for the first ABBNCT facility in Taiwan.

  6. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    PubMed

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  7. Optimized therapeutic neutron beam for accelerator-based BNCT by analyzing the neutron angular distribution from (7)Li(p,n)(7)Be reaction.

    PubMed

    Kim, Kyung-O; Kim, Jong Kyung; Kim, Soon Young

    2009-01-01

    Perpendicular neutrons (i.e., solid angle bin of 50-150 degrees ) among ones generated from (7)Li(p,n)(7)Be reaction were used to produce an optimized therapeutic neutron beam for accelerator-based BNCT. A new beam port assembly was also designed to shape the fast neutrons into epithermal ones and to reduce unnecessary radiation including gammas. As a result of a simulation, it is found that a tumor at a depth of 60mm from the head skin could be treated within 5 minutes, if a typical tumor is assumed to be taken about 20RBEGy for therapeutic treatment. It is, thus, expected that the neutrons emitted into the solid angle bin of 50-150 degrees from (7)Li(p,n)(7)Be reaction are very effective in producing epithermal neutron beams for BNCT.

  8. Demonstration of the importance of a dedicated neutron beam monitoring system for BNCT facility.

    PubMed

    Chao, Der-Sheng; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2016-01-01

    The neutron beam monitoring system is indispensable to BNCT facility in order to achieve an accurate patient dose delivery. The neutron beam monitoring of a reactor-based BNCT (RB-BNCT) facility can be implemented through the instrumentation and control system of a reactor provided that the reactor power level remains constant during reactor operation. However, since the neutron flux in reactor core is highly correlative to complicated reactor kinetics resulting from such as fuel depletion, poison production, and control blade movement, some extent of variation may occur in the spatial distribution of neutron flux in reactor core. Therefore, a dedicated neutron beam monitoring system is needed to be installed in the vicinity of the beam path close to the beam exit of the RB-BNCT facility, where it can measure the BNCT beam intensity as closely as possible and be free from the influence of the objects present around the beam exit. In this study, in order to demonstrate the importance of a dedicated BNCT neutron beam monitoring system, the signals originating from the two in-core neutron detectors installed at THOR were extracted and compared with the three dedicated neutron beam monitors of the THOR BNCT facility. The correlation of the readings between the in-core neutron detectors and the BNCT neutron beam monitors was established to evaluate the improvable quality of the beam intensity measurement inferred by the in-core neutron detectors. In 29 sampled intervals within 16 days of measurement, the fluctuations in the mean value of the normalized ratios between readings of the three BNCT neutron beam monitors lay within 0.2%. However, the normalized ratios of readings of the two in-core neutron detectors to one of the BNCT neutron beam monitors show great fluctuations of 5.9% and 17.5%, respectively.

  9. Accelerator based X-ray facilities applied to freight control

    NASA Astrophysics Data System (ADS)

    Gaillard, G.

    1996-06-01

    The first accelerator based X-ray facility dedicated to freight control, in this case air-freight pallets, became operational at Roissy-Charles-de-Gaulle airport in 1991. Since then, five other facilities have been built, three in Europe and the other two in China, for the control of trucks and sea-containers. In order to be able to see through these very large and dense objects, X-ray energies of several MeV are necessary. Two types of electron accelerators are used for the production of the X-ray beams: linear accelerators and electrostatic accelerators (Van de Graff or Pelletrons), depending on the beam quality requirements which depend on the technology used for the detection of X-rays. A brief description of the functioning of the X-ray inspection facilities is presented in this article as well as an estimation of their global cost and of their profitability.

  10. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    SciTech Connect

    Burlon, Alejandro A.; Valda, Alejandro A.; Girola, Santiago; Minsky, Daniel M.; Kreiner, Andres J.

    2010-08-04

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the {sup 7}Li(p, n){sup 7}Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  11. Design of a new BNCT facility based on an ESQ accelerator

    SciTech Connect

    Chu, W.T.; Bleuel, D.L.; Donahue, R.J.

    1996-09-01

    The authors plan to build a BNCT facility based on electrostatic quadrupole (ESQ) accelerator technology. It is an experimentally-proven technology capable of delivering a high proton current for producing a neutron intensity greater than what is required for BNCT clinical trials. They also present a design of a lithium neutron-production target with adequate cooling of the heat generated by the high-current proton beam.

  12. In-phantom dosimetry for the 13C(d,n)14N reaction as a source for accelerator-based BNCT.

    PubMed

    Burlon, A A; Kreiner, A J; White, S M; Blackburn, B W; Gierga, D P; Yanch, J C

    2001-05-01

    The use of the 13C(d,n) 14N reaction at Ed=1.5 MeV for accelerator-based boron neutron capture therapy (AB-BNCT) is investigated. Among the deuteron-induced reactions at low incident energy, the 3C(d,n)14N reaction turns out to be one of the best for AB-BNCT because of beneficial materials properties inherent to carbon and its relatively large neutron production cross section. The deuteron beam was produced by a tandem accelerator at MIT's Laboratory for Accelerator Beam Applications (LABA) and the neutron beam shaping assembly included a heavy water moderator and a lead reflector. The resulting neutron spectrum was dosimetrically evaluated at different depths inside a water-filled brain phantom using the dual ionization chamber technique for fast neutrons and photons and bare and cadmium-covered gold foils for the thermal neutron flux. The RBE doses in tumor and healthy tissue were calculated from experimental data assuming a tumor 10B concentration of 40 ppm and a healthy tissue 10B concentration of 11.4 ppm (corresponding to a reported ratio of 3.5:1). All results were simulated using the code MCNP, a general Monte Carlo radiation transport code capable of simulating electron, photon, and neutron transport. Experimental and simulated results are presented at 1, 2, 3, 4, 6, 8, and 10 cm depths along the brain phantom centerline. An advantage depth of 5.6 cm was obtained for a treatment time of 56 min assuming a 4 mA deuteron current and a maximum healthy tissue dose of 12.5 RBE Gy.

  13. What is the best proton energy for accelerator-based BNCT using the 7Li(p,n)7Be reaction?

    PubMed

    Allen, D A; Beynon, T D

    2000-05-01

    With a growing interest in the use of accelerator-based epithermal neutron sources for BNCT programs, in particular those based upon the 7Li(p,n)7Be reaction, there is a need to address the question of "what is the best proton energy to use?" This paper considers this question by using radiation transport calculations to investigate a range of proton energies from 2.15 to 3.5 MeV and a range of moderator sizes. This study has moved away completely from the use of empty therapy beam parameters and instead defines the beam quality and optimizes the moderator design using widely accepted in-phantom treatment planning figures of merit. It is concluded that up to a proton energy of about 2.8 MeV there is no observed variation in the achievable therapy beam quality, but a price is paid in terms of treatment time for not choosing the upper limit of this range. For higher proton energies, the beam quality falls, but with no improvement in treatment time for optimum configurations.

  14. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL.

    PubMed

    Ceballos, C; Esposito, J; Agosteo, S; Colautti, P; Conte, V; Moro, D; Pola, A

    2011-12-01

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the (9)Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. On-line neutron beam monitoring of the Finnish BNCT facility

    NASA Astrophysics Data System (ADS)

    Tanner, Vesa; Auterinen, Iiro; Helin, Jori; Kosunen, Antti; Savolainen, Sauli

    1999-02-01

    A Boron Neutron Capture Therapy (BNCT) facility has been built at the FiR 1 research reactor of VTT Chemical Technology in Espoo, Finland. The facility is currently undergoing dosimetry characterisation and neutron beam operation research for clinical trials. The healthy tissue tolerance study, which was carried out in the new facility during spring 1998, demonstrated the reliability and user-friendliness of the new on-line beam monitoring system designed and constructed for BNCT by VTT Chemical Technology. The epithermal neutron beam is monitored at a bismuth gamma shield after an aluminiumfluoride-aluminium moderator. The detectors are three pulse mode U 235-fission chambers for epithermal neutron fluence rate and one current mode ionisation chamber for gamma dose rate. By using different detector sensitivities the beam intensity can be measured over a wide range of reactor power levels (0.001-250 kW). The detector signals are monitored on-line with a virtual instrumentation (LabView) based PC-program, which records and displays the actual count rates and total counts of the detectors in the beam. Also reactor in-core power instrumentation and control rod positions can be monitored via another LabView application. The main purpose of the monitoring system is to provide a dosimetric link to the dose in a patient during the treatment, as the fission chamber count rates have been calibrated to the induced thermal neutron fluence rate and to the absorbed dose rate at reference conditions in a tissue substitute phantom.

  16. Characteristics of BDE dependent on 10B concentration for accelerator-based BNCT using near-threshold 7Li(p,n)7Be direct neutrons.

    PubMed

    Tanaka, K; Kobayashi, T; Bengua, G; Nakagawa, Y; Endo, S; Hoshi, M

    2004-11-01

    The characteristics boron-dose enhancer (BDE) was evaluated as to the dependence on the (10)B concentration for BNCT using near-threshold (7)Li(p,n)(7)Be direct neutrons. The treatable protocol depth (TPD) was utilized as an evaluation index. MCNP-4B calculations were performed for near-threshold (7)Li(p,n)(7)Be at a proton energy of 1.900MeV and for a polyethylene BDE. Consequently, the TPD was increased by increasing T/N ratio, i.e., the ratio of the (10)B concentration in the tumor ((10)B(Tumor)) to that in the normal tissue ((10)B(Normal)), and by increasing (10)B(Tumor) and (10)B(Normal) for constant T/N ratio. It has been found that the BDE becomes unnecessary from the viewpoint of increasing the TPD, when (10)B(Tumor) is over a certain level.

  17. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: application to the treatment of experimental oral cancer.

    PubMed

    Pozzi, E; Nigg, D W; Miller, M; Thorp, S I; Heber, E M; Zarza, L; Estryk, G; Monti Hughes, A; Molinari, A J; Garabalino, M; Itoiz, M E; Aromando, R F; Quintana, J; Trivillin, V A; Schwint, A E

    2009-07-01

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1 x 10(9) n cm(-2)s(-1) and the fast neutron flux was 2.5 x 10(6) n cm(-2)s(-1), indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in (6)Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  18. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device

    PubMed Central

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C.; Marino, Stephen A.; Geard, Charles R.; Brenner, David J.; Garty, Guy

    2015-01-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  19. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy

    2015-10-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields.

  20. Clinical requirements and accelerator concepts for BNCT

    SciTech Connect

    Ludewigt, B.A.; Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Leung, K.N.; Reginato, L.L.; Wells, R.P.

    1997-05-01

    Accelerator-based neutron sources are an attractive alternative to nuclear reactors for providing epithermal neutron beams for Boron Neutron Capture Therapy. Based on clinical requirements and neutronics modeling the use of proton and deuteron induced reactions in {sup 7}Li and {sup 9}Be targets has been compared. Excellent epithermal neutron beams can be produced via the {sup 7}Li(p,n){sup 7}Be reaction at proton energies of {approximately}2.5 MeV. An electrostatic quadrupole accelerator and a lithium target, which can deliver and handle 2.5 MeV protons at beam currents up to 50 mA, are under development for an accelerator-based BNCT facility at the Lawrence Berkeley National Laboratory.

  1. Gel dosimetry in the BNCT facility for extra-corporeal treatment of liver cancer at the HFR Petten.

    PubMed

    Gambarini, G; Daquino, G G; Moss, R L; Carrara, M; Nievaart, V A; Vanossi, E

    2007-01-01

    A thorough evaluation of the dose inside a specially designed and built facility for extra-corporeal treatment of liver cancer by boron neutron capture therapy (BNCT) at the High Flux Reactor (HFR) Petten (The Netherlands) is the necessary step before animal studies can start. The absorbed doses are measured by means of gel dosemeters, which help to validate the Monte Carlo simulations of the spheroidal liver holder that will contain the human liver for irradiation with an epithermal neutron beam. These dosemeters allow imaging of the dose due to gammas and to the charged particles produced by the (10)B reaction. The thermal neutron flux is extrapolated from the boron dose images and compared to that obtained by the calculations. As an additional reference, Au, Cu and Mn foil measurements are performed. All results appear consistent with the calculations and confirm that the BNCT liver facility is able to provide an almost homogeneous thermal neutron distribution in the liver, which is a requirement for a successful treatment of liver metastases.

  2. First tomographic image of neutron capture rate in a BNCT facility.

    PubMed

    Minsky, D M; Valda, A A; Kreiner, A J; Green, S; Wojnecki, C; Ghani, Z

    2011-12-01

    This work discusses the development of online dosimetry of the boron dose via Single Photon Emission Computed Tomography (SPECT) during a BNCT treatment irradiation. Such a system will allow the online computation of boron dose maps without the large current uncertainties in the assessment of the boron concentration in different tissues. The first tomographic boron dose image with a SPECT prototype is shown. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. INEL BNCT Program

    SciTech Connect

    Ackermann, A.L.

    1991-08-01

    This Bulletin presents a summary of accomplishments and highlights in the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for August 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  4. Initial Experimental Verification of the Neutron Beam Modeling for the LBNL BNCT Facility

    SciTech Connect

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; McDonald, R.J.; Smith, A.R.; Stone, N.A.; Vuji, J.

    1999-01-19

    In preparation for future clinical BNCT trials, neutron production via the 7Li(p,n) reaction as well as subsequent moderation to produce epithermal neutrons have been studied. Proper design of a moderator and filter assembly is crucial in producing an optimal epithermal neutron spectrum for brain tumor treatments. Based on in-phantom figures-of-merit,desirable assemblies have been identified. Experiments were performed at the Lawrence Berkeley National Laboratory's 88-inch cyclotron to characterize epithermal neutron beams created using several microampere of 2.5 MeV protons on a lithium target. The neutron moderating assembly consisted of Al/AlF3 and Teflon, with a lead reflector to produce an epithermal spectrum strongly peaked at 10-20 keV. The thermal neutron fluence was measured as a function of depth in a cubic lucite head phantom by neutron activation in gold foils. Portions of the neutron spectrum were measured by in-air activation of six cadmium-covered materials (Au, Mn, In, Cu, Co, W) with high epithermal neutron absorption resonances. The results are reasonably reproduced in Monte Carlo computational models, confirming their validity.

  5. Progress In The Development Of A Tomographic SPECT System For Online Dosimetry In BNCT

    SciTech Connect

    Minsky, D. M.; Kreiner, A. J.; Valda, A.; Burlon, A. A.; Green, S.; Wojnecki, C.; Ghani, Z.

    2010-08-04

    In boron neutron capture therapy (BNCT) the delivered dose to the patient depends both on the neutron beam characteristics and on the {sup 10}B body distribution which, in turn, is governed by the tumor specificity of the {sup 10}B drug-carrier. BNCT dosimetry is a complex matter due to the several interactions that neutrons can undergo with the different nuclei present in tissue. However the boron capture reaction {sup 10}B(n,{alpha}){sup 7}Li accounts for about 80 % of the total dose in a tumor with 40 ppm in {sup 10}B concentration. Present dosimetric methods are indirect, based on drug biodistribution statistical data and subjected to inter and intra-patient variability. In order to overcome the consequences of the concomitant high dosimetric uncertainties, we propose a SPECT (Single Photon Emission Tomography) approach based on the detection of the prompt gamma-ray (478 keV) emitted in 94 % of the cases from {sup 7}Li. For this purpose we designed, built and tested a prototype based on LaBr{sub 3}(Ce) scintillators. Measurements on a head and tumor phantom were performed in the accelerator-based BNCT facility of the University of Birmingham (UK). They result in the first tomographic image of the 10B capture distribution obtained in a BNCT facility.

  6. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT).

    PubMed

    Capoulat, M E; Minsky, D M; Kreiner, A J

    2014-03-01

    The 9Be(d,n)10B reaction was studied as an epithermal neutron source for brain tumor treatment through Boron Neutron Capture Therapy (BNCT). In BNCT, neutrons are classified according to their energies as thermal (<0.5 eV), epithermal (from 0.5 eV to 10 keV) or fast (>10 keV). For deep-seated tumors epithermal neutrons are needed. Since a fraction of the neutrons produced by this reaction are quite fast (up to 5-6 MeV, even for low-bombarding energies), an efficient beam shaping design is required. This task was carried out (1) by selecting the combinations of bombarding energy and target thickness that minimize the highest-energy neutron production; and (2) by the appropriate choice of the Beam Shaping Assembly (BSA) geometry, for each of the combinations found in (1). The BSA geometry was determined as the configuration that maximized the dose deliverable to the tumor in a 1 h treatment, within the constraints imposed by the healthy tissue dose adopted tolerance. Doses were calculated through the MCNP code. The highest dose deliverable to the tumor was found for an 8 μm target and a deuteron beam of 1.45 MeV. Tumor weighted doses ≥40 Gy can be delivered up to about 5 cm in depth, with a maximum value of 51 Gy at a depth of about 2 cm. This dose performance can be improved by relaxing the treatment time constraint and splitting the treatment into two 1-h sessions. These good treatment capabilities strengthen the prospects for a potential use of this reaction in BNCT. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    PubMed

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT.

  8. An epithermal neutron source for BNCT based on an ESQ-accelerator

    SciTech Connect

    Ludewigt, B.A.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Phillips, T.L.; Reginato, L.L.; Wells, R.P.

    1997-07-01

    An accelerator-based BNCT facility is under development at the Lawrence Berkeley National Laboratory. Neutrons will be produced via the {sup 7}Li(p,n) reaction at proton energies of about 2.5 MeV with subsequent moderation and filtering for shaping epithermal neutron beams for BNCT. Moderator, filter, and shielding assemblies have been modeled using MCNP. Head-phantom dose distributions have been calculated using the treatment planning software BNCT{_}RTPE. The simulation studies have shown that a proton beam current of {approximately} 20 mA is required to deliver high quality brain treatments in about 40 minutes. The results also indicate that significantly higher doses can be delivered to deep-seated tumors in comparison to the Brookhaven Medical Research Reactor beam. An electrostatic quadrupole (ESQ) accelerator is ideally suited to provide the high beam currents desired. A novel power supply utilizing the air-coupled transformer concept is under development. It will enable the ESQ-accelerator to deliver proton beam currents exceeding 50 mA. A lithium target has been designed which consists of a thin layer of lithium on an aluminum backing. Closely spaced, narrow coolant passages cut into the aluminum allow the removal of a 50kW heat-load by convective water cooling. The system under development is suitable for hospital installation and has the potential for providing neutron beams superior to reactor sources.

  9. Accelerator Based Neutron Beams for Neutron Capture Therapy

    SciTech Connect

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  10. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    SciTech Connect

    Herrera, Maria S.; Gonzalez, Sara J.; Minsky, Daniel M.; Kreiner, Andres J.

    2010-08-04

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  11. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Herrera, María S.; González, Sara J.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  12. An Accelerator Neutron Source for BNCT

    SciTech Connect

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.

  13. A toolkit for epithermal neutron beam characterisation in BNCT.

    PubMed

    Auterinen, Iiro; Serén, Tom; Uusi-Simola, Jouni; Kosunen, Antti; Savolainen, Sauli

    2004-01-01

    Methods for dosimetry of epithermal neutron beams used in boron neutron capture therapy (BNCT) have been developed and utilised within the Finnish BNCT project as well as within a European project for a code of practise for the dosimetry of BNCT. One outcome has been a travelling toolkit for BNCT dosimetry. It consists of activation detectors and ionisation chambers. The free-beam neutron spectrum is measured with a set of activation foils of different isotopes irradiated both in a Cd-capsule and without it. Neutron flux (thermal and epithermal) distribution in phantoms is measured using activation of Mn and Au foils, and Cu wire. Ionisation chamber (IC) measurements are performed both in-free-beam and in-phantom for determination of the neutron and gamma dose components. This toolkit has also been used at other BNCT facilities in Europe, the USA, Argentina and Japan.

  14. INEL BNCT Program: Volume 5, No. 9

    SciTech Connect

    Ackermann, A.L.

    1991-01-01

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  15. Tandem-ESQ for Accelerator-Based BNCT

    SciTech Connect

    Kreiner, A.J.; Kwan, J.W.; Burlon, A.A.; Di Paolo, H.; Henestroza, E.; Minsky, D.M.; Valda, A.A.; Debray, M.E.; Somacal, H.R.

    2006-06-01

    A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment of a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.

  16. INEL BNCT Research Program annual report 1994

    SciTech Connect

    Venhuizen, J.R.

    1995-11-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1994. Contributions from the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, ICP-AES analysis of biological samples), physics (treatment planning software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of BSH and BPA is presented and results of 21 spontaneous tumor bearing dogs that have been treated with BNCT at Brookhaven National Laboratory (BNL) are discussed. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors is presented. Highlights from the First International Workshop on Accelerator-Based Neutron Sources for BNCT are included. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  17. Preliminary energy-filtering neutron imaging with time-of-flight method on PKUNIFTY: A compact accelerator based neutron imaging facility at Peking University

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Zou, Yubin; Wen, Weiwei; Lu, Yuanrong; Guo, Zhiyu

    2016-07-01

    Peking University Neutron Imaging Facility (PKUNIFTY) works on an accelerator-based neutron source with a repetition period of 10 ms and pulse duration of 0.4 ms, which has a rather low Cd ratio. To improve the effective Cd ratio and thus improve the detection capability of the facility, energy-filtering neutron imaging was realized with the intensified CCD camera and time-of-flight (TOF) method. Time structure of the pulsed neutron source was firstly simulated with Geant4, and the simulation result was evaluated with experiment. Both simulation and experiment results indicated that fast neutrons and epithermal neutrons were concentrated in the first 0.8 ms of each pulse period; meanwhile in the period of 0.8-2.0 ms only thermal neutrons existed. Based on this result, neutron images with and without energy filtering were acquired respectively, and it showed that detection capability of PKUNIFTY was improved with setting the exposure interval as 0.8-2.0 ms, especially for materials with strong moderating capability.

  18. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.

    PubMed

    Blue, Thomas E; Yanch, Jacquelyn C

    2003-01-01

    This paper reviews the development of low-energy light ion accelerator-based neutron sources (ABNSs) for the treatment of brain tumors through an intact scalp and skull using boron neutron capture therapy (BNCT). A major advantage of an ABNS for BNCT over reactor-based neutron sources is the potential for siting within a hospital. Consequently, light-ion accelerators that are injectors to larger machines in high-energy physics facilities are not considered. An ABNS for BNCT is composed of: (1) the accelerator hardware for producing a high current charged particle beam, (2) an appropriate neutron-producing target and target heat removal system (HRS), and (3) a moderator/reflector assembly to render the flux energy spectrum of neutrons produced in the target suitable for patient irradiation. As a consequence of the efforts of researchers throughout the world, progress has been made on the design, manufacture, and testing of these three major components. Although an ABNS facility has not yet been built that has optimally assembled these three components, the feasibility of clinically useful ABNSs has been clearly established. Both electrostatic and radio frequency linear accelerators of reasonable cost (approximately 1.5 M dollars) appear to be capable of producing charged particle beams, with combinations of accelerated particle energy (a few MeV) and beam currents (approximately 10 mA) that are suitable for a hospital-based ABNS for BNCT. The specific accelerator performance requirements depend upon the charged particle reaction by which neutrons are produced in the target and the clinical requirements for neutron field quality and intensity. The accelerator performance requirements are more demanding for beryllium than for lithium as a target. However, beryllium targets are more easily cooled. The accelerator performance requirements are also more demanding for greater neutron field quality and intensity. Target HRSs that are based on submerged-jet impingement and

  19. Boron neutron capture therapy (BNCT) in Finland: technological and physical prospects after 20 years of experiences.

    PubMed

    Savolainen, Sauli; Kortesniemi, Mika; Timonen, Marjut; Reijonen, Vappu; Kuusela, Linda; Uusi-Simola, Jouni; Salli, Eero; Koivunoro, Hanna; Seppälä, Tiina; Lönnroth, Nadja; Välimäki, Petteri; Hyvönen, Heini; Kotiluoto, Petri; Serén, Tom; Kuronen, Antti; Heikkinen, Sami; Kosunen, Antti; Auterinen, Iiro

    2013-05-01

    Boron Neutron Capture Therapy (BNCT) is a binary radiotherapy method developed to treat patients with certain malignant tumours. To date, over 300 treatments have been carried out at the Finnish BNCT facility in various on-going and past clinical trials. In this technical review, we discuss our research work in the field of medical physics to form the groundwork for the Finnish BNCT patient treatments, as well as the possibilities to further develop and optimize the method in the future. Accordingly, the following aspects are described: neutron sources, beam dosimetry, treatment planning, boron imaging and determination, and finally the possibilities to detect the efficacy and effects of BNCT on patients.

  20. BNCT-RTPE: BNCT radiation treatment planning environment

    SciTech Connect

    Wessol, D.E.; Wheeler, F.J.; Babcock, R.S.

    1995-11-01

    Several improvements have been developed for the BNCT radiation treatment planning environment (BNCT-Rtpe) during 1994. These improvements have been incorporated into Version 1.0 of BNCT-Rtpe which is currently installed at the INEL, BNL, Japanese Research Center (JRC), and Finland`s Technical Research Center. Platforms supported by this software include Hewlett-Packard (HP), SUN, International Business Machines (IBM), and Silicon Graphics Incorporated (SGI). A draft version of the BNCT-Rtpe user manual is available. Version 1.1 of BNCT-Rtpe is scheduled for release in March 1995. It is anticipated that Version 2.x of BNCT-Rtpe, which includes the nonproprietary NURBS library and data structures, will be released in September 1995.

  1. A study of neutron radiation quality with a tissue-equivalent proportional counter for a low-energy accelerator-based in vivo neutron activation facility.

    PubMed

    Aslam; Waker, A J

    2011-02-01

    The accelerator-based in vivo neutron activation facility at McMaster University has been used successfully for the measurement of several minor and trace elements in human hand bones due to their importance to health. Most of these in vivo measurements have been conducted at a proton beam energy (E(p)) of 2.00 MeV to optimise the activation of the selected element of interest with an effective dose of the same order as that received in chest X rays. However, measurement of other elements at the same facility requires beam energies other than 2.00 MeV. The range of energy of neutrons produced at these proton beam energies comes under the region where tissue-equivalent proportional counters (TEPCs) are known to experience difficulty in assessing the quality factor and dose equivalent. In this study, the response of TEPCs was investigated to determine the quality factor of neutron fields generated via the (7)Li(p, n)(7)Be reaction as a function of E(p) in the range 1.884-2.56 MeV at the position of hand irradiation in the facility. An interesting trend has been observed in the quality factor based on ICRP 60, Q(ICRP60), such that the maximum value was observed at E(p)=1.884 MeV (E(n)=33±16 keV) and then continued to decline with increasing E(p) until achieving a minimum value at E(p)=2.0 MeV despite a continuous increase in the mean neutron energy with E(p). This observation is contrary to what has been observed with direct fast neutrons where the quality factor was found to increase continuously with an increase in E(p) (i.e. increasing E(n)). The series of measurements conducted with thermal and fast neutron fields demonstrate that the (14)N(n, p)(14)C produced 580 keV protons in the detector play an important role in the response of the counter under 2.0 MeV proton energy (E(n) ≤ 250 keV). In contrast to the lower response of TEPCs to low-energy neutrons, the quality factor is overestimated in the range 1-2 depending on beam energy <2.0 MeV. This study provides

  2. Building of scientific information system for sustainable development of BNCT in Bulgaria.

    PubMed

    Mitev, M; Ilieva, K; Apostolov, T

    2009-07-01

    Building a boron neutron capture therapy (BNCT) facility is foreseen within the reconstruction of the Research Reactor IRT (IRT) of the Institute for Nuclear Research and Nuclear Energy of the Bulgaria Academy of Sciences (INRNE). The development of BNCT at IRT plays a very significant role in the plan for sustainable application of the reactor. A centralized scientific information system on BNCT is being built at the INRNE with the purpose to collect and sort new information as knowledge accumulated during more than thirty years history of BNCT. This BNCT information system will help the creation and consolidation of a well informed and interconnected interdisciplinary team of physicists, chemists, biologists, and radio-oncologists for establishing BNCT cancer treatment in Bulgaria. It will strengthen more intensive development of the national network as well as its enlargement to the Balkan region countries. Furthermore, to acquaint the public at large with the opportunity for BNCT cancer treatment will be addressed. Human, social, and economics results due to BNCT for many patients from Balkan region are expected.

  3. INEL BNCT Program: Volume 5, No. 9. Bulletin, September 1991

    SciTech Connect

    Ackermann, A.L.

    1991-12-31

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory`s (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  4. Clinical Requirements and Accelerator Concepts for BNCT

    NASA Astrophysics Data System (ADS)

    Ludewigt, Bernhard A.

    1997-05-01

    Accelerator-driven epithermal neutron sources are an attractive alternative to nuclear reactors for Boron Neutron Capture Therapy (BNCT). In BNCT the goal of delivering a sufficient dose to the tumor without exceeding the dose limits of the surrounding normal tissues is achieved by administering a ^10B-containing compound which is selectively taken up in the tumor cells. Subsequent irradiation with epithermal neutrons leads to the release of short ranged (< 10 μm) ionizing particles via the ^10B(n,α)^7Li neutron-capture reaction. By carefully shaping the neutron spectrum the background dose, partially due to recoil protons and external gamma radiation, can be minimized and the depth dose distribution optimized. Excellent epithermal neutron beams for BNCT can be produced by bombarding a Li-target with a high current proton beam at energies ranging from the (p,n) reaction threshold to 2.5 MeV and subsequent moderation and filtering of the primary neutrons. In comparison the use of Be-targets and higher proton or deuteron energies, up to 20 MeV, leads to higher neutron yields but also to higher primary neutron energies requiring more moderation and resulting in less desirable neutron spectra. Accelerator options for possible neutron sources include dc-accelerators, RFQs, LINACs and cyclotrons. An electrostatic quadrupole (ESQ) accelerator has been chosen to provide a 2.5 MeV proton beam for the BNCT facility currently being designed at LBNL. An ESQ-accelerator is ideally suited to provide the high beam currents which are desired for producing high quality neutron beams for BNCT treatments. A novel power supply based on the air-coupled transformer concept is under development. It will enable the accelerator to deliver proton beam currents up to about 50 mA. A Li-target has been designed which can handle beam power in excess of 50 kW establishing the practicability of this approach. Monte Carlo simulation studies have shown that at a proton beam current of 20 mA high

  5. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases.

    PubMed

    Halfon, S; Paul, M; Steinberg, D; Nagler, A; Arenshtam, A; Kijel, D; Polacheck, I; Srebnik, M

    2009-07-01

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction (7)Li(p,n)(7)Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  6. INEL BNCT research program: Annual report, 1995

    SciTech Connect

    Venhuizen, J.R.

    1996-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1995. Contributions from the principal investigators about their individual projects are included, specifically, physics (treatment planning software, real-time neutron beam measurement dosimetry), and radiation biology (large animal models efficacy studies). Design of a reactor based epithermal neutron extraction facility is discussed in detail. Final results of boron magnetic resonance imagining is included for both borocaptate sodium (BSH) and boronophenylalanine (BPA) in rats, and BSH in humans. Design of an epithermal neutron facility using electron linear accelerators is presented, including a treatise on energy removal from the beam target. Information on the multiple fraction injection of BSH in rats is presented.

  7. A New Simplified System for the Evaluation of BNCT Pharmaceuticals

    SciTech Connect

    Byrne, T.E.; Kabalka, G.W.; Martin, R.C.; Miller, L.F.

    1998-09-13

    A system for testing potential BNCT pharmaceuticals in cell cultures has been developed with the cooperation of Oak Ridge National Laboratory (ORNL), the University of Tennessee Chemistry Department and the University of Tennessee Nuclear Engineering Department. A BNCT test model has been established with the use of the human lung cancer cell line A 549. These cells were maintained in standard laboratory facilities and subjected to boronated chemicals. Following toxicity studies the human luug cancer cells were exposed to {sup 252}Cf neutron sources provided by the Radiochemical Engineering Development Center (REDC) at ORNL The isotope {sup 252}Cf performs effectively for BNCT applications. The neutron spectrum is similar to that of a reactor fission source with an average energy of 2.1 MeV. A 50 mg source of {sup 252}Cf moderated by water provides a source on the order of 1 x 10{sup 9} thermal neutrons/cm{sup 2}/sec at a distance of 3 cm. The half-life of {sup 252}Cf is 2.65 years, and thus may provide a simple and reliable source of neutrons for BNCT in locations without suitable nuclear reactors. The REDC of ORNL stores and processes the U.S. stockpile of {sup 252}Cf.

  8. Increase of the beam intensity for BNCT by changing the core configuration at THOR.

    PubMed

    Liu, H M; Peir, J J; Liu, Y H; Tsai, P E; Jiang, S H

    2009-07-01

    In this article, we will consider several core configurations and run the core calculation with MCNP to obtain the neutrons distribution at THOR. The thermal neutron flux inside the vertical tubes (VT-B-VT-E) and the fast neutron flux in the first row facing to the boron neutron capture therapy (BNCT) facility (I3-I5) were tallied for indication. Based on these simulation results, the fuel elements were rearranged during the annual repair period in 2007. The epithermal neutron flux at the center of BNCT beam exit in air was measured again, and the results showed that the beam intensity increased by 50%. Comparing the neutron intensities both in reactor core and at the BNCT beam exit for several core configurations, the results show that the BNCT beam intensity can be increased without decreasing the neutron intensity in core.

  9. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy.

    PubMed

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-03-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 10(5) n/cm(2)/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources.

  10. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    PubMed Central

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504

  11. Project for the development of the linac based NCT facility in University of Tsukuba.

    PubMed

    Kumada, H; Matsumura, A; Sakurai, H; Sakae, T; Yoshioka, M; Kobayashi, H; Matsumoto, H; Kiyanagi, Y; Shibata, T; Nakashima, H

    2014-06-01

    A project team headed by University of Tsukuba launched the development of a new accelerator based BNCT facility. In the project, we have adopted Radio-Frequency Quadrupole (RFQ)+Drift Tube Linac (DTL) type linac as proton accelerators. Proton energy generated from the linac was set to 8MeV and average current was 10mA. The linac tube has been constructed by Mitsubishi Heavy Industry Co. For neutron generator device, beryllium is selected as neutron target material; high intensity neutrons are generated by the reaction with beryllium and the 80kW proton beam. Our team chose beryllium as the neutron target material. At present beryllium target system is being designed with Monte-Carlo estimations and heat analysis with ANSYS. The neutron generator consists of moderator, collimator and shielding. It is being designed together with the beryllium target system. We also acquired a building in Tokai village; the building has been renovated for use as BNCT treatment facility. It is noteworthy that the linac tube had been installed in the facility in September 2012. In BNCT procedure, several medical devices are required for BNCT treatment such as treatment planning system, patient positioning device and radiation monitors. Thus these are being developed together with the linac based neutron source. For treatment planning system, we are now developing a new multi-modal Monte-Carlo treatment planning system based on JCDS. The system allows us to perform dose estimation for BNCT as well as particle radiotherapy and X-ray therapy. And the patient positioning device can navigate a patient to irradiation position quickly and properly. Furthermore the device is able to monitor movement of the patient׳s position during irradiation.

  12. Feasibility of an epithermal neutron source for BNCT based on RFQ accelerator

    NASA Astrophysics Data System (ADS)

    Terlizzi, R.; Colonna, N.; Bisceglie, E.; Colangelo, P.; Marrone, S.; Rainò, A.; Tagliente, G.; Variale, V.

    2004-01-01

    The use of boron neutron capture therapy for the treatment of deep-seated tumours, such as glioblastoma multiforme, requires neutron beams of suitable energy and intensity. The analysis of the therapeutic gain shows that a high tumour control probability with sublethal dose at healthy tissues can be achieved, in most cases, by using neutron beams of a few keV energy, with a flux of about 10 9 neutrons/cm 2 s. Therapeutic neutron beams with high-spectral purity in this energy range could be produced by accelerator-based neutron sources through a suitable neutron-producing reaction. We investigate the feasibility of a solution based on a small radio frequency quadrupole for a proton beam current of 30 mA and an energy of 2 MeV. An appropriate choice of the function parameters of the RFQ (modulation, efficiency of acceleration, phase shift, etc., …) allows one to design relatively compact accelerators, which could eventually lead to setup hospital-based BNCT facilities.

  13. Accelerator based epithermal neutron source

    NASA Astrophysics Data System (ADS)

    Taskaev, S. Yu.

    2015-11-01

    We review the current status of the development of accelerator sources of epithermal neutrons for boron neutron capture therapy (BNCT), a promising method of malignant tumor treatment. Particular attention is given to the source of epithermal neutrons on the basis of a new type of charged particle accelerator: tandem accelerator with vacuum insulation and lithium neutron-producing target. It is also shown that the accelerator with specialized targets makes it possible to generate fast and monoenergetic neutrons, resonance and monoenergetic gamma-rays, alpha-particles, and positrons.

  14. A feasibility study of the Tehran research reactor as a neutron source for BNCT.

    PubMed

    Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Monshizadeh, Mahdi

    2014-08-01

    Investigation on the use of the Tehran Research Reactor (TRR) as a neutron source for Boron Neutron Capture Therapy (BNCT) has been performed by calculating and measuring energy spectrum and the spatial distribution of neutrons in all external irradiation facilities, including six beam tubes, thermal column, and the medical room. Activation methods with multiple foils and a copper wire have been used for the mentioned measurements. The results show that (1) the small diameter and long length beam tubes cannot provide sufficient neutron flux for BNCT; (2) in order to use the medical room, the TRR core should be placed in the open pool position, in this situation the distance between the core and patient position is about 400 cm, so neutron flux cannot be sufficient for BNCT; and (3) the best facility which can be adapted for BNCT application is the thermal column, if all graphite blocks can be removed. The epithermal and fast neutron flux at the beginning of this empty column are 4.12×10(9) and 1.21×10(9) n/cm(2)/s, respectively, which can provide an appropriate neutron beam for BNCT by designing and constructing a proper Beam Shaping Assembly (BSA) structure.

  15. Quality management in BNCT at a nuclear research reactor.

    PubMed

    Sauerwein, Wolfgang; Moss, Raymond; Stecher-Rasmussen, Finn; Rassow, Jürgen; Wittig, Andrea

    2011-12-01

    Each medical intervention must be performed respecting Health Protection directives, with special attention to Quality Assurance (QA) and Quality Control (QC). This is the basis of safe and reliable treatments. BNCT must apply QA programs as required for performance and safety in (conventional) radiotherapy facilities, including regular testing of performance characteristics (QC). Furthermore, the well-established Quality Management (QM) system of the nuclear reactor used has to be followed. Organization of these complex QM procedures is offered by the international standard ISO 9001:2008. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Optimization of the photoneutron target geometry for e-accelerator based BNCT

    PubMed Central

    Chegeni, Nahid; Pur, Saleh Boveiry; Razmjoo, Sasan; Hoseini, Seydeh Khadijed

    2017-01-01

    Background and aim Today, electron accelerators are taken into consideration as photoneutron sources. Therefore, for maximum production of epithermal neutron flux, designing a photoneutron target is of significant importance. In this paper, the effect of thickness and geometric shape of a photoneutron target on neutron output were investigated. Methods In this study, a pencil photon source with 13, 15, 18, 20 and 25 MeV energies and a diameter of 2 mm was investigated using Monte Carlo simulation method using MCNP code. To optimize the design of the photoneutron target, the tungsten target with various geometries and thicknesses was investigated. Results The maximum neutron flux produced for all target geometries and thicknesses occurred at neutron energy peak of around 0.46 MeV. As the thickness increased to 2 cm, neutron flux increased and then a decreasing trend was observed. For various geometrical shapes, the determining factor in photoneutron output was the effective target thickness in the photon interaction path that increased by the increase in the area of interaction. Another factor was the angle of the photon’s incidence with the target surface that resulted in a significant decrease in photoneutron output in cone-shaped targets Conclusion Three factors including the total neutron flux, neutrons energy spectrum, and convergence of neutrons plays an important role in the selection of geometry and shape of the target that should be investigated considering beam shaping assembly (BSA) shape. PMID:28848635

  17. Optimization of the photoneutron target geometry for e-accelerator based BNCT.

    PubMed

    Chegeni, Nahid; Pur, Saleh Boveiry; Razmjoo, Sasan; Hoseini, Seydeh Khadijed

    2017-06-01

    Today, electron accelerators are taken into consideration as photoneutron sources. Therefore, for maximum production of epithermal neutron flux, designing a photoneutron target is of significant importance. In this paper, the effect of thickness and geometric shape of a photoneutron target on neutron output were investigated. In this study, a pencil photon source with 13, 15, 18, 20 and 25 MeV energies and a diameter of 2 mm was investigated using Monte Carlo simulation method using MCNP code. To optimize the design of the photoneutron target, the tungsten target with various geometries and thicknesses was investigated. The maximum neutron flux produced for all target geometries and thicknesses occurred at neutron energy peak of around 0.46 MeV. As the thickness increased to 2 cm, neutron flux increased and then a decreasing trend was observed. For various geometrical shapes, the determining factor in photoneutron output was the effective target thickness in the photon interaction path that increased by the increase in the area of interaction. Another factor was the angle of the photon's incidence with the target surface that resulted in a significant decrease in photoneutron output in cone-shaped targets. Three factors including the total neutron flux, neutrons energy spectrum, and convergence of neutrons plays an important role in the selection of geometry and shape of the target that should be investigated considering beam shaping assembly (BSA) shape.

  18. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    PubMed

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays.

  19. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    SciTech Connect

    Mitchell, Hannah E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies.

  20. Measurements of low-energy (d,n) reactions for BNCT. Boron Neutron Capture Therapy.

    PubMed

    Colonna, N; Beaulieu, L; Phair, L; Wozniak, G J; Moretto, L G; Chu, W T; Ludewigt, B A

    1999-05-01

    Neutron yields and energy spectra have been measured for various deuteron-induced reactions at low energy. Neutrons of energy > 100 keV emitted in the 9Be(d,n)10B, 12C(d,n)13N, and 13C(d,n)14N reactions at Ed= 1.5 MeV were detected at five angles by means of liquid scintillator detectors. While low-energy neutrons were observed in all studied reactions, only 13C(d,n)14N is characterized by a relatively large yield with spectral features potentially interesting for an accelerator-based neutron source for BNCT.

  1. Secondary photon fields produced in accelerator-based sources for neutron generation.

    PubMed

    Agosteo, S; Cesana, A; Garlati, L; Pola, A; Terrani, M

    2005-01-01

    Neutrons can be produced with low-energy ion accelerators for many applications, such as the characterisation of neutron detectors, the irradiation of biological samples and the study of the radiation damage in electronic devices. Moreover, accelerator-based neutron sources are under development for boron neutron capture therapy (BNCT). Thin targets are used for generating monoenergetic neutrons, while thick targets are usually employed for producing more intense neutron fields. The associated photon field produced by the target nuclei may have a strong influence on the application under study. For instance, these photons can play a fundamental role in the design of an accelerator-based neutron source for BNCT. This work focuses on the measurement of the photon field associated with neutrons that are produced by 4.0-6.8 MeV protons striking both a thin 7LiF target (for generating monoenergetic neutrons) and a thick beryllium target. In both cases, very intense photon fields are generated with energy distribution extending up to several MeV.

  2. "Sequential" boron neutron capture therapy (BNCT): a novel approach to BNCT for the treatment of oral cancer in the hamster cheek pouch model.

    PubMed

    Molinari, Ana J; Pozzi, Emiliano C C; Monti Hughes, Andrea; Heber, Elisa M; Garabalino, Marcela A; Thorp, Silvia I; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Quintana, Jorge; Santa Cruz, Gustavo A; Trivillin, Verónica A; Schwint, Amanda E

    2011-04-01

    In the present study the therapeutic effect and potential toxicity of the novel "Sequential" boron neutron capture therapy (Seq-BNCT) for the treatment of oral cancer was evaluated in the hamster cheek pouch model at the RA-3 Nuclear Reactor. Two groups of animals were treated with "Sequential" BNCT, i.e., BNCT mediated by boronophenylalanine (BPA) followed by BNCT mediated by sodium decahydrodecaborate (GB-10) either 24 h (Seq-24h-BNCT) or 48 h (Seq-48h-BNCT) later. In an additional group of animals, BPA and GB-10 were administered concomitantly [(BPA + GB-10)-BNCT]. The single-application BNCT was to the same total physical tumor dose as the "Sequential" BNCT treatments. At 28 days post-treatment, Seq-24h-BNCT and Seq-48h-BNCT induced, respectively, overall tumor responses of 95 ± 2% and 91 ± 3%, with no statistically significant differences between protocols. Overall response for the single treatment with (BPA + GB-10)-BNCT was 75 ± 5%, significantly lower than for Seq-BNCT. Both Seq-BNCT protocols and (BPA + GB-10)-BNCT induced reversible mucositis in the dose-limiting precancerous tissue around treated tumors, reaching Grade 3/4 mucositis in 47 ± 12% and 60 ± 22% of the animals, respectively. No normal tissue toxicity was associated with tumor response for any of the protocols. "Sequential" BNCT enhanced tumor response without an increase in mucositis in dose-limiting precancerous tissue. © 2011 by Radiation Research Society

  3. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    PubMed

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors.

  4. Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

    SciTech Connect

    Ackermann, A.L.; Dorn, R.V. III.

    1990-08-01

    This report discusses monthly progress in the Power Boron Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program for Cancer Treatment. Highlights of the PBF/BNCT Program during August 1990 include progress within the areas of: Gross Boron Analysis in Tissue, Blood, and Urine, boron microscopic (subcellular) analytical development, noninvasive boron quantitative determination, analytical radiation transport and interaction modeling for BNCT, large animal model studies, neutron source and facility preparation, administration and common support and PBF operations.

  5. Mock-up experiment at Birmingham University for BNCT project of Osaka University--Neutron flux measurement with gold foil.

    PubMed

    Tamaki, S; Sakai, M; Yoshihashi, S; Manabe, M; Zushi, N; Murata, I; Hoashi, E; Kato, I; Kuri, S; Oshiro, S; Nagasaki, M; Horiike, H

    2015-12-01

    Mock-up experiment for development of accelerator based neutron source for Osaka University BNCT project was carried out at Birmingham University, UK. In this paper, spatial distribution of neutron flux intensity was evaluated by foil activation method. Validity of the design code system was confirmed by comparing measured gold foil activities with calculations. As a result, it was found that the epi-thermal neutron beam was well collimated by our neutron moderator assembly. Also, the design accuracy was evaluated to have less than 20% error.

  6. Accelerator-Based Boron Neutron Capture Therapy and the Development of a Dedicated Tandem-Electrostatic-Quadrupole

    SciTech Connect

    Kreiner, A. J.; Di Paolo, H.; Burlon, A. A.; Valda, A. A.; Debray, M. E.; Somacal, H. R.; Minsky, D. M.; Kesque, J. M.; Giboudot, Y.; Levinas, P.; Fraiman, M.; Romeo, V.

    2007-10-26

    There is a generalized perception that the availability of suitable particle accelerators installed in hospitals, as neutron sources, may be crucial for the advancement of Boron Neutron Capture Therapy (BNCT). Progress on an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator for Accelerator-Based (AB)-BNCT is described here. The project goal is a machine capable of delivering 30 mA of 2.5 MeV protons to be used in conjunction with a neutron production target based on the {sup 7}Li(p,n){sup 7}Be reaction slightly beyond its resonance at 2.25 MeV. A folded tandem, with 1.25 MV terminal voltage, combined with an ESQ chain is being designed and constructed. A 30 mA proton beam of 2.5 MeV are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the {sup 7}Li(p,n){sup 7}Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. The first design and construction of an ESQ module is discussed and its electrostatic fields are investigated theoretically and experimentally. Also new beam transport calculations through the accelerator are presented.

  7. Application to BNCT to endocrine-mediated tumors

    SciTech Connect

    Binney, S.E.; Martsolf, S.W.; Albertson, B.D.

    1994-12-31

    Boron neutron capture therapy (BNCT) has been experiencing a recent resurgence in interest as a cancer treatment modality. Most of the focus involves brain tumors, specifically grade III/IV gliomas and metastatic melanoma. However, BNCT can also be considered for other tumors. Recent experiments by Oregon Health Sciences University and Oregon State University (OSU) investigators have explored the efficacy of BNCT for treating tumors found in endocrine glands. These tumors offer a unique advantage for BNCT because the tumor cells can be targeted by boron-loaded hormones through specific cell membrane receptors.

  8. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy.

    PubMed

    Bleuel, D L; Donahue, R J; Ludewigt, B A; Vujic, J

    1998-09-01

    The 7Li(p,n)7Be reaction has been investigated as an accelerator-driven neutron source for proton energies between 2.1 and 2.6 MeV. Epithermal neutron beams shaped by three moderator materials, Al/AlF3, 7LiF, and D2O, have been analyzed and their usefulness for boron neutron capture therapy (BNCT) treatments evaluated. Radiation transport through the moderator assembly has been simulated with the Monte Carlo N-particle code (MCNP). Fluence and dose distributions in a head phantom were calculated using BNCT treatment planning software. Depth-dose distributions and treatment times were studied as a function of proton beam energy and moderator thickness. It was found that an accelerator-based neutron source with Al/AlF3 or 7LiF as moderator material can produce depth-dose distributions superior to those calculated for a previously published neutron beam design for the Brookhaven Medical Research Reactor, achieving up to approximately 50% higher doses near the midline of the brain. For a single beam treatment, a proton beam current of 20 mA, and a 7LiF moderator, the treatment time was estimated to be about 40 min. The tumor dose deposited at a depth of 8 cm was calculated to be about 21 Gy-Eq.

  9. Boron neutron capture therapy (BNCT) for the treatment of liver metastases: biodistribution studies of boron compounds in an experimental model.

    PubMed

    Garabalino, Marcela A; Monti Hughes, Andrea; Molinari, Ana J; Heber, Elisa M; Pozzi, Emiliano C C; Cardoso, Jorge E; Colombo, Lucas L; Nievas, Susana; Nigg, David W; Aromando, Romina F; Itoiz, Maria E; Trivillin, Verónica A; Schwint, Amanda E

    2011-03-01

    We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of (10)B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studies at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na(2)(10)B(10)H(10)), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3. © Springer-Verlag 2010

  10. Development of An Epi-thermal Neutron Field for Fundamental Researches for BNCT with A DT Neutron Source

    NASA Astrophysics Data System (ADS)

    Osawa, Yuta; Imoto, Shoichi; Kusaka, Sachie; Sato, Fuminobu; Tanoshita, Masahiro; Murata, Isao

    2017-09-01

    Boron Neutron Capture Therapy (BNCT) is known to be a new promising cancer therapy suppressing influence against normal cells. In Japan, Accelerator Based Neutron Sources (ABNS) are being developed for BNCT. For the spread of ABNS based BNCT, we should characterize the neutron field beforehand. For this purpose, we have been developing a low-energy neutron spectrometer based on 3He position sensitive proportional counter. In this study, a new intense epi-thermal neutron field was developed with a DT neutron source for verification of validity of the spectrometer. After the development, the neutron field characteristics were experimentally evaluated by using activation foils. As a result, we confirmed that an epi-thermal neutron field was successfully developed suppressing fast neutrons substantially. Thereafter, the neutron spectrometer was verified experimentally. In the verification, although a measured detection depth distribution agreed well with the calculated distribution by MCNP, the unfolded spectrum was significantly different from the calculated neutron spectrum due to contribution of the side neutron incidence. Therefore, we designed a new neutron collimator consisting of a polyethylene pre-collimator and boron carbide neutron absorber and confirmed numerically that it could suppress the side incident neutrons and shape the neutron flux to be like a pencil beam.

  11. Detectors for Accelerator-Based Security Applications

    NASA Astrophysics Data System (ADS)

    Warren, Glen A.; Stave, Sean C.; Miller, Erin A.

    We present a review of detector systems used in accelerator-based security applications. The applications discussed span stockpile stewardship, material interdiction, treaty verification, and spent nuclear fuel assay. The challenge for detectors in accelerator-based applications is the separation of the desired signal from the background, frequently during high input count rates. Typical techniques to address the background challenge include shielding, timing, selection of sensitive materials, and choice of accelerator.

  12. Detectors for Accelerator-Based Security Applications

    NASA Astrophysics Data System (ADS)

    Warren, Glen A.; Stave, Sean C.; Miller, Erin A.

    We present a review of detector systems used in accelerator-based security applications. The applications discussed span stockpile stewardship, material interdiction, treaty verification, and spent nuclear fuel assay. The challenge for detectors in accelerator-based applications is the separation of the desired signal from the background, frequently during high input count rates. Typical techniques to address the background challenge include shielding, timing, selection of sensitive materials, and choice of accelerator.

  13. “Sequential” Boron Neutron Capture Therapy (BNCT): A Novel Approach to BNCT for the Treatment of Oral Cancer in the Hamster Cheek Pouch Model

    SciTech Connect

    Ana J. Molinari; Emiliano C. C. Pozzi; Andrea Monti Hughes; Elisa M. Heber; Marcela A. Garabalino; Silvia I. Thorp; Marcelo Miller; Maria E. Itoiz; Romina F. Aromando; David W. Nigg; Jorge Quintana; Gustavo A. Santa Cruz; Veronica A. Trivillin; Amanda E. Schwint

    2011-04-01

    In the present study we evaluated the therapeutic effect and/or potential radiotoxicity of the novel “Tandem” Boron Neutron Capture Therapy (T-BNCT) for the treatment of oral cancer in the hamster cheek pouch model at RA-3 Nuclear Reactor. Two groups of animals were treated with “Tandem BNCT”, i.e. BNCT mediated by boronophenylalanine (BPA) followed by BNCT mediated by sodium decahydrodecaborate (GB-10) either 24 h (T-24h-BNCT) or 48 h (T-48h-BNCT) later. A total tumor dose-matched single application of BNCT mediated by BPA and GB-10 administered jointly [(BPA + GB-10)-BNCT] was administered to an additional group of animals. At 28 days post-treatment, T-24h-BNCT and T-48h-BNCT induced, respectively, overall tumor control (OTC) of 95% and 91%, with no statistically significant differences between protocols. Tumor response for the single application of (BPA + GB-10)-BNCT was 75%, significantly lower than for T-BNCT. The T-BNCT protocols and (BPA + GB-10)-BNCT induced reversible mucositis in dose-limiting precancerous tissue around treated tumors, reaching Grade 3/4 mucositis in 47% and 60% of the animals respectively. No normal tissue radiotoxicity was associated to tumor control for any of the protocols. “Tandem” BNCT enhances tumor control in oral cancer and reduces or, at worst, does not increase, mucositis in dose-limiting precancerous tissue.

  14. ACCELERATOR BASED CONTINUOUS NEUTRON SOURCE.

    SciTech Connect

    SHAPIRO,S.M.; RUGGIERO,A.G.; LUDEWIG,H.

    2003-03-25

    Until the last decade, most neutron experiments have been performed at steady-state, reactor-based sources. Recently, however, pulsed spallation sources have been shown to be very useful in a wide range of neutron studies. A major review of neutron sources in the US was conducted by a committee chaired by Nobel laureate Prof. W. Kohn: ''Neutron Sources for America's Future-BESAC Panel on Neutron Sources 1/93''. This distinguished panel concluded that steady state and pulsed sources are complementary and that the nation has need for both to maintain a balanced neutron research program. The report recommended that both a new reactor and a spallation source be built. This complementarity is recognized worldwide. The conclusion of this report is that a new continuous neutron source is needed for the second decade of the 20 year plan to replace aging US research reactors and close the US neutron gap. it is based on spallation production of neutrons using a high power continuous superconducting linac to generate protons impinging on a heavy metal target. There do not appear to be any major technical challenges to the building of such a facility since a continuous spallation source has been operating in Switzerland for several years.

  15. Neutron beams implemented at nuclear research reactors for BNCT

    NASA Astrophysics Data System (ADS)

    Bavarnegin, E.; Kasesaz, Y.; Wagner, F. M.

    2017-05-01

    This paper presents a survey of neutron beams which were or are in use at 56 Nuclear Research Reactors (NRRs) in order to be used for BNCT, either for treatment or research purposes in aspects of various combinations of materials that were used in their Beam Shaping Assembly (BSA) design, use of fission converters and optimized beam parameters. All our knowledge about BNCT is indebted to researches that have been done in NRRs. The results of about 60 years research in BNCT and also the successes of this method in medical treatment of tumors show that, for the development of BNCT as a routine cancer therapy method, hospital-based neutron sources are needed. Achieving a physical data collection on BNCT neutron beams based on NRRs will be helpful for beam designers in developing a non-reactor based neutron beam.

  16. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    PubMed

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT

    NASA Astrophysics Data System (ADS)

    Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing

    2017-04-01

    The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.

  18. INEL BNCT Research Program annual report, 1992

    SciTech Connect

    Venhuizen, J.R.

    1993-05-01

    This report is a summary of the progress and research produced for the Idaho National Engineering Laboratory Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1992. Contributions from all the principal investigators about their individual projects are included, specifically, chemistry (pituitary tumor targeting compounds, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (small and large animal models tissue studies and efficacy studies). Information on the potential toxicity of borocaptate sodium and boronophenylalanine is presented, results of 21 spontaneous-tumor-bearing dogs that have been treated with BNCT at the Brookhaven National Laboratory (BNL) Medical Research Reactor (BMRR) are discussed, and predictions for an epithermal-neutron beam at the Georgia Tech Research Reactor (GTRR) are shown. Cellular-level boron detection and localization by secondary ion mass spectrometry, sputter-initiated resonance ionization spectroscopy, low atomization resonance ionization spectroscopy, and alpha track are presented. Boron detection by ICP-AES is discussed in detail. Several boron carrying drugs exhibiting good tumor uptake are described. Significant progress in the potential of treating pituitary tumors with BNCT is presented. Measurement of the epithermal-neutron flux at BNL and comparison to predictions are shown. Calculations comparing the GTRR and BMRR epithermal-neutron beams are also presented. Individual progress reports described herein are separately abstracted and indexed for the database.

  19. Carborane-containing metalloporphyrins for BNCT

    SciTech Connect

    Miura, Michiko; Joel, D.D.; Nawrocky, M.M.; Micca, P.L.

    1996-12-31

    For BNCT of malignant brain tumors, it is crucial that there be relatively high boron concentrations in tumor compared with normal tissues within the neutron-irradiated treatment volume. Fairchild and Bond estimated that major advances in BNCT should be possible if ratios of {sup 10}B concentrations in tumor to those in normal tissue (e.g. brain and blood) were at least 5: 1. Given that the only current boron carrier being tested clinically in the U.S., p-boronophenyl-alanine[BPA], yields tumor blood and tumor brain ratios of about 3:1, the criteria for new boronated compounds should be to at least match these ratios and maintain tumor boron concentrations greater than 30 {mu}g B/g. Although previously tested boronated porphyrins have not only matched but surpassed these ratios, it was at a cost of greater toxicity. Chemical and hematological assays of blood analytes; showed marked thrombocytopenia, a decrease to about one-tenth the normal concentration of platelets circulating in the blood, in addition to abnormalities in concentrations of circulating enzymes, that indicated liver toxicity. The physical appearance and behavior of the affected mice were different from those of mice injected with solvent only. Although thrombocytopenia and other toxic effects had disappeared after a few days, previously tested porphyrins would not be safe to infuse into patients for BNCT of potentially hemorrhagic malignant tumors in the brain such as glioblastoma multiforme and metastatic melanoma. We synthesized a different boronated porphyrin, tetracarboranylphenylporphyrin, [TCP] and inserted nickel, copper, or manganese into its coordination center. Biological studies of NiTCP in mice and of CuTCP in rats show that these compounds elicit little or no toxicity when given at potentially therapeutic doses.

  20. Fifty years of accelerator based physics at Chalk River

    SciTech Connect

    McKay, John W.

    1999-04-26

    The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.

  1. Secondary Contribution Effects on BNCT Dosimetry

    SciTech Connect

    Monteiro, E.; Goncalves, M.; Pereira, W.

    2004-10-03

    The aimed of this work consists of evaluating the influence of the dose secondary components (thermal neutrons dose, epithermal neutrons dose, fast neutrons dose and photon dose) in treatment planning with BNCT. MCNP4B Code was used to calculate RBE-Gy doses through the irradiation of the modified Snyder head phantom. A reduction of the therapeutical gain of monoenergetic neutron beans was observed in non invasive treatments, provoked for the predominance of the fast neutron dose component in the skin, showing that the secondary components of dose can to contribute more for to raise the healthy-tissue dose of that in the tumor, reducing the treatment efficiency.

  2. Spatial characterization of BNCT beams.

    PubMed

    Marek, M; Viererbl, L

    2004-11-01

    The space distribution of the epithermal neutron flux was determined for the epithermal neutron beams of several NCT facilities in USA (FCB at MIT), Europe (HFR at JRC, Petten; FiR at VTT, Espoo; LVR-15 at NRI, Rez) and Japan (JRR-4 at JAERI, Tokai). Using p-n diodes with (6)Li radiator and the set of Bonner sphere spectrometer (BSS) the beams were quantified in-air. Axial beam profiles along the beam axes and the radial distributions at two distances from the beam aperture were measured. Except for the well-collimated HFR beam, the spatial characteristics of the other studied beams were found generally similar, which results from their similar designs.

  3. Target studies for accelerator-based boron neutron capture therapy

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1996-03-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron ``filter``, which has a deep ``window`` in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is reaccelerated by an applied DC electric field. The DISCOS approach enables the accelerator -- target facility to operate with a beam energy only slightly above the threshold value for neutron production -- resulting in an output beam of low-energy epithermal neutrons -- while achieving a high yield of neutrons per milliamp of proton beam current.

  4. American brain tumor patients treated with BNCT in Japan

    SciTech Connect

    Laramore, G.E.; Griffin, B.R.; Spence, A.

    1995-11-01

    The purpose of this work is to establish and maintain a database for patients from the United States who have received BNCT in Japan for malignant gliomas of the brain. This database will serve as a resource for the DOE to aid in decisions relating to BNCT research in the United States, as well as assisting the design and implementation of clinical trials of BNCT for brain cancer patients in this country. The database will also serve as an information resource for patients with brain tumors and their families who are considering this form of therapy.

  5. Performance testing of the neutron flux monitors from 10keV to 1MeV developed for BNCT: A preliminary study.

    PubMed

    Guan, Xingcai; Manabe, Masanobu; Tamaki, Shingo; Sato, Fuminobu; Murata, Isao; Wang, Tieshan

    2017-07-01

    The neutron flux monitors from 10keV to 1MeV designed for boron neutron capture therapy (BNCT) were experimentally tested with prototype monitors in an appropriate neutron field produced at the intense deuterium-tritium neutron source facility OKTAVIAN of Osaka University, Japan. The experimental test results and related analysis indicated that the performance of the monitors was good and the neutron fluxes from 10keV to 1MeV of practical BNCT neutron sources can be measured within 10% by the monitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT).

    PubMed

    Moss, Raymond L

    2014-06-01

    The first BNCT trials took place in the USA in the early 1960's, yet BNCT is still far from mainstream medicine. Nonetheless, in recent years, reported results in the treatment of head and neck cancer and recurrent glioma, coupled with the progress in developing linear accelerators specifically for BNCT applications, have given some optimism to the future of BNCT. This article provides a brief reminder on the ups and downs of the history of BNCT and supports the view that controlled and prospective clinical trials with a modern design will make BNCT an evidence-based treatment modality within the coming decade.

  7. INEL BNCT Program: Bulletin, Volume 5, No. 7

    SciTech Connect

    Ackermann, A.L.

    1991-07-01

    This Bulletin presents a summary of accomplishments and highlights in the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for June, 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and animal data charts. Specific highlights include: final-dosage-form BSH samples were analyzed for purity, with the sample from Centronic Ltd the most free from contamination and oxidation products; MRI spectroscopy will be upgraded to provide a potential for boron resolution of 0.75 cm/pixel; neutron and gamma measurements were made for the HFR epithermal neutron beam; the current status of six spontaneous brain-tumor dogs; production of MoAbs against the pituitary CRF receptor; growth of BL6 in low Phe/Tyr medium; an altered synthetic pathway for carboranyl alanine; and encapsulation of {ital i}-B{sub 20}H{sub 18}{sup 2-} into liposomes for baseline murine studies. 2 figs., 4 tabs. (MHB)

  8. The SPARC linear accelerator based terahertz source

    SciTech Connect

    Chiadroni, E.; Bacci, A.; Bellaveglia, M.; Boscolo, M.; Castellano, M.; Cultrera, L.; Di Pirro, G.; Ferrario, M.; Ficcadenti, L.; Filippetto, D.; Gatti, G.; Pace, E.; Rossi, A. R.; Vaccarezza, C.; Catani, L.; Cianchi, A.; Marchetti, B.; Mostacci, A.; Palumbo, L.; Ronsivalle, C.; and others

    2013-03-04

    Ultra-short electron beams, produced through the velocity bunching compression technique, are used to drive the SPARC linear accelerator based source, which relies on the emission of coherent transition radiation in the terahertz range. This paper reports on the main features of this radiation, as terahertz source, with spectral coverage up to 5 THz and pulse duration down to 200 fs, with an energy per pulse of the order of several micro-joule, and as electron beam longitudinal diagnostics.

  9. Sterile Neutrino Experiments I: Accelerator-based

    NASA Astrophysics Data System (ADS)

    Toups, Matthew

    2017-01-01

    The Standard Model is the theory that describes the fundamental constituents of matter and their interactions. Despite its great success, there still exists evidence for a wide range of phenomena, which lie outside the framework of the Standard Model. Among these, neutrino flavor oscillations hold great promise to bring insight to the field towards a theory that transcends the Standard Model. The discovery of light, sterile neutrinos that mix with the three active neutrino flavors and modify the standard three-neutrino oscillation probabilities in vacuum and matter would be a major breakthrough for the field and contribute to our overall understanding of neutrino mass and mixing. Current indications for light sterile neutrinos come from a variety of experiments reporting anomalies. The accelerator-based LSND and MiniBooNE experiments, for example, reported an excess of electron-type neutrinos over short baselines, which if interpreted as due to νμ ->νe (or νμ ->νe) oscillations, would imply the existence of a fourth light neutrino mass state. On the other hand, null results from other accelerator-based neutrino oscillation experiments searching for sterile neutrinos have put constraints on the possible existence of these particles. This talk will review the accelerator-based searches for light, sterile neutrinos as well as the prospects for confirming or refuting their existence in the coming years.

  10. Comparisons of TORT and MCNP dose calculations for BNCT treatment planning

    SciTech Connect

    Ingersol, D.T.; Slater, C.O.; Williams, L.R.; Redmond, E.L., II; Zamenhof, R.G.

    1996-12-31

    The relative merit of using a deterministic code to calculate dose distributions for BNCT applications were examined. The TORT discrete deterministic ordinated code was used in comparison to MCNP4A to calculate dose distributions for BNCT applications

  11. Design and construction of a thermal neutron beam for BNCT at Tehran Research Reactor.

    PubMed

    Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezzati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Amini, Sepideh

    2014-12-01

    An irradiation facility has been designed and constructed at Tehran Research Reactor (TRR) for the treatment of shallow tumors using Boron Neutron Capture Therapy (BNCT). TRR has a thermal column which is about 3m in length with a wide square cross section of 1.2×1.2m(2). This facility is filled with removable graphite blocks. The aim of this work is to perform the necessary modifications in the thermal column structure to meet thermal BNCT beam criteria recommended by International Atomic Energy Agency. The main modifications consist of rearranging graphite blocks and reducing the gamma dose rate at the beam exit. Activation foils and TLD700 dosimeter have been used to measure in-air characteristics of the neutron beam. According to the measurements, a thermal flux is 5.6×10(8) (ncm(-2)s(-1)), a cadmium ratio is 186 for gold foils and a gamma dose rate is 0.57Gy h(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Accelerator Based Tools of Stockpile Stewardship

    NASA Astrophysics Data System (ADS)

    Seestrom, Susan

    2017-01-01

    The Manhattan Project had to solve difficult challenges in physics and materials science. During the cold war a large nuclear stockpile was developed. In both cases, the approach was largely empirical. Today that stockpile must be certified without nuclear testing, a task that becomes more difficult as the stockpile ages. I will discuss the role of modern accelerator based experiments, such as x-ray radiography, proton radiography, neutron and nuclear physics experiments, in stockpile stewardship. These new tools provide data of exceptional sensitivity and are answering questions about the stockpile, improving our scientific understanding, and providing validation for the computer simulations that are relied upon to certify todays' stockpile.

  13. Neutron intensity monitor with activation foil for p-Li neutron source for BNCT--Feasibility test of the concept.

    PubMed

    Murata, Isao; Otani, Yuki; Sato, Fuminobu

    2015-12-01

    Proton-lithium (p-Li) reaction is being examined worldwide as a candidate nuclear production reaction for accelerator based neutron source (ABNS) for BNCT. In this reaction, the emitted neutron energy is not so high, below 1 MeV, and especially in backward angles the energy is as low as about 100 keV. The intensity measurement was thus known to be difficult so far. In the present study, a simple method was investigated to monitor the absolute neutron intensity of the p-Li neutron source by employing the foil activation method based on isomer production reactions in order to cover around several hundreds keV. As a result of numerical examination, it was found that (107)Ag, (115)In and (189)Os would be feasible. Their features found out are summarized as follows: (107)Ag: The most convenient foil, since the half life is short. (115)In: The accuracy is the best at 0°, though it cannot be used for backward angles. And (189)Os: Suitable nuclide which can be used in backward angles, though the gamma-ray energy is a little too low. These would be used for p-Li source monitoring depending on measuring purposes in real BNCT scenes.

  14. Accelerator-based neutrino oscillation experiments

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2007-12-01

    Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

  15. Dose masking feature for BNCT radiotherapy planning

    DOEpatents

    Cook, Jeremy L.; Wessol, Daniel E.; Wheeler, Floyd J.

    2000-01-01

    A system for displaying an accurate model of isodoses to be used in radiotherapy so that appropriate planning can be performed prior to actual treatment on a patient. The nature of the simulation of the radiotherapy planning for BNCT and Fast Neutron Therapy, etc., requires that the doses be computed in the entire volume. The "entire volume" includes the patient and beam geometries as well as the air spaces in between. Isodoses derived from the computed doses will therefore extend into the air regions between the patient and beam geometries and thus depict the unrealistic possibility that radiation deposition occurs in regions containing no physical media. This problem is solved by computing the doses for the entire geometry and then masking the physical and air regions along with the isodose contours superimposed over the patient image at the corresponding plane. The user is thus able to mask out (remove) the contour lines from the unwanted areas of the image by selecting the appropriate contour masking region from the raster image.

  16. PBF/BNCT Program for cancer treatment

    SciTech Connect

    Ackermann, A.L.; Dorn, R.V. III.

    1989-08-01

    Highlights of the PBF/BNCT Program during August include progress within several areas. We studied gross boron analysis in tissue, blood, and urine (after resolving some technical problems, a method has been developed for digesting tissue samples as small as 0.05 gm); analytical methodologies development for BSH purity determination (program participants met to finalize the transfer of the silica-based, microbore HPLC technology necessary for the BSH IND applications); boron microscopic (subcellular) analytical development (BSH uptake studies in U-87 human glioblastoma cells indicated that a six-hour exposure to 500 {mu}g/mL resulted in a dramatic increase in nuclear concentration of boron, but with some evidence of cellular damage); noninvasive boron quantification determination (NMR and MRI studies of BSH binding with albumin and other tissues have shown large temperature effects on albumin binding which may impact analysis of various tumor-boron delivery mechanisms); and dosimetry (work is proceeding on BMRR Al{sub 2}Al{sub 3} filter characterization with measurement of the fast-neutron spectrum).

  17. Cyclotron-based neutron source for BNCT

    SciTech Connect

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K.; Tanaka, H.; Sakurai, Y.; Maruhashi, A.

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  18. INEEL BNCT Research Program Annual Report, CY-2000

    SciTech Connect

    Venhuizen, James Robert

    2001-03-01

    This report is a summary of the activities conducted in conjunction with the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 2000. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, neutron source design and demonstration, and support the Department of Energy’s (DOE) National BNCT Program goals are the goals of this Program. Contributions from the individual contributors about their projects are included, specifically described are the following, chemistry: analysis of biological samples and an infrared blood-boron analyzer, and physics: progress in the patient treatment planning software, measurement of neutron spectra for the Argentina RA-6 reactor, and recalculation of the Finnish research reactor FiR 1 neutron spectra, BNCT accelerator technology, and modification to the research reactor at Washington State University for an epithermal-neutron beam.

  19. Protocols for BNCT of glioblastoma multiforme at Brookhaven: Practical considerations

    SciTech Connect

    Chanana, A.D.; Coderre, J.A.; Joel, D.D.; Slatkin, D.N.

    1996-12-31

    In this report we discuss some issues considered in selecting initial protocols for boron neutron capture therapy (BNCT) of human glioblastoma multiforme. First the tolerance of normal tissues, especially the brain, to the radiation field. Radiation doses limits were based on results with human and animal exposures. Estimates of tumor control doses were based on the results of single-fraction photon therapy and single fraction BNCT both in humans and experimental animals. Of the two boron compounds (BSH and BPA), BPA was chosen since a FDA-sanctioned protocol for distribution in humans was in effect at the time the first BNCT protocols were written and therapy studies in experimental animals had shown it to be more effective than BSH.

  20. Measurements of the thermal neutron flux for an accelerator-based photoneutron source.

    PubMed

    Taheri, Ali; Pazirandeh, Ali

    2016-12-01

    To have access to an appropriate neutron source is one of the most demanding requirements for neutron studies. This is important specially in laboratory and clinical applications, which need more compact and accessible sources. The most known neutron sources are fission reactors and natural isotopes, but there is an increasing interest for using accelerator based neutron sources because of their advantages. In this paper, we shall present a photo-neutron source prototype which is designed and fabricated to be used for different neutron researches including in-laboratory neutron activation analysis and neutron imaging, and also preliminary studies in boron neutron capture therapy (BNCT). Series of experimental tests were conducted to examine the intensity and quality of the neutron field produced by this source. Monte-Carlo simulations were also utilized to provide more detailed evaluation of the neutron spectrum, and determine the accuracy of the experiments. The experiments demonstrated a thermal neutron flux in the order of 10(7) (n/cm(2).s), while simulations affirmed this flux and showed a neutron spectrum with a sharp peak at thermal energy region. According to the results, about 60 % of produced neutrons are in the range of thermal to epithermal neutrons.

  1. Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab

    DOE R&D Accomplishments Database

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  2. BNCT dose calculation in irregular fields using the sector integration method.

    PubMed

    Blaumann, H R; Sanz, D E; Longhino, J M; Larrieu, O A Calzetta

    2004-11-01

    Irregular fields for boron neutron capture therapy (BNCT) have been already proposed to spare normal tissue in the treatment of superficial tumors. This added dependence would require custom measurements and/or to have a secondary calculation system. As a first step, we implemented the sector-integration method for irregular field calculation in a homogeneous medium and on the central beam axis. The dosimetric responses (fast neutron and photon dose and thermal neutron flux), are calculated by sector integrating the measured responses of circular fields over the field boundary. The measurements were carried out at our BNCT facility, the RA-6 reactor (Argentina). The input data were dosimetric responses for circular fields measured at different depths in a water phantom using ionisation and activation techniques. Circular fields were formed by shielding the beam with two plates: borated polyethilene plus lead. As a test, the dosimetric responses of a 7x4 cm(2) rectangular field, were measured and compared to calculations, yielding differences less than 3% in equivalent dose at any depth indicating that the tool is suitable for redundant calculations.

  3. Resumption of JRR-4 and characteristics of neutron beam for BNCT.

    PubMed

    Nakamura, T; Horiguchi, H; Kishi, T; Motohashi, J; Sasajima, F; Kumada, H

    2011-12-01

    The clinical trials of Boron Neutron Capture Therapy (BNCT) have been conducted using Japan Research Reactor No. 4 (JRR-4) at Japan Atomic Energy Agency (JAEA). On December 28th, 2007, a crack of a graphite reflector in the reactor core was found on the weld of the aluminum cladding. For this reason, specifications of graphite reflectors were renewed; dimensions of the graphite were reduced and gaps of water were increased. All existing graphite reflectors of JRR-4 were replaced by new graphite reflectors. In February 2010 the resumption of JRR-4 was carried out with new graphite reflectors. We measured the characteristics of neutron beam at the JRR-4 Neutron Beam Facility. A cylindrical water phantom of 18.6 cm diameter and 24 cm depth was set in front of the beam port with 1cm gap. TLDs and gold wires were inserted within the phantom when the phantom was irradiated. The results of the measured thermal neutron flux and the gamma dose in water were compared with that of MCNP calculation. The neutron energy spectrum of the calculation model with new reflector had little variation compared to that with old reflector, but intensities of the neutron flux and gamma dose with new reflector were rather smaller than those with old reflector. The calculated results showed the same tendency as that of the experimental results. Therefore, the clinical trials of BNCT in JRR-4 could be restarted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Feasibility of the utilization of BNCT in the fast neutron therapy beam at Fermilab

    SciTech Connect

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-23

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  5. Boron Neutron Capture Therapty (BNCT) in an Oral Precancer Model: Therapeutic Benefits and Potential Toxicity of a Double Application of BNCT with a Six-Week Interval

    SciTech Connect

    Andrea Monti Hughes; Emiliano C.C. Pozzi; Elisa M. Heber; Silvia Thorp; Marcelo Miller; Maria E. Itoiz; Romina F. Aromando; Ana J. Molinari; Marcela A. Garabalino; David W. Nigg; Veronica A. Trivillin; Amanda E. Schwint

    2011-11-01

    Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT); (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA [(GB-10 + BPA)-BNCT] or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB- 10 + BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10 + BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues.

  6. Boron Neutron Capture Therapy (BNCT) in an oral precancer model: therapeutic benefits and potential toxicity of a double application of BNCT with a six-week interval.

    PubMed

    Monti Hughes, Andrea; Pozzi, Emiliano C C; Heber, Elisa M; Thorp, Silvia; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Molinari, Ana J; Garabalino, Marcela A; Nigg, David W; Trivillin, Verónica A; Schwint, Amanda E

    2011-11-01

    Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT); (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA [(GB-10+BPA)-BNCT] or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB-10+BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10+BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Power Burst Facility/Boron Neutron Capture Therapy program for cancer treatment, Volume 4, No. 7

    SciTech Connect

    Ackermann, A.L.

    1990-07-01

    This report discusses the monthly progress of the Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNLT) program for cancer treatment. Highlights of the PBF/BNCT Program during July 1990 include progress within the areas of: Gross boron analysis in tissue, blood, and urine; noninvasive boron quantitative determination; analytical radiation transport and interaction modeling for BNCT; large animal model studies; neutron source and facility preparation; administration and common support and PBF operations.

  8. On accelerator-based neutron sources and neutron field characterization with low energy neutron spectrometer based on position sensitive 3He counter.

    PubMed

    Murata, I; Miyamaru, H; Kato, I; Mori, Y

    2009-07-01

    The development of new neutron sources for BNCT applications, based on particle accelerators is currently underway all over the world. Though nuclear reactors were used for a long time as the only neutron source available having the requested flux levels, the accelerator-based ones have recently been investigated on the other hand due to its easy-to-use and acceptable performances. However, when using an accelerator, various secondary particles would be emitted which forms a troublesome background. Moreover, the neutrons produced have usually an energy spectrum somewhat different from the requested one and thus should be largely moderated. An additional issue to be taken into account is the patient positioning, which should be close to the neutron source, in order to take advantage of a neutron flux level high enough to limit the BNCT treatment time within 1h. This implies that, inside a relatively narrow space, neutrons should be moderated, while unnecessary secondary particles should be shielded. Considering that a background-free neutron field from an accelerator-driven neutron source dedicated to BNCT application is generally difficult to be provided, the characterization of such a neutron field will have to be clearly assessed. In the present study, a low energy neutron spectrometer has been thus designed and is now being developed to measure the accelerator-based neutron source performance. The presently proposed spectrometer is based on a (3)He proportional counter, which is 50 cm long and 5 cm in diameter, with a gas pressure of 0.5 MPa. It is quite unique that the spectrometer is set up in parallel with the incident neutron beam and a reaction depth distribution is measured by it as a position sensitive detector. Recently, a prototype detector has been developed and the signal test is now underway. In this paper, the feature of the accelerator-based neutron sources is outlined and importance of neutron field characterization is discussed. And the developed

  9. A plastic scintillator-based 2D thermal neutron mapping system for use in BNCT studies.

    PubMed

    Ghal-Eh, N; Green, S

    2016-06-01

    In this study, a scintillator-based measurement instrument is proposed which is capable of measuring a two-dimensional map of thermal neutrons within a phantom based on the detection of 2.22MeV gamma rays generated via nth+H→D+γ reaction. The proposed instrument locates around a small rectangular water phantom (14cm×15cm×20cm) used in Birmingham BNCT facility. The whole system has been simulated using MCNPX 2.6. The results confirm that the thermal flux peaks somewhere between 2cm and 4cm distance from the system entrance which is in agreement with previous studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Use of the CT images for BNCT calculation: development of BNCT treatment planning system and its applications to dose calculation for voxel phantoms.

    PubMed

    Park, Sung Ho; Han, Chi Young; Kim, Soon Young; Kim, Jong Kyung

    2004-01-01

    A BNCT (Boron Neutron Capture Therapy) treatment planning system (BTPS) was developed for BNCT study and treatment planning. Three kinds of CT images, VHP, PINNACLE and DICOM images, were employed to make voxel phantoms for BNCT patient treatment using the BTPS. The thermal neutron, fast neutron, gamma and boron doses are calculated and background, tissue, and tumour doses for idealised standard reactor neutron field (ISRNF) neutron beam were calculated by using BTPS and MCNP code. It was noted that the total computing times needed for BNCT analysis could be greatly reduced since the BTPS system provides a dose analysis tool and a lengthy MCNP input in a short time. It is, thus, expected that the BTPS can significantly contribute the BNCT study for the treatment of patients.

  11. Neutron producing target for accelerator based neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Bayanov, B.; Belov, V.; Taskaev, S.

    2006-05-01

    Pilot innovative accelerator based neutron source for neutron capture therapy of cancer is under construction now at the Budker Institute. One of the main elements of the facility is lithium target producing neutrons via threshold 7Li(p, n)7Be reaction at 10 mA proton beam with energies of 1.915 MeV or 2.5 MeV. In the present report, choice of target was substantiated. The main problems of lithium target were determined to be: 7Be radioactive isotope activation, keeping lithium layer solid, presence of photons resulted from proton inelastic scattering on lithium nuclei, and radiation blistering. The results of thermal testing of target prototype, investigation of radiation blistering and several simulations are presented. It becomes clear that water is preferable for cooling this target, and that the lithium target 10 cm in diameter is able to run up to 25 kW proton beam before melting. The conception of optimal target is proposed: thin and easy to detach metal disk 10 cm in diameter, evaporated with thin layer of pure lithium from the side of proton beam exposure: its back is intensively cooled with turbulent water flow to maintain lithium layer solid. Design of target for the neutron source constructed at BINP is shown. Conceptions of radiation protection and neutrons, γ-rays and α- particles diagnostics are presented. The immediate plans on obtaining epithermal neutron beam are declared.

  12. BNCT of skin tumors using the high-energy D-T neutrons.

    PubMed

    Masoudi, S Farhad; Rasouli, Fatemeh S; Ghasemi, Marjan

    2017-04-01

    Owing to the continuing need for providing improved and universally accepted facilities to be used in radiation therapies, a number of recently published BNCT-related studies have focused on investigating appropriate neutron sources as alternatives for nuclear reactors. Of special interest are D-T neutron generators, which theoretically have shown the potential to be utilized as neutron sources for BNCT of deep-seated tumors. This work is devoted to investigate the feasibility of using the high-energy neutrons emitted from these generators for treatment of surface tumors, especially skin. Using a set of MCNPX simulations, the D-T neutrons are passed through an optimized arrangement of materials to slow-down toward the desired energy range, and to remove the neutron and gamma contamination considering the IAEA recommended criteria, especially determined for pre-clinical survey for treatment of surface tumors. By assessment with these parameters, it is shown that the designed beam, corresponding to a configuration composed of natural uranium as neutron multiplier, D2O as moderator, Pb as reflector, Bi as gamma filter, and polyethylene and BeO as collimators provides high-intensity of desired neutrons, and low-background doses as well. It was found that an appropriate material for collimator, if accompanied with an optimized geometry, is an important parameter for keeping the undesired components to the recommended level. A typical simulated phantom, subjected to the irradiation of the designed spectrum, is used to study the performance of the resultant beam in shallow tissue. For an arbitrary chosen (10)B concentration, the evaluated depth-dose curves show that the proposed configuration establishes acceptable agreement between the appropriate neutron intensity and penetration to desired depth in tissue in a reasonable treatment time of about 25-38min. Considering the simulations carried out, the total dose delivered to the tumor is expected to be of about 4.2 times

  13. Dose factor entry and display tool for BNCT radiotherapy

    DOEpatents

    Wessol, Daniel E.; Wheeler, Floyd J.; Cook, Jeremy L.

    1999-01-01

    A system for use in Boron Neutron Capture Therapy (BNCT) radiotherapy planning where a biological distribution is calculated using a combination of conversion factors and a previously calculated physical distribution. Conversion factors are presented in a graphical spreadsheet so that a planner can easily view and modify the conversion factors. For radiotherapy in multi-component modalities, such as Fast-Neutron and BNCT, it is necessary to combine each conversion factor component to form an effective dose which is used in radiotherapy planning and evaluation. The Dose Factor Entry and Display System is designed to facilitate planner entry of appropriate conversion factors in a straightforward manner for each component. The effective isodose is then immediately computed and displayed over the appropriate background (e.g. digitized image).

  14. Measurement and simulation of the TRR BNCT beam parameters

    NASA Astrophysics Data System (ADS)

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser; Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad

    2016-09-01

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  15. Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model

    SciTech Connect

    David W. Nigg

    2012-08-01

    Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. The present study evaluates tumor control and potential radiotoxicity of BNCT in an experimental model of liver metastasis. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA–BNCT, boronophenylalanine (BPA) ? neutron irradiation; Beam only, neutron irradiation; Sham, matched manipulation. The total absorbed dose administered with BPA–BNCT was 13 ± 3 Gy in tumor and 9 ± 2 Gy in healthy liver. Three weeks posttreatment, the tumor surface area post-treatment/pre-treatment ratio was 0.46 ± 0.20 for BPA–BNCT, 2.7 ± 1.8 for Beam only and 4.5 ± 3.1 for Sham. The pre-treatment tumor nodule mass of 48 ± 19 mgfell significantly to 19 ± 16 mg for BPA–BNCT, but rose significantly to 140 ± 106 mg for Beam only and to 346 ± 302 mg for Sham. For both end points, the differences between the BPA–BNCT group and each of the other groups were statistically significant (ANOVA). No clinical, macroscopic or histological normal liver radiotoxicity was observed. It is concluded that BPA– BNCT induced a significant remission of experimental colorectal tumor nodules in liver with no contributory liver toxicity.

  16. Accelerator-based validation of shielding codes

    SciTech Connect

    Zeitlin, Cary; Heilbronn, Lawrence; Miller, Jack; Wilson, John W.

    2002-08-12

    The space radiation environment poses risks to astronaut health from a diverse set of sources, ranging from low-energy protons and electrons to highly-charged, high-energy atomic nuclei and their associated fragmentation products, including neutrons. The low-energy protons and electrons are the source of most of the radiation dose to Shuttle and ISS crews, while the more energetic particles that comprise the Galactic Cosmic Radiation (protons, He, and heavier nuclei up to Fe) will be the dominant source for crews on long-duration missions outside the earth's magnetic field. Because of this diversity of sources, a broad ground-based experimental effort is required to validate the transport and shielding calculations used to predict doses and dose-equivalents under various mission scenarios. The experimental program of the LBNL group, described here, focuses principally on measurements of charged particle and neutron production in high-energy heavy-ion fragmentation. Other aspects of the program include measurements of the shielding provided by candidate spacesuit materials against low-energy protons (particularly relevant to extra-vehicular activities in low-earth orbit), and the depth-dose relations in tissue for higher-energy protons. The heavy-ion experiments are performed at the Brookhaven National Laboratory's Alternating Gradient Synchrotron and the Heavy-Ion Medical Accelerator in Chiba in Japan. Proton experiments are performed at the Lawrence Berkeley National Laboratory's 88'' Cyclotron with a 55 MeV beam, and at the Loma Linda University Proton Facility with 100 to 250 MeV beam energies. The experimental results are an important component of the overall shielding program, as they allow for simple, well-controlled tests of the models developed to handle the more complex radiation environment in space.

  17. Improvement of the boron neutron capture therapy (BNCT) by the previous administration of the histone deacetylase inhibitor sodium butyrate for the treatment of thyroid carcinoma.

    PubMed

    Perona, M; Rodríguez, C; Carpano, M; Thomasz, L; Nievas, S; Olivera, M; Thorp, S; Curotto, P; Pozzi, E; Kahl, S; Pisarev, M; Juvenal, G; Dagrosa, A

    2013-08-01

    We have shown that boron neutron capture therapy (BNCT) could be an alternative for the treatment of poorly differentiated thyroid carcinoma (PDTC). Histone deacetylase inhibitors (HDACI) like sodium butyrate (NaB) cause hyperacetylation of histone proteins and show capacity to increase the gamma irradiation effect. The purpose of these studies was to investigate the use of the NaB as a radiosensitizer of the BNCT for PDTC. Follicular thyroid carcinoma cells (WRO) and rat thyroid epithelial cells (FRTL-5) were incubated with 1 mM NaB and then treated with boronophenylalanine ¹⁰BPA (10 μg ¹⁰B ml⁻¹) + neutrons, or with 2, 4-bis (α,β-dihydroxyethyl)-deutero-porphyrin IX ¹⁰BOPP (10 μg ¹⁰B ml⁻¹) + neutrons, or with a neutron beam alone. The cells were irradiated in the thermal column facility of the RA-3 reactor (flux = (1.0 ± 0.1) × 10¹⁰ n cm⁻² s⁻¹). Cell survival decreased as a function of the physical absorbed dose in both cell lines. Moreover, the addition of NaB decreased cell survival (p < 0.05) in WRO cells incubated with both boron compounds. NaB increased the percentage of necrotic and apoptotic cells in both BNCT groups (p < 0.05). An accumulation of cells in G2/M phase at 24 h was observed for all the irradiated groups and the addition of NaB increased this percentage. Biodistribution studies of BPA (350 mg kg⁻¹ body weight) 24 h after NaB injection were performed. The in vivo studies showed that NaB treatment increases the amount of boron in the tumor at 2-h post-BPA injection (p < 0.01). We conclude that NaB could be used as a radiosensitizer for the treatment of thyroid carcinoma by BNCT.

  18. Investigations of recombination chambers for BNCT beam dosimetry.

    PubMed

    Tulik, P; Golnik, N; Zielczynski, M

    2007-01-01

    A set of cylindrical recombination chambers, including a tissue-equivalent chamber and three graphite chambers filled with different gases-CO(2), N(2) and (10)BF(3), was designed for the dosimetry of therapeutic neutron radiation beams used for BNCT. The separation of the dose components is based on differences of the shape of the saturation curve depending on the LET spectrum of the investigated radiation. The measurements using all the chambers were performed in a reactor beam of NRI ReZ (Czech Republic) and in the reference radiation fields of a (252)Cf radiation source free in air or in filters.

  19. Current status and future perspectives of accelerator-based x-ray light sources

    NASA Astrophysics Data System (ADS)

    Tanaka, Takashi

    2017-09-01

    State-of-the-art x-ray light sources are nowadays based on large-scale electron accelerators, because the synchrotron radiation (SR) and x-ray free electron laser (XFEL) radiation generated by high-energy electron beams have many advantages over other alternatives in terms of the wavelength tunability, high brightness and flux, high coherence, flexible polarization states, and so on. This is the reason why SR and XFEL light sources have largely contributed to the evolution of x-ray science. This paper reviews the current status of such accelerator-based x-ray light source facilities and discusses their future perspectives.

  20. Gamma-Ray Dose Measurement with Radio-Photoluminescence Glass Dosimeter in Mixed Radiation Field for BNCT

    NASA Astrophysics Data System (ADS)

    Hiramatsu, K.; Yoshihashi, S.; Kusaka, S.; Sato, F.; Hoashi, E.; Murata, I.

    2017-09-01

    Accelerator based neutron sources (ABNS) are being developed as the next generation neutron irradiation system for BNCT. From the ABNS, unnecessary gamma-rays will be generated by neutron capture reactions, as well as fast neutrons. To control the whole-body radiation dose to the patient, measurement of gamma-ray dose in the irradiation room is necessary. In this study, the objective is to establish a method to measure gamma-ray dose separately in a neutron/gamma mixed field by using RPL glass dosimeter. For this purpose, we proposed a lead filter method which uses a pair of RPL glasses with and without a lead filter outside. In order to realize this method, the basic characteristics of glass dosimeter was verified in the gamma-ray field, before adapting it in the mixture field. From the result of the experiment using the lead filter, the simulation result especially for the case with a lead filter overestimated the absorbed does obtained from measurement. We concluded that the reason of the discrepancy is caused by existence of gradient of the dose distribution in the glass, and the difference of sensitivity to low-energy photon between measurement and theory.

  1. A method for fast evaluation of neutron spectra for BNCT based on in-phantom figure-of-merit calculation.

    PubMed

    Martín, Guido

    2003-03-01

    In this paper a fast method to evaluate neutron spectra for brain BNCT is developed. The method is based on an algorithm to calculate dose distribution in the brain, for which a data matrix has been taken into account, containing weighted biological doses per position per incident energy and the incident neutron spectrum to be evaluated. To build the matrix, using the MCNP 4C code, nearly monoenergetic neutrons were transported into a head model. The doses were scored and an energy-dependent function to biologically weight the doses was used. To find the beam quality, dose distribution along the beam centerline was calculated. A neutron importance function for this therapy to bilaterally treat deep-seated tumors was constructed in terms of neutron energy. Neutrons in the energy range of a few tens of kilo-electron-volts were found to produce the best dose gain, defined as dose to tumor divided by maximum dose to healthy tissue. Various neutron spectra were evaluated through this method. An accelerator-based neutron source was found to be more reliable for this therapy in terms of therapeutic gain than reactors.

  2. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design.

    PubMed

    Lee, Pei-Yi; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2014-10-01

    The (7)Li(p,xn)(7)Be nuclear reaction, based on the low-energy protons, could produce soft neutrons for accelerator-based boron neutron capture therapy (AB-BNCT). Based on the fact that the induced neutron field is relatively divergent, the relationship between the incident angle of proton beam and the neutron beam quality was evaluated in this study. To provide an intense epithermal neutron beam, a beam-shaping assembly (BSA) was designed. And a modified Snyder head phantom was used in the calculations for evaluating the dosimetric performance. From the calculated results, the intensity of epithermal neutrons increased with the increase in proton incident angle. Hence, either the irradiation time or the required proton current can be reduced. When the incident angle of 2.5-MeV proton beam is 120°, the required proton current is ∼13.3 mA for an irradiation time of half an hour. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    SciTech Connect

    Chadha, M.; Coderre, J.A.; Chanana, A.D.

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  4. Potential of boron neutron capture therapy (BNCT) for malignant peripheral nerve sheath tumors (MPNST).

    PubMed

    Fujimoto, Takuya; Andoh, Tooru; Sudo, Tamotsu; Fujita, Ikuo; Fukase, Naomasa; Takeuchi, Tamotsu; Sonobe, Hiroshi; Inoue, Masayoshi; Hirose, Tkanori; Sakuma, Toshiko; Moritake, Hiroshi; Sugimoto, Tohru; Kawamoto, Teruya; Fukumori, Yoshinobu; Yamamoto, Satomi; Atagi, Shinji; Sakurai, Yoshinori; Kurosaka, Masahiro; Ono, Koji; Ichikawa, Hideki; Suzuki, Minoru

    2015-12-01

    Malignant peripheral nerve sheath tumors (MPNST) are relatively rare neoplasms with poor prognosis. At present there is no effective treatment for MPNST other than surgical resection. Nonetheless, the anti-tumor effect of boron neutron capture therapy (BNCT) was recently demonstrated in two patients with MPNST. Subsequently, tumor-bearing nude mice subcutaneously transplanted with a human MPNST cell line were injected with p-borono-L-phenylalanine (L-BPA) and subjected to BNCT. Pathological studies then revealed that the MPNST cells were selectively destroyed by BNCT.

  5. Benchmark experiments for cyclotron-based neutron source for BNCT.

    PubMed

    Yonai, S; Itoga, T; Baba, M; Nakamura, T; Yokobori, H; Tahara, Y

    2004-11-01

    In the previous study, we found the feasibility of a cyclotron-based BNCT using the Ta(p,n) neutrons at 90 degrees bombarded by 50 MeV protons, and the iron, AlF(3), Al and (6)LiF moderators by simulations using the MCNPX code. In order to validate the simulations to realize the cyclotron-based BNCT, we measured the epithermal neutron energy spectrum passing through the moderators with our new spectrometer consisting of a (3)He gas counter covered with a silicon rubber loaded with (nat)B and polyethylene moderator and the depth distribution of the reaction rates of (197)Au(n,gamma)(198)Au in an acrylic phantom set behind the rear surface of the moderators. The measured results were compared with the calculations using the MCNPX code. We obtained the good agreement between the calculations and measurements within approximately 10% for the neutron energy spectra and within approximately 20% for the depth distribution of the reaction rates of (197)Au(n,gamma)(198)Au in the phantom. The comparison clarified a good accuracy of the calculation of the neutron energy spectrum passing through the moderator and the thermalization in a phantom. These experimental results will be a good benchmark data to evaluate the accuracy of the calculation code.

  6. Boron dose determination for BNCT using Fricke and EPR dosimetry

    SciTech Connect

    Wielopolski, L.; Ciesielski, B.

    1995-02-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to {alpha} and {sup 7}Li charged particles resulting from a neutron capture by {sup 10}B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient`s dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here.

  7. Accelerator-based Experiments For Introductory-level Undergraduates

    SciTech Connect

    Sanders, Justin M.

    2009-03-10

    Although accelerator based experiments for undergraduates are often considered only for junior or senior physics majors, introductory students can also benefit from them. Rutherford backscattering and a {sup 12}C(p,p){sup 12}C elastic scattering resonance can be presented in ways that are well-suited for students who have taken only an introductory physics course.

  8. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential

    SciTech Connect

    David W. Nigg

    2012-05-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na3 [ae-B20H17NH3], administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 {+-} 16.1 ppm at 48 h and to 43.9 {+-} 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.

  9. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential.

    PubMed

    Heber, Elisa M; Kueffer, Peter J; Lee, Mark W; Hawthorne, M Frederick; Garabalino, Marcela A; Molinari, Ana J; Nigg, David W; Bauer, William; Hughes, Andrea Monti; Pozzi, Emiliano C C; Trivillin, Verónica A; Schwint, Amanda E

    2012-05-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of (10)B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K[nido-7-CH(3)(CH(2))(15)-7,8-C(2)B(9)H(11)] in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K[nido-7-CH(3)(CH(2))(15)-7,8-C(2)B(9)H(11)] in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na(3) [ae-B(20)H(17)NH(3)], administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 ± 16.1 ppm at 48 h and to 43.9 ± 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.

  10. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    SciTech Connect

    Yoon, D; Jung, J; Suh, T

    2014-06-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  11. Facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An expansion of medical data collection facilities was necessary to implement the Extended Duration Orbiter Medical Project (EDOMP). The primary objective of the EDOMP was to ensure the capability of crew members to reenter the Earth's atmosphere, land, and egress safely following a 16-day flight. Therefore, access to crew members as soon as possible after landing was crucial for most data collection activities. Also, with the advent of EDOMP, the quantity of investigations increased such that the landing day maximum data collection time increased accordingly from two hours to four hours. The preflight and postflight testing facilities at the Johnson Space Center (JSC) required only some additional testing equipment and minor modifications to the existing laboratories in order to fulfill EDOMP requirements. Necessary modifications at the landing sites were much more extensive.

  12. Voxel model in BNCT treatment planning: performance analysis and improvements.

    PubMed

    González, Sara J; Carando, Daniel G; Santa Cruz, Gustavo A; Zamenhof, Robert G

    2005-02-07

    In recent years, many efforts have been made to study the performance of treatment planning systems in deriving an accurate dosimetry of the complex radiation fields involved in boron neutron capture therapy (BNCT). The computational model of the patient's anatomy is one of the main factors involved in this subject. This work presents a detailed analysis of the performance of the 1 cm based voxel reconstruction approach. First, a new and improved material assignment algorithm implemented in NCTPlan treatment planning system for BNCT is described. Based on previous works, the performances of the 1 cm based voxel methods used in the MacNCTPlan and NCTPlan treatment planning systems are compared by standard simulation tests. In addition, the NCTPlan voxel model is benchmarked against in-phantom physical dosimetry of the RA-6 reactor of Argentina. This investigation shows the 1 cm resolution to be accurate enough for all reported tests, even in the extreme cases such as a parallelepiped phantom irradiated through one of its sharp edges. This accuracy can be degraded at very shallow depths in which, to improve the estimates, the anatomy images need to be positioned in a suitable way. Rules for this positioning are presented. The skin is considered one of the organs at risk in all BNCT treatments and, in the particular case of cutaneous melanoma of extremities, limits the delivered dose to the patient. Therefore, the performance of the voxel technique is deeply analysed in these shallow regions. A theoretical analysis is carried out to assess the distortion caused by homogenization and material percentage rounding processes. Then, a new strategy for the treatment of surface voxels is proposed and tested using two different irradiation problems. For a parallelepiped phantom perpendicularly irradiated with a 5 keV neutron source, the large thermal neutron fluence deviation present at shallow depths (from 54% at 0 mm depth to 5% at 4 mm depth) is reduced to 2% on average

  13. INEEL BNCT research program. Annual report, January 1, 1996--December 31, 1996

    SciTech Connect

    Venhuizen, J.R.

    1997-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1996. Contributions from the individual investigators about their projects are included, specifically, physics: treatment planning software, real-time neutron beam measurement dosimetry, measurement of the Finnish research reactor epithermal neutron spectrum, BNCT accelerator technology; and chemistry: analysis of biological samples and preparation of {sup 10}B enriched decaborane.

  14. Microdosimetry study of THOR BNCT beam using tissue equivalent proportional counter.

    PubMed

    Hsu, F Y; Hsiao, H W; Tung, C-J; Liu, H M; Chou, F I

    2009-07-01

    Boron neutron capture therapy (BNCT) is a cancer treatment modality using a nuclear reactor and a boron compound drug. In Taiwan, Tsing Hua open-pool reactor (THOR) has been modulated for the basic research of BNCT for years. A new BNCT beam port was built in 2004 and used to prepare the first clinical trial in the near future. This work reports the microdosimetry study of the THOR BNCT beam by means of the tissue equivalent proportional counter (TEPC). Two self-fabricated TEPCs (the boron-doped versus the boron-free counter wall) were introduced. These dual TEPCs were applied to measure the lineal energy distributions in air and water phantom irradiated by the THOR BNCT mixed radiation field. Dose contributions from component radiations of different linear energy transfers (LETs) were analyzed. Applying a lineal energy dependent biological weighting function, r(y), to the total and individual lineal energy distributions, the effective relative biological effectiveness (RBE), neutron RBE, photon RBE, and boron capture RBE (BNC RBE) were all determined at various depths of the water phantom. Minimum and maximum values of the effective RBE were 1.68 and 2.93, respectively. The maximum effective RBE occurred at 2cm depth in the phantom. The average neutron RBE, photon RBE, and BNC RBE values were 3.160+/-0.020, 1.018+/-0.001, and 1.570+/-0.270, respectively, for the THOR BNCT beam.

  15. INEL BNCT research program, July--August 1992

    SciTech Connect

    Venhuizen, J.R.

    1992-10-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  16. INEL BNCT Research Program, May/June 1992

    SciTech Connect

    Venhuizen, J.R.

    1992-09-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylaianine (IBPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  17. INEL BNCT Research Program, September--October 1992

    SciTech Connect

    Venhuizen, J.R.

    1992-12-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotain. carboranyl alanine, and liposome boron containing compounds. Pituitary tumor call culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophonylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  18. Boron neutron capture therapy (BNCT): A radiation oncology perspective

    SciTech Connect

    Dorn, R.V. III Idaho National Engineering Lab., Idaho Falls, ID )

    1994-03-30

    Boron neutron capture therapy (BNCT) offers considerable promise in the search for the ideal cancer therapy, a therapy which selectively and maximally damages malignant cells while sparing normal tissue. This bimodal treatment modality selectivity concentrates a boron compound in malignant cells, and then [open quotes]activates[close quotes] this compound with slow neutrons resulting in a highly lethal event within the cancer cell. This article reviews this treatment modality from a radiation oncology, biology, and physics perspective. The remainder of the articles in this special issue provide a survey of the current [open quotes]state-of-the-art[close quotes] in this rapidly expanding field, including information with regard to boron compounds and their localization. 118 refs., 3 figs.

  19. INEL BNCT Research Program, September--October 1992

    SciTech Connect

    Venhuizen, J.R.

    1992-12-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotain. carboranyl alanine, and liposome boron containing compounds. Pituitary tumor call culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophonylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  20. INEL BNCT research program, July--August 1992

    SciTech Connect

    Venhuizen, J.R.

    1992-10-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  1. INEL BNCT Research Program, January/February 1993

    SciTech Connect

    Venhuizen, J.R.

    1993-04-01

    This report presents summaries for two months of current research of the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murine screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor cell culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronophenylaianine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  2. INEL BNCT Research Program, March/April 1992

    SciTech Connect

    Venhuizen, J.R.

    1992-09-01

    This report presents summaries for two months of current research for the Idaho National Engineering Laboratory (INEL) Boron Neutron Capture Therapy (BNCT) Program. Information is presented on development and murino screening experiments of low-density lipoprotein, carboranyl alanine, and liposome boron containing compounds. Pituitary tumor call culture studies are described. Drug stability, pharmacology and toxicity evaluation of borocaptate sodium (BSH) and boronopheoylalanine (BPA) are described. Treatment protocol development via the large animal (canine) model studies and physiological response evaluation in rats are discussed. Supporting technology development and technical support activities for boron drug biochemistry and purity, analytical and measurement dosimetry, and noninvasive boron quantification activities are included for the current time period. Current publications for the two months are listed.

  3. TIDBIT - the INEL database of BNCT information and treatment

    SciTech Connect

    Mancuso, C.A.

    1995-11-01

    The INEL Database of BNCT Information and Treatment (TIDBIT) has been under development for several years. Late in 1993, a new software development team took over the project and did and assessment of the current implementation status, and determined that the user interface was unsatisfactory for the expected users and that the data structures were out of step with the current state of reality. The team evaluated several tools that would improve the user interface to make the system easier to use. Uniface turned out to be the product of choice. During 1994, TIDBIT got its name, underwent a complete change of appearance, had a major overhaul to the data structures that support the application, and system documentation was begun. A prototype of the system was demonstrated in September 1994.

  4. Assessing advantages of sequential boron neutron capture therapy (BNCT) in an oral cancer model with normalized blood vessels.

    PubMed

    Molinari, Ana J; Thorp, Silvia I; Portu, Agustina M; Saint Martin, Gisela; Pozzi, Emiliano C C; Heber, Elisa M; Bortolussi, Silva; Itoiz, Maria E; Aromando, Romina F; Monti Hughes, Andrea; Garabalino, Marcela A; Altieri, Saverio; Trivillin, Verónica A; Schwint, Amanda E

    2015-01-01

    We previously demonstrated the therapeutic success of sequential boron neutron capture therapy (Seq-BNCT) in the hamster cheek pouch oral cancer model. It consists of BPA-BNCT followed by GB-10-BNCT 24 or 48 hours later. Additionally, we proved that tumor blood vessel normalization with thalidomide prior to BPA-BNCT improves tumor control. The aim of the present study was to evaluate the therapeutic efficacy and explore potential boron microdistribution changes in Seq-BNCT preceded by tumor blood vessel normalization. Tumor bearing animals were treated with thalidomide for tumor blood vessel normalization, followed by Seq-BNCT (Th+ Seq-BNCT) or Seq-Beam Only (Th+ Seq-BO) in the window of normalization. Boron microdistribution was assessed by neutron autoradiography. Th+ Seq-BNCT induced overall tumor response of 100%, with 87 (4)% complete tumor response. No cases of severe mucositis in dose-limiting precancerous tissue were observed. Differences in boron homogeneity between tumors pre-treated and not pre-treated with thalidomide were observed. Th+ Seq-BNCT achieved, for the first time, response in all treated tumors. Increased homogeneity in tumor boron microdistribution is associated to an improvement in tumor control.

  5. Biodistribution of sodium borocaptate (BSH) for boron neutron capture therapy (BNCT) in an oral cancer model.

    PubMed

    Garabalino, Marcela A; Heber, Elisa M; Monti Hughes, Andrea; González, Sara J; Molinari, Ana J; Pozzi, Emiliano C C; Nievas, Susana; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Bauer, William; Trivillin, Verónica A; Schwint, Amanda E

    2013-08-01

    Boron neutron capture therapy (BNCT) is based on selective accumulation of ¹⁰B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg ¹⁰B/kg) was administered to tumor-bearing hamsters. Groups of 3-5 animals were killed humanely at nine time-points, 3-12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24-35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7-11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible.

  6. Elemental analysis of concrete samples using an accelerator-based PGNAA setup

    NASA Astrophysics Data System (ADS)

    Naqvi, A. A.; Nagadi, M. M.; Baghabra Al-Amoudi, Omar S.

    2004-09-01

    Elemental analysis of concrete samples was carried out using an accelerator-based prompt gamma ray neutron activation analysis (PGNAA) setup. The gamma rays were produced via the capture of thermal neutron in the concrete sample. The prompt gamma ray yield was measured for 12 cm long concrete samples as a function of sample radius over a range of 6-11.5 cm radii. The optimum yield of the prompt gamma rays from the concrete sample was measured from a sample with 11.5 cm radius. The gamma ray yield was also calculated for 12 cm long concrete samples with 6-11.5 cm radius using Monte Carlo simulations. The experimental results were in excellent agreement with the calculated yield of the prompt gamma rays from the samples. Result of this study has shown the useful application of an accelerator-based PGNAA setup in elemental analysis of concrete sample. The facility can be further used to determine the chloride and sulfate concentrations in concrete samples for corrosion studies of reinforcement steel in concrete structures.

  7. Lithium neutron producing target for BINP accelerator-based neutron source.

    PubMed

    Bayanov, B; Belov, V; Kindyuk, V; Oparin, E; Taskaev, S

    2004-11-01

    Pilot innovative accelerator-based neutron source for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, Novosibirsk, Russia. One of the main elements of the facility is lithium target, that produces neutrons via threshold (7)Li(p,n)(7)Be reaction at 25 kW proton beam with energies 1.915 or 2.5 MeV. In the present report, the results of experiments on neutron producing target prototype are presented, the results of calculations of hydraulic resistance for heat carrier flow and lithium layer temperature are shown. Calculation showed that the lithium target could run up to 10 mA proton beam before melting. Choice of target variant is substantiated. Program of immediate necessary experiments is described. Target design for neutron source constructed at BINP is presented. Manufacturing the neutron producing target up to the end of 2004 and obtaining a neutron beam on BINP accelerator-based neutron source are planned during 2005.

  8. Investigating a multi-purpose target for electron linac based photoneutron sources for BNCT of deep-seated tumors

    NASA Astrophysics Data System (ADS)

    Masoudi, S. Farhad; Rasouli, Fatemeh S.

    2015-08-01

    Recent studies in BNCT have focused on investigating appropriate neutron sources as alternatives for nuclear reactors. As the most prominent facilities, the electron linac based photoneutron sources benefit from two consecutive reactions, (e, γ) and (γ, n). The photoneutron sources designed so far are composed of bipartite targets which involve practical problems and are far from the objective of achieving an optimized neutron source. This simulation study deals with designing a compact, optimized, and geometrically simple target for a photoneutron source based on an electron linac. Based on a set of MCNPX simulations, tungsten is found to have the potential of utilizing as both photon converter and photoneutron target. Besides, it is shown that an optimized dimension for such a target slows-down the produced neutrons toward the desired energy range while keeping them economy, which makes achieving the recommended criteria for BNCT of deep-tumors more available. This multi-purpose target does not involve complicated designing, and can be considered as a significant step toward finding application of photoneutron sources for in-hospital treatments. In order to shape the neutron beam emitted from such a target, the beam is planned to pass through an optimized arrangement of materials composed of moderators, filters, reflector, and collimator. By assessment with the recommended in-air parameters, it is shown that the designed beam provides high intensity of desired neutrons, as well as low background contamination. The last section of this study is devoted to investigate the performance of the resultant beam in deep tissue. A typical simulated liver tumor, located within a phantom of human body, was subjected to the irradiation of the designed spectrum. The dosimetric results, including evaluated depth-dose curves and carried out in-phantom parameters show that the proposed configuration establishes acceptable agreement between the appropriate neutron intensity, and

  9. Specific contributions of the Dutch programme {open_quotes}RAS{close_quotes} towards accelerator-based transmutation

    SciTech Connect

    Abrahams, K.; Franken, W.M.P.; Bultman, J.H.

    1995-10-01

    Accelerator-based transmutation is being studied by ECN within its general nuclear waste transmutation programme RAS. In this paper the following contributions are presented: (1) Evaluation of cross sections at intermediate energies, within an international frame given by NEA, (2) Cell calculations on the equilibration of transuranium actinides in thermal molten-salt transmuters, (3) Irradiation facilities at the European research reactor HFR in Petten, which have been constructed with the purpose to demonstrate and investigate the transmutation of waste in a high neutron flux, (4) Studies of accelerator-based neutron generating systems to transmute neptunium and technetium, (5) Comparison of several systems on the basis of criteria for successful nuclear waste-management.

  10. Biocompatibility of functionalized boron phosphate (BPO4) nanoparticles for boron neutron capture therapy (BNCT) application.

    PubMed

    Achilli, Cesare; Grandi, Stefania; Ciana, Annarita; Guidetti, Gianni F; Malara, Alessandro; Abbonante, Vittorio; Cansolino, Laura; Tomasi, Corrado; Balduini, Alessandra; Fagnoni, Maurizio; Merli, Daniele; Mustarelli, Piercarlo; Canobbio, Ilaria; Balduini, Cesare; Minetti, Giampaolo

    2014-04-01

    Boron neutron capture therapy (BNCT) is a radiotherapy treatment based on the accumulation in the tumor of a (10)B-containing drug and subsequent irradiation with low energy neutrons, which bring about the decay of (10)B to (7)Li and an α particle, causing the death of the neoplastic cell. The effectiveness of BNCT is limited by the low delivery and accumulation of the used boron-containing compounds. Here we report the development and the characterization of BPO4 nanoparticles (NPs) as a novel possible alternative drug for BNCT. An extensive analysis of BPO4 NP biocompatibility was performed using both mature blood cells (erythrocytes, neutrophils and platelets) and a model of hematopoietic progenitor cells. A time- and concentration-dependent cytotoxicity study was performed on neoplastic coloncarcinoma and osteosarcoma cell lines. BPO4 functionalization with folic acid, introduced to improve the uptake by tumor cells, appeared to effectively limit the unwanted effects of NPs on the analyzed blood components. Boron neutron capture therapy (BNCT) is a radiotherapy treatment modality based on the accumulation of a (10)B-containing drug and subsequent irradiation with low energy neutrons, inducing the decay of (10)B to (7)Li and an α particle, causing neoplastic cell death. This team of authors reports on a folic acid functionalized BPO4 nanoparticle with improved characteristics compared with conventional BNCT approaches, as demonstrated in tumor cell lines, and hopefully to be followed by translational human studies. © 2014.

  11. BNCT for skin melanoma in extremities: updated Argentine clinical results.

    PubMed

    Menéndez, P R; Roth, B M C; Pereira, M D; Casal, M R; González, S J; Feld, D B; Santa Cruz, G A; Kessler, J; Longhino, J; Blaumann, H; Jiménez Rebagliati, R; Calzetta Larrieu, O A; Fernández, C; Nievas, S I; Liberman, S J

    2009-07-01

    As part of phase I/II melanoma BNCT clinical trial conducted in Argentina in a cooperative effort of the Argentine Atomic Energy Commission (CNEA) and the Oncology Institute Angel H. Roffo (IOAHR), 7 patients (6 female-1 male) received eight treatment sessions covering ten anatomical areas located in extremities. Mean age of the patients was 64 years (51-74). The treatments were performed between October 2003 and June 2007. All patients presented multiple subcutaneous skin metastases of melanoma and received an infusion containing approximately 14 gr/m(2) of (10)borophenyl-alanine (BPA) followed by the exposition of the area to a mixed thermal-epithermal neutron beam at the RA-6 reactor. The maximum prescribed dose to normal skin ranged from 16.5 to 24 Gy-Eq and normal tissue administered dose varied from 15.8 to 27.5 Gy-Eq. Considering evaluable nodules, 69.3% of overall response and 30.7% of no changes were seen. The toxicity was acceptable, with 3 out of 10 evaluable areas showing ulceration (30% toxicity grade 3).

  12. Radiation shielding design of BNCT treatment room for D-T neutron source.

    PubMed

    Pouryavi, Mehdi; Farhad Masoudi, S; Rahmani, Faezeh

    2015-05-01

    Recent studies have shown that D-T neutron generator can be used as a proper neutron source for Boron Neutron Capture Therapy (BNCT) of deep-seated brain tumors. In this paper, radiation shielding calculations have been conducted based on the computational method for designing a BNCT treatment room for a recent proposed D-T neutron source. By using the MCNP-4C code, the geometry of the treatment room has been designed and optimized in such a way that the equivalent dose rate out of the treatment room to be less than 0.5μSv/h for uncontrolled areas. The treatment room contains walls, monitoring window, maze and entrance door. According to the radiation protection viewpoint, dose rate results of out of the proposed room showed that using D-T neutron source for BNCT is safe.

  13. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    SciTech Connect

    Subhash Chandra

    2008-05-30

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  14. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    SciTech Connect

    Zasneda, Sabriani; Widita, Rena

    2010-06-22

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometrical factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.

  15. BNCT of 3 cases of spontaneous head and neck cancer in feline patients.

    PubMed

    Rao, Mónica; Trivillin, Verónica A; Heber, Elisa M; Cantarelli, María de los Angeles; Itoiz, María E; Nigg, David W; Rebagliati, Raúl Jiménez; Batistoni, Daniel; Schwint, Amanda E

    2004-11-01

    Having demonstrated BPA-BNCT induced control of experimental squamous cell carcinomas (SCC) of the hamster cheek pouch mucosa with no damage to normal tissue we explored the feasibility and safety of treating spontaneous head and neck tumors, with particular focus on SCC, of terminal feline patients with low dose BPA-BNCT employing the thermal beam of the RA-1 Reactor within a preclinical context. The biodistribution studies showed that, in all three cases evaluated, BPA delivered absolute boron values to tumor in the range that proved therapeutically useful in the experimental model of SCC. BPA-BNCT studies showed no radiotoxic effects, partial tumor control in terms of impaired growth and partial necrosis, an improvement in clinical condition and prolonged survival beyond the terminal condition of the feline patients at the time of recruitment.

  16. Tissue uptake of BSH in patients with glioblastoma in the EORTC 11961 phase I BNCT trial.

    PubMed

    Hideghéty, Katalin; Sauerwein, Wolfgang; Wittig, Andrea; Götz, Claudia; Paquis, Philippe; Grochulla, Frank; Haselsberger, Klaus; Wolbers, John; Moss, Ray; Huiskamp, Rene; Fankhauser, Heinz; de Vries, Martin; Gabel, Detlef

    2003-01-01

    The uptake of the boron compound Na2B12H10-SH (BSH) in tumor and normal tissues was investigated in the frame of the EORTC phase I trial 'Postoperative treatment of glioblastoma with BNCT at the Petten Irradiation Facility' (protocol 11961). The boron concentration in blood, tumor, normal brain, dura, muscle, skin and bone was detected using inductively coupled plasma-atomic emission spectroscopy in 13 evaluable patients. In a first group of 10 patients 100 mg BSH/kg bodyweight (BW) were administered; a second group of 3 patients received 22.9 mg BSH/kg BW. The toxicity due to BSH was evaluated. The average boron concentration in the tumor was 19.9 +/- 9.1 ppm (1 standard deviation (SD)) in the high dose group and 9.8 +/- 3.3 ppm in the low dose group, the tumor/blood ratios were 0.6 +/- 0.2 and 0.9 +/- 0.2, respectively. The highest boron uptake has been detected in the dura, very low uptake was found in the bone, the cerebro-spinal fluid and especially in the brain (brain/blood ratio 0.2 +/- 0.02 and 0.4 +/- 0.2). No toxicity was detected except flush-like symptoms in 2 cases during a BSH infusion at a much higher speed than prescribed. BSH proved to be safe for clinical application at a dose of 100 mg BSH/kg infused and at a dose rate of 1 mg/kg/min. The study underlines the importance of a further investigation of BSH uptake in order to obtain enough data for significant statistical analysis. The boron concentration in blood seems to be a quite reliable parameter to predict the boron concentration in other tissues.

  17. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.

    PubMed

    Wheeler, F J; Nigg, D W; Capala, J; Watkins, P R; Vroegindeweij, C; Auterinen, I; Seppälä, T; Bleuel, D

    1999-07-01

    The potential efficacy of boron neutron capture therapy (BNCT) for malignant glioma is a significant function of epithermal-neutron beam biophysical characteristics as well as boron compound biodistribution characteristics. Monte Carlo analyses were performed to evaluate the relative significance of these factors on theoretical tumor control using a standard model. The existing, well-characterized epithermal-neutron sources at the Brookhaven Medical Research Reactor (BMRR), the Petten High Flux Reactor (HFR), and the Finnish Research Reactor (FiR-1) were compared. Results for a realistic accelerator design by the E. O. Lawrence Berkeley National Laboratory (LBL) are also compared. Also the characteristics of the compound p-Boronophenylaline Fructose (BPA-F) and a hypothetical next-generation compound were used in a comparison of the BMRR and a hypothetical improved reactor. All components of dose induced by an external epithermal-neutron beam fall off quite rapidly with depth in tissue. Delivery of dose to greater depths is limited by the healthy-tissue tolerance and a reduction in the hydrogen-recoil and incident gamma dose allow for longer irradiation and greater dose at a depth. Dose at depth can also be increased with a beam that has higher neutron energy (without too high a recoil dose) and a more forward peaked angular distribution. Of the existing facilities, the FiR-1 beam has the better quality (lower hydrogen-recoil and incident gamma dose) and a penetrating neutron spectrum and was found to deliver a higher value of Tumor Control Probability (TCP) than other existing beams at shallow depth. The greater forwardness and penetration of the HFR the FiR-1 at greater depths. The hypothetical reactor and accelerator beams outperform at both shallow and greater depths. In all cases, the hypothetical compound provides a significant improvement in efficacy but it is shown that the full benefit of improved compound is not realized until the neutron beam is fully

  18. An international dosimetry exchange for BNCT part II: computational dosimetry normalizations.

    PubMed

    Riley, K J; Binns, P J; Harling, O K; Albritton, J R; Kiger, W S; Rezaei, A; Sköld, K; Seppälä, T; Savolainen, S; Auterinen, I; Marek, M; Viererbl, L; Nievaart, V A; Moss, R L

    2008-12-01

    The meaningful sharing and combining of clinical results from different centers in the world performing boron neutron capture therapy (BNCT) requires improved precision in dose specification between programs. To this end absorbed dose normalizations were performed for the European clinical centers at the Joint Research Centre of the European Commission, Petten (The Netherlands), Nuclear Research Institute, Rez (Czech Republic), VTT, Espoo (Finland), and Studsvik, Nyköping (Sweden). Each European group prepared a treatment plan calculation that was bench-marked against Massachusetts Institute of Technology (MIT) dosimetry performed in a large, water-filled phantom to uniformly evaluate dose specifications with an estimated precision of +/-2%-3%. These normalizations were compared with those derived from an earlier exchange between Brookhaven National Laboratory (BNL) and MIT in the USA. Neglecting the uncertainties related to biological weighting factors, large variations between calculated and measured dose are apparent that depend upon the 10B uptake in tissue. Assuming a boron concentration of 15 microg g(-1) in normal tissue, differences in the evaluated maximum dose to brain for the same nominal specification of 10 Gy(w) at the different facilities range between 7.6 and 13.2 Gy(w) in the trials using boronophenylalanine (BPA) as the boron delivery compound and between 8.9 and 11.1 Gy(w) in the two boron sulfhydryl (BSH) studies. Most notably, the value for the same specified dose of 10 Gy(w) determined at the different participating centers using BPA is significantly higher than at BNL by 32% (MIT), 43% (VTT), 49% (JRC), and 74% (Studsvik). Conversion of dose specification is now possible between all active participants and should be incorporated into future multi-center patient analyses.

  19. Might iodomethyl-{alpha}-tyrosine be a surrogate for BPA in BNCT?

    SciTech Connect

    Miura, Michiko; Micca, P.L.; Nawrocky, M.M.; Slatkin, D.N.

    1996-12-31

    A single-photon emission computed tomography [SPECT] imaging agent that is an analogue of a boron carrier for boron neutron-capture therapy [BNCT] of cerebral gliomas would be useful for assessing the kinetics of boron uptake in tumors and in the surrounding brain tissues noninvasively. BNCT is based on the interaction of thermalized neutrons with {sup 10}B nuclei in the targeted tumor. For BNCT of brain tumors, it is crucial that {sup 10}B concentrations in radiosensitive regions of the brain be minimal since malignant cells and vital brain tissues are often inter-mingled at the margins of the tumor. Currently, boronophenylalanine [BPA]-mediated BNCT is undergoing preliminary clinical study for postoperative radiotherapy of glioblastorna multiforme at Brookhaven National Laboratory. Investigators in Japan are developing {sup 18}F-fluoroboronophenylaianine [FBPA] as a positron {sup 18}F (T{sub 1/2} = 110 min), which is usually emission tomography [PET] surrogate for BPA. generated at a cyclotron dedicated to PET, is generally a minimally perturbing substitute for the 2-H on the aromatic ring because of its small size and the strong covalent bond it forms with carbon. However, SPECT has potential advantages over PET: (1) SPECT is clinically more widely available at lower cost; (2) most radioisotopes for the synthesis of SPECT agents can be purchased; (3) SPECT is less difficult to implement. It is thought that the quality of images derived from the two techniques would each be sufficiently informative for BNCT treatment planning purposes, provided that the SPECT and PET agents being considered were both pharmacokinetic surrogates for BPA. This study evaluated the use of {sup 123}I alpha methyltyrosine as a surrogate for BPA in BNCT.

  20. A treatment planning comparison of BPA- or BSH-based BNCT of malignant gliomas

    SciTech Connect

    Capala, J.; Coderre, J.A.; Chanana, A.D.

    1996-12-31

    Accurate delivery of the prescribed dose during clinical BNCT requires knowledge (or reasonably valid assumptions) about the boron concentrations in tumor and normal tissues. For conversion of physical dose (Gy) into photon-equivalent dose (Gy-Eq), relative biological effectiveness (RBE) and/or compound-adjusted biological effectiveness (CBE) factors are required for each tissue. The BNCT treatment planning software requires input of the following values: the boron concentration in blood and tumor, RBEs in brain, tumor and skin for the high-LET beam components, the CBE factors for brain, tumor, and skin, and the RBE for the gamma component.

  1. Hadroproduction experiments to constrain accelerator-based neutrino fluxes

    NASA Astrophysics Data System (ADS)

    Zambelli, Laura

    2017-09-01

    The precise knowledge of (anti-)neutrino fluxes is one of the largest limitation in accelerator-based neutrino experiments. The main limitations arise from the poorly known production properties of neutrino parents in hadron-nucleus interactions. Strategies used by neutrino experiment to constrain their fluxes using external hadroproduction data will be described and illustrated with an example of a tight collaboration between T2K and NA61/SHINE experiments. This enabled a reduction of the T2K neutrino flux uncertainty from ∼25% (without external constraints) down to ∼10%. On-going developments to further constrain the T2K (anti-)neutrino flux are discussed and recent results from NA61/SHINE are reviewed. As the next-generation long baseline experiments aim for a neutrino flux uncertainty at a level of a few percent, the future data-taking plans of NA61/SHINE are discussed.

  2. "Sequential” Boron Neutron Capture Therapy (BNCT): A Novel Approach to BNCT for the Treatment of Oral Cancer in the Hamster Cheek Pouch Model

    SciTech Connect

    Ana J. Molinari; Andrea Monti Hughes; Elisa M. Heber; Marcela A. Garabalino; Veronica A. Trivillin; Amanda E. Schwint; Emiliano C. C. Pozzi; Maria E. Itoiz; Silvia I. Thorp; Romina F. Aromando; David W. Nigg; Jorge Quintana; Gustavo A. Santa Cruz

    2011-04-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10B carriers in tumors followed by irradiation with a thermal or epithermal neutron beam. The minor abundance stable isotope of boron, 10B, interacts with low energy (thermal) neutrons to produce high linear energy transfer (LET) a-particles and 7Li ions. These disintegration products are known to have a high relative biological effectiveness (RBE). Their short range (<10 {micro}m) would limit the damage to cells containing 10B (1,2). Thus, BNCT would target tumor tissue selectively, sparing normal tissue. Clinical trials of BNCT for the treatment of glioblastoma multiforme and/or melanoma and, more recently, head and neck tumors and liver metastases, using boronophenylalanine (BPA) or sodium mercaptoundecahydrododecaborane (BSH) as the 10B carriers, have been performed or are underway in Argentina, Japan, the US and Europe (e.g. 3-8). To date, the clinical results have shown a potential, albeit inconclusive, therapeutic advantage for this technique. Contributory translational studies have been carried out employing a variety of experimental models based on the implantation of tumor cells in normal tissue (e.g. 5).

  3. Irradiation characteristics of BNCT using near-threshold 7Li(p, n)7Be direct neutrons: application to intra-operative BNCT for malignant brain tumours.

    PubMed

    Tanaka, Kenichi; Kobayashi, Tooru; Sakurai, Yoshinori; Nakagawa, Yoshinobu; Ishikawa, Masayori; Hoshi, Masaharu

    2002-08-21

    A calculation method for the dosage of neutrons by near-threshold 7Li(p, n)7Be and gamma rays by 7Li(p, p'gamma)7Li was validated through experiments with variable distance between the Li target and the phantom, focusing on large angular dependence. The production of neutrons and gamma rays in the Li target was calculated by Lee's method and their transport in the phantom was calculated using the MCNP-4B code. The dosage in intra-operative boron neutron capture therapy (BNCT) using near-threshold 7Li(p, n)7Be direct neutrons was evaluated using the validated calculation method. The effectiveness of the usage of the direct neutrons was confirmed from the existence of the region satisfying the requirements of the protocol utilized in intra-operative BNCT for brain tumours in Japan. The boron-dose enhancer (BDE) introduced in this paper to increase the contribution of the 10B(n, alpha)7Li dose in the living body was effective. The void utilized to increase the dose in deep regions was also effective with BDE. For the investigation of 1.900 MeV proton beams, for example, it was found that intraoperative BNCT using near-threshold 7Li(p, n)7Be direct neutrons is feasible.

  4. Tumor blood vessel "normalization" improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer

    SciTech Connect

    D. W. Nigg

    2012-01-01

    We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer.

  5. Boron biodistribution for BNCT in the hamster cheek pouch oral cancer model: Combined administration of BSH and BPA

    SciTech Connect

    D.W. Nigg; William Bauer; Various Others

    2014-06-01

    Sodium mercaptoundecahydro-closo-dodecaborate (BSH) is being investigated clinically for BNCT. We examined the biodistribution of BSH and BPA administered jointly in different proportions in the hamster cheek pouch oral cancer model. The 3 assayed protocols were non-toxic, and showed preferential tumor boron uptake versus precancerous and normal tissue and therapeutic tumor boron concentration values (70–85 ppm). All 3 protocols warrant assessment in BNCT studies to contribute to the knowledge of (BSH+BPA)-BNCT radiobiology for head and neck cancer and optimize therapeutic efficacy.

  6. Boron biodistribution for BNCT in the hamster cheek pouch oral cancer model: combined administration of BSH and BPA.

    PubMed

    Garabalino, Marcela A; Heber, Elisa M; Monti Hughes, Andrea; Pozzi, Emiliano C C; Molinari, Ana J; Nigg, David W; Bauer, William; Trivillin, Verónica A; Schwint, Amanda E

    2014-06-01

    Sodium mercaptoundecahydro-closo-dodecaborate (BSH) is being investigated clinically for BNCT. We examined the biodistribution of BSH and BPA administered jointly in different proportions in the hamster cheek pouch oral cancer model. The 3 assayed protocols were non-toxic, and showed preferential tumor boron uptake versus precancerous and normal tissue and therapeutic tumor boron concentration values (70-85ppm). All 3 protocols warrant assessment in BNCT studies to contribute to the knowledge of (BSH+BPA)-BNCT radiobiology for head and neck cancer and optimize therapeutic efficacy. © 2013 Published by Elsevier Ltd.

  7. Enhanced blood boron concentration estimation for BPA-F mediated BNCT.

    PubMed

    Kortesniemi, M; Seppälä, T; Auterinen, I; Savolainen, S

    2004-11-01

    The blood boron concentration regulates directly the BNCT irradiation time in which the prescribed dose to the patient is delivered. Therefore a proper estimation of the blood boron concentration for the treatment field based on the measured blood samples before irradiation is required. The bi-exponential model fit using Levenberg-Marquardt method was implemented for this purpose to provide the blood boron concentration estimates directly to the treatment data flow during the BNCT procedure. The harmonic mean bi-exponential decay half-lives of the studied patient data (n=28) were 15+/-8 and 320+/-70 min for the faster and slower half-life. The model uncertainty (n=28) was reasonably low, 0.7+/-0.1 microg/g (about 5%). The implemented algorithm provides a robust method for temporal blood boron concentration estimation for BPA-F mediated BNCT. Utilization of the infusion data improves the reliability of the estimate. The overall data flow during the treatment fulfills the practical requirements concerning the BNCT procedure.

  8. Radiobiology of BNCT mediated by GB-10 and GB-10+BPA in experimental oral cancer.

    PubMed

    Trivillin, Verónica A; Heber, Elisa M; Itoiz, Maria E; Nigg, David; Calzetta, Osvaldo; Blaumann, Herman; Longhino, Juan; Schwint, Amanda E

    2004-11-01

    We previously reported biodistribution and pharmacokinetic data for GB-10 (Na(2)(10)B(10)H(10)) and the combined administration of GB-10 and boronophenylalanine (BPA) as boron delivery agents for boron neutron capture therapy (BNCT) in the hamster cheek pouch oral cancer model. The aim of the present study was to assess, for the first time, the response of hamster cheek pouch tumors, precancerous tissue and normal tissue to BNCT mediated by GB-10 and BNCT mediated by GB-10 and BPA administered jointly using the thermalized epithermal beam of the RA-6 Reactor at the Bariloche Atomic Center. GB-10 exerted 75.5% tumor control (partial+complete remission) with no damage to precancerous tissue around tumor or to normal tissue. Thus, GB-10 proved to be a therapeutically efficient boron agent in this model despite the fact that it is not taken up selectively by oral tumor tissue. GB-10 exerted a selective effect on tumor blood vessels leading to significant tumor control with a sparing effect on normal tissue. BNCT mediated by the combined administration of GB-10 and BPA resulted in a reduction in the dose to normal tissue and would thus allow for significant escalation of dose to tumor without exceeding normal tissue tolerance.

  9. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    SciTech Connect

    Koivunoro, H.; Lou, T.P.; Leung, K. N.; Reijonen, J.

    2003-04-02

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the {sup 10}B(n,{alpha}){sup 7}Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based on D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented.

  10. Radiotherapy dose enhancement using BNCT in conventional LINACs high-energy treatment: Simulation and experiment

    PubMed Central

    Alikaniotis, Katia; Borla, Oscar; Monti, Valeria; Vivaldo, Gianna; Zanini, Alba; Giannini, Gianrossano

    2016-01-01

    Aim To employ the thermal neutron background that affects the patient during a traditional high-energy radiotherapy treatment for BNCT (Boron Neutron Capture Therapy) in order to enhance radiotherapy effectiveness. Background Conventional high-energy (15–25 MV) linear accelerators (LINACs) for radiotherapy produce fast secondary neutrons in the gantry with a mean energy of about 1 MeV due to (γ, n) reaction. This neutron flux, isotropically distributed, is considered as an unavoidable undesired dose during the treatment. Considering the moderating effect of human body, a thermal neutron fluence is localized in the tumour area: this neutron background could be employed for BNCT by previously administering 10B-Phenyl-Alanine (10BPA) to the patient. Materials and methods Monte Carlo simulations (MCNP4B-GN code) were performed to estimate the total amount of neutrons outside and inside human body during a traditional X-ray radiotherapy treatment. Moreover, a simplified tissue equivalent anthropomorphic phantom was used together with bubble detectors for thermal and fast neutron to evaluate the moderation effect of human body. Results Simulation and experimental results confirm the thermal neutron background during radiotherapy of 1.55E07 cm−2 Gy−1. The BNCT equivalent dose delivered at 4 cm depth in phantom is 1.5 mGy-eq/Gy, that is about 3 Gy-eq (4% of X-rays dose) for a 70 Gy IMRT treatment. Conclusions The thermal neutron component during a traditional high-energy radiotherapy treatment could produce a localized BNCT effect, with a localized therapeutic dose enhancement, corresponding to 4% or more of photon dose, following tumour characteristics. This BNCT additional dose could thus improve radiotherapy, acting as a localized radio-sensitizer. PMID:26933394

  11. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    NASA Astrophysics Data System (ADS)

    Franklyn, C. B.

    2011-12-01

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >1011 nṡs-1. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  12. Effect of Boron Neutron Capture Therapy (BNCT) on Normal Liver Regeneration: Towards a Novel Therapy for Liver Metastases

    SciTech Connect

    Jorge E. Cardoso; Elisa M. Heber; David W. Nigg; Osvaldo Calzetta; Herman Blaumann; Juan Longhino; Maria E. Itoiz; Eduardo Bumaschny; Emiliano Pozzi; Amanda E.Schwint; Verónica A. Trivillin

    2007-10-01

    The “TAORMINA project” developed a new method for Boron Neutron Capture Therapy (BNCT) of human multifocal unresectable liver metastases based on whole liver ex-situ BNCT mediated by boronophenylalanine (BPA), followed by whole liver autograft. This technique involved a high risk, prolonged anhepatic phase. The Roffo Institute liver surgeons (JEC) herein propose a novel technique to pursue ex-situ liver BNCT studies with a drastically lower surgical risk for the patient. The technique would involve, sequentially, ex-situ BNCT of left liver segments II and III, partial liver autograft, and induction of partial atrophy of the untreated right liver. The working hypothesis is that the atrophy of the right, untreated, diseased liver would stimulate regeneration of the left, treated, “cured” liver to yield a healthy liver mass, allowing for the resection of the remaining portion of diseased liver. This technique does not involve an anhepatic phase and would thus pose a drastically lower surgical risk to the patient but requires sine qua non that BNCT should not impair the regenerative capacity of normal hepatocytes. The aim of the present study was to assess the effect of therapeutic doses of BNCT mediated by BPA, GB-10 (Na2 10B10H10) or (GB- 10 + BPA) on normal liver regeneration in the Wistar rat employing partial hepatectomy as a regenerative stimulus. BNCT did not cause alterations in the outcome of normal liver regeneration, regenerated liver function or histology. We provide proof of principle to support the development of a novel, promising BNCT technique for the treatment of liver metastases.

  13. Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems

    PubMed Central

    Sharma, S. D.; Kumar, Sudhir; Dagaonkar, S. S.; Bisht, Geetika; Dayanand, S.; Devi, Reena; Deshpande, S. S.; Chaudhary, S.; Bhatt, B. C.; Kannan, S.

    2007-01-01

    Stereotactic radiosurgery (SRS) is a special radiotherapy technique used to irradiate intracranial lesions by 3-D arrangements of narrow photon beams eliminating the needs of invasive surgery. Three different tertiary collimators, namely BrainLab and Radionics circular cones and BrainLab micro multileaf collimator (mMLC), are used for linear accelerator-based SRS systems (X-Knife). Output factor (St), tissue maximum ratio (TMR) and off axis ratio (OAR) of these three SRS systems were measured using CC01 (Scanditronix/ Welhofer) and Pinpoint (PTW) cylindrical and Markus plane parallel ionization chambers as well as TLD and radiochromic film. Measurement results of CC01 and Pinpoint chambers were very close to each other which indicate that further reduction in volume and physical dimensions of cylindrical ionization chamber is not necessary for SRS/SRT dosimetry. Output factors of BrainLab and Radionics SRS cones were very close to each other while output factors of equivalent diameter mMLC field were different from SRS circular cones. TMR of the three SRS systems compared were very close to one another. OAR of Radionics cone and BrainLab mMLC were very close to each other, within 2%. However, OARs of BrainLab cone were found comparable to OARs of Radionics cone and BrainLab mMLC within maximum variation of 4%. In addition, user-measured similar data of other three mMLC X-Knives were compared with the mMLC X-Knife data measured in this work and found comparable. The concept of switching over to mMLC-based SRS/SRT is thus validated from dosimetric characteristics as well. PMID:21217914

  14. Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems.

    PubMed

    Sharma, S D; Kumar, Sudhir; Dagaonkar, S S; Bisht, Geetika; Dayanand, S; Devi, Reena; Deshpande, S S; Chaudhary, S; Bhatt, B C; Kannan, S

    2007-01-01

    Stereotactic radiosurgery (SRS) is a special radiotherapy technique used to irradiate intracranial lesions by 3-D arrangements of narrow photon beams eliminating the needs of invasive surgery. Three different tertiary collimators, namely BrainLab and Radionics circular cones and BrainLab micro multileaf collimator (mMLC), are used for linear accelerator-based SRS systems (X-Knife). Output factor (S(t)), tissue maximum ratio (TMR) and off axis ratio (OAR) of these three SRS systems were measured using CC01 (Scanditronix/ Welhofer) and Pinpoint (PTW) cylindrical and Markus plane parallel ionization chambers as well as TLD and radiochromic film. Measurement results of CC01 and Pinpoint chambers were very close to each other which indicate that further reduction in volume and physical dimensions of cylindrical ionization chamber is not necessary for SRS/SRT dosimetry. Output factors of BrainLab and Radionics SRS cones were very close to each other while output factors of equivalent diameter mMLC field were different from SRS circular cones. TMR of the three SRS systems compared were very close to one another. OAR of Radionics cone and BrainLab mMLC were very close to each other, within 2%. However, OARs of BrainLab cone were found comparable to OARs of Radionics cone and BrainLab mMLC within maximum variation of 4%. In addition, user-measured similar data of other three mMLC X-Knives were compared with the mMLC X-Knife data measured in this work and found comparable. The concept of switching over to mMLC-based SRS/SRT is thus validated from dosimetric characteristics as well.

  15. Subpanel on accelerator-based neutrino oscillation experiments

    SciTech Connect

    1995-09-01

    Neutrinos are among nature`s fundamental constituents, and they are also the ones about which we know least. Their role in the universe is widespread, ranging from the radioactive decay of a single atom to the explosions of supernovae and the formation of ordinary matter. Neutrinos might exhibit a striking property that has not yet been observed. Like the back-and-forth swing of a pendulum, neutrinos can oscillate to-and-from among their three types (or flavors) if nature provides certain conditions. These conditions include neutrinos having mass and a property called {open_quotes}mixing.{close_quotes} The phenomenon is referred to as neutrino oscillations. The questions of the origin of neutrino mass and mixing among the neutrino flavors are unsolved problems for which the Standard Model of particle physics holds few clues. It is likely that the next critical step in answering these questions will result from the experimental observation of neutrino oscillations. The High Energy Physics Advisory Panel (HEPAP) Subpanel on Accelerator-Based Neutrino Oscillation Experiments was charged to review the status and discovery potential of ongoing and proposed accelerator experiments on neutrino oscillations, to evaluate the opportunities for the U.S. in this area of physics, and to recommend a cost-effective plan for pursuing this physics, as appropriate. The complete charge is provided in Appendix A. The Subpanel studied these issues over several months and reviewed all the relevant and available information on the subject. In particular, the Subpanel reviewed the two proposed neutrino oscillation programs at Fermi National Accelerator Laboratory (Fermilab) and at Brookhaven National Laboratory (BNL). The conclusions of this review are enumerated in detail in Chapter 7 of this report. The recommendations given in Chapter 7 are also reproduced in this summary.

  16. Comparison of different MC techniques to evaluate BNCT dose profiles in phantom exposed tovarious neutron fields.

    PubMed

    Durisi, E; Koivunoro, H; Visca, L; Borla, O; Zanini, A

    2010-03-01

    The absorbed dose in BNCT (boron neutron capture therapy) consists of several radiation components with different physical properties and biological effectiveness. In order to assess the clinical efficacy of the beams, determining the dose profiles in tissues, Monte Carlo (MC) simulations are used. This paper presents a comparison between dose profiles calculated in different phantoms using two techniques: MC radiation transport code, MCNP-4C2 and BNCT MC treatment planning program, SERA (simulation environment for radiotherapy application). In this study MCNP is used as a reference tool. A preliminary test of SERA is performed using six monodirectional and monoenergetic beams directed onto a simple water phantom. In order to deeply investigate the effect of the different cross-section libraries and of the dose calculation methodology, monoenergetic and monodirectional beams directed toward a standard Snyder phantom are simulated. Neutron attenuation curves and dose profiles are calculated with both codes and the results are compared.

  17. Boron analysis and boron imaging in biological materials for Boron Neutron Capture Therapy (BNCT).

    PubMed

    Wittig, Andrea; Michel, Jean; Moss, Raymond L; Stecher-Rasmussen, Finn; Arlinghaus, Heinrich F; Bendel, Peter; Mauri, Pier Luigi; Altieri, Saverio; Hilger, Ralf; Salvadori, Piero A; Menichetti, Luca; Zamenhof, Robert; Sauerwein, Wolfgang A G

    2008-10-01

    Boron Neutron Capture Therapy (BNCT) is based on the ability of the stable isotope 10B to capture neutrons, which leads to a nuclear reaction producing an alpha- and a 7Li-particle, both having a high biological effectiveness and a very short range in tissue, being limited to approximately one cell diameter. This opens the possibility for a highly selective cancer therapy. BNCT strongly depends on the selective uptake of 10B in tumor cells and on its distribution inside the cells. The chemical properties of boron and the need to discriminate different isotopes make the investigation of the concentration and distribution of 10B a challenging task. The most advanced techniques to measure and image boron are described, both invasive and non-invasive. The most promising approach for further investigation will be the complementary use of the different techniques to obtain the information that is mandatory for the future of this innovative treatment modality.

  18. Hyaluronic acid as a potential boron carrier for BNCT: Preliminary evaluation.

    PubMed

    Zaboronok, A; Yamamoto, T; Nakai, K; Yoshida, F; Uspenskii, S; Selyanin, M; Zelenetskii, A; Matsumura, Akira

    2015-12-01

    Hyaluronic acid (HA), a nonimmunogenic, biocompatible polymer found in different biological tissues, has the potential to attach to CD44 receptors on the surface of certain cancer cells, where the receptor is overexpressed compared with normal cells. Boron-hyaluronic acid (BHA) was tested for its feasibility as a potential agent for BNCT. BHA with low-viscosity 30 kDa HA could be administered by intravenous injection. The compound showed a certain degree of cytotoxicity and accumulation in C6 rat glioma cells in vitro. Instability of the chelate bonds between boron and HA and/or insufficient specificity of CD44 receptors on C6 cells to BHA could account for the insufficient in vitro accumulation. To ensure the future eligibility of BHA for BNCT experiments, using alternative tumor cell lines and chemically securing the chelate bonds or synthesizing BHA with boron covalently attached to HA might be required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Combined TL and 10B-alanine ESR dosimetry for BNCT.

    PubMed

    Bartolotta, A; D'Oca, M C; Lo Giudice, B; Brai, M; Borio, R; Forini, N; Salvadori, P; Manera, S

    2004-01-01

    The dosimetric technique described in this paper is based on electron spin resonance (ESR) detectors using an alanine-boric compound acid enriched with (10)B, and beryllium oxide thermoluminescent (TL) detectors; with this combined dosimetry, it is possible to discriminate the doses due to thermal neutrons and gamma radiation in a mixed field. Irradiations were carried out inside the thermal column of a TRIGA MARK II water-pool-type research nuclear reactor, also used for Boron Neutron Capture therapy (BNCT) applications, with thermal neutron fluence from 10(9) to 10(14) nth cm(-2). The ESR dosemeters using the alanine-boron compound indicated ESR signals about 30-fold stronger than those using only alanine. Moreover, a negligible correction for the gamma contribution, measured with TL detectors, almost insensitive to thermal neutrons, was necessary. Therefore, a simultaneous analysis of our TL and ESR detectors allows discrimination between thermal neutron and gamma doses, as required in BNCT.

  20. Near threshold ⁷Li(p,n) ⁷Be reaction as neutron source for BNCT.

    PubMed

    Minsky, D M; Kreiner, A J

    2015-12-01

    (7)Li(p,n)(7)Be is an endothermic reaction and working near its threshold (1.88 MeV) has the advantage of neutron spectra with maximum energies of about 100 keV, considerably lower than at higher beam energies, or than using other neutron-producing reactions or as for the uranium fission spectrum, relevant for BNCT based on nuclear reactors. With this primary energy it is much easier to obtain the energies needed for treating deep seated tumors by BNCT (about 10 keV). This work studies bombarding energies up to 2.05 MeV, different beam incidence angles and the effect of the undesirable gamma production via the (7)Li(p,γp') (7)Li reaction.

  1. Focused neutron beam dose deposition profiles in tissue equivalent materials: a pilot study for BNCT

    NASA Astrophysics Data System (ADS)

    Mayer, Rulon R.; Welsh, James; Chen-Mayer, Huaiyu H.

    1997-02-01

    Boron Neutron Capture Therapy (BNCT) has been limited by the inability to direct neutrons toward the therapeutic target and away from sensitive normal tissues. The recently developed Kumakhov lens has focused a broad incident low energy neutron beam in air to a sub-mm spot. This study examines the radiation does distribution of a converging beam passing through tissue equivalent materials. A neutron beam exiting a focusing lens is directed toward a stack of thin radiochromic media sandwiched between plastic sheets. The depth dose and beam profile within the tissue equivalent materials are determined by optical scanning and image processing of the individual radiochromic media sheets, a polymer based dosimetry medium which darkens upon exposure to ionizing radiation. The alpha particle emission from boron is examined by substituting a plastic sheet with a 6Li enriched lithium carbonate sheet positioned at the focal plane. The information will help determine the feasibility of applying the focused neutron beam to BNCT for therapy.

  2. Monte Carlo modelling of the influence of boron microdistribution on BNCT microdosimetry.

    PubMed

    Hugtenburg, Richard P; Baker, Adam E R; Green, Stuart

    2009-07-01

    The ion transport Monte Carlo code SRIM has been used to calculate single event lineal energy spectra for the products of the boron-neutron capture reaction in a water-based medium. The event spectra have been benchmarked against spectra measured with a boron-loaded tissue-equivalent proportional counter (TEPC). Agreement is excellent and supports the use of Monte Carlo methods in understanding the influence of boron delivery on the effectiveness of boron-neutron capture therapy (BNCT).

  3. Application of the new MultiTrans SP3 radiation transport code in BNCT dose planning.

    PubMed

    Kotiluoto, P; Hiisamäki, P; Savolainen, S

    2001-09-01

    Dose planning in boron neutron capture therapy (BNCT) is a complex problem and requires sophisticated numerical methods. In the framework of the Finnish BNCT project, new deterministic three-dimensional radiation transport code MultiTrans SP3 has been developed at VTT Chemical Technology, based on a novel application of the tree multigrid technique. To test the applicability of this new code in a realistic BNCT dose planning problem, cylindrical PMMA (polymethyl-methacrylate) phantom was chosen as a benchmark case. It is a convenient benchmark, as it has been modeled by several different codes, including well-known DORT and MCNP. Extensive measured data also exist. In this paper, a comparison of the new MultiTrans SP3 code with other methods is presented for the PMMA phantom case. Results show that the total neutron dose rate to ICRU adult brain calculated by the MultiTrans SP3 code differs less than 4% in 2 cm depth in phantom (in thermal maximum) from the DORT calculation. Results also show that the calculated 197Au(n,gamma) and 55Mn(n,gamma) reaction rates in 2 cm depth in phantom differ less than 4% and 1% from the measured values, respectively. However, the photon dose calculated by the MultiTrans SP3 code seems to be incorrect in this PMMA phantom case, which requires further studying. As expected, the deterministic MultiTrans SP3 code is over an order of magnitude faster than stochastic Monte Carlo codes (with similar resolution), thus providing a very efficient tool for BNCT dose planning.

  4. RADIOSYNTHESIS AND CHIRAL SEPARATION OF C-11 LABELED BORONOPHENYLALANINE FOR BNCT STUDIES WITH PET.

    SciTech Connect

    STUDENOV,A.; DING,Y.S.; FERRIERI,R.; MIURA,M.; CODERRE,J.; FOWLER,J.S.

    2001-06-10

    The overall goal of this research is to combine two powerful methodologies, boron neutron capture therapy (BNCT) and positron emission tomography (PET), to advance the treatment of patients with malignant brain tumors. BNCT is a method to selectively deliver lethal alpha radiation to a tumor through the administration of a boron-10 containing drug, and irradiation of the tumor area with neutrons [1]. L-Boronophenylalanine (L-{sup 10}BPA) is a boron-10 containing amino acid currently used for BNCT [4]. In order to perform neutron dosimetry, it is essential to determine tumor boron-10 levels in the course of the therapy. PET has the ability to measure the concentration of drugs labeled with positron-emitting isotopes in the human body [2]. 2-Fluoro-4-borono-phenylalanine ([{sup 18}F]FBPA) has been labeled as a surrogate marker for L-BPA for pharmacokinetic studies in brain tumor patients [3]. However, [{sup 18}F]FBPA is a different drug than L-BPA because it contains a fluorine atom. We report here the labeling of L-BPA with C-11, which has the advantage of being chemically identical to L-BPA. Carbon-11 is also well suited to repeated studies within the same PET scanning session.

  5. Boron-10 quantification and microdosimetric studies in a clinical trial of BNCT

    SciTech Connect

    Kiger, W.S. III; Solares, G.R.; Yam, C.S.

    1996-12-31

    Five boron neutron capture therapy (BNCT) treatments have been delivered as part of the New England Deaconess Hospital-Massachusetts Institute of Technology (MIT) phase-I BNCT dose-escalation protocol for the treatment of metastatic melanoma. The first four irradiations, in which the boron agent boronophenylalanine (L-BPA) was administered orally in a fruit juice suspension, were done using epithermal neutrons from the MIT research reactor employing four fractions. The fifth irradiation, in which the subject received the fructose form of BPA (BPA-f) via intravenous infusion, was delivered in a single fraction. This paper presents the results from the measurements of {sup 10}B concentrations in tumor, normal tissue, and blood for the subjects who underwent this protocol because, to ascribe potential efficacy to BNCT, it is necessary to show that there is an adequate differential uptake of boron by tumor cells relative to normal cells, These measurements used high-resolution quantitative autoradiography, prompt gamma neutron activation analysis, and inductively coupled plasma atomic emissions spectroscopy.

  6. Some Recent Developments in Treatment Planning Software and Methodology for BNCT

    DOE R&D Accomplishments Database

    Nigg, D. W.; Wheeler, F. J.; Wessol, D. E.; et al.

    1996-01-01

    Over the past several years the Idaho National Engineering Laboratory (INEL) has led the development of a unique, internationally-recognized set of software modules (BNCT-rtpe) for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT). The computational capability represented by this software is essential to the proper administration of all forms of radiotherapy for cancer. Such software addresses the need to perform pretreatment computation and optimization of the radiation dose distribution in the target volume. This permits the achievement of the optimal therapeutic ratio (tumor dose relative to critical normal tissue dose) for each individual patient via a systematic procedure for specifying the appropriate irradiation parameters to be employed for a given treatment. These parameters include angle of therapy beam incidence, beam aperture and shape, and beam intensity as a function of position across the beam front. The INEL software is used for treatment planning in the current series of human glioma trials at Brookhaven National Laboratory (BNL) and has also been licensed for research and developmental purposes to several other BNCT research centers in the US and in Europe.

  7. Some recent developments in treatment planning software and methodology for BNCT

    SciTech Connect

    Nigg, D.W.; Wheeler, F.J.; Wessol, D.E.

    1996-12-31

    Over the past several years the Idaho National Engineering Laboratory (INEL) has led the development of a unique, internationally-recognized set of software modules (BNCT-rtpe) for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT). The computational capability represented by this software is essential to the proper administration of all forms of radiotherapy for cancer. Such software addresses the need to perform pretreatment computation and optimization of the radiation dose distribution in the target volume. This permits the achievement of the optimal therapeutic ratio (tumor dose relative to critical normal tissue dose) for each individual patient via a systematic procedure for specifying the appropriate irradiation parameters to be employed for a given treatment. These parameters include angle of therapy beam incidence, beam aperture and shape, and beam intensity as a function of position across the beam front. The INEL software is used for treatment planning in the current series of human glioma trials at Brookhaven National Laboratory (BNL) and has also been licensed for research and developmental purposes to several other BNCT research centers in the US and in Europe.

  8. Some recent developments in treatment planning software and methodology for BNCT

    SciTech Connect

    Nigg, D.W.; Wheeler, F.J.; Wessol, D.E.; Wemple, C.A.; Babcock, R.; Capala, J.

    1996-12-31

    Over the past several years/the Idaho National Engineering Laboratory (INEL) has led the development of a unique, internationally-recognized set of software modules (BNCT rtpe) for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT). The computational capability represented by this software is essential to the proper administration of all forms of radiotherapy for cancer. Such software addresses the need to perform pretreatment computation and optimization of the radiation dose distribution in the target volume. This permits the achievement of the optimal therapeutic ratio (tumor dose relative to critical normal tissue dose) for each individual patient via a systematic procedure for specifying the appropriate irradiation parameters to be employed for a given treatment. These parameters include angle of therapy beam incidence, beam aperture and shape,and beam intensity as a function of position across the beam front. The INEL software is used for treatment planning in the current series of human glioma trials at Brookhaven National Laboratory (BNL) and has also been licensed for research and developmental purposes to several other BNCT research centers in the US and in Europe.

  9. Boron neutron capture therapy (BNCT) for the treatment of spontaneous nasal planum squamous cell carcinoma in felines.

    PubMed

    Trivillin, Verónica A; Heber, Elisa M; Rao, Monica; Cantarelli, María A; Itoiz, Maria E; Nigg, David W; Calzetta, Osvaldo; Blaumann, Herman; Longhino, Juan; Schwint, Amanda E

    2008-02-01

    Recently, Boron neutron capture therapy (BNCT) was successfully applied to treat experimental squamous cell carcinomas (SCC) of the hamster cheek pouch mucosa, with no damage to normal tissue. It was also shown that treating spontaneous nasal planum SCC in terminal feline patients with low dose BNCT is safe and feasible. In an extension of this work, the present study aimed at evaluation of the response of tumor and dose-limiting normal tissues to potentially therapeutic BNCT doses. Biodistribution studies with (10)B-boronophenylalanine (BPA enriched in (10)B) as a (10)B carrier were performed on three felines that showed advanced nasal planum SCC without any standard therapeutic option. Following the biodistribution studies, BNCT mediated by (10)BPA was done using the thermalized epithermal neutron beam at the RA-6 Nuclear Reactor. Follow-up included clinical evaluation, assessment of macroscopic tumor and normal tissue response and biopsies for histopathological analysis. The treated animals did not show any apparent radiation-induced toxicity. All three animals exhibited partial tumor control and an improvement in clinical condition. Enhanced therapeutic efficacy was associated with a high (10)B content of the tumor and a small tumor size. BNCT is therefore believed to be potentially effective in the treatment of spontaneous SCC. However, improvement in targeting (10)B into all tumor cells and delivering a sufficient dose at a greater depth are still required for the treatment of deep-seated, large tumors. Future studies are needed to evaluate the potential efficacy of the dual mode cellular (e.g. BPA-BNCT) and vascular (e.g. GB-10-BNCT) targeting protocol in a preclinical scenario, employing combinations of (10)B compounds with different properties and complementary uptake mechanisms.

  10. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    SciTech Connect

    David W. Nigg; Amanda E. Schwint; John K. Hartwell; Elisa M. Heber; Veronica Trivillin; Jorge Castillo; Luis Wentzeis; Patrick Sloan; Charles A. Wemple

    2004-10-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  11. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    SciTech Connect

    Nigg, D.W.; Schwint, A.E.; Hartwell, J.K.; Heber, E.M.; Trivillin, V.; Castillo, J.; Wentzeis, L.; Sloan, P.; Wemple, C.A.

    2004-10-04

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  12. Neutron medical treatment of tumours — a survey of facilities

    NASA Astrophysics Data System (ADS)

    Wagner, F. M.; Loeper-Kabasakal, B.; Breitkreutz, H.

    2012-03-01

    Neutron therapy has two branches: Fast Neutron Therapy (FNT) and Boron Neutron Capture Therapy (BNCT). The mean neutron energies used for FNT range from 2 MeV to 25 MeV whereas the maximum energy for BNCT is about 10 keV. Neutron generators for FNT have been cyclotrons, accelerators and reactors, whereas BNCT is so far bound to reactors. Both therapies use the effects of high-LET radiation (secondary recoil protons and alpha particles, respectively) and can attack otherwise radioresistant tumours, however, with the hazard of adverse effects for irradiated healthy tissue. FNT has been administered to about 30,000 patients world-wide. From formerly 40 facilities, only eight are operational or stand-by today. The reasons for this development have been, on the one hand, related to technical and economical conditions; on the other hand, strong side effects and insufficient proof of clinical results in the early years as well as increasing competition with new clinical methods have reduced patient numbers. In fact, strict observations of indications, appropriate therapy-planning including low-LET radiation, and consequent treatment of side effects have lead to remarkable results in the meantime. BNCT initially was developed for the treatment of extremely aggressive forms of brain tumour, taking advantage of the action of the blood-brain-barrier which allows for a boronated compound to be selectively enriched in tumour cells. Meanwhile, also malignant melanoma (MM) and Head-and-Neck (H&T) tumours are treated because of their relative radioresistance. At present, epithermal beams with sufficient flux are available only at two facilities. Existing research reactors were indispensable in the development of BNCT, but are to be replaced by hospital-based epithermal neutron sources. Clinical results indicate significantly increased survival times, but the number of patients ever treated is still below 1,000. 3D-dose calculation systems have been developed at several facilities

  13. Intense and exciting: current and future accelerator-based measurements of neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Whitehead, Lisa

    2017-01-01

    Accelerator-based experiments have been crucial in our understanding of neutrino oscillations. In this talk, I will give an overview of current accelerator-based neutrino oscillation experiments, which have observed electron neutrino appearance and made precision measurements of the parameters governing muon neutrino disappearance. I will discuss what the current set of experiments can contribute to the remaining questions in neutrino oscillation physics, including measuring the CP violating phase, determining the mass hierarchy, resolving the θ23 octant, and searching for sterile neutrinos. Finally, I will describe the plans and physics goals for future accelerator-based neutrino experiments.

  14. Tumor blood vessel "normalization" improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer.

    PubMed

    Molinari, Ana J; Pozzi, Emiliano C C; Monti Hughes, Andrea; Heber, Elisa M; Garabalino, Marcela A; Thorp, Silvia I; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Trivillin, Verónica A; Schwint, Amanda E

    2012-01-01

    We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer. Blood vessel normalization was induced by two doses of thalidomide in tumor-bearing hamsters on 2 consecutive days. All studies in thalidomide-treated animals were performed 48 h after the first dose of thalidomide, previously established as the window of normalization. Biodistribution studies were performed with BPA at a dose of 15.5 mg (10)B/kg in thalidomide-treated (Th+) and untreated (Th-) tumor-bearing hamsters. The effect of blood vessel normalization prior to BPA administration on the efficacy of BNCT was assessed in in vivo BNCT studies at the RA-3 Nuclear Reactor in tumor-bearing hamsters. Group I was treated with BPA-BNCT after treatment with thalidomide (Th+ BPA-BNCT). Group II was treated with BPA-BNCT alone (Th- BPA-BNCT). Group III was treated with the beam only after treatment with thalidomide (Th+ BO), and Group IV was treated with the beam only (Th- BO). Groups I and II were given the same dose of BPA (15.5 mg (10)B/kg), and all groups (I-IV) were exposed to the same neutron fluence. Two additional groups were treated with the beam only at a higher dose to exacerbate mucositis in precancerous tissue and to explore the potential direct protective effect of thalidomide on radiation-induced mucositis in a scenario of more severe toxicity, i.e. Group V (Th+ hdBO) and Group

  15. Abscopal effect of boron neutron capture therapy (BNCT): proof of principle in an experimental model of colon cancer.

    PubMed

    Trivillin, Verónica A; Pozzi, Emiliano C C; Colombo, Lucas L; Thorp, Silvia I; Garabalino, Marcela A; Monti Hughes, Andrea; González, Sara J; Farías, Rubén O; Curotto, Paula; Santa Cruz, Gustavo A; Carando, Daniel G; Schwint, Amanda E

    2017-08-08

    The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 × 10(6) DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 × 10(6) DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm(3). In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm(3). The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect.

  16. Synthesis of a carborane-containing cholesterol derivative and evaluation as a potential dual agent for MRI/BNCT applications.

    PubMed

    Alberti, Diego; Toppino, Antonio; Geninatti Crich, Simonetta; Meraldi, Chiara; Prandi, Cristina; Protti, Nicoletta; Bortolussi, Silva; Altieri, Saverio; Aime, Silvio; Deagostino, Annamaria

    2014-04-21

    In this study the synthesis and characterization of a new dual, imaging and therapeutic, agent is proposed with the aim of improving the efficacy of Boron Neutron Capture Therapy (BNCT) in cancer treatment. The agent (Gd-B-AC01) consists of a carborane unit (ten boron atoms) bearing a cholesterol unit on one side (to pursue the incorporation into the liposome bi-layer) and a Gd(iii)/1,4,7,10-tetraazacyclododecane monoamide complex on the other side (as a MRI reporter to attain the quantification of the B/Gd concentration). In order to endow the BNCT agent with specific delivery properties, the liposome embedded with the MRI/BNCT dual probes has been functionalized with a pegylated phospholipid containing a folic acid residue at the end of the PEG chain. The vector allows the binding of the liposome to folate receptors that are overexpressed in many tumor types, and in particular, in human ovarian cancer cells (IGROV-1). An in vitro test on IGROV-1 cells demonstrated that Gd-B-AC01 loaded liposomes are efficient carriers for the delivery of the MRI/BNCT probes to the tumor cells. Finally, the BNCT treatment of IGROV-1 cells showed that the number of surviving cells was markedly smaller when the cells were irradiated after internalization of the folate-targeted GdB10-AC01/liposomes.

  17. Boron neutron capture therapy (BNCT) translational studies in the hamster cheek pouch model of oral cancer at the new "B2" configuration of the RA-6 nuclear reactor.

    PubMed

    Monti Hughes, Andrea; Longhino, Juan; Boggio, Esteban; Medina, Vanina A; Martinel Lamas, Diego J; Garabalino, Marcela A; Heber, Elisa M; Pozzi, Emiliano C C; Itoiz, María E; Aromando, Romina F; Nigg, David W; Trivillin, Verónica A; Schwint, Amanda E

    2017-09-04

    Boron neutron capture therapy (BNCT) is based on selective accumulation of B-10 carriers in tumor followed by neutron irradiation. We demonstrated, in 2001, the therapeutic effect of BNCT mediated by BPA (boronophenylalanine) in the hamster cheek pouch model of oral cancer, at the RA-6 nuclear reactor. Between 2007 and 2011, the RA-6 was upgraded, leading to an improvement in the performance of the BNCT beam (B2 configuration). Our aim was to evaluate BPA-BNCT radiotoxicity and tumor control in the hamster cheek pouch model of oral cancer at the new "B2" configuration. We also evaluated, for the first time in the oral cancer model, the radioprotective effect of histamine against mucositis in precancerous tissue as the dose-limiting tissue. Cancerized pouches were exposed to: BPA-BNCT; BPA-BNCT + histamine; BO: Beam only; BO + histamine; CONTROL: cancerized, no-treatment. BNCT induced severe mucositis, with an incidence that was slightly higher than in "B1" experiments (86 vs 67%, respectively). BO induced low/moderate mucositis. Histamine slightly reduced the incidence of severe mucositis induced by BPA-BNCT (75 vs 86%) and prevented mucositis altogether in BO animals. Tumor overall response was significantly higher in BNCT (94-96%) than in control (16%) and BO groups (9-38%), and did not differ significantly from the "B1" results (91%). Histamine did not compromise BNCT therapeutic efficacy. BNCT radiotoxicity and therapeutic effect at the B1 and B2 configurations of RA-6 were consistent. Histamine slightly reduced mucositis in precancerous tissue even in this overly aggressive oral cancer model, without compromising tumor control.

  18. Cationized gelatin-HVJ envelope with sodium borocaptate improved the BNCT efficacy for liver tumors in vivo

    PubMed Central

    2011-01-01

    Background Boron neutron capture therapy (BNCT) is a cell-selective radiation therapy that uses the alpha particles and lithium nuclei produced by the boron neutron capture reaction. BNCT is a relatively safe tool for treating multiple or diffuse malignant tumors with little injury to normal tissue. The success or failure of BNCT depends upon the 10B compound accumulation within tumor cells and the proximity of the tumor cells to the body surface. To extend the therapeutic use of BNCT from surface tumors to visceral tumors will require 10B compounds that accumulate strongly in tumor cells without significant accumulation in normal cells, and an appropriate delivery method for deeper tissues. Hemagglutinating Virus of Japan Envelope (HVJ-E) is used as a vehicle for gene delivery because of its high ability to fuse with cells. However, its strong hemagglutination activity makes HVJ-E unsuitable for systemic administration. In this study, we developed a novel vector for 10B (sodium borocaptate: BSH) delivery using HVJ-E and cationized gelatin for treating multiple liver tumors with BNCT without severe adverse events. Methods We developed cationized gelatin conjugate HVJ-E combined with BSH (CG-HVJ-E-BSH), and evaluated its characteristics (toxicity, affinity for tumor cells, accumulation and retention in tumor cells, boron-carrying capacity to multiple liver tumors in vivo, and bio-distribution) and effectiveness in BNCT therapy in a murine model of multiple liver tumors. Results CG-HVJ-E reduced hemagglutination activity by half and was significantly less toxic in mice than HVJ-E. Higher 10B concentrations in murine osteosarcoma cells (LM8G5) were achieved with CG-HVJ-E-BSH than with BSH. When administered into mice bearing multiple LM8G5 liver tumors, the tumor/normal liver ratios of CG-HVJ-E-BSH were significantly higher than those of BSH for the first 48 hours (p < 0.05). In suppressing the spread of tumor cells in mice, BNCT treatment was as effective with CG

  19. Unifying dose specification between clinical BNCT centers in the Americas

    SciTech Connect

    Riley, K. J.; Binns, P. J.; Harling, O. K.; Kiger, W. S. III; Gonzalez, S. J.; Casal, M. R.; Longhino, J.; Larrieu, O. A. Calzetta; Blaumann, H. R.

    2008-04-15

    A dosimetry intercomparison between the boron neutron capture therapy groups of the Massachusetts Institute of Technology (MIT) and the Comision Nacional de Energia Atomica (CNEA), Argentina was performed to enable combined analyses of NCT patient data between the different centers. In-air and dose versus depth measurements in a rectangular water phantom were performed at the hyperthermal neutron beam facility of the RA-6 reactor, Bariloche. Calculated dose profiles from the CNEA treatment planning system NCTPlan that were calibrated against in-house measurements required normalizations of 1.0 (thermal neutrons), 1.13 (photons), and 0.74 (fast neutrons) to match the dosimetry of MIT.

  20. Reprint of Bioneutronics: Thermal scattering in organics tissues and its impact on BNCT dosimetry.

    PubMed

    Ramos, R L; Sztejnberg Gonçalves-Carralves, M L; Cantargi, F

    2015-12-01

    Neutron transport calculation is a key factor in BNCT numerical dosimetry assessments where thermal neutron flux is intimately related to the neutron dose, specially, the therapeutic boron dose. In this work, numerical calculations in phantoms were performed to determine the importance of utilizing the appropriate thermal scattering treatment for different organic tissues. Two thermal treatments for the neutron scattering were included in the simulations: hydrogen bounded in bulk water and hydrogen bounded in a lipid like carbon chain (polyethylene). The results showed difference between both thermal treatments that can reach several percent points depending on the type of source and irradiated geometry.

  1. Bioneutronics: Thermal scattering in organics tissues and its impact on BNCT dosimetry.

    PubMed

    Ramos, R L; Gonçalves-Carralves, M L Sztejnberg; Cantargi, F

    2015-10-01

    Neutron transport calculation is a key factor in BNCT numerical dosimetry assessments where thermal neutron flux is intimately related to the neutron dose, specially, the therapeutic boron dose. In this work, numerical calculations in phantoms were performed to determine the importance of utilizing the appropriate thermal scattering treatment for different organic tissues. Two thermal treatments for the neutron scattering were included in the simulations: hydrogen bounded in bulk water and hydrogen bounded in a lipid like carbon chain (polyethylene). The results showed difference between both thermal treatments that can reach several percent points depending on the type of source and irradiated geometry.

  2. Methods for dose measurements in small phantoms irradiated at BNCT epithermal column.

    PubMed

    Gambarini, G; Negri, A; Regazzoni, V; Magni, D; Nolli, R; Campi, F; Burian, J; Marek, M; Klupak, V; Viererbl, L

    2014-06-01

    Suitable dosimeter methods have been proposed and tested, to measure the different dose contributions in small phantoms exposed to epithermal/thermal neutron beams designed for BNCT. One method is based on Fricke-gel dosimeter in small tubes of 2.8mm of external diameter, that allow determining profiles of gamma dose and of boron dose. The other method is based on the use of TLD-700 chips, from whose answer the contribution of thermal neutrons is subtracted by means of appropriate parameters of the glow curve. © 2013 Published by Elsevier Ltd.

  3. Modification of the radial beam port of ITU TRIGA Mark II research reactor for BNCT applications.

    PubMed

    Akan, Zafer; Türkmen, Mehmet; Çakir, Tahir; Reyhancan, İskender A; Çolak, Üner; Okka, Muhittin; Kiziltaş, Sahip

    2015-05-01

    This paper aims to describe the modification of the radial beam port of ITU (İstanbul Technical University) TRIGA Mark II research reactor for BNCT applications. Radial beam port is modified with Polyethylene and Cerrobend collimators. Neutron flux values are measured by neutron activation analysis (Au-Cd foils). Experimental results are verified with Monte Carlo results. The results of neutron/photon spectrum, thermal/epithermal neutron flux, fast group photon fluence and change of the neutron fluxes with the beam port length are presented.

  4. Synthesis and evaluation of a novel liposome containing BPA-peptide conjugate for BNCT.

    PubMed

    Shirakawa, Makoto; Yamamto, Tetsuya; Nakai, Kei; Aburai, Kenichi; Kawatobi, Sho; Tsurubuchi, Takao; Yamamoto, Yohei; Yokoyama, Yuusaku; Okuno, Hiroaki; Matsumura, Akira

    2009-07-01

    We aimed at securing sufficient concentrations of (10)B in boron neutron capture therapy (BNCT) by developing a new drug delivery system. We have designed and developed a novel lipid analog and succeeded in using it to develop the new boron component liposome. It consisted of three different kinds of amino acid derivatives and two fatty acids, and could react directly with the peptide synthesized first on resin by Fmoc solid-phase synthesis. In this study, lipid analog conjugated with HIV-TAT peptide (domain of human immunodeficiency virus TAT protein) and boronophenylalanine (BPA) was synthesized and successfully incorporated into liposomes.

  5. Unifying dose specification between clinical BNCT centers in the Americas.

    PubMed

    Riley, K J; Binns, P J; Harling, O K; Kiger, W S; González, S J; Casal, M R; Longhino, J; Larrieu, O A Calzetta; Blaumann, H R

    2008-04-01

    A dosimetry intercomparison between the boron neutron capture therapy groups of the Massachusetts Institute of Technology (MIT) and the Comisión Nacional de Energía Atómica (CNEA), Argentina was performed to enable combined analyses of NCT patient data between the different centers. In-air and dose versus depth measurements in a rectangular water phantom were performed at the hyperthermal neutron beam facility of the RA-6 reactor, Bariloche. Calculated dose profiles from the CNEA treatment planning system NCTPlan that were calibrated against in-house measurements required normalizations of 1.0 (thermal neutrons), 1.13 (photons), and 0.74 (fast neutrons) to match the dosimetry of MIT.

  6. Evaluation of BPA uptake in clear cell sarcoma (CCS) in vitro and development of an in vivo model of CCS for BNCT studies.

    PubMed

    Fujimoto, T; Andoh, T; Sudo, T; Fujita, I; Imabori, M; Moritake, H; Sugimoto, T; Sakuma, Y; Takeuchi, T; Sonobe, H; Epstein, Alan L; Akisue, T; Kirihata, M; Kurosaka, M; Fukumori, Y; Ichikawa, H

    2011-12-01

    Clear cell sarcoma (CCS), a rare malignant tumor with a predilection for young adults, is of poor prognosis. Recently however, boron neutron capture therapy (BNCT) with the use of p-borono-L-phenylalanine (BPA) for malignant melanoma has provided good results. CCS also produces melanin; therefore, the uptake of BPA is the key to the application of BNCT to CCS. We describe, for the first time, the high accumulation of boron in CCS and the CCS tumor-bearing animal model generated for BNCT studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. BNCT treatment planning of recurrent head-and-neck cancer using THORplan.

    PubMed

    Yu, Hui-Ting; Liu, Yen-Wan Hsueh; Lin, Tzung-Yi; Wang, Ling-Wei

    2011-12-01

    A cooperation program on Boron Neutron Capture Therapy (BNCT) between National Tsing Hua University (NTHU) and Taipei Veterans General Hospital (TPEVGH) was established in 2008. Clinical trial of recurrent head-and-neck cancer is the goal of the program. In this study, treatment plannings of two head-and-neck cancer cases are performed using treatment planning system THORplan developed at NTHU of Taiwan. The patients are assumed to be irradiated under current THOR epithermal neutron beam. The prescription dose is 20 Gy-Eq for at least 80% of tumor volume. The irradiation time to reach the target tumor dose can be kept within 1h. The skin dose is within the limiting dose of 11 Gy-Eq. The spinal cord dose is well within the limiting dose of 10 Gy-Eq. The use of an extension collimator for easier patient positioning is helpful in reducing the dose of eye lens to within the dose limit of 5 Gy-Eq. The irradiation time, however, will increase slightly due to the increase of source-to-tumor distance. The CPU time for treatment planning calculation is ~10 h. With the use of user friendly treatment planning system THORplan, dose planning for BNCT at THOR can be easily performed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. INEL and ISU BNCT research using a 2 MeV RFQ-based neutron source

    NASA Astrophysics Data System (ADS)

    Harker, Y. D.; Harmon, J. F.; Irwin, G. W.

    1995-05-01

    A radio frequency quadrupole (RFQ) proton linear accelerator manufactured by AccSys Corp. was purchased by the U.S. Department of Energy and was installed in the Particle Beam Laboratory at Idaho State University (ISU). It is available for physics studies consistent with the INEL mission such as those related to accelerator produced neutron sources for boron neutron capture therapy (BNCT) and waste interrogation. It is an AccSys model PL-1 and is designed to produce 2 MeV protons at an average current of 150 μA. The overall objective of the INEL BNCT/ISU collaborative program is to evaluate neutron filter design concepts which use a 2 MeV proton accelerator with a lithium target as the neutron source. This paper will discuss the overall plan of INEL/ISU collaborative program and how it relates to other university and government laboratory studies, the methods being employed in this study and results of neutron spectra and angular distribution measurements for different lithium target configurations.

  9. 124Sb-Be photo-neutron source for BNCT: Is it possible?

    NASA Astrophysics Data System (ADS)

    Golshanian, Mohadeseh; Rajabi, Ali Akbar; Kasesaz, Yaser

    2016-11-01

    In this research a computational feasibility study has been done on the use of 124SbBe photo-neutron source for Boron Neutron Capture Therapy (BNCT) using MCNPX Monte Carlo code. For this purpose, a special beam shaping assembly has been designed to provide an appropriate epithermal neutron beam suitable for BNCT. The final result shows that using 150 kCi of 124Sb, the epithermal neutron flux at the designed beam exit is 0.23×109 (n/cm2 s). In-phantom dose analysis indicates that treatment time for a brain tumor is about 40 min which is a reasonable time. This high activity 124Sb could be achieved using three 50 kCi rods of 124Sb which can be produced in a research reactor. It is clear, that as this activity is several hundred times the activity of a typical cobalt radiotherapy source, issues related to handling, safety and security must be addressed.

  10. Carborane-layered double hydroxide nanohybrids for potential targeted- and magnetically targeted-BNCT applications.

    PubMed

    Ay, Ahmet Nedim; Akar, Hande; Zaulet, Adnana; Viňas, Clara; Teixidor, Francesc; Zumreoglu-Karan, Birgul

    2017-03-07

    Carborane-intercalated layered double hydroxide nanohybrids (CB-LDH) and a magnesium ferrite (MF) supported-CB-LDH core-shell nanocomposite (CB-LDH@MF) are reported. The preparation of nanohybrids were carried out by exchanging the interlayer nitrate groups of Mg-Al-NO3-LDH with monothiol-o-carborane (SCB), 1-methyl-2-carboxyl-o-carborane (MeCB), 1-phenyl-2-carboxyl-o-carborane (PhCB) and 1,12-dicarboxyl-p-carborane (COOHCB) molecules. A magnetic core-shell nanocomposite was further prepared by supporting the COOHCB-LDH nanohybrid on MF nanoparticles. The obtained materials were characterized by means of several physical and chemical methods. Chemical compositions were determined by elemental analysis, ICP measurements and SEM-EDX data. Structural characterization was performed with powder-XRD, FTIR and magnetization measurements. Morphological analyses were conducted with electron microscopy imaging (SEM and TEM). Thermal stabilities were investigated by TGA/DTA. Carborane release from LDH layers was tested by tracing the amount of boron species transferred to the solution phase with ICP-MS measurements. The results verified that the prepared nanohybrids have the potential to be used in Boron Neutron Capture Therapy (BNCT) and magnetically targeted-BNCT applications.

  11. Design of thermal neutron beam based on an electron linear accelerator for BNCT.

    PubMed

    Zolfaghari, Mona; Sedaghatizadeh, Mahmood

    2016-12-01

    An electron linear accelerator (Linac) can be used for boron neutron capture therapy (BNCT) by producing thermal neutron flux. In this study, we used a Varian 2300 C/D Linac and MCNPX.2.6.0 code to simulate an electron-photoneutron source for use in BNCT. In order to decelerate the produced fast neutrons from the photoneutron source, which optimize the thermal neutron flux, a beam-shaping assembly (BSA) was simulated. After simulations, a thermal neutron flux with sharp peak at the beam exit was obtained in the order of 3.09×10(8)n/cm(2) s and 6.19×10(8)n/cm(2) s for uranium and enriched uranium (10%) as electron-photoneutron sources respectively. Also, in-phantom dose analysis indicates that the simulated thermal neutron beam can be used for treatment of shallow skin melanoma in time of about 85.4 and 43.6min for uranium and enriched uranium (10%) respectively. Copyright © 2016. Published by Elsevier Ltd.

  12. BNCT dose distribution in liver with epithermal D-D and D-T fusion-based neutron beams.

    PubMed

    Koivunoro, H; Bleuel, D L; Nastasi, U; Lou, T P; Reijonen, J; Leung, K-N

    2004-11-01

    Recently, a new application of boron neutron capture therapy (BNCT) treatment has been introduced. Results have indicated that liver tumors can be treated by BNCT after removal of the liver from the body. At Lawrence Berkeley National Laboratory, compact neutron generators based on (2)H(d,n)(3)He (D-D) or (3)H(t,n)(4)He (D-T) fusion reactions are being developed. Preliminary simulations of the applicability of 2.45 MeV D-D fusion and 14.1 MeV D-T fusion neutrons for in vivo liver tumor BNCT, without removing the liver from the body, have been carried out. MCNP simulations were performed in order to find a moderator configuration for creating a neutron beam of optimal neutron energy and to create a source model for dose calculations with the simulation environment for radiotherapy applications (SERA) treatment planning program. SERA dose calculations were performed in a patient model based on CT scans of the body. The BNCT dose distribution in liver and surrounding healthy organs was calculated with rectangular beam aperture sizes of 20 cm x 20 cm and 25 cm x 25 cm. Collimator thicknesses of 10 and 15 cm were used. The beam strength to obtain a practical treatment time was studied. In this paper, the beam shaping assemblies for D-D and D-T neutron generators and dose calculation results are presented.

  13. PREFACE: 6th Workshop on Infrared Spectroscopy and Microscopy with Accelerator-Based Sources (WIRMS11)

    NASA Astrophysics Data System (ADS)

    Lupi, Stefano; Perucchi, Andrea

    2012-05-01

    This volume of Journal of Physics: Conference Series is dedicated to a subset of papers related to the work presented at the 6th edition of the international Workshop on Infrared Spectroscopy and Microscopy with Accelerator-Based Sources (WIRMS), held in Trieste, Italy, September 4-8 2011. Previous editions of the conference were held in Porquerolles (France), Lake Tahoe (USA), Rathen (Germany), Awaji (Japan), and Banff (Canada). This edition was organized and chaired by Stefano Lupi (Roma La Sapienza) and co-chaired by Andrea Perucchi (Elettra), with the support of the Italian Synchrotron Light Laboratory ELETTRA, which was honored to host the WIRMS workshop in its tenth anniversary. The 6th WIRMS edition addressed several different topics, ranging from biochemistry to strongly correlated materials, from geology to conservation science, and from forensics to the study of cometary dusts. Representatives from the infrared scientific programs at synchrotron light sources and free-electron-laser facilities. This edition was attended by 88 participants, including representatives from the infrared scientific programs at synchrotron light sources and free-electron-laser facilities, who enjoyed the stimulating scientific presentations, several detailed discussions, and the beautiful weather and scenery of the Trieste gulf. Participants came from 16 different nations and four continents, including many young scientists, six of which were supported by the organizers. There were 45 scientific talks divided in 11 sessions: Facilities, Microspectroscopy (I, II, III), Time-Resolved Spectroscopies, Extreme Conditions, Condensed Matter, Near-Field, Imaging, THz Techniques and High-Resolution Spectroscopy. 37 posters were also presented at two very lively evening poster sessions. We would like to use the opportunity of writing this preface to thank all the participants of the workshop for the very high level of their scientific contribution and for the very friendly atmosphere

  14. A multi-dimensional procedure for BNCT filter optimization

    SciTech Connect

    Lille, R.A.

    1998-02-01

    An initial version of an optimization code utilizing two-dimensional radiation transport methods has been completed. This code is capable of predicting material compositions of a beam tube-filter geometry which can be used in a boron neutron capture therapy treatment facility to improve the ratio of the average radiation dose in a brain tumor to that in the healthy tissue surrounding the tumor. The optimization algorithm employed by the code is very straightforward. After an estimate of the gradient of the dose ratio with respect to the nuclide densities in the beam tube-filter geometry is obtained, changes in the nuclide densities are made based on: (1) the magnitude and sign of the components of the dose ratio gradient, (2) the magnitude of the nuclide densities, (3) the upper and lower bound of each nuclide density, and (4) the linear constraint that the sum of the nuclide density fractions in each material zone be less than or equal to 1.0. A local optimal solution is assumed to be found when one of the following conditions is satisfied in every material zone: (1) the maximum positive component of the gradient corresponds to a nuclide at its maximum density and the sum of the density fractions equals 1.0 or, and (2) the positive and negative components of the gradient correspond to nuclides densities at their upper and lower bounds, respectively, and the remaining components of the gradient are sufficiently small. The optimization procedure has been applied to a beam tube-filter geometry coupled to a simple tumor-patient head model and an improvement of 50% in the dose ratio was obtained.

  15. Study on measuring device arrangement of array-type CdTe detector for BNCT-SPECT

    PubMed Central

    Manabe, Masanobu; Nakamura, Soichiro; Murata, Isao

    2016-01-01

    Aim To design the measuring device arrangement of array-type CdTe detector for BNCT-SPECT. Background In a boron neutron capture therapy, a very serious unsolved problem exists, namely that the treatment effect for BNCT cannot be known during irradiation in real time. Therefore, we have been developing a so-called BNCT-SPECT with a CdTe detector, which can obtain a three-dimensional image for the BNCT treatment effect by measuring 478 keV gamma-rays emitted from the excited state of 7Li nucleus created by the 10B(n,α) reaction. However, no practical uses were realized at present, because BNCT-SPECT requires very severe conditions for spatial resolution, measuring time, statistical accuracy and energy resolution. Materials and methods The design study was performed with numerical simulations carried out by a 3-dimenaional transport code, MCNP5 considering the detector assembly, irradiation room and even arrangement of arrayed CdTe crystals. Results The estimated count rate of 478 keV gamma-rays was sufficiently large being more than the target value of over 1000 counts/h. However, the S/N ratio did not meet the target of S/N > 1. We confirmed that deterioration of the S/N ratio was caused by the influence of Compton scattering especially due to capture gamma-rays of hydrogen. Theoretical calculations were thereafter carried out to find out whether anti-Compton measurement in an array-type CdTe detector could decrease the noise due to Compton scatterings. Conclusions The calculation result showed that the anti-coincidence would possibly increase the S/N ratio. In the next phase, an arrayed detector with two CdTe crystals will be produced to test removal possibility of the anti-coincident event. PMID:26933391

  16. The therapeutic ratio in BNCT: Assessment using the Rat 9L gliosarcoma brain tumor and spinal cord models

    SciTech Connect

    Coderre, J.A.; Micca, P.L.; Nawrocky, M.M.; Fisher, C.D.; Bywaters, A.; Morris, G.M.; Hopewell, J.W.

    1996-10-01

    During any radiation therapy, the therapeutic tumor dose is limited by the tolerance of the surrounding normal tissue within the treatment volume. The short ranges of the products of the {sup 10}B(n,{alpha}){sup 7}Li reaction produced during boron neutron capture therapy (BNCT) present an opportunity to increase the therapeutic ratio (tumor dose/normal tissue dose) to levels unprecedented in photon radiotherapy. The mixed radiation field produced during BNCT comprises radiations with different linear energy transfer (LET) and different relative biological effectiveness (RBE). The short ranges of the two high-LET products of the `B(n,a)`Li reaction make the microdistribution of the boron relative to target cell nuclei of particular importance. Due to the tissue specific distribution of different boron compounds, the term RBE is inappropriate in defining the biological effectiveness of the {sup 10}B(n,{alpha}){sup 7}Li reaction. To distinguish these differences from true RBEs we have used the term {open_quotes}compound biological effectiveness{close_quotes} (CBE) factor. The latter can be defined as the product of the true, geometry-independent, RBE for these particles times a {open_quotes}boron localization factor{close_quotes}, which will most likely be different for each particular boron compound. To express the total BNCT dose in a common unit, and to compare BNCT doses with the effects of conventional photon irradiation, multiplicative factors (RBEs and CBEs) are applied to the physical absorbed radiation doses from each high-LET component. The total effective BNCT dose is then expressed as the sum of RBE-corrected physical absorbed doses with the unit Gray-equivalent (Gy-Eq).

  17. Positron emission tomography and [18F]BPA: a perspective application to assess tumour extraction of boron in BNCT.

    PubMed

    Menichetti, L; Cionini, L; Sauerwein, W A; Altieri, S; Solin, O; Minn, H; Salvadori, P A

    2009-07-01

    Positron emission tomography (PET) has become a key imaging tool in clinical practice and biomedical research to quantify and study biochemical processes in vivo. Physiologically active compounds are tagged with positron emitters (e.g. (18)F, (11)C, (124)I) while maintaining their biological properties, and are administered intravenously in tracer amounts (10(-9)-10(-12)M quantities). The recent physical integration of PET and computed tomography (CT) in hybrid PET/CT scanners allows a combined anatomical and functional imaging: nowadays PET molecular imaging is emerging as powerful pharmacological tool in oncology, neurology and for treatment planning as guidance for radiation therapy. The in vivo pharmacokinetics of boron carrier for BNCT and the quantification of (10)B in living tissue were performed by PET in the late nineties using compartmental models based on PET data. Nowadays PET and PET/CT have been used to address the issue of pharmacokinetic, metabolism and accumulation of BPA in target tissue. The added value of the use of L-[(18)F]FBPA and PET/CT in BNCT is to provide key data on the tumour extraction of (10)B-BPA versus normal tissue and to predict the efficacy of the treatment based on a single-study patient analysis. Due to the complexity of a binary treatment like BNCT, the role of PET/CT is currently to design new criteria for patient enrolment in treatment protocols: the L-[(18)F]BPA/PET methodology could be considered as an important tool in newly designed clinical trials to better estimate the concentration ratio of BPA in the tumour as compared to neighbouring normal tissues. Based on these values for individual patients the decision could be made whether BNCT treatment could be advantageous due to a selective accumulation of BPA in an individual tumour. This approach, applicable in different tumour entities like melanoma, glioblastoma and head and neck malignancies, make this methodology as reliable prognostic and therapeutic indicator for

  18. Autoradiographic and histopathological studies of boric acid-mediated BNCT in hepatic VX2 tumor-bearing rabbits: Specific boron retention and damage in tumor and tumor vessels.

    PubMed

    Yang, C H; Lin, Y T; Hung, Y H; Liao, J W; Peir, J J; Liu, H M; Lin, Y L; Liu, Y M; Chen, Y W; Chuang, K S; Chou, F I

    2015-12-01

    Hepatoma is a malignant tumor that responds poorly to conventional therapies. Boron neutron capture therapy (BNCT) may provide a better way for hepatoma therapy. In this research, (10)B-enriched boric acid (BA, 99% (10)B) was used as the boron drug. A multifocal hepatic VX2 tumor-bearing rabbit model was used to study the mechanisms of BA-mediated BNCT. Autoradiography demonstrated that BA was selectively targeted to tumors and tumor vessels. Histopathological examination revealed the radiation damage to tumor-bearing liver was concentrated in the tumor regions during BNCT treatment. The selective killing of tumor cells and the destruction of the blood vessels in tumor masses may be responsible for the success of BA-mediated BNCT for liver tumors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Boron neutron capture therapy (BNCT) for liver metastasis in an experimental model: dose–response at five-week follow-up based on retrospective dose assessment in individual rats

    SciTech Connect

    Emiliano C. C. Pozzi; Veronica A. Trivilin; Lucas L. Colombo; Andrea Monti Hughes; Silvia I. Thorp; Jorge E. Cardoso; Marcel A. Garabalino; Ana J. Molinari; Elisa M. Heber; Paula Curotto; Marcelo Miller; Maria E. Itoiz; Romina F. Aromando; David W. Nigg; Amanda E. Schwint

    2013-11-01

    Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. Employing an experimental model of liver metastases in rats, we recently demonstrated that BNCT mediated by boronophenylalanine (BPA-BNCT) at 13 Gy prescribed to tumor is therapeutically useful at 3-week follow-up. The aim of the present study was to evaluate dose–response at 5-week follow-up, based on retrospective dose assessment in individual rats. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA-BNCT (n = 19), Beam only (n = 8) and Sham (n = 7) (matched manipulation, no treatment). For each rat, neutron flux was measured in situ and boron content was measured in a pre-irradiation blood sample for retrospective individual dose assessment. For statistical analysis (ANOVA), individual data for the BPA-BNCT group were pooled according to absorbed tumor dose, BPA-BNCT I: 4.5–8.9 Gy and BPA-BNCT II: 9.2–16 Gy. At 5 weeks post-irradiation, the tumor surface area post-treatment/pre-treatment ratio was 12.2 +/- 6.6 for Sham, 7.8 +/- 4.1 for Beam only, 4.4 +/- 5.6 for BPA-BNCT I and 0.45 +/- 0.20 for BPA-BNCT II; tumor nodule weight was 750 +/- 480 mg for Sham, 960 +/- 620 mg for Beam only, 380 +/- 720 mg for BPA-BNCT I and 7.3 +/- 5.9 mg for BPA-BNCT II. The BPA-BNCT II group exhibited statistically significant tumor control with no contributory liver toxicity. Potential threshold doses for tumor response and significant tumor control were established at 6.1 and 9.2 Gy, respectively.

  20. Boron neutron capture therapy (BNCT) for liver metastasis in an experimental model: dose–response at five-week follow-up based on retrospective dose assessment in individual rats.

    PubMed

    Pozzi, Emiliano C C; Trivillin, Verónica A; Colombo, Lucas L; Monti Hughes, Andrea; Thorp, Silvia I; Cardoso, Jorge E; Garabalino, Marcela A; Molinari, Ana J; Heber, Elisa M; Curotto, Paula; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Schwint, Amanda E

    2013-11-01

    Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. Employing an experimental model of liver metastases in rats, we recently demonstrated that BNCT mediated by boronophenylalanine (BPA-BNCT) at 13 Gy prescribed to tumor is therapeutically useful at 3-week follow-up. The aim of the present study was to evaluate dose–response at 5-week follow-up, based on retrospective dose assessment in individual rats. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA-BNCT (n = 19), Beam only (n = 8) and Sham (n = 7) (matched manipulation, no treatment). For each rat, neutron flux was measured in situ and boron content was measured in a pre-irradiation blood sample for retrospective individual dose assessment. For statistical analysis (ANOVA), individual data for the BPA-BNCT group were pooled according to absorbed tumor dose, BPA-BNCT I: 4.5–8.9 Gy and BPA-BNCT II: 9.2–16 Gy. At 5 weeks post-irradiation, the tumor surface area post-treatment/pre-treatment ratio was 12.2 ± 6.6 for Sham, 7.8 ± 4.1 for Beam only, 4.4 ± 5.6 for BPA-BNCT I and 0.45 ± 0.20 for BPA-BNCT II; tumor nodule weight was 750 ± 480 mg for Sham, 960 ± 620 mg for Beam only, 380 ± 720 mg for BPA-BNCT I and 7.3 ± 5.9 mg for BPA-BNCT II. The BPA-BNCT II group exhibited statistically significant tumor control with no contributory liver toxicity. Potential threshold doses for tumor response and significant tumor control were established at 6.1 and 9.2 Gy, respectively.

  1. On-line reconstruction of low boron concentrations by in vivo gamma-ray spectroscopy for BNCT.

    PubMed

    Verbakel, W F; Stecher-Rasmussen, F

    2001-03-01

    Boron neutron capture therapy (BNCT) is a radiation therapy in which the neutron capture reaction of 10B is used for the selective destruction of tumours. At the High Flux Reactor (HFR) in Petten, a therapy facility with an epithermal neutron beam has been built. In the first instance, patients with brain tumours will be treated. The doses delivered to the tumour and to the healthy tissue depend on the thermal neutron fluence and on the boron concentrations in these regions. An accurate determination of the patient dose during therapy requires knowledge of these time-dependent concentrations. For this reason, a gamma-ray telescope system, together with a reconstruction formalism, have been developed. By using a gamma-ray detector in a telescope configuration, boron neutron capture gamma-rays of 478 keV emitted by a small specific region can be detected. The reconstruction formalism can calculate absolute boron concentrations using the measured boron gamma-ray detection rates. Besides the boron gamma-rays, a large component of 2.2 MeV gamma-rays emitted at thermal neutron capture in hydrogen is measured. Since the hydrogen distribution is almost homogeneous within the head, this component can serve as a measure of the total number of thermal neutrons in the observed volume. By using the hydrogen gamma-ray detection rate for normalization of the boron concentration, the reconstruction tool eliminates the greater part of the influence of the inhomogeneity of the thermal neutron distribution. MCNP calculations are used as a tool for the optimization of the detector configuration. Experiments on a head phantom with 5 ppm 10B in healthy tissue showed that boron detection with a standard deviation of 3% requires a minimum measuring time of 2 min live time. From two position-dependent measurements, boron concentrations in two compartments (healthy tissue and tumour) can be determined. The reconstruction of the boron concentration in healthy tissue can be done with a

  2. Synthesis and in-vivo detection of boronated compounds for use in BNCT

    SciTech Connect

    Kabalka, G.W.

    1992-01-01

    The primary objective of the DOE program at The University of Tennessee Graduate School of Medicine is the development of effective molecular medicine for use in neutron-capture therapy (NCT). The research focuses primarily on the preparation of new boron-rich NCT agents and the technology to detect them in-vivo. The detection technology involves the development of effective magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques for verifying and measuring NCT agents in-vivo. The synthetic program is directed toward the design of novel boron NCT (BNCT) agents which are targeted to the cell nucleus and gadolinium liposomes targeted to the liver. The UT-DOE program is unique in that it has access to both state-of-the-art whole-body and microscopy MRI instruments.

  3. Determination of radiobiological parameters for the safe clinical application of BNCT

    SciTech Connect

    Hopewell, J.W.; Morris, G.M.; Coderre, J.A.

    1993-12-31

    In the present report the effects of BNCT irradiation on the skin and spinal cord of Fischer 344 rats, for known concentrations of {sup 10}B in the blood and these normal tissues, are compared with the effects of the neutron beam alone or photon irradiation. The biological effectiveness of irradiation in the presence of the capture agents BSH and BPA have been compared. Irradiations were carried out using the thermal beam of the Brookhaven Medical Research Reactor (BMRR). Therapy experiments were also carried out as part of this study, using the rat 9L-gliosarcoma cell line, in order to establish the potential therapeutic advantage that might be achieved using the above capture agents. This cell line grows as a solid tumor in vivo as well as in vitro. The implications of these findings, with respect to the clinical use of the Petten HBII based epithermal neutron beam, will be discussed.

  4. A novel design of beam shaping assembly to use D-T neutron generator for BNCT.

    PubMed

    Kasesaz, Yaser; Karimi, Marjan

    2016-12-01

    In order to use 14.1MeV neutrons produced by d-T neutron generators, two special and novel Beam Shaping Assemblies (BSA), including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. The results show that the proposed BSA can provide the qualified epithermal neutron beam for BNCT. The final epithermal neutron flux is about 6e9 n/cm2.s. The final proposed BSA has some different advantages: 1) it consists of usual and well-known materials (Pb, Al, Fluental and Cd); 2) it has a simple geometry; 3) it does not need any additional gamma filter; 4) it can provide high flux of epithermal neutrons. As this type of neutron source is under development in the world, it seems that they can be used clinically in a hospital considering the proposed BSA.

  5. First BNCT treatment of a skin melanoma in Argentina: dosimetric analysis and clinical outcome.

    PubMed

    González, S J; Bonomi, M R; Santa Cruz, G A; Blaumann, H R; Calzetta Larrieu, O A; Menéndez, P; Jiménez Rebagliati, R; Longhino, J; Feld, D B; Dagrosa, M A; Argerich, C; Castiglia, S G; Batistoni, D A; Liberman, S J; Roth, B M C

    2004-11-01

    A Phase I/II protocol for treating cutaneuos melanomas with BNCT was designed in Argentina by the Comisión Nacional de Energía Atómica and the medical center Instituto Roffo. The first of a cohort of thirty planned patients was treated on October 9, 2003. This article depicts the protocol-based procedure and describes the first clinical case, treatment regime and planning, patient irradiation, retrospective dosimetric analysis and clinical outcome. Considering the low acute skin toxicity and the complete response in 21 of the 25 subcutaneous melanoma nodules treated, a second irradiation was performed in a different location of the extremity of the same patient. The corresponding clinical outcome is still under evaluation.

  6. Measuring the stopping power of α particles in compact bone for BNCT

    NASA Astrophysics Data System (ADS)

    Provenzano, L.; Rodríguez, L. M.; Fregenal, D.; Bernardi, G.; Olivares, C.; Altieri, S.; Bortolussi, S.; González, S. J.

    2015-01-01

    The stopping power of α particles in thin films of decalcified sheep femur, in the range of 1.5 to 5.0 MeV incident energy, was measured by transmission of a backscattered beam from a heavy target. Additionally, the film elemental composition was determined by Rutherford Backscattering Spectrometry (RBS). These data will be used to measure boron concentration in thin films of bone using a spectrometry technique developed by the University of Pavia, since the concentration ratio between healthy tissue and tumor is of fundamental importance in Boron Neutron Capture Therapy (BNCT). The present experimental data are compared with numerical simulation results and with tabulated stopping power data of non-decalcified human bone.

  7. a New Method to Measure 10B Uptake in Lung Adenocarcinoma in Hospital Bnct

    NASA Astrophysics Data System (ADS)

    Donegani, E. M.; Basilico, F.; Bolognini, D.; Borasio, P.; Capelli, E.; Cappelletti, P.; Chiari, P.; Frigerio, M.; Gelosa, S.; Giannini, G.; Hasan, S.; Mattera, A.; Mauri, P.; Monti, A. F.; Ostinelli, A.; Prest, M.; Vallazza, E.; Zanini, A.

    2010-04-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapic technique still under development that could become crucial in the fight against some types of cancer (extended ones, located near vital organs or radio resistant). This binary technique requires the administration to the patient of a boron delivery agent and the irradiation with a thermal neutron beam. The high LET particles produced in the 10B(n,α)7Li reaction are exploited to destroy the tumour cells. This work presents a new system based on neutron autoradiography with a non-depleted self-triggering microstrip silicon detector, using a neutron beam produced by a hospital Linac. The system is fast, real time and allows the detection of 10B contents down to 25 ng. The main results on the study of 10B uptake in biological samples will be described in terms of kinetic curves (10B uptake as a function of time).

  8. Confirmation of a realistic reactor model for BNCT dosimetry at the TRIGA Mainz

    SciTech Connect

    Ziegner, Markus; Schmitz, Tobias; Hampel, Gabriele; Khan, Rustam; Blaickner, Matthias; Palmans, Hugo; Sharpe, Peter; Böck, Helmuth

    2014-11-01

    Purpose: In order to build up a reliable dose monitoring system for boron neutron capture therapy (BNCT) applications at the TRIGA reactor in Mainz, a computer model for the entire reactor was established, simulating the radiation field by means of the Monte Carlo method. The impact of different source definition techniques was compared and the model was validated by experimental fluence and dose determinations. Methods: The depletion calculation code ORIGEN2 was used to compute the burn-up and relevant material composition of each burned fuel element from the day of first reactor operation to its current core. The material composition of the current core was used in a MCNP5 model of the initial core developed earlier. To perform calculations for the region outside the reactor core, the model was expanded to include the thermal column and compared with the previously established ATTILA model. Subsequently, the computational model is simplified in order to reduce the calculation time. Both simulation models are validated by experiments with different setups using alanine dosimetry and gold activation measurements with two different types of phantoms. Results: The MCNP5 simulated neutron spectrum and source strength are found to be in good agreement with the previous ATTILA model whereas the photon production is much lower. Both MCNP5 simulation models predict all experimental dose values with an accuracy of about 5%. The simulations reveal that a Teflon environment favorably reduces the gamma dose component as compared to a polymethyl methacrylate phantom. Conclusions: A computer model for BNCT dosimetry was established, allowing the prediction of dosimetric quantities without further calibration and within a reasonable computation time for clinical applications. The good agreement between the MCNP5 simulations and experiments demonstrates that the ATTILA model overestimates the gamma dose contribution. The detailed model can be used for the planning of structural

  9. Dynamic infrared imaging of cutaneous melanoma and normal skin in patients treated with BNCT.

    PubMed

    Santa Cruz, G A; Bertotti, J; Marín, J; González, S J; Gossio, S; Alvarez, D; Roth, B M C; Menéndez, P; Pereira, M D; Albero, M; Cubau, L; Orellano, P; Liberman, S J

    2009-07-01

    We recently initiated a program aimed to investigate the suitability of dynamic infrared imaging for following-up nodular melanoma patients treated with BNCT. The reason that makes infrared imaging attractive is the fact that it constitutes a functional and non-invasive imaging method, providing information on the normal and abnormal physiologic response of the nervous and vascular systems, as well as the local metabolic rate and inflammatory processes that ultimately appear as differences in the skin temperature. An infrared camera, with a focal plane array of 320 x 240 uncooled ferroelectric detectors is employed, which provides a video stream of the infrared emission in the 7-14 microm wavelength band. A double blackbody is used as reference for absolute temperature calibration. After following a protocol for patient preparation and acclimatization, a basal study is performed. Subsequently, the anatomic region of interest is subjected to a provocation test (a cold stimulus), which induces an autonomic vasoconstriction reflex in normal structures, thus enhancing the thermal contrast due to the differences in the vasculature of the different skin regions. Radiation erythema reactions and melanoma nodules possess typically a faster temperature recovery than healthy, non-irradiated skin. However, some other non-pathological structures are also detectable by infrared imaging, (e.g. scars, vessels, arteriovenous anastomoses and injuries), thus requiring a multi-study comparison in order to discriminate the tumor signal. Besides the superficial nodules, which are readily noticeable by infrared imaging, we have detected thermal signals that are coincident with the location of non-palpable nodules, which are observable by CT and ultrasound. Diffuse regions of fast temperature recovery after a cold stimulus were observed between the third and sixth weeks post-BNCT, concurrent with the clinical manifestation of radiation erythema. The location of the erythematous visible

  10. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Clinical lessons from the first applications of BNCT on unresectable liver metastases.

    NASA Astrophysics Data System (ADS)

    Zonta, A.; Prati, U.; Roveda, L.; Ferrari, C.; Zonta, S.; Clerici, Am; Zonta, C.; Pinelli, T.; Fossati, F.; Altieri, S.; Bortolussi, S.; Bruschi, P.; Nano, R.; Barni, S.; Chiari, P.; Mazzini, G.

    2006-05-01

    After a long series of studies on the effects of neutron irradiation of 10B loaded neoplastic cells both in culture and in animal experiments, we started the clinical application of BNCT on humans affected by liver metastases of a radically resected colon adenocarcinoma. The procedure we adopted includes a first surgical phase, with hepatectomy; a radiotherapeutic phase, in which the isolated liver, washed and chilled, is extracorporeally irradiated with thermal neutrons; and then a second surgical phase for the reconnection of the liver to the patient. Until now two patients have been subjected to the BNCT treatment. The first one survived 44 months with a good quality of life, and died because of diffuse recurrences of his intestinal tumour. The second patient had the same early perioperative course, but after 33 days a worsening of a dilatative cardiomyopaty, from which he was suffering, determined a cardiac failure and eventually death. This clinical experience, although limited, has shown that extracorporeal neutron irradiation of the liver is a feasible procedure, able to ensure the complete destruction of liver metastases and a possible long lasting survival. In our patients neutron irradiation caused massive cellular necrosis highly specific to tumour cells, whereas normal cells were mostly spared. Nevertheless, the impact of such a traumatic operation on the patient's organism must be taken into account. Finally, we have to be aware that the fight against tumour rarely leads to a complete victory. We now have an innovative weapon which is both powerful and partly unsettled: it must be refined and above all used.

  12. High-Current Experiments for Accelerator-Based Neutron Capture Therapy Applications

    SciTech Connect

    Gierga, D.P.; Klinkowstein, R.E.; Hughey, B.H.; Shefer, R.E.; Yanch, J.C.; Blackburn, B.W.

    1999-06-06

    Several accelerator-based neutron capture therapy applications are under development. These applications include boron neutron capture therapy for glioblastoma multiform and boron neutron capture synovectomy (BNCS) for rheumatoid arthritis. These modalities use accelerator-based charged-particle reactions to create a suitable neutron source. Neutrons are produced using a high-current, 2-MV terminal tandem accelerator. For these applications to be feasible, high accelerator beam currents must be routinely achievable. An effort was undertaken to explore the operating regime of the accelerator in the milliampere range. In preparation for high-current operation of the accelerator, computer simulations of charged-particle beam optics were performed to establish high-current operating conditions. Herein we describe high beam current simulations and high beam current operation of the accelerator.

  13. Capability of NIPAM polymer gel in recording dose from the interaction of (10)B and thermal neutron in BNCT.

    PubMed

    Khajeali, Azim; Reza Farajollahi, Ali; Kasesaz, Yaser; Khodadadi, Roghayeh; Khalili, Assef; Naseri, Alireza

    2015-11-01

    The capability of N-isopropylacrylamide (NIPAM) polymer gel to record the dose resulting from boron neutron capture reaction in BNCT was determined. In this regard, three compositions of the gel with different concentrations of (10)B were prepared and exposed to gamma radiation and thermal neutrons. Unlike irradiation with gamma rays, the boron-loaded gels irradiated by neutron exhibited sensitivity enhancement compared with the gels without (10)B. It was also found that the neutron sensitivity of the gel increased by the increase of concentration of (10)B. It can be concluded that NIPAM gel might be suitable for the measurement of the absorbed dose enhancement due to (10)B and thermal neutron reaction in BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    PubMed

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values.

  15. Measurements of gamma dose and thermal neutron fluence in phantoms exposed to a BNCT epithermal beam with TLD-700.

    PubMed

    Gambarini, G; Magni, D; Regazzoni, V; Borroni, M; Carrara, M; Pignoli, E; Burian, J; Marek, M; Klupak, V; Viererbl, L

    2014-10-01

    Gamma dose and thermal neutron fluence in a phantom exposed to an epithermal neutron beam for boron neutron capture therapy (BNCT) can be measured by means of a single thermoluminescence dosemeter (TLD-700). The method exploits the shape of the glow curve (GC) and requires the gamma-calibration GC (to obtain gamma dose) and the thermal-neutron-calibration GC (to obtain neutron fluence). The method is applicable for BNCT dosimetry in case of epithermal neutron beams from a reactor because, in most irradiation configurations, thermal neutrons give a not negligible contribution to the TLD-700 GC. The thermal neutron calibration is not simple, because of the impossibility of having thermal neutron fields without gamma contamination, but a calibration method is here proposed, strictly bound to the method itself of dose separation. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma from a viewpoint of dose distribution analysis

    SciTech Connect

    Suzuki, Minoru . E-mail: msuzuki@rri.kyoto-u.ac.jp; Sakurai, Yoshinori; Masunaga, Shinichiro; Kinashi, Yuko; Nagata, Kenji; Maruhashi, Akira; Ono, Koji

    2006-12-01

    Purpose: To investigate the feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma (MPM) from a viewpoint of dose distribution analysis using Simulation Environment for Radiotherapy Applications (SERA), a currently available BNCT treatment planning system. Methods and Materials: The BNCT treatment plans were constructed for 3 patients with MPM using the SERA system, with 2 opposed anterior-posterior beams. The {sup 1}B concentrations in the tumor and normal lung in this study were assumed to be 84 and 24 ppm, respectively, and were derived from data observed in clinical trials. The maximum, mean, and minimum doses to the tumors and the normal lung were assessed for each plan. The doses delivered to 5% and 95% of the tumor volume, D{sub 05} and D{sub 95}, were adopted as the representative dose for the maximum and minimum dose, respectively. Results: When the D{sub 05} to the normal ipsilateral lung was 5 Gy-Eq, the D{sub 95} and mean doses delivered to the normal lung were 2.2-3.6 and 3.5-4.2 Gy-Eq, respectively. The mean doses delivered to the tumors were 22.4-27.2 Gy-Eq. The D{sub 05} and D{sub 95} doses to the tumors were 9.6-15.0 and 31.5-39.5 Gy-Eq, respectively. Conclusions: From a viewpoint of the dose-distribution analysis, BNCT has the possibility to be a promising treatment for MPM patients who are inoperable because of age and other medical illnesses.

  17. Reconstitution and Upgrade of the Thermal Neutron Irradiation Facility in the Basement Medical Room of the MIT Research Reactor

    SciTech Connect

    Harling, Otto, K.; Riley, Kent, J.; Binns, Peter J.

    2004-12-31

    The M-011 thermal neutron beam has been reconstituted and upgraded to provide a high intensity and high quality facility for preclinical and certain clinical studies. Intensities of thermal neutrons in the beam range from 5.0-8.5 x 109 n cm-2 s-1. Beam contamination is at a low level where it has no practical influence on beam performance. New computer controlled dose and beam monitoring systems have been implemented which assure precise dose delivery and redundant safety interlocks. An additional beam shutter and massive shielding in the back of the medical room have been added which significantly reduce room background and now permit staff entry without the necessity for lowering the reactor power. This system is needed for BNCT research by the MIT group as well as other US groups. This need became acute with the closure of the BMRR which previously had the only high quality thermal neutron irradiation facility for BNCT in the USA.

  18. Microdosimetric measurements in the thermal neutron irradiation facility of LENA reactor.

    PubMed

    Colautti, P; Moro, D; Chiriotti, S; Conte, V; Evangelista, L; Altieri, S; Bortolussi, S; Protti, N; Postuma, I

    2014-06-01

    A twin TEPC with electric-field guard tubes has been constructed to be used to characterize the BNCT field of the irradiation facility of LENA reactor. One of the two mini TEPC was doped with 50ppm of (10)B in order to simulate the BNC events occurring in BNCT. By properly processing the two microdosimetric spectra, the gamma, neutron and BNC spectral components can be derived with good precision (~6%). However, direct measurements of (10)B in some doped plastic samples, which were used for constructing the cathode walls, point out the scarce accuracy of the nominal (10)B concentration value. The influence of the Boral(®) door, which closes the irradiation channel, has been measured. The gamma dose increases significantly (+51%) when the Boral(®) door is closed. The crypt-cell-regeneration weighting function has been used to measure the quality, namely the RBEµ value, of the radiation field in different conditions. The measured RBEµ values are only partially consistent with the RBE values of other BNCT facilities.

  19. Image-guided linear accelerator-based spinal radiosurgery for hemangioblastoma.

    PubMed

    Selch, Michael T; Tenn, Steve; Agazaryan, Nzhde; Lee, Steve P; Gorgulho, Alessandra; De Salles, Antonio A F

    2012-01-01

    To retrospectively review the efficacy and safety of image-guided linear accelerator-based radiosurgery for spinal hemangioblastomas. Between August 2004 and September 2010, nine patients with 20 hemangioblastomas underwent spinal radiosurgery. Five patients had von Hipple-Lindau disease. Four patients had multiple tumors. Ten tumors were located in the thoracic spine, eight in the cervical spine, and two in the lumbar spine. Tumor volume varied from 0.08 to 14.4 cc (median 0.72 cc). Maximum tumor dimension varied from 2.5 to 24 mm (median 10.5 mm). Radiosurgery was performed with a dedicated 6 MV linear accelerator equipped with a micro-multileaf collimator. Median peripheral tumor dose and prescription isodose were 12 Gy and 90%, respectively. Image guidance was performed by optical tracking of infrared reflectors, fusion of oblique radiographs with dynamically reconstructed digital radiographs, and automatic patient positioning. Follow-up varied from 14 to 86 months (median 51 months). Kaplan-Meier estimated 4-year overall and solid tumor local control rates were 90% and 95%, respectively. One tumor progressed 12 months after treatment and a new cyst developed 10 months after treatment in another tumor. There has been no clinical or imaging evidence for spinal cord injury. Results of this limited experience indicate linear accelerator-based radiosurgery is safe and effective for spinal cord hemangioblastomas. Longer follow-up is necessary to confirm the durability of tumor control, but these initial results imply linear accelerator-based radiosurgery may represent a therapeutic alternative to surgery for selected patients with spinal hemangioblastomas.

  20. Image-guided linear accelerator-based spinal radiosurgery for hemangioblastoma

    PubMed Central

    Selch, Michael T.; Tenn, Steve; Agazaryan, Nzhde; Lee, Steve P.; Gorgulho, Alessandra; De Salles, Antonio A. F.

    2012-01-01

    Purpose: To retrospectively review the efficacy and safety of image-guided linear accelerator-based radiosurgery for spinal hemangioblastomas. Methods: Between August 2004 and September 2010, nine patients with 20 hemangioblastomas underwent spinal radiosurgery. Five patients had von Hipple–Lindau disease. Four patients had multiple tumors. Ten tumors were located in the thoracic spine, eight in the cervical spine, and two in the lumbar spine. Tumor volume varied from 0.08 to 14.4 cc (median 0.72 cc). Maximum tumor dimension varied from 2.5 to 24 mm (median 10.5 mm). Radiosurgery was performed with a dedicated 6 MV linear accelerator equipped with a micro-multileaf collimator. Median peripheral tumor dose and prescription isodose were 12 Gy and 90%, respectively. Image guidance was performed by optical tracking of infrared reflectors, fusion of oblique radiographs with dynamically reconstructed digital radiographs, and automatic patient positioning. Follow-up varied from 14 to 86 months (median 51 months). Results: Kaplan–Meier estimated 4-year overall and solid tumor local control rates were 90% and 95%, respectively. One tumor progressed 12 months after treatment and a new cyst developed 10 months after treatment in another tumor. There has been no clinical or imaging evidence for spinal cord injury. Conclusions: Results of this limited experience indicate linear accelerator-based radiosurgery is safe and effective for spinal cord hemangioblastomas. Longer follow-up is necessary to confirm the durability of tumor control, but these initial results imply linear accelerator-based radiosurgery may represent a therapeutic alternative to surgery for selected patients with spinal hemangioblastomas. PMID:22937474

  1. Program system for three-dimensional coupled Monte Carlo-deterministic shielding analysis with application to the accelerator-based IFMIF neutron source

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Fischer, U.

    2005-10-01

    A program system for three-dimensional coupled Monte Carlo-deterministic shielding analysis has been developed to solve problems with complex geometry and bulk shield by integrating the Monte Carlo transport code MCNP, the three-dimensional discrete ordinates code TORT and a coupling interface program. A newly-proposed mapping approach is implemented in the interface program to calculate the angular flux distribution from the scored Monte Carlo particle tracks and generate the boundary source file for the use of TORT. Test calculations were performed with comparison to MCNP solutions. Satisfactory agreements were obtained between the results calculated by these two approaches. The program system has been chosen to treat the complicated shielding problem of the accelerator-based IFMIF neutron source. The successful application demonstrates that coupling scheme with the program system is a useful computational tool for the shielding analysis of complex and large nuclear facilities.

  2. Dose calculation and in-phantom measurement in BNCT using response matrix method.

    PubMed

    Rahmani, Faezeh; Shahriari, Majid

    2011-12-01

    In-phantom measurement of physical dose distribution is very important for Boron Neutron Capture Therapy (BNCT) planning validation. If any changes take place in therapeutic neutron beam due to the beam shaping assembly (BSA) change, the dose will be changed so another group of simulations should be carried out for dose calculation. To avoid this time consuming procedure and speed up the dose calculation to help patients not wait for a long time, response matrix method was used. This procedure was performed for neutron beam of the optimized BSA as a reference beam. These calculations were carried out using the MCNPX, Monte Carlo code. The calculated beam parameters were measured for a SNYDER head phantom placed 10 cm away from beam the exit of the BSA. The head phantom can be assumed as a linear system and neutron beam and dose distribution can be assumed as an input and a response of this system (head phantom), respectively. Neutron spectrum energy was digitized into 27 groups. Dose response of each group was calculated. Summation of these dose responses is equal to a total dose of the whole neutron/gamma spectrum. Response matrix is the double dimension matrix (energy/dose) in which each parameter represents a depth-dose resulted from specific energy. If the spectrum is changed, response of each energy group may be differed. By considering response matrix and energy vector, dose response can be calculated. This method was tested for some BSA, and calculations show statistical errors less than 10%.

  3. Development of a treatment planning system for BNCT based on positron emission tomography data: preliminary results

    NASA Astrophysics Data System (ADS)

    Cerullo, N.; Daquino, G. G.; Muzi, L.; Esposito, J.

    2004-01-01

    Present standard treatment planning (TP) for glioblastoma multiforme (GBM - a kind of brain tumor), used in all boron neutron capture therapy (BNCT) trials, requires the construction (based on CT and/or MRI images) of a 3D model of the patient head, in which several regions, corresponding to different anatomical structures, are identified. The model is then employed by a computer code to simulate radiation transport in human tissues. The assumption is always made that considering a single value of boron concentration for each specific region will not lead to significant errors in dose computation. The concentration values are estimated "indirectly", on the basis of previous experience and blood sample analysis. This paper describes an original approach, with the introduction of data on the in vivo boron distribution, acquired by a positron emission tomography (PET) scan after labeling the BPA (borono-phenylalanine) with the positron emitter 18F. The feasibility of this approach was first tested with good results using the code CARONTE. Now a complete TPS is under development. The main features of the first version of this code are described and the results of a preliminary study are presented. Significant differences in dose computation arise when the two different approaches ("standard" and "PET-based") are applied to the TP of the same GBM case.

  4. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    NASA Astrophysics Data System (ADS)

    Gilbert, B.; Redondo, J.; Baudat, P.-A.; Lorusso, G. F.; Andres, R.; Van Meir, E. G.; Brunet, J.-F.; Hamou, M.-F.; Suda, T.; Mercanti, Delio; Ciotti, M. Teresa; Droubay, T. C.; Tonner, B. P.; Perfetti, P.; Margaritondo, M.; DeStasio, Gelsomina

    1998-10-01

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of ? in tumour cells after injection of a boron compound (in our case ?, or BSH). With the Mephisto (microscope à emission de photoélectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy.

  5. Sensor fusion for structural tilt estimation using an acceleration-based tilt sensor and a gyroscope

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Park, Jong-Woong; Spencer, B. F., Jr.; Moon, Do-Soo; Fan, Jiansheng

    2017-10-01

    A tilt sensor can provide useful information regarding the health of structural systems. Most existing tilt sensors are gravity/acceleration based and can provide accurate measurements of static responses. However, for dynamic tilt, acceleration can dramatically affect the measured responses due to crosstalk. Thus, dynamic tilt measurement is still a challenging problem. One option is to integrate the output of a gyroscope sensor, which measures the angular velocity, to obtain the tilt; however, problems arise because the low-frequency sensitivity of the gyroscope is poor. This paper proposes a new approach to dynamic tilt measurements, fusing together information from a MEMS-based gyroscope and an acceleration-based tilt sensor. The gyroscope provides good estimates of the tilt at higher frequencies, whereas the acceleration measurements are used to estimate the tilt at lower frequencies. The Tikhonov regularization approach is employed to fuse these measurements together and overcome the ill-posed nature of the problem. The solution is carried out in the frequency domain and then implemented in the time domain using FIR filters to ensure stability. The proposed method is validated numerically and experimentally to show that it performs well in estimating both the pseudo-static and dynamic tilt measurements.

  6. Pedestrian movement analysis in transfer station corridor: Velocity-based and acceleration-based

    NASA Astrophysics Data System (ADS)

    Ji, Xiangfeng; Zhang, Jian; Hu, Yongkai; Ran, Bin

    2016-05-01

    In this paper, pedestrians are classified into aggressive and conservative ones by their temper. Aggressive pedestrians' walking through crowd in transfer station corridor is analyzed. Treating pedestrians as particles, this paper uses the modified social force model (MSFM) as the building block, where forces involve self-driving force, repulsive force and friction force. The proposed model in this paper is a discrete model combining the MSFM and cellular automata (CA) model, where the updating rules of the CA are redefined with MSFM. Due to the continuity of values generated by the MSFM, we use the fuzzy logic to discretize the continuous values into cells pedestrians can move in one step. With the observation that stimulus around pedestrians influences their acceleration directly, an acceleration-based movement model is presented, compared to the generally reviewed velocity-based movement model. In the acceleration-based model, a discretized version of kinematic equation is presented based on the acceleration discretized with fuzzy logic. In real life, some pedestrians would rather keep their desired speed and this is also mimicked in this paper, which is called inertia. Compared to the simple triangular membership function, a trapezoidal membership function and a piecewise linear membership function are used to capture pedestrians' inertia. With the trapezoidal and the piecewise linear membership function, many overlapping scenarios should be carefully handled and Dubois and Prade's four-index method is used to completely describe the relative relationship of fuzzy quantities. Finally, a simulation is constructed to demonstrate the effect of our model.

  7. JAERI R & D on accelerator-based transmutation under OMEGA program

    SciTech Connect

    Takizuka, T.; Nishida, T.; Mizumoto, M.

    1995-10-01

    The overview of the Japanese long-term research and development program on nuclide partitioning and transmutation, called {open_quotes}OMEGA,{close_quotes} is presented. Under this national program, major R&D activities are being carried out at JAERI, PNC, and CRIEPI. Accelerator-based transmutation study at JAERI is focused on a dedicated transmutor with a subcritical actinide-fueled subcritical core coupled with a spallation target driven by a high intensity proton accelerator. Two types of system concept, solid system and molten-salt system, are discussed. The solid system consists of sodium-cooled tungsten target and metallic actinide fuel. The molten-salt system is fueled with molten actinide chloride that acts also as a target material. The proposed plant transmutes about 250 kg of minor actinide per year, and generates enough electricity to power its own accelerator. JAERI is proposing the development of an intense proton linear accelerator ETA with 1.5 GeV-10 mA beam for engineering tests of accelerator-based transmutation. Recent achievements in the accelerator development are described.

  8. Management of vestibular schwannomas with linear accelerator-based stereotactic radiosurgery: a single center experience.

    PubMed

    Sager, Omer; Beyzadeoglu, Murat; Dincoglan, Ferrat; Demiral, Selcuk; Uysal, Bora; Gamsiz, Hakan; Oysul, Kaan; Dirican, Bahar; Sirin, Sait

    2013-01-01

    The primary goal of treatment for vestibular schwannoma is to achieve local control without comprimising regional cranial nerve function. Stereotactic radiosurgery has emerged as a viable therapeutic option for vestibular schwannoma. The aim of the study is to report our 15-year single center experience using linear accelerator-based stereotactic radiosurgery in the management of patients with vestibular schwannoma. Between July 1998 and January 2013, 68 patients with unilateral vestibular schwannoma were treated using stereotactic radiosurgery at the Department of Radiation Oncology, Gulhane Military Medical Academy. All patients underwent high-precision stereotactic radiosurgery using a linear accelerator with 6-MV photons. Median follow-up time was 51 months (range, 9-107). Median age was 45 years (range, 20-77). Median dose was 12 Gy (range, 10-13) prescribed to the 85%-95% isodose line encompassing the target volume. Local tumor control in patients with periodic follow-up imaging was 96.1%. Overall hearing preservation rate was 76.5%. Linear accelerator-based stereotactic radiosurgery offers a safe and effective treatment for patients with vestibular schwannoma by providing high local control rates along with improved quality of life through well-preserved hearing function.

  9. Boron neutron capture therapy (BNCT) as a new approach for clear cell sarcoma (CCS) treatment: Trial using a lung metastasis model of CCS.

    PubMed

    Andoh, Tooru; Fujimoto, Takuya; Suzuki, Minoru; Sudo, Tamotsu; Sakurai, Yoshinori; Tanaka, Hiroki; Fujita, Ikuo; Fukase, Naomasa; Moritake, Hiroshi; Sugimoto, Tohru; Sakuma, Toshiko; Sasai, Hiroshi; Kawamoto, Teruya; Kirihata, Mitsunori; Fukumori, Yoshinobu; Akisue, Toshihiro; Ono, Koji; Ichikawa, Hideki

    2015-12-01

    Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In the present study, we established a lung metastasis animal model of CCS and investigated the therapeutic effect of boron neutron capture therapy (BNCT) using p-borono-L-phenylalanine (L-BPA). Biodistribution data revealed tumor-selective accumulation of (10)B. Unlike conventional gamma-ray irradiation, BNCT significantly suppressed tumor growth without damaging normal tissues, suggesting that it may be a potential new therapeutic option to treat CCS lung metastases.

  10. Beam shaping assembly of a D-T neutron source for BNCT and its dosimetry simulation in deeply-seated tumor

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Khalili, S.

    2013-08-01

    This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D-T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D-T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor.

  11. Biodistribution of the boron carriers boronophenylalanine (BPA) and/or decahydrodecaborate (GB-10) for Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases

    SciTech Connect

    D.W. Nigg; Various Others

    2014-06-01

    BNCT was proposed for the treatment of diffuse, non-resectable tumors in the lung. We performed boron biodistribution studies with 5 administration protocols employing the boron carriers BPA and/or GB-10 in an experimental model of disseminated lung metastases in rats. All 5 protocols were non-toxic and showed preferential tumor boron uptake versus lung. Absolute tumor boron concentration values were therapeutically useful (25–76 ppm) for 3 protocols. Dosimetric calculations indicate that BNCT at RA-3 would be potentially therapeutic without exceeding radiotolerance in the lung.

  12. Understanding the potentiality of accelerator based-boron neutron capture therapy for osteosarcoma: dosimetry assessment based on the reported clinical experience.

    PubMed

    Bortolussi, Silva; Postuma, Ian; Protti, Nicoletta; Provenzano, Lucas; Ferrari, Cinzia; Cansolino, Laura; Dionigi, Paolo; Galasso, Olimpio; Gasparini, Giorgio; Altieri, Saverio; Miyatake, Shin-Ichi; González, Sara J

    2017-08-15

    Osteosarcoma is the most frequent primary malignant bone tumour, and its incidence is higher in children and adolescents, for whom it represents more than 10% of solid cancers. Despite the introduction of adjuvant and neo-adjuvant chemotherapy that markedly increased the success rate in the treatment, aggressive surgery is still needed and a considerable percentage of patients do not survive due to recurrences or early metastases. Boron Neutron Capture Therapy (BNCT), an experimental radiotherapy, was investigated as a treatment that could allow a less aggressive surgery by killing infiltrated tumour cells in the surrounding healthy tissues. BNCT requires an intense neutron beam to ensure irradiation times of the order of 1 h. In Italy, a Radio Frequency Quadrupole (RFQ) proton accelerator has been designed and constructed for BNCT, and a suitable neutron spectrum was tailored by means of Monte Carlo calculations. This paper explores the feasibility of BNCT to treat osteosarcoma using this neutron source based on accelerator. The therapeutic efficacy of BNCT was analysed evaluating the dose distribution obtained in a clinical case of femur osteosarcoma. Mixed field dosimetry was assessed with two different formalisms whose parameters were specifically derived from radiobiological experiments involving in vitro UMR-106 osteosarcoma cell survival assays and boron concentration assessments in an animal model of osteosarcoma. A clinical case of skull osteosarcoma treated with BNCT in Japan was re-evaluated from the point of view of dose calculation and used as a reference for comparison. The results in the case of femur osteosarcoma show that the RFQ beam would ensure a suitable tumour dose painting in a total irradiation time of less than an hour. Comparing the dosimetry between the analysed case and the treated patient in Japan it turns out that doses obtained in the femur tumour are at least as good as the ones delivered in the skull osteosarcoma. The same is

  13. Comparative study of the radiobiological effects induced on adherent vs suspended cells by BNCT, neutrons and gamma rays treatments.

    PubMed

    Cansolino, L; Clerici, A M; Zonta, C; Dionigi, P; Mazzini, G; Di Liberto, R; Altieri, S; Ballarini, F; Bortolussi, S; Carante, M P; Ferrari, M; González, S J; Postuma, I; Protti, N; Santa Cruz, G A; Ferrari, C

    2015-12-01

    The present work is part of a preclinical in vitro study to assess the efficacy of BNCT applied to liver or lung coloncarcinoma metastases and to limb osteosarcoma. Adherent growing cell lines can be irradiated as adherent to the culture flasks or as cell suspensions, differences in radio-sensitivity of the two modalities of radiation exposure have been investigated. Dose related cell survival and cell cycle perturbation results evidenced that the radiosensitivity of adherent cells is higher than that of the suspended ones.

  14. About the scheme of the infrared FEL system for the accelerator based on HF wells

    SciTech Connect

    Kabanov, V.S.; Dzergach, A.I.

    1995-12-31

    Accelerators, based on localization of plasmoids in the HF wells (RF traps) of the axially-symmetric electromagnetic field E {sub omn} in an oversized (m,n>>1) resonant system, can give accelerating gradients {approximately}100 kV/{lambda}, e.g. 10 GV/m if {lambda}=10 {mu}m. One of possible variants of HF feeding for these accelerators is based on using the powerful infrared FEL System with 2 frequencies. The corresponding FEL`s may be similar to the Los Alamos compact Advanced FEL ({lambda}{sub 1,2}{approximately}10 pm, e-beam energy {approximately}15 MeV, e-beam current {approximately}100 A). Their power is defined mainly by the HF losses in the resonant system of the supposed accelerator.

  15. Extending PowerPack for Profiling and Analysis of High Performance Accelerator-Based Systems

    SciTech Connect

    Li, Bo; Chang, Hung-Ching; Song, Shuaiwen; Su, Chun-Yi; Meyer, Timmy; Mooring, John; Cameron, Kirk

    2014-12-01

    Accelerators offer a substantial increase in efficiency for high-performance systems offering speedups for computational applications that leverage hardware support for highly-parallel codes. However, the power use of some accelerators exceeds 200 watts at idle which means use at exascale comes at a significant increase in power at a time when we face a power ceiling of about 20 megawatts. Despite the growing domination of accelerator-based systems in the Top500 and Green500 lists of fastest and most efficient supercomputers, there are few detailed studies comparing the power and energy use of common accelerators. In this work, we conduct detailed experimental studies of the power usage and distribution of Xeon-Phi-based systems in comparison to the NVIDIA Tesla and at SandyBridge.

  16. Accelerator-based Neutron Fluence Standard of the National Metrology Institute of Japan

    NASA Astrophysics Data System (ADS)

    Harano, Hideki; Matsumoto, Tetsuro; Nishiyama, Jun; Uritani, Akira; Kudo, Katsuhisa

    2009-03-01

    We report the present status of the national standard on accelerator-based fast neutron fluences in Japan. Monoenergetic neutron fluence standards have been established at 144 keV, 565 keV, 5.0 MeV and 8.0 MeV by using a Van de Graaff accelerator and at 2.5 MeV and 14.8 MeV by using a Cockcroft Walton accelerator. These standards are prepared to measure the detection efficiency and the energy response of neutron sensitive devices, such as personal dosimeters and survey meters. Neutron production and absolute fluence measurement for these energies are described. We are developing a new standard in the energy region of a few tens of keV, which is also introduced here as well as our future plans.

  17. Quantitative elemental analysis of an industrial mineral talc, using accelerator-based analytical technique

    NASA Astrophysics Data System (ADS)

    Olabanji, S. O.; Ige, A. O.; Mazzoli, C.; Ceccato, D.; Ajayi, E. O. B.; De Poli, M.; Moschini, G.

    2005-10-01

    Accelerator-based technique of PIXE was employed for the determination of the elemental concentration of an industrial mineral, talc. Talc is a very versatile mineral in industries with several applications. Due to this, there is a need to know its constituents to ensure that the workers are not exposed to health risks. Besides, microscopic tests on some talc samples in Nigeria confirm that they fall within the BP British Pharmacopoeia standard for tablet formation. However, for these samples to become a local source of raw material for pharmaceutical grade talc, the precise elemental compositions should be established which is the focus of this work. Proton beam produced by the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro, Padova, Italy was used for the PIXE measurements. The results which show the concentration of different elements in the talc samples, their health implications and metabolic roles are presented and discussed.

  18. 350 keV accelerator based PGNAA setup to detect nitrogen in bulk samples

    NASA Astrophysics Data System (ADS)

    Naqvi, A. A.; Al-Matouq, Faris A.; Khiari, F. Z.; Gondal, M. A.; Rehman, Khateeb-ur; Isab, A. A.; Raashid, M.; Dastageer, M. A.

    2013-11-01

    Nitrogen concentration was measured in explosive and narcotics proxy material, e.g. anthranilic acid, caffeine, melamine, and urea samples, bulk samples through thermal neutron capture reaction using 350 keV accelerator based prompt gamma ray neutron activation (PGNAA) setup. Intensity of 2.52, 3.53-3.68, 4.51, 5.27-5.30 and 10.38 MeV prompt gamma rays of nitrogen from the bulk samples was measured using a cylindrical 100 mm×100 mm (diameter×height ) BGO detector. Inspite of interference of nitrogen gamma rays from bulk samples with capture prompt gamma rays from BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays has been obtained. This is an indication of the excellent performance of the PGNAA setup for detection of nitrogen in bulk samples.

  19. Management of choroidal melanomas with linear accelerator-based stereotactic radiosurgery.

    PubMed

    Leung, S W; Hsiung, C Y; Chen, H C; Chen, H J; Lin, S A

    1999-02-01

    To discuss the technical aspect, dose prescription, clinical results, and biological responsiveness of linear accelerator-based stereotactic radiosurgery for choroidal melanoma. From March 1995 to December 1995, three choroidal melanoma patients were treated with Linac-based radiosurgery in our department. Two patients underwent one dose of radiosurgery with 18 and 20 Gy in single fraction, respectively. The third patient received two doses of radiosurgery with a total dose of 35 Gy. Follow-up time ranged from 19 to 25 months (median: 24 months). One patient had near-total regression, while the other two patients had partial response on the last MR images. Visual acuity was deteriorated in all patients. One patient developed a radiation-induced cataract in the treated eye. Linac-based radiosurgery is technically feasible for management of choroidal melanoma. Although visual acuity was not improved in these patients, they appreciated the preserving of the eyeball without affecting their general appearance.

  20. Hardware acceleration based connected component labeling algorithm in real-time ATR system

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Zhang, Zhi-yong

    2013-03-01

    Aims at the requirement of real-time processing in Real-Time Automatic Target Recognition(RTATR) system, this paper presents a hardware acceleration based two-scan connected-component labeling algorithm. Conventional pixel and run based algorithm's merits are combined, in the first scan, the pixel is processed scan unit while line as label unit, label equivalences are recorded while scanning the image by pixel. Lines with provisional label are outputted as the connected component labeling result. Then the union-find algorithm is used for resolving label equivalences and finds the representative label for each provisional label after the first scan. The labels are replaced in the second scan to complete the connected-component labeling. Experiments on RTATR platform demonstrate that the hardware acceleration implementation of algorithm reaches a higher performance and efficiency and consumes few resources. The implementation of proposed algorithm can meet the demand of real-time processing, and possesses a better practicability.

  1. P13.09ADVANCES IN CLINICAL APPLICATION OF BORON NEUTRON CAPTURE THERAPY (BNCT) IN GLIOBLASTOMA

    PubMed Central

    Detta, A.; Cruickshank, G.C.; Green, S.; Lockyer, N.P.; Ngoga, D.; Ghani, Z.; Phoenix, B.

    2014-01-01

    BNCT is a biologically targeted form of enhanced cellular radiotherapy where preferential accumulation of boron in the cancerous as opposed to adjacent normal cells is able to interact with incident neutrons to cause irreversible alpha particle DNA damage. The key to the implementation of this potentially powerful and selective therapy is the delivery of at least 30ppm 10B within the tumour tissue while minimising superfluous 10B in healthy tissue. It is thus an elegant technique for treating infiltrating tumours such as diffuse gliomas. In order to assess its clinical potential we carried out a pharmacokinetic study in glioblastoma patients where we sought to determine the optimal route of delivering a new formulation of the boronated drug (p-boronophenylalanine, BPA), its pharmacokinetic behaviour, toxicity profile, and cellular uptake. Using a number of analytical techniques, including inductively-coupled plasma mass spectrometry, secondary ion mass spectrometry (SIMS) and immunohistochemistry (IHC), boron was measured at various times in blood, urine, cerebrospinal fluid, extracellular fluid (ECF), and tumour-related solid tissue spanning 0.5 h pre- and up to 48 h post-BPA infusion in newly-diagnosed patients (n = 10). Blood was sampled through a central catheter whilst the ECF was sampled by parenchymal microdialysis catheters, placed remotely from the tumour site. Urine was collected over the same time period. Tumour and brain-around tumour (BAT) tissue was sampled stereotactically at 2.5 h and 3.5 h post-infusion. IHC expression levels of the BPA transporter molecule, L-amino acid transporter 1 (LAT-1), were recorded as % LAT-1 positive cells, and cellular boron levels were estimated as spatially resolved pixels in normalised-to-C+ isotopic SIMS images of the biopsies. There were no toxicity-related issues with this new formulation of BPA given at 375 mg/kg as a 2 h intravenous or intracarotid infusion with or without pre-infusion mannitol-induced BBB

  2. A comparison of the dose RBE and the biological dosimetry approaches for treatment planning in BNCT

    SciTech Connect

    Laster, B.H. University Hospital, Stony Brook, NY . Dept. of Radiation Oncology); Liu, H.B.; Gordon, C.R.; Bond, V.P. )

    1992-01-01

    Treatment planning for clinical trials with boron neutron capture therapy (BNCT) is complicated substantially by the fact that the radiation field generated by the activating external neutron beam is composed of several different types of radiation, i.e., fast neutrons, recoil protons from elastic collisions with hydrogen, gamma rays from the reactor and from neutron capture by body hydrogen, protons from nitrogen capture, and the products of the NCT interaction. Furthermore, the relative contribution of each type of radiation varies with depth in tissue. Because each of these radiations has its own RBE, and the RBE of the fast neutron component will not be constant as the neutron spectrum changes with depth, the problem of predicting the severity of the biological effect, in depth, becomes complex indeed. In order to attack this problem, Monte Carlo calculations of dose, checked against benchmark measurements, are employed. Two approaches are then used to assess the severity of the effect. In the first, the effective dose (D[sub EF]) is determined by summing the products of (D[center dot]RBE) for each radiation. The other approach involves placing cells at the location for which the D[sub EF] was calculated. Using a dose-response curvefrom a low-LET radiation, e.g. [sup 137]Cs gamma rays (D[sub [gamma]Ca]), the photon equivalent dose (PED, or D[sub P]) can be determined. If the RBE values used are correct, the D[sub EF] and the D[sub P] should be essentially identical.

  3. A comparison of the dose RBE and the biological dosimetry approaches for treatment planning in BNCT

    SciTech Connect

    Laster, B.H. |; Liu, H.B.; Gordon, C.R.; Bond, V.P.

    1992-12-31

    Treatment planning for clinical trials with boron neutron capture therapy (BNCT) is complicated substantially by the fact that the radiation field generated by the activating external neutron beam is composed of several different types of radiation, i.e., fast neutrons, recoil protons from elastic collisions with hydrogen, gamma rays from the reactor and from neutron capture by body hydrogen, protons from nitrogen capture, and the products of the NCT interaction. Furthermore, the relative contribution of each type of radiation varies with depth in tissue. Because each of these radiations has its own RBE, and the RBE of the fast neutron component will not be constant as the neutron spectrum changes with depth, the problem of predicting the severity of the biological effect, in depth, becomes complex indeed. In order to attack this problem, Monte Carlo calculations of dose, checked against benchmark measurements, are employed. Two approaches are then used to assess the severity of the effect. In the first, the effective dose (D{sub EF}) is determined by summing the products of (D{center_dot}RBE) for each radiation. The other approach involves placing cells at the location for which the D{sub EF} was calculated. Using a dose-response curvefrom a low-LET radiation, e.g. {sup 137}Cs gamma rays (D{sub {gamma}Ca}), the photon equivalent dose (PED, or D{sub P}) can be determined. If the RBE values used are correct, the D{sub EF} and the D{sub P} should be essentially identical.

  4. Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): a Monte Carlo study

    PubMed Central

    Barraclough, Brendan; Lee, Heui Chang; Suh, Tae Suk; Lu, Bo

    2017-01-01

    The aim of this study is to compare between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT) and to analyze dose escalation using a Monte Carlo simulation. We simulated a proton beam passing through the water with a boron uptake region (BUR) in MCNPX. To estimate the interaction between neutrons/protons and borons by the alpha particle, the simulation yielded with a variation of the center of the BUR location and proton energies. The variation and influence about the alpha particle were observed from the percent depth dose (PDD) and cross-plane dose profile of both the neutron and proton beams. The peak value of the maximum dose level when the boron particle was accurately labeled at the region was 192.4% among the energies. In all, we confirmed that prompt gamma rays of 478 keV and 719 keV were generated by the nuclear reactions in PBFT and BNCT, respectively. We validated the dramatic effectiveness of the alpha particle, especially in PBFT. The utility of PBFT was verified using the simulation and it has a potential for application in radiotherapy. PMID:28427153

  5. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    SciTech Connect

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Shayesteh, M.

    2015-07-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  6. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    SciTech Connect

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo

    2011-12-15

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global

  7. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.

    PubMed

    Miller, Marcelo E; Sztejnberg, Manuel L; González, Sara J; Thorp, Silvia I; Longhino, Juan M; Estryk, Guillermo

    2011-12-01

    A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comisión Nacional de Energía Atómica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Local mixed-field thermal neutron sensitivities and global thermal and mixed

  8. Linear accelerator-based stereotactic radiosurgery for bilateral vestibular schwannomas in patients with neurofibromatosis type 2.

    PubMed

    Meijer, Otto W M; Vandertop, W Peter; Lagerwaard, Frank J; Slotman, Ben J

    2008-05-01

    Patients with neurofibromatosis Type 2 (NF2) patients typically have bilateral vestibular schwannomas (VS) and are at risk for developing bilateral deafness, bilateral trigeminal, and bilateral facial nerve function loss. Previous reports suggested that treatment outcomes in these patients are worse compared with those for patients with sporadic solitary VS. Very few reports, however, have been published on linear accelerator-based radiosurgery (RS) and stereotactic radiation therapy (SRT) in patients with NF2. In particular, in patients with NF2 who already have unilateral hearing loss, avoidance of hearing loss on the opposite side poses a challenge for RS and SRT. We studied our treatment results in patients with NF2 with bilateral VS, treated with linear accelerator-based RS and SRT. In 204 patients with VS treated with RS or SRT in Amsterdam starting from 1992, we identified 25 patients with NF2 who had bilateral tumors. Indications for treatment were either tumor progression on sequential magnetic resonance imaging scans and/or progressive hearing loss. Mean tumor diameter was 2.5 cm. Stereotactic irradiation was administered to all patients using five noncoplanar arcs with a single isocenter to a dose of 10 to 12.5 Gy in a single fraction or 20 to 25 Gy in five fractions in 1 week prescribed to the 80% isodose encompassing the tumor. On the untreated side, all patients showed hearing loss and eight (32%) had ipsilateral deafness. Five patients were followed for less than 1 year. Of the remaining 20 patients, five had ipsilateral deafness before treatment. Consequently, 15 patients were at risk for treatment-related hearing loss. They showed a mean pure tone average (PTA) of 51 dB (8-112 dB) before treatment. After treatment all patients were assessed at yearly intervals including magnetic resonance imaging and pure tone audiometry. Median follow-up time was 51 months (12-109 mo). Local tumor control was obtained in all 20 patients, and no treatment

  9. Production Facility System Reliability Analysis Report

    SciTech Connect

    Dale, Crystal Buchanan; Klein, Steven Karl

    2015-10-06

    This document describes the reliability, maintainability, and availability (RMA) modeling of the Los Alamos National Laboratory (LANL) design for the Closed Loop Helium Cooling System (CLHCS) planned for the NorthStar accelerator-based 99Mo production facility. The current analysis incorporates a conceptual helium recovery system, beam diagnostics, and prototype control system into the reliability analysis. The results from the 1000 hr blower test are addressed.

  10. Reliability Considerations for the Operation of Large Accelerator User Facilities

    DOE PAGES

    Willeke, F. J.

    2016-01-29

    The lecture provides an overview of considerations relevant for achieving highly reliable operation of accelerator based user facilities. The article starts with an overview of statistical reliability formalism which is followed by high reliability design considerations with examples. Finally, the article closes with operational aspects of high reliability such as preventive maintenance and spares inventory.

  11. Reliability Considerations for the Operation of Large Accelerator User Facilities

    SciTech Connect

    Willeke, F. J.

    2016-01-29

    The lecture provides an overview of considerations relevant for achieving highly reliable operation of accelerator based user facilities. The article starts with an overview of statistical reliability formalism which is followed by high reliability design considerations with examples. Finally, the article closes with operational aspects of high reliability such as preventive maintenance and spares inventory.

  12. Accelerator-based trace element analysis of foods and agriculture products

    NASA Astrophysics Data System (ADS)

    Lagunas-Solar, Manuel C.; Piña U, Cecilia; Solís, Corina; Mireles, Alibech

    2008-05-01

    An accelerator-based analytical method for measuring trace elements in foods and agricultural products was developed, optimized, validated and compared using reference standards. The method's initial phase is a new, rapid and effective digestion process of a small mass analyte in an aqueous media containing H2O2. Digestion is initiated by radicals formed in water with pulsed UV (PUV) induced (laser) photolysis, which rapidly react with organic matter. After digestion, trace metals are pre-concentrated as carbamates and deposited as thin targets onto Teflon filters. Conventional particle induced X-ray emission (PIXE) or X-ray fluorescence (XRF) methods are then used to analyze elements in the sample. When foods and other agricultural commodities (i.e., soils, feeds) are analyzed, the combined method named pulsed UV (PUV)/PIXE results in enhanced detection of trace elements such as Fe, Co, Ni, Cu, Zn and Pb at ∼1 mg/kg (1 ppm) levels, without lengthy, acid-based digestions. It provides improvements in digestion kinetics and processing time enhancing analytical sensitivity and element recovery. Precision and recovery yields were confirmed with food reference standards. The analysis of edible foods from contaminated agricultural areas is also reported.

  13. Acceleration-based methodology to assess the blast mitigation performance of explosive ordnance disposal helmets

    NASA Astrophysics Data System (ADS)

    Dionne, J. P.; Levine, J.; Makris, A.

    2017-07-01

    To design the next generation of blast mitigation helmets that offer increasing levels of protection against explosive devices, manufacturers must be able to rely on appropriate test methodologies and human surrogates that will differentiate the performance level of various helmet solutions and ensure user safety. Ideally, such test methodologies and associated injury thresholds should be based on widely accepted injury criteria relevant within the context of blast. Unfortunately, even though significant research has taken place over the last decade in the area of blast neurotrauma, there currently exists no agreement in terms of injury mechanisms for blast-induced traumatic brain injury. In absence of such widely accepted test methods and injury criteria, the current study presents a specific blast test methodology focusing on explosive ordnance disposal protective equipment, involving the readily available Hybrid III mannequin, initially developed for the automotive industry. The unlikely applicability of the associated brain injury criteria (based on both linear and rotational head acceleration) is discussed in the context of blast. Test results encompassing a large number of blast configurations and personal protective equipment are presented, emphasizing the possibility to develop useful correlations between blast parameters, such as the scaled distance, and mannequin engineering measurements (head acceleration). Suggestions are put forward for a practical standardized blast testing methodology taking into account limitations in the applicability of acceleration-based injury criteria as well as the inherent variability in blast testing results.

  14. Doppler Broadening Analysis of Steel Specimens Using Accelerator Based In Situ Pair Production

    NASA Astrophysics Data System (ADS)

    Makarashvili, V.; Wells, D. P.; Roy, A. K.

    2009-03-01

    Positron Annihilation Spectroscopy (PAS) techniques can be utilized as a sensitive probe of defects in materials. Studying these microscopic defects is very important for a number of industries in order to predict material failure or structural integrity. We have been developing gamma-induced pair-production techniques to produce positrons in thick samples (˜4-40 g/cm2, or ˜0.5-5 cm in steel). These techniques are called 'Accelerator-based Gamma-induced Positron Annihilation Spectroscopy' (AG-PAS). We have begun testing the capabilities of this technique for imaging of defect densities in thick structural materials. As a first step, a linear accelerator (LINAC) was employed to produce photon beams by stopping 15 MeV electrons in a 1 mm thick tungsten converter. The accelerator is capable of operating with 30-60 ns pulse width, up to 200 mA peak current at 1 kHz repetition rate. The highly collimated bremsstrahlung beam impinged upon our steel tensile specimens, after traveling through a 1.2 m thick concrete wall. Annihilation radiation was detected by a well-shielded and collimated high-purity germanium detector (HPGe). Conventional Doppler broadening spectrometry (DBS) was performed to determine S, W and T parameters for our samples.

  15. Comparison between CARIBIC aerosol samples analysed by accelerator-based methods and optical particle counter measurements

    NASA Astrophysics Data System (ADS)

    Martinsson, B. G.; Friberg, J.; Andersson, S. M.; Weigelt, A.; Hermann, M.; Assmann, D.; Voigtländer, J.; Brenninkmeijer, C. A. M.; van Velthoven, P. J. F.; Zahn, A.

    2014-04-01

    Inter-comparison of results from two kinds of aerosol systems in the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) passenger aircraft based observatory, operating during intercontinental flights at 9-12 km altitude, is presented. Aerosol from the lowermost stratosphere (LMS), the extra-tropical upper troposphere (UT) and the tropical mid troposphere (MT) were investigated. Aerosol particle volume concentration measured with an optical particle counter (OPC) is compared with analytical results of the sum of masses of all major and several minor constituents from aerosol samples collected with an impactor. Analyses were undertaken with accelerator-based methods particle-induced X-ray emission (PIXE) and particle elastic scattering analysis (PESA). Data from 48 flights during one year are used, leading to a total of 106 individual comparisons. The ratios of the particle volume from the OPC and the total mass from the analyses were in 84% within a relatively narrow interval. Data points outside this interval are connected with inlet-related effects in clouds, large variability in aerosol composition, particle size distribution effects and some cases of non-ideal sampling. Overall, the comparison of these two CARIBIC measurements based on vastly different methods show good agreement, implying that the chemical and size information can be combined in studies of the MT/UT/LMS aerosol.

  16. Comparison between CARIBIC Aerosol Samples Analysed by Accelerator-Based Methods and Optical Particle Counter Measurements

    NASA Astrophysics Data System (ADS)

    Martinsson, B. G.; Friberg, J.; Andersson, S. M.; Weigelt, A.; Hermann, M.; Assmann, D.; Voigtländer, J.; Brenninkmeijer, C. A. M.; van Velthoven, P. J. F.; Zahn, A.

    2014-08-01

    Inter-comparison of results from two kinds of aerosol systems in the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on a Instrument Container) passenger aircraft based observatory, operating during intercontinental flights at 9-12 km altitude, is presented. Aerosol from the lowermost stratosphere (LMS), the extra-tropical upper troposphere (UT) and the tropical mid troposphere (MT) were investigated. Aerosol particle volume concentration measured with an optical particle counter (OPC) is compared with analytical results of the sum of masses of all major and several minor constituents from aerosol samples collected with an impactor. Analyses were undertaken with the following accelerator-based methods: particle-induced X-ray emission (PIXE) and particle elastic scattering analysis (PESA). Data from 48 flights during 1 year are used, leading to a total of 106 individual comparisons. The ratios of the particle volume from the OPC and the total mass from the analyses were in 84% within a relatively narrow interval. Data points outside this interval are connected with inlet-related effects in clouds, large variability in aerosol composition, particle size distribution effects and some cases of non-ideal sampling. Overall, the comparison of these two CARIBIC measurements based on vastly different methods show good agreement, implying that the chemical and size information can be combined in studies of the MT/UT/LMS aerosol.

  17. An Acceleration-Based Gait Assessment Method for Children with Cerebral Palsy

    PubMed Central

    Chen, Xiang; Liao, Songmei; Cao, Shuai; Wu, De; Zhang, Xu

    2017-01-01

    With the aim of providing an objective tool for motion disability assessment in clinical diagnosis and rehabilitation therapy of cerebral palsy (CP) patients, an acceleration-based gait assessment method was proposed in this paper. To capture gait information, three inertial measurement units (IMUs) were placed on the lower trunk and thigh, respectively. By comparing differences in the gait acceleration modes between children with CP and healthy subjects, an assessment method based on grey relational analysis and five gait parameters, including Pearson coefficient, variance ratio, the number of extreme points, harmonic ratio and symmetry was established. Twenty-two children with cerebral palsy (7.49 ± 2.86 years old), fourteen healthy adults (24.2 ± 1.55 years old) and ten healthy children (7.03 ± 1.49 years old) participated in the gait data acquisition experiment. The results demonstrated that, compared to healthy subjects, the symptoms and severity of motor dysfunction of CP children could result in abnormality of the gait acceleration modes, and the proposed assessment method was able to effectively evaluate the degree gait abnormality in CP children. PMID:28468319

  18. Treatment of hemangioblastomas in von Hippel-Lindau disease with linear accelerator-based radiosurgery.

    PubMed

    Chang, S D; Meisel, J A; Hancock, S L; Martin, D P; McManus, M; Adler, J R

    1998-07-01

    Stereotactic radiosurgery is increasingly being used to treat hemangioblastomas, particularly those that are in surgically inaccessible locations or that are multiple, as is common in von Hippel-Lindau disease. The purpose of this study was to retrospectively evaluate the effectiveness of radiosurgery in the treatment of hemangioblastomas. From 1989 to 1996, 29 hemangioblastomas in 13 patients with von Hippel-Lindau disease were treated with linear accelerator-based radiosurgery. The mean patient age was 40 years (range, 31-57 yr). The radiation dose to the tumor periphery averaged 23.2 Gy (range, 18-40 Gy). The mean tumor volume was 1.6 cm3 (range, 0.07-65.4 cm3). Tumor response was evaluated in serial, contrast-enhanced, computed tomographic and magnetic resonance imaging scans. The mean follow-up period was 43 months (range, 11-84 mo). Only one (3%) of the treated hemangioblastomas progressed. Five tumors (17%) disappeared, 16 (55%) regressed, and 7 (24%) remained unchanged in size. Five of nine patients with symptoms referable to treated hemangioblastomas experienced symptomatic improvement. During the follow-up period, one patient died as a result of progression of untreated hemangioblastomas in the cervical spine. Three patients developed radiation necrosis, two of whom were symptomatic. Although follow-up monitoring is limited, stereotactic radiosurgery provides a high likelihood of local control of hemangioblastomas and is an attractive alternative to multiple surgical procedures for patients with von Hippel-Lindau disease.

  19. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    SciTech Connect

    Cowell, B.S.; Fontana, M.H.; Krakowski, R.A.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Sailor, W.C.; Williamson, M.A.

    1995-04-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemical Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R&D plan for ABC are described on the bases of the ``strawman`` or ``point-of-departure`` plant layout that resulted from this study.

  20. A comparison of public datasets for acceleration-based fall detection.

    PubMed

    Igual, Raul; Medrano, Carlos; Plaza, Inmaculada

    2015-09-01

    Falls are one of the leading causes of mortality among the older population, being the rapid detection of a fall a key factor to mitigate its main adverse health consequences. In this context, several authors have conducted studies on acceleration-based fall detection using external accelerometers or smartphones. The published detection rates are diverse, sometimes close to a perfect detector. This divergence may be explained by the difficulties in comparing different fall detection studies in a fair play since each study uses its own dataset obtained under different conditions. In this regard, several datasets have been made publicly available recently. This paper presents a comparison, to the best of our knowledge for the first time, of these public fall detection datasets in order to determine whether they have an influence on the declared performances. Using two different detection algorithms, the study shows that the performances of the fall detection techniques are affected, to a greater or lesser extent, by the specific datasets used to validate them. We have also found large differences in the generalization capability of a fall detector depending on the dataset used for training. In fact, the performance decreases dramatically when the algorithms are tested on a dataset different from the one used for training. Other characteristics of the datasets like the number of training samples also have an influence on the performance while algorithms seem less sensitive to the sampling frequency or the acceleration range. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Materials considerations for molten salt accelerator-based plutonium conversion systems

    SciTech Connect

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-03-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF{sub 2} molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized.

  2. Materials considerations for molten salt accelerator-based plutonium conversion systems

    SciTech Connect

    DiStefano, J.R.; DeVan, J.H.; Keiser, J.R.; Klueh, R.L.; Eatherly, W.P.

    1995-02-01

    Accelerator-driven transmutation technology (ADTT) refers to a concept for a system that uses a blanket assembly driven by a source of neutrons produced when high-energy protons from an accelerator strike a heavy metal target. One application for such a system is called Accelerator-Based Plutonium Conversion, or ABC. Currently, the version of this concept being proposed by the Los Alamos National Laboratory features a liquid lead target material and a blanket fuel of molten fluorides that contain plutonium. Thus, the materials to be used in such a system must have, in addition to adequate mechanical strength, corrosion resistance to molten lead, corrosion resistance to molten fluoride salts, and resistance to radiation damage. In this report the corrosion properties of liquid lead and the LiF-BeF{sub 2} molten salt system are reviewed in the context of candidate materials for the above application. Background information has been drawn from extensive past studies. The system operating temperature, type of protective environment, and oxidation potential of the salt are shown to be critical design considerations. Factors such as the generation of fission products and transmutation of salt components also significantly affect corrosion behavior, and procedures for inhibiting their effects are discussed. In view of the potential for extreme conditions relative to neutron fluxes and energies that can occur in an ADTT, a knowledge of radiation effects is a most important factor. Present information for potential materials selections is summarized.

  3. First Evaluation of the Biologic Effectiveness Factors of Boron Neutron Capture Therapy (BNCT) in a Human Colon Carcinoma Cell Line

    SciTech Connect

    Dagrosa, Maria Alejandra; Crivello, Martin; Perona, Marina; Thorp, Silvia; Santa Cruz, Gustavo Alberto; Pozzi, Emiliano; Casal, Mariana; Thomasz, Lisa; Cabrini, Romulo; Kahl, Steven; Juvenal, Guillermo Juan; Pisarev, Mario Alberto

    2011-01-01

    Purpose: DNA lesions produced by boron neutron capture therapy (BNCT) and those produced by gamma radiation in a colon carcinoma cell line were analyzed. We have also derived the relative biologic effectiveness factor (RBE) of the neutron beam of the RA-3- Argentine nuclear reactor, and the compound biologic effectiveness (CBE) values for p-boronophenylalanine ({sup 10}BPA) and for 2,4-bis ({alpha},{beta}-dihydroxyethyl)-deutero-porphyrin IX ({sup 10}BOPP). Methods and Materials: Exponentially growing human colon carcinoma cells (ARO81-1) were distributed into the following groups: (1) BPA (10 ppm {sup 10}B) + neutrons, (2) BOPP (10 ppm {sup 10}B) + neutrons, (3) neutrons alone, and (4) gamma rays ({sup 60}Co source at 1 Gy/min dose-rate). Different irradiation times were used to obtain total absorbed doses between 0.3 and 5 Gy ({+-}10%) (thermal neutrons flux = 7.5 10{sup 9} n/cm{sup 2} sec). Results: The frequency of micronucleated binucleated cells and the number of micronuclei per micronucleated binucleated cells showed a dose-dependent increase until approximately 2 Gy. The response to gamma rays was significantly lower than the response to the other treatments (p < 0.05). The irradiations with neutrons alone and neutrons + BOPP showed curves that did not differ significantly from, and showed less DNA damage than, irradiation with neutrons + BPA. A decrease in the surviving fraction measured by 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromide (MTT) assay as a function of the absorbed dose was observed for all the treatments. The RBE and CBE factors calculated from cytokinesis block micronucleus (CBMN) and MTT assays were, respectively, the following: beam RBE: 4.4 {+-} 1.1 and 2.4 {+-} 0.6; CBE for BOPP: 8.0 {+-} 2.2 and 2.0 {+-} 1; CBE for BPA: 19.6 {+-} 3.7 and 3.5 {+-} 1.3. Conclusions: BNCT and gamma irradiations showed different genotoxic patterns. To our knowledge, these values represent the first experimental ones obtained for the RA-3 in a

  4. First evaluation of the biologic effectiveness factors of boron neutron capture therapy (BNCT) in a human colon carcinoma cell line.

    PubMed

    Dagrosa, Maria Alejandra; Crivello, Martín; Perona, Marina; Thorp, Silvia; Santa Cruz, Gustavo Alberto; Pozzi, Emiliano; Casal, Mariana; Thomasz, Lisa; Cabrini, Romulo; Kahl, Steven; Juvenal, Guillermo Juan; Pisarev, Mario Alberto

    2011-01-01

    DNA lesions produced by boron neutron capture therapy (BNCT) and those produced by gamma radiation in a colon carcinoma cell line were analyzed. We have also derived the relative biologic effectiveness factor (RBE) of the neutron beam of the RA-3- Argentine nuclear reactor, and the compound biologic effectiveness (CBE) values for p-boronophenylalanine ((10)BPA) and for 2,4-bis (α,β-dihydroxyethyl)-deutero-porphyrin IX ((10)BOPP). Exponentially growing human colon carcinoma cells (ARO81-1) were distributed into the following groups: (1) BPA (10 ppm (10)B) + neutrons, (2) BOPP (10 ppm (10)B) + neutrons, (3) neutrons alone, and (4) gamma rays ((60)Co source at 1 Gy/min dose-rate). Different irradiation times were used to obtain total absorbed doses between 0.3 and 5 Gy (±10%) (thermal neutrons flux = 7.5 10(9) n/cm(2) sec). The frequency of micronucleated binucleated cells and the number of micronuclei per micronucleated binucleated cells showed a dose-dependent increase until approximately 2 Gy. The response to gamma rays was significantly lower than the response to the other treatments (p < 0.05). The irradiations with neutrons alone and neutrons + BOPP showed curves that did not differ significantly from, and showed less DNA damage than, irradiation with neutrons + BPA. A decrease in the surviving fraction measured by 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromide (MTT) assay as a function of the absorbed dose was observed for all the treatments. The RBE and CBE factors calculated from cytokinesis block micronucleus (CBMN) and MTT assays were, respectively, the following: beam RBE: 4.4 ± 1.1 and 2.4 ± 0.6; CBE for BOPP: 8.0 ± 2.2 and 2.0 ± 1; CBE for BPA: 19.6 ± 3.7 and 3.5 ± 1.3. BNCT and gamma irradiations showed different genotoxic patterns. To our knowledge, these values represent the first experimental ones obtained for the RA-3 in a biologic model and could be useful for future experimental studies for the application of BNCT to colon

  5. Biodistribution of GB-10 (Na(2)(10)B10H10 compound for boron neutron capture therapy (BNCT) in an experimental model of oral cancer in the hamster cheek pouch.

    PubMed

    Heber, Elisa; Trivillin, Verónica A; Nigg, David; Kreimann, Erica L; Itoiz, Maria E; Rebagliati, Raúl J; Batistoni, Daniel; Schwint, Amanda E

    2004-04-01

    We previously proposed the hamster cheek pouch model of oral cancer for BNCT studies. We herein present the biodistribution of a non-toxic boron compound, GB-10 (Na(2)(10)B10H10), in this model to assess its potential for BNCT or BNCT enhanced Fast Neutron Therapy. We evaluated the uptake and retention of GB-10 in tumour and precancerous tissue and in potentially dose-limiting, clinically relevant normal tissues. Mean tumour boron concentration delivered by GB-10 (50mgB/kg) peaked to 77.7+/-28.0 ppm at 20min post-administration and remained at therapeutically useful values of 31.9+/-21.4 ppm at 3h. The clearance rate for normal tissues was faster than for tumour tissue. The consistently low brain and spinal cord values would preclude normal tissue toxicity. The uptake of GB-10 by precancerous tissue may be of potential use in the treatment of field cancerized areas. GB-10 was deposited homogeneously in different tumour areas, an asset when treating heterogenous tumours. The data suggests that the joint administration of BPA and GB-10 may improve the therapeutic efficacy of BNCT. GB-10 is a potential boron carrier for BNCT of head and neck tumours and for BNCT-FNT.

  6. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoshimasa; Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki; Kumagai, Masayoshi; Oba, Yojiro; Otake, Yoshie; Suzuki, Hiroshi

    2016-10-01

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  7. Characterizing a Model of Coronal Heating and Solar Wind Acceleration Based on Wave Turbulence.

    NASA Astrophysics Data System (ADS)

    Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M.

    2014-12-01

    Understanding the nature of coronal heating and solar wind acceleration is a key goal in solar and heliospheric research. While there have been many theoretical advances in both topics, including suggestions that they may be intimately related, the inherent scale coupling and complexity of these phenomena limits our ability to construct models that test them on a fundamental level for realistic solar conditions. At the same time, there is an ever increasing impetus to improve our spaceweather models, and incorporating treatments for these processes that capture their basic features while remaining tractable is an important goal. With this in mind, I will give an overview of our exploration of a wave-turbulence driven (WTD) model for coronal heating and solar wind acceleration based on low-frequency Alfvénic turbulence. Here we attempt to bridge the gap between theory and practical modeling by exploring this model in 1D HD and multi-dimensional MHD contexts. The key questions that we explore are: What properties must the model possess to be a viable model for coronal heating? What is the influence of the magnetic field topology (open, closed, rapidly expanding)? And can we simultaneously capture coronal heating and solar wind acceleration with such a quasi-steady formulation? Our initial results suggest that a WTD based formulation performs adequately for a variety of solar and heliospheric conditions, while significantly reducing the number of free parameters when compared to empirical heating and solar wind models. The challenges, applications, and future prospects of this type of approach will also be discussed.

  8. Spectral Performance of a Composite Single-Crystal Filtered Thermal Neutron Beam for BNCT Research at the University of Missouri

    SciTech Connect

    J. Brockman; D. W. Nigg; M. F. Hawthorne; C. McKibben

    2009-07-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The calculated and measured thermal neutron fluxes produced at the irradiation location are 9.6x108 and 8.8x108 neutrons/cm2-s, respectively. Calculated and measured cadmium ratios (Au foils) are 217 and 132. These results indicate a well-thermalized neutron spectrum with sufficient thermal neutron flux for a variety of small animal BNCT studies.

  9. Investigation on the reflector/moderator geometry and its effect on the neutron beam design in BNCT.

    PubMed

    Kasesaz, Y; Rahmani, F; Khalafi, H

    2015-12-01

    In order to provide an appropriate neutron beam for Boron Neutron Capture Therapy (BNCT), a special Beam Shaping Assembly (BSA) must be designed based on the neutron source specifications. A typical BSA includes moderator, reflector, collimator, thermal neutron filter, and gamma filter. In common BSA, the reflector is considered as a layer which covers the sides of the moderator materials. In this paper, new reflector/moderator geometries including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. It was found that the proposed configurations have a significant effect to improve the thermal to epithermal neutron flux ratio which is an important neutron beam parameter. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Validation of the scanning γ-ray telescope for in vivo dosimetry and boron measurements during BNCT

    NASA Astrophysics Data System (ADS)

    Verbakel, W. F. A. R.

    2001-12-01

    γ-ray telescope scans of a box phantom with inhomogeneous boron concentrations have proven the feasibility of in vivo measurements of different boron distributions in the head of a patient during boron neutron capture therapy (BNCT). Small structures with enhanced boron concentration can be reconstructed in a head phantom, even if the brain compartment of the phantom is surrounded by a skin layer with a ten times higher boron concentration. The motor-controlled telescope can scan the head/phantom, detecting boron and hydrogen prompt γ-rays emitted at neutron capture reactions with a two-dimensional spatial resolution of 14 mm full width at half maximum. For reconstruction of the boron concentrations from the measured γ-ray detection rates, a mathematical reconstruction algorithm is derived and discussed. Proper reconstruction requires position-dependent γ-ray measurements combined with treatment planning programme calculations of the thermal neutron distribution. In a head phantom, in which the brain and the skull (bulk) were represented using a homogeneous boron distribution of 5.2 +/- 0.5 ppm 10B, surrounded by a skin layer with a ten times higher boron concentration, the bulk concentration was reconstructed to 4.7 +/- 0.3 ppm 10B. Telescope scans along and perpendicular to the beam axis showed the influence of inhomogeneities with a high boron concentration such as skin and a simulated blood vessel, respectively with a low boron concentration such as white matter. The profiles of the boron and hydrogen γ-ray detection rates indicate how future patient measurements can be interpreted. In clinical trials, the telescope can then be used to investigate the averaged boron concentration in the bulk of a patient and local enhanced boron concentrations (e.g. in tumour tissue) in order to relate the measured boron dose distributions to the clinical effects of BNCT. Simultaneously, it can serve as quality control of the dosimetry during the irradiation.

  11. Optimization parameters for BDE in BNCT using near threshold 7Li(p,n)7Be direct neutrons.

    PubMed

    Bengua, Gerard; Kobayashi, Tooru; Tanaka, Kenichi; Nakagawa, Yoshinobu

    2004-11-01

    The dose contribution of (10)B(n,alpha)(7)Li reaction in BNCT using near threshold (7)Li(p,n)(7)Be direct neutrons can be increased through the use of materials referred to as boron-dose enhancers (BDE). In this paper, possible BDE optimization criteria were determined from the characteristics of candidate BDE materials namely (C(2)H(4))(n), (C(2)H(3)F)(n), (C(2)H(2)F(2))(n), (C(2)HF(3))(n), (C(2)D(4))(n), (C(2)F(4))(n), beryllium metal, graphite, D(2)O and (7)LiF. The treatable protocol depth (TPD) was used as the assessment index for evaluating the effect of these materials on the dose distribution in a medium undergoing BNCT using near threshold (7)Li(p,n)(7)Be direct neutrons. The maximum TPD (TPD(max)) did not exhibit an explicit dependence on material type as evidenced by its small range and arbitrary variations. The dependence of TPD on BDE thickness was influenced by the BDE material used as indicated by the sharply peaked TPD versus BDE thickness curves for materials with hydrogen compared to the broader curves obtained for those without hydrogen. The BDE thickness required to achieve TPD(max) (BDE(TPD(max))) were also found to be thinner for materials with hydrogen. The TPD(max), the dependence of TPD on BDE thickness, and the BDE(TPD(max)) were established as appropriate BDE optimization parameters. Based on these criteria and other practical considerations, the suitable choice as BDE among the candidate materials considered in this study for treatments involving tumors located at shallow depths would be (C(2)H(4))(n) while beryllium metal was judged as more appropriate for treatment of deep-seated tumors.

  12. Measurement of the 33S(n,α) cross-section at n_TOF(CERN): Applications to BNCT

    PubMed Central

    Sabaté-Gilarte, Marta; Praena, Javier; Porras, Ignacio; Quesada, José Manuel; Mastinu, Pierfrancesco

    2016-01-01

    Aim The main purpose of this work is to present a new (n,α) cross-section measurement for a stable isotope of sulfur, 33S, in order to solve existing discrepancies. Background 33S has been studied as a cooperating target for Boron Neutron Capture Therapy (BNCT) because of its large (n,α) cross-section in the epithermal neutron energy range, the most suitable one for BNCT. Although the most important evaluated databases, such as ENDF, do not show any resonances in the cross-section, experimental measurements which provided data from 10 keV to 1 MeV showed that the lowest-lying and strongest resonance of 33S(n,α) cross-section occurs at 13.5 keV. Nevertheless, the set of resonance parameters that describe such resonance shows important discrepancies (more than a factor of 2) between them. Materials and methods A new measurement of the 33S(n,α)30Si reaction cross-section was proposed to the ISOLDE and Neutron Time-of-Flight Experiments Committee of CERN. It was performed at n_TOF(CERN) in 2012 using MicroMegas detectors. Results In this work, we will present a brief overview of the experiment as well as preliminary results of the data analysis in the neutron energy range from thermal to 100 keV. These results will be taken into account to calculate the kerma-fluence factors corresponding to 33S in addition to 10B and those of a standard four-component ICRU tissue. Conclusions MCNP simulations of the deposited dose, including our experimental data, shows an important kerma rate enhancement at the surface of the tissue, mainly due to the presence of 33S. PMID:26933393

  13. Measurement of the (33)S(n,α) cross-section at n_TOF(CERN): Applications to BNCT.

    PubMed

    Sabaté-Gilarte, Marta; Praena, Javier; Porras, Ignacio; Quesada, José Manuel; Mastinu, Pierfrancesco

    2016-01-01

    The main purpose of this work is to present a new (n,α) cross-section measurement for a stable isotope of sulfur, (33)S, in order to solve existing discrepancies. (33)S has been studied as a cooperating target for Boron Neutron Capture Therapy (BNCT) because of its large (n,α) cross-section in the epithermal neutron energy range, the most suitable one for BNCT. Although the most important evaluated databases, such as ENDF, do not show any resonances in the cross-section, experimental measurements which provided data from 10 keV to 1 MeV showed that the lowest-lying and strongest resonance of (33)S(n,α) cross-section occurs at 13.5 keV. Nevertheless, the set of resonance parameters that describe such resonance shows important discrepancies (more than a factor of 2) between them. A new measurement of the (33)S(n,α)(30)Si reaction cross-section was proposed to the ISOLDE and Neutron Time-of-Flight Experiments Committee of CERN. It was performed at n_TOF(CERN) in 2012 using MicroMegas detectors. In this work, we will present a brief overview of the experiment as well as preliminary results of the data analysis in the neutron energy range from thermal to 100 keV. These results will be taken into account to calculate the kerma-fluence factors corresponding to (33)S in addition to (10)B and those of a standard four-component ICRU tissue. MCNP simulations of the deposited dose, including our experimental data, shows an important kerma rate enhancement at the surface of the tissue, mainly due to the presence of (33)S.

  14. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.

    PubMed

    Sztejnberg Gonçalves-Carralves, M L; Miller, M E

    2015-12-01

    Neutron generators based on inertial electrostatic confinement fusion were considered for the design of a neutron irradiation facility for explanted organ Boron Neutron Capture Therapy (BNCT) that could be installed in a health care center as well as in research areas. The chosen facility configuration is "irradiation chamber", a ~20×20×40 cm(3) cavity near or in the center of the facility geometry where samples to be irradiated can be placed. Neutron flux calculations were performed to study different manners for improving scattering processes and, consequently, optimize neutron flux in the irradiation position. Flux distributions were assessed through numerical simulations of several models implemented in MCNP5 particle transport code. Simulation results provided a wide spectrum of combinations of net fluxes and energy spectrum distributions. Among them one can find a group that can provide thermal neutron fluxes per unit of production rate in a range from 4.1·10(-4) cm(-2) to 1.6·10(-3) cm(-2) with epithermal-to-thermal ratios between 0.3% and 13% and fast-to-thermal ratios between 0.01% to 8%. Neutron generators could be built to provide more than 10(10) n s(-1) and, consequently, with an arrangement of several generators appropriate enough neutron fluxes could be obtained that would be useful for several BNCT-related irradiations and, eventually, for clinical practice.

  15. On isocentre adjustment and quality control in linear accelerator based radiosurgery with circular collimators and room lasers.

    PubMed

    Treuer, H; Hoevels, M; Luyken, K; Gierich, A; Kocher, M; Müller, R P; Sturm, V

    2000-08-01

    We have developed a densitometric method for measuring the isocentric accuracy and the accuracy of marking the isocentre position for linear accelerator based radiosurgery with circular collimators and room lasers. Isocentric shots are used to determine the accuracy of marking the isocentre position with room lasers and star shots are used to determine the wobble of the gantry and table rotation movement, the effect of gantry sag, the stereotactic collimator alignment, and the minimal distance between gantry and table rotation axes. Since the method is based on densitometric measurements, beam spot stability is implicitly tested. The method developed is also suitable for quality assurance and has proved to be useful in optimizing isocentric accuracy. The method is simple to perform and only requires a film box and film scanner for instrumentation. Thus, the method has the potential to become widely available and may therefore be useful in standardizing the description of linear accelerator based radiosurgical systems.

  16. A carborane-derivative "click" reaction under heterogeneous conditions for the synthesis of a promising lipophilic MRI/GdBNCT agent.

    PubMed

    Toppino, Antonio; Bova, Maria Elena; Geninatti Crich, Simonetta; Alberti, Diego; Diana, Eliano; Barge, Alessandro; Aime, Silvio; Venturello, Paolo; Deagostino, Annamaria

    2013-01-07

    In this study, the Huisgen reaction has been used to functionalise a carborane cage with a lipophilic moiety and a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) ligand to obtain a new Gd boron neutron-capture therapy (BNCT)/magnetic resonance imaging (MRI) agent. The introduction of the triazole units has been accomplished under both heterogeneous conditions, by the use of a Cu-supported ionic-liquid catalyst, and homogeneous conditions. The ability of the Gd complex of the synthesised ligand to form stable adducts with low-density lipoproteins (LDLs) has been evaluated and then MRI has been performed on tumour melanoma cells incubated in the presence of a Gd-complex/LDL imaging probe. It has been concluded that the high amount of intracellular boron necessary to perform BNCT can be reached even in the presence of a relatively low-boron-containing LDL concentration.

  17. Development and construction of a neutron beam line for accelerator-based boron neutron capture synovectomy.

    PubMed

    Gierga, D P; Yanch, J C; Shefer, R E

    2000-01-01

    A potential application of the 10B(n, alpha)7Li nuclear reaction for the treatment of rheumatoid arthritis, termed Boron Neutron Capture Synovectomy (BNCS), is under investigation. In an arthritic joint, the synovial lining becomes inflamed and is a source of great pain and discomfort for the afflicted patient. The goal of BNCS is to ablate the synovium, thereby eliminating the symptoms of the arthritis. A BNCS treatment would consist of an intra-articular injection of boron followed by neutron irradiation of the joint. Monte Carlo radiation transport calculations have been used to develop an accelerator-based epithermal neutron beam line for BNCS treatments. The model includes a moderator/reflector assembly, neutron producing target, target cooling system, and arthritic joint phantom. Single and parallel opposed beam irradiations have been modeled for the human knee, human finger, and rabbit knee joints. Additional reflectors, placed to the side and back of the joint, have been added to the model and have been shown to improve treatment times and skin doses by about a factor of 2. Several neutron-producing charged particle reactions have been examined for BNCS, including the 9Be(p,n) reaction at proton energies of 4 and 3.7 MeV, the 9Be(d,n) reaction at deuteron energies of 1.5 and 2.6 MeV, and the 7Li(p,n) reaction at a proton energy of 2.5 MeV. For an accelerator beam current of 1 mA and synovial boron uptake of 1000 ppm, the time to deliver a therapy dose of 10,000 RBEcGy ranges from 3 to 48 min, depending on the treated joint and the neutron producing charged particle reaction. The whole-body effective dose that a human would incur during a knee treatment has been estimated to be 3.6 rem or 0.75 rem, for 1000 ppm or 19,000 ppm synovial boron uptake, respectively, although the shielding configuration has not yet been optimized. The Monte Carlo design process culminated in the construction, installation, and testing of a dedicated BNCS beam line on the high

  18. Treatment of arteriovenous malformations with linear accelerator-based radiosurgery compared with Gamma Knife surgery.

    PubMed

    Orio, Peter; Stelzer, Keith J; Goodkin, Robert; Douglas, James G

    2006-12-01

    The authors sought to compare the outcomes of patients with arteriovenous malformations (AVMs) treated by Gamma Knife surgery (GKS) with those of patients treated by linear accelerator-based (LINAC) radiosurgery. One hundred and eighty-seven patients with AVMs were treated at our institution between 1992 and 2003. Ninety-one patients were treated with GKS and 96 patients were treated with LINAC radiosurgery. Patient and treatment characteristics in the two groups included the following. In the LINAC group, the median age was 33 years (range 9-66 years); the median dose was 16 Gy (70% isodose line); the median treated AVM volume was 5.5 cm3; and 46% of patients in this group were treated after hemorrhage. In the GKS group, the median age was 38 years (range 6-63 years); the median dose was 20 Gy (50% isodose line); the median treated AVM volume was 4.3 cm3; and 44% of patients in this group were treated after hemorrhage. Obliteration of AVMs was determined by performing computed tomography (CT) angiography and/or magnetic resonance (MR) angiography and angiography. Patient follow-up evaluation included obtaining an MR angiogram/MR image or CT angiogram at 6 months, at 1 year, and then annually thereafter. Angiography was performed to confirm obliteration when MR angiography and/or CT angiography no longer revealed evidence of an AVM. The 5-year estimated AVM obliteration rate was 66% in the entire patient group; the LINAC group was 60%; the GKS group was 72%; this difference was not statistically significant (p = 0.97). Twelve patients who underwent treatment with LINAC radiosurgery underwent retreatment with GKS and one was retreated with LINAC radiosurgery. The obliteration rate was 82%. Six patients treated with GKS were retreated with GKS, but the follow-up time is of short duration. Chronic toxicity occurred in 8% of both the GKS and the LINAC groups (p = 0.61). Posttreatment hemorrhage during the time of risk before AVM obliteration was 13% in the GKS group

  19. Linear Accelerator-Based Intensity-Modulated Total Marrow Irradiation Technique for Treatment of Hematologic Malignancies: A Dosimetric Feasibility Study

    SciTech Connect

    Yeginer, Mete; Roeske, John C.; Radosevich, James A.; Aydogan, Bulent

    2011-03-15

    Purpose: To investigate the dosimetric feasibility of linear accelerator-based intensity-modulated total marrow irradiation (IM-TMI) in patients with hematologic malignancies. Methods and Materials: Linear accelerator-based IM-TMI treatment planning was performed for 9 patients using the Eclipse treatment planning system. The planning target volume (PTV) consisted of all the bones in the body from the head to the mid-femur, except for the forearms and hands. Organs at risk (OAR) to be spared included the lungs, heart, liver, kidneys, brain, eyes, oral cavity, and bowel and were contoured by a physician on the axial computed tomography images. The three-isocenter technique previously developed by our group was used for treatment planning. We developed and used a common dose-volume objective method to reduce the planning time and planner subjectivity in the treatment planning process. Results: A 95% PTV coverage with the 99% of the prescribed dose of 12 Gy was achieved for all nine patients. The average dose reduction in OAR ranged from 19% for the lungs to 68% for the lenses. The common dose-volume objective method decreased the planning time by an average of 35% and reduced the inter- and intra- planner subjectivity. Conclusion: The results from the present study suggest that the linear accelerator-based IM-TMI technique is clinically feasible. We have demonstrated that linear accelerator-based IM-TMI plans with good PTV coverage and improved OAR sparing can be obtained within a clinically reasonable time using the common dose-volume objective method proposed in the present study.

  20. A noninvasive dose estimation system for clinical BNCT based on PG-SPECT--conceptual study and fundamental experiments using HPGe and CdTe semiconductor detectors.

    PubMed

    Kobayashi, T; Sakurai, Y; Ishikawa, M

    2000-09-01

    A noninvasive method for measuring the absorbed dose distribution during the administration of clinical boron neutron capture therapy (BNCT) using an online three-dimensional (3D) imaging system is presented. This system is designed to provide more accurate information for treatment planning and dosimetry. The single-photon emission computed tomography (SPECT) technique is combined with prompt gamma-ray analysis (PGA) to provide an ideal dose estimation system for BNCT. This system is termed PG-SPECT. The fundamental feasibility of the PG-SPECT system for BNCT is confirmed under the following conditions: (1) a voxel size of 1 x 1 x 1 cm3, comparable to the spatial resolution of our standard dosimetric technique using gold wire activation, where data are available for every 5-10 mm of wire length; (2) a reaction rate of 10B(n,alpha)7Li within the measurement volume is greater than 1.1 x l0(6) interactions/cm3/s, corresponding to a thermal neutron flux of 5 x 10(8) n/cm2/s and a 10B concentration of greater than 10 ppm for the deepest part of the tumor volume under typical BNCT clinical conditions; (3) statistical uncertainty of the count rate for 10B(n,alpha)7Li prompt gamma rays is 10% or less. The desirable characteristics of a detector for the PG-SPECT system were determined by basic experiments using both HPGe and CdTe semiconductor detectors. The CdTe semiconductor detector has the greatest potential for this system because of its compactness and simplicity of maintenance.

  1. Boron determination in liver tissue by combining quantitative neutron capture radiography (QNCR) and histological analysis for BNCT treatment planning at the TRIGA Mainz.

    PubMed

    Schütz, C; Brochhausen, C; Altieri, S; Bartholomew, K; Bortolussi, S; Enzmann, F; Gabel, D; Hampel, G; Kirkpatrick, C J; Kratz, J V; Minouchehr, S; Schmidberger, H; Otto, G

    2011-09-01

    The typical primary malignancies of the liver are hepatocellular carcinoma and cholangiocarcinoma, whereas colorectal liver metastases are the most frequently occurring secondary tumors. In many cases, only palliative treatment is possible. Boron neutron capture therapy (BNCT) represents a technique that potentially destroys tumor tissue selectively by use of externally induced, locally confined secondary particle irradiation. In 2001 and 2003, BNCT was applied to two patients with colorectal liver metastases in Pavia, Italy. To scrutinize the rationale of BNCT, a clinical pilot study on patients with colorectal liver metastases was carried out at the University of Mainz. The distribution of the (10)B carrier (p-borono-phenylalanine) in the liver and its uptake in cancerous and tumor-free tissue were determined, focusing on a potential correlation between the uptake of p-borono-phenylalanine and the biological characteristics of cancerous tissue. Samples were analyzed using quantitative neutron capture radiography of cryosections combined with histological analysis. Methodological aspects of the combination of these techniques and results from four patients enrolled in the study are presented that indicate that the uptake of p-borono-phenylalanine strongly depends on the metabolic activity of cells.

  2. Therapy region monitoring based on PET using 478 keV single prompt gamma ray during BNCT: A Monte Carlo simulation study.

    PubMed

    Jung, Joo-Young; Lu, Bo; Yoon, Do-Kun; Hong, Key Jo; Jang, HongSeok; Liu, Chihray; Suh, Tae Suk

    2016-04-01

    We confirmed the feasibility of using our proposed system to extract two different kinds of functional images from a positron emission tomography (PET) module by using an insertable collimator during boron neutron capture therapy (BNCT). Coincidence events from a tumor region that included boron particles were identified by a PET scanner before BNCT; subsequently, the prompt gamma ray events from the same tumor region were collected after exposure to an external neutron beam through an insertable collimator on the PET detector. Five tumor regions that contained boron particles and were located in the water phantom and in the BNCT system with the PET module were simulated with Monte Carlo simulation code. The acquired images were quantitatively analyzed. Based on the receiver operating characteristic (ROC) curves in the five boron regions, A, B, C, D, and E, the PET and single-photon images were 10.2%, 11.7%, 8.2% (center region), 12.6%, and 10.5%, respectively. We were able to acquire simultaneously PET and single prompt photon images for tumor regions monitoring by using an insertable collimator without any additional isotopes.

  3. National Biomedical Tracer Facility. Project definition study

    SciTech Connect

    Schafer, R.

    1995-02-14

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  4. Suitability of boron carriers for BNCT: accumulation of boron in malignant and normal liver cells after treatment with BPA, BSH and BA.

    PubMed

    Chou, F I; Chung, H P; Liu, H M; Chi, C W; Lui, W Y

    2009-07-01

    Hepatocellular carcinoma remains widely prevalent in tropical Africa and south-east Asia. At present, there are no effective treatments for hepatoma and its prognosis is extremely poor unless the tumor was diagnosed in an early stage and resected before metastasis. Therefore, boron neutron capture therapy (BNCT) may provide an alternative therapy for treatment of hepatocellular carcinoma. In this study, the intracellular concentrations of L-boronophenylalanine (BPA), sodium borocaptate (BSH) and boric acid (BA) were examined in human hepatoma HepG2 and liver Clone 9 cell cultures. With the use of 25 microgB/mL media of BPA, BSH and BA, the intracellular uptake of boron in HepG2 and Clone 9 cells was compared. The suitability of BPA, BSH and BA were further evaluated on the basis of organ-specific boron distribution in normal rat tissues. BPA, BSH and BA were administered via intraperitoneal injection into rats with corresponding boron concentrations of 7, 25, and 25mg/kg body weight, respectively. The accumulation rates of BPA, BSH and BA in HepG2 cells were higher than that of Clone 9 cells. Boron concentration in BPA, BSH and BA treated HepG2 cells were 1.8, 1.5, and 1.6-fold of Clone 9 cells at 4h, respectively. In both HepG2 and Clone 9 cells, although the concentration of boron in BPA-treated cells exceeded that in BA-treated ones, however, cells treated with BPA had similar surviving fraction as those treated with BA after neutron irradiation. The accumulation ratios of boron in liver, pancreas and kidney to boron in blood were 0.83, 4.16 and 2.47, respectively, in BPA treated rats, and 0.75, 0.35 and 2.89, respectively, in BSH treated rats at 3h after treatment. However, boron does not appear to accumulate specifically in soft tissues in BA treated rats. For in situ BNCT of hepatoma, normal organs with high boron concentration and adjacent to liver may be damaged in neutron irradiation. BPA showed high retention in pancreas and may not be a good drug for

  5. Reference field specification and preliminary beam selection strategy for accelerator-based GCR simulation.

    PubMed

    Slaba, Tony C; Blattnig, Steve R; Norbury, John W; Rusek, Adam; La Tessa, Chiara

    2016-02-01

    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities and possible biological considerations. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, a preliminary approach for selecting beams at NSRL to simulate the designated reference field is presented. This approach is not a final design for the GCR simulator, but rather a single step within a broader design strategy. It is shown that the beam selection methodology is tied directly to the reference environment, allows facility constraints to be incorporated, and may be adjusted to account for additional constraints imposed by biological or animal care considerations. The major biology questions are not addressed herein but are discussed in a companion paper published in the present issue of this journal. Drawbacks of the proposed methodology are discussed

  6. Reference field specification and preliminary beam selection strategy for accelerator-based GCR simulation

    NASA Astrophysics Data System (ADS)

    Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara

    2016-02-01

    The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities and possible biological considerations. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, a preliminary approach for selecting beams at NSRL to simulate the designated reference field is presented. This approach is not a final design for the GCR simulator, but rather a single step within a broader design strategy. It is shown that the beam selection methodology is tied directly to the reference environment, allows facility constraints to be incorporated, and may be adjusted to account for additional constraints imposed by biological or animal care considerations. The major biology questions are not addressed herein but are discussed in a companion paper published in the present issue of this journal. Drawbacks of the proposed methodology are discussed

  7. Facility Microgrids

    SciTech Connect

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  8. Accelerator-based research activities at “Centro Nacional de Aceleradores”, Seville (Spain)

    NASA Astrophysics Data System (ADS)

    Respaldiza, M. A.; Ager, F. J.; Carmona, A.; Ferrer, J.; García-León, M.; García-López, J.; García-Orellana, I.; Gómez-Tubío, B.; Morilla, Y.; Ontalba, M. A.; Ortega-Feliu, I.

    2008-05-01

    In February 1998, almost 10 years ago, the set-up of the first IBA (ion beam analysis) facility in Spain took place with the arrival of a 3 MV tandem accelerator [J. García-López, F.J. Ager, M. Barbadillo-Rank, F.J. Madrigal, M.A. Ontalba, M.A. Respaldiza, M.D. Ynsa, Nucl. Instr. and Meth. B 161-163 (2000) 1137]. Since then, an intensive research program using IBA techniques has been carried out. Subsequently, a cyclotron for 18 MeV protons has been also installed at the "Centro Nacional de Aceleradores" (CNA), devoted mainly to isotope production for PET (positron emission tomography) techniques, but possibly applied to material analysis and damage studies on a dedicated beam line. Moreover, a 1 MV tandem has been recently installed for AMS (accelerator mass spectrometry) 14C dating and environmental research with other isotopes. In the present paper we describe the new facilities and the developments of the 3 MV tandem beam lines occurred during the past years, as well as some examples of the most recent research activities in our Center in the fields of Material Science, Archaeometry, Biomedicine and Environment.

  9. Deuteron nuclear data for the design of accelerator-based neutron sources: Measurement, model analysis, evaluation, and application

    NASA Astrophysics Data System (ADS)

    Watanabe, Yukinobu; Kin, Tadahiro; Araki, Shouhei; Nakayama, Shinsuke; Iwamoto, Osamu

    2017-09-01

    A comprehensive research program on deuteron nuclear data motivated by development of accelerator-based neutron sources is being executed. It is composed of measurements of neutron and gamma-ray yields and production cross sections, modelling of deuteron-induced reactions and code development, nuclear data evaluation and benchmark test, and its application to medical radioisotopes production. The goal of this program is to develop a state-of-the-art deuteron nuclear data library up to 200 MeV which will be useful for the design of future (d,xn) neutron sources. The current status and future plan are reviewed.

  10. Nuclear data relevant to shield design of FMIT facility

    SciTech Connect

    Carter, L.L.; Morford, R.J.; Wilcox, A.D.

    1980-01-01

    Nuclear data requirements are reviewed for the design of the Fusion Materials Irradiation Test (FMIT) facility. This accelerator-based facility, now in the early stages of construction at Hanford, will provide high fluences in a fusion-like radiation environment for the testing of materials. The nuclear data base required encompasses the entire range of neutron energies from thermal to 50 MeV. In this review, we consider neutron source terms, cross sections for thermal and bulk shield design, and neutron activation for the facility.

  11. Cherenkov radiation in a surface wave accelerator based on silicon carbide (SWABSiC)

    NASA Astrophysics Data System (ADS)

    Wang, Tianhong; Lai, Kueifu; Khudik, Vladimir N.; Shvets, Gennady

    2017-03-01

    We report on theoretical investigations of Cherenkov-type emission of surface phonon polaritons (SPhPs) by relativistic electron bunches. The polaritons are confined by a planar waveguide comprised of two SiC slabs separated by a vacuum gap. The SPhPs are generated in the reststrahlen band, where the dielectric permittivity of SiC is negative. Two surface modes are analyzed: the accelerating (symmetric) and the deflecting (anti-symmetric) wakes. Both form Cherenkov cones that exhibit rapid spatial oscillations and beats behind the moving charge. Moreover, the accelerating mode forms a reversed Cherenkov radiation cone due the negative group velocity for sufficiently small gaps. The wakefield acceleration of electron bunches inside the structure is also discussed, as well as our recent experimental progress in propagating the electron beam through the structure at the Advanced Test Facility (ATF) that resulted in > 12% beam transmission.

  12. An accelerator-based neutron microbeam system for studies of radiation effects.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Bigelow, Alan W; Akselrod, Mark S; Sykora, Jeff G; Brenner, David J

    2011-06-01

    A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies. The neutron microbeam design here is based on the existing charged particle microbeam technology at the RARAF. The principle of the neutron microbeam is to use the proton beam with a micrometre-sized diameter impinging on a very thin lithium fluoride target system. From the kinematics of the ⁷Li(p,n)⁷Be reaction near the threshold of 1.881 MeV, the neutron beam is confined within a narrow, forward solid angle. Calculations show that the neutron spot using a target with a 17-µm thick gold backing foil will be <20 µm in diameter for cells attached to a 3.8-µm thick propylene-bottomed cell dish in contact with the target backing. The neutron flux will roughly be 2000 per second based on the current beam setup at the RARAF singleton accelerator. The dose rate will be about 200 mGy min⁻¹. The principle of this neutron microbeam system has been preliminarily tested at the RARAF using a collimated proton beam. The imaging of the neutron beam was performed using novel fluorescent nuclear track detector technology based on Mg-doped luminescent aluminum oxide single crystals and confocal laser scanning fluorescent microscopy.

  13. An accelerator-based neutron microbeam system for studies of radiation effects

    PubMed Central

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A.; Bigelow, Alan W.; Akselrod, Mark S.; Sykora, Jeff G.; Brenner, David J.

    2011-01-01

    A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies. The neutron microbeam design here is based on the existing charged particle microbeam technology at the RARAF. The principle of the neutron microbeam is to use the proton beam with a micrometre-sized diameter impinging on a very thin lithium fluoride target system. From the kinematics of the 7Li(p,n)7Be reaction near the threshold of 1.881 MeV, the neutron beam is confined within a narrow, forward solid angle. Calculations show that the neutron spot using a target with a 17-µm thick gold backing foil will be <20 µm in diameter for cells attached to a 3.8-µm thick propylene-bottomed cell dish in contact with the target backing. The neutron flux will roughly be 2000 per second based on the current beam setup at the RARAF singleton accelerator. The dose rate will be about 200 mGy min−1. The principle of this neutron microbeam system has been preliminarily tested at the RARAF using a collimated proton beam. The imaging of the neutron beam was performed using novel fluorescent nuclear track detector technology based on Mg-doped luminescent aluminum oxide single crystals and confocal laser scanning fluorescent microscopy. PMID:21131327

  14. One stone kills three birds: novel boron-containing vesicles for potential BNCT, controlled drug release, and diagnostic imaging.

    PubMed

    Chen, Gaojian; Yang, Jingying; Lu, Gang; Liu, Pi Chu; Chen, Qianjin; Xie, Zuowei; Wu, Chi

    2014-10-06

    A new conjugate polymer was prepared by an efficient thiol-ene coupling of one carborane with a linear PEG chain (Mn = 2,000 g/mol), and each carborane was further labeled with a fluorescence rhodamine dye. Such a novel polymer can associate in water to form narrowly distributed spherical vesicles, which were characterized using a range of methods, including laser light scattering, confocal laser scanning microscopy, and TEM. The vesicular structure is potentially multifunctional in biomedical applications, namely, serving as a boron neutron capture therapy (BNCT) agent, a hydrophilic drug carrier, and a diagnostic imaging fluorescent probe. As expected, either cleaving the thiol-ene linked PEO chain by esterase or destroying carborane by neutron irradiation results in a dismantlement of such a vesicle structure to release its encapsulated drugs. Its potential biomedical applications have been evaluated in vitro and in vivo. Our preliminary results reveal that these small vesicles can be quickly taken up by cells and have an enhanced stability in the bloodstream so that their targeting to specific cancer cells becomes feasible.

  15. Coarse-scaling adjustment of fine-group neutron spectra for epithermal neutron beams in BNCT using multiple activation detectors

    NASA Astrophysics Data System (ADS)

    Liu, Yuan-Hao; Nievaart, Sander; Tsai, Pi-En; Liu, Hong-Ming; Moss, Ray; Jiang, Shiang-Huei

    2009-01-01

    In order to provide an improved and reliable neutron source description for treatment planning in boron neutron capture therapy (BNCT), a spectrum adjustment procedure named coarse-scaling adjustment has been developed and applied to the neutron spectrum measurements of both the Tsing Hua Open-pool Reactor (THOR) epithermal neutron beam in Taiwan and the High Flux Reactor (HFR) in The Netherlands, using multiple activation detectors. The coarse-scaling adjustment utilizes a similar idea as the well-known two-foil method, which adjusts the thermal and epithermal neutron fluxes according to the Maxwellian distribution for thermal neutrons and 1/ E distribution over the epithermal neutron energy region. The coarse-scaling adjustment can effectively suppress the number of oscillations appearing in the adjusted spectrum and provide better smoothness. This paper also presents a sophisticated 9-step process utilizing twice the coarse-scaling adjustment which can adjust a given coarse-group spectrum into a fine-group structure, i.e. 640 groups, with satisfactory continuity and excellently matched reaction rates between measurements and calculation. The spectrum adjustment algorithm applied in this study is the same as the well-known SAND-II.

  16. Biokinetic analysis of tissue boron (¹⁰B) concentrations of glioma patients treated with BNCT in Finland.

    PubMed

    Koivunoro, H; Hippeläinen, E; Auterinen, I; Kankaanranta, L; Kulvik, M; Laakso, J; Seppälä, T; Savolainen, S; Joensuu, H

    2015-12-01

    A total of 98 patients with glioma were treated with BPA-F-mediated boron neutron capture therapy (BNCT) in Finland from 1999 to 2011. Thirty-nine (40%) had undergone surgery for newly diagnosed glioblastoma and 59 (60%) had malignant glioma recurrence after surgery. In this study we applied a closed 3-compartment model based on dynamic (18)F-BPA-PET studies to estimate the BPA-F concentrations in the tumor and the normal brain with time. Altogether 22 patients with recurrent glioma, treated within the context of a clinical trial, were evaluated using their individual measured whole blood (10)B concentrations as an input to the model. The delivered radiation doses to tumor and the normal brain were recalculated based on the modeled (10)B concentrations in the tissues during neutron irradiation. The model predicts from -7% to +29% (average, +11%) change in the average tumor doses as compared with the previously estimated doses, and from 17% to 61% (average, 36%) higher average normal brain doses than previously estimated due to the non-constant tumor-to-blood concentration ratios and considerably higher estimated (10)B concentrations in the brain at the time of neutron irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Investigating a cyclotron HM-30 based neutron source for BNCT of deep-seated tumors by using shifting method

    NASA Astrophysics Data System (ADS)

    Suharyana; Riyatun; Octaviana, E. F.

    2016-11-01

    We have successfully proposed a simulation of a neutron beam-shaping assembly using MCNPX Code. This simulation study deals with designing a compact, optimized, and geometrically simple beam shaping assembly for a neutron source based on a proton cyclotron for BNCT purpose. Shifting method was applied in order to lower the fast neutron energy to the epithermal energy range by choosing appropriate materials. Based on a set of MCNPX simulations, it has been found that the best materials for beam shaping assembly are 3 cm Ni layered with 7 cm Pb as the reflector and 13 cm AlF3 the moderator. Our proposed beam shaping assembly configuration satisfies 2 of 5 of the IAEA criteria, namely the epithermal neutron flux 1.25 × 109 n.cm-2 s-1 and the gamma dose over the epithermal neutron flux is 0.18×10 -13 Gy.cm 2 n -1. However, the ratio of the fast neutron dose rate over neutron epithermal flux is still too high. We recommended that the shifting method must be accompanied by the filter method to reduce the fast neutron flux.

  18. Monte-Carlo calculations for the development of a BNCT neutron source at the Kyiv Research Reactor.

    PubMed

    Gritzay, O O; Kalchenko, O I; Klimova, N A; Razbudey, V F; Sanzhur, A I; Binney, S E

    2004-11-01

    The results presented in this paper display our continuing steps toward development of a neutron source with parameters required by boron neutron capture therapy (BNCT) at the Kyiv Research Reactor (KRR). The purpose of this work was: 1. calculation of the neutron flux which can be achieved at the greatest possible approach of a patient to the reactor core; 2. analysis of the influence of a nickel collimator and a nickel-60 filter on the characteristics of the neutron beam; 3. creation and validation of the MCNP calculational pattern for an actual core fuel load in the KRR. Results of calculations were carried out by means of the MCNP4C code included: 1. An epithermal neutron flux of 3x10(9)-5x10(9)neutron/cm(2)s with an epithermal-to-fast flux ratio of 80-230 could be obtained at the KRR, using a natural nickel layer on the interior borated polyethylene collimator wall and a (60)Ni filter. 2. Use of the (60)Ni filter may be useful to increase the ratio epithermal-to-fast flux without a substantial decrease in the magnitude of the epithermal neutron flux. 3. The MCNP model proposed in this paper could also be useful for reactor safety calculations.

  19. Rendezvous facilities

    SciTech Connect

    Gehani, N.H.; Roome, W.D.

    1988-11-01

    The concurrent programming facilities in both Concurrent C and the Ada language are based on the rendezvous concept. Although these facilities are similar, there are substantial differences. Facilities in Concurrent C were designed keeping in perspective the concurrent programming facilities in the Ada language and their limitations. Concurrent C facilities have also been modified as a result of experience with its initial implementations. In this paper, the authors compare the concurrent programming facilities in Concurrent C and Ada, and show that it is easier to write a variety of concurrent programs in Concurrent C than in Ada.

  20. Acceleration-based joint stability parameters for total knee arthroplasty that correspond with patient-reported instability.

    PubMed

    Roberts, Dustyn; Khan, Humera; Kim, Joo H; Slover, James; Walker, Peter S

    2013-10-01

    There is no universally accepted definition of human joint stability, particularly in nonperiodic general activities of daily living. Instability has proven to be a difficult parameter to define and quantify, since both spatial and temporal measures need to be considered to fully characterize joint stability. In this preliminary study, acceleration-based parameters were proposed to characterize the joint stability. Several time-statistical parameters of acceleration and jerk were defined as potential stability measures, since anomalous acceleration or jerk could be a symptom of poor control or stability. An inertial measurement unit attached at the level of the tibial tubercle of controls and patients following total knee arthroplasty was used to determine linear acceleration of the knee joint during several activities of daily living. The resulting accelerations and jerks were compared with patient-reported instability as determined through a standard questionnaire. Several parameters based on accelerations and jerks in the anterior/posterior direction during the step-up/step-down activity were significantly different between patients and controls and correlated with patient reports of instability in that activity. The range of the positive to negative peak acceleration and infinity norm of acceleration, in the anterior/posterior direction during the step-up/step-down activity, proved to be the best indicators of instability. As time derivatives of displacement, these acceleration-based parameters represent spatial and temporal information and are an important step forward in developing a definition and objective quantification of human joint stability that can complement the subjective patient report.

  1. Preliminary study of acceleration based sensor to record nile tilapia (Oreochromis niloticus) feeding behavior at water surface

    NASA Astrophysics Data System (ADS)

    Subakti, Aji; Khotimah, Zarah F.; Darozat, Fajar M.

    2017-01-01

    In this preliminary study, the acceleration based sensor was developed to monitor the activity of Nile tilapia (Oreochromis niloticus) feeding behavior at the water surface. This study was conducted for three weeks in a fish pond with 40 m2 in size, stocked with 850 fingerlings of Nile tilapia strain Nirwana-2 (average biomass of 13 g, fed four times a day at 8 am, 12 pm, 4 pm, and 8 pm). The acceleration sensor system was installed floating in the pond and was designed in a way so that the xz plane of the sensor will be parallel with water surface, while the y-axis will be pointing downward. By sensing the acceleration caused by the surface wave, the activities of fish near surface water could be monitored. The result showed that there were three distinctive patterns could be observed which was related to the feeding activity of fish. Generally, it can be concluded that this acceleration based sensor system can be integrated with automatic feeder machine, in particular by analyzing the recorded patter, it is possible to monitor when the fish stop eating, and so the right amount of feed could be given to the fish.

  2. An accelerator based fusion-product source for development of inertial confinement fusion nuclear diagnostics.

    PubMed

    McDuffee, S C; Frenje, J A; Séguin, F H; Leiter, R; Canavan, M J; Casey, D T; Rygg, J R; Li, C K; Petrasso, R D

    2008-04-01

    A fusion-product source, utilizing a 150 kV Cockraft-Walton linear accelerator, has been refurbished to provide a reliable nuclear diagnostic development tool to the national inertial confinement fusion (ICF) research program. The accelerator is capable of routinely generating DD reaction rates at approximately 10(7)/s when using a 150 kV, 150 microA deuterium (D) beam onto an erbium (Er) or titanium (Ti) target doped with D, and D(3)He reaction rates at approximately 5 x 10(5)/s when using a using a 120 kV, approximately 100 microA D beam onto a Er or Ti target doped with (3)He. The new accelerator is currently being used in a number of projects related to the national ICF program at the OMEGA Laser Fusion Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], which includes the wedge range filter charged-particle spectrometry program [F. H. Seguin et al., Rev. Sci Instrum. 75, 3520 (2004)] and the magnetic recoil neutron spectrometer [J. A. Frenje et al., Rev. Sci. Instrum. 72, 854 (2001)].

  3. The relationship between contrast, resolution and detectability in accelerator-based fast neutron radiography

    SciTech Connect

    Ambrosi, R. M.; Watterson, J. I. W.

    1999-06-10

    Fast neutron radiography as a method for non destructive testing is a fast growing field of research. At the Schonland Research Center for Nuclear Sciences we have been engaged in the formulation of a model for the physics of image formation in fast neutron radiography (FNR). This involves examining all the various factors that affect image formation in FNR by experimental and Monte Carlo methods. One of the major problems in the development of a model for fast neutron radiography is the determination of the factors that affect image contrast and resolution. Monte Carlo methods offer an ideal tool for the determination of the origin of many of these factors. In previous work the focus of these methods has been the determination of the scattered neutron field in both a scintillator and a fast neutron radiography facility. As an extension of this work MCNP has been used to evaluate the role neutron scattering in a specimen plays in image detectability. Image processing of fast neutron radiographs is a necessary method of enhancing the detectability of features in an image. MCNP has been used to determine the part it can play in indirectly improving image resolution and aiding in image processing. The role noise plays in fast neutron radiography and its impact on image reconstruction has been evaluated. All these factors aid in the development of a model describing the relationship between contrast, resolution and detectability.

  4. SU-E-T-124: Anthropomorphic Phantoms for Confirmation of Linear Accelerator Based Small Animal Irradiation

    SciTech Connect

    Perks, J; Benedict, S; Lucero, S

    2015-06-15

    Purpose: To document the support of radiobiological small animal research by a modern radiation oncology facility. This study confirms that a standard, human use linear accelerator can cover the range of experiments called for by researchers performing animal irradiation. A number of representative, anthropomorphic murine phantoms were made. The phantoms confirmed the small field photon and electron beams dosimetry validated the use of the linear accelerator for rodents. Methods: Laser scanning a model, CAD design and 3D printing produced the phantoms. The phantoms were weighed and CT scanned to judge their compatibility to real animals. Phantoms were produced to specifically mimic lung, gut, brain, and othotopic lesion irradiations. Each phantom was irradiated with the same protocol as prescribed to the live animals. Delivered dose was measured with small field ion chambers, MOS/FETs or TLDs. Results: The density of the phantom material compared to density range across the real mice showed that the printed material would yield sufficiently accurate measurements when irradiated. The whole body, lung and gut irradiations were measured within 2% of prescribed doses with A1SL ion chamber. MOSFET measurements of electron irradiations for the orthotopic lesions allowed refinement of the measured small field output factor to better than 2% and validated the immunology experiment of irradiating one lesion and sparing another. Conclusion: Linacs are still useful tools in small animal bio-radiation research. This work demonstrated a strong role for the clinical accelerator in small animal research, facilitating standard whole body dosing as well as conformal treatments down to 1cm field. The accuracy of measured dose, was always within 5%. The electron irradiations of the phantom brain and flank tumors needed adjustment; the anthropomorphic phantoms allowed refinement of the initial output factor measurements for these fields which were made in a large block of solid water.

  5. Linear Accelerator-Based Radiosurgery Alone for Arteriovenous Malformation: More Than 12 Years of Observation

    SciTech Connect

    Matsuo, Takayuki Kamada, Kensaku; Izumo, Tsuyoshi; Hayashi, Nobuyuki; Nagata, Izumi

    2014-07-01

    Purpose: Although radiosurgery is an accepted treatment method for intracranial arteriovenous malformations (AVMs), its long-term therapeutic effects have not been sufficiently evaluated, and many reports of long-term observations are from gamma-knife facilities. Furthermore, there are few reported results of treatment using only linear accelerator (LINAC)-based radiosurgery (LBRS). Methods and Materials: Over a period of more than 12 years, we followed the long-term results of LBRS treatment performed in 51 AVM patients. Results: The actuarial obliteration rates, after a single radiosurgery session, at 3, 5, 10, and 15 years were 46.9%, 54.0%, 64.4%, and 68.0%, respectively; when subsequent radiosurgeries were included, the rates were 46.9%, 61.3%, 74.2%, and 90.3%, respectively. Obliteration rates were significantly related to target volumes ≥4 cm{sup 3}, marginal doses ≥12 Gy, Spetzler-Martin grades (1 vs other), and AVM scores ≥1.5; multivariate analyses revealed a significant difference for target volumes ≥4 cm{sup 3}. The postprocedural actuarial symptomatic radiation injury rates, after a single radiation surgery session, at 5, 10, and 15 years were 12.3%, 16.8%, and 19.1%, respectively. Volumes ≥4 cm{sup 3}, location (lobular or other), AVM scores ≥1.5, and the number of radiosurgery were related to radiation injury incidence; multivariate analyses revealed significant differences associated with volumes ≥4 cm{sup 3} and location (lobular or other). Conclusions: Positive results can be obtained with LBRS when performed with a target volume ≤4 cm{sup 3}, an AVM score ≤1.5, and ≥12 Gy radiation. Bleeding and radiation injuries may appear even 10 years after treatment, necessitating long-term observation.

  6. Accelerator-based radiation sources for next-generation radiobiological research

    NASA Astrophysics Data System (ADS)

    DeVeaux, Linda C.; Wells, Douglas P.; Hunt, Alan; Webb, Tim; Beezhold, Wendland; Harmon, J. Frank

    2006-06-01

    The Idaho Accelerator Center (IAC) of Idaho State University has developed a unique radiation research facility to answer next-generation radiobiological questions. The IAC has 10 operating research accelerators. These include continuously delivered radiation beams such as a 950 keV electron beam and a 2 MeV light-ion Van de Graaff. The IAC also has a number of pulsed electron linacs which range in energy from 4 to 40 MeV. The most intense amongst them deliver peak dose rates greater than 10 12 Gy/s. The operational flexibility of pulsed electron linacs allows control of peak and average dose rate, pulse separation and total dose over many orders of magnitude in these parameters. These high dose rates also allow delivery of large doses on time scales that are very small when compared to biological responses. The spectrum of particle beams that the IAC can deliver includes alphas, protons, neutrons, electrons (betas), and gammas (X-rays). Current radiobiological research at the IAC is focused upon radiation effects in unicellular organisms. The effectiveness of extremely high dose rate electron irradiation for the neutralization of microbes is being investigated. Concurrently, we are characterizing the survival mechanisms employed by microbes when exposed to these extremely high doses and dose rates. We have isolated strains from several diverse species that show increased radiation-resistance over normal populations. In addition, we were the first to demonstrate radiation-induced Bystander effects in unicellular organisms. Because of the numerous and diverse accelerators at the IAC, these and many other novel radiobiological investigations are readily attainable.

  7. Boron Neutron Capture Therapy for HER2+ breast cancers: A feasibility study evaluating BNCT for potential role in breast conservation therapies

    NASA Astrophysics Data System (ADS)

    Jenkins, Peter Anthony

    A novel Boron Neutron Capture Therapy (BNCT) regimen for the treatment of HER2+ breast cancers has been proposed as an alternative to whole breast irradiation for breast conservation therapy patients. The proposed therapy regimen is based on the assumed production of boron delivery agents that would be synthesized from compounds of Trastuzumab (Herceptin ®) and oligomeric phosphate diesters (OPDs). The combination of the anti-HER2 monoclonal antibody and the high boron loading capability of OPDs has led to the assumption that boron could be delivered to the HER2+ cancer cells at Tumor to Healthy Tissue ratios (T:H) of up to 35:1 and boron concentrations above 50 μg/g. This significantly increased boron delivery efficiency has opened new BNCT possibilities. This proof of concept study examined treatment parameters derived as the results in previous efforts in the context of patient-specific geometry and compared calculated dose results to those observed during actual patient therapy. These results were based on dose calculations performed with a set of calculated Kerma coefficients derived from tissues specific to the regions of interest for breast cancer. A comparison was made of the dose to the tumor region, the patient's skin, and the peripheral organs. The results of this study demonstrated that, given the performance of the proposed boron delivery agent, the BNCT treatment regimen is feasible. The feasibility is based on the findings that the equivalent dose could be delivered to the treatment volume with less dose to the skin and peripheral organs. This is anticipated to improve the treatment outcomes by maintaining local control of tumor cells while reducing dose to healthy tissues.

  8. L-DOPA Preloading Increases the Uptake of Borophenylalanine in C6 Glioma Rat Model: A New Strategy to Improve BNCT Efficacy

    SciTech Connect

    Capuani, Silvia Gili, Tommaso; Bozzali, Marco; Russo, Salvatore; Porcari, Paola; Cametti, Cesare; D'Amore, Emanuela; Colasanti, Marco; Venturini, Giorgio; Maraviglia, Bruno; Lazzarino, Giuseppe; Pastore, Francesco S.

    2008-10-01

    Purpose: Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on {sup 10}B(n,{alpha}){sup 7}Li reaction, for the treatment of malignant gliomas. One of the main limitations for BNCT effectiveness is the insufficient intake of {sup 10}B nuclei in the tumor cells. This work was aimed at investigating the use of L-DOPA as a putative enhancer for {sup 10}B-drug 4-dihydroxy-borylphenylalanine (BPA) uptake in the C6-glioma model. The investigation was first performed in vitro and then extended to the animal model. Methods and Materials: BPA accumulation in C6-glioma cells was assessed using radiowave dielectric spectroscopy, with and without L-DOPA preloading. Two L-DOPA incubation times (2 and 4 hours) were investigated, and the corresponding effects on BPA accumulation were quantified. C6-glioma cells were also implanted in the brain of 32 rats, and tumor growth was monitored by magnetic resonance imaging. Rats were assigned to two experimental branches: (1) BPA administration; (2) BPA administration after pretreatment with L-DOPA. All animals were sacrificed, and assessments of BPA concentrations in tumor tissue, normal brain, and blood samples were performed using high-performance liquid chromatography. Results: L-DOPA preloading induced a massive increase of BPA concentration in C6-glioma cells only after a 4-hour incubation. In the animal model, L-DOPA pretreatment produced a significantly higher accumulation of BPA in tumor tissue but not in normal brain and blood samples. Conclusions: This study suggests the potential use of L-DOPA as enhancer for BPA accumulation in malignant gliomas eligible for BNCT. L-DOPA preloading effect is discussed in terms of membrane transport mechanisms.

  9. Design study of multi-imaging plate system for BNCT irradiation field at Kyoto university reactor.

    PubMed

    Tanaka, Kenichi; Sakurai, Yoshinori; Kajimoto, Tsuyoshi; Tanaka, Hiroki; Takata, Takushi; Endo, Satoru

    2016-09-01

    The converter configuration for a multi-imaging plate system was investigated for the application of quality assurance in the irradiation field profile for boron neutron capture therapy. This was performed by the simulation calculation using the PHITS code in the fields at the Heavy Water Neutron Irradiation Facility of Kyoto University Reactor. The converter constituents investigated were carbon for gamma rays, and polyethylene with and without LiF at varied (6)Li concentration for thermal, epithermal, and fast neutrons. Consequently, potential combinations of the converters were found for two components, gamma rays and thermal neutrons, for the standard thermal neutron mode and three components of gamma rays, epithermal neutrons, and thermal or fast neutrons, for the standard mixed or epithermal neutron modes, respectively.

  10. RADIATION DOSIMETRY IN THE BNCT PATIENT TREATMENT ROOM AT THE BMRR.

    SciTech Connect

    HOLDEN, N.E.; RECINIELLO, R.N.; HU, J.-P.

    2005-05-08

    The Medical Research Reactor at the Brookhaven National Laboratory (BMRR) was a heterogeneous, tank type, light water cooled and moderated, graphite reflected reactor, which was operated on demand at a power level up to 3 mega-watts (MW) for medical and biological research [1]. The reactor first went critical on March 15, 1959, with 17 fresh fuel elements (2.52 kg uranium-235 in a total of 2.7 kg uranium) in the center core. The BMRR had two treatment rooms on opposite sides of the core. It had a predominately thermal neutron beam in the Thermal Neutron Irradiation Facility (TNE) on the west side of the core. By early 1990, a redesigned beam line had a predominately epithermal neutron beam in the Epithermal Neutron Irradiation Facility (ENIF) on the east side of the core [2]. The ENP was approximately 11 feet by 21 feet in size with its focal point consisting of a bismuth plate mounted in the wall adjacent to the reactor shield about 36 inches above the floor. The beam originated at a shutter constructed of 0.75 inch steel filled with concrete and weighing {approx}21 tons. Access to the ENIF was through a pair of hand operated steel shielding doors, each 42 inches wide, 84 inches high and 5 inches thick. The inner door had a 4-inch thick layer of paraffin on the side facing the reactor. The doors 5000 pounds weighed each. Additional shielding material had been added to the entire beam port at reactor wall within the ENIF. The shielding material consisted of 2-inch thick polyethylene sheets, which were impregnated with 95%-enriched {sup 6}Li in lithium carbonate (Li{sub 2}CO{sub 3}). The shielding sheets around the port face were designed to allow the insertion of a variety of different beam collimators.

  11. Accelerator-based analytical technique in the evaluation of some Nigeria’s natural minerals: Fluorite, tourmaline and topaz

    NASA Astrophysics Data System (ADS)

    Olabanji, S. O.; Ige, O. A.; Mazzoli, C.; Ceccato, D.; Akintunde, J. A.; De Poli, M.; Moschini, G.

    2005-10-01

    For the first time, the complementary accelerator-based analytical technique of PIXE and electron microprobe analysis (EMPA) were employed for the characterization of some Nigeria's natural minerals namely fluorite, tourmaline and topaz. These minerals occur in different areas in Nigeria. The minerals are mainly used as gemstones and for other scientific and technological applications and therefore are very important. There is need to characterize them to know the quality of these gemstones and update the geochemical data on them geared towards useful applications. PIXE analysis was carried out using the 1.8 MeV collimated proton beam from the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro, Padova, Italy. The novel results which show many elements at different concentrations in these minerals are presented and discussed.

  12. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices.

    PubMed

    Hartwig, Zachary S; Barnard, Harold S; Lanza, Richard C; Sorbom, Brandon N; Stahle, Peter W; Whyte, Dennis G

    2013-12-01

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (~1 m), high-current (~1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields--in between plasma shots--to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ~5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  13. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices

    NASA Astrophysics Data System (ADS)

    Hartwig, Zachary S.; Barnard, Harold S.; Lanza, Richard C.; Sorbom, Brandon N.; Stahle, Peter W.; Whyte, Dennis G.

    2013-12-01

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (˜1 m), high-current (˜1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields - in between plasma shots - to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ˜5 μm into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  14. Initial clinical experience with image-guided linear accelerator-based spinal radiosurgery for treatment of benign nerve sheath tumors.

    PubMed

    Selch, Michael T; Lin, Kevin; Agazaryan, Nzhde; Tenn, Steve; Gorgulho, Alessandra; DeMarco, John J; DeSalles, Antonio A F

    2009-12-01

    Stereotactic radiosurgery has proven a safe and effective treatment of cranial nerve sheath tumors. A similar approach should be successful for histologically identical spinal nerve sheath tumors. The preliminary results of linear accelerator-based spinal radiosurgery were retrospectively reviewed for a group of 25 nerve sheath tumors. Tumor location was cervical 11, lumbar 10, and thoracic 4. Thirteen tumors caused sensory disturbance, 12 pain, and 9 weakness. Tumor size varied from 0.9 to 4.1 cm (median, 2.1 cm). Radiosurgery was performed with a 60-MV linear accelerator equipped with a micro-multileaf collimator. Median peripheral dose and prescription isodose were 12 Gy and 90%, respectively. Image guidance involved optical tracking of infrared reflectors, fusion of amorphous silicon radiographs with dynamically reconstructed digital radiographs, and automatic patient positioning. Follow-up varied from 12 to 58 months (median, 18). There have been no local failures. Tumor size remained stable in 18 cases, and 7 (28%) demonstrated more than 2 mm reduction in tumor size. Of 34 neurologic symptoms, 4 improved. There has been no clinical or imaging evidence for spinal cord injury. One patient had transient increase in pain and one transient increase in numbness. Results of this limited experience indicate linear accelerator-based spinal radiosurgery is feasible for treatment of benign nerve sheath tumors. Further follow-up is necessary, but our results imply spinal radiosurgery may represent a therapeutic alternative to surgery for nerve sheath tumors. Symptom resolution may require a prescribed dose of more than 12 Gy. Copyright 2009 Elsevier Inc. All rights reserved.

  15. Exploration of Adiabatic Resonance Crossing Through Neutron Activator Design for Thermal and Epithermal Neutron Formation in (99)Mo Production and BNCT Applications.

    PubMed

    Khorshidi, Abdollah

    2015-10-01

    A feasibility study was performed to design thermal and epithermal neutron sources for radioisotope production and boron neutron capture therapy (BNCT) by moderating fast neutrons. The neutrons were emitted from the reaction between (9)Be, (181)Ta, and (184)W targets and 30 MeV protons accelerated by a small cyclotron at 300 μA. In this study, the adiabatic resonance crossing (ARC) method was investigated by means of (207)Pb and (208)Pb moderators, graphite reflector, and boron absorber around the moderator region. Thermal/epithermal flux, energy, and cross section of accumulated neutrons in the activator were examined through diverse thicknesses of the specified regions. Simulation results revealed that the (181)Ta target had the highest neutron yield, and also tungsten was found to have the highest values in both surface and volumetric flux ratio. Transmutation in the (98)Mo sample through radiative capture was investigated for the natural lead moderator. When the sample radial distance from the target was increased inside the graphite region, the production yield had the greatest value of activity. The potential of the ARC method is a replacement or complements the current reactor-based supply sources of BNCT purposes.

  16. Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT.

    PubMed

    Kobayashi, Tooru; Miura, Kuniaki; Hayashizaki, Noriyosu; Aritomi, Masanori

    2014-06-01

    A feasibility study on liquid lithium target in the form of a flowing film was performed to evaluate its potential use as a neutron generation target of (7)Li(p,n)(7)Be reaction in BNCT. The target is a windowless-type flowing film on a concave wall. Its configuration was adapted for a proton beam which is 30mm in diameter and with energy and current of up to 3MeV and 20mA, respectively. The flowing film of liquid lithium was 0.6mm in thickness, 50mm in width and 50mm in length. The shapes of the nozzle and concave back wall, which create a stable flowing film jet, were decided based on water experiments. A lithium hydrodynamic experiment was performed to observe the stability of liquid lithium flow behavior. The flowing film of liquid lithium was found to be feasible at temperatures below the liquid lithium boiling saturation of 342°C at the surface pressure of 1×10(-3)Pa. Using a proto-type liquid lithium-circulating loop for BNCT, the stability of the film flow was confirmed for velocities up to 30m/s at 220°C and 250°C in vacuum at a pressure lower than 10(-3) Pa. It is expected that for practical use, a flowing liquid lithium target of a windowless type can solve the problem of radiation damage and target cooling.

  17. Are high energy proton beams ideal for AB-BNCT? A brief discussion from the viewpoint of fast neutron contamination control.

    PubMed

    Lee, Pei-Yi; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2014-06-01

    High energy proton beam (>8MeV) is favorable for producing neutrons with high yield. However, the produced neutrons are of high energies. These high energy neutrons can cause severe fast neutron contamination and degrade the BNCT treatment quality if they are not appropriately moderated. Hence, this study aims to briefly discuss the issue, from the viewpoint of fast neutron contamination control, whether high energy proton beam is ideal for AB-BNCT or not. In this study, D2O, PbF4, CaF2, and Fluental(™) were used standalone as moderator materials to slow down 1-, 6-, and 10-MeV parallelly incident neutrons. From the calculated results, we concluded that neutrons produced by high energy proton beam could not be easily moderated by a single moderator to an acceptable contamination level and still with reasonable epithermal neutron beam intensity. Hence, much more complicated and sophisticated designs of beam shaping assembly have to be developed when using high energy proton beams. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Calculation of Absorbed Dose in Target Tissue and Equivalent Dose in Sensitive Tissues of Patients Treated by BNCT Using MCNP4C

    NASA Astrophysics Data System (ADS)

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini

    Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.

  19. Application of an octa-anionic 5,10,15,20-tetra[3,5-(nido-carboranylmethyl)phenyl]porphyrin (H2OCP) as dual sensitizer for BNCT and PDT

    USDA-ARS?s Scientific Manuscript database

    The applications of the octa-anionic 5,10,15,20-tetra[3,5-(nidocarboranylmethyl) phenyl]porphyrin (H2OCP) as a boron delivery agent in boron neutron capture therapy (BNCT) and a photosensitizer in photodynamic therapy (PDT) have been investigated. Using F98 Rat glioma cells, we evaluated the cytotox...

  20. Development and characteristics of the HANARO neutron irradiation facility for applications in the boron neutron capture therapy field.

    PubMed

    Kim, Myong-Seop; Lee, Byung-Chul; Hwang, Sung-Yul; Kim, Heonil; Jun, Byung-Jin

    2007-05-07

    The HANARO neutron irradiation facility for various applications in the boron neutron capture therapy (BNCT) field was developed, and its characteristics were investigated. In order to obtain the sufficient thermal neutron flux with a low level of contamination by fast neutrons and gamma rays, a radiation filtering method was adopted. The radiation filter was designed by using a silicon single crystal, cooled by liquid nitrogen, and a bismuth crystal. The installation of the main components of the irradiation facility and the irradiation room was finished. Neutron beam characteristics were measured by using bare and cadmium-covered gold foils and wires. The in-phantom neutron flux distribution was measured for flux mapping inside the phantom. The gamma-ray dose was determined by using TLD-700 thermoluminescence dosimeters. The thermal and fast neutron fluxes and the gamma-ray dose were calculated by using the MCNP code, and they were compared with experimental data. The thermal neutron flux and Cd ratio available at this facility were confirmed to be 1.49 x 10(9) n cm(-2) s(-1) and 152, respectively. The maximum neutron flux inside the phantom was measured to be 2.79 x 10(9) n cm(-2) s(-1) at a depth of 3 mm in the phantom. The two-dimensional in-phantom neutron flux distribution was determined, and significant neutron irradiation was observed within 20 mm from the phantom surface. The gamma-ray dose rate for the free beam condition was expected to be about 80 cGy h(-1). These experimental results were reasonably well supported by calculation using the facility design code. This HANARO thermal neutron facility can be used not only for clinical trials, but also for various pre-clinical studies in the BNCT field.

  1. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    SciTech Connect

    Bissani, M; O'Kelly, D S

    2006-05-08

    A joint assessment meeting was conducted at the Egyptian Atomic Energy Agency (EAEA) followed by a tour of Egyptian Second Research Reactor (ETRR-2) on March 22 and 23, 2006. The purpose of the visit was to evaluate the capabilities of the new research reactor and its operations under Action Sheet 4 between the U.S. DOE and the EAEA, ''Research Reactor Operation'', and Action Sheet 6, ''Technical assistance in The Production of Radioisotopes''. Preliminary Recommendations of the joint assessment are as follows: (1) ETRR-2 utilization should be increased by encouraging frequent and sustained operations. This can be accomplished in part by (a) Improving the supply-chain management for fresh reactor fuel and alleviating the perception that the existing fuel inventory should be conserved due to unreliable fuel supply; and (b) Promulgating a policy for sample irradiation priority that encourages the use of the reactor and does not leave the decision of when to operate entirely at the discretion of reactor operations staff. (2) Each experimental facility in operation or built for a single purpose should be reevaluated to focus on those that most meet the goals of the EAEA strategic business plan. Temporary or long-term elimination of some experimental programs might be necessary to provide more focused utilization. There may be instances of emerging reactor applications for which no experimental facility is yet designed or envisioned. In some cases, an experimental facility may have a more beneficial use than the purpose for which it was originally designed. For example, (a) An effective Boron Neutron Capture Therapy (BNCT) program requires nearby high quality medical facilities. These facilities are not available and are unlikely to be constructed near the Inshas site. Further, the BNCT facility is not correctly designed for advanced research and therapy programs using epithermal neutrons. (b) The ETRR-2 is frequently operated to provide color-enhanced gemstones but is

  2. Reactions and moderators for an accelerator-based epithermal neutron capture therapy source for cancer treatment. Final report, October 1900--September 1994

    SciTech Connect

    Kunze, J.F.; Brugger, R.M.

    1995-03-01

    The use of boron neutron capture therapy (BNCT) has been considered for nearly 30 years, and been practiced in Japan since the late 1970`s. Early experiments in the USA were generally nonpromising. However, new boron-containing ligand compounds were developed, which would seek out brain tumors. Concentration levels of the order of 30 micrograms of boron per gram of tissue become possible, and interest in the BNCT technique was revived in the USA beginning about 1985, with research reactors as the obvious source of the neutrons for the treatment. However, the limited number of research reactors in the USA (and the world) would mean that this treatment modality would be quite limited. The goals of this work was: (1) Examine as many as possible reactions of charged particles on various targets of an accelerator, and determine those that would give high neutron yields of a convenient energy. (2) Determine, through calculations (using Monte Carlo stochastic computer codes), the best design for a moderator/reflector assembly which would give high thermal flux at a nominal 5 cm depth in the head of a patient, with minimal radiation dose from gamma rays and fast neutrons. (3) Perform a benchmark experiment using a positive ion accelerator. The Li-7(p,n) reaction was chosen for the benchmark, since it was readily available for most accelerators, and was one of the two highest yielding reactions from Task No. 1. Since the University of Missouri has no accelerator, possible accelerators at other universities were investigated, as to availability and cost. A unit having capability in the 2.5 MeV range was desired.

  3. Arcjet Facility

    DTIC Science & Technology

    1991-09-01

    PL-TR--91-3085 PL-TR-- ________AD-A243 948 1-8 ARCJET FACILITY Captain Salvador Castillo October 1991 OVa99 Final Report - - A P P R O V...REPORT DATE 3. REPORT TYPE AND DATES COVERED September 1991 Final Aug 86 to Aug 91 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS ARCJET FACILITY PE- 62302F...Electric Propulsion Laboratory has designed and begun installation of an arcjet research facility. A 5 foot by 10 foot long chamber with eight 12 inch

  4. Accelerator based fusion reactor

    NASA Astrophysics Data System (ADS)

    Liu, Keh-Fei; Chao, Alexander Wu

    2017-08-01

    A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions d+t\\to n+α,d+{{}3}{{H}\\text{e}}\\to p+α , and p+{{}11}B\\to 3α in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam velocity and the plasma density. We estimate the critical beam flux by balancing the energy of fusion production against the plasma thermo-energy and the loss due to stopping power for the case of an inert plasma. The product of critical flux and plasma lifetime is independent of plasma density and has a weak dependence on temperature. Even though the critical temperatures for these reactions are lower than those for the thermonuclear reactors, the critical flux is in the range of {{10}22}-{{10}24}~\\text{c}{{\\text{m}}-2}~{{\\text{s}}-1} for the plasma density {ρt}={{10}15}~\\text{c}{{\\text{m}}-3} in the case of an inert plasma. Several approaches to control the growth of the two-stream instability are discussed. We have also considered several scenarios for practical implementation which will require further studies. Finally, we consider the case where the injected beam at the resonance energy maintains the plasma temperature and prolongs its lifetime to reach a steady state. The equations for power balance and particle number conservation are given for this case.

  5. Accelerator-based analytical technique in the study of some anti-diabetic medicinal plants of Nigeria

    NASA Astrophysics Data System (ADS)

    Olabanji, S. O.; Omobuwajo, O. R.; Ceccato, D.; Adebajo, A. C.; Buoso, M. C.; Moschini, G.

    2008-05-01

    Diabetes mellitus, a clinical syndrome characterized by hyperglycemia due to deficiency of insulin, is a disease involving the endocrine pancreas and causes considerable morbidity and mortality in the world. In Nigeria, many plants, especially those implicated in herbal recipes for the treatment of diabetes, have not been screened for their elemental constituents while information on phytochemistry of some of them is not available. There is therefore the need to document these constituents as some of these plants are becoming increasingly important as herbal drugs or food additives. The accelerator-based technique PIXE, using the 1.8 MeV collimated proton beam from the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro (Padova) Italy, was employed in the determination of the elemental constituents of these anti-diabetic medicinal plants. Leaves of Gardenia ternifolia, Caesalpina pulcherrima, Solemostenon monostachys, whole plant of Momordica charantia and leaf and stem bark of Hunteria umbellata could be taken as vegetables, neutraceuticals, food additives and supplements in the management of diabetes. However, Hexabolus monopetalus root should be used under prescription.

  6. Characteristic impedance and capacitance analysis of Blumlein type pulse forming line of accelerator based on tape helix

    SciTech Connect

    Zhang Yu; Liu Jinliang; Fan Xuliang; Zhang Hongbo; Wang Shiwen; Feng Jiahuai

    2011-10-15

    In this paper, the electromagnetic dispersion theory and the classic telegraph equations were combined to calculate the important parameters of the helical Blumlein pulse forming line (BPFL) of accelerator based on tape helix. In the work band of the BPFL at several hundred ns range, electromagnetic dispersion characteristics were almost determined by the zeroth harmonic. In order to testify the dispersion theory of BPFL in this paper, filling dielectrics, such as de-ionized water, transformer oil, and air were employed in the helical BPFL, respectively. Parameters such as capacitance, inductance, characteristic impedance, and pulse duration of the BPFL were calculated. Effects of dispersion on these parameters were analyzed. Circuit simulation and electromagnetic simulation were carried out to prove these parameters of BPFL filled with these three kinds of dielectrics, respectively. The accelerator system was set up, and experimental results also corresponded to the theoretical calculations. The average theoretical errors of impedances and pulse durations were 3.5% and 3.4%, respectively, which proved the electromagnetic dispersion analyses in this paper.

  7. Characteristic impedance and capacitance analysis of Blumlein type pulse forming line of accelerator based on tape helix.

    PubMed

    Zhang, Yu; Liu, Jinliang; Fan, Xuliang; Zhang, Hongbo; Wang, Shiwen; Feng, Jiahuai

    2011-10-01

    In this paper, the electromagnetic dispersion theory and the classic telegraph equations were combined to calculate the important parameters of the helical Blumlein pulse forming line (BPFL) of accelerator based on tape helix. In the work band of the BPFL at several hundred ns range, electromagnetic dispersion characteristics were almost determined by the zeroth harmonic. In order to testify the dispersion theory of BPFL in this paper, filling dielectrics, such as de-ionized water, transformer oil, and air were employed in the helical BPFL, respectively. Parameters such as capacitance, inductance, characteristic impedance, and pulse duration of the BPFL were calculated. Effects of dispersion on these parameters were analyzed. Circuit simulation and electromagnetic simulation were carried out to prove these parameters of BPFL filled with these three kinds of dielectrics, respectively. The accelerator system was set up, and experimental results also corresponded to the theoretical calculations. The average theoretical errors of impedances and pulse durations were 3.5% and 3.4%, respectively, which proved the electromagnetic dispersion analyses in this paper.

  8. Characteristic impedance and capacitance analysis of Blumlein type pulse forming line of accelerator based on tape helix

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Liu, Jinliang; Fan, Xuliang; Zhang, Hongbo; Wang, Shiwen; Feng, Jiahuai

    2011-10-01

    In this paper, the electromagnetic dispersion theory and the classic telegraph equations were combined to calculate the important parameters of the helical Blumlein pulse forming line (BPFL) of accelerator based on tape helix. In the work band of the BPFL at several hundred ns range, electromagnetic dispersion characteristics were almost determined by the zeroth harmonic. In order to testify the dispersion theory of BPFL in this paper, filling dielectrics, such as de-ionized water, transformer oil, and air were employed in the helical BPFL, respectively. Parameters such as capacitance, inductance, characteristic impedance, and pulse duration of the BPFL were calculated. Effects of dispersion on these parameters were analyzed. Circuit simulation and electromagnetic simulation were carried out to prove these parameters of BPFL filled with these three kinds of dielectrics, respectively. The accelerator system was set up, and experimental results also corresponded to the theoretical calculations. The average theoretical errors of impedances and pulse durations were 3.5% and 3.4%, respectively, which proved the electromagnetic dispersion analyses in this paper.

  9. Linear-accelerator-based modified radiosurgical treatment of pituitary tumors in cats: 11 cases (1997-2008).

    PubMed

    Sellon, R K; Fidel, J; Houston, R; Gavin, P R

    2009-01-01

    Determine the efficacy and safety of a linear-accelerator-based single fraction radiosurgical approach to the treatment of pituitary tumors in cats. Retrospective study. Eleven client-owned cats referred for treatment of pituitary tumors causing neurological signs, or poorly controlled diabetes mellitus (DM) secondary either to acromegaly or pituitary-dependent hyperadrenocortism. Cats underwent magnetic resonance imaging (MRI) of the brain to manually plan radiation therapy. After MRI, modified radiosurgery was performed by delivering a single large dose (15 or 20 Gy) of radiation while arcing a linear-accelerator-generated radiation beam around the cat's head with the pituitary mass at the center of the beam. Eight cats were treated once, 2 cats were treated twice, and 1 cat received 3 treatments. Treated cats were evaluated for improvement in endocrine function or resolution of neurological disease by review of medical records or contact with referring veterinarians and owners. Improvement in clinical signs occurred in 7/11 (63.6%) of treated cats. Five of 9 cats with poorly regulated DM had improved insulin responses, and 2/2 cats with neurological signs had clinical improvement. There were no confirmed acute or late adverse radiation effects. The overall median survival was 25 months (range, 1-60), and 3 cats were still alive. Single fraction modified radiosurgery is a safe and effective approach to the treatment of pituitary tumors in cats.

  10. Electron energy and electron trajectories in an inverse free-electron laser accelerator based on a novel electrostatic wiggler

    NASA Astrophysics Data System (ADS)

    Nikrah, M.; Jafari, S.

    2016-06-01

    We expand here a theory of a high-gradient laser-excited electron accelerator based on an inverse free-electron laser (inverse-FEL), but with innovations in the structure and design. The electrostatic wiggler used in our scheme, namely termed the Paul wiggler, is generated by segmented cylindrical electrodes with applied oscillatory voltages {{V}\\text{osc}}(t) over {{90}\\circ} segments. The inverse-FEL interaction can be described by the equations that govern the electron motion in the combined fields of both the laser pulse and Paul wiggler field. A numerical study of electron energy and electron trajectories has been made using the fourth-order Runge-Kutta method. The results indicate that the electron attains a considerable energy at short distances in this device. It is found that if the electron has got sufficient suitable wiggler amplitude intensities, it can not only gain higher energy in longer distances, but also can retain it even after the passing of the laser pulse. In addition, the results reveal that the electron energy gains different peaks for different initial axial velocities, so that a suitable small initial axial velocity of e-beam produces substantially high energy gain. With regard to the transverse confinement of the electron beam in a Paul wiggler, there is no applied axial guide magnetic field in this device.

  11. Health Facilities

    MedlinePlus

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, such as birthing centers and psychiatric care centers. When you ...

  12. Facility Planning.

    ERIC Educational Resources Information Center

    Graves, Ben E.

    1984-01-01

    This article reviews recommendations on policies for leasing surplus school space made during the Council of Educational Facility Planners/International conference. A case study presentation of a Seattle district's use of lease agreements is summarized. (MJL)

  13. Experimental Studies of Boronophenylalanine ((10)BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment.

    PubMed

    Carpano, Marina; Perona, Marina; Rodriguez, Carla; Nievas, Susana; Olivera, Maria; Santa Cruz, Gustavo A; Brandizzi, Daniel; Cabrini, Romulo; Pisarev, Mario; Juvenal, Guillermo Juan; Dagrosa, Maria Alejandra

    2015-10-01

    Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina ((10)BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 10(6) MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a specially modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (P<.001 for MEL-J and A375 vs M8 cells). The in vivo studies showed a maximum average boron concentration of 25.9 ± 2.6 μg/g in tumor, with individual values ranging between 11.7 and 52.0 μg/g of (10)B 2 hours after the injection of BPA. Tumor temperature always decreased as the tumors increased in size, with values ranging between 37 °C and 23 °C. A significant correlation between tumor temperature and tumor-to-blood boron concentration ratio was found (R(2) = 0.7, rational function fit). The immunohistochemical studies revealed, in tumors with extensive areas of viability, a high number of positive cells for Ki-67, blood vessels of large diameter evidenced by the marker CD31, and a direct logistic correlation between proliferative status and boron concentration difference between tumor and blood (R(2) = 0.81, logistic function fit). We propose that these methods could be suitable for designing new screening protocols applied before melanoma BNCT treatment for each individual patient and lesion. Copyright © 2015 Elsevier Inc

  14. Experimental Studies of Boronophenylalanine ({sup 10}BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment

    SciTech Connect

    Carpano, Marina; Perona, Marina; Rodriguez, Carla; Nievas, Susana; Olivera, Maria; Santa Cruz, Gustavo A.; Brandizzi, Daniel; Cabrini, Romulo; Pisarev, Mario; Juvenal, Guillermo Juan; Dagrosa, Maria Alejandra

    2015-10-01

    Purpose: Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina ({sup 10}BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. Methods and Materials: The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 10{sup 6} MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a specially modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. Results: The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (P<.001 for MEL-J and A375 vs M8 cells). The in vivo studies showed a maximum average boron concentration of 25.9 ± 2.6 μg/g in tumor, with individual values ranging between 11.7 and 52.0 μg/g of {sup 10}B 2 hours after the injection of BPA. Tumor temperature always decreased as the tumors increased in size, with values ranging between 37°C and 23°C. A significant correlation between tumor temperature and tumor-to-blood boron concentration ratio was found (R{sup 2} = 0.7, rational function fit). The immunohistochemical studies revealed, in tumors with extensive areas of viability, a high number of positive cells for Ki-67, blood vessels of large diameter evidenced by the marker CD31, and a direct logistic correlation between proliferative status and boron concentration difference between tumor and blood (R{sup 2} = 0.81, logistic function fit). Conclusion: We propose that these methods could be suitable for designing new screening protocols applied before melanoma BNCT

  15. ET-14OPTIMISATION OF BORONOPHENYLALANINE (BPA) DELIVERY AND LAT1 EXPRESSION FOR THE CLINICAL APPLICATION OF BORON NEUTRON CAPTURE THERAPY (BNCT) IN GLIOBLASTOMA

    PubMed Central

    Cruickshank, Garth; Detta, Allah; Green, Stuart; Lockyer, Nick; Ngoga, Desire; Ghani, Zahir; Phoenix, Ben

    2014-01-01

    BNCT is a biologically targeted radiotherapy where preferential boron uptake interacts with a neutron beam in cancerous cells causing irreparable alpha DNA damage. This requires the delivery of at least 30 parts per million (ppm) of 10B into tumour tissue and <10ppm 10B in healthy tissue. Renewed interest arises from the advent of ‘accelerator’ technology and the recognition of specific uptake transporter in tumour cells. We report an optimising pharmacokinetic and tissue uptake study in glioblastoma patients to determine the route of delivering a new formulation of (p-boronophenylalanine, BPA), its pharmacokinetics, toxicity profile, and LAT1 dependent cellular uptake for a clinical trial. Using inductively-coupled plasma mass spectrometry (ICP-MS), secondary ion mass spectrometry (SIMS) and immunohistochemistry (IHC), boron was measured in blood, urine, cerebrospinal fluid (CSF), extracellular fluid (ECFmicrodialysis), and tissue prior to, during and post BPA infusions in newly-diagnosed patients (n = 10). Tumour and brain-around tumour (BAT) tissue were sampled at 2.5h and 3.5h post-infusion. Tumour and BAT, IHC expression levels of the BPA transporter L-amino acid transporter 1 (LAT-1) were recorded, and cellular boron levels, estimated in SIMS images.LAT1 dependent BPA uptake was also determined. There was no toxicity with BPA given at 375mg/kg as a 2h intravenous or intracarotid infusion with or without pre-infusion mannitol-induced BBB disruption. The Pk profile indicates highest plasma-to-brain concentration gradient from intracarotid infusion and BBB manipulation,with high boron concentrations in the brain compartment. SIMS boron ratio in tumour vs BAT was 0.96 intravenous,1.85 IV + mannitol BBB-D and 2.40 intracarotid cohorts, confirming improved delivery of boron. Tumour and BAT uptake varied, but sustained uptake in BAT (>30ppm boron) indicates potential BNCT targeting after surgery. Tumour boron uptake is governed by LAT-1 behaviour rather than BBB

  16. Evaluation of the characteristics of boron-dose enhancer (BDE) materials for BNCT using near threshold 7Li(p,n)7Be direct neutrons.

    PubMed

    Bengua, Gerard; Kobayashi, Tooru; Tanaka, Kenichi; Nakagawa, Yoshinobu

    2004-03-07

    The characteristics of a number of candidate boron-dose enhancer (BDE) materials for boron neutron capture therapy (BNCT) using near threshold 7Li(p,n)7Be direct neutrons were evaluated based on the treatable protocol depth (TPD), defined in this paper. Simulation calculations were carried out by means of MCNP-4B transport code for candidate BDE materials, namely, (C2H4)n, (C2H3F)n, (C2H2F2)n, (C2HF3)n, (C2D4)n, (C2F4)n, beryllium metal, graphite, D2O and 7LiF. Dose protocols applied were those used for intra-operative BNCT treatment for brain tumour currently used in Japan. The maximum TPD (TPDmax) for each BDE material was found to be between 4 cm and 5 cm in the order of (C2H4)n < (C2H3F)n < (C2H2F2)n < (C2HF3)n < beryllium metal < (C2D4)n < graphite < (C2F4)n < D2O < 7LiF. Based on the small and arbitrary variations in the TPDmax for these materials, an explicit advantage of a candidate BDE material could not be established from the TPDmax alone. The dependence of TPD on BDE thickness was found to be influenced by the type of BDE material. For materials with hydrogen, sharp variations in TPD were observed, while those without hydrogen exhibited more moderate fluctuations in TPD as the BDE thickness was varied. The BDE thickness corresponding to TPDmax (BDE(TPDmax)) was also found to depend on the type of BDE material used. Thicker BDE(TPDmax), obtained mostly for BDE materials without hydrogen, significantly reduced the dose rates within the phantom. The TPDmax, the dependence of TPD on BDE thickness and the BDE (TPDmax) were ascertained as appropriate optimization criteria in choosing suitable BDE materials for BNCT. Among the candidate BDE materials considered in this study. (C2H4)n was judged as the suitable material for near-surface tumours and beryllium metal for deeper tumours based on these optimization criteria and other practical considerations.

  17. Synthesis and in-vivo detection of boronated compounds for use in BNCT. Comprehensive progress report, August 1, 1989--July 31, 1992

    SciTech Connect

    Kabalka, G.W.

    1992-01-01

    The primary objective of the DOE program at The University of Tennessee Graduate School of Medicine is the development of effective molecular medicine for use in neutron-capture therapy (NCT). The research focuses primarily on the preparation of new boron-rich NCT agents and the technology to detect them in-vivo. The detection technology involves the development of effective magnetic resonance imaging (MRI) and spectroscopy (MRS) techniques for verifying and measuring NCT agents in-vivo. The synthetic program is directed toward the design of novel boron NCT (BNCT) agents which are targeted to the cell nucleus and gadolinium liposomes targeted to the liver. The UT-DOE program is unique in that it has access to both state-of-the-art whole-body and microscopy MRI instruments.

  18. Dosimetric characterization of hypofractionated Gamma Knife radiosurgery of large or complex brain tumors versus linear accelerator-based treatments.

    PubMed

    Dong, Peng; Pérez-Andújar, Angélica; Pinnaduwage, Dilini; Braunstein, Steve; Theodosopoulos, Philip; McDermott, Michael; Sneed, Penny; Ma, Lijun

    2016-12-01

    OBJECTIVE Noninvasive Gamma Knife (GK) platforms, such as the relocatable frame and on-board imaging, have enabled hypofractionated GK radiosurgery of large or complex brain lesions. This study aimed to characterize the dosimetric quality of such treatments against linear accelerator-based delivery systems that include the CyberKnife (CK) and volumetric modulated arc therapy (VMAT). METHODS Ten patients treated with VMAT at the authors' institution for large brain tumors (> 3 cm in maximum diameter) were selected for the study. The median prescription dose was 25 Gy (range 20-30 Gy) in 5 fractions. The median planning target volume (PTV) was 9.57 cm(3) (range 1.94-24.81 cm(3)). Treatment planning was performed using Eclipse External Beam Planning V11 for VMAT on the Varian TrueBeam system, Multiplan V4.5 for the CyberKnife VSI System, and Leksell GammaPlan V10.2 for the Gamma Knife Perfexion system. The percentage of the PTV receiving at least the prescription dose was normalized to be identical across all platforms for individual cases. The prescription isodose value for the PTV, conformity index, Paddick gradient index, mean and maximum doses for organs at risk, and normal brain dose at variable isodose volumes ranging from the 5-Gy isodose volume (V5) to the 15-Gy isodose volume (V15) were compared for all of the cases. RESULTS The mean Paddick gradient index was 2.6 ± 0.2, 3.2 ± 0.5, and 4.3 ± 1.0 for GK, CK, and VMAT, respectively (p < 0.002). The mean V15 was 7.5 ± 3.7 cm(3) (range 1.53-13.29 cm(3)), 9.8 ± 5.5 cm(3) (range 2.07-18.45 cm(3)), and 16.1 ± 10.6 cm(3) (range 3.58-36.53 cm(3)) for GK, CK, and VMAT, respectively (p ≤ 0.03, paired 2-tailed t-tests). However, the average conformity index was 1.18, 1.12, and 1.21 for GK, CK, and VMAT, respectively (p > 0.06). The average prescription isodose values were 52% (range 47%-69%), 60% (range 46%-68%), and 88% (range 70%-94%) for GK, CK, and VMAT, respectively, thus producing significant variations in

  19. Simulations of an accelerator-based shielding experiment using the particle and heavy-ion transport code system PHITS.

    PubMed

    Sato, T; Sihver, L; Iwase, H; Nakashima, H; Niita, K

    2005-01-01

    In order to estimate the biological effects of HZE particles, an accurate knowledge of the physics of interaction of HZE particles is necessary. Since the heavy ion transport problem is a complex one, there is a need for both experimental and theoretical studies to develop accurate transport models. RIST and JAERI (Japan), GSI (Germany) and Chalmers (Sweden) are therefore currently developing and bench marking the General-Purpose Particle and Heavy-Ion Transport code System (PHITS), which is based on the NMTC and MCNP for nucleon/meson and neutron transport respectively, and the JAM hadron cascade model. PHITS uses JAERI Quantum Molecular Dynamics (JQMD) and the Generalized Evaporation Model (GEM) for calculations of fission and evaporation processes, a model developed at NASA Langley for calculation of total reaction cross sections, and the SPAR model for stopping power calculations. The future development of PHITS includes better parameterization in the JQMD model used for the nucleus-nucleus reactions, and improvement of the models used for calculating total reaction cross sections, and addition of routines for calculating elastic scattering of heavy ions, and inclusion of radioactivity and burn up processes. As a part of an extensive bench marking of PHITS, we have compared energy spectra of secondary neutrons created by reactions of HZE particles with different targets, with thicknesses ranging from <1 to 200 cm. We have also compared simulated and measured spatial, fluence and depth-dose distributions from different high energy heavy ion reactions. In this paper, we report simulations of an accelerator-based shielding experiment, in which a beam of 1 GeV/n Fe-ions has passed through thin slabs of polyethylene, Al, and Pb at an acceptance angle up to 4 degrees. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  20. Intracranial arteriovenous malformations treated utilizing a linear accelerator-based patient rotator or commercially available radiosurgery system.

    PubMed

    Scarbrough, Todd J; Crocker, Ian R; Davis, Lawrence W; Barrow, Daniel L; Fowler, B Zach; Oyesiku, Nelson M

    2005-01-01

    To report a single-institution experience with intracranial arteriovenous malformations (AVMs) treated utilizing a linear accelerator-based patient rotator (PR) or BrainLAB (BL) radiosurgery system (BrainLAB AG, Heimstetten, Germany). Since 1989, 84 evaluable patients were treated. PR patients (n = 45) were planned/localized on the basis of biplane angiography and treated between 1989 and 2000. BL patients (n = 39) were planned/localized on the basis of CT/MRI and treated since 2000. Kaplan-Meier analyses of survival, nidus obliteration (NO), and any radiographic improvement were undertaken with Cox regression of dose and volume effects. No significant complication, survival, previous embolization incidence, AVM location or size differences existed between BL/PR patients. The groups differed significantly in prescribed dose (PR: 16.2 Gy, BL: 17.3 Gy, p = 0.004) and isodose (PR: 62%, BL: 79%, p < 0.0001). Estimated 2-year NO rate was 87% for BL patients, 12% for PR patients (p < 0.0001). Ultimate PR NO rate was 67% at 6 years. Dose (p = 0.037) and isodose (p = 0.014) significantly affected PR NO outcome; volume was of borderline significance (p = 0.069). No factors significantly affected BL outcome. Analyses of small (< or = 4.0 cm3), high-dose (> or = 17.0 Gy) PR patients (PR1 group) vs. BL patients still demonstrated greater NO (p = 0.04) and radiographic improvement (p = 0.0004) rates for the BL group. PR1 patients had a 76% 3-year NO rate. BL-based radiosurgery achieved a high NO rate, the PR method did not. Differences in outcomes between PR/BL groups may be due to localization methods or an inherent advantage with the BL system. Copyright 2005 S. Karger AG, Basel.

  1. Intercalibration of physical neutron dosimetry for the RA-3 and MURR thermal neutron sources for BNCT small-animal research.

    PubMed

    Pozzi, Emiliano C C; Thorp, Silvia; Brockman, John; Miller, Marcelo; Nigg, David W; Hawthorne, M Frederick

    2011-12-01

    New thermal neutron irradiation facilities to perform cell and small-animal irradiations for Boron Neutron Capture Therapy research have been installed at the Missouri University Research Reactor and at the RA-3 research reactor facility in Buenos Aires, Argentina. Recognizing the importance of accurate and reproducible physical beam dosimetry as an essential tool for combination and intercomparisons of preclinical and clinical results from the different facilities, we have conducted an experimental intercalibration of the neutronic performance of the RA-3 and MURR thermal neutron sources. Published by Elsevier Ltd.

  2. Facility rehabilitation

    Treesearch

    Edwin H. Ketchledge

    1971-01-01

    Restoration of vegetation on damaged sites is the most perplexing challenge in facility rehabilitation. In the Adirondack Mountains, the ecological impact of recreationists on the natural environment has become critical in two high-quality interior areas: on the steep higher slopes where trails soon become eroding stream channels, washing away the thin mountain soils;...

  3. Facilities Management.

    ERIC Educational Resources Information Center

    Bete, Tim, Ed.

    1998-01-01

    Presents responses from Matt McGovern, "School Planning and Management's" Maintenance and Operations columnist, on the issue of school facility maintenance. McGovern does not believe schools will ever likely meet acceptable levels of maintenance, nor use infrared thermography for assessing roofs, outsource all maintenance work, nor find…

  4. Asian Facilities

    NASA Astrophysics Data System (ADS)

    Nakahata, M.

    2011-04-01

    Asian underground facilities are reviewed. The YangYang underground Laboratory in Korea and the Kamioka observatory in Japan are operational and several astrophysical experiments are running. Indian Neutrino Observatory(INO) and China JinPing Underground Laboratory (CJPL) are under construction and underground experiments are being prepared. Current activities and future prospects at those underground sites are described.

  5. Radiation facilities for fusion-reactor first-wall and blanket structural-materials development

    SciTech Connect

    Klueh, R.L.; Bloom, E.E.

    1981-12-01

    Present and future irradiation facilities for the study of fusion reactor irradiation damage are reviewed. Present studies are centered on irradiation in accelerator-based neutron sources, fast- and mixed-spectrum fission reactors, and ion accelerators. The accelerator-based neutron sources are used to demonstrate damage equivalence between high-energy neutrons and fission reactor neutrons. Once equivalence is demonstrated, the large volume of test space available in fission reactors can be used to study displacement damage, and in some instances, the effects of high-helium concentrations and the interaction of displacement damage and helium on properties. Ion bombardment can be used to study the mechanisms of damage evolution and the interaction of displacement damage and helium. These techniques are reviewed, and typical results obtained from such studies are examined. Finally, future techniques and facilities for developing damage levels that more closely approach those expected in an operating fusion reactor are discussed.

  6. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination.

    PubMed

    Gravett, M R; Hopkins, F B; Self, A J; Webb, A J; Timperley, C M; Riches, J R

    2014-08-01

    In the event of alleged use of organophosphorus nerve agents, all kinds of environmental samples can be received for analysis. These might include decontaminated and charred matter collected from the site of a suspected chemical attack. In other scenarios, such matter might be sampled to confirm the site of a chemical weapon test or clandestine laboratory decontaminated and burned to prevent discovery. To provide an analytical capability for these contingencies, we present a preliminary investigation of the effect of accelerant-based fire and liquid decontamination on soil contaminated with the nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). The objectives were (a) to determine if VX or its degradation products were detectable in soil after an accelerant-based fire promoted by aviation fuel, including following decontamination with Decontamination Solution 2 (DS2) or aqueous sodium hypochlorite, (b) to develop analytical methods to support forensic analysis of accelerant-soaked, decontaminated and charred soil and (c) to inform the design of future experiments of this type to improve analytical fidelity. Our results show for the first time that modern analytical techniques can be used to identify residual VX and its degradation products in contaminated soil after an accelerant-based fire and after chemical decontamination and then fire. Comparison of the gas chromatography-mass spectrometry (GC-MS) profiles of VX and its impurities/degradation products from contaminated burnt soil, and burnt soil spiked with VX, indicated that the fire resulted in the production of diethyl methylphosphonate and O,S-diethyl methylphosphonothiolate (by an unknown mechanism). Other products identified were indicative of chemical decontamination, and some of these provided evidence of the decontaminant used, for example, ethyl 2-methoxyethyl methylphosphonate and bis(2-methoxyethyl) methylphosphonate following decontamination with DS2. Sample preparation

  7. Linear accelerator-based stereotactic radiosurgery for limited, locally persistent, and recurrent nasopharyngeal carcinoma: efficacy and complications.

    PubMed

    Chua, Daniel T T; Sham, Jonathan S T; Kwong, Philip W K; Hung, Kwan-Ngai; Leung, Lucullus H T

    2003-05-01

    To evaluate the efficacy and complication of linear accelerator-based stereotactic radiosurgery (SRS) when used as salvage treatment for early-stage persistent and recurrent nasopharyngeal carcinoma (NPC) after primary radiotherapy (RT). Between March 1998 and June 2001, 18 patients (15 men and 3 women; median age 46 years, range 32-84) with locally persistent or recurrent NPC confined to the nasopharynx (rT1) or with limited extension to the nasal fossa or parapharyngeal space (rT2) were treated by SRS. Thirteen patients had rT1 disease and 5 had rT2 disease. Most patients had disease not amenable to surgery or brachytherapy. All patients had undergone previous radical RT. Persistent disease was defined as tumor relapse within 4 months of completion of primary RT, and recurrence as tumor relapse beyond 4 months. Seven patients were treated for persistent disease, eight for a first recurrence, and three for a second recurrence. SRS was performed using multiple noncoplanar arcs of photons delivered to the target volume, which was defined by axial CT at a 3 mm thickness, supplemented by MRI in selected patients (67%). The median target volume was 5.3 cm(3) (range 2.2-16.9). The median SRS dose was 12.5 Gy (range 11-14) delivered to the 80% isodose line. All patients underwent serial nasopharyngoscopy and imaging after SRS. The median follow-up was 26 months (range 11-48). After SRS, 16 (89%) of 18 patients had complete regression of tumor as assessed by nasopharyngoscopy and biopsy. Four patients with an initial complete response to SRS subsequently developed local relapse again, with one recurrence developing outside the target volume 8 months after SRS and three within the target volume at 6-26 months after SRS. Two patients with local disease controlled by SRS developed relapse in other sites (neck node and liver metastases). The actuarial 2-year local control rate after SRS was 72%. Patients treated for persistent disease had a better local control rate (100%; 7

  8. A Small-Animal Irradiation Facility for Neutron Capture Therapy Research at the RA-3 Research Reactor

    SciTech Connect

    Emiliano Pozzi; David W. Nigg; Marcelo Miller; Silvia I. Thorp; Amanda E. Schwint; Elisa M. Heber; Veronica A. Trivillin; Leandro Zarza; Guillermo Estryk

    2007-11-01

    The National Atomic Energy Commission of Argentina (CNEA) has constructed a thermal neutron source for use in Boron Neutron Capture Therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The Idaho National Laboratory (INL) and CNEA have jointly conducted some initial neutronic characterization measurements for one particular configuration of this source. The RA-3 reactor (Figure 1) is an open pool type reactor, with 20% enriched uranium plate-type fuel and light water coolant. A graphite thermal column is situated on one side of the reactor as shown. A tunnel penetrating the graphite structure enables the insertion of samples while the reactor is in normal operation. Samples up to 14 cm height and 15 cm width are accommodated.

  9. Downgrading Nuclear Facilities to Radiological Facilities

    SciTech Connect

    Jarry, Jeffrey F.; Farr, Jesse Oscar; Duran, Leroy

    2015-08-01

    Based on inventory reductions and the use of alternate storage facilities, the Sandia National Laboratories (SNL) downgraded 4 SNL Hazard Category 3 (HC-3) nuclear facilities to less-than-HC-3 radiological facilities. SNL’s Waste Management and Pollution Prevention Department (WMPPD) managed the HC-3 nuclear facilities and implemented the downgrade. This paper will examine the downgrade process,

  10. Changing practice patterns of Gamma Knife versus linear accelerator-based stereotactic radiosurgery for brain metastases in the US.

    PubMed

    Park, Henry S; Wang, Elyn H; Rutter, Charles E; Corso, Christopher D; Chiang, Veronica L; Yu, James B

    2016-04-01

    Single-fraction stereotactic radiosurgery (SRS) is a crucial component in the management of limited brain metastases from non-small cell lung cancer (NSCLC). Intracranial SRS has traditionally been delivered using a frame-based Gamma Knife (GK) platform, but stereotactic modifications to the linear accelerator (LINAC) have made an alternative approach possible. In the absence of definitive prospective trials comparing the efficacy and toxicities of treatment between the 2 techniques, nonclinical factors (such as technology accessibility, costs, and efficiency) may play a larger role in determining which radiosurgery system a facility may choose to install. To the authors' knowledge, this study is the first to investigate national patterns of GK SRS versus LINAC SRS use and to determine which factors may be associated with the adoption of these radiosurgery systems. The National Cancer Data Base was used to identify patients > 18 years old with NSCLC who were treated with single-fraction SRS to the brain between 2003 and 2011. Patients who received "SRS not otherwise specified" or who did not receive a radiotherapy dose within the range of 12-24 Gy were excluded to reduce the potential for misclassification. The chi-square test, t-test, and multivariable logistic regression analysis were used to compare potential demographic, clinicopathologic, and health care system predictors of GK versus LINAC SRS use, when appropriate. This study included 1780 patients, among whom 1371 (77.0%) received GK SRS and 409 (23.0%) underwent LINAC SRS. Over time, the proportion of patients undergoing LINAC SRS steadily increased, from 3.2% in 2003 to 30.8% in 2011 (p < 0.001). LINAC SRS was adopted more rapidly by community versus academic facilities (overall 29.2% vs 17.2%, p < 0.001). On multivariable analysis, 4 independent predictors of increased LINAC SRS use emerged, including year of diagnosis in 2008-2011 versus 2003-2007 (adjusted OR [AOR] 2.04, 95% CI 1.52-2.73, p < 0

  11. Synthesis and in-vivo detection of boronated compounds for use in BNCT. Final progress report, August 1, 1989--April 30, 1993

    SciTech Connect

    Kabalka, G.W.

    1993-08-01

    Carboranes contain ten boron atoms in a three-dimensional space equivalent to a benzene ring; consequently, the carborane isomers can be utilized to prepare a variety of boron-rich agents for potential use in boron-neutron capture therapy. We developed synthetic methodology suitable for use with carboranes preparing amino acids and other physio-logically active compounds of potential use in BNCT. The methodology involves the conversion of simple carboranes into more complex, reactive organometallic reagents which can then be utilized to prepare agents which will target the nuclei of tumor cells. Specific examples include the projected syntheses of boron analogs of known intercolators such as Diazaquone (AZQ) which have been proven effectiveness in chemotherapy. We have also synthesized and carried out biodistribution studies of gadolinium labeled liposomes (GLL) which were developed in our laboratory. Gadolinium like boron-10, has an excellent neutron cross section and is considered to be of potential use in neutron capture therapy. GLL are constructed by adding gadolinium based amphiphiles.

  12. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.

    PubMed

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2012-12-01

    A feasibility study was conducted to design a beam shaping assembly for BNCT based on D-T neutron generator. The optimization of this configuration has been realized in different steps. This proposed system consists of metallic uranium as neutron multiplier, TiF(3) and Al(2)O(3) as moderators, Pb as reflector, Ni as shield and Li-Poly as collimator to guide neutrons toward the patient position. The in-air parameters recommended by IAEA were assessed for this proposed configuration without using any filters which enables us to have a high epithermal neutron flux at the beam port. Also a simulated Snyder head phantom was used to evaluate dose profiles due to the irradiation of designed beam. The dose evaluation results and depth-dose curves show that the neutron beam designed in this work is effective for deep-seated brain tumor treatments even with D-T neutron generator with a neutron yield of 2.4×10(12) n/s. The Monte Carlo Code MCNP-4C is used in order to perform these calculations.

  13. Do the various radiations present in BNCT act synergistically? Cell survival experiments in mixed alpha-particle and gamma-ray fields.

    PubMed

    Phoenix, Ben; Green, Stuart; Hill, Mark A; Jones, Bleddyn; Mill, Andrew; Stevens, David L

    2009-07-01

    In many radiotherapy situations patients are exposed to mixed field radiation. In particular in BNCT, as with all neutron beam exposures, a significant fraction of the dose is contributed by low LET gamma ray photons. The components of such a mixed field may show a synergistic interaction and produce a greater cell kill effect than would be anticipated from the independent action of the different radiation types. Such a synergy would have important implications for treatment planning and in the interpretation of clinical results. An irradiation setup has been created at the Medical Research Council in Harwell to allow simultaneous irradiation of cells by cobalt-60 gamma rays and plutonium-238 alpha-particles. The setup allows for variation of dose and dose rates for both sources along with variation of the alpha particle energy. A series of cell survival assays for this mixed field have been carried out using V79-4 cells and compared to exposures to the individual components of the field under identical conditions. In the experimental setup described no significant synergistic effect was observed.

  14. Breadboard Facility

    NASA Technical Reports Server (NTRS)

    1977-01-01

    In the sixties, Chrysler was NASA's prime contractor for the Saturn I and IB test launch vehicles. The company installed and operated at Huntsville what was known as the Saturn I/IB Development Breadboard Facility. "Breadboard," means an array of electrical and electronic equipment for performing a variety of development and test functions. This work gave Chrysler a broad capability in computerized testing to assure quality control in development of solid-state electronic systems. Today that division is manufacturing many products not destined for NASA, most of them being associated with the company's automotive line. A major project is production and quality-control testing of the "lean-burn" engine, one that has a built-in Computer to control emission timing, and allow the engine to run on a leaner mixture of fuel and air. Other environment-related products include vehicle emission analyzers. The newest of the line is an accurate, portable solid state instrument for testing auto exhaust gases. The exhaust analyzers, now being produced for company dealers and for service

  15. Tissue equivalent proportional counter microdosimetry measurements utililzed aboard aircraft and in accelerator based space radiation shielding studies

    NASA Astrophysics Data System (ADS)

    Gersey, Brad; Wilkins, Richard

    The space radiation environment presents a potential hazard to the humans, electronics and materials that are exposed to it. Particle accelerator facilities such as the NASA Space Ra-diation Laboratory (NSRL) and Loma Linda University Medical Center (LLUMC) provide particle radiation of specie and energy within the range of that found in the space radiation environment. Experiments performed at these facilities determine various endpoints for bio-logical, electronic and materials exposures. A critical factor in the performance of rigorous scientific studies of this type is accurate dosimetric measurements of the exposures. A Tissue Equivalent Proportional Counter (TEPC) is a microdosimeter that may be used to measure absorbed dose, average quality factor (Q) and dose equivalent of the particle beam utilized in these experiments. In this work, results from a variety of space radiation shielding studies where a TEPC was used to perform dosimetry in the particle beam will be presented. These results compare the absorbed dose and dose equivalent measured downstream of equal density thicknesses of stan-dard and multifunctional shielding materials. The standard materials chosen for these shielding studies included High-Density Polyethylene (HDPE) and aluminum alloy, while the multifunc-tional materials included carbon composite infused with single walled carbon nanotubes. High energy particles including proton, silicon and iron nuclei were chosen as the incident radia-tion for these studies. Further, TEPC results from measurements taken during flights aboard ER-2 and KC-135 aircraft will also be discussed. Results from these flight studies include TEPC measurements for shielded and unshielded conditions as well as the effect of vibration and electromagnetic exposures on the TEPC operation. The data selected for presentation will highlight the utility of the TEPC in space radiation studies, and in shielding studies in particular. The lineal energy response function of the

  16. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS)

    PubMed Central

    Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.

    2014-01-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a

  17. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular-scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS).

    PubMed

    Chandra, S; Ahmad, T; Barth, R F; Kabalka, G W

    2014-06-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 ((10)B) atoms to individual tumour cells. Cell killing results from the (10)B (n, α)(7) Li neutron capture and fission reactions that occur if a sufficient number of (10)B atoms are localized in the tumour cells. Intranuclear (10)B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of (10)B atoms reflects both bound and free pools of boron in individual tumour cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular-scale resolution by clinically applicable techniques such as positron emission tomography and magnetic resonance imaging. In this study, a secondary ion mass spectrometry based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high-grade gliomas, recurrent tumours of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumour cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This

  18. Modification of the University of Washington Neutron Radiotherapy Facility for optimization of neutron capture enhanced fast-neutron therapy.

    PubMed

    Nigg, D W; Wemple, C A; Risler, R; Hartwell, J K; Harker, Y D; Laramore, G E

    2000-02-01

    A modified neutron production target assembly has been developed to provide improved performance of the proton-cyclotron-based neutron radiotherapy facility at the University of Washington for applications involving neutron capture enhanced fast-neutron therapy. The new target produces a neutron beam that yields essentially the same fast-neutron physical depth-dose distribution as is produced by the current UW clinical system, but that also has an increased fraction of BNCT enhancement relative to the total therapeutic dose. The modified target is composed of a 5-millimeter layer of beryllium, followed by a 2.5-millimeter layer of tungsten, with a water-cooled copper backing. Measurements of the free-field neutron spectrum of the beam produced by the new target were performed using activation foils with a direct spectral unfolding technique. Water phantom measurements were performed using a tissue-equivalent ion chamber to characterize the fast-neutron depth-dose curve and sodium activation in soda-lime glass beads to characterize the thermal-neutron flux (and thus the expected neutron capture dose enhancement) as a function of depth. The results of the various measurements were quite consistent with expectations based on the design calculations for the modified target. The spectrum of the neutron beam produced by the new target features an enhanced low-energy flux component relative to the spectrum of the beam produced by the standard UW target. However, it has essentially the same high-energy neutron flux, with a reduced flux component in the mid-range of the energy spectrum. As a result, the measured physical depth-dose curve in a large water phantom has the same shape compared to the case of the standard UW clinical beam, but approximately twice the level of BNCT enhancement per unit background neutron dose at depths of clinical interest. In-vivo clinical testing of BNCT-enhanced fast-neutron therapy for canine lung tumors using the new beam was recently

  19. Facility Focus: Sports and Recreation Facilities.

    ERIC Educational Resources Information Center

    College Planning & Management, 2000

    2000-01-01

    Examines projects that demonstrate three different commitments administrators make to their athletic facilities: convenience; excellence; and comfort. Projects discussed involve a fitness center, a football stadium, and a multi-sport indoor practice facility. (GR)

  20. Facility Focus: Sports and Recreation Facilities.

    ERIC Educational Resources Information Center

    College Planning & Management, 2000

    2000-01-01

    Examines projects that demonstrate three different commitments administrators make to their athletic facilities: convenience; excellence; and comfort. Projects discussed involve a fitness center, a football stadium, and a multi-sport indoor practice facility. (GR)

  1. Near-threshold (7)Li(p,n)(7)Be neutrons on the practical conditions using thick Li-target and Gaussian proton energies for BNCT.

    PubMed

    Kobayashi, Tooru; Hayashizaki, Noriyosu; Katabuchi, Tatsuya; Tanaka, Kenichi; Bengua, Gerard; Nakao, Noriaki; Kosako, Kazuaki

    2014-06-01

    The near threshold (7)Li(p,n)(7)Be neutrons generated by incident proton energy having Gaussian distribution with mean energies from 1.85 to 1.95MeV, were studied as a practical neutron source for BNCT wherein an RFQ accelerator and a thick Li-target are used. Gaussian energy distributions with the standard deviation of 0, 10, 20 and 40keV for mean proton energies from 1.85 to 1.95MeV were surveyed in 0.01MeV increments. A thick liquid Li-target whose dimensions were established in our previous experiments (i.e., 1mm-thick with 50mm width and 50mm length) was considered in this study. The suitable incident proton energy and physical dimensions of Pb layer which serves as a gamma absorber and a Polyethylene layer which is used as a BDE were surveyed by means of the concepts of TPD. Dose distribution were calculated by using MCNP5. A proton beam with mean energy of 1.92MeV and a Gaussian energy distribution with a standard deviation of 20keV at a current of 10mA was selected from the viewpoint of irradiation time and practically achievable proton current. The suitable thicknesses of Pb gamma absorber was estimated to be about 3cm. The estimated thickness of the polyethylene BDE was about 24mm for an ideal proton current of 13mA, and was 18mm for a practical proton current of 10mA.

  2. Initial investigations of SNS target facility accident source terms

    SciTech Connect

    Harrington, R.M.; Devore, J.R.; Beahm, E.C.; Weber, C.F.; Johnson, J.O.

    1998-07-01

    The Spallation Neutron Source (SNS) is a Department of Energy, accelerator-based neutron source proposed for construction at the Oak Ridge National Laboratory. The project is currently nearing the end of the conceptual design stage. The objective of the target facility is to provide beams of pulsed thermal and sub-thermal neutrons for research purposes. The neutrons are created by the action of highly energetic protons ({approximately} 1 GeV) on a mercury target. The proton beam power will be 1 MW with planned upgrades to 2 MW and, eventually, to 4 MW. Over the course of facility life, significant inventories of spallation and activation products will build up in the target mercury. Accordingly, the facility is being designed to prevent or minimize potential environmental source terms. The results of calculations of the SNS target mercury radionuclide inventories and the characteristics of the dominant radionuclides are presented. The effect of the activation/spallation product chemical and physical characteristics on dispersability is discussed. Energy sources that could drive potential releases, credible initiating events and facility preventive and mitigative features are described. The source term for the limiting extremely unlikely mercury spill accident scenario is presented. These results support the conclusion that the facility has a low hazard profile with regard to the accidental release of radioactive material.

  3. Guide to research facilities

    SciTech Connect

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  4. An improved prompt gamma neutron activation analysis facility using a focused diffracted neutron beam

    NASA Astrophysics Data System (ADS)

    Riley, Kent J.; Harling, Otto K.

    1998-09-01

    The performance of the prompt gamma neutron activation analysis (PGNAA) facility at the MIT Research Reactor has been improved by a series of modifications. These modifications have increased the flux by a factor of three at the sample position to 1.7 × 10 7 n/cm 2 s, and have increased the sensitivity, on average, by a factor of 2.5. The background for many samples of interest is dominated by unavoidable neutron interactions that occur in or near the sample. Other background components comprise only 20% of the total background count rate. The implementation of fast electronics has helped to keep dead time reasonable, in spite of the increased count rates. The PGNAA facility at the MIT Research Reactor continues to serve as a major analytical tool for quantifying 10B in biological samples for Boron Neutron Capture Therapy (BNCT) research. The sensitivity for boron-10 in water is 18 750 cps/mg. The sensitivity for pure elements suitable for PGNAA analysis is reported. Possible further improvements are discussed.

  5. Plum Brook facilities

    NASA Technical Reports Server (NTRS)

    Kozar, Robert

    1993-01-01

    The topics are presented in viewgraph form and include the following: the Spacecraft Propulsion Research Research Facility (B-2); the Hydrogen Heat Transfer Facility (HHTF); the Rocket Dynamics and Control Facility (B-3); the Cryogenic Propellant Tank Site (K-Site); and the Space Power Facility (SPF).

  6. Future Fixed Target Facilities

    SciTech Connect

    Melnitchouk, Wolodymyr

    2009-01-01

    We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

  7. Sports Facility Management.

    ERIC Educational Resources Information Center

    Walker, Marcia L., Ed.; Stotlar, David K., Ed.

    The numbers of both sports facility management college courses and sport and exercise facilities are increasing, along with the need for an understanding of the trends and management concepts of these facilities. This book focuses exclusively on managing facilities where sporting events occur and includes examples in physical education, athletics,…

  8. Sports Facility Management.

    ERIC Educational Resources Information Center

    Walker, Marcia L., Ed.; Stotlar, David K., Ed.

    The numbers of both sports facility management college courses and sport and exercise facilities are increasing, along with the need for an understanding of the trends and management concepts of these facilities. This book focuses exclusively on managing facilities where sporting events occur and includes examples in physical education, athletics,…

  9. Reliable Facility Location Problem with Facility Protection

    PubMed Central

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed. PMID:27583542

  10. Reliable Facility Location Problem with Facility Protection.

    PubMed

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed.

  11. Extra-corporeal liver BNCT for the treatment of diffuse metastases: what was learned and what is still to be learned.

    PubMed

    Zonta, A; Pinelli, T; Prati, U; Roveda, L; Ferrari, C; Clerici, A M; Zonta, C; Mazzini, G; Dionigi, P; Altieri, S; Bortolussi, S; Bruschi, P; Fossati, F

    2009-07-01

    Almost eight years ago, in December 2001, we performed for the first time in the world thermal neutron irradiation on an isolated liver of a patient. The organ was affected by diffuse metastases of a colon carcinoma and had been previously loaded with a (10)B compound. In July 2003, the same procedure was applied again on a patient for the treatment of unresectable and incurable hepatic metastases of a carcinoma of the rectum. Both patients are dead at present. Now we can analyze in depth the clinical history of these patients and evaluate the effectiveness of this therapy. From this exciting experience we learned much, and we also found out about complications till then unknown, which need to be studied and addressed experimentally. Unfortunately we can base our conclusions just on the experience we had with these two patients. We could have been much more detailed and firm in our statements if the number of clinical cases was larger. The BNCT Pavia project has been suspended, but it is more than likely to resume in a short time. Good findings were many. The procedure is feasible; the original concept of complete immersion of the diseased liver in a homogeneous neutron field proved effective and winning. The tumor masses resulted completely necrotic and unknown metastases too appeared radically treated; healthy hepatic tissue was preserved from both morphological and functional points of view; no symptoms of cirrhosis appeared even four years after treatment. For the long term surviving patient, quality of life was excellent. Other findings require to be tackled in depth. The "post-irradiation syndrome" we observed in both patients, with identical symptoms and biochemical derangements, creates a dramatic--even though totally reversible--clinical condition, that is the probable cause of death for our second patient, suffering from cardiomyopathy, 33 days after treatment. For the first patient, recurrences were a late yet fatal complication, for which even a further

  12. TPD-based evaluation of near threshold mono-energetic proton energies for the (7)Li(p,n)(7)Be production of neutrons for BNCT.

    PubMed

    Bengua, Gerard; Kobayashi, Tooru; Tanaka, Kenichi; Nakagawa, Yoshinobu; Unesaki, Hironobu

    2006-08-21

    An evaluation of mono-energetic proton energies ranging from 1.885 MeV to 1.920 MeV was carried out to determine the viability of these near threshold energies in producing neutrons for BNCT via the (7)Li(p,n)(7)Be reaction. Neutron fields generated at these proton energies were assessed using the treatable protocol depth (TPD) and the maximum TPD (TPD(max)) as evaluation indices. The heavy charged particle (HCP) dose rate to tumour was likewise applied as a figure of merit in order to account for irradiation time and required proton current. Incident proton energies closer to the reaction threshold generated deeper TPDs compared to higher energy protons when no boron dose enhancers (BDE) were placed in the irradiation field. Introducing a BDE resulted in improved TPDs for high proton energies but their achievable TPD(max) were comparatively lower than that obtained for lower proton energies. In terms of the HCP dose rate to tumour, higher proton energies generated neutron fields that yielded higher dose rates both at TPD(max) and at fixed depths of comparison. This infers that higher currents are required to deliver the prescribed treatment dose to tumours for proton beams with energies closer to the (7)Li(p,n)(7)Be reaction threshold and more achievable proton currents of around 10 mA or less for proton energies from 1.900 MeV and above. The dependence on incident proton energy of the TPD, TPD(max) and the HCP dose rate to tumour with respect to the (10)B concentration in tumour and healthy tissues were also clarified in this study. Increasing the (10)B concentration in tumour while maintaining a constant T/N ratio resulted in deeper TPD(max) where a greater change in TPD(max) was obtained for proton energies closer to the (7)Li(p,n)(7)Be reaction threshold. The HCP dose rates to tumour for all proton energies also went up, with the higher proton energies benefiting more from the increased (10)B concentration.

  13. A noninvasive eye fixation and computer-aided eye monitoring system for linear accelerator-based stereotactic radiotherapy of uveal melanoma.

    PubMed

    Bogner, Joachim; Petersch, Bernhard; Georg, Dietmar; Dieckmann, Karin; Zehetmayer, Martin; Pötter, Richard

    2003-07-15

    To introduce a noninvasive eye fixation and computer-aided eye monitoring system for linear accelerator-based stereotactic radiotherapy for uveal melanoma. At the Department of Radiotherapy and Radiobiology, University of Vienna, stereotactic radiotherapy is offered to patients with uveal melanoma considered unsuitable for (106)Ru brachytherapy or local resection. For the present feasibility study, 8 patients were carefully selected according to their ability to fixate a small light source with the diseased eye and whether they had a rather small head to meet the limited geometric space available. A polymethyl methacrylate tube was attached to a stereotactic mask system in craniocaudal orientation supporting a 45 degrees mirror, which was placed in front of the diseased eye. At the other end of the tube, the patient was given a small fixation light, and a small camera was positioned beneath, which was shielded for use during MRI. A computer interface calculated and visualized the spatial difference of the actual and a given reference pupil position, which was defined before CT scanning, during the MRI sequences, and during treatment delivery at the linear accelerator. The described system can be attached to a conventional stereotactic mask system with minor modifications. Because of the large distance between the eye and the fixation light, the optical fixation system was well tolerated by all patients, and a stable position of the eye was obtained. The camera system can be used during CT and MRI without interference. Absorption of the 6-MV photon beam by the mirror and the polymethyl methacrylate tube was negligible. The computer interface designed to determine the pupil position uses an image-processing algorithm that correlates a template of the reference image with the actual image of the eye. Provided sufficient illumination of the pupil, the correlation function showed a pronounced minimum at the reference position. The precision of the algorithm was tested

  14. New irradiation facility for biomedical applications at the RA-3 reactor thermal column.

    PubMed

    Miller, M; Quintana, J; Ojeda, J; Langan, S; Thorp, S; Pozzi, E; Sztejnberg, M; Estryk, G; Nosal, R; Saire, E; Agrazar, H; Graiño, F

    2009-07-01

    A new irradiation facility has been developed in the RA-3 reactor in order to perform trials for the treatment of liver metastases using boron neutron capture therapy (BNCT). RA-3 is a production research reactor that works continuously five days a week. It had a thermal column with a small cross section access tunnel that was not accessible during operation. The objective of the work was to perform the necessary modifications to obtain a facility for irradiating a portion of the human liver. This irradiation facility must be operated without disrupting the normal reactor schedule and requires a highly thermalized neutron spectrum, a thermal flux of around 10(10) n cm(-2)s(-1) that is as isotropic and uniform as possible, as well as on-line instrumentation. The main modifications consist of enlarging the access tunnel inside the thermal column to the suitable dimensions, reducing the gamma dose rate at the irradiation position, and constructing properly shielded entrance gates enabled by logical control to safely irradiate and withdraw samples with the reactor at full power. Activation foils and a neutron shielded graphite ionization chamber were used for a preliminary in-air characterization of the irradiation site. The constructed facility is very practical and easy to use. Operational authorization was obtained from radioprotection personnel after confirming radiation levels did not significantly increase after the modification. A highly thermalized and homogenous irradiation field was obtained. Measurements in the empty cavity showed a thermal flux near 10(10) n cm(-2)s(-1), a cadmium ratio of 4100 for gold foils and a gamma dose rate of approximately 5 Gy h(-1).

  15. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  16. Comparison of the image-derived radioactivity and blood-sample radioactivity for estimating the clinical indicators of the efficacy of boron neutron capture therapy (BNCT): 4-borono-2-(18)F-fluoro-phenylalanine (FBPA) PET study.

    PubMed

    Isohashi, Kayako; Shimosegawa, Eku; Naka, Sadahiro; Kanai, Yasukazu; Horitsugi, Genki; Mochida, Ikuko; Matsunaga, Keiko; Watabe, Tadashi; Kato, Hiroki; Tatsumi, Mitsuaki; Hatazawa, Jun

    2016-12-01

    In boron neutron capture therapy (BNCT), positron emission tomography (PET) with 4-borono-2-(18)F-fluoro-phenylalanine (FBPA) is the only method to estimate an accumulation of (10)B to target tumor and surrounding normal tissue after administering (10)B carrier of L-paraboronophenylalanine and to search the indication of BNCT for individual patient. Absolute concentration of (10)B in tumor has been estimated by multiplying (10)B concentration in blood during BNCT by tumor to blood radioactivity (T/B) ratio derived from FBPA PET. However, the method to measure blood radioactivity either by blood sampling or image data has not been standardized. We compared image-derived blood radioactivity of FBPA with blood sampling data and studied appropriate timing and location for measuring image-derived blood counts. We obtained 7 repeated whole-body PET scans in five healthy subjects. Arterialized venous blood samples were obtained from the antecubital vein, heated in a heating blanket. Time-activity curves (TACs) of image-derived blood radioactivity were obtained using volumes of interest (VOIs) over ascending aorta, aortic arch, pulmonary artery, left and right ventricles, inferior vena cava, and abdominal aorta. Image-derived blood radioactivity was compared with those measured by blood sampling data in each location. Both the TACs of blood sampling radioactivity in each subject, and the TACs of image-derived blood radioactivity showed a peak within 5 min after the tracer injection, and promptly decreased soon thereafter. Linear relationship was found between blood sampling radioactivity and image-derived blood radioactivity in all the VOIs at any timing of data sampling (p < 0.001). Image-derived radioactivity measured in the left and right ventricles 30 min after injection showed high correlation with blood radioactivity. Image-derived blood radioactivity was lower than blood sampling radioactivity data by 20 %. Reduction of blood radioactivity of FBPA in left

  17. Analytical approximations for matter effects on CP violation in the accelerator-based neutrino oscillations with E ≲ 1 GeV

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-zhong; Zhu, Jing-yu

    2016-07-01

    Given an accelerator-based neutrino experiment with the beam energy E ≲ 1 GeV, we expand the probabilities of ν μ → ν e and {overline{ν}}_{μ}to {overline{ν}}_e oscillations in matter in terms of two small quantities Δ21 /Δ31 and A/Δ31, where Δ 21≡ m 2 2 - m 1 2 and Δ 31≡ m 3 2 - m 1 2 are the neutrino mass-squared differences, and A measures the strength of terrestrial matter effects. Our analytical approximations are numerically more accurate than those made by Freund in this energy region, and thus they are particularly applicable for the study of leptonic CP violation in the low-energy MOMENT, ESS νSM and T2K oscillation experiments. As a by-product, the new analytical approximations help us to easily understand why the matter-corrected Jarlskog parameter tilde{J} peaks at the resonance energy E ∗ ≃ 0 .14GeV (or 0 .12 GeV) for the normal (or inverted) neutrino mass hierarchy, and how the three Dirac unitarity triangles are deformed due to the terrestrial matter contamination. We also affirm that a medium-baseline neutrino oscillation experiment with the beam energy E lying in the E ∗ ≲ E ≲ 2 E ∗ range is capable of exploring leptonic CP violation with little matter-induced suppression.

  18. Facilities for US Radioastronomy.

    ERIC Educational Resources Information Center

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  19. Facility safety study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The safety of NASA's in house microelectronics facility is addressed. Industrial health standards, facility emission control requirements, operation and safety checklists, and the disposal of epitaxial vent gas are considered.

  20. FDA Certified Mammography Facilities

    MedlinePlus

    ... Program Consumer Information (MQSA) Search for a Certified Facility Share Tweet Linkedin Pin it More sharing options ... Email Print This list of FDA Certified Mammography Facilities is updated weekly. If you click on Search ...

  1. Spacelab Data Processing Facility

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The capabilities of the Spacelab Data Processing Facility (SPDPF) are highlighted. The capturing, quality monitoring, processing, accounting, and forwarding of vital Spacelab data to various user facilities around the world are described.

  2. Facilities maintenance handbook

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This handbook is a guide for facilities maintenance managers. Its objective is to set minimum facilities maintenance standards. It also provides recommendations on how to meet the standards to ensure that NASA maintains its facilities in a manner that protects and preserves its investment in the facilities in a cost-effective manner while safely and efficiently performing its mission. This handbook implements NMI 8831.1, which states NASA facilities maintenance policy and assigns organizational responsibilities for the management of facilities maintenance activities on all properties under NASA jurisdiction. It is a reference for facilities maintenance managers, not a step-by-step procedural manual. Because of the differences in NASA Field Installation organizations, this handbook does not assume or recommend a typical facilities maintenance organization. Instead, it uses a systems approach to describe the functions that should be included in any facilities maintenance management system, regardless of its organizational structure. For documents referenced in the handbook, the most recent version of the documents is applicable. This handbook is divided into three parts: Part 1 specifies common definitions and facilities maintenance requirements and amplifies the policy requirements contained in NMI 8831. 1; Part 2 provides guidance on how to meet the requirements of Part 1, containing recommendations only; Part 3 contains general facilities maintenance information. One objective of this handbook is to fix commonality of facilities maintenance definitions among the Centers. This will permit the application of uniform measures of facilities conditions, of the relationship between current replacement value and maintenance resources required, and of the backlog of deferred facilities maintenance. The utilization of facilities maintenance system functions will allow the Centers to quantitatively define maintenance objectives in common terms, prepare work plans, and

  3. Low Energy Accelerator Facility Upgrade and test

    SciTech Connect

    Alford, K.; Chemerisov, S.; Gromov, R.; Hafenrichter, L.; Jonah, C. D.; Tafoya, R.; Wesolowski, K.; Brown, D.; Forknall, S.; Gardner, James; Macrillo, Dave; Zulpo, A.

    2015-01-01

    The Low Energy Accelerator Facility (LEAF) contains a low-energy linac with high average beam power, which was designed and built in the late 1960’s primarily for radiation-chemistry experiments. The maximum beam energy in that configuration was 21 MeV. Although, the installation is old, it is still reliable. The accelerator was repurposed for development of accelerator-based technologies for the production of 99Mo with funding provided by the National Nuclear Security Administration’s Office of Material Management and Minimization (M3 ). An extensive scientific program on the production of radioactive isotopes demanded an upgrade of the accelerator to fit the experimental requirements. Several possible LEAF upgrades were proposed to increase the electron beam energy. The final design proposed the replacement of the old accelerating structures with new ones. In 2011-2012, the new structures were manufactured, installed, and tested with the beam energy up to 50 MeV and average beam power up to 20 kW. LEAF now is an attractive installation for performing research into medical isotope production.

  4. Science Facilities. An Interpretive Bibliography.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. ERIC Clearinghouse on Educational Facilities.

    References pertaining to science facilities are organized and presented in the following categories--(1) biology facilities, (2) chemistry facilities, (3) physics facilities, (4) astronomy facilities, (5) elementary and secondary school science facilities, (6) college and university science facilities, and (7) planning and science laboratory. (FS)

  5. Japanese and Eastern Facilities

    NASA Astrophysics Data System (ADS)

    Nakahata, M.

    2005-09-01

    The underground facilities in Japan and Korea are reviewed. Those facilities are Kamioka Observatory, Oto Cosmo Observatory, Ogoya Underground Laboratory, and Kashiwa Underground Laboratory in Japan and YangYang Underground Laboratory in Korea. Features of those facilities and radon reduction systems at Kamioka Observatory are presented.

  6. Facilities Engineering in NASA

    NASA Technical Reports Server (NTRS)

    Pagluiso, M. A.

    1970-01-01

    An overview of NASA facilities is given outlining some of the more interesting and unique aspects of engineering and facilities associated with the space program. Outlined are some of the policies under which the Office of Facilities conducts its business. Included are environmental quality control measures.

  7. Considerations on Facilities Planning

    ERIC Educational Resources Information Center

    Baule, Steven

    2007-01-01

    Most facilities renovation projects occur because someone at the executive or board level has lobbied successfully for them. Often in public schools, the voters have agreed to the project as well via a building referendum. Therefore, facilities projects are highly visible to the community. Unlike many other issues in schools, facilities projects…

  8. Facilities Engineering in NASA

    NASA Technical Reports Server (NTRS)

    Pagluiso, M. A.

    1970-01-01

    An overview of NASA facilities is given outlining some of the more interesting and unique aspects of engineering and facilities associated with the space program. Outlined are some of the policies under which the Office of Facilities conducts its business. Included are environmental quality control measures.

  9. Considerations on Facilities Planning

    ERIC Educational Resources Information Center

    Baule, Steven

    2007-01-01

    Most facilities renovation projects occur because someone at the executive or board level has lobbied successfully for them. Often in public schools, the voters have agreed to the project as well via a building referendum. Therefore, facilities projects are highly visible to the community. Unlike many other issues in schools, facilities projects…

  10. Aeronautical facilities assessment

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler)

    1985-01-01

    A survey of the free world's aeronautical facilities was undertaken and an evaluation made on where the relative strengths and weaknesses exist. Special emphasis is given to NASA's own capabilities and needs. The types of facilities surveyed are: Wind Tunnels; Airbreathing Propulsion Facilities; and Flight Simulators

  11. Indoor Athletic Facilities.

    ERIC Educational Resources Information Center

    Fleming, E. Scott

    2000-01-01

    Examines the concept of shared-use facilities to help financially support and meet the demand for athletic facilities. Shared-use considerations are explored including cost sharing of ongoing operations, aesthetics, locker rooms, support facilities, parking and site access, and building access and security. (GR)

  12. Rental of School Facilities.

    ERIC Educational Resources Information Center

    San Antonio Independent School District, TX.

    Regulations governing rental of facilities owned by the San Antonio School District (Texas) are documented as found in Section Eight of the school district's rules code ("Public Use of All School District Facilities"). Eight divisions of the code are as follows: (1) administration; (2) use of school facilities by pupils, employees, and…

  13. The effects of ionizing radiation and dexamethasone on the blood-brain-barrier (BBB) and blood-tumor-barrier (BTB): Implications for boron neutron capture therapy (BNCT) of brain tumors

    SciTech Connect

    Dorn, R.V. III; Spickard, J.H.; Griebenow, M.L.

    1988-01-01

    Currently envisioned techniques for Boron Neutron Capture Therapy (BNCT) of brain tumors rely on the increased permeability of the blood-brain-barrier (BBB) (more specifically, the blood-tumor-barrier (BTB)) which occurs around the malignant tumor. As a result of this increased permeability, higher boron concentrations (Na/sub 2/B/sub 12/H/sub 11/SH) should be obtainable in the tumor than in the surrounding normal brain. The effects on the BBB and BTB by the ionizing component of this radiation and by the steroid dexamethasone (almost universally used in the clinical management of these patients) must be considered in the formulation of this treatment technique. 32 refs., 5 tabs.

  14. OP12BORON NEUTRON CAPTURE THERAPY (BNCT): OPTIMISATION OF BORON UPTAKE AND PATIENT STRATIFICATION BY LAT1 IMPROVES BIOLOGICAL TARGETING WITH REDUCED RADIATION TIME, AND INCREASED CHANCE OF TUMOUR CONTROL

    PubMed Central

    Cruickshank, G.; Detta, A.; Ngoga, D.; Lockyer, N.; Pheonix, B.; Ghani, Z.; Green, S.

    2014-01-01

    INTRODUCTION: The interaction between an epithermal neutron beam, now deliverable with LINAC technology, and tumour cell accumulated Boron from borono-phenylalanine (BPA), releases an intracellular alpha particle and Li ion causing irrecoverable double strand DNA breaks, insensitive to hypoxia and cell cycle state. Augmented uptake of BPA in GBM cells due to LAT1 upregulation allows targeting of tumour cells, but optimisation of BPA delivery, and neutron exposure time, need clarification before a Phase I trial. METHOD: A pharmacokinetic (Pk)study of newly formulated BPA delivered by iv or close arterial infusion with preinfusion barrier opening, has been carried out in 10 new GBM patients. Plasma, ECF microdialysis, LAT1 activity, Tumour and brain around tumour (BAT) boron10 concentrations of have been used to model the optimum period for neutron beam therapy. RESULTS: 75% of GBM cells are LAT 1 positive, many more than the proliferative index PCNA. Pk studies indicate a three compartment model of BPA cell uptake rate limited by LAT1 exchange kinetics plateauing at four hours. LAT 1 density determines cell Boron dose. LAT1 uptake activity varies between core tumour cells and BAT tumour cells. LAT1 expression maybe particularly elevated in patients with unmethylated MGMT promoter. CONCLUSION: Patients with >50% LAT1 expression are likely to benefit from BNCT with non-LAT1 cells best treated with reduced fraction RT. The BPA uptake pattern favours BAT region tumour cells: those left after surgery regardless of -oxic or cell cycle status. BNCT offers a way of RT dose escalation to discontiguous GBM cells avoiding normal brain, exploits the biology of LAT1 and may offer benefit to patients unresponsive to Temozolomide.

  15. Comparison of the extent of hippocampal sparing according to the tilt of a patient's head during WBRT using linear accelerator-based IMRT and VMAT.

    PubMed

    Moon, Sun Young; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook

    2016-05-01

    In this paper, we report the results of our investigation into whole brain radiotherapy (WBRT) using linear accelerator-based intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) in lung cancer patients with a high risk of metastasis to the brain. Specifically, we assessed the absorbed dose and the rate of adverse effects for several organs at risk (OAR), including the hippocampus, according to the tilt of a patient's head. We arbitrarily selected five cases where measurements were made with the patients' heads tilted forward and five cases without such tilt. We set the entire brain as the planning target volume (PTV), and the hippocampi, the lenses, the eyes, and the cochleae as the main OAR, and formulated new plans for IMRT (coplanar, non-coplanar) and VMAT (coplanar, non-coplanar). Using the dose-volume histogram (DVH), we calculated and compared the effective uniform dose (EUD), normal tissue complication probability (NTCP) of the OAR and the mean and the maximum doses of hippocampus. As a result, if the patient tilted the head forward when receiving the Linac-based treatment, for the same treatment effect in the PTV, we confirmed that a lower dose entered the OAR, such as the hippocampus, eye, lens, and cochlea. Moreover, the damage to the hippocampus was expected to be the least when receiving coplanar VMAT with the head tilted forward. Accordingly, if patients tilt their heads forward when undergoing Linac-based WBRT, we anticipate that a smaller dose would be transmitted to the OAR, resulting in better quality of life following treatment. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Long-term follow-up results of linear accelerator-based radiosurgery for vestibular schwannoma using serial three-dimensional spoiled gradient-echo MRI.

    PubMed

    Matsuo, Takayuki; Okunaga, Tomohiro; Kamada, Kensaku; Izumo, Tsuyoshi; Hayashi, Nobuyuki; Nagata, Izumi

    2015-02-01

    We examined the characteristic changes in vestibular schwannoma (VS) volume after treatment with linear accelerator-based radiosurgery (LBRS) and the long-term therapeutic effects, by performing three-dimensional (3D) MRI evaluations of tumor volumes. We included 44 patients in whom tumor volume changes could be observed using 3D-spoiled gradient-echo MRI for at least 5 years. Examinations were performed every 3-4 months for the first 2 years after treatment and every 6-12 months thereafter. Enlargement or shrinkage was determined as a change of at least 20% from the volume at the time of treatment. The median observation period was 13.8 years (range, 5.5-19.5 years). The tumor control rates at 5 and 10 years after treatment and at the final MRI were 90.9%, 90.0%, and 88.6%, respectively. Tumor volume changes were categorized into the following four patterns: enlargement, five patients (11.4%); stable, three patients (6.8%); transient enlargement, 24 patients (54.5%); and direct shrinkage, 12 patients (27.3%). Bimodal peaks were observed in three of the 24 patients with transient enlargement. Tumor volume changes from 5 and 10 years post-LBRS to the final observation point were observed in 27 (64.2%) and 10 patients (33.3%), respectively. The long-term tumor volume changes observed after LBRS suggest that radiation exerts long-term effects on tumors. Furthermore, while transient enlargements in tumor volume were characteristic, true tumor enlargements should be characterized by increased volumes of more than two-fold and continued growth for at least 2 years. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Radiation dose measurements and Monte Carlo calculations for neutron and photon reactions in a human head phantom for accelerator-based boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Kim, Don-Soo

    Dose measurements and radiation transport calculations were investigated for the interactions within the human brain of fast neutrons, slow neutrons, thermal neutrons, and photons associated with accelerator-based boron neutron capture therapy (ABNCT). To estimate the overall dose to the human brain, it is necessary to distinguish the doses from the different radiation sources. Using organic scintillators, human head phantom and detector assemblies were designed, constructed, and tested to determine the most appropriate dose estimation system to discriminate dose due to the different radiation sources that will ultimately be incorporated into a human head phantom to be used for dose measurements in ABNCT. Monoenergetic and continuous energy neutrons were generated via the 7Li(p,n)7Be reaction in a metallic lithium target near the reaction threshold using the 5.5 MV Van de Graaff accelerator at the University of Massachusetts Lowell. A human head phantom was built to measure and to distinguish the doses which result from proton recoils induced by fast neutrons, alpha particles and recoil lithium nuclei from the 10B(n,alpha)7Li reaction, and photons generated in the 7Li accelerator target as well as those generated inside the head phantom through various nuclear reactions at the same time during neutron irradiation procedures. The phantom consists of two main parts to estimate dose to tumor and dose to healthy tissue as well: a 3.22 cm3 boron loaded plastic scintillator which simulates a boron containing tumor inside the brain and a 2664 cm3 cylindrical liquid scintillator which represents the surrounding healthy tissue in the head. The Monte Carlo code MCNPX(TM) was used for the simulation of radiation transport due to neutrons and photons and extended to investigate the effects of neutrons and other radiation on the brain at various depths.

  18. 340 Facility compliance assessment

    SciTech Connect

    English, S.L.

    1993-10-01

    This study provides an environmental compliance evaluation of the RLWS and the RPS systems of the 340 Facility. The emphasis of the evaluation centers on compliance with WAC requirements for hazardous and mixed waste facilities, federal regulations, and Westinghouse Hanford Company (WHC) requirements pertinent to the operation of the 340 Facility. The 340 Facility is not covered under either an interim status Part A permit or a RCRA Part B permit. The detailed discussion of compliance deficiencies are summarized in Section 2.0. This includes items of significance that require action to ensure facility compliance with WAC, federal regulations, and WHC requirements. Outstanding issues exist for radioactive airborne effluent sampling and monitoring, radioactive liquid effluent sampling and monitoring, non-radioactive liquid effluent sampling and monitoring, less than 90 day waste storage tanks, and requirements for a permitted facility.

  19. Facility effluent monitoring plan determinations for the 400 Area facilities

    SciTech Connect

    Nickels, J.M.

    1991-09-01

    This Facility Effluent Monitoring Plan determination resulted from an evaluation conducted for the Westinghouse Hanford Company 400 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans. Two major Westinghouse Hanford Company facilities in the 400 Area were evaluated: the Fast Flux Test Facility and the Fuels Manufacturing and examination Facility. The determinations were prepared by Westinghouse Hanford Company. Of these two facilities, only the Fast Flux Test Facility will require a Facility Effluent Monitoring Plan. 7 refs., 5 figs., 4 tabs.

  20. Mir training Facility view

    NASA Image and Video Library

    1995-02-22

    S95-04319 (22 Feb 1995) --- The neutral buoyancy facility at the Gagarin Cosmonaut Training Center in Star City, Russia, is used for underwater training for missions aboard the Russian Mir Space Station. The facility is similar to NASA's Weightless Environment Training Facility (WET-F) at the Johnson Space Center (JSC) in Houston, Texas, and the Neutral Buoyancy Simulator (NBS) at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama.

  1. Facility Measures Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.

    1991-01-01

    Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.

  2. Developing a facility strategy.

    PubMed

    Capps, D M

    1994-05-01

    Successful planning for capital investment relies upon the ability of the management team to establish a cogent and comprehensive direction for facility development. The selection of an appropriate strategy integrates multiple issues: mission, service needs of the community, the external environment, the organization's ethos, current physical resources, operational systems, and vision. This paper will identify and discuss key components and data integral to formulating a facility strategy that outlines the basic direction for developing a facility master plan. The process itself will be presented as a working methodology that can be applied to the organization's resources and vision to generate a coherent facility strategy.

  3. Stereotactic Irradiation of the Postoperative Resection Cavity for Brain Metastasis: A Frameless Linear Accelerator-Based Case Series and Review of the Technique

    SciTech Connect

    Kelly, Paul J.; Alexander, Brian M.; Hacker, Fred; Marcus, Karen J.; Weiss, Stephanie E.

    2012-01-01

    Purpose: Whole-brain radiation therapy (WBRT) is the standard of care after resection of a brain metastasis. However, concern regarding possible neurocognitive effects and the lack of survival benefit with this approach has led to the use of stereotactic radiosurgery (SRS) to the resection cavity in place of WBRT. We report our initial experience using an image-guided linear accelerator-based frameless stereotactic system and review the technical issues in applying this technique. Methods and Materials: We retrospectively reviewed the setup accuracy, treatment outcome, and patterns of failure of the first 18 consecutive cases treated at Brigham and Women's Hospital. The target volume was the resection cavity without a margin excluding the surgical track. Results: The median number of brain metastases per patient was 1 (range, 1-3). The median planning target volume was 3.49 mL. The median prescribed dose was 18 Gy (range, 15-18 Gy) with normalization ranging from 68% to 85%. In all cases, 99% of the planning target volume was covered by the prescribed dose. The median conformity index was 1.6 (range, 1.41-1.92). The SRS was delivered with submillimeter accuracy. At a median follow-up of 12.7 months, local control was achieved in 16/18 cavities treated. True local recurrence occurred in 2 patients. No marginal failures occurred. Distant recurrence occurred in 6/17 patients. Median time to any failure was 7.4 months. No Grade 3 or higher toxicity was recorded. A long interval between initial cancer diagnosis and the development of brain metastasis was the only factor that trended toward a significant association with the absence of recurrence (local or distant) (log-rank p = 0.097). Conclusions: Frameless stereotactic irradiation of the resection cavity after surgery for a brain metastasis is a safe and accurate technique that offers durable local control and defers the use of WBRT in select patients. This technique should be tested in larger prospective studies.

  4. Dosimetric effect of small bowel oral contrast on conventional radiation therapy, linear accelerator-based intensity modulated radiation therapy, and helical tomotherapy plans for rectal cancer.

    PubMed

    Joseph, Kurian; Liu, Derek; Severin, Diane; Dickey, Mike; Polkosnik, Lee-Anne; Warkentin, Heather; Mihai, Alina; Ghosh, Sunita; Field, Colin

    2015-01-01

    This study evaluated the dosimetric effect of small bowel oral contrast on conventional radiation therapy, linear accelerator-based intensity modulated radiation therapy (IMRT), and helical tomotherapy (HT) treatment plans. Thirteen patients with rectal cancer underwent computed tomography (CT) simulation with oral contrast (CCT) in preparation for chemoradiation therapy. The contrast in the small bowel was contoured, and a noncontrast CT scan (NCCT) was simulated by reassigning a CT number of 0 Hounsfield units to the contrast volume. Conventional, IMRT, and HT plans were generated with the CCT. The plan generated on the CCT was then recalculated on the NCCT, maintaining the same number of monitor units for each field, and the plans were not renormalized. Dosimetric parameters representing coverage of the planning target volume with 45 Gy (D98%, D95%, D50%, and D2%) and sparing of the bladder and peritoneal cavity (D50%, D30%, and D10%) were recorded. The ratio of dose calculated in the presence of contrast to dose with contrast edited out was recorded for each parameter. A paired Student t test was used for comparison of plans. For conventional plans, there was <0.1% variance in the dose ratio for all volumes of interest. For IMRT plans, there was a 1% decrease in the mean dose ratio, and the range of dose ratios for all volumes was greater than that for HT or conventional plans. For HT plans, for all volumes of interest, the mean dose ratio was <0.2%, and the range for all patients was <1%. For all IMRT dosimetric parameters, the difference was in the order of 1% of the mean dose (P < .05). The dose difference was not statistically significant for the conventional or HT plans. The use of CCT during CT simulation has no clinically significant effect on dose calculations for conventional, IMRT, and HT treatment plans and may not require replacement of the contrast with a CT number of 0 Hounsfield units. Copyright © 2015 American Society for Radiation Oncology

  5. Future User Facilities

    NASA Astrophysics Data System (ADS)

    Riedinger, Lee

    2002-10-01

    The southeastern part of the U.S. is blessed with an array of national user facilities that are accessible to scientists in the region. The Oak Ridge National Laboratory (ORNL) operates 17 officially designated user facilities for the Department of Energy, the Jefferson Lab operates the Continuous Electron Beam Accelerator Facility (CEBAF), and a number of universities have forefront experimental facilities that are widely accessible. The long lead time necessary to originate and construct new user facilities makes it imperative to consider the needs of the physical sciences 10 to 20 years in the future. The construction of the Spallation Neutron Source at ORNL positions the southeast to lead in neutron science. Upgrades are desired for CEBAF and the Holifield Radioactive Ion Beam Facility (ORNL). The more future possibilities are less clear, but are becoming a focus of strategic planning among the national laboratories. Possibilities may arise in the U.S. for next-generation light sources, large computational centers, advanced fusion devices, nanotechnology centers, and perhaps facilities that are not yet contemplated. A regional discussion of the needs for large-scale user facilities in the southeast is important.

  6. Wake Shield Facility (WSF)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Wake Shield Facility (WSF) is a free-flying research and development facility that is designed to use the pure vacuum of space to conduct scientific research in the development of new materials. The thin film materials technology developed by the WSF could some day lead to applications such as faster electronics components for computers.

  7. Relocatale Learning Facilities.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto. School Planning and Building Research Section.

    This document supplies guidelines for the future design of structures within one category of relocatable learning facilities--divisible facilities. The current use and average cost of portables; and teacher, student, and community reactions are discussed. Four types of relocatable structures are described: portable, mobile, divisible, and…

  8. Shaping Campus Facilities.

    ERIC Educational Resources Information Center

    Calcara, James R.

    1999-01-01

    Explains how colleges and universities, faced with emerging trends and increased competition, can utilize their facilities as strategic resources. Examines technology changes in the classroom and the effects on user needs, the trend toward real-world learning environments, and facility design planning that responds to social interaction and…

  9. Florida Educational Facilities, 1999.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This publication describes Florida school and community college facilities completed in 1999, including photographs and floor plans. The facilities profiled are: Buchholz High School (Alachua County); Gator Run Elementary School (Broward); Corkscrew Elementary School (Collier); The 500 Role Models Academy of Excellence (Miami-Dade); Caribbean…

  10. BIBLIOGRAPHY OF FACILITIES INFORMATION.

    ERIC Educational Resources Information Center

    American Association of Junior Colleges, Washington, DC.

    PERSONNEL OF THE FACILITIES INFORMATION SERVICE OF THE AMERICAN ASSOCIATION OF JUNIOR COLLEGES COMPILED THIS LISTING OF BOOKS, ARTICLES, MONOGRAPHS, AND OTHER PRINTED MATERIALS RELEVANT TO JUNIOR COLLEGE FACILITIES PLANNING, DESIGN, AND CONSTRUCTION. IN ADDITION TO A "GENERAL" CATEGORY, REFERENCES ARE GROUPED UNDER HEADINGS OF AUDITORIUMS, COLLEGE…

  11. INCINERATION RESEARCH FACILITY

    EPA Science Inventory

    The Cincinnati-based Risk Reduction Engineering Laboratory, ORD, U.S. EPA operates the Incineration Research Facility *IRF) in Jefferson, Arkansas. This facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liquid Injection System. Each syste...

  12. Florida Educational Facilities, 2000.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This publication describes Florida school and community college facilities completed in 2000, including photographs and floor plans. The facilities profiled are:J. R. Arnold High School (Bay County); Falcon Cove Middle School (Broward); Floranada Elementary School (Broward); Lyons Creek Middle School (Broward); Parkside Elementary School…

  13. Shaping Campus Facilities.

    ERIC Educational Resources Information Center

    Calcara, James R.

    1999-01-01

    Explains how colleges and universities, faced with emerging trends and increased competition, can utilize their facilities as strategic resources. Examines technology changes in the classroom and the effects on user needs, the trend toward real-world learning environments, and facility design planning that responds to social interaction and…

  14. Facility Focus: Food Service.

    ERIC Educational Resources Information Center

    College Planning & Management, 2001

    2001-01-01

    Details the design goals, materials, and finish choices of a 38,400 square-foot dining facility and the delineation and organization of multiple spaces that comprise a 21,000 square-foot food service facility. This later design utilized market studies of student tastes and buying patterns to ensure student satisfaction. Includes seven photographs.…

  15. Science Facilities Bibliography.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    A bibliographic collection on science buildings and facilities is cited with many different reference sources for those concerned with the design, planning, and layout of science facilities. References are given covering a broad scope of information on--(1) physical plant planning, (2) management and safety, (3) building type studies, (4) design…

  16. INCINERATION RESEARCH FACILITY

    EPA Science Inventory

    The Cincinnati-based Risk Reduction Engineering Laboratory, ORD, U.S. EPA operates the Incineration Research Facility *IRF) in Jefferson, Arkansas. This facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liquid Injection System. Each syste...

  17. Long Range Facilities Planning

    DTIC Science & Technology

    1982-04-01

    Richard Muther range facilities Many alterna- analysis indi- cated that if NASSCO ever expected to surpass its output of the last several years, current...Marine Engineers (SNAME) SP-1 Panel Meeting. The Maritime Administration had Richard Muther (an authority on long range facility planning) address a

  18. METC Combustion Research Facility

    SciTech Connect

    Halow, J.S.; Maloney, D.J.; Richards, G.A.

    1994-12-31

    The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. Currently two combustion rigs are operating and one additional project is under construction for the facility. Space is available in the test cells for at least one additional test rig. A pressurized pulsed combustor began operating in July of 1993. The combustor will carry out pulsed combustion of natural gas at pressures up to 10 atmospheres. A high pressure steady flow rig is currently completely fabricated. The objective of this rig is to test novel, steady-flow, pressurized combustors that produce very low NO{sub x} and other emissions. An evaporation rig currently is in startup. This rig will test the concept of water injection in an externally fired cycle. The specific technical issue that the unit will address is evaporation rates of water droplets in high pressure flows.

  19. 17. Topside facility, interior of facility manager's room, view towards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Topside facility, interior of facility manager's room, view towards south. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  20. 18. Topside facility, interior of facility manager's room, view towards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Topside facility, interior of facility manager's room, view towards west. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  1. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  2. GRC Ground Support Facilities

    NASA Technical Reports Server (NTRS)

    SaintOnge, Thomas H.

    2010-01-01

    The ISS Program is conducting an "ISS Research Academy' at JSC the first week of August 2010. This Academy will be a tutorial for new Users of the International Space Station, focused primarily on the new ISS National Laboratory and its members including Non-Profit Organizations, other government agencies and commercial users. Presentations on the on-orbit research facilities accommodations and capabilities will be made, as well as ground based hardware development, integration and test facilities and capabilities. This presentation describes the GRC Hardware development, test and laboratory facilities.

  3. National Facilities study

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This study provides a set of recommendations for improving the effectiveness of our nation's aeronautics and space facilities. The study plan considers current and future government and commercial needs as well as DOD and NASA mission requirements through the year 2023. It addresses shortfalls in existing capabilities, new facility requirements, upgrades, consolidations, and phase-out of existing facilities. If the recommendations are implemented, they will provide world-class capability where it is vital to our country's needs and make us more efficient in meeting future needs.

  4. TRITIUM EXTRACTION FACILITY ALARA

    SciTech Connect

    Joye, BROTHERTON

    2005-04-19

    The primary mission of the Tritium Extraction Facility (TEF) is to extract tritium from tritium producing burnable absorber rods (TPBARs) that have been irradiated in a commercial light water reactor and to deliver tritium-containing gas to the Savannah River Site Facility 233-H. The tritium extraction segment provides the capability to deliver three (3) kilograms per year to the nation's nuclear weapons stockpile. The TEF includes processes, equipment and facilities capable of production-scale extraction of tritium while minimizing personnel radiation exposure, environmental releases, and waste generation.

  5. Status of the LEgnaro NeutrOn Source facility (LENOS)

    NASA Astrophysics Data System (ADS)

    Mastinu, Pierfrancesco; Praena, J.; Martìn-Hernàndez, G.; Dzysiuk, N.; Prete, G.; Capote, R.; Pignatari, M.; Ventura, A.

    LENOS is a new facility under development at Laboratori Nazionali di Legnaro (LNL). It is based on a new technic for neutron beam shaping in accelerator based neutron sources. The main advantage of this method is to be able to shape the primary charged-particle beam to a defined energy distribution that, impinging on a neutron producing target, generates the desired neutron spectra at the sample position. Together with the proton energy distribution, other degrees of freedom are used to obtain the desired neutron energy spectra, e.g. the angular distribution of produced neutrons, the nuclear reactions used for the neutron spectra production, and the convolution of neutron spectra coming from different target materials. The main advantage of this new approach is the good control over the energy and spatial distribution of the produced neutron spectrum avoiding most of the problems due to neutron moderation, since it is easier to work with charged particles than with neutrons. The goal of the LENOS facility is to obtain a Maxwell-Boltzmann neutron energy spectrum with tunable temperature and a high neutron flux at sample position by using the 7Li(p,n) reaction. To maximize the neutron flux a very narrow primary proton beam has to be used, so the target has to remove a very high specific power. Currently available lithium targets are inadequate to sustain the high specific power that needs to be dissipated in the LENOS facility. A dedicated target based on micro-channel geometry and liquid metal cooling has been developed and tested. This contribution describes the status of the LENOS facility.

  6. Description of the programs and facilities of the Physics Division

    SciTech Connect

    Not Available

    1992-10-01

    The major emphasis of our experimental nuclear physics research is in Heavy-Ion Physics, centered at the recently completed ATLAS facility. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. In addition, the Division has strong programs in Medium-Energy Physics and in Weak-Interaction Physics as well as in accelerator development. Our nuclear theory research spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national scale. The Atomic Physics program, the largest of which is accelerator-based, primarily uses ATLAS, a 5-MV Dynamitron accelerator and a highly stable 150-kV accelerator. A synchrotron-based atomic physics program has recently been initiated with current research with the National Synchrotron Light Source in preparation for a program at the Advanced Photon Source, at Argonne. The principal interests of the Atomic Physics program are in the interactions of fast atomic and molecular ions with solids and gases and in the laser spectroscopy of exotic species. The program is currently being expanded to take advantage of the unique research opportunities in synchrotron-based research that will present themselves when the Advanced Photon Source comes on line at Argonne. These topics are discussed briefly in this report.

  7. FDA Certified Mammography Facilities

    MedlinePlus

    ... Products Radiation-Emitting Products Home Radiation-Emitting Products Mammography Quality Standards Act and Program Consumer Information (MQSA) ... it Email Print This list of FDA Certified Mammography Facilities is updated weekly. If you click on ...

  8. NETL - Fuel Reforming Facilities

    SciTech Connect

    2013-06-12

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  9. A cryogenic test facility

    NASA Astrophysics Data System (ADS)

    Veenendaal, Ian

    The next generation, space-borne instruments for far infrared spectroscopy will utilize large diameter, cryogenically cooled telescopes in order to achieve unprecedented sensitivities. Low background, ground-based cryogenic facilities are required for the cryogenic testing of materials, components and subsystems. The Test Facility Cryostat (TFC) at the University of Lethbridge is a large volume, closed cycle, 4K cryogenic facility, developed for this purpose. This thesis discusses the design and performance of the facility and associated external instrumentation. An apparatus for measuring the thermal properties of materials is presented, and measurements of the thermal expansion and conductivity of carbon fibre reinforced polymers (CFRPs) at cryogenic temperatures are reported. Finally, I discuss the progress towards the design and fabrication of a demonstrator cryogenic, far infrared Fourier transform spectrometer.

  10. Planning Home Economics Facilities.

    ERIC Educational Resources Information Center

    Arcy, Thomas H.; Schultz, Jerelyn B.

    1980-01-01

    Discusses modernizing, remodeling, or developing new home economic facilities. Equipment considerations, curriculum objectives, the making of a master plan, and planning reminders are provided along with a basic sketch to review prior to planning home economics laboratories. (Author)

  11. Shuttle Landing Facility

    NASA Image and Video Library

    The Shuttle Landing Facility at NASA's Kennedy Space Center in Florida marked the finish line for space shuttle missions since 1984. It is also staffed by a group of air traffic controllers who wor...

  12. Ames Hybrid Combustion Facility

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)

    2003-01-01

    The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.

  13. Special Feature: Facilities.

    ERIC Educational Resources Information Center

    Storm, George; And Others

    1993-01-01

    Includes "Planning Laboratory Design" (Storm); "Perkins Money for Automotive Programs" (Cash); "Stretching a Budget" (Warren); "Video Teleconferencing--Powerful Communication for Occupational Educators" (Major); "Danger: Hazardous Materials" (Brown); and "Keeping Facilities Safe--Electrical…

  14. NETL - Fuel Reforming Facilities

    ScienceCinema

    None

    2016-07-12

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  15. Facility Modernization Report

    SciTech Connect

    Robinson, D; Ackley, R

    2007-05-10

    Modern and technologically up-to-date facilities and systems infrastructure are necessary to accommodate today's research environment. In response, Lawrence Livermore National Laboratory (LLNL) has a continuing commitment to develop and apply effective management models and processes to maintain, modernize, and upgrade its facilities to meet the science and technology mission. The Facility Modernization Pilot Study identifies major subsystems of facilities that are either technically or functionally obsolete, lack adequate capacity and/or capability, or need to be modernized or upgraded to sustain current operations and program mission. This study highlights areas that need improvement, system interdependencies, and how these systems/subsystems operate and function as a total productive unit. Although buildings are 'grandfathered' in and are not required to meet current codes unless there are major upgrades, this study also evaluates compliance with 'current' building, electrical, and other codes. This study also provides an evaluation of the condition and overall general appearance of the structure.

  16. Facility Focus: Food Service.

    ERIC Educational Resources Information Center

    College Planning & Management, 2000

    2000-01-01

    Examines three renovated college facilities that offer student-friendly dining space. Renovation problems in the areas of food and entertainment, service and choice, and image versus architectural history preservation are addressed. (GR)

  17. Special Feature: Facilities.

    ERIC Educational Resources Information Center

    Storm, George; And Others

    1993-01-01

    Includes "Planning Laboratory Design" (Storm); "Perkins Money for Automotive Programs" (Cash); "Stretching a Budget" (Warren); "Video Teleconferencing--Powerful Communication for Occupational Educators" (Major); "Danger: Hazardous Materials" (Brown); and "Keeping Facilities Safe--Electrical…

  18. Auditing radiation sterilization facilities

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey A.

    The diversity of radiation sterilization systems available today places renewed emphasis on the need for thorough Quality Assurance audits of these facilities. Evaluating compliance with Good Manufacturing Practices is an obvious requirement, but an effective audit must also evaluate installation and performance qualification programs (validation_, and process control and monitoring procedures in detail. The present paper describes general standards that radiation sterilization operations should meet in each of these key areas, and provides basic guidance for conducting QA audits of these facilities.

  19. Facilities | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  20. Hanford Facility contingency plan

    SciTech Connect

    Sutton, L.N.; Miskho, A.G.; Brunke, R.C.

    1993-10-01

    The Hanford Facility Contingency Plan, together with each TSD unit-specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. This plan includes descriptions of responses to a nonradiological hazardous materials spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. This plan includes descriptions of responses for spills or releases as a result of transportation activities, movement of materials, packaging, and storage of hazardous materials.

  1. Business Planning Core Facilities

    PubMed Central

    Itzkowitz, G.N.

    2014-01-01

    Thoughtful business planning is pivotal to the success of any business/operational venture. When planned in a thoughtful and detailed manner there are very few operational or financial surprises for an institution or facility (service center) to contend with. At Stony Brook Medicine we include SWOT analysis and a detailed Market Analysis as part of the process. This is bolstered by an initiative to ensure institutional policies are met so that facilities remain in compliance throughout their lifecycle. As we operate 14 facilities we have had the opportunity to become creative in our approach to coordinate activities, virtualize services, integrate new software business-to-business partners, and finally coordinate plans for phased consolidation instead of outright termination of services when required. As the Associate Dean for Scientific Operations and Research Facilities, the shared research facilities (cores) of the Medical School are in my direct line of sight. We understand their value to the meeting our overall research mission. We have found that an active process of monitoring to predict trouble as much as possible is the best approach for facilities. Some case analysis of this type of interaction will be presented as well.

  2. Engineering directorate technical facilities catalog

    NASA Technical Reports Server (NTRS)

    Maloy, Joseph E.

    1993-01-01

    The Engineering Directorate Technical Facilities Catalog is designed to provide an overview of the technical facilities available within the Engineering Directorate at the National Aeronautics and Space Administration (NASA), Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The combined capabilities of these engineering facilities are essential elements of overall JSC capabilities required to manage and perform major NASA engineering programs. The facilities are grouped in the text by chapter according to the JSC division responsible for operation of the facility. This catalog updates the facility descriptions for the JSC Engineering Directorate Technical Facilities Catalog, JSC 19295 (August 1989), and supersedes the Engineering Directorate, Principle test and Development Facilities, JSC, 19962 (November 1984).

  3. Facility Environmental Vulnerability Assessment

    SciTech Connect

    Van Hoesen, S.D.

    2001-07-09

    From mid-April through the end of June 2001, a Facility Environmental Vulnerability Assessment (FEVA) was performed at Oak Ridge National Laboratory (ORNL). The primary goal of this FEVA was to establish an environmental vulnerability baseline at ORNL that could be used to support the Laboratory planning process and place environmental vulnerabilities in perspective. The information developed during the FEVA was intended to provide the basis for management to initiate immediate, near-term, and long-term actions to respond to the identified vulnerabilities. It was expected that further evaluation of the vulnerabilities identified during the FEVA could be carried out to support a more quantitative characterization of the sources, evaluation of contaminant pathways, and definition of risks. The FEVA was modeled after the Battelle-supported response to the problems identified at the High Flux Beam Reactor at Brookhaven National Laboratory. This FEVA report satisfies Corrective Action 3A1 contained in the Corrective Action Plan in Response to Independent Review of the High Flux Isotope Reactor Tritium Leak at the Oak Ridge National Laboratory, submitted to the Department of Energy (DOE) ORNL Site Office Manager on April 16, 2001. This assessment successfully achieved its primary goal as defined by Laboratory management. The assessment team was able to develop information about sources and pathway analyses although the following factors impacted the team's ability to provide additional quantitative information: the complexity and scope of the facilities, infrastructure, and programs; the significantly degraded physical condition of the facilities and infrastructure; the large number of known environmental vulnerabilities; the scope of legacy contamination issues [not currently addressed in the Environmental Management (EM) Program]; the lack of facility process and environmental pathway analysis performed by the accountable line management or facility owner; and poor

  4. View of east end of Facility 222, with Facility 223 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of east end of Facility 222, with Facility 223 attached on left. Facility 273 at left edge and Facility 221 at right edge of photo. - U.S. Naval Base, Pearl Harbor, Gymnasium & Theater, Neville Way, Pearl City, Honolulu County, HI

  5. Berkeley Low Background Facility

    NASA Astrophysics Data System (ADS)

    Thomas, K. J.; Smith, A. R.; Poon, A. W. P.; Chan, Y. D.; Norman, E. B.; Lesko, K. T.

    2015-08-01

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.

  6. Comprehensive facilities plan

    SciTech Connect

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

  7. Berkeley Low Background Facility

    SciTech Connect

    Thomas, K. J.; Norman, E. B.; Smith, A. R.; Poon, A. W. P.; Chan, Y. D.; Lesko, K. T.

    2015-08-17

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.

  8. Preparing a Facilities Master Plan

    ERIC Educational Resources Information Center

    Kalina, David

    2006-01-01

    This article examines the steps in creating a facilities master plan. The facilities master plan is a long-range look at the development of one's facilities, combined with an implementation plan that indicates the steps, sequence and costs to get one there. There are three basic steps: (1) analyzing what one has (assessing one's facilities to…

  9. Modernizing sports facilities

    SciTech Connect

    Dustin, R.

    1996-09-01

    Modernization and renovation of sports facilities challenge the design team to balance a number of requirements: spectator and owner expectations, existing building and site conditions, architectural layouts, code and legislation issues, time constraints and budget issues. System alternatives are evaluated and selected based on the relative priorities of these requirements. These priorities are unique to each project. At Alexander Memorial Coliseum, project schedules, construction funds and facility usage became the priorities. The ACC basketball schedule and arrival of the Centennial Olympics dictated the construction schedule. Initiation and success of the project depended on the commitment of the design team to meet coliseum funding levels established three years ago. Analysis of facility usage and system alternative capabilities drove the design team to select a system that met the project requirements and will maximize the benefits to the owner and spectators for many years to come.

  10. A Materials Exposure Facility

    NASA Technical Reports Server (NTRS)

    Slemp, Wayne S.; Avery, Don E.

    1995-01-01

    The objective of the Materials Exposure Facility (MEF) is to provide a test bed in space for conducting long-term (greater than one year) materials experiments which require exposure to the low Earth orbit (LEO) space environment. The proposed MEF is planned to be an integral part of the agency's Space Environments and Effects Research Program. The facility will provide experiment trays similar to the Long Duration Exposure Facility (LDEF). Each tray location is planned to have a power and data interface and robotic installation and removal provisions. Space environmental monitoring for each side of the MEF will also be provided. Since routine access to MEF for specimen retrieval is extremely important to the materials research, Space Station Freedom has been chosen as the preferred MEF carrier.

  11. Mars ultraviolet simulation facility.

    PubMed

    Zill, L P; Mack, R; DeVincenzi, D L

    1979-12-01

    A facility was established for long-duration ultraviolet (UV) radiation exposure of natural and synthetic materials in order to test hypotheses concerning Martian soil chemistry observed by the Viking Mars landers. The system utilized a 2500 watt xenon lamp as the radiation source, with the beam passing through a heat-dissipating water filter before impinging upon an exposure chamber containing the samples to be irradiated. The chamber was designed to allow for continuous tumbling of the samples, maintenance of temperatures below 0 degrees C during exposure, and monitoring of beam intensity. The facility also provided for sample preparation under a variety of atmospheric conditions, in addition to the Mars nominal. As many as 33 sealed sample ampules have been irradiated in a single exposure. Over 100 samples have been irradiated for approximately 100 to 700 h. The facility has performed well in providing continuous UV irradiation of multiple samples for long periods of time under simulated Mars atmospheric and thermal conditions.

  12. Facility capability assessment.

    PubMed

    McCandless, J

    1994-06-01

    An inspection and evaluation procedure has been developed to assess the capabilities of contract toxicology laboratories. This procedure has been used for the inspection of 18 different contract toxicology laboratories. There are 10 areas inspected: 1. Facility 2. Personnel 3. Operations 4. Animals/Animal Care 5. Standard Operating Procedures 6. Quality Assurance 7. Equipment 8. Test Article 9. Data 10. Archives. Each of these areas is divided into categories with each category divided further into specific topics. Points are assigned to each topic. The points earned by the laboratory reflect the inspector's assessment of the laboratory's quality in each area. Area scores are added and a percentage score for the facility is calculated. This approach provides a clear distinction among the laboratories evaluated. The facility inspection and rating system played an important role in screening laboratories when the author worked for the Atlantic Richfield Company (ARCO) corporate toxicology department. It highlighted strengths and weaknesses of individual laboratories.

  13. National Facilities Study. Volume 1: Facilities Inventory

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The inventory activity was initiated to solve the critical need for a single source of site specific descriptive and parametric data on major public and privately held aeronautics and aerospace related facilities. This a challenging undertaking due to the scope of the effort and the short lead time in which to assemble the inventory and have it available to support the task group study needs. The inventory remains dynamic as sites are being added and the data is accessed and refined as the study progresses. The inventory activity also included the design and implementation of a computer database and analytical tools to simplify access to the data. This volume describes the steps which were taken to define the data requirements, select sites, and solicit and acquire data from them. A discussion of the inventory structure and analytical tools is also provided.

  14. Modular space station facilities.

    NASA Technical Reports Server (NTRS)

    Parker, P. J.

    1973-01-01

    The modular space station will operate as a general purpose laboratory (GPL). In addition, the space station will be able to support many attached or free-flying research and application modules that would be dedicated to specific projects like astronomy or earth observations. The GPL primary functions have been organized into functional laboratories including an electrical/electronics laboratory, a mechanical sciences laboratory, an experiment and test isolation laboratory, a hard data process facility, a data evaluation facility, an optical sciences laboratory, a biomedical and biosciences laboratory, and an experiment/secondary command and control center.

  15. Electromagnetic propulsion test facility

    NASA Technical Reports Server (NTRS)

    Gooder, S. T.

    1984-01-01

    A test facility for the exploration of electromagnetic propulsion concept is described. The facility is designed to accommodate electromagnetic rail accelerators of various lengths (1 to 10 meters) and to provide accelerating energies of up to 240 kiloJoules. This accelerating energy is supplied as a current pulse of hundreds of kiloAmps lasting as long as 1 millisecond. The design, installation, and operating characteristics of the pulsed energy system are discussed. The test chamber and its operation at pressures down to 1300 Pascals (10 mm of mercury) are described. Some aspects of safety (interlocking, personnel protection, and operating procedures) are included.

  16. National facilities study. Volume 4: Space operations facilities task group

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The principal objectives of the National Facilities Study (NFS) were to: (1) determine where U.S. facilities do not meet national aerospace needs; (2) define new facilities required to make U.S. capabilities 'world class' where such improvements are in the national interest; (3) define where consolidation and phase-out of existing facilities is appropriate; and (4) develop a long-term national plan for world-class facility acquisition and shared usage. The Space Operations Facilities Task Group defined discrete tasks to accomplish the above objectives within the scope of the study. An assessment of national space operations facilities was conducted to determine the nation's capability to meet the requirements of space operations during the next 30 years. The mission model used in the study to define facility requirements is described in Volume 3. Based on this model, the major focus of the Task Group was to identify any substantive overlap or underutilization of space operations facilities and to identify any facility shortfalls that would necessitate facility upgrades or new facilities. The focus of this initial study was directed toward facility recommendations related to consolidations, closures, enhancements, and upgrades considered necessary to efficiently and effectively support the baseline requirements model. Activities related to identifying facility needs or recommendations for enhancing U.S. international competitiveness and achieving world-class capability, where appropriate, were deferred to a subsequent study phase.

  17. PFP Wastewater Sampling Facility

    SciTech Connect

    Hirzel, D.R.

    1995-05-11

    This test report documents the results obtained while conducting operational testing of the sampling equipment in the 225-WC building, the PFP Wastewater Sampling Facility. The Wastewater Sampling Facility houses equipment to sample and monitor the PFP`s liquid effluents before discharging the stream to the 200 Area Treated Effluent Disposal Facility (TEDF). The majority of the streams are not radioactive and discharges from the PFP Heating, Ventilation, and Air Conditioning (HVAC). The streams that might be contaminated are processed through the Low Level Waste Treatment Facility (LLWTF) before discharging to TEDF. The sampling equipment consists of two flow-proportional composite samplers, an ultrasonic flowmeter, pH and conductivity monitors, chart recorder, and associated relays and current isolators to interconnect the equipment to allow proper operation. Data signals from the monitors are received in the 234-5Z Shift Office which contains a chart recorder and alarm annunciator panel. The data signals are also duplicated and sent to the TEDF control room through the Local Control Unit (LCU). Performing the OTP has verified the operability of the PFP wastewater sampling system. This Operability Test Report documents the acceptance of the sampling system for use.

  18. Facility Focus: Science Buildings.

    ERIC Educational Resources Information Center

    College Planning & Management, 1998

    1998-01-01

    Provides an overview of five custom designs used in university science buildings. Descriptions include renovation to a mechanical engineering lab, construction of a new building for molecular biology, the reconstruction of chemistry labs, the renovation of a vision lab, and a new research and education facility. Includes photos. (RJM)

  19. High energy forming facility

    NASA Technical Reports Server (NTRS)

    Ciurlionis, B.

    1967-01-01

    Watertight, high-explosive forming facility, 25 feet in diameter and 15 feet deep, withstands repeated explosions of 10 pounds of TNT equivalent. The shell is fabricated of high strength steel and allows various structural elements to deform or move elastically and independently while retaining structural integrity.

  20. Administering the Preschool Facility.

    ERIC Educational Resources Information Center

    Coonrod, Debbie

    Securing the right environment for a preschool program requires planning and research. Administrators or searching parties are advised to study zoning codes to become acquainted with state sanitation and safety regulations and laws, to involve teachers in cooperative planning, to design facilities which discourage vandalism, facilitate…