Science.gov

Sample records for accelerator-mass spectrometer tams

  1. Development of an Accelerator Mass Spectrometer based on a Cyclotron

    SciTech Connect

    Kim, Dogyun; Bhang, Hyeongchan; Kim, Jongwon

    2011-12-13

    An accelerator mass spectrometer based on a cyclotron has been developed, and a prototype of the injection beam line has been constructed. Mass resolution of the cyclotron is designed to be over 4000. A sawtooth RF buncher in the beam line and a flat-topping RF system for the cyclotron were utilized to enhance beam transmission efficiency, which is a primary factor for improvement compared to previous cyclotron mass spectrometers. The injection beam line comprises an ion source, Einzel lens, RF buncher, 90 deg. dipole magnet and a slit box containing beam diagnostic devices. A carbon beam was measured at the location of the slit box, and beam phase spaces will be measured. The design of a cyclotron magnet was done, and orbit tracking was carried out using cyclotron optics codes. A scheme of radial injection was chosen to place a beam on the equilibrium orbit of the cyclotron. The injection scheme will be optimized after the beam measurements are completed.

  2. Development of accelerator mass spectrometer based on a compact cyclotron

    NASA Astrophysics Data System (ADS)

    Kim, J.-W.; Kim, D.-G.

    2011-07-01

    A small cyclotron has been designed for accelerator mass spectrometry, and the injection beam line is constructed as part of prototyping. Mass resolution of the cyclotron is estimated to be around 4000. The design of the cyclotron was performed with orbit-tracking computations using 3D magnetic and electric fields, and beam optics of the injection line was calculated using the codes such as IGUN and TRANSPORT. The radial injection scheme is chosen to place a beam on equilibrium orbit of the cyclotron. The injection line includes an ion source, Einzel lens, rf buncher, 90° dipole magnet, and quadrupole triplet magnet. A carbon beam was extracted from the front part of the injection line. An rf cavity system for the cyclotron was built and tested. A multi channel plates (MCP) detector to measure low-current ion beams was also tested. Design considerations are given to analyzing a few different radioisotopes in form of positive ions as well as negative ions.

  3. Acceleration mass spectrometer of the Budker Institute of Nuclear Physics for biomedical applications

    NASA Astrophysics Data System (ADS)

    Rastigeev, S. A.; Frolov, A. R.; Goncharov, A. D.; Klyuev, V. F.; Konstantinov, E. S.; Kutnyakova, L. A.; Parkhomchuk, V. V.; Petrozhitskii, A. V.

    2014-09-01

    An accelerator mass spectrometer (AMS) made at the Budker Institute of Nuclear Physics (BINP), Siberian Branch, Russian Academy of Sciences, is installed in the Geochronology of the Cenozoic Era Center for Collective Use for the carbon 14 dating of samples. Distinctive features of the BINP AMS include the use of a middle energy separator of ion beams, magnesium vapor target as a stripping target, and a time-of-flight telescope with thin films for accurate ion selection. Results of experiments measuring the radiocarbon concentration in test samples with radiocarbon labels for biomedical applications are presented.

  4. Performance of the rebuilt SUERC single-stage accelerator mass spectrometer

    NASA Astrophysics Data System (ADS)

    Shanks, Richard P.; Ascough, Philippa L.; Dougans, Andrew; Gallacher, Paul; Gulliver, Pauline; Rood, Dylan H.; Xu, Sheng; Freeman, Stewart P. H. T.

    2015-10-01

    The SUERC bipolar single-stage accelerator mass spectrometer (SSAMS) has been dismantled and rebuilt to accommodate an additional rotatable pre-accelerator electrostatic spherical analyser (ESA) and a second ion source injector. This is for the attachment of an experimental positive-ion electron cyclotron resonance (ECR) ion source in addition to a Cs-sputter source. The ESA significantly suppresses oxygen interference to radiocarbon detection, and remaining measurement interference is now thought to be from 13C injected as 13CH molecule scattering off the plates of a second original pre-detector ESA.

  5. Single-stage accelerator mass spectrometer radiocarbon-interference identification and positive-ionisation characterisation

    NASA Astrophysics Data System (ADS)

    Wilcken, K. M.; Freeman, S. P. H. T.; Xu, S.; Dougans, A.

    2013-01-01

    A single-stage accelerator mass spectrometer (SSAMS) is a good alternative to conventional spectrometers based on tandem electrostatic acceleration for radiocarbon measurement and permits experimentation with both negative and positive carbon ions. However, such 14C AMS of either polarity ions is limited by an interference. In the case of anion acceleration we have newly determined this to be summed 13C and 16O by improvising an additional Wien filter on our SSAMS deck. Also, 14C AMS might be improved by removing its dependency on negative-ionisation in a sputter ion source. This requires negative-ionisation of sample atoms elsewhere to suppress the 14N interference, which we accomplish by transmitting initially positive ions through a thin membrane. The ionisation dependence on ion-energy is found to be consistent with previous experimentation with vapours and thicker foils.

  6. Accelerator-mass spectrometer (AMS) radiocarbon dating of Pleistocene lake sediments in the Great Basin

    USGS Publications Warehouse

    Thompson, R.S.; Toolin, L.J.; Forester, R.M.; Spencer, R.J.

    1990-01-01

    Pleistocene lake sediments in the Great Basin typically contain little organic carbon, and thus are difficult to date reliably by conventional radioccarbon methods. Paleoenvironmental data are abundant in these sediments, but are of limited value without adequate age controls. With the advent of accelerator-mass spectrometer (AMS) radiocarbon dating, it is now possible to date these paleolacustrine sediments. AMS dates were obtained on sediment cores from the Bonneville, Franklin, and Lahontan Basins. In the Bonneville Basin, the AMS-based chronology compares well with other chronologies constructed from dated shore-zone features. In the Bonneville and Franklin basins, AMS dates delimit unconformities not apparent by other means. We found that dispersed organic carbon from sediments deposited during relatively freshwater intervals provided apparently reliable AMS radiocarbon dates. Carbonate microfossils from the Lahontan Basin also produced results that appear reasonable, while bulk carbonate yielded erroneous results. ?? 1990.

  7. Performance report for the low energy compact radiocarbon accelerator mass spectrometer at Uppsala University

    NASA Astrophysics Data System (ADS)

    Salehpour, M.; Håkansson, K.; Possnert, G.; Wacker, L.; Synal, H.-A.

    2016-03-01

    A range of ion beam analysis activities are ongoing at Uppsala University, including Accelerator Mass Spectrometry (AMS). Various isotopes are used for AMS but the isotope with the widest variety of applications is radiocarbon. Up until recently, only the 5 MV Pelletron tandem accelerator had been used at our site for radiocarbon AMS, ordinarily using 12 MeV 14,13,12C3+ ions. Recently a new radiocarbon AMS system, the Green-MICADAS, developed at the ion physics group at ETH Zurich, was installed. The system has a number of outstanding features which will be described. The system operates at a terminal voltage of 175 kV and uses helium stripper gas, extracting singly charged carbon ions. The low- and high energy mass spectrometers in the system are stigmatic dipole permanent magnets (0.42 and 0.97 T) requiring no electrical power nor cooling water. The system measures both the 14C/12C and the 13C/12C ratios on-line. Performance of the system is presented for both standard mg samples as well as μg-sized samples.

  8. Progress in AMS measurements at the LLNL spectrometer. [Accelerator Mass Spectroscopy (AMS)

    SciTech Connect

    Southon, J.R.; Vogel, J.S.; Trumbore, S.E.; Davis, J.C.; Roberts, M.L.; Caffee, M.; Finkel, R.; Proctor, I.D.; Heikkinen, D.W.; Berno, A.J.; Hornady, R.S.

    1991-06-01

    The AMS measurement program at LLNL began in earnest in late 1989, and has initially concentrated on {sup 14}C measurements for biomedical and geoscience applications. We have now begun measurements on {sup 10}Be and {sup 36}Cl, are presently testing the spectrometer performance for {sup 26}Al and {sup 3}H, and will begin tests on {sup 7}Be, {sup 41}Ca and {sup 129}I within the next few months. Our laboratory has a strong biomedical AMS program of {sup 14}C tracer measurements involving large numbers of samples (sometimes hundreds in a single experiment) at {sup 14}C concentrations which are typically .5--5 times Modern, but are occasionally highly enriched. The sample preparation techniques required for high throughput and low cross-contamination for this work are discussed elsewhere. Similar demands are placed on the AMS measurement system, and in particular on the ion source. Modifications to our GIC 846 ion source, described below, allow us to run biomedical and geoscience or archaeological samples in the same source wheel with no adverse effects. The source has a capacity for 60 samples (about 45 unknown) in a single wheel and provides currents of 30--60{mu}A of C{sup {minus}} from hydrogen-reduced graphite. These currents and sample capacity provide high throughput for both biomedical and other measurements: the AMS system can be started up, tuned, and a wheel of carbon samples measured to 1--1.5% in under a day; and 2 biomedical wheels can be measured per day without difficulty. We report on the present status of the Lawrence Livermore AMS spectrometer, including sample throughput and progress towards routine 1% measurement capability for {sup 14}C, first results on other isotopes, and experience with a multi-sample high intensity ion source. 5 refs.

  9. XCAMS: The compact 14C accelerator mass spectrometer extended for 10Be and 26Al at GNS Science, New Zealand

    NASA Astrophysics Data System (ADS)

    Zondervan, A.; Hauser, T. M.; Kaiser, J.; Kitchen, R. L.; Turnbull, J. C.; West, J. G.

    2015-10-01

    A detailed description is given of the 0.5 MV tandem accelerator mass spectrometry (AMS) system for 10Be, 14C, 26Al, installed in early 2010 at GNS Science, New Zealand. Its design follows that of previously commissioned Compact 14C-only AMS (CAMS) systems based on the Pelletron tandem accelerator. The only basic departure from that design is an extension of the rare-isotope achromat with a 45° magnet and a two-anode gas-ionisation detector, to provide additional filtering for 10Be. Realised performance of the three AMS modes is discussed in terms of acceptance-test scores, 14C Poisson and non-Poisson errors, and 10Be detection limit and sensitivity. Operational details and hardware improvements, such as 10Be beam transport and particle detector setup, are highlighted. Statistics of repeat measurements of all graphitised 14C calibration cathodes since start-up show that 91% of their total uncertainty values are less than 0.3%, indicating that the rare-isotope beamline extension has not affected precision of 14C measurement. For 10Be, the limit of detection in terms of the isotopic abundance ratio 10Be/9Be is 6 × 10-15 at at-1 and the total efficiency of counting atoms in the sample cathode is 1/8500 (0.012%).

  10. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  11. Measuring transfer of 14C-PCB from maternal diet to milk in a goat model using an accelerator mass spectrometer (AMS)

    NASA Astrophysics Data System (ADS)

    Janle, E.; Sojka, J.; Jackson, G. S.; Lachcik, P.; Einstien, J. A.; Santerre, C. R.

    2007-06-01

    Environmental pollutants pose a substantial risk to nursing infants. Many of these toxicants (i.e. PCBs, PBDEs, mercury) are passed from the maternal diet to the nursing infant in breast milk. Determining the toxicokinetics has been difficult to measure due to ethical limitations. Since extremely small amounts of 14C can be measured using Accelerator Mass Spectrometry (AMS), a goat model was used to establish a minimum oral dose of 14C-labeled PCB (2,2‧,4,4‧,5,5‧-hexachlorobiphenyl-UL-14C) that could be given to a lactating animal and traced into the milk. An oral dose of 66 nCi/kg body weight (1.84 μg PCB/kg bw) was administered. Plasma and milk samples were collected for 2 months after dosing. The concentration of 14C label reached a peak value of 1.71 ng/ml PCB equivalents in the milk on day 2 and then declined to about 135 pg/ml PCB equivalents in the milk at 3 weeks. A second goat was administered a smaller dose (22 nCi/kg bw; 616 ng PCB/kg bw). A peak concentration of 485 pg PCB equivalents/ml milk occurred at 3 days and declined to 77.6 pg PCB equivalents/ml milk by 3 weeks. Our results indicated that an even lower dosage of labeled-PCB could be used due to the extreme sensitivity of AMS measurement. Extrapolating from current data it is estimated that the dose could be reduced by a factor of 20 (31 ng PCB/kg bw; 1.1 nCi/kg bw) and still be detectable after 2 months. Thus, the potential exists for developing protocols for studying toxicokinetics in humans using radiologically- and toxicologically-benign doses of labeled environmental toxicants.

  12. Accelerator mass spectrometry

    SciTech Connect

    Vogel, J.S.; Turteltaub, K.W.; Finkel, R.; Nelson, D.E.

    1995-06-01

    Accelerator mass spectroscopy (AMS) can be used for efficient detection of long-lived isotopes at part-per-quadrillion sensitivities with good precision. In this article we present an overview of AMS and its recent use in archaeology, geochemistry and biomolecular tracing. All AMS systems use cesium sputter ion sources to produce negative ions from a small button of a solid sample containing the element of interest, such as graphite, metal halide, or metal oxide, often mixed with a metal powder as binder and thermal conductor. Experience shows that both natural and biomedical samples are compatible in a single AMS system, but few other AMS sites make routine {sup 14}C measurements for both dating and tracing. AMS is, in one sense, just `a very sensitive decay counter`, but if AMS sensitivity is creatively coupled to analytical chemistry of certain isotopes, whole new areas of geosciences, archaeology, and life sciences can be explored. 29 refs., 2 figs., 1 tab.

  13. Symposium on accelerator mass spectrometry

    SciTech Connect

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on the status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.

  14. Neuroscience and Accelerator Mass Spectrometry

    SciTech Connect

    Palmblad, M N; Buchholz, B A; Hillegonds, D J; Vogel, J S

    2004-08-02

    Accelerator mass spectrometry (AMS) is a mass spectrometric method for quantifying rare isotopes. It has had great impact in geochronology and archaeology and is now being applied in biomedicine. AMS measures radioisotopes such as {sup 3}H, {sup 14}C, {sup 26}Al, {sup 36}Cl and {sup 41}Ca, with zepto- or attomole sensitivity and high precision and throughput, enabling safe human pharmacokinetic studies involving: microgram doses, agents having low bioavailability, or toxicology studies where administered doses must be kept low (<1 {micro}g/kg). It is used to study long-term pharmacokinetics, to identify biomolecular interactions, to determine chronic and low-dose effects or molecular targets of neurotoxic substances, to quantify transport across the blood-brain barrier and to resolve molecular turnover rates in the human brain on the timescale of decades. We will here review how AMS is applied in neurotoxicology and neuroscience.

  15. Registration of TAM401 wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'TAM 401', a hard red winter wheat (Triticum aestivum L) cultivar (PI658500) with experimental designation TX03M1096, was developed and released by Texas AgriLife Research in 2008. TAM 401 is an F4 derived line from the cross 'Mason' (PI 594044)/'Jagger' (PI593688). TAM 401 is an early maturing apic...

  16. Interface for the rapid analysis of liquid samples by accelerator mass spectrometry

    SciTech Connect

    Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham

    2014-02-04

    An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.

  17. Accelerator mass spectrometry with heavy ions

    NASA Astrophysics Data System (ADS)

    Haberstock, Günther; Heinzl, Johann; Korschinek, Gunther; Morinaga, Haruhiko; Nolte, Eckehart; Ratzinger, Ulrich; Kato, Kazuo; Wolf, Manfred

    1986-11-01

    Accelerator mass spectrometry measurements with fully stripped 36Cl ions have been performed at the Munich accelerator laboratory in order to date groundwaters and palaeontological samples, to study anthropogenic 36Cl produced through nuclear tests and to determine the fast neutron flux of the Hiroshima A-bomb.

  18. Biology of the TAM Receptors

    PubMed Central

    Lemke, Greg

    2013-01-01

    The TAM receptors—Tyro3, Axl, and Mer—comprise a unique family of receptor tyrosine kinases, in that as a group they play no essential role in embryonic development. Instead, they function as homeostatic regulators in adult tissues and organ systems that are subject to continuous challenge and renewal throughout life. Their regulatory roles are prominent in the mature immune, reproductive, hematopoietic, vascular, and nervous systems. The TAMs and their ligands—Gas6 and Protein S—are essential for the efficient phagocytosis of apoptotic cells and membranes in these tissues; and in the immune system, they act as pleiotropic inhibitors of the innate inflammatory response to pathogens. Deficiencies in TAM signaling are thought to contribute to chronic inflammatory and autoimmune disease in humans, and aberrantly elevated TAM signaling is strongly associated with cancer progression, metastasis, and resistance to targeted therapies. PMID:24186067

  19. Registration of 'TAM 113' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TAM 113’ (Reg. No. CV-1081, PI 666125), a hard red winter wheat (Triticum aestivum L.) cultivar with experimental designation TX02A0252, was developed and released by Texas AgriLife Research in 2010. TAM 113 is an F5–derived line from the cross TX90V6313/TX94V3724 made at Vernon, TX in 1995. Both T...

  20. Radionuclide measurements by accelerator mass spectrometry at Arizona

    NASA Technical Reports Server (NTRS)

    Jull, A. J. T.; Donahue, D. J.; Zabel, T. H.

    1986-01-01

    Over the past years, Tandem Accelerator Mass Spectrometry (TAMS) has become established as an important method for radionuclide analysis. In the Arizona system the accelerator is operated at a thermal voltage of 1.8MV for C-14 analysis, and 1.6 to 2MV for Be-10. Samples are inserted into a cesium sputter ion source in solid form. Negative ions sputtered from the target are accelerated to about 25kV, and the injection magnet selects ions of a particular mass. Ions of the 3+ charge state, having an energy of about 9MeV are selected by an electrostatic deflector, surviving ions pass through two magnets, where only ions of the desired mass-energy product are selected. The final detector is a combination ionization chamber to measure energy loss (and hence, Z), and a silicon surface-barrier detector which measures residual energy. After counting the trace iosotope for a fixed time, the injected ions are switched to the major isotope used for normalization. These ions are deflected into a Faraday cup after the first high-energy magnet. Repeated measurements of the isotope ratio of both sample and standards results in a measurement of the concentration of the radionuclide. Recent improvements in sample preparation for C-14 make preparation of high-beam current graphite targets directly from CO2 feasible. Except for some measurements of standards and backgrounds for Be-10 measurements to date have been on C-14. Although most results have been in archaeology and quaternary geology, studies have been expanded to include cosmogenic C-14 in meteorites. The data obtained so far tend to confirm the antiquity of Antarctic meteorites from the Allan Hills site. Data on three samples of Yamato meteorites gave terrestrial ages of between about 3 and 22 thousand years.

  1. Accelerator mass spectrometry: Proceedings of the fourth international symposium on accelerator mass spectrometry

    SciTech Connect

    Gove, H.E.; Litherland, A.E.; Elmore, D.

    1987-01-01

    This report is a volume of the journal Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms. This particular volume is concerned with accelerator mass spectrometry. The sections of this issue are: Advances in AMS techniques; Archaeology and ecology; Glaciology and climatology; Cosmochemistry and in situ production; Ocean and atmospheric sciences; Hydrology and geology; Astrophysics, nuclear physics and lasers.

  2. 36Cl accelerator mass spectrometry with a bespoke instrument

    NASA Astrophysics Data System (ADS)

    Wilcken, K. M.; Freeman, S. P. H. T.; Schnabel, C.; Binnie, S. A.; Xu, S.; Phillips, R. J.

    2013-01-01

    Cosmogenic 36Cl analysis by accelerator mass spectrometry (AMS) is a valuable environmental and geological sciences research tool. Overcoming the stable nuclide 36S isobar interfering with measurement is challenging, however. Traditionally this has required large accelerators, but following recent technical advances it is now possible with ∼30 MeV ion energies. Consequently 5 MV or even smaller modern bespoke spectrometers are now 36Cl-capable, increasing accessibility and promoting wider and more varied 36Cl use. However, the technical ability to identify 36Cl ions is quite distinct from demonstrated high-performance AMS. Such is the theme of this paper. We present a systematic analysis of the accurate measurement of sample radioisotope relative to the stable chlorine, the normalisation of the measured ratio and correction for remaining 36S interference, all combined with the use of stable-isotope dilution to determine sample Cl concentration to begin with. We conclude by showing that repeated analyses support our claims for routine 3% 36Cl-AMS data. Accordingly, the modest SUERC spectrometer well competes with the performance of larger longer-established instruments, and the results may be quite generic for modern bespoke instruments.

  3. Plutonium measurements by accelerator mass spectrometry at LLNL

    SciTech Connect

    McAninch, J E; Hamilton, T F; Broan, T A; Jokela, T A; Knezovich, T J; Ognibene, T J; Proctor, I D; Roberts, M L; Southon, J R; Vogel, J S; Sideras-Haddad, E

    1999-10-26

    Mass spectrometric methods provide sensitive, routine, and cost-effective analyses of long-lived radionuclides. Here the authors report on the status of work at Lawrence Livermore National Laboratory (LLNL) to develop a capability for actinide measurements by accelerator mass spectrometry (AMS) to take advantage of the high potential of AMS for rejection of interferences. This work demonstrates that the LLNL AMS spectrometer is well-suited for providing high sensitivity, robust, high throughput measurements of plutonium concentrations and isotope ratios. Present backgrounds are {approximately}2 x 10{sup 7}atoms per sample for environmental samples prepared using standard alpha spectrometry protocols. Recent measurements of {sup 239+240}Pu and {sup 241}Pu activities and {sup 240}Pu/{sup 239}Pu isotope ratios in IAEA reference materials agree well with IAEA reference values and with alpha spectrometry and recently published ICP-MS results. Ongoing upgrades of the AMS spectrometer are expected to reduce backgrounds below 1 x 10{sup 6} atoms per sample while allowing simplifications of the sample preparation chemistry. These simplifications will lead to lower per-sample costs, higher throughput, faster turn around and, ultimately, to larger and more robust data sets.

  4. A dedicated AMS (accelerator mass spectrometry) facility for sup 3 H and sup 14 C

    SciTech Connect

    Roberts, M.L.; Southon, J.R.; Davis, J.C.; Proctor, I.D.; Nelson, D.E.

    1990-09-01

    Accelerator mass spectrometry is a high sensitivity technique for the detection of numerous long-lived radionuclides at extremely low concentrations. The present use of this measurement tool is primarily in archaeology and the geosciences. However, novel applications and technological advancements that can have a significant impact on both biomedical research and clinical procedures and environmental investigations have been identified. We are studying a small spectrometer for the simultaneous injection and detection of both hydrogen and carbon radioisotopes. 8 refs., 3 figs.

  5. Accelerator Mass Spectrometry in Laboratory Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Nusair, O.; Bauder, W.; Gyürky, G.; Paul, M.; Collon, P.; Fülöp, Zs; Greene, J.; Kinoshita, N.; Palchan, T.; Pardo, R.; Rehm, K. E.; Scott, R.; Vondrasek, R.

    2016-01-01

    The extreme sensitivity and discrimination power of accelerator mass spectrometry (AMS) allows for the search and the detection of rare nuclides either in natural samples or produced in the laboratory. At Argonne National Laboratory, we are developing an AMS setup aimed in particular at the detection of medium and heavy nuclides, relying on the high ion energy achievable with the ATLAS superconducting linear accelerator and on gas-filled magnet isobaric separation. The setup was recently used for the detection of the 146Sm p-process nuclide and for a new determination of the 146Sm half-life (68.7 My). AMS plays an important role in the measurement of stellar nuclear reaction cross sections by the activation method, extending thus the technique to the study of production of long-lived radionuclides. Preliminary measurements of the 147Sm(γ,n)146Sm are described. A measurement of the 142Nd(α,γ)146Sm and 142Nd(α,n)145Sm reactions is in preparation. A new laser-ablation method for the feeding of the Electron Cyclotron Resonance (ECR) ion source is described.

  6. Accelerator Mass Spectrometry of 129I towards its lower limits

    NASA Astrophysics Data System (ADS)

    Vockenhuber, Christof; Casacuberta, Nuria; Christl, Marcus; Synal, Hans-Arno

    2015-10-01

    We present the performance of Accelerator Mass Spectrometry (AMS) of 129I using the low energy facility TANDY of the Laboratory of Ion Beam Physics at ETH Zurich, Switzerland. Running the tandem accelerator at 300 kV in combination with helium as a stripper gas we obtain high transmission of >50% trough the accelerator for 129I ions in charge state 2+, molecules at mass 129 are sufficiently suppressed at appropriate stripper-gas pressures. While the high-energy spectrometer provides excellent suppression of the stable isotope 127I, mass-to-charge state (m/q) interferences are significantly reduced in 2+, allowing for measurements essentially free of background from other masses (isotopes and m/q interferences). The main challenge in the AMS of 129I comes from cross talk between samples in the ion source. With sufficient care low-level samples (129I/127I < 10-13) can be well measured, e.g. Woodward iodine was measured to 129I/127I = (3.4 ± 0.3) × 10-14, demonstrating that low-energy AMS of 129I provides both high overall efficiency and very low background.

  7. Small system for tritium accelerator mass spectrometry

    DOEpatents

    Roberts, M.L.; Davis, J.C.

    1993-02-23

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and [sup 3]He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  8. Small system for tritium accelerator mass spectrometry

    DOEpatents

    Roberts, Mark L.; Davis, Jay C.

    1993-01-01

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and .sup.3 He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  9. Some results from the Arizona tams facility: AMS ages of athletic, artistic, and animal artifacts

    NASA Astrophysics Data System (ADS)

    Donahue, D. J.; Jull, A. J. T.; Linick, T. W.; Hatheway, A.; Toolin, L. J.; Gore, B.; Damon, P. E.

    1987-11-01

    In this paper we will describe the operation of the University of Arizona tandem accelerator mass spectrometer facility, present some results that demonstrate the precision with which radiocarbon measurements can be made and describe several experiments that have been completed on a variety of artifacts.

  10. TAM Receptor Signaling in Immune Homeostasis

    PubMed Central

    Rothlin, Carla V.; Carrera-Silva, Eugenio A.; Bosurgi, Lidia; Ghosh, Sourav

    2015-01-01

    The TAM receptor tyrosine kinases (RTKs)—TYRO3, AXL, and MERTK—together with their cognate agonists GAS6 and PROS1 play an essential role in the resolution of inflammation. Deficiencies in TAM signaling have been associated with chronic inflammatory and autoimmune diseases. Three processes regulated by TAM signaling may contribute, either independently or collectively, to immune homeostasis: the negative regulation of the innate immune response, the phagocytosis of apoptotic cells, and the restoration of vascular integrity. Recent studies have also revealed the function of TAMs in infectious diseases and cancer. Here, we review the important milestones in the discovery of these RTKs and their ligands and the studies that underscore the functional importance of this signaling pathway in physiological immune settings and disease. PMID:25594431

  11. Determination of cosmogenic Ca-41 in a meteorite with tandem accelerator mass spectrometry

    NASA Technical Reports Server (NTRS)

    Kubik, P. W.; Elmore, D.; Conard, N. J.; Nishiizumi, K.; Arnold, J. R.

    1986-01-01

    The first use of tandem accelerator mass spectrometry (TAMS) to measure the content of Ca-41 in a natural sample, the iron Bogou meteorite, is reported. Ca in the samples was extracted by hydroxide precipitation and purified by means of a caution exchange resin (AG 50W-X8). After adding 4 percent ammonium oxide, the precipitate was ignited to CaO in a quartz vial at about 1100 C. The Ca-41/Ca ratios were determined following acceleration by alternate measurements of the Ca-40 beam current in an image Faraday cup. Ca-41 particles were also measured using a gas counter. The measured Ca-41/Ca ratio was 3.8 + or -0.6 x 10 to the 12th, which corresponds to a Ca-41 activity of 6.9 + or -1.1 d.p.m. per kg. Calculation of the half-life of Ca-41 in the Bogou meteorite yielded an age of 103,000 years.

  12. TAM receptor deficiency affects adult hippocampal neurogenesis

    PubMed Central

    Ji, Rui; Meng, Lingbin; Li, Qiutang; Lu, Qingxian

    2014-01-01

    The Tyro3, Axl and Mertk (TAM) subfamily of receptor protein tyrosine kinases functions in cell growth, differentiation, survival, and most recently found, in the regulation of immune responses and phagocytosis. All three receptors and their ligands, Gas6 (growth arrest-specific gene 6) and protein S, are expressed in the central nervous system (CNS). TAM receptors play pivotal roles in adult hippocampal neurogenesis. Loss of these receptors causes a comprised neurogenesis in the dentate gyrus of adult hippocampus. TAM receptors have a negative regulatory effect on microglia and peripheral antigen-presenting cells, and play a critical role in preventing overproduction of pro-inflammatory cytokines detrimental to the proliferation, differentiation, and survival of adult neuronal stem cells (NSCs). Besides, these receptors also play an intrinsic trophic function in supporting NSC survival, proliferation, and differentiation into immature neurons. All these events collectively ensure a sustained neurogenesis in adult hippocampus. PMID:25487541

  13. TAM receptor deficiency affects adult hippocampal neurogenesis.

    PubMed

    Ji, Rui; Meng, Lingbin; Li, Qiutang; Lu, Qingxian

    2015-06-01

    The Tyro3, Axl and Mertk (TAM) subfamily of receptor protein tyrosine kinases functions in cell growth, differentiation, survival, and most recently found, in the regulation of immune responses and phagocytosis. All three receptors and their ligands, Gas6 (growth arrest-specific gene 6) and protein S, are expressed in the central nervous system (CNS). TAM receptors play pivotal roles in adult hippocampal neurogenesis. Loss of these receptors causes a comprised neurogenesis in the dentate gyrus of adult hippocampus. TAM receptors have a negative regulatory effect on microglia and peripheral antigen-presenting cells, and play a critical role in preventing overproduction of pro-inflammatory cytokines detrimental to the proliferation, differentiation, and survival of adult neuronal stem cells (NSCs). Besides, these receptors also play an intrinsic trophic function in supporting NSC survival, proliferation, and differentiation into immature neurons. All these events collectively ensure a sustained neurogenesis in adult hippocampus. PMID:25487541

  14. Differential TAM receptor–ligand–phospholipid interactions delimit differential TAM bioactivities

    PubMed Central

    Lew, Erin D; Oh, Jennifer; Burrola, Patrick G; Lax, Irit; Zagórska, Anna; Través, Paqui G; Schlessinger, Joseph; Lemke, Greg

    2014-01-01

    The TAM receptor tyrosine kinases Tyro3, Axl, and Mer regulate key features of cellular physiology, yet the differential activities of the TAM ligands Gas6 and Protein S are poorly understood. We have used biochemical and genetic analyses to delineate the rules for TAM receptor–ligand engagement and find that the TAMs segregate into two groups based on ligand specificity, regulation by phosphatidylserine, and function. Tyro3 and Mer are activated by both ligands but only Gas6 activates Axl. Optimal TAM signaling requires coincident TAM ligand engagement of both its receptor and the phospholipid phosphatidylserine (PtdSer): Gas6 lacking its PtdSer-binding ‘Gla domain’ is significantly weakened as a Tyro3/Mer agonist and is inert as an Axl agonist, even though it binds to Axl with wild-type affinity. In two settings of TAM-dependent homeostatic phagocytosis, Mer plays a predominant role while Axl is dispensable, and activation of Mer by Protein S is sufficient to drive phagocytosis. DOI: http://dx.doi.org/10.7554/eLife.03385.001 PMID:25265470

  15. Analytical validation of accelerator mass spectrometry for pharmaceutical development

    PubMed Central

    Keck, Bradly D; Ognibene, Ted; Vogel, John S

    2011-01-01

    The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of 14C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the 14C label), stable across samples storage conditions for at least 1 year, linear over four orders of magnitude with an analytical range from 0.1 Modern to at least 2000 Modern (instrument specific). Furthermore, accuracy was excellent (between 1 and 3%), while precision expressed as coefficient of variation was between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of 14C, respectively (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with 14C corresponds to 30 fg equivalents. Accelerator mass spectrometry provides a sensitive, accurate and precise method of measuring drug compounds in biological matrices. PMID:21083256

  16. Determination of 135Cs by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    MacDonald, C. M.; Charles, C. R. J.; Zhao, X.-L.; Kieser, W. E.; Cornett, R. J.; Litherland, A. E.

    2015-10-01

    The ratio of anthropogenic 135Cs and 137Cs isotopes is characteristic of a uranium fission source. This research evaluates the technique of isotope dilution (yield tracing) for the purpose of quantifying 135Cs by accelerator mass spectrometry with on-line isobar separation. Interferences from Ba, Zn2, and isotopes of equal mass to charge ratios were successfully suppressed. However, some sample crosstalk from source contamination remains. The transmission and di-fluoride ionization efficiencies of Cs isotopes were found to be 8 × 10-3 and 1.7 × 10-7 respectively. This quantification of 135Cs using yield tracing by accelerator mass spectrometry shows promise for future environmental sample analysis once the issues of sample crosstalk and low efficiency can be resolved.

  17. Accelerator mass spectrometry for quantitative in vivo tracing

    SciTech Connect

    Vogel, J S

    2005-04-19

    Accelerator mass spectrometry (AMS) counts individual rare, usually radio-, isotopes such as radiocarbon at high efficiency and specificity in milligram-sized samples. AMS traces very low chemical doses ({micro}g) and radiative doses (100 Bq) of isotope labeled compounds in animal models and directly in humans for pharmaceutical, nutritional, or toxicological research. Absorption, metabolism, distribution, binding, and elimination are all quantifiable with high precision after appropriate sample definition.

  18. Accelerator mass spectrometry as a bioanalytical tool for nutritional research

    SciTech Connect

    Vogel, J.S.; Turteltaub, K.W.

    1997-09-01

    Accelerator Mass Spectrometry is a mass spectrometric method of detecting long-lived radioisotopes without regard to their decay products or half-life. The technique is normally applied to geochronology, but recently has been developed for bioanalytical tracing. AMS detects isotope concentrations to parts per quadrillion, quantifying labeled biochemicals to attomole levels in milligram- sized samples. Its advantages over non-isotopeic and stable isotope labeling methods are reviewed and examples of analytical integrity, sensitivity, specificity, and applicability are provided.

  19. The LLNL Accelerator Mass Spectrometry System for Biochemical 14C-Measurements

    SciTech Connect

    Ognibene, T J; Bench, G; Brown, T A; Vogel, J S

    2002-10-31

    We report on recent improvements made to our 1 MV accelerator mass spectrometry system that is dedicated to {sup 14}C quantification of biochemical samples. Increased vacuum pumping capacity near the high voltage terminal has resulted in a 2-fold reduction of system backgrounds to 0.04 amol {sup 14}C/mg carbon. Carbon ion transmission through the accelerator has also improved a few percent. We have also developed tritium measurement capability on this spectrometer. The {sup 3}H/{sup 1}H isotopic ratio of a milligram-sized processed tap water sample has been measured at 4 {+-} 1 x 10{sup -16} (430 {+-} 110 {micro}Bq/mg H). Measurement throughput for a typical biochemical {sup 3}H sample is estimated to be {approx}10 minutes/sample.

  20. Application of accelerator mass spectrometry in aluminum metabolism studies

    NASA Astrophysics Data System (ADS)

    Meirav, O.; Sutton, R. A. L.; Fink, D.; Middleton, R.; Klein, J.; Walker, V. R.; Halabe, A.; Vetterli, D.; Johnson, R. R.

    1990-12-01

    The recent recognition that aluminum causes toxicity in uremie patients and may be associated with Alzheimer's disease has stimulated many studies of its biochemical effects. However, such studies were hampered by the lack of a suitable tracer. In a novel experiment, we have applied the new technique of accelerator mass spectrometry to investigate aluminum kinetics in rats, using as a marker the long-lived isotope 26Al. We present the first aluminum kinetic model for a biological system. The results clearly demonstrate the advantage this technique holds for isotope tracer studies in animals as well as in humans.

  1. Small sample Accelerator Mass Spectrometry for biomedical applications

    NASA Astrophysics Data System (ADS)

    Salehpour, M.; Håkansson, K.; Possnert, G.

    2015-10-01

    The Accelerator Mass Spectrometry activities at Uppsala University include a group dedicated to the biomedical applications, involving natural level samples, as well as 14C-labeled substances requiring separate handling and preparation. For most applications sufficient sample amounts are available but many applications are limited to samples sizes in the μg-range. We have developed a preparation procedure for small samples biomedical applications, where a few μg C can be analyzed, albeit with compromised precision. The latest results for the small sample AMS method are shown and some of the biomedical activities at our laboratory are presented.

  2. Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112.

    PubMed

    Reddy, Srirama Krishna; Liu, Shuyu; Rudd, Jackie C; Xue, Qingwu; Payton, Paxton; Finlayson, Scott A; Mahan, James; Akhunova, Alina; Holalu, Srinidhi V; Lu, Nanyan

    2014-09-01

    Hard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Cultivars TAM 111 and TAM 112 are widely cultivated in the region, share parentage and showed superior but distinct adaption mechanisms under water-deficit (WD) conditions. Nevertheless, the physiological and molecular basis of their adaptation remains unknown. A greenhouse study was conducted to understand the differences in the physiological and transcriptomic responses of TAM 111 and TAM 112 to WD stress. Whole-plant data indicated that TAM 112 used more water, produced more biomass and grain yield under WD compared to TAM 111. Leaf-level data at the grain filling stage indicated that TAM 112 had elevated abscisic acid (ABA) content and reduced stomatal conductance and photosynthesis as compared to TAM 111. Sustained WD during the grain filling stage also resulted in greater flag leaf transcriptome changes in TAM 112 than TAM 111. Transcripts associated with photosynthesis, carbohydrate metabolism, phytohormone metabolism, and other dehydration responses were uniquely regulated between cultivars. These results suggested a differential role for ABA in regulating physiological and transcriptomic changes associated with WD stress and potential involvement in the superior adaptation and yield of TAM 112. PMID:25014264

  3. Use of Tritium Accelerator Mass Spectrometry for Tree Ring Analysis

    PubMed Central

    LOVE, ADAM H.; HUNT, JAMES R.; ROBERTS, MARK L.; SOUTHON, JOHN R.; CHIARAPPA - ZUCCA, MARINA L.; DINGLEY, KAREN H.

    2010-01-01

    Public concerns over the health effects associated with low-level and long-term exposure to tritium released from industrial point sources have generated the demand for better methods to evaluate historical tritium exposure levels for these communities. The cellulose of trees accurately reflects the tritium concentration in the source water and may contain the only historical record of tritium exposure. The tritium activity in the annual rings of a tree was measured using accelerator mass spectrometry to reconstruct historical annual averages of tritium exposure. Milligram-sized samples of the annual tree rings from a Tamarix located at the Nevada Test Site are used for validation of this methodology. The salt cedar was chosen since it had a single source of tritiated water that was well-characterized as it varied over time. The decay-corrected tritium activity of the water in which the salt cedar grew closely agrees with the organically bound tritium activity in its annual rings. This demonstrates that the milligram-sized samples used in tritium accelerator mass spectrometry are suited for reconstructing anthropogenic tritium levels in the environment. PMID:12144257

  4. Use of tritium accelerator mass spectrometry for tree ring analysis.

    PubMed

    Love, Adam H; Hunt, James R; Roberts, Mark L; Southon, John R; Chiarapp-Zucca, Marina L; Dingley, Karen H

    2002-07-01

    Public concerns over the health effects associated with low-level and long-term exposure to tritium released from industrial point sources have generated the demand for better methods to evaluate historical tritium exposure levels for these communities. The cellulose of trees accurately reflects the tritium concentration in the source water and may contain the only historical record of tritium exposure. The tritium activity in the annual rings of a tree was measured using accelerator mass spectrometry to reconstruct historical annual averages of tritium exposure. Milligram-sized samples of the annual tree rings from a Tamarix located at the Nevada Test Site are used for validation of this methodology. The salt cedar was chosen since it had a single source of tritiated water that was well-characterized as it varied over time. The decay-corrected tritium activity of the water in which the salt cedar grew closely agrees with the organically bound tritium activity in its annual rings. This demonstrates that the milligram-sized samples used in tritium accelerator mass spectrometry are suited for reconstructing anthropogenic tritium levels in the environment. PMID:12144257

  5. Accelerator mass spectrometry for measurement of long-lived radioisotopes

    SciTech Connect

    Elmore, D.; Phillips, F.M.

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes /sup 10/Be, /sup 14/C, /sup 26/Al, /sup 36/Cl, and /sup 129/I can now be measured in small natural samples having isotopic abundances in the range 10/sup -12/ to 10/sup -15/ and as few as 10/sup 5/ atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archaeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of half-lives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences. 98 references, 4 figures, 2 tables.

  6. Integration of continuous-flow accelerator mass spectrometry with chromatography and mass-selective detection.

    PubMed

    Flarakos, Jimmy; Liberman, Rosa G; Tannenbaum, Steven R; Skipper, Paul L

    2008-07-01

    Physical combination of an accelerator mass spectrometry (AMS) instrument with a conventional gas chromatograph-mass spectrometer (GC/MS) is described. The resulting hybrid instrument (GC/MS/AMS) was used to monitor mass chromatograms and radiochromatograms simultaneously when (14)C-labeled compounds were injected into the gas chromatograph. Combination of the two instruments was achieved by splitting the column effluent and directing half to the mass spectrometer and half to a flow-through CuO reactor in line with the gas-accepting AMS ion source. The reactor converts compounds in the GC effluent to CO2 as required for function of the ion source. With cholesterol as test compound, the limits of quantitation were 175 pg and 0.00175 dpm injected. The accuracy achieved in analysis of five nonzero calibration standards and three quality control standards, using cholesterol-2,2,3,4,4,6-d6 as injection standard, was 100 +/- 11.8% with selected ion monitoring and 100 +/- 16% for radiochromatography. Respective values for interday precision were 1.0-3.2 and 22-32%. Application of GC/MS/AMS to a current topic of interest was demonstrated in a model metabolomic study in which cultured primary hepatocytes were given [(14)C]glucose and organic acids excreted into the culture medium were analyzed. PMID:18494504

  7. Accelerator mass spectrometry at the University of North Texas

    NASA Astrophysics Data System (ADS)

    Anthony, J. M.; Matteson, S.; McDaniel, F. D.; Duggan, J. L.

    1989-04-01

    An accelerator mass spectrometry system designed for analysis of electronic materials is being developed and installed on the University of North Texas 3 MV tandem accelerator (National Electrostatics Corporation 9-SDH). High-resolution magnetic (40° deflection, {M}/{ΔM ≈ 350}, maximum mass-energy product 69 MeVu) and electro static (45 ° deflection, E/ q of 4.8 MeV, {E}/{ΔE}≈ 730 ) analysis, coupled with a 1.5 m time-of-flight path and total energy detection (surface barrier detector) forms the basis of the detection system. In order to provide stable element detection capability at the parts-per-trillion level in electronic materials (Si, GaAs, HgCdTe), a custom ion source, incorporating mass analysis of the sputtering beam, ultraclean slits, low cross-contamination and UHV capability, is being constructed.

  8. Dating Studies of Elephant Tusks Using Accelerator Mass Spectrometry

    SciTech Connect

    Sideras-Haddad, E; Brown, T A

    2002-10-03

    A new method for determining the year of birth, the year of death, and hence, the age at death, of post-bomb and recently deceased elephants has been developed. The technique is based on Accelerator Mass Spectrometry radiocarbon analyses of small-sized samples extracted from along the length of a ge-line of an elephant tusk. The measured radiocarbon concentrations in the samples from a tusk can be compared to the {sup 14}C atmospheric bomb-pulse curve to derive the growth years of the initial and final samples from the tusk. Initial data from the application of this method to two tusks will be presented. Potentially, the method may play a significant role in wildlife management practices of African national parks. Additionally, the method may contribute to the underpinnings of efforts to define new international trade regulations, which could, in effect, decrease poaching and the killing of very young animals.

  9. Low-level 14C measurements and Accelerator Mass Spectrometry

    SciTech Connect

    Litherland, A.E.; Beukens, R.P.; Zhao, X.-L.; Kieser, W.E.; Gove, H.E.

    2005-09-08

    Accelerator Mass Spectrometry (AMS) and isotope enrichment were used in 1991 to estimate that the 14C content of methane in natural gas was {<=}1.6x10-18 of the total carbon. The low content of 14C in underground hydrocarbons was verified later in the remarkable results from the Borexino test scintillation counter for solar neutrino studies. Since then studies of the 14C background problem have demonstrated that much of the background originally observed in the AMS measurements can, in principle, be eliminated. However, many difficulties and other backgrounds are to be faced as the limit for AMS is pushed still further towards possibly a ratio of < 10-21. These will be discussed.

  10. Attomole quantitation of protein separations with accelerator mass spectrometry

    SciTech Connect

    Vogel, J S; Grant, P G; Buccholz, B A; Dingley, K; Turteltaub, K W

    2000-12-15

    Quantification of specific proteins depends on separation by chromatography or electrophoresis followed by chemical detection schemes such as staining and fluorophore adhesion. Chemical exchange of short-lived isotopes, particularly sulfur, is also prevalent despite the inconveniences of counting radioactivity. Physical methods based on isotopic and elemental analyses offer highly sensitive protein quantitation that has linear response over wide dynamic ranges and is independent of protein conformation. Accelerator mass spectrometry quantifies long-lived isotopes such as 14C to sub-attomole sensitivity. We quantified protein interactions with small molecules such as toxins, vitamins, and natural biochemicals at precisions of 1-5% . Micro-proton-induced-xray-emission quantifies elemental abundances in separated metalloprotein samples to nanogram amounts and is capable of quantifying phosphorylated loci in gels. Accelerator-based quantitation is a possible tool for quantifying the genome translation into proteome.

  11. Temperature controls nuclear import of Tam3 transposase in Antirrhinum.

    PubMed

    Fujino, Kaien; Hashida, Shin-Nosuke; Ogawa, Takashi; Natsume, Tomoko; Uchiyama, Takako; Mikami, Tetsuo; Kishima, Yuji

    2011-01-01

    It has been proposed that environmental stimuli can activate transposable elements (TEs), whereas few substantial mechanisms have been shown so far. The class-II element Tam3 from Antirrhinum majus exhibits a unique property of low-temperature-dependent transposition (LTDT). LTDT has proved invaluable in developing the gene isolation technologies that have underpinned much of modern plant developmental biology. Here, we reveal that LTDT involves differential subcellular localization of the Tam3 transposase (TPase) in cells grown at low (15°C) and high (25°C) temperatures. The mechanism is associated with the nuclear import of Tam3 TPase in Antirrhinum cells. At high temperature, the nuclear import of Tam3 TPase is severely restricted in Antirrhinum cells, whereas at low temperature, the nuclear localization of Tam3 TPase is observed in about 20% of the cells. However, in tobacco BY-2 and Allium cepa (onion) cells, Tam3 TPase is transported into most nuclei. In addition to three nuclear localization signals (NLSs), the Tam3 TPase is equipped with a nuclear localization inhibitory domain (NLID), which functions to abolish nuclear import of the TPase at high temperature in Antirrhinum. NLID in Tam3 TPase is considered to interact with Antirrhinum-specific factor(s). The host-specific regulation of the nuclear localization of transposase represents a new repertoire controlling class-II TEs. PMID:21175897

  12. Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2014-09-01

    The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are

  13. Toward laser ablation Accelerator Mass Spectrometry of actinides

    NASA Astrophysics Data System (ADS)

    Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Paul, M.; Collon, P.; Deibel, C.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Fonnesbeck, J.; Imel, G.

    2013-01-01

    A project to measure neutron capture cross sections of a number of actinides in a reactor environment by Accelerator Mass Spectrometry (AMS) at the ATLAS facility of Argonne National Laboratory is underway. This project will require the precise and accurate measurement of produced actinide isotopes in many (>30) samples irradiated in the Advanced Test Reactor at Idaho National Laboratory with neutron fluxes having different energy distributions. The AMS technique at ATLAS is based on production of highly-charged positive ions in an electron cyclotron resonance (ECR) ion source followed by acceleration in the ATLAS linac and mass-to-charge (m/q) measurement at the focus of the Fragment Mass Analyzer. Laser ablation was selected as the method of feeding the actinide material into the ion source because we expect it will have higher efficiency and lower chamber contamination than either the oven or sputtering techniques, because of a much narrower angular distribution of emitted material. In addition, a new multi-sample holder/changer to allow quick change between samples and a computer-controlled routine allowing fast tuning of the accelerator for different beams, are being developed. An initial test run studying backgrounds, detector response, and accelerator scaling repeatability was conducted in December 2010. The project design, schedule, and results of the initial test run to study backgrounds are discussed.

  14. Improving Tritium Exposure Reconstructions Using Accelerator Mass Spectrometry

    SciTech Connect

    Love, A; Hunt, J; Knezovich, J

    2003-06-01

    Exposure reconstructions for radionuclides are inherently difficult. As a result, most reconstructions are based primarily on mathematical models of environmental fate and transport. These models can have large uncertainties, as important site-specific information is unknown, missing, or crudely estimated. Alternatively, surrogate environmental measurements of exposure can be used for site-specific reconstructions. In cases where environmental transport processes are complex, well-chosen environmental surrogates can have smaller exposure uncertainty than mathematical models. Because existing methodologies have significant limitations, the development or improvement of methodologies for reconstructing exposure from environmental measurements would provide important additional tools in assessing the health effects of chronic exposure. As an example, the direct measurement of tritium atoms by accelerator mass spectrometry (AMS) enables rapid low-activity tritium measurements from milligram-sized samples, which permit greater ease of sample collection, faster throughput, and increased spatial and/or temporal resolution. Tritium AMS was previously demonstrated for a tree growing on known levels of tritiated water and for trees exposed to atmospheric releases of tritiated water vapor. In these analyses, tritium levels were measured from milligram-sized samples with sample preparation times of a few days. Hundreds of samples were analyzed within a few months of sample collection and resulted in the reconstruction of spatial and temporal exposure from tritium releases.

  15. Aluminum-26 as a biological tracer using accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Flarend, Richard Edward

    1997-06-01

    The development of accelerator mass spectrometry (AMS) has provided a practical method of detection for the only isotope of aluminum suitable as a tracer, 26Al. The use of 26Al as a tracer for aluminum has made possible the study of aluminum metabolism and the pharmacokinetics of aluminum-containing drugs at physiological levels. An overview of the various advantages of using 26Al as a tracer for aluminum and a general description of the AMS technique as applied to bio-medical applications is given. To illustrate the versatility of 26Al as a tracer for aluminum, 26Al studies of the past several years are discussed briefly. In addition, Two novel investigations dealing with 26Al-labeled drugs will be presented in more detail. In one of these studies, it was found that 26Al from aluminum hydroxide and aluminum phosphate vaccine adjuvants appeared in the blood just one hour after intramuscular injection. This is a surprising result since the currently held theory of how adjuvants work assumes that adjuvants remain insoluble and hold the antigen at the injection site for a long period of time. In another project, 26Al-labeled antiperspirants are being characterized by combining AMS with traditional analytical and chromatographic techniques. Future directions for this and other possible studies are discussed.

  16. Present and future prospects of accelerator mass spectrometry

    SciTech Connect

    Kutschera, W.

    1987-04-01

    Accelerator Mass Spectrometry (AMS) has become a powerful technique for measuring extremely low abundances (10/sup -10/ to 10/sup -15/ relative to stable isotopes) of long-lived radioisotopes with half-lives in the range from 10/sup 2/ to 10/sup 8/ years. With a few exceptions, tandem accelerators turned out to be the most useful instruments for AMS measurements. Both natural (mostly cosmogenic) and man-made (anthropogenic) radioisotopes are studied with this technique. In some cases very low concentrations of stable isotope are also measured. Applications of AMS cover a large variety of fields including anthropology, archaeology, oceanography, hydrology, climatology, volcanology, minerals exploration, cosmochemistry, meteoritics, glaciology, sedimentary processes, geochronology, environmental physics, astrophysics, nuclear and particle physics. Present and future prospects of AMS are discussed as an interplay between the continuous development of new techniques and the investigation of problems in the above mentioned fields. Typical factors to be considered are energy range and type of accelerator, and the possibilities of dedicated versus partial use of new or existing accelerators.

  17. Improving tritium exposure reconstructions using accelerator mass spectrometry

    PubMed Central

    Hunt, J. R.; Vogel, J. S.; Knezovich, J. P.

    2010-01-01

    Direct measurement of tritium atoms by accelerator mass spectrometry (AMS) enables rapid low-activity tritium measurements from milligram-sized samples and permits greater ease of sample collection, faster throughput, and increased spatial and/or temporal resolution. Because existing methodologies for quantifying tritium have some significant limitations, the development of tritium AMS has allowed improvements in reconstructing tritium exposure concentrations from environmental measurements and provides an important additional tool in assessing the temporal and spatial distribution of chronic exposure. Tritium exposure reconstructions using AMS were previously demonstrated for a tree growing on known levels of tritiated water and for trees exposed to atmospheric releases of tritiated water vapor. In these analyses, tritium levels were measured from milligram-sized samples with sample preparation times of a few days. Hundreds of samples were analyzed within a few months of sample collection and resulted in the reconstruction of spatial and temporal exposure from tritium releases. Although the current quantification limit of tritium AMS is not adequate to determine natural environmental variations in tritium concentrations, it is expected to be sufficient for studies assessing possible health effects from chronic environmental tritium exposure. PMID:14735274

  18. FemtoMolar measurements using accelerator mass spectrometry.

    PubMed

    Salehpour, Mehran; Forsgard, Niklas; Possnert, Göran

    2009-03-01

    Accelerator mass spectrometry (AMS) is an ultra-sensitive analytical method suitable for the detection of sub-nM concentrations of labeled biological substances such as pharmaceutical drugs in body fluids. A limiting factor in extending the concentration measurements to the sub-pM range is the natural (14)C content in living tissues. This was circumvented by separating the labeled drug from the tissue matrix, using standard high-performance liquid chromatography (HPLC) procedures. As the separated total drug amount is in the few fg range, it is not possible to use a standard AMS sample preparation method, where mg sizes are required. We have utilized a sensitive carbon carrier method where a (14)C-deficient compound is added to the HPLC fractions and the composite sample is prepared and analyzed by AMS. Using 50 microL human blood plasma aliquots, we have demonstrated concentration measurements below 20 fM, containing sub-amol amounts of the labeled drug. The method has the immediate potential of operating in the sub-fM region. PMID:19177507

  19. Recent advances in biomedical applications of accelerator mass spectrometry

    PubMed Central

    Hah, Sang Soo

    2009-01-01

    The use of radioisotopes has a long history in biomedical science, and the technique of accelerator mass spectrometry (AMS), an extremely sensitive nuclear physics technique for detection of very low-abundant, stable and long-lived isotopes, has now revolutionized high-sensitivity isotope detection in biomedical research, because it allows the direct determination of the amount of isotope in a sample rather than measuring its decay, and thus the quantitative analysis of the fate of the radiolabeled probes under the given conditions. Since AMS was first used in the early 90's for the analysis of biological samples containing enriched 14C for toxicology and cancer research, the biomedical applications of AMS to date range from in vitro to in vivo studies, including the studies of 1) toxicant and drug metabolism, 2) neuroscience, 3) pharmacokinetics, and 4) nutrition and metabolism of endogenous molecules such as vitamins. In addition, a new drug development concept that relies on the ultrasensitivity of AMS, known as human microdosing, is being used to obtain early human metabolism information of candidate drugs. These various aspects of AMS are reviewed and a perspective on future applications of AMS to biomedical research is provided. PMID:19534792

  20. Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Cultivars TAM 111 and TAM 112 are widely cultivated in the region, share parentage and showed superior b...

  1. Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Among popular commercial varieties, TAM 111 and TAM 112 showed a superior adaptation to water-deficit c...

  2. CologneAMS, a dedicated center for accelerator mass spectrometry in Germany

    NASA Astrophysics Data System (ADS)

    Dewald, A.; Heinze, S.; Jolie, J.; Zilges, A.; Dunai, T.; Rethemeyer, J.; Melles, M.; Staubwasser, M.; Kuczewski, B.; Richter, J.; Radtke, U.; von Blanckenburg, F.; Klein, M.

    2013-01-01

    CologneAMS is a new centre for accelerator mass spectrometry (AMS) at the University of Cologne. It has been funded by the German Research Foundation (DFG) to improve the experimental conditions especially for those German scientists that apply the AMS technique for their geologic, environmental, nuclear chemical, and nuclear astrophysical research. The new AMS-device has been built by High Voltage Engineering Europe (HVEE) and has been installed in the existing accelerator area of the Institute of Nuclear Physics. The AMS-facility is designed for the spectrometry of 10Be, 14C, 26Al, 36Cl, 41Ca, 129I in and heavy ions up to 236U and 244Pu. The central part of the AMS-facility is a 6 MV Tandetron™ accelerator. Downstream of the high energy mass spectrometer an additional switching magnet is used as a further filter element which supplies also additional ports for future extensions of the detector systems. The current status of CologneAMS and the results of the first test measurements will be presented.

  3. Highly Sensitive 14C and 3H Quantification of Biochemical Samples Using Accelerator Mass Spectrometry

    SciTech Connect

    Ognibene, T J; Vogel, J S

    2003-10-23

    Accelerator Mass Spectrometry (AMS) is an isotope ratio mass spectrometer that quantifies low levels of rare isotopes with half-lives between 10 and 10{sup 8} years. Typical sensitivities are 10{sup 6} atoms in a milligram-sized sample. AMS was originally developed for use in the geosciences as a tool to carbon date archaeological artifacts, but has applications in many fields. In the biosciences, the extreme sensitivity of AMS is used to trace nutrients, toxins and therapeutics in humans and animals using less than {micro}g/kg doses containing between 1-100 nCi of {sup 14}C. This sensitivity is used to reduce sample size, reduce chemical exposures to environmental or physiological levels, reduce radiation exposures to subjects, and/or reduce radioactive (and ''mixed'') waste. Compared to decay counting, AMS provides for a much higher measurement throughput for low activity samples. For example, a milligram-sized sample containing 1 dpm of {sup 14}C can be measured to 3% precision in several seconds. That same sample would require approximately 1 week of decay counting to obtain similar precision.

  4. Accelerator mass spectrometry of ultra-small samples with applications in the biosciences

    NASA Astrophysics Data System (ADS)

    Salehpour, Mehran; Håkansson, Karl; Possnert, Göran

    2013-01-01

    An overview is presented covering the biological accelerator mass spectrometry activities at Uppsala University. The research utilizes the Uppsala University Tandem laboratory facilities, including a 5 MV Pelletron tandem accelerator and two stable isotope ratio mass spectrometers. In addition, a dedicated sample preparation laboratory for biological samples with natural activity is in use, as well as another laboratory specifically for 14C-labeled samples. A variety of ongoing projects are described and presented. Examples are: (1) Ultra-small sample AMS. We routinely analyze samples with masses in the 5-10 μg C range. Data is presented regarding the sample preparation method, (2) bomb peak biological dating of ultra-small samples. A long term project is presented where purified and cell-specific DNA from various part of the human body including the heart and the brain are analyzed with the aim of extracting regeneration rate of the various human cells, (3) biological dating of various human biopsies, including atherosclerosis related plaques is presented. The average built up time of the surgically removed human carotid plaques have been measured and correlated to various data including the level of insulin in the human blood, and (4) In addition to standard microdosing type measurements using small pharmaceutical drugs, pre-clinical pharmacokinetic data from a macromolecular drug candidate are discussed.

  5. Proof-of-concept development of PXAMS (projectile x-ray accelerator mass spectrometry)

    SciTech Connect

    Proctor, I.D.; Roberts, M.L.; McAninch, J.E.; Bench, G.S.

    1996-03-01

    Prior to the current work, accelerator mass spectrometry (AMS) was limited to a set of {approximately}8--10 isotopes. This limitation is caused primarily by the inability to discriminate against stable atomic isobars. An analysis scheme that combines the isotopic sensitivity of AMS with similar isobar selectivity would open a large new class of isotope applications. This project was undertaken to explore the use of characteristic x rays as a method for the detection and identification of ions,and to allow the post-spectrometer rejection of isobaric interferences for isotopes previously inaccessible to AMS. During the second half of FY94 (with Advanced Concepts funding from the Office of Non-Proliferation and National Security), we examined the feasability of this technique, which we are referring to as PXAMS (Projectile X ray AMS), to the detection of several isotopes at Lawrence Livermore National Laboratory (LLNL). In our first exploratory work, we measured the x ray yield vs energy for {sup 80}Se ions stopped in a thick Y target. These results, demonstrated that useful detection efficiencies could be obtained for Se ions at energies accessible with our accelerator, and that the count rate from target x rays is small compared to the Se K{alpha} rate. We followed these measurements with a survey of x ray yields for Z = 14-46.

  6. Sample preparation for quantitation of tritium by accelerator mass spectrometry.

    PubMed

    Chiarappa-Zucca, Marina L; Dingley, Karen H; Roberts, Mark L; Velsko, Carol A; Love, Adam H

    2002-12-15

    The capability to prepare samples accurately and reproducibly for analysis of tritium (3H) content by accelerator mass spectrometry (AMS) greatly facilitates isotopic tracer studies in which attomole levels of 3H can be measured in milligram-sized samples. A method has been developed to convert the hydrogen of organic samples to a solid, titanium hydride, which can be analyzed by AMS. Using a two-step process, the sample is first oxidized to carbon dioxide and water. In the second step, the water is transferred within a heated manifold into a quartz tube, reduced to hydrogen gas using zinc, and reacted with titanium powder. The 3H/1H ratio of the titanium hydride is measured by AMS and normalized to standards whose ratios were determined by decay counting to calculate the amount of 3H in the original sample. Water, organic compounds, and biological samples with 3H activities measured by liquid scintillation counting were utilized to develop and validate the method. The 3H/1H ratios were quantified in samples that spanned 5 orders of magnitude, from 10(-10) to 10(-15), with a detection limit of 3.0 x 10(-15), which is equivalent to 0.02 dpm tritium/mg of material. Samples smaller than 2 mg were analyzed following addition of 2 mg of a tritium-free-hydrogen carrier. Preparation of organic standards containing both 14C and 3H in 2-mg organic samples demonstrated that this sample preparation methodology can also be applied to quantify both of these isotopes from a single sample. PMID:12510750

  7. Using accelerator mass spectrometry for radiocarbon dating of textiles

    SciTech Connect

    Jull, A.J.T.

    1997-12-01

    Since 1981 we have operated an NSF Accelerator Mass Spectrometry (AMS) Facility at the University of Arizona. The AMS method allows us to use very small samples of carbon, <1 mg for radiocarbon dating in contrast to earlier counting techniques. This has opened a vast array of applications of radiocarbon dating that was difficult to do before AMS because of sample size limitations of decay counting. Some of the many applications of AMS include paleoclimatic studies, archaeological research and the age of first settlement of North America by man, dating of art works and artifacts, fall times and terrestrial residence ages of meteorites, production of {sup 14}C in lunar samples by galactic and solar cosmic rays, studies of in situ {sup 14}C produced by cosmic ray spallation in rocks and ice, and studies of {sup 14}C in groundwater dissolved inorganic carbon and dissolved organic carbon. At our laboratory, we have also successfully applied AMS {sup 14}C to dating of many types of textiles, including silks and linens, art works, documents and artifacts fabricated from wood, parchment, ivory, and bone. The results for many of these samples are often important in questions of the authenticity of these works of art and artifacts. Our studies have encompassed a wide range of art works ranging from the Dead Sea Scrolls, the Shroud of Turin, and the Chinese silk trade to the works of Raphael, Rembrandt, and Picasso. Recently, we also dated the Vinland Map, a controversial document that shows the eastern coast of North America apparently using information from Viking voyages.

  8. Human folate metabolism using 14C-accelerator mass spectrometry

    SciTech Connect

    Clifford, A. J.; Arjomand, A.; Duecker, S. R.; Johnson, H.; Schneider, P. D.; Zulim, R. A.; Bucholz, B. A.; Vogel, J. S.

    1999-03-25

    Folate is a water soluble vitamin required for optimal health, growth and development. It occurs naturally in various states of oxidation of the pteridine ring and with varying lengths to its glutamate chain. Folates function as one-carbon donors through methyl transferase catalyzed reactions. Low-folate diets, especially by those with suboptimal methyltransferase activity, are associated with increased risk of neural tube birth defects in children, hyperhomocysteinemic heart disease, and cancer in adults. Rapidly dividing (neoplastic) cells have a high folate need for DNA synthesis. Chemical analogs of folate (antifolates) that interfere with folate metabolism are used as therapeutic agents in cancer treatment. Although much is known about folate chemistry, metabolism of this vitamin in vivo in humans is not well understood. Since folate levels in blood and tissues are very low and methods to measure them are inadequate, the few previous studies that have examined folate metabolism used large doses of radiolabeled folic acid in patients with Hodgkin's disease and cancer (Butterworth et al. 1969, Krumdieck et al. 1978). A subsequent protocol using deuterated folic acid was also insufficiently sensitive to trace a physiologic folate dose (Stites et al. 1997). Accelerator mass spectrometry (AMS) is an emerging bioanalytical tool that overcomes the limitations of traditional mass spectrometry and of decay counting of long lived radioisotopes (Vogel et al. 1995). AMS can detect attomolar concentrations of 14 C in milligram-sized samples enabling in vivo radiotracer studies in healthy humans. We used AMS to study the metabolism of a physiologic 80 nmol oral dose of 14 C-folic acid (1/6 US RDA) by measuring the 14 C-folate levels in serial plasma, urine and feces samples taken over a 150-day period after dosing a healthy adult volunteer.

  9. Design of a ram accelerator mass launch system

    NASA Technical Reports Server (NTRS)

    Aarnio, Michael; Armerding, Calvin; Berschauer, Andrew; Christofferson, Erik; Clement, Paul; Gohd, Robin; Neely, Bret; Reed, David; Rodriguez, Carlos; Swanstrom, Fredrick

    1988-01-01

    The ram accelerator mass launch system has been proposed to greatly reduce the costs of placing acceleration-insensitive payloads into low earth orbit. The ram accelerator is a chemically propelled, impulsive mass launch system capable of efficiently accelerating relatively large masses from velocities of 0.7 km/sec to 10 km/sec. The principles of propulsion are based on those of a conventional supersonic air-breathing ramjet; however the device operates in a somewhat different manner. The payload carrying vehicle resembles the center-body of the ramjet and accelerates through a stationary tube which acts as the outer cowling. The tube is filled with premixed gaseous fuel and oxidizer mixtures that burn in the vicinity of the vehicle's base, producing a thrust which accelerates the vehicle through the tube. This study examines the requirement for placing a 2000 kg vehicle into a 500 km circular orbit with a minimum amount of on-board rocket propellant for orbital maneuvers. The goal is to achieve a 50 pct payload mass fraction. The proposed design requirements have several self-imposed constraints that define the vehicle and tube configurations. Structural considerations on the vehicle and tube wall dictate an upper acceleration limit of 1000 g's and a tube inside diameter of 1.0 m. In-tube propulsive requirements and vehicle structural constraints result in a vehicle diameter of 0.76 m, a total length of 7.5 m and a nose-cone half angle of 7 degrees. An ablating nose-cone constructed from carbon-carbon composite serves as the thermal protection mechanism for atmospheric transit.

  10. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    SciTech Connect

    M. L. Adamic; J. E. Olson; D. D. Jenson; J. G. Eisenmenger; M. G. Watrous

    2012-09-01

    This NA 22 funded research project investigated the transition of iodine isotopic analyses from thermal ionization mass spectrometry (TIMS) to an accelerator mass spectrometry (AMS) system. Previous work (Fiscal Year 2010) had demonstrated comparable data from TIMS and AMS. With AMS providing comparable data with improved background levels and vastly superior sample throughput, improvement in the sample extraction from environmental sample matrices was needed to bring sample preparation throughput closer to the operation level of the instrument. Previous research used an extraction chemistry that was not optimized for yield or refined for reduced labor to prove the principle. This research was done to find an extraction with better yield using less labor per sample to produce a sample ready for the AMS instrument. An extraction method using tetramethyl ammonium hydroxide (TMAH) was developed for removal of iodine species from high volume air filters. The TMAH with gentle heating was superior to the following three extraction methods: ammonium hydroxide aided by sonication, acidic and basic extraction aided by microwave, and ethanol mixed with sodium hydroxide. Taking the iodine from the extraction solvent to being ready for AMS analysis was accomplished by a direct precipitation, as well as, using silver wool to harvest the iodine from the TMAH. Portions of the same filters processed in FY 2010 were processed again with the improved extraction scheme followed by successful analysis by AMS at the Swiss Federal Institute of Technology. The data favorably matched the data obtained in 2010. The time required for analysis has been reduced over the aqueous extraction/AMS approach developed in FY 2010. For a hypothetical batch of 30 samples, the AMS methodology is about 10 times faster than the traditional gas phase chemistry and TIMS analysis. As an additional benefit, background levels for the AMS method are about 1000 times lower than TIMS. This results from the

  11. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    SciTech Connect

    J. E. Delmore

    2010-09-01

    Funding was received from NA-22 to investigate transitioning iodine isotopic analyses to an accelerator mass spectrometry (AMS) system. The present method uses gas-phase chemistry followed by thermal ionization mass spectrometry (TIMS). It was anticipated that the AMS approach could provide comparable data, with improved background levels and superior sample throughput. An aqueous extraction method was developed for removal of iodine species from high-volume air filters. Ethanol and sodium hydroxide, plus heating and ultrasonic treatment, were used to successfully extract iodine from loaded high-volume air filters. Portions of the same filters were also processed in the traditional method and analyzed by TIMS for comparison. Aliquot parts of the aqueous extracts were analyzed by AMS at the Swiss Federal Institute of Technology. Idaho National Laboratory (INL) personnel visited several AMS laboratories in the US, Spain, and Switzerland. Experience with AMS systems from several manufacturers was gained, and relationships were developed with key personnel at the laboratories. Three batches of samples were analyzed in Switzerland, and one in Spain. Results show that the INL extraction method successfully extracted enough iodine from high-volume air filters to allow AMS analysis. Comparison of the AMS and TIMS data is very encouraging; while the TIMS showed about forty percent more atoms of 129I, the 129/127 ratios tracked each other very well between the two methods. The time required for analysis is greatly reduced for the aqueous extraction/AMS approach. For a hypothetical batch of thirty samples, the AMS methodology is about five times faster than the traditional gas-phase chemistry and TIMS analysis. As an additional benefit, background levels for the AMS method are about 1000 times lower than for TIMS. This results from the fundamental mechanisms of ionization in the AMS system and cleanup of molecular interferences. We showed that an aqueous extraction of high

  12. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    SciTech Connect

    Watrous, Matthew George; Adamic, Mary Louise; Olson, John Eric; Baeck, D. L.; Fox, R. V.; Hahn, P. A.; Jenson, D. D.; Lister, T. E.

    2015-09-01

    The goal of the project, New Paradigms for Isotope Ratio Mass Spectrometry: Raising the Scientific Profile and Improved Performance for Accelerator Mass Spectrometry (AMS) and Thermal Ionization Mass Spectrometry (TIMS), is to ensure that the ongoing isotope ratio determination capability within the U.S. Department of Energy complex is the world’s best for application to nonproliferation. This report spells out the progress of Task 4, Transition of TIMS to AMS for Iodine Analysis, of the larger project. The subtasks under Task 4 and the accomplishments throughout the three year project life cycle are presented in this report. Progress was made in optimization of chemical extraction, determination of a detection limit for 127Iodine, production of standard materials for AMS analysis quality assurance, facilitation of knowledge exchange with respect to analyzing iodine on an AMS, cross comparison with a world-leading AMS laboratory, supercritical fluid extraction of iodine for AMS analysis and electrodeposition of seawater as a direct method of preparation for iodine analysis by AMS--all with the goal of minimizing the time required to stand up an AMS capability for iodine analysis of exposed air filters at INL. An effective extraction method has been developed and demonstrated for iodine analysis of exposed air filters. Innovative techniques to accomplish the cathode preparation for AMS analysis were developed and demonstrated and published. The known gap of a lack of available materials for reference standards in the analysis of iodine by AMS was filled by the preparation of homogenous materials that were calibrated against NIST materials. A minimum limit on the amount of abundant isotope in a sample was determined for AMS analysis. The knowledge exchange occurred with fantastic success. Scientists engaged the international AMS community at conferences, as well as in their laboratories for collaborative work. The supercritical fluid extraction work has positive

  13. Full-scale results for TAM limestone injection

    SciTech Connect

    Baer, S.

    1996-12-31

    Information is outlined on the use of thermally active marble (TAM) sorbents in boilers. Data are presented on: the comparison of TAM to limestone; NOVACON process development history; CFB test history; CFB pilot scale test; full-scale CFB trial; August, 1996 CFB demonstration; Foster Wheeler Mount Carmel sorbent feed rate comparison and Ca:S comparison; unburned carbon is ash; and advantages and savings in CFB boilers.

  14. Investigations of paleoclimate variations using accelerator mass spectrometry

    SciTech Connect

    Southon, J R; Kashgarian, M; Brown, T A

    2000-08-24

    This project has used Accelerator Mass Spectrometry (AMS) {sup 14}C measurements to study climate and carbon cycle variations on time scales from decades to millennia over the past 30,000 years, primarily in the western US and the North Pacific. {sup 14}C dates provide a temporal framework for records of climate change, and natural radiocarbon acts as a carbon cycle tracer in independently dated records. The overall basis for the study is the observation that attempts to model future climate and carbon cycle changes cannot be taken seriously if the models have not been adequately tested. Paleoclimate studies are unique because they provide realistic test data under climate conditions significantly different from those of the present, whereas instrumental results can only sample the system as it is today. The aim of this project has been to better establish the extent, timing, and causes of past climate perturbations, and the carbon cycle changes with which they are linked. This provides real-world data for model testing, both for the development of individual models and also for inter-model diagnosis and comparison activities such as those of LLNL's PCMDI program; it helps us achieve a better basic understanding of how the climate system works so that models can be improved; and it gives an indication of the natural variability in the climate system underlying any anthropogenically-driven changes. The research has involved four projects which test hypotheses concerning the overall behavior of the North Pacific climate system. All are aspects of an overall theme that climate linkages are strong and direct, so that regional climate records are correlated, details of fine structure are important, and accurate and precise dating is critical for establishing correlations and even causality. An important requirement for such studies is the requirement for an accurate and precise radiocarbon calibration, to allow better correlation of radiocarbon-dated records with

  15. Holocene age of the Yuha burial: Direct radiocarbon determinations by accelerator mass spectrometry

    USGS Publications Warehouse

    Stafford, Thomas W., Jr.; Jull, A.J.T.; Zabel, T.H.; Donahue, D.J.; Duhamel, R.C.; Brendel, K.; Haynes, C.V., Jr.; Bischoff, J.L.; Payen, L.A.; Taylor, R.E.

    1984-01-01

    The view that human populations may not have arrived in the Western Hemisphere before about 12,000 radiocarbon yr BP1,2 has been challenged by claims of much greater antiquity for a small number of archaeological sites and human skeleton samples. One such site is the Homo sapiens sapiens cairn burial excavated in 1971 from the Yuha desert, Imperial County, California3-5. Radiocarbon analysis of caliche coating one of the bones of the skeleton yielded a radiocarbon age of 21,500??1,000 yr BP4, while radiocarbon and uranium series analyses of caliche coating a cairn boulder yielded ages of 22,125??400 and 19,000??3,000 yr BP, respectively5. The late Pleistocene age assignment to the Yuha burial has been challenged by comparing the cultural context of the burial with other cairn burials in the same region6, on the basis of the site's geomorphological context and from radiocarbon analyses of soil caliches. 7,8 In rebuttal, arguments in defence of the original age assignment have been presented9,10 as well as an amino acid racemization analysis on the Yuha skeleton indicating an age of 23,600??2,600 yr BP11. The tandem accelerator mass spectrometer at the University of Arizona has now been used to measure the ratio of 14C/13C in several organic and inorganic fractions of post-cranial bone from the Yuha H. sapiens sapiens skeleton. Isotope ratios from six chemical fractions all yielded radiocarbon ages for the skeleton of less than 4,000 yr BP. These results indicate that the Yuha skeleton is of Holocene age, in agreement with the cultural context of the burial, and in disagreement with the previously assigned Pleistocene age of 19,000-23,000 yr. ?? 1984 Nature Publishing Group.

  16. A compact permanent magnet cyclotrino for accelerator mass spectrometry

    SciTech Connect

    Young, A.T.; Clark, D.J.; Kunkel, W.B.; Leung, K.N.; Li, C.Y.

    1995-02-01

    The authors describe the development of a new instrument for the detection of trace amounts of rare isotopes, a Cyclotron Mass Spectrometer (CMS). A compact low energy cyclotron optimized for high mass resolution has been designed and has been fabricated. The instrument has high sensitivity and is designed to measure carbon-14 at abundances of < 10{sup {minus}12}. A novel feature of the instrument is the use of permanent magnets to energize the iron poles of the cyclotron. The instrument uses axial injection, employing a spiral inflector. The instrument has been assembled and preliminary measurements of the magnetic field show that it has a uniformity on the order of 2 parts in 10{sup 4}.

  17. TAM Receptors in Leukemia: Expression, Signaling, and Therapeutic Implications

    PubMed Central

    Brandão, Luis; Migdall-Wilson, Justine; Eisenman, Kristen; Graham, Douglas K.

    2016-01-01

    In the past 30 years there has been remarkable progress in the treatment of leukemia and lymphoma. However, current treatments are largely ineffective against relapsed leukemia and, in the case of pediatric patients, are often associated with severe long-term toxicities. Thus, there continues to be a critical need for the development of effective biologically targeted therapies. The TAM family of receptor tyrosine kinases—Tyro3, Axl, and Mer—plays an important role in normal hematopoiesis, including natural killer cell maturation, macrophage function, and platelet activation and signaling. Furthermore, TAM receptor activation leads to upregulation of pro-survival and proliferation signaling pathways, and aberrant TAM receptor expression contributes to cancer development, including myeloid and lymphoid leukemia. This review summarizes the role of TAM receptors in leukemia. We outline TAM receptor expression patterns in different forms of leukemia, describe potential mechanisms leading to their overexpression, and delineate the signaling pathways downstream of receptor activation that have been implicated in leukemogenesis. Finally, we discuss the current research focused on inhibitors against these receptors in an effort to develop new therapeutic strategies for leukemia. PMID:22150307

  18. TAM receptors regulate multiple features of microglial physiology.

    PubMed

    Fourgeaud, Lawrence; Través, Paqui G; Tufail, Yusuf; Leal-Bailey, Humberto; Lew, Erin D; Burrola, Patrick G; Callaway, Perri; Zagórska, Anna; Rothlin, Carla V; Nimmerjahn, Axel; Lemke, Greg

    2016-04-14

    Microglia are damage sensors for the central nervous system (CNS), and the phagocytes responsible for routine non-inflammatory clearance of dead brain cells. Here we show that the TAM receptor tyrosine kinases Mer and Axl regulate these microglial functions. We find that adult mice deficient in microglial Mer and Axl exhibit a marked accumulation of apoptotic cells specifically in neurogenic regions of the CNS, and that microglial phagocytosis of the apoptotic cells generated during adult neurogenesis is normally driven by both TAM receptor ligands Gas6 and protein S. Using live two-photon imaging, we demonstrate that the microglial response to brain damage is also TAM-regulated, as TAM-deficient microglia display reduced process motility and delayed convergence to sites of injury. Finally, we show that microglial expression of Axl is prominently upregulated in the inflammatory environment that develops in a mouse model of Parkinson's disease. Together, these results establish TAM receptors as both controllers of microglial physiology and potential targets for therapeutic intervention in CNS disease. PMID:27049947

  19. 76 FR 47296 - Transit Asset Management (TAM) Pilot Program Funds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... Funding Availability on November 19, 2010. The TAM program makes funds available for public transportation... public transportation agencies. FOR FURTHER INFORMATION CONTACT: Successful applicants should contact the... listed below will help improve transportation asset management at the rail and bus public...

  20. Accelerator mass spectrometry in the study of vitamin and mineral metabolism in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accelerator mass spectrometry is an isotopic ratio method that can estimate the concentrations of long-lived radioisotopes such as carbon-14 and calcium-41, making it useful in biochemical and physiological research. It is capable of measuring radio-labeled nutrients and their metabolites in attomol...

  1. DOE Project 353: TAMS Prototype and production coupling alignment units

    SciTech Connect

    Field, K.V.

    1996-02-01

    TAMS is an electronic measurement system used to determine the alignment of turbine-generator shafts at the coupling interface. The displacement transducer is a strain gage based sensor mounted in a portable probe. The measurement system was experiencing zero input drift and temperature induced drift. This project endeavored to determine the source of these problems and to revise a unit to be returned to a customer, Baltimore Gas and Electric (BGE), within a period of five weeks.

  2. Accelerator mass spectrometry-enabled studies: current status and future prospects

    PubMed Central

    Arjomand, Ali

    2010-01-01

    Accelerator mass spectrometry is a detection platform with exceptional sensitivity compared with other bioanalytical platforms. Accelerator mass spectrometry (AMS) is widely used in archeology for radiocarbon dating applications. Early exploration of the biological and pharmaceutical applications of AMS began in the early 1990s. AMS has since demonstrated unique problem-solving ability in nutrition science, toxicology and pharmacology. AMS has also enabled the development of new applications, such as Phase 0 microdosing. Recent development of AMS-enabled applications has transformed this novelty research instrument to a valuable tool within the pharmaceutical industry. Although there is now greater awareness of AMS technology, recognition and appreciation of the range of AMS-enabled applications is still lacking, including study-design strategies. This review aims to provide further insight into the wide range of AMS-enabled applications. Examples of studies conducted over the past two decades will be presented, as well as prospects for the future of AMS. PMID:20440378

  3. An improved method for statistical analysis of raw accelerator mass spectrometry data

    SciTech Connect

    Gutjahr, A.; Phillips, F.; Kubik, P.W.; Elmore, D.

    1987-01-01

    Hierarchical statistical analysis is an appropriate method for statistical treatment of raw accelerator mass spectrometry (AMS) data. Using Monte Carlo simulations we show that this method yields more accurate estimates of isotope ratios and analytical uncertainty than the generally used propagation of errors approach. The hierarchical analysis is also useful in design of experiments because it can be used to identify sources of variability. 8 refs., 2 figs.

  4. Accelerator mass spectrometry of 36Cl produced by neutrons from the Hiroshima bomb.

    PubMed

    Kato, K; Habara, M; Yoshizawa, Y; Biebel, U; Haberstock, G; Heinzl, J; Korschinek, G; Morinaga, H; Nolte, E

    1990-10-01

    Accelerator mass spectrometry was performed at the Munich tandem laboratory to determine 36Cl/Cl ratios of samples from a tombstone exposed to neutrons from the Hiroshima bomb. The ratios were determined from the surface to deeper positions. The depth profile of 36Cl/Cl can be used for estimating the neutron energy distribution and intensity near the hypocentre in Hiroshima. PMID:1976726

  5. Cytoplasmic PELP1 and ERRgamma Protect Human Mammary Epithelial Cells from Tam-Induced Cell Death

    PubMed Central

    Girard, Brian J.; Regan Anderson, Tarah M.; Welch, Siya Lem; Nicely, Julie; Seewaldt, Victoria L.; Ostrander, Julie H.

    2015-01-01

    Tamoxifen (Tam) is the only FDA-approved chemoprevention agent for pre-menopausal women at high risk for developing breast cancer. While Tam reduces a woman's risk of developing estrogen receptor positive (ER+) breast cancer, the molecular mechanisms associated with risk reduction are poorly understood. Prior studies have shown that cytoplasmic proline, glutamic acid and leucine rich protein 1 (PELP1) promotes Tam resistance in breast cancer cell lines. Herein, we tested for PELP1 localization in breast epithelial cells from women at high risk for developing breast cancer and found that PELP1 was localized to the cytoplasm in 36% of samples. In vitro, immortalized HMECs expressing a nuclear localization signal (NLS) mutant of PELP1 (PELP1-cyto) were resistant to Tam-induced death. Furthermore, PELP1-cyto signaling through estrogen-related receptor gamma (ERRγ) promoted cell survival in the presence of Tam. Overexpression of ERRγ in immortalized HMECs protected cells from Tam-induced death, while knockdown of ERRγ sensitized PELP1-cyto expressing HMECs to Tam. Moreover, Tam-induced HMEC cell death was independent of apoptosis and involved accumulation of the autophagy marker LC3-II. Expression of PELP1-cyto and ERRγ reduced Tam-induced LC3-II accumulation, and knockdown of ERRγ increased LC3-II levels in response to Tam. Additionally, PELP1-cyto expression led to the upregulation of MMP-3 and MAOB, known PELP1 and ERRγ target genes, respectively. Our data indicate that cytoplasmic PELP1 induces signaling pathways that converge on ERRγ to promote cell survival in the presence of Tam. These data suggest that PELP1 localization and/or ERRγ activation could be developed as tissue biomarkers for Tam responsiveness. PMID:25789479

  6. Cytoplasmic PELP1 and ERRgamma protect human mammary epithelial cells from Tam-induced cell death.

    PubMed

    Girard, Brian J; Regan Anderson, Tarah M; Welch, Siya Lem; Nicely, Julie; Seewaldt, Victoria L; Ostrander, Julie H

    2015-01-01

    Tamoxifen (Tam) is the only FDA-approved chemoprevention agent for pre-menopausal women at high risk for developing breast cancer. While Tam reduces a woman's risk of developing estrogen receptor positive (ER+) breast cancer, the molecular mechanisms associated with risk reduction are poorly understood. Prior studies have shown that cytoplasmic proline, glutamic acid and leucine rich protein 1 (PELP1) promotes Tam resistance in breast cancer cell lines. Herein, we tested for PELP1 localization in breast epithelial cells from women at high risk for developing breast cancer and found that PELP1 was localized to the cytoplasm in 36% of samples. In vitro, immortalized HMECs expressing a nuclear localization signal (NLS) mutant of PELP1 (PELP1-cyto) were resistant to Tam-induced death. Furthermore, PELP1-cyto signaling through estrogen-related receptor gamma (ERRγ) promoted cell survival in the presence of Tam. Overexpression of ERRγ in immortalized HMECs protected cells from Tam-induced death, while knockdown of ERRγ sensitized PELP1-cyto expressing HMECs to Tam. Moreover, Tam-induced HMEC cell death was independent of apoptosis and involved accumulation of the autophagy marker LC3-II. Expression of PELP1-cyto and ERRγ reduced Tam-induced LC3-II accumulation, and knockdown of ERRγ increased LC3-II levels in response to Tam. Additionally, PELP1-cyto expression led to the upregulation of MMP-3 and MAOB, known PELP1 and ERRγ target genes, respectively. Our data indicate that cytoplasmic PELP1 induces signaling pathways that converge on ERRγ to promote cell survival in the presence of Tam. These data suggest that PELP1 localization and/or ERRγ activation could be developed as tissue biomarkers for Tam responsiveness. PMID:25789479

  7. Activity of the transposon Tam3 in Antirrhinum and tobacco: possible role of DNA methylation.

    PubMed Central

    Martin, C; Prescott, A; Lister, C; MacKay, S

    1989-01-01

    The transposon Tam3 from Antirrhinum majus can transpose in a heterologous host (Nicotiana tabacum); thus the element is autonomous, probably encoding the specific information required for its own transposition. In transgenic tobacco Tam3 rapidly becomes methylated at its ends whilst adjacent flanking sequences remain hypomethylated. This methylation may account for our failure to detect Tam3 transposition in the progeny of transgenic tobacco. Treatment with the inhibitor of cytosine methylation, 5 aza-cytosine appeared to induce transposon related activity at a low level. In Antirrhinum methylation also appears to be associated with inactivation of Tam3 copies. Images PMID:2545443

  8. AixMICADAS, the accelerator mass spectrometer dedicated to 14C recently installed in Aix-en-Provence, France

    NASA Astrophysics Data System (ADS)

    Bard, Edouard; Tuna, Thibaut; Fagault, Yoann; Bonvalot, Lise; Wacker, Lukas; Fahrni, Simon; Synal, Hans-Arno

    2015-10-01

    A compact AMS system dedicated to measuring 14C in ultra-small samples was installed at the CEREGE in Aix-en-Provence at the end of March 2014, together with an automated graphitization system. AixMICADAS operates at around 200 kV with carbon ion stripping in helium leading to a transmission of about 47%. The hybrid ion source works with graphite targets and CO2 gas. It is coupled to a versatile gas interface system that ensures stable gas measurements from different sources: a cracker for CO2 in glass ampoules, an elemental analyzer for combusting organic matter and an automated system to handle carbonate by wet chemistry. The analyses performed during the first half-year of operation show that a precision of about 2‰ is reached on modern samples of about 1 mg of carbon. Measurements of IAEA reference materials of various 14C ages show a good agreement with consensus values. Direct measurements of geological graphites indicate a machine background equivalent to an age of 68,000 years BP. AixMICADAS is thus limited solely by the 14C contamination of samples in the field and in the laboratory. The performances of the gas ion source and its gas interface system were tested with two CO2 production units: the elemental analyzer and the automated carbonate hydrolysis unit. These tests show that samples ranging between 10 and 100 μg C can produce a 12C- ion beam of the order of 10-15 μA during time spans ranging from 3 to 30 min depending on the sample mass. Coupling the automated hydrolysis system to the gas ion source of AixMICADAS, enables us to develop a method involving sequential leaching of carbonate samples with direct 14C measurements of the leached fractions and the residual sample. The main advantage is that all of steps leaching and hydrolysis are performed in the same vial for a particular sample. A sequential leaching was applied to a young carbonate sample (ca. 6600 years BP) whose 14C age agrees with previous determination and which shows no sign of significant surface contamination. By contrast, the tests also show that the leached CO2 from very old carbonates is significantly "younger" than the residual sample. This study, though preliminary, already confirms that pretreatment by acid leaching of old carbonates is essential if we are to accurately measure the true age of such samples.

  9. Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava

    NASA Astrophysics Data System (ADS)

    Povinec, Pavel P.; Masarik, Jozef; Ješkovský, Miroslav; Kaizer, Jakub; Šivo, Alexander; Breier, Robert; Pánik, Ján; Staníček, Jaroslav; Richtáriková, Marta; Zahoran, Miroslav; Zeman, Jakub

    2015-10-01

    An Accelerator Mass Spectrometry (AMS) laboratory has been established at the Centre for Nuclear and Accelerator Technologies (CENTA) at the Comenius University in Bratislava comprising of a MC-SNICS ion source, 3 MV Pelletron tandem accelerator, and an analyzer of accelerated ions. The preparation of targets for 14C and 129I AMS measurements is described in detail. The development of AMS techniques for potassium, uranium and thorium analysis in radiopure materials required for ultra-low background underground experiments is briefly mentioned.

  10. Searching For A Suitable Gas Ion Source For 14C Accelerator Mass Spectrometry

    SciTech Connect

    Reden, Karl von; Roberts, Mark; Han, Baoxi; Schneider, Robert; Wills, John

    2007-08-10

    This paper describes the challenges facing 14C Accelerator Mass Spectrometry (AMS) in the effort to directly analyze the combusted effluent of a chromatograph (or any other continuous source of sample material). An efficient, low-memory negative gas ion source would greatly simplify the task to make this a reality. We discuss our tests of a microwave ion source charge exchange canal combination, present an improved design, and hope to generate more interest in the negative ion source community to develop a direct-extraction negative carbon gas ion source for AMS.

  11. Radionuclides in man and his environment measured by accelerator mass spectrometry

    SciTech Connect

    Hellborg, Ragnar; Erlandsson, Bengt; Kiisk, Madis; Persson, Per; Skog, Goeran; Stenstroem, Kristina; Mattsson, Soeren; Leide-Svegborn, Sigrid; Olofsson, Mikael

    1999-06-10

    Accelerator mass spectrometry (AMS) is a highly sensitive analytical method for measuring very low concentrations of both radionuclides and stable nuclides. For radioanalytical purposes, the main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg size) and shorter measuring times (less than one hour). In this report some current applications of the AMS technique at the Lund Pelletron accelerator are presented, in particular studies of {sup 14}C-labeled pharmaceuticals used in clinical nuclear medicine and biomedical research.

  12. Questions First: Introducing Critical Thinking Using the Text Analysis Matrix (TAM)

    ERIC Educational Resources Information Center

    Keller, J. Gregory

    2008-01-01

    Critical thinking skills are crucial for both academic and everyday life. This paper presents the author's Text Analysis Matrix (TAM), a model for developing skills for the critical examination of texts. The TAM guidelines involve finding and clarifying the main claims of a text, discovering and assessing arguments, uncovering the implications for…

  13. Understanding Student Teachers' Behavioural Intention to Use Technology: Technology Acceptance Model (TAM) Validation and Testing

    ERIC Educational Resources Information Center

    Wong, Kung-Teck; Osman, Rosma bt; Goh, Pauline Swee Choo; Rahmat, Mohd Khairezan

    2013-01-01

    This study sets out to validate and test the Technology Acceptance Model (TAM) in the context of Malaysian student teachers' integration of their technology in teaching and learning. To establish factorial validity, data collected from 302 respondents were tested against the TAM using confirmatory factor analysis (CFA), and structural equation…

  14. Accelerator mass spectrometry of strontium-90 for homeland security, environmental monitoring and human health

    NASA Astrophysics Data System (ADS)

    Tumey, Scott J.; Brown, Thomas A.; Hamilton, Terry E.; Hillegonds, Darren J.

    2008-05-01

    Strontium-90 is one of the most hazardous materials managed by agencies charged with protecting the public from radiation. Traditional radiometric methods have been limited by low sample throughput and slow turnaround times. Mass spectrometry offers the advantage of shorter analysis times and the ability to measure samples immediately after processing, however conventional mass spectrometric techniques are susceptible to molecular isobaric interferences that limit their overall sensitivity. In contrast, accelerator mass spectrometry is insensitive to molecular interferences and we have therefore begun developing a method for determination of 90Sr by accelerator mass spectrometry. Despite a pervasive interference from 90Zr, our initial development has yielded an instrumental background of ∼108 atoms (75 mBq) per sample. Further refinement of our system (e.g. redesign of our detector, use of alternative target materials) is expected to push the background below 106 atoms, close to the theoretical limit for AMS. Once we have refined our system and developed suitable sample preparation protocols, we will utilize our capability in applications to homeland security, environmental monitoring and human health.

  15. Optimizing a microwave gas ion source for continuous-flow accelerator mass spectrometry

    SciTech Connect

    Reden, K. F. von; Roberts, M. L.; Burton, J. R.; Beaupre, S. R.

    2012-02-15

    A 2.45 GHz microwave ion source coupled with a magnesium charge exchange canal (C x C) has been successfully adapted to a large acceptance radiocarbon accelerator mass spectrometry system at the National Ocean Sciences Accelerator Mass Spectrometry (AMS) Facility, Woods Hole Oceanographic Institution. CO{sub 2} samples from various preparation sources are injected into the source through a glass capillary at 370 {mu}l/min. Routine system parameters are about 120-140 {mu}A of negative {sup 12}C current after the C x C, leading to about 400 {sup 14}C counts per second for a modern sample and implying a system efficiency of 0.2%. While these parameters already allow us to perform high-quality AMS analyses on large samples, we are working on ways to improve the output of the ion source regarding emittance and efficiency. Modeling calculations suggest modifications in the extraction triode geometry, shape, and size of the plasma chamber could improve emittance and, hence, ion transport efficiency. Results of experimental tests of these modifications are presented.

  16. Accelerator mass spectrometry of Strontium-90 for homeland security, environmental monitoring, and human health

    SciTech Connect

    Tumey, S J; Brown, T A; Hamilton, T F; Hillegonds, D J

    2008-03-03

    Strontium-90 is one of the most hazardous materials managed by agencies charged with protecting the public from radiation. Traditional radiometric methods have been limited by low sample throughput and slow turnaround times. Mass spectrometry offers the advantage of shorter analysis times and the ability to measure samples immediately after processing, however conventional mass spectrometric techniques are susceptible to molecular isobaric interferences that limit their overall sensitivity. In contrast, accelerator mass spectrometry is insensitive to molecular interferences and we have therefore begun developing a method for determination of {sup 90}Sr by accelerator mass spectrometry. Despite a pervasive interference from {sup 90}Zr, our initial development has yielded an instrumental background of {approx} 10{sup 8} atoms (75 mBq) per sample. Further refinement of our system (e.g., redesign of our detector, use of alternative target materials) is expected to push the background below 10{sup 6} atoms, close to the theoretical limit for AMS. Once we have refined our system and developed suitable sample preparation protocols, we will utilize our capability in applications to homeland security, environmental monitoring, and human health.

  17. Agonistic TAM-163 antibody targeting tyrosine kinase receptor-B

    PubMed Central

    Vugmeyster, Yulia; Rohde, Cynthia; Perreault, Mylene; Gimeno, Ruth E.; Singh, Pratap

    2013-01-01

    TAM-163, an agonist monoclonal antibody targeting tyrosine receptor kinase-B (TrkB), is currently being investigated as a potential body weight modulatory agent in humans. To support the selection of the dose range for the first-in-human (FIH) trial of TAM-163, we conducted a mechanistic analysis of the pharmacokinetic (PK) and pharmacodynamic (PD) data (e.g., body weight gain) obtained in lean cynomolgus and obese rhesus monkeys following single doses ranging from 0.3 to 60 mg/kg. A target-mediated drug disposition (TMDD) model was used to describe the observed nonlinear PK and Emax approach was used to describe the observed dose-dependent PD effect. The TMDD model development was supported by the experimental determination of the binding affinity constant (9.4 nM) and internalization rate of the drug-target complex (2.08 h−1). These mechanistic analyses enabled linking of exposure, target (TrkB) coverage, and pharmacological activity (e.g., PD) in monkeys, and indicated that ≥ 38% target coverage (time-average) was required to achieve significant body weight gain in monkeys. Based on the scaling of the TMDD model from monkeys to humans and assuming similar relationship between the target coverage and pharmacological activity between monkey and humans, subcutaneous (SC) doses of 1 and 15 mg/kg in humans were projected to be the minimally and the fully pharmacologically active doses, respectively. Based on the minimal anticipated biological effect level (MABEL) approach for starting dose selection, the dose of 0.05 mg/kg (3 mg for a 60 kg human) SC was recommended as the starting dose for FIH trials, because at this dose level < 10% target coverage was projected at Cmax (and all other time points). This study illustrates a rational mechanistic approach for the selection of FIH dose range for a therapeutic protein with a complex model of action. PMID:23529133

  18. Measurement of Uranium Isotopes in Particles of U3O8 by Secondary Ion Mass Spectrometry-Single-Stage Accelerator Mass Spectrometry (SIMS-SSAMS).

    PubMed

    Fahey, Albert J; Groopman, Evan E; Grabowski, Kenneth S; Fazel, Kamron C

    2016-07-19

    A commercial secondary ion mass spectrometer (SIMS) was coupled to a ± 300 kV single-stage accelerator mass spectrometer (SSAMS). Positive secondary ions generated with the SIMS were injected into the SSAMS for analysis. This combined instrument was used to measure the uranium isotopic ratios in particles of three certified reference materials (CRM) of uranium, CRM U030a, CRM U500, and CRM U850. The ability to inject positive ions into the SSAMS is unique for AMS systems and allows for simple analysis of nearly the entire periodic table because most elements will readily produce positive ions. Isotopic ratios were measured on samples of a few picograms to nanograms of total U. Destruction of UH(+) ions in the stripper tube of the SSAMS reduced hydride levels by a factor of ∼3 × 10(4) giving the UH(+)/U(+) ratio at the SSAMS detector of ∼1.4 × 10(-8). These hydride ion levels would allow the measurement of (239)Pu at the 10 ppb level in the presence of U and the equivalent of ∼10(-10 236)U concentration in natural uranium. SIMS-SSAMS analysis of solid nuclear materials, such as these, with signals nearly free of molecular interferences, could have a significant future impact on the way some measurements are made for nuclear nonproliferation. PMID:27321905

  19. Accelerator mass spectrometry analysis of aroma compound absorption in plastic packaging materials

    NASA Astrophysics Data System (ADS)

    Stenström, Kristina; Erlandsson, Bengt; Hellborg, Ragnar; Wiebert, Anders; Skog, Göran; Nielsen, Tim

    1994-05-01

    Absorption of aroma compounds in plastic packaging materials may affect the taste of the packaged food and it may also change the quality of the packaging material. A method to determine the aroma compound absorption in polymers by accelerator mass spectrometry (AMS) is being developed at the Lund Pelletron AMS facility. The high sensitivity of the AMS method makes it possible to study these phenomena under realistic conditions. As a first test low density polyethylene exposed to 14C-doped ethyl acetate is examined. After converting the polymer samples with the absorbed aroma compounds to graphite, the {14C }/{13C } ratio of the samples is measured by the AMS system and the degree of aroma compound absorption is established. The results are compared with those obtained by supercritical fluid extraction coupled to gas chromatography (SFE-GC).

  20. A first attempt to measure 92Nb/93Nb ratios with Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Guozhu, He; Ming, He; Zuying, Zhou; Zhenyu, Li; Kejun, Dong; Shaoyong, Wu; Shilong, Liu; Xiongjun, Chen; Qiwen, Fan; Chaoli, Li; Xianwen, He; Heng, Li; Shan, Jiang

    2013-01-01

    An Accelerator Mass Spectrometry (AMS) method for the measurement of the long-lived radionuclide 92Nb has been established at the HI-13 Tandem Accelerator of the China Institute of Atomic Energy (CIAE). Niobium powder mixed with PbF2 by a ratio of 1:2 (in mass) was used as the cathode material. Atomic anions of Nb- were extracted from a Cs-beam sputter source. The terminal voltage of the tandem accelerator was 8.5 MV. Nb13+ ions were selected after terminal foil stripping. A multi-anode gas ionization chamber was used for the particle detection. The total suppression factor of the two major interfering isobars, 92Zr and 92Mo, was about 103. A detection limit of about 10-11 was achieved for 92Nb/93Nb ratio measurements on a blank sample.

  1. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  2. Enhancing sample preparation capabilities for accelerator mass spectrometry radiocarbon and radiocalcium studies

    SciTech Connect

    Taylor, R.E.

    1991-08-20

    With support provided by the LLNL Accelerator Mass Spectrometry Laboratory, the UCR Radiocarbon Laboratory continued its studies involving sample pretreatment and target preparation for both AMS radiocarbon ({sup 14}C) and radiocalcium ({sup 41}Ca) involving applications to archaeologically -- and paleoanthropologically- related samples. With regard to AMS {sup 14}C-related studies, we have extended the development of a series of procedures which have, as their initial goal, the capability to combust several hundred microgram amounts of a chemically-pretreated organic sample and convert the resultant CO{sub 2} to graphitic carbon which will consistently yield relatively high {sup 13}C{sup {minus}} ion currents and blanks which will yield, on a consistent basis, {sup 14}C count rates at or below 0.20% modern, giving an 2 sigma age limit of >50,000 yr BP.

  3. Accelerator mass spectrometry for human biochemistry: The practice and the potential

    NASA Astrophysics Data System (ADS)

    Vogel, John S.

    2000-10-01

    Isotopic labels are a primary tool for tracing chemicals in natural systems. Accelerator mass spectrometry (AMS) quantifies long-lived isotopes that can be used in safe, sensitive and precise biochemical research with human participants. AMS could reduce the use of animals in biochemical research and remove the uncertain extrapolations from animal models to humans. Animal data seldom represent the sort of variability expected in a human population. People, knowingly or not, routinely expose themselves to radiation risks much greater than AMS-based biochemical research that traces μg/kg doses of chemicals containing tens of nCi of 14C for as long as 7 months. AMS is applied to research in toxicology, pharmacology and nutrition.

  4. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom.

    PubMed

    Barker, J; Garner, R C

    1999-01-01

    Accelerator mass spectrometry (AMS) is a nuclear physics technique developed about twenty years ago, that uses the high energy (several MeV) of a tandem Van de Graaff accelerator to measure very small quantities of rare and long-lived isotopes. Elements that are of interest in biomedicine and environmental sciences can be measured, often to parts per quadrillion sensitivity, i.e. zeptomole to attomole levels (10(-21)-10(-18) mole) from milligram samples. This is several orders of magnitude lower than that achievable by conventional decay counting techniques, such as liquid scintillation counting (LSC). AMS was first applied to geochemical, climatological and archaeological areas, such as for radiocarbon dating (Shroud of Turin), but more recently this technology has been used for bioanalytical applications. In this sphere, most work has been conducted using aluminium, calcium and carbon isotopes. The latter is of special interest in drug metabolism studies, where a Phase 1 adsorption, distribution, metabolism and excretion (ADME) study can be conducted using only 10 nanoCurie (37 Bq or ca. 0.9 microSv) amounts or less of 14C-labelled drugs. In the UK, these amounts of radioactivity are below those necessary to request specific regulatory approval from the Department of Health's Administration of Radioactive Substances Advisory Committee (ARSAC), thus saving on valuable development time and resources. In addition, the disposal of these amounts is much less an environmental issue than that associated with microCurie quantities, which are currently used. Also, AMS should bring an opportunity to conduct "first into man" studies without the need for widespread use of animals. Centre for Biomedical Accelerator Mass Spectrometry (CBAMS) Ltd. is the first fully commercial company in the world to offer analytical services using AMS. With its high throughput and relatively low costs per sample analysis, AMS should be of great benefit to the pharmaceutical and biotechnology

  5. Interlaboratory study of the ion source memory effect in 36Cl accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Buchriegler, Josef; Golser, Robin; Keddadouche, Karim; Martschini, Martin; Merchel, Silke; Rugel, Georg; Steier, Peter

    2014-06-01

    Understanding and minimization of contaminations in the ion source due to cross-contamination and long-term memory effect is one of the key issues for accurate accelerator mass spectrometry (AMS) measurements of volatile elements. The focus of this work is on the investigation of the long-term memory effect for the volatile element chlorine, and the minimization of this effect in the ion source of the Dresden accelerator mass spectrometry facility (DREAMS). For this purpose, one of the two original HVE ion sources at the DREAMS facility was modified, allowing the use of larger sample holders having individual target apertures. Additionally, a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, an interlaboratory comparison had been initiated. The long-term memory effect of the four Cs sputter ion sources at DREAMS (two sources: original and modified), ASTER (Accélérateur pour les Sciences de la Terre, Environnement, Risques) and VERA (Vienna Environmental Research Accelerator) had been investigated by measuring samples of natural 35Cl/37Cl-ratio and samples highly-enriched in 35Cl (35Cl/37Cl ∼ 999). Besides investigating and comparing the individual levels of long-term memory, recovery time constants could be calculated. The tests show that all four sources suffer from long-term memory, but the modified DREAMS ion source showed the lowest level of contamination. The recovery times of the four ion sources were widely spread between 61 and 1390 s, where the modified DREAMS ion source with values between 156 and 262 s showed the fastest recovery in 80% of the measurements.

  6. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    SciTech Connect

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg

  7. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  8. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  9. Subcellular compartmentalization of Cd and Zn in two bivalves. II. Significance of trophically available metal (TAM)

    USGS Publications Warehouse

    Wallace, W.G.; Luoma, S.N.

    2003-01-01

    This paper examines how the subcellular partitioning of Cd and Zn in the bivalves Macoma balthica and Potamocorbula amurensis may affect the trophic transfer of metal to predators. Results show that the partitioning of metals to organelles, 'enzymes' and metallothioneins (MT) comprise a subcellular compartment containing trophically available metal (TAM; i.e. metal trophically available to predators), and that because this partitioning varies with species, animal size and metal, TAM is similarly influenced. Clams from San Francisco Bay, California, were exposed for 14 d to 3.5 ??g 1-1 Cd and 20.5 ??g 1-1 Zn, including 109Cd and 65Zn as radiotracers, and were used in feeding experiments with grass shrimp Palaemon macrodatylus, or used to investigate the subcellular partitioning of metal. Grass shrimp fed Cd-contaminated P. amurensis absorbed ???60% of ingested Cd, which was in accordance with the partitioning of Cd to the bivalve's TAM compartment (i.e. Cd associated with organelles, 'enzymes' and MT); a similar relationship was found in previous studies with grass shrimp fed Cd-contaminated oligochaetes. Thus, TAM may be used as a tool to predict the trophic transfer of at least Cd. Subcellular fractionation revealed that ???34% of both the Cd and Zn accumulated by M. balthica was associated with TAM, while partitioning to TAM in P. amurensis was metal-dependent (???60% for TAM-Cd%, ???73% for TAM-Zn%). The greater TAM-Cd% of P. amurensis than M. balthica is due to preferential binding of Cd to MT and 'enzymes', while enhanced TAM-Zn% of P. amurensis results from a greater binding of Zn to organelles. TAM for most species-metal combinations was size-dependent, decreasing with increased clam size. Based on field data, it is estimated that of the 2 bivalves, P. amurensis poses the greater threat of Cd exposure to predators because of higher tissue concentrations and greater partitioning as TAM; exposure of Zn to predators would be similar between these species.

  10. Design and Characterization of Mechanism-Based Inhibitors for the Tyrosine Aminomutase SgTAM

    SciTech Connect

    Montavon,T.; Christianson, C.; Festin, G.; Shen, B.; Bruner, S.

    2008-01-01

    The synthesis and evaluation of two classes of inhibitors for SgTAM, a 4-methylideneimidazole-5-one (MIO) containing tyrosine aminomutase, are described. A mechanism-based strategy was used to design analogs that mimic the substrate or product of the reaction and form covalent interactions with the enzyme through the MIO prosthetic group. The analogs were characterized by measuring inhibition constants and X-ray crystallographic structural analysis of the co-complexes bound to the aminomutase, SgTAM.

  11. Thermal Hazard Evaluation of Cumene Hydroperoxide-Metal Ion Mixture Using DSC, TAM III, and GC/MS.

    PubMed

    You, Mei-Li

    2016-01-01

    Cumene hydroperoxide (CHP) is widely used in chemical processes, mainly as an initiator for the polymerization of acrylonitrile-butadiene-styrene. It is a typical organic peroxide and an explosive substance. It is susceptible to thermal decomposition and is readily affected by contamination; moreover, it has high thermal sensitivity. The reactor tank, transit storage vessel, and pipeline used for manufacturing and transporting this substance are made of metal. Metal containers used in chemical processes can be damaged through aging, wear, erosion, and corrosion; furthermore, the containers might release metal ions. In a metal pipeline, CHP may cause incompatibility reactions because of catalyzed exothermic reactions. This paper discusses and elucidates the potential thermal hazard of a mixture of CHP and an incompatible material's metal ions. Differential scanning calorimetry (DSC) and thermal activity monitor III (TAM III) were employed to preliminarily explore and narrate the thermal hazard at the constant temperature environment. The substance was diluted and analyzed by using a gas chromatography spectrometer (GC) and gas chromatography/mass spectrometer (GC/MS) to determine the effect of thermal cracking and metal ions of CHP. The thermokinetic parameter values obtained from the experiments are discussed; the results can be used for designing an inherently safer process. As a result, the paper finds that the most hazards are in the reaction of CHP with Fe(2+). When the metal release is exothermic in advance, the system temperature increases, even leading to uncontrollable levels, and the process may slip out of control. PMID:27136518

  12. Accelerator Mass Spectrometry Measurements of Plutonium in Sediment and Seawater from the Marshall Islands

    SciTech Connect

    Leisvik, M; Hamilton, T

    2001-08-01

    During the summer 2000, I was given the opportunity to work for about three months as a technical trainee at Lawrence Livermore National Laboratory, or LLNL as I will refer to it hereafter. University of California runs this Department of Energy laboratory, which is located 70 km east of San Francisco, in the small city of Livermore. This master thesis in Radioecology is based on the work I did here. LLNL, as a second U.S.-facility for development of nuclear weapons, was built in Livermore in the beginning of the 1950's (Los Alamos in New Mexico was the other one). It has since then also become a 'science center' for a number of areas like magnetic and laser fusion energy, non-nuclear energy, biomedicine, and environmental science. The Laboratory's mission has changed over the years to meet new national needs. The following two statements were found on the homepage of LLNL (http://www.llnl.gov), at 2001-03-05, where also information about the laboratory and the scientific projects that takes place there, can be found. 'Our primary mission is to ensure that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide'. 'Our goal is to apply the best science and technology to enhance the security and well-being of the nation and to make the world a safer place.' The Marshall Islands Dose Assessment and Radioecology group at the Health and Ecological Assessments division employed me, and I also worked to some extent with the Centre for Accelerator Mass Spectrometry (CAMS) group. The work I did at LLNL can be divided into two parts. In the first part Plutonium (Pu) measurements in sediments from the Rongelap atoll in Marshall Islands, using Accelerator Mass Spectrometry (AMS) were done. The method for measuring these kinds of samples is well understood at LLNL since soil samples have been measured with AMS for Pu in the past. Therefore it was the results that were of main interest and not the technique

  13. Measurement of Actinides in Environmental Samples at Micro-Becquerel Levels by Accelerator Mass Spectrometry

    SciTech Connect

    Brown, T A; Knezovich, J P; Marchetti, A A; Hamilton, T F

    2002-09-03

    The need for ultra-sensitive actinide measurements continues to expand in the fields of environmental stewardship, nuclear isotope forensics, radiobioassay and environmental research. We have developed a heavy isotope accelerator mass spectrometry (AMS) system at Lawrence Livermore National Laboratory's Center for Accelerator Mass Spectrometry (CAMS). The system was designed particularly for the measurement of actinide concentrations and isotopic ratios. A fast isotope switching capability has been incorporated in the system, allowing flexibility in isotope selection and for the quasi-continuous normalization to a reference isotope spike. Initially, our utilization of the system has concentrated on the measurement of Pu isotopes. Under current operating conditions, background levels equivalent to <10{sup 6} atoms are observed during routine {sup 239}Pu and {sup 240}Pu measurements. Measurements of samples containing 10{sup 13} {sup 238}U atoms demonstrate that the system provides a {sup 238}U rejection factor of >10{sup 7}. Recently, we have utilized the high dynamic range of the AMS system in measuring samples whose Pu contents ranged from <10{sup 6} (background) to >10{sup 11} Pu atoms. Measurements of known materials, combined with results from an externally organized intercomparison program, indicate that our {sup 239}Pu measurements are accurate and precise down to the {mu}Bq level ({approx}10{sup 6} atoms). The development of the heavy isotope system was undertaken with particular interest in the measurement of environmental samples, including soils, sediments, waters, air filters, tissue samples, and human urine. The high rejection of interferences, including molecular interferences, and low susceptibility to matrix components, provided by the AMS technique are of particular relevance for such complex samples. These two factors significantly reduce demands on sample preparation chemistry for Pu analyses, allowing relatively simple, cost-effective procedures

  14. Modeling the acceptance of clinical information systems among hospital medical staff: an extended TAM model.

    PubMed

    Melas, Christos D; Zampetakis, Leonidas A; Dimopoulou, Anastasia; Moustakis, Vassilis

    2011-08-01

    Recent empirical research has utilized the Technology Acceptance Model (TAM) to advance the understanding of doctors' and nurses' technology acceptance in the workplace. However, the majority of the reported studies are either qualitative in nature or use small convenience samples of medical staff. Additionally, in very few studies moderators are either used or assessed despite their importance in TAM based research. The present study focuses on the application of TAM in order to explain the intention to use clinical information systems, in a random sample of 604 medical staff (534 physicians) working in 14 hospitals in Greece. We introduce physicians' specialty as a moderator in TAM and test medical staff's information and communication technology (ICT) knowledge and ICT feature demands, as external variables. The results show that TAM predicts a substantial proportion of the intention to use clinical information systems. Findings make a contribution to the literature by replicating, explaining and advancing the TAM, whereas theory is benefited by the addition of external variables and medical specialty as a moderator. Recommendations for further research are discussed. PMID:21292029

  15. Accelerator mass spectrometry with fully stripped 26Al, 63Cl, 41Ca and (su59)Ni ions

    NASA Astrophysics Data System (ADS)

    Faestermann, H.; Kato, K.; Korschinek, G.; Krauthan, P.; Nolte, E.; Rühm, W.; Zerle, L.

    1990-04-01

    The detection system of accelerator mass spectrometry (AMS) with completely stripped ions of 26Al, 36Cl, 41Ca and 59Ni at the Munich accelerator laboratory and measurements with these ions are presented. Detection limits are given. The presented applications are: dating of groundwater of the Milk River aquifer and deduction of the neutron fluence and spectrum of the Hiroshima A-bomb.

  16. Determination of the stellar (n,γ) cross section of Ca40 with accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dillmann, I.; Domingo-Pardo, C.; Heil, M.; Käppeler, F.; Wallner, A.; Forstner, O.; Golser, R.; Kutschera, W.; Priller, A.; Steier, P.; Mengoni, A.; Gallino, R.; Paul, M.; Vockenhuber, C.

    2009-06-01

    The stellar (n,γ) cross section of Ca40 at kT=25 keV has been measured with a combination of the activation technique and accelerator mass spectrometry (AMS). This combination is required when direct off-line counting of the produced activity is compromised by the long half-life and/or missing γ-ray transitions. The neutron activations were performed at the Karlsruhe Van de Graaff accelerator using the quasistellar neutron spectrum of kT=25 keV produced by the Li7(p,n)Be7 reaction. The subsequent AMS measurements were carried out at the Vienna Environmental Research Accelerator (VERA) with a 3 MV tandem accelerator. The doubly magic Ca40 is a bottle-neck isotope in incomplete silicon burning, and its neutron capture cross section determines the amount of leakage, thus impacting on the eventual production of iron group elements. Because of its high abundance, Ca40 can also play a secondary role as “neutron poison” for the s-process. Previous determinations of this value at stellar energies were based on time-of-flight measurements. Our method uses an independent approach, and yields for the Maxwellian-averaged cross section at kT=30 keV a value of <σ>30keV=5.73±0.34 mb.

  17. DNA isolation and sample preparation for quantification of adduct levels by accelerator mass spectrometry.

    PubMed

    Dingley, Karen H; Ubick, Esther A; Vogel, John S; Ognibene, Ted J; Malfatti, Michael A; Kulp, Kristen; Haack, Kurt W

    2014-01-01

    Accelerator mass spectrometry (AMS) is a highly sensitive technique used for the quantification of adducts following exposure to carbon-14- or tritium-labeled chemicals, with detection limits in the range of one adduct per 10(11)-10(12) nucleotides. The protocol described in this chapter provides an optimal method for isolating and preparing DNA samples to measure isotope-labeled DNA adducts by AMS. When preparing samples, special precautions must be taken to avoid cross-contamination of isotope among samples and produce a sample that is compatible with AMS. The DNA isolation method described is based upon digestion of tissue with proteinase K, followed by extraction of DNA using Qiagen isolation columns. The extracted DNA is precipitated with isopropanol, washed repeatedly with 70 % ethanol to remove salt, and then dissolved in water. DNA samples are then converted to graphite or titanium hydride and the isotope content measured by AMS to quantify adduct levels. This method has been used to reliably generate good yields of uncontaminated, pure DNA from animal and human tissues for analysis of adduct levels. PMID:24623226

  18. Progress of laser ablation for accelerator mass spectroscopy at ATLAS utilizing an ECRIS

    NASA Astrophysics Data System (ADS)

    Scott, R.; Palchan, T.; Pardo, R.; Vondrasek, R.; Kondev, F.; Nusair, O.; Peters, C.; Paul, M.; Bauder, W.; Collon, P.

    2014-02-01

    Beams of ions from the laser ablation method of solid materials into an electron cyclotron resonance ion source (ECRIS) plasma have been used for the first time in experiments at ATLAS. Initial accelerator mass spectroscopy experiments using laser ablation for actinides and samarium have been performed. Initial results of coupling the laser system to the ECR source have guided us in making a number of changes to the original design. The point of laser impact has been moved off axis from the center of the ECR injection side. Motor control of the laser positioning mirror has been replaced with a faster and more reliable piezo-electric system, and different raster scan patterns have been tested. The use of the laser system in conjunction with a multi-sample changer has been implemented. Two major problems that are being confronted at this time are beam stability and total beam intensity. The status of the development will be presented and ideas for further improvements will be discussed.

  19. Fluoride sample matrices and reaction cells — new capabilities for isotope measurements in accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kieser, W. E.; Zhao, X.-L.; Eliades, J.; Litherland, A. E.

    2012-04-01

    Two new techniques, which extend the range of elements that can be analyzed by Accelerator Mass Spectrometry (AMS), and which increase its isobar selection capabilities, have been recently introduced. The first consists of embedding the sample material in a fluoride matrix (e.g. PbF2), which facilitates the production, in the ion source, of fluoride molecular anions that include the isotope of interest. In addition to forming anions with large electron binding energies and thereby increasing the range of analysable elements, in many cases by selection of a molecular form with a particular number of fluorine atoms, some isobar discrimination can be obtained. The second technique, for the significant reduction of atomic isobar interferences, is used following mass selection of the rare isotope. It consists of the deceleration, cooling and reaction of the rare mass beam with a gas, selected so that unwanted isobars are greatly attenuated in comparison with the isotope of interest. Proof of principle measurements for the analysis of 36C1 and 41Ca have provided encouraging results and work is proceeding on the integration of these techniques in a new AMS system planned for installation in late 2012 at the University of Ottawa.

  20. The UNAM sets up the first Laboratory on Accelerator Mass Spectrometry (LEMA) in Mexico

    NASA Astrophysics Data System (ADS)

    Solís, C.; Chávez, E.; Ortíz, M. E.; Andrade, E.

    2013-05-01

    A new Accelerator Mass Spectrometry system is being installed at the Institute of Physics of the National Autonomous University of Mexico (IFUNAM) with support of CONACYT and UNAM. The AMS system is based on a tandetron accelerator of 1MV purchased from the High Voltage Engineering Europe B.V., Amersfoort, the Netherlands. Mass spectrometry experiments will be conducted at the AMS laboratory (LEMA), for analysis of 14 C and other isotopes as the 10Be, 26Al, 129I and Pu. This is a highly sensitive technique that allows to measure concentrations up to one part in 1015 from different nuclei. LEMA is the first laboratory in Mexico of its kind and the second in Latin America, after Brazil. The first research line of LEMA is to apply AMS for dating with 14C. Once the dating methodologies will be implemented, we will incorporate the analysis of other radioisotopes in research projects in different areas such as the Geophysical and Environmental sciences. In this presentation, the AMS system as well as details on the sample preparation will be described. Also, results from installation and acceptance tests will be presented.

  1. Low-level measurement of 63Ni by means of accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Rugel, G.; Arazi, A.; Carroll, K. L.; Faestermann, T.; Knie, K.; Korschinek, G.; Marchetti, A. A.; Martinelli, R. E.; McAninch, J. E.; Rühm, W.; Straume, T.; Wallner, A.; Wallner, C.

    2004-08-01

    The radionuclide 63Ni (T1/2=100.1 a) has been proposed as a fluence monitor for fast neutrons in copper samples from Hiroshima. Accelerator mass spectrometry (AMS) represents a powerful tool for the detection of this radionuclide, provided the isobaric interference of 63Cu can be sufficiently suppressed. In this paper, we report the first results from a study on the 63Cu background observed in different sets of control samples, and in a 127-year-old environmental copper sample which was directly exposed to cosmic radiation for about 80 years. The 63Ni/Ni ratios measured in the blank samples range up to about 2 × 10-13 corresponding to concentrations of a few times 10463Ni atoms/g Cu. These results provide information on the overall background of the applied methodology and, thus, on the possible sensitivity of 63Ni measurements in copper samples by means of AMS. In the environmental sample, a 63Ni concentration of (1.0 ± 0.3) × 10563Ni atoms/g Cu was observed which is not significantly different from the results obtained on commercially available copper material. A similar concentration would be expected in a copper sample located 1300 m from the hypocenter of the Hiroshima atomic bomb.

  2. Sample distillation/graphitization system for carbon pool analysis by accelerator mass spectrometry (AMS)

    NASA Astrophysics Data System (ADS)

    Pohlman, J. W.; Knies, D. L.; Grabowski, K. S.; DeTurck, T. M.; Treacy, D. J.; Coffin, R. B.

    2000-10-01

    A facility at the Naval Research Laboratory (NRL), Washington, DC, has been developed to extract, trap, cryogenically distill and graphitize carbon from a suite of organic and inorganic carbon pools for analysis by accelerator mass spectrometry (AMS). The system was developed to investigate carbon pools associated with the formation and stability of methane hydrates. However, since the carbon compounds found in hydrate fields are ubiquitous in aquatic ecosystems, this apparatus is applicable to a number of oceanographic and environmental sample types. Targeted pools are dissolved methane, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), solid organic matrices (e.g., seston, tissue and sediments), biomarkers and short chained (C 1-C 5) hydrocarbons from methane hydrates. In most instances, the extraction, distillation and graphitization events are continuous within the system, thus, minimizing the possibility of fractionation or contamination during sample processing. A variety of methods are employed to extract carbon compounds and convert them to CO 2 for graphitization. Dissolved methane and DIC from the same sample are sparged and cryogenically separated before the methane is oxidized in a high temperature oxygen stream. DOC is oxidized to CO 2 by 1200 W ultraviolet photo-oxidation lamp, and solids oxidized in sealed, evacuated tubes. Hydrocarbons liberated from the disassociation of gas hydrates are cryogenically separated with a cryogenic temperature control unit, and biomarkers separated and concentrated by preparative capillary gas chromatography (PCGC). With this system, up to 20 samples, standards or blanks can be processed per day.

  3. Tamoxifen DNA damage detected in human endometrium using accelerator mass spectrometry.

    PubMed

    Martin, Elizabeth A; Brown, Karen; Gaskell, Margaret; Al-Azzawi, Farook; Garner, R Colin; Boocock, David J; Mattock, Elizabeth; Pring, David W; Dingley, Karen; Turteltaub, Kenneth W; Smith, Lewis L; White, Ian N H

    2003-12-01

    This study was aimed to establish whether tamoxifen binds irreversibly to uterine DNA when given to women. Patients were given a single therapeutic dose of [(14)C]tamoxifen citrate orally (20 mg, 0.37 or 1.85 MBq) approximately 18 h prior to hysterectomy or breast surgery. Nonmalignant uterine tissue was separated into myometrium and endometrium. DNA and protein were isolated and bound radiolabel determined by the sensitive technique of accelerator mass spectrometry. Levels of irreversible DNA binding of tamoxifen in the endometrium of treated patients were 237 +/- 77 adducts/10(12) nucleotides (mean +/- SE, n = 10). In myometrial tissues, a similar extent of DNA binding was detected (492 +/- 112 adducts/10(12) nucleotides). Binding of tamoxifen to endometrial and myometrial proteins was 10 +/- 3 and 20 +/- 4 fmol/mg, respectively. In breast tissue, sufficient DNA could not be extracted but protein binding was an order of magnitude higher than that seen with endometrial proteins (358 +/- 81 fmol/mg). These results demonstrate that after oral administration, tamoxifen forms adducts in human uterine DNA but at low numbers relative to those previously reported in women after long-term tamoxifen treatment where levels, when detected, ranged from 15000 to 130000 adducts/10(12) nucleotides. Our findings support the hypothesis that the low level of DNA adducts in human uterus is unlikely to be involved with endometrial cancer development. PMID:14679010

  4. MANTRA: Measuring Neutron Capture Cross Sections in Actinides with Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bauder, W.; Pardo, R. C.; Collon, P.; Palchan, T.; Scott, R.; Vondrasek, R.; Nusair, O.; Nair, C.; Paul, M.; Kondev, F.; Chen, J.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2013-10-01

    With rising global energy needs, there is substantial interest in nuclear energy research. To explore possibilities for advanced fuel cycles, better neutron cross section data are needed for the minor actinides. The MANTRA (Measurement of Actinide Neutron TRAsmutation) project will improve these data by measuring integral (n, γ) cross sections. The cross sections will be extracted by measuring isotopic ratios in pure actinide samples, irradiated in the Advanced Test Reactor at Idaho National Lab, using Accelerator Mass Spectrometry(AMS) at the Argonne Tandem Linac Accelerator System (ATLAS). MANTRA presents a unique AMS challenge because of the goal to measure multiple isotopic ratios on a large number of samples. To meet these challenges, we have modified the AMS setup at ATLAS to include a laser ablation system for solid material injection into our ECR ion source. I will present work on the laser ablation system and modified source geometry, as well as preliminary measurements of unirradiated actinide samples at ATLAS. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  5. Kinetics of Beta-14[14C] Carotene in a Human Subject Using Accelerator Mass Spectrometry

    SciTech Connect

    Dueker, S.R.; Lin, Y.; Follett, J.R.; Clifford, A.J.; Buchholz, B.A.

    2000-01-31

    {beta}-Carotene is a tetraterpenoid distributed widely throughout the plant kingdom. It is a member of a group of pigments referred to as carotenoids that have the distinction of serving as metabolic precursors to vitamin A in humans and many animals [1,2]. We used Accelerator Mass Spectrometry (AMS) [3] to determine the metabolic behavior of a physiologic oral dose of {beta}-[{sup 14}C]carotene (200 nanoCuries; 0.57 {micro}mol) in a healthy human subject. Serial blood specimens were collected for 210-d and complete urine and feces were collected for 17 and 10-d, respectively. Balance data indicated that the dose was 42% bioavailable. The absorbed {beta}-carotene was lost slowly via urine in accord with the slow body turnover of {beta}-carotene and vitamin A [4]. HPLC fractionation of plasma taken at early time points (0-24-h) showed the label was distributed between {beta}-carotene and retinyl esters (vitamin A) derived from intestinal metabolism.

  6. Ultrasensitive detection method for primordial nuclides in copper with Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Famulok, N.; Faestermann, T.; Fimiani, L.; Gómez-Guzmán, J. M.; Hain, K.; Korschinek, G.; Ludwig, P.; Schönert, S.

    2015-10-01

    The sensitivity of rare event physics experiments like neutrino or direct dark matter detection crucially depends on the background level. A significant background contribution originates from the primordial actinides thorium (Th) and uranium (U) and the progenies of their decay chains. The applicability of ultra-sensitive Accelerator Mass Spectrometry (AMS) for the direct detection of Th and U impurities in three copper samples is evaluated. Although AMS has been proven to reach outstanding sensitivities for long-lived isotopes, this technique has only very rarely been used to detect ultra low concentrations of primordial actinides. Here it is utilized for the first time to detect primordial Th and U in ultra pure copper serving as shielding material in low level detectors. The lowest concentrations achieved were (1.5 ± 0.6) ·10-11 g/g for Th and (8 ± 4) ·10-14 g/g for U which corresponds to (59 ± 24) and (1.0 ± 0.5) μBq/kg, respectively.

  7. Ultrasensitive detection of inhaled organic aerosol particles by accelerator mass spectrometry.

    PubMed

    Parkhomchuk, E V; Gulevich, D G; Taratayko, A I; Baklanov, A M; Selivanova, A V; Trubitsyna, T A; Voronova, I V; Kalinkin, P N; Okunev, A G; Rastigeev, S A; Reznikov, V A; Semeykina, V S; Sashkina, K A; Parkhomchuk, V V

    2016-09-01

    Accelerator mass spectrometry (AMS) was shown to be applicable for studying the penetration of organic aerosols, inhaled by laboratory mice at ultra-low concentration ca. 10(3) cm(-3). We synthesized polystyrene (PS) beads, composed of radiocarbon-labeled styrene, for testing them as model organic aerosols. As a source of radiocarbon we used methyl alcohol with radioactivity. Radiolabeled polystyrene beads were obtained by emulsifier-free emulsion polymerization of synthesized (14)C-styrene initiated by K2S2O8 in aqueous media. Aerosol particles were produced by pneumatic spraying of diluted (14)C-PS latex. Mice inhaled (14)C-PS aerosol consisting of the mix of 10(3) 225-nm particles per 1 cm(3) and 5·10(3) 25-nm particles per 1 cm(3) for 30 min every day during five days. Several millions of 225-nm particles deposited in the lungs and slowly excreted from them during two weeks of postexposure. Penetration of particles matter was also observed for liver, kidneys and brain, but not for a heart. PMID:27281540

  8. Yeast dynamic metabolic flux measurement in nutrient-rich media by HPLC and accelerator mass spectrometry.

    PubMed

    Stewart, Benjamin J; Navid, Ali; Turteltaub, Kenneth W; Bench, Graham

    2010-12-01

    Metabolic flux, the flow of metabolites through networks of enzymes, represents the dynamic productive output of cells. Improved understanding of intracellular metabolic fluxes will enable targeted manipulation of metabolic pathways of medical and industrial importance to a greater degree than is currently possible. Flux balance analysis (FBA) is a constraint-based approach to modeling metabolic fluxes, but its utility is limited by a lack of experimental measurements. Incorporation of experimentally measured fluxes as system constraints will significantly improve the overall accuracy of FBA. We applied a novel, two-tiered approach in the yeast Saccharomyces cerevisiae to measure nutrient consumption rates (extracellular fluxes) and a targeted intracellular flux using a (14)C-labeled precursor with HPLC separation and flux quantitation by accelerator mass spectrometry (AMS). The use of AMS to trace the intracellular fate of (14)C-glutamine allowed the calculation of intracellular metabolic flux through this pathway, with glutathione as the metabolic end point. Measured flux values provided global constraints for the yeast FBA model which reduced model uncertainty by more than 20%, proving the importance of additional constraints in improving the accuracy of model predictions and demonstrating the use of AMS to measure intracellular metabolic fluxes. Our results highlight the need to use intracellular fluxes to constrain the models. We show that inclusion of just one such measurement alone can reduce the average variability of model predicted fluxes by 10%. PMID:21062031

  9. Use of accelerator mass spectrometry in the dosimetry of Hiroshima neutrons

    NASA Astrophysics Data System (ADS)

    Straume, T.; Finkel, R. C.; Eddy, D.; Kubik, P. W.; Gove, H. E.; Sharma, P.; Fujita, S.; Hoshi, M.

    1990-12-01

    A substantial discrepancy exists between the measured values for thermal neutron activation and the values calculated using the new A-bomb dosimetry system, DS86. As part of a joint US-Japan effort aimed at resolving this discrepancy, we have shown that 36Cl/Cl in mineral samples (i.e., concrete, granite, tiles) can be measured with sufficient precision using accelerator mass spectrometry (AMS) to quantify the very low thermal neutron activation levels at distances between 1000 and 2000 m from the hypocenter in Hiroshima. Our initial measurement results show that activation of Cl by the bomb neutrons disagree with calculations based on the new DS86 dosimetry system (measurements of 36Cl at 1450 m from the hypocenter indicate thermal neutron activation that is ˜15 times higher than obtained from DS86 calculations; discrepancies are even larger at 1606 m). This is a preliminary report of work in progress. The principal objectives of this work are to reconstruct the thermal neutron fluence as a function of distance from the hypocenters in both Hiroshima and Nagasaki using 36Cl/Cl and obtain information about fast neutron fluence.

  10. Gas chromatograph-combustion system for 14C-accelerator mass spectrometry.

    PubMed

    McIntyre, Cameron P; Sylva, Sean P; Roberts, Mark L

    2009-08-01

    A gas chromatograph-combustion (GC-C) system is described for the introduction of samples as CO(2) gas into a (14)C accelerator mass spectrometry (AMS) system with a microwave-plasma gas ion source. Samples are injected into a gas chromatograph fitted with a megabore capillary column that uses H(2) as the carrier gas. The gas stream from the outlet of the column is mixed with O(2) and Ar gas and passed through a combustion furnace where the H(2) carrier gas and separated components are quantitatively oxidized to CO(2) and H(2)O. Water vapor is removed using a heated nafion dryer. The Ar carries the CO(2) to the ion source. The system is able to separate and oxidize up to 10 microg of compound and transfer the products from 7.6 mL/min of H(2) carrier gas into 0.2-1.0 mL/min of Ar carrier gas. Chromatographic performance and isotopic fidelity satisfy the requirements of the (14)C-AMS system for natural abundance measurements. The system is a significant technical advance for GC-AMS and may be capable of providing an increase in sensitivity for other analytical systems such as an isotope-ratio-monitoring GC/MS. PMID:19572555

  11. Correlation spectrometer

    DOEpatents

    Sinclair, Michael B.; Pfeifer, Kent B.; Flemming, Jeb H.; Jones, Gary D.; Tigges, Chris P.

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  12. Multidimensional spectrometer

    SciTech Connect

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  13. Americium and plutonium separation by extraction chromatography for determination by accelerator mass spectrometry.

    PubMed

    Kazi, Zakir H; Cornett, Jack R; Zhao, Xaiolei; Kieser, Liam

    2014-06-01

    A simple method was developed to separate Pu and Am using single column extraction chromatography employing N,N,N',N'-tetra-n-octyldiglycolamide (DGA) resin. Isotope dilution measurements of Am and Pu were performed using accelerator mass spectrometry (AMS) and alpha spectrometry. For maximum adsorption Pu was stabilized in the tetra valent oxidation state in 8M HNO3 with 0.05 M NaNO2 before loading the sample onto the resin. Am(III) was adsorbed also onto the resin from concentrated HNO3, and desorbed with 0.1 M HCl while keeping the Pu adsorbed. The on-column reduction of Pu(IV) to Pu(III) with 0.02 M TiCl3 facilitated the complete desorption of Pu. Interferences (e.g. Ca(2+), Fe(3+)) were washed off from the resin bed with excess HNO3. Using NdF3, micro-precipitates of the separated isotopes were prepared for analysis by both AMS and alpha spectrometry. The recovery was 97.7±5.3% and 95.5±4.6% for (241)Am and (242)Pu respectively in reagents without a matrix. The recoveries of the same isotopes were 99.1±6.0 and 96.8±5.3% respectively in garden soil. The robustness of the method was validated using certified reference materials (IAEA 384 and IAEA 385). The measurements agree with the certified values over a range of about 1-100 Bq kg(-1). The single column separation of Pu and Am saves reagents, separation time, and cost. PMID:24856406

  14. Measurement of Beryllium in Biological Samples by Accelerator Mass Spectrometry: Applications for Studying Chronic Beryllium Disease

    SciTech Connect

    Chiarappa-Zucca, M L; Finkel, R C; Martinelli, R E; McAninch, J E; Nelson, D O; Turtletaub, K W

    2004-04-15

    A method using accelerator mass spectrometry (AMS) has been developed for quantifying attomoles of beryllium (Be) in biological samples. This method provides the sensitivity to trace Be in biological samples at very low doses with the purpose of identifying the molecular targets involved in chronic beryllium disease. Proof of the method was tested by administering 0.001, 0.05, 0.5 and 5.0 {micro}g {sup 9}Be and {sup 10}Be by intraperitoneal injection to male mice and removing spleen, liver, femurs, blood, lung, and kidneys after 24 h exposure. These samples were prepared for AMS analysis by tissue digestion in nitric acid, followed by further organic oxidation with hydrogen peroxide and ammonium persulfate and lastly, precipitation of Be with ammonium hydroxide, and conversion to beryllium oxide at 800 C. The {sup 10}Be/{sup 9}Be ratio of the extracted beryllium oxide was measured by AMS and Be in the original sample was calculated. Results indicate that Be levels were dose-dependent in all tissues and the highest levels were measured in the spleen and liver. The measured {sup 10}Be/{sup 9}Be ratios spanned 4 orders of magnitude, from 10{sup -10} to 10{sup -14}, with a detection limit of 3.0 x 10{sup -14}, which is equivalent to 0.8 attomoles of {sup 10}Be. These results show that routine quantification of nanogram levels of Be in tissues is possible and that AMS is a sensitive method that can be used in biological studies to understand the molecular dosimetry of Be and mechanisms of toxicity.

  15. Accelerator Mass Spectrometry Allows for Cellular Quantification of Doxorubicin at Femtomolar Concentrations

    SciTech Connect

    DeGregorio, M W; Dingley, K H; Wurz, G T; Ubick, E; Turteltaub, K W

    2005-04-12

    Accelerator mass spectrometry (AMS) is a highly sensitive analytical methodology used to quantify the content of radioisotopes, such as {sup 14}C, in a sample. The primary goals of this work were to demonstrate the utility of AMS in determining cellular [{sup 14}C]doxorubicin (DOX) concentrations and to develop a sensitive assay that is superior to high performance liquid chromatography (HPLC) for the quantification of DOX at the tumor level. In order to validate the superior sensitivity of AMS versus HPLC with fluorescence detection, we performed three studies comparing the cellular accumulation of DOX: one in vitro cell line study, and two in vivo xenograft mouse studies. Using AMS, we quantified cellular DOX content up to 4 hours following in vitro exposure at concentrations ranging from 0.2 pg/ml (345 fM) to 2 {micro}g/ml (3.45 {micro}M) [{sup 14}C]DOX. The results of this study show that, compared to standard fluorescence-based HPLC, the AMS method was over five orders of magnitude more sensitive. Two in vivo studies compared the sensitivity of AMS to HPLC using a nude mouse xenograft model in which breast cancer cells were implanted subcutaneously. After sufficiently large tumors formed, DOX was administered intravenously at two dose levels. Additionally, we tested the AMS method in a nude mouse xenograft model of multidrug resistance (MDR) in which each mouse was implanted with both wild type and MDR+ cells on opposite flanks. The results of the second and third studies showed that DOX concentrations were significantly higher in the wild type tumors compared to the MDR+ tumors, consistent with the MDR model. The extreme sensitivity of AMS should facilitate similar studies in humans to establish target site drug delivery and to potentially determine the optimal treatment dose and regimen.

  16. Automated combustion accelerator mass spectrometry for the analysis of biomedical samples in the low attomole range.

    PubMed

    van Duijn, Esther; Sandman, Hugo; Grossouw, Dimitri; Mocking, Johannes A J; Coulier, Leon; Vaes, Wouter H J

    2014-08-01

    The increasing role of accelerator mass spectrometry (AMS) in biomedical research necessitates modernization of the traditional sample handling process. AMS was originally developed and used for carbon dating, therefore focusing on a very high precision but with a comparably low sample throughput. Here, we describe the combination of automated sample combustion with an elemental analyzer (EA) online coupled to an AMS via a dedicated interface. This setup allows direct radiocarbon measurements for over 70 samples daily by AMS. No sample processing is required apart from the pipetting of the sample into a tin foil cup, which is placed in the carousel of the EA. In our system, up to 200 AMS analyses are performed automatically without the need for manual interventions. We present results on the direct total (14)C count measurements in <2 μL human plasma samples. The method shows linearity over a range of 0.65-821 mBq/mL, with a lower limit of quantification of 0.65 mBq/mL (corresponding to 0.67 amol for acetaminophen). At these extremely low levels of activity, it becomes important to quantify plasma specific carbon percentages. This carbon percentage is automatically generated upon combustion of a sample on the EA. Apparent advantages of the present approach include complete omission of sample preparation (reduced hands-on time) and fully automated sample analysis. These improvements clearly stimulate the standard incorporation of microtracer research in the drug development process. In combination with the particularly low sample volumes required and extreme sensitivity, AMS strongly improves its position as a bioanalysis method. PMID:25033319

  17. The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity.

    PubMed

    Miner, Jonathan J; Daniels, Brian P; Shrestha, Bimmi; Proenca-Modena, Jose L; Lew, Erin D; Lazear, Helen M; Gorman, Matthew J; Lemke, Greg; Klein, Robyn S; Diamond, Michael S

    2015-12-01

    The TAM receptors Tyro3, Axl and Mertk are receptor tyrosine kinases that dampen host innate immune responses following engagement with their ligands Gas6 and Protein S, which recognize phosphatidylserine on apoptotic cells. In a form of apoptotic mimicry, many enveloped viruses display phosphatidylserine on the outer leaflet of their membranes, enabling TAM receptor activation and downregulation of antiviral responses. Accordingly, we hypothesized that a deficiency of TAM receptors would enhance antiviral responses and protect against viral infection. Unexpectedly, mice lacking Mertk and/or Axl, but not Tyro3, exhibited greater vulnerability to infection with neuroinvasive West Nile and La Crosse encephalitis viruses. This phenotype was associated with increased blood-brain barrier permeability, which enhanced virus entry into and infection of the brain. Activation of Mertk synergized with interferon-β to tighten cell junctions and prevent virus transit across brain microvascular endothelial cells. Because TAM receptors restrict pathogenesis of neuroinvasive viruses, these findings have implications for TAM antagonists that are currently in clinical development. PMID:26523970

  18. The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity

    PubMed Central

    Miner, Jonathan J.; Daniels, Brian P.; Shrestha, Bimmi; Proenca-Modena, Jose L.; Lew, Erin D.; Lazear, Helen M.; Gorman, Matthew J.; Lemke, Greg; Klein, Robyn S.; Diamond, Michael S.

    2015-01-01

    The TAM receptors Tyro3, Axl, and Mertk are receptor tyrosine kinases that dampen host innate immune responses following engagement with their ligands, Gas6 and Protein S, which recognize phosphatidylserine on apoptotic cells. In a form of apoptotic mimicry, many enveloped viruses display phosphatidylserine on the outer leaflet of their membranes, enabling TAM receptor activation and down-regulation of antiviral responses. Accordingly, we hypothesized that a deficiency of TAM receptors would enhance antiviral responses and protect against viral infection. Unexpectedly, mice lacking Mertk and/or Axl but not Tyro3 exhibited greater vulnerability to infection with neuroinvasive West Nile and La Crosse viruses. This phenotype was associated with increased blood-brain barrier permeability, which enhanced virus entry into and infection of the brain. Activation of Mertk synergized with IFN-β to tighten cell junctions and prevent virus transit across brain microvascular endothelial cells. Because TAM receptors restrict pathogenesis of neuroinvasive viruses, these findings have implications for TAM antagonists that are currently in clinical development. PMID:26523970

  19. Development of Test-Analysis Models (TAM) for correlation of dynamic test and analysis results

    NASA Technical Reports Server (NTRS)

    Angelucci, Filippo; Javeed, Mehzad; Mcgowan, Paul

    1992-01-01

    The primary objective of structural analysis of aerospace applications is to obtain a verified finite element model (FEM). The verified FEM can be used for loads analysis, evaluate structural modifications, or design control systems. Verification of the FEM is generally obtained as the result of correlating test and FEM models. A test analysis model (TAM) is very useful in the correlation process. A TAM is essentially a FEM reduced to the size of the test model, which attempts to preserve the dynamic characteristics of the original FEM in the analysis range of interest. Numerous methods for generating TAMs have been developed in the literature. The major emphasis of this paper is a description of the procedures necessary for creation of the TAM and the correlation of the reduced models with the FEM or the test results. Herein, three methods are discussed, namely Guyan, Improved Reduced System (IRS), and Hybrid. Also included are the procedures for performing these analyses using MSC/NASTRAN. Finally, application of the TAM process is demonstrated with an experimental test configuration of a ten bay cantilevered truss structure.

  20. Measurement of 59Ni and 63Ni by accelerator mass spectrometry at CIAE

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; He, Ming; Ruan, Xiangdong; Xu, Yongning; Shen, Hongtao; Du, Liang; Xiao, Caijin; Dong, Kejun; Jiang, Shan; Yang, Xuran; Lan, Xiaoxi; Wu, Shaoyong; Zhao, Qingzhang; Cai, Li; Pang, Fangfang

    2015-10-01

    The long lived isotopes 59Ni and 63Ni can be used in many areas such as radioactive waste management, neutron dosimetry, cosmic radiation study, and so on. Based on the large accelerator and a big Q3D magnetic spectrometer, the measurement method for 59Ni and 63Ni is under development at the AMS facility at China Institute of Atomic Energy (CIAE). By using the ΔE-Q3D technique with the Q3D magnetic spectrometer, the isobaric interferences were greatly reduced in the measurements of 59Ni and 63Ni. A four anode gas ionization chamber was then used to further identify isobars. With these techniques, the abundance sensitivities of 59Ni and 63Ni measurements are determined as 59Ni/Ni = 1 × 10-13 and 63Ni/Ni = 2 × 10-12, respectively.

  1. Calcium Isolation from Large-Volume Human Urine Samples for 41Ca Analysis by Accelerator Mass Spectrometry

    PubMed Central

    Miller, James J; Hui, Susanta K; Jackson, George S; Clark, Sara P; Einstein, Jane; Weaver, Connie M; Bhattacharyya, Maryka H

    2013-01-01

    Calcium oxalate precipitation is the first step in preparation of biological samples for 41Ca analysis by accelerator mass spectrometry. A simplified protocol for large-volume human urine samples was characterized, with statistically significant increases in ion current and decreases in interference. This large-volume assay minimizes cost and effort and maximizes time after 41Ca administration during which human samples, collected over a lifetime, provide 41Ca:Ca ratios that are significantly above background. PMID:23672965

  2. Accelerator mass spectrometry detection of beryllium ions in the antigen processing and presentation pathway.

    PubMed

    Tooker, Brian C; Brindley, Stephen M; Chiarappa-Zucca, Marina L; Turteltaub, Kenneth W; Newman, Lee S

    2015-01-01

    Exposure to small amounts of beryllium (Be) can result in beryllium sensitization and progression to Chronic Beryllium Disease (CBD). In CBD, beryllium is presented to Be-responsive T-cells by professional antigen-presenting cells (APC). This presentation drives T-cell proliferation and pro-inflammatory cytokine (IL-2, TNFα, and IFNγ) production and leads to granuloma formation. The mechanism by which beryllium enters an APC and is processed to become part of the beryllium antigen complex has not yet been elucidated. Developing techniques for beryllium detection with enough sensitivity has presented a barrier to further investigation. The objective of this study was to demonstrate that Accelerator Mass Spectrometry (AMS) is sensitive enough to quantify the amount of beryllium presented by APC to stimulate Be-responsive T-cells. To achieve this goal, APC - which may or may not stimulate Be-responsive T-cells - were cultured with Be-ferritin. Then, by utilizing AMS, the amount of beryllium processed for presentation was determined. Further, IFNγ intracellular cytokine assays were performed to demonstrate that Be-ferritin (at levels used in the experiments) could stimulate Be-responsive T-cells when presented by an APC of the correct HLA type (HLA-DP0201). The results indicated that Be-responsive T-cells expressed IFNγ only when APC with the correct HLA type were able to process Be for presentation. Utilizing AMS, it was determined that APC with HLA-DP0201 had membrane fractions containing 0.17-0.59 ng Be and APC with HLA-DP0401 had membrane fractions bearing 0.40-0.45 ng Be. However, HLA-DP0401 APC had 20-times more Be associated with the whole cells (57.68-61.12 ng) than HLA-DP0201 APC (0.90-3.49 ng). As these findings demonstrate, AMS detection of picogram levels of Be processed by APC is possible. Further, regardless of form, Be requires processing by APC to successfully stimulate Be-responsive T-cells to generate IFNγ. PMID:24932923

  3. Accelerator mass spectrometry detection of beryllium ions in the antigen processing and presentation pathway

    SciTech Connect

    Tooker, Brian C.; Brindley, Stephen M.; Chiarappa-Zucca, Marina L.; Turteltaub, Kenneth W.; Newman, Lee S.

    2014-06-16

    We report that exposure to small amounts of beryllium (Be) can result in beryllium sensitization and progression to Chronic Beryllium Disease (CBD). In CBD, beryllium is presented to Be-responsive T-cells by professional antigen-presenting cells (APC). This presentation drives T-cell proliferation and pro-inflammatory cytokine (IL-2, TNFα, and IFNγ) production and leads to granuloma formation. The mechanism by which beryllium enters an APC and is processed to become part of the beryllium antigen complex has not yet been elucidated. Developing techniques for beryllium detection with enough sensitivity has presented a barrier to further investigation. The objective of this study was to demonstrate that Accelerator Mass Spectrometry (AMS) is sensitive enough to quantify the amount of beryllium presented by APC to stimulate Be-responsive T-cells. To achieve this goal, APC - which may or may not stimulate Be-responsive T-cells - were cultured with Be-ferritin. Then, by utilizing AMS, the amount of beryllium processed for presentation was determined. Further, IFNγ intracellular cytokine assays were performed to demonstrate that Be-ferritin (at levels used in the experiments) could stimulate Be-responsive T-cells when presented by an APC of the correct HLA type (HLA-DP0201). The results indicated that Be-responsive T-cells expressed IFNγ only when APC with the correct HLA type were able to process Be for presentation. Utilizing AMS, we determined that APC with HLA-DP0201 had membrane fractions containing 0.17-0.59 ng Be and APC with HLA-DP0401 had membrane fractions bearing 0.40-0.45 ng Be. However, HLA-DP0401 APC had 20-times more Be associated with the whole cells (57.68-61.12 ng) then HLA-DP0201 APC (0.90-3.49 ng). As these findings demonstrate, AMS detection of picogram levels of Be processed by APC is possible. Further, regardless of form, Be requires processing by APC to successfully stimulate Be-responsive T-cells to generate IFNγ.

  4. Accelerator Mass Spectrometry Detection of Beryllium Ions in the Antigen Processing and Presentation Pathway

    PubMed Central

    Tooker, Brian C.; Brindley, Stephen M.; Chiarappa-Zucca, Marina L.; Turteltaub, Kenneth W.; Newman, Lee S.

    2015-01-01

    Exposure to small amounts of beryllium (Be) can result in beryllium sensitization and progression to Chronic Beryllium Disease (CBD). In CBD, beryllium is presented to Be-responsive T-cells by professional antigen-presenting cells (APC). This presentation drives T-cell proliferation and pro-inflammatory cytokine (IL-2, TNFα, and IFNγ) production and leads to granuloma formation. The mechanism by which beryllium enters an APC and is processed to become part of the beryllium antigen complex has not yet been elucidated. Developing techniques for beryllium detection with enough sensitivity has presented a barrier to further investigation. The objective of this study was to demonstrate that Accelerator Mass Spectrometry (AMS) is sensitive enough to quantify the amount of beryllium presented by APC to stimulate Be-responsive T-cells. To achieve this goal, APC - which may or may not stimulate Be-responsive T-cells - were cultured with Be-ferritin. Then, by utilizing AMS, the amount of beryllium processed for presentation was determined. Further, IFNγ intracellular cytokine assays were performed to demonstrate that Be-ferritin (at levels used in the experiments) could stimulate Be-responsive T-cells when presented by an APC of the correct HLA type (HLA-DP0201). The results indicated that Be-responsive T-cells expressed IFNγ only when APC with the correct HLA type were able to process Be for presentation. Utilizing AMS, it was determined that APC with HLA-DP0201 had membrane fractions containing 0.17-0.59 ng Be and APC with HLA-DP0401 had membrane fractions bearing 0.40-0.45 ng Be. However, HLA-DP0401 APC had 20-times more Be associated with the whole cells (57.68-61.12 ng) then HLA-DP0201 APC (0.90-3.49 ng). As these findings demonstrate, AMS detection of picogram levels of Be processed by APC is possible. Further, regardless of form, Be requires processing by APC to successfully stimulate Be-responsive T-cells to generate IFNγ. PMID:24932923

  5. Accelerator Mass Spectrometric determination of radiocarbon in stratospheric CO2, retrieved from AirCore sampling.

    NASA Astrophysics Data System (ADS)

    Paul, Dipayan; Been, Henk A.; Chen, Huilin; Kivi, Rigel; Meijer, Harro A. J.

    2015-04-01

    In this decade, understanding the impact of human activities on climate is one of the key issues of discussion globally. The continuous rise in the concentration of greenhouse gases, e.g., CO2, CH4, etc. in the atmosphere, predominantly due to human activities, is alarming and requires continuous monitoring to understand the dynamics. Radiocarbon is an important atmospheric tracer and one of the many used in the understanding of the global carbon budget, which includes the greenhouse gases like CO2 and CH4. Measurement of 14C (or radiocarbon) in atmospheric CO2 generally requires collection of large air samples (few liters) from which CO2 is extracted and then the concentration of radiocarbon is determined. Currently, Accelerator Mass Spectrometry (AMS) is the most precise, reliable and widely used technique for atmospheric radiocarbon detection. However, the regular collection of air samples from troposphere and stratosphere, for example using aircraft, is prohibitively expensive. AirCore is an innovative atmospheric sampling system, developed by NOAA. It comprises of a long tube descending from a high altitude with one end open and the other closed, and has been demonstrated to be a reliable, cost-effective sampling system for high-altitude profile (up to ~ 30 km) measurements of CH4and CO2(Karion et al. 2010). In Europe, AirCore measurements are being performed on a regular basis near Sodankylä since September 2013. Here we describe the analysis of two such AirCore samples collected in July 2014, Finland, for determining the 14C concentration in stratospheric CO2. The two AirCore samples were collected on consecutive days. Each stratospheric AirCore sample was divided into six fractions, each containing ~ 35 μg CO2 (~9.5 μg C). Each fraction was separately trapped in 1 /4 inch coiled stainless steel tubing for radiocarbon measurements. The procedure for CO2 extraction from the stratospheric air samples; the sample preparation, with samples containing < 10

  6. Accelerator mass spectrometry detection of beryllium ions in the antigen processing and presentation pathway

    DOE PAGESBeta

    Tooker, Brian C.; Brindley, Stephen M.; Chiarappa-Zucca, Marina L.; Turteltaub, Kenneth W.; Newman, Lee S.

    2014-06-16

    We report that exposure to small amounts of beryllium (Be) can result in beryllium sensitization and progression to Chronic Beryllium Disease (CBD). In CBD, beryllium is presented to Be-responsive T-cells by professional antigen-presenting cells (APC). This presentation drives T-cell proliferation and pro-inflammatory cytokine (IL-2, TNFα, and IFNγ) production and leads to granuloma formation. The mechanism by which beryllium enters an APC and is processed to become part of the beryllium antigen complex has not yet been elucidated. Developing techniques for beryllium detection with enough sensitivity has presented a barrier to further investigation. The objective of this study was to demonstratemore » that Accelerator Mass Spectrometry (AMS) is sensitive enough to quantify the amount of beryllium presented by APC to stimulate Be-responsive T-cells. To achieve this goal, APC - which may or may not stimulate Be-responsive T-cells - were cultured with Be-ferritin. Then, by utilizing AMS, the amount of beryllium processed for presentation was determined. Further, IFNγ intracellular cytokine assays were performed to demonstrate that Be-ferritin (at levels used in the experiments) could stimulate Be-responsive T-cells when presented by an APC of the correct HLA type (HLA-DP0201). The results indicated that Be-responsive T-cells expressed IFNγ only when APC with the correct HLA type were able to process Be for presentation. Utilizing AMS, we determined that APC with HLA-DP0201 had membrane fractions containing 0.17-0.59 ng Be and APC with HLA-DP0401 had membrane fractions bearing 0.40-0.45 ng Be. However, HLA-DP0401 APC had 20-times more Be associated with the whole cells (57.68-61.12 ng) then HLA-DP0201 APC (0.90-3.49 ng). As these findings demonstrate, AMS detection of picogram levels of Be processed by APC is possible. Further, regardless of form, Be requires processing by APC to successfully stimulate Be-responsive T-cells to generate IFNγ.« less

  7. Accelerator mass spectrometry in the biomedical sciences: applications in low-exposure biomedical and environmental dosimetry

    NASA Astrophysics Data System (ADS)

    Felton, J. S.; Turteltaub, K. W.; Vogel, J. S.; Balhorn, R.; Gledhill, B. L.; Southon, J. R.; Caffee, M. W.; Finkel, R. C.; Nelson, D. E.; Proctor, I. D.; Davis, J. C.

    1990-12-01

    We are utilizing accelerator mass spectrometry as a sensitive detector for tracking the disposition of radioisotopically labeled molecules in the biomedical sciences. These applications have shown the effectiveness of AMS as a tool to quantify biologically important molecules at extremely low levels. For example, AMS is being used to determine the amount of carcinogen covalently bound to animal DNA (DNA adduct) at levels relevent to human exposure. Detection sensitivities are 1 carcinogen molecule bound in 1011 to 1012 DNA bases, depending on the specific activity of the radiolabeled carcinogen. Studies have been undertaken in our laboratory utilizing heterocyclic amine food-borne carcinogens and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent environmental carcinogen, to study the metabolism of carcinogens at low doses. In addition, AMS is being used to detect the presence of rare proteins (mutant forms of protamine) in human sperm. Approximately l per 106 sperm analyzed contain the rare form of the protamine. Protamine isolated from this small number of cells is being analyzed by AMS, following 14C labeling. Thus, AMS can be used to verify the identity of an extremely small amount of biological material. Furthermore, an additional improvement of 2 orders of magnitude in the sensitivity of biomédical tracer studies is suggested by preliminary work with bacterial hosts depleted in radiocarbon. Other problems in the life sciences where detection sensitivity or sample sizes are limitations should also benefit from AMS. Studies are underway to measure the molecular targeting of cancer chemotherapeutics in human tissue and to pursue applications for receptor biology. We are also applying other candidate isotopes, such as 3H (double labeling with 14C) and 41Ca (bone absorption) to problems in biology. The detection of 36Cl and 26Al have applications for determination of human neutron exposure and understanding neurological toxicity, respectively. The results

  8. SCINTILLATION SPECTROMETER

    DOEpatents

    Bell, P.R.; Francis, J.E.

    1960-06-21

    A portable scintillation spectrometer is described which is especially useful in radio-biological studies for determining the uptake and distribution of gamma -emitting substances in tissue. The spectrometer includes a collimator having a plurality of apertures that are hexagonal in cross section. Two crystals are provided: one is activated to respond to incident rays from the collimator; the other is not activated and shields the first from external radiation.

  9. Extended TAM Model: Impacts of Convenience on Acceptance and Use of Moodle

    ERIC Educational Resources Information Center

    Hsu, Hsiao-hui; Chang, Yu-ying

    2013-01-01

    The increasing online access to courses, programs, and information has shifted the control and responsibility of learning process from instructors to learners. Learners' perceptions of and attitudes toward e-learning constitute a critical factor to the success of such system. The purpose of this study is to take TAM (technology acceptance model)…

  10. Multiaperture Spectrometer

    NASA Technical Reports Server (NTRS)

    Schindler, Rudolf A.; Pagano, Robert J.; O'Callaghan, Fred G.

    1991-01-01

    Proposed multiaperture spectrometer containing single grating provides high spectral resolution over broad spectrum. Produces parallel line images, each of which highly spectrally resolved display of intensity vs. wavelength in wavelength band of one of orders of spectrum produced by grating. Advantages; convenient two-dimensional spectral image, fewer components, and greater efficiency.

  11. Spectrometer gun

    DOEpatents

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  12. Spectrometer gun

    DOEpatents

    Waechter, D.A.; Wolf, M.A.; Umbarger, C.J.

    1981-11-03

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun is described that includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  13. DETERMINING THE PHARMACOKINETICS AND LONG-TERM BIODISTRIBUTION OF SiO2 NANOPARTICLES IN VIVO USING ACCELERATOR MASS SPECTROMETRY

    PubMed Central

    Malfatti, Michael A.; Palko, Heather A.; Kuhn, Edward A.; Turteltaub, Kenneth W.

    2012-01-01

    Biodistribution is an important factor in better understanding silica dioxide nanoparticle (SiNP) safety. Currently, comprehensive studies on biodistribution are lacking, most likely due to the lack of suitable analytical methods. Accelerator mass spectrometry (AMS) was used to investigate the relationship between administered dose, PK, and long-term biodistribution of 14C-SiNPs in vivo. PK analysis showed that SiNPs were rapidly cleared from the central compartment, were distributed to tissues of the reticuloendothelial system, and persisted in the tissue over the 8-week time course, raising questions about the potential for bioaccumulation and associated long-term effects. PMID:23075393

  14. TAM 304 wheat – Adapted to the adequate rainfall or high-input irrigation production system in the Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TAM 304 wheat is a medium-early hard red winter wheat. It is a great dryland or semi-irrigated wheat. TAM 304 performs best under adequate rainfall, limited irrigation, or irrigation, but does not perform as well under extended drought. TAM 304 performs exceptionally well under foliar disease pressu...

  15. Temperature Shift Coordinately Changes the Activity and the Methylation State of Transposon Tam3 in Antirrhinum majus

    PubMed Central

    Hashida, Shin-nosuke; Kitamura, Ken; Mikami, Tetsuo; Kishima, Yuji

    2003-01-01

    The transposition frequency of Tam3 in Antirrhinum majus, unlike that of most other cut-and-paste-type transposons, is tightly controlled by temperature: Tam3 transposes rarely at 25°C, but much more frequently at 15°C. Here, we studied the mechanism of the low-temperature-dependent transposition (LTDT) of Tam3. Our results strongly suggest that LTDT is not likely to be due to either transcriptional regulation or posttranscriptional regulation of the Tam3 TPase gene. We found that temperature shift induced a remarkable change of the methylation state unique to Tam3 sequences in the genome: Higher temperature resulted in hypermethylation, whereas lower temperature resulted in reduced methylation. The methylation state was reversible within a single generation in response to a temperature shift. Although our data demonstrate a close link between LTDT and the methylation of Tam3, they also suggest that secondary factor(s) other than DNA methylation is involved in repression of Tam3 transposition. PMID:12857803

  16. Depth Profiles of Mg, Si, and Zn Implants in GaN by Trace Element Accelerator Mass Spectrometry

    SciTech Connect

    Ravi Prasad, G.V.; Pelicon, P.; Mitchell, L.J.; McDaniel, F.D.

    2003-08-26

    GaN is one of the most promising electronic materials for applications requiring high-power, high frequencies, or high-temperatures as well as opto-electronics in the blue to ultraviolet spectral region. We have recently measured depth profiles of Mg, Si, and Zn implants in GaN substrates by the TEAMS particle counting method for both matrix and trace elements, using a gas ionization chamber. Trace Element Accelerator Mass Spectrometry (TEAMS) is a combination of Secondary Ion Mass Spectrometry (SIMS) and Accelerator Mass Spectrometry (AMS) to measure trace elements at ppb levels. Negative ions from a SIMS like source are injected into a tandem accelerator. Molecular interferences inherent with the SIMS method are eliminated in the TEAMS method. Negative ion currents are extremely low with GaN as neither gallium nor nitrogen readily forms negative ions making the depth profile measurements more difficult. The energies of the measured ions are in the range of 4-8 MeV. A careful selection of mass/charge ratios of the detected ions combined with energy-loss behavior of the ions in the ionization chamber eliminated molecular interferences.

  17. Accelerator mass spectrometry and radioisotope detection at the Argonne FN tandem facility

    SciTech Connect

    Henning, W.; Kutschera, W.; Paul, M.; Smither, R.K.; Stephenson, E.J.; Yntema, J.L.

    1980-01-01

    The Argonne FN tandem accelerator and standard components of its experimental heavy-ion research facility, have been used as a highly-sensitive mass spectrometer to detect several long-lived radioisotopes and measure their concentration by counting of accelerated ions. Background beams from isobaric nuclei have been eliminated by combining the dispersion from the energy loss in a uniform Al foil stack with the momentum resolution of an Enge split-pole magnetic spectrograph. Radioisotope concentrations in the following ranges have been measured: /sup 14/C//sup 12/C = 10/sup -12/ to 10/sup -13/, /sup 26/Al//sup 27/Al = 10/sup -10/ to 10/sup -12/, /sup 32/Si/Si = 10/sup -8/ to 10/sup -14/, /sup 36/Cl/Cl = 10/sup -10/ to 10/sup -11/. Particular emphasis was put on exploring to what extent the technique of identifying and counting individual ions in an accelerator beam can be conveniently used to determine nuclear quantities of interest when their measurement involves very low radioisotope concentrations. The usefulness of this method can be demonstrated by measuring the /sup 26/Mg(p,n)/sup 26/Al(7.2 x 10/sup 5/ yr) cross section at proton energies in the astrophysically interesting range just above threshold, and by determining the previously poorly known half life of /sup 32/Si.

  18. The Spectrometer

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  19. State-of-the-art of small molecule inhibitors of the TAM family: the point of view of the chemist.

    PubMed

    Baladi, Tom; Abet, Valentina; Piguel, Sandrine

    2015-11-13

    The TAM family of tyrosine kinases receptors (Tyro3, Axl and Mer) is implicated in cancer development, autoimmune reactions and viral infection and is therefore emerging as an effective and attractive therapeutic target. To date, only a few small molecules have been intentionally designed to block the TAM kinases, while most of the inhibitors were developed for blocking different protein kinases and then identified through selectivity profile studies. This minireview will examine in terms of chemical structure the different compounds able to act on either one, two or three TAM kinases with details about structure-activity relationships, drug-metabolism and pharmacokinetics properties where they exist. PMID:26498569

  20. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer.

    PubMed

    Graham, Douglas K; DeRyckere, Deborah; Davies, Kurtis D; Earp, H Shelton

    2014-12-01

    The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential. PMID:25568918

  1. Understanding Intention to Use Electronic Information Resources: A Theoretical Extension of the Technology Acceptance Model (TAM)

    PubMed Central

    Tao, Donghua

    2008-01-01

    This study extended the Technology Acceptance Model (TAM) by examining the roles of two aspects of e-resource characteristics, namely, information quality and system quality, in predicting public health students’ intention to use e-resources for completing research paper assignments. Both focus groups and a questionnaire were used to collect data. Descriptive analysis, data screening, and Structural Equation Modeling (SEM) techniques were used for data analysis. The study found that perceived usefulness played a major role in determining students’ intention to use e-resources. Perceived usefulness and perceived ease of use fully mediated the impact that information quality and system quality had on behavior intention. The research model enriches the existing technology acceptance literature by extending TAM. Representing two aspects of e-resource characteristics provides greater explanatory information for diagnosing problems of system design, development, and implementation. PMID:18999300

  2. TAM receptor tyrosine kinases: Expression, disease and oncogenesis in the central nervous system

    PubMed Central

    Pierce, Angela M.; Keating, Amy K.

    2014-01-01

    Receptor tyrosine kinases (RTKs) are cell surface proteins that tightly regulate a variety of downstream intra-cellular processes; ligand-receptor interactions result in cascades of signaling events leading to growth, proliferation, differentiation and migration. There are 58 described RTKs, which are further categorized into 20 different RTK families. When dysregulated or overexpressed, these RTKs are implicated in disordered growth, development, and oncogenesis. The TAM family of RTKs, consisting of Tyro3, Axl, and MerTK, is prominently expressed during the development and function of the central nervous system (CNS). Aberrant expression and dysregulated activation of TAM family members has been demonstrated in a variety of CNS-related disorders and diseases, including the most common but least treatable brain cancer in children and adults: glioblastoma multiforme. PMID:24184575

  3. Qui tam claims: threat to voluntary compliance programs in health care organizations.

    PubMed

    Ruhnka, J C; Gac, E J; Boerstler, H

    2000-04-01

    The Department of Justice (DOJ) reports that after violent crime, health care fraud is the department's top priority. The number of health care fraud investigations pending at the DOJ increased from 270 cases in 1992 to more than 4,000 in 1997. The DOJ's primary weapon in prosecuting health care fraud is the federal False Claims Act (FCA) of 1863 (31 U.S.C. secs. 3729-3733). Almost unique among federal antifraud provisions, the FCA may also be used by "private prosecutors" to file lawsuits on behalf of the federal government charging organizations with submitting false claims to the government. The FCA rewards such whistle-blowers with a share of any resulting recoveries as a bounty and protects them from discharge for filing false claims lawsuits against their employers. It also requires defendants to pay the costs and attorneys fees of successful claimants. Although the private "bounty hunter" features of the FCA data back to the Civil War, these so-called qui tam claims were nearly dormant until 1986, when Congress amended the FCA to revive their use. Following the 1986 amendments, and paralleling the rapid increase in federal reimbursements for health care costs, private qui tam claims have far expanded beyond their traditional purview of defense contracts into the field of health care. By 1997, health care providers were the targets of 54 percent of the 530 private qui tam lawsuits field that year. PMID:10946381

  4. The Tyrosine Aminomutase TAM1 Is Required for β-Tyrosine Biosynthesis in Rice

    PubMed Central

    Yan, Jian; Aboshi, Takako; Teraishi, Masayoshi; Strickler, Susan R.; Spindel, Jennifer E.; Tung, Chih-Wei; Takata, Ryo; Matsumoto, Fuka; Maesaka, Yoshihiro; McCouch, Susan R.; Okumoto, Yutaka; Mori, Naoki; Jander, Georg

    2015-01-01

    Non-protein amino acids, often isomers of the standard 20 protein amino acids, have defense-related functions in many plant species. A targeted search for jasmonate-induced metabolites in cultivated rice (Oryza sativa) identified (R)-β-tyrosine, an isomer of the common amino acid (S)-α-tyrosine in the seeds, leaves, roots, and root exudates of the Nipponbare cultivar. Assays with 119 diverse cultivars showed a distinct presence/absence polymorphism, with β-tyrosine being most prevalent in temperate japonica cultivars. Genetic mapping identified a candidate gene on chromosome 12, which was confirmed to encode a tyrosine aminomutase (TAM1) by transient expression in Nicotiana benthamiana and in vitro enzyme assays. A point mutation in TAM1 eliminated β-tyrosine production in Nipponbare. Rice cultivars that do not produce β-tyrosine have a chromosome 12 deletion that encompasses TAM1. Although β-tyrosine accumulation was induced by the plant defense signaling molecule jasmonic acid, bioassays with hemipteran and lepidopteran herbivores showed no negative effects at physiologically relevant β-tyrosine concentrations. In contrast, root growth of Arabidopsis thaliana and other tested dicot plants was inhibited by concentrations as low as 1 μM. As β-tyrosine is exuded into hydroponic medium at higher concentrations, it may contribute to the allelopathic potential of rice. PMID:25901084

  5. MASS SPECTROMETER

    DOEpatents

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  6. AN INTEGRAL REACTOR PHYSICS EXPERIMENT TO INFER ACTINIDE CAPTURE CROSS-SECTIONS FROM THORIUM TO CALIFORNIUM WITH ACCELERATOR MASS SPECTROMETRY

    SciTech Connect

    G. Youinou; M. Salvatores; M. Paul; R. Pardo; G. Palmiotti; F. Kondev; G. Imel

    2010-04-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectroscopy (AMS) technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am and 248Cm.

  7. Aluminium and Alzheimer's disease: sites of aluminium binding in human neuroblastoma cells determined using 26Al and accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    King, S. J.; Templar, J.; Miller, R. V.; Day, J. P.; Dobson, C. B.; Itzhaki, R. F.; Fifield, L. K.; Allan, G. L.

    1994-06-01

    The aluminium distribution between the major cell compartments of human neuroblastoma cells grown in culture has been determined using 21Al and accelerator mass spectrometry (AMS). Cells (IMR-32) were grown for eight days in a culture medium containing Al-EDTA (0.2mM) spiked with 26Al, harvested, and fractionated by standard biochemical techniques. 26Al in fractions after ashing to Al 2O 3 was determined by AMS using the 14UD accelerator at ANU Canberra. The cytoplasmic and nuclear cell compartments appeared to have reached diffusive equilibrium with the culture medium. Whilst 26Al was retained by the nuclear proteins and nuclear sap, 26Al did not appear to bind to the nucleic acids (DNA/RNA).

  8. A multi-sample changer coupled to an electron cyclotron resonance source for accelerator mass spectrometry experiments

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Palchan, T.; Pardo, R.; Peters, C.; Power, M.; Scott, R.

    2014-02-01

    A new multi-sample changer has been constructed allowing rapid changes between samples. The sample changer has 20 positions and is capable of moving between samples in 1 min. The sample changer is part of a project using Accelerator Mass Spectrometry (AMS) at the Argonne Tandem Linac Accelerator System (ATLAS) facility to measure neutron capture rates on a wide range of actinides in a reactor environment. This project will require the measurement of a large number of samples previously irradiated in the Advanced Test Reactor at Idaho National Laboratory. The AMS technique at ATLAS is based on production of highly charged positive ions in an electron cyclotron resonance ion source followed by acceleration in the ATLAS linac. The sample material is introduced into the plasma via laser ablation chosen to limit the dependency of material feed rates upon the source material composition as well as minimize cross-talk between samples.

  9. Measurement of the 135Cs half-life with accelerator mass spectrometry and inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    MacDonald, C. M.; Cornett, R. J.; Charles, C. R. J.; Zhao, X. L.; Kieser, W. E.

    2016-01-01

    The isotope 135Cs is quoted as having a half-life of 2.3 Myr. However, there are three published values ranging from 1.8 to 3 Myr. This research reviews previous measurements and reports a new measurement of the half-life using newly developed accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS) techniques along with β and γ radiometric analysis. The half-life was determined to be (1.6 ±0.6 ) ×106 yr by AMS and (1.3 ±0.2 ) ×106 yr by ICPMS with 95% confidence. The two values agree with each other but differ from the accepted value by ˜40 % .

  10. First accelerator mass spectrometry {sup 14}C dates documenting contemporaneity of nonanalog species in late Pleistocene mammal communities

    SciTech Connect

    Stafford, T.W. Jr.; Semken, H.A. Jr.; Graham, R.W.; Klippel, W.F.; Markova, A.; Smirnov, N.G.; Southon, J.

    1999-10-01

    Worldwide late Pleistocene terrestrial mammal faunas are characterized by stratigraphic associations of species that now have exclusive geographic ranges. These have been interpreted as either taphonomically mixed or representative of communities that no longer exist. Accelerator mass spectrometry {sup 14}C dates (n = 60) on single bones of stratigraphically associated fossil micromammals from two American and two Russian sites document for the first time that currently allopatric mammals occurred together between 12,000 and 22,000 yr B.P. on two continents. The existence of mammal communities without modern analogs demonstrates that Northern Hemisphere biological communities are ephemeral and that many modern biomes are younger than 12 ka. Future climate change may result in new nonanalog communities.

  11. Verification of the sputter-generated 32SFn- (n = 1-6) anions by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Mane, R. G.; Surendran, P.; Kumar, Sanjay; Nair, J. P.; Yadav, M. L.; Hemalatha, M.; Thomas, R. G.; Mahata, K.; Kailas, S.; Gupta, A. K.

    2016-01-01

    Recently, we have performed systematic Secondary Ion Mass Spectrometry (SIMS) measurements at our ion source test set up and have demonstrated that gas phase 32SFn- (n = 1-6) anions for all size 'n' can be readily generated from a variety of surfaces undergoing Cs+ ion sputtering in the presence of high purity SF6 gas by employing the gas spray-cesium sputter technique. In our SIMS measurements, the isotopic yield ratio 34SFn-/32SFn- (n = 1-6) was found to be close to its natural abundance but not for all size 'n'. In order to gain further insight into the constituents of these molecular anions, ultra sensitive Accelerator Mass Spectrometry (AMS) measurements were conducted with the most abundant 32SFn- (n = 1-6) anions, at BARC-TIFR 14 UD Pelletron accelerator. The results from these measurements are discussed in this paper.

  12. Accurate determination of ⁴¹Ca concentrations in spent resins from the nuclear industry by accelerator mass spectrometry.

    PubMed

    Nottoli, Emmanuelle; Bourlès, Didier; Bienvenu, Philippe; Labet, Alexandre; Arnold, Maurice; Bertaux, Maité

    2013-12-01

    The radiological characterisation of nuclear waste is essential for managing storage sites. Determining the concentration of Long-Lived RadioNuclides (LLRN) is fundamental for their long-term management. This paper focuses on the measurement of low (41)Ca concentrations in ions exchange resins used for primary fluid purification in Pressurised Water Reactors (PWR). (41)Ca concentrations were successfully measured by Accelerator Mass Spectrometry (AMS) after the acid digestion of resin samples, followed by radioactive decontamination and isobaric suppression through successive hydroxide, carbonate, nitrate and final CaF2 precipitations. Measured (41)Ca concentrations ranged from 0.02 to 0.03 ng/g, i.e. from 0.06 to 0.09 Bq/g. The (41)Ca/(60)Co activity ratios obtained were remarkably reproducible and in good agreement with the current ratio used for resins management. PMID:24144617

  13. Accelerator mass spectrometry of 63Ni using a gas-filled magnet at the Munich Tandem Laboratory

    NASA Astrophysics Data System (ADS)

    Rugel, G.; Faestermann, T.; Knie, K.; Korschinek, G.; Marchetti, A. A.; McAninch, J. E.; Rühm, W.; Straume, T.; Wallner, C.

    2000-10-01

    The detection of 63Ni ( T1/2=100.1 yr) by means of accelerator mass spectrometry (AMS) using a gas-filled magnet (GFM) is described. The experimental setup includes a dedicated ion source, a 14 MV MP tandem, a GFM and a multi-anode ionization chamber. First results indicate a background level of 63Ni/Ni ratios as low as 2×10 -14. This sensitivity will allow - for the first time ever - to detect 63Ni induced by fast neutrons in copper samples from Hiroshima and Nagasaki, even for distances beyond 1500 m from the hypocenters. Thus, it will be possible to reconstruct experimentally the neutron doses of the A-bomb survivors from Hiroshima and Nagasaki.

  14. Growth Arrest-Specific 6 (Gas6) and TAM Receptors in Mouse Platelets

    PubMed Central

    Uras, Fikriye; Küçük, Burhanettin; Bingöl Özakpınar, Özlem; Demir, Ahmet Muzaffer

    2015-01-01

    Objective: Growth arrest-specific 6 (Gas6) is a newly discovered vitamin K-dependent protein, which is a ligand for TAM receptors [Tyro3 (Sky), Axl, and Mer] from the tyrosine kinase family. Gas6 knockout mice were resistant to venous and arterial thrombosis. There are contradictory reports on the presence of Gas6 and its receptors in mouse platelets. The objective of this study was to investigate whether Gas6 and its receptors were present in mouse platelets or not. Materials and Methods: Specific pathogen-free BALB/c male and female mice of 8-10 weeks old and 25-30 g in weight were anesthetized under light ether anesthesia and blood samples were taken from their hearts. RNAs were isolated from isolated platelets, and then mRNAs encoding Gas6 and TAM receptors were detected by reverse transcription-polymerase chain reaction (RT-PCR). Protein concentrations of Gas6 and TAM receptors in platelets were measured by ELISA, but not those of Mer, because of the absence of any commercial ELISA kit for mouse specimens. Results: RT-PCR results indicated the presence of mRNAs encoding Gas6 and Mer in mouse platelets. However, although RT-PCR reactions were performed at various temperatures and cycles, we could not detect the presence of mRNAs encoding Axl and Tyro3 (Sky). Receptor protein levels of Axl and Tyro3 were below the detection limits of the ELISA method. Conclusion: We found the presence of mRNAs encoding Gas6 and the receptor Mer in mouse platelets, but not Axl and Tyro3. Gas6, Axl, and Tyro3 protein levels were below the detection limits of the ELISA. The presence of mRNA is not obvious evidence of protein expression in platelets that have no nucleus or DNA. Further studies are required to clarify the presence of Gas6/TAM receptors in platelets using real-time PCR and more sensitive immunological methods, and future studies on mechanisms will indicate whether the Gas6/TAM pathway is a strategy for treatment of disorders. PMID:25805676

  15. Exploring the Intrinsic Motivation of Hedonic Information Systems Acceptance: Integrating Hedonic Theory and Flow with TAM

    NASA Astrophysics Data System (ADS)

    Wang, Zhihuan

    Research on Information Systems (IS) acceptance is substantially focused on extrinsic motivation in workplaces, little is known about the underlying intrinsic motivations of Hedonic IS (HIS) acceptance. This paper proposes a hybrid HIS acceptance model which takes the unique characteristics of HIS and multiple identities of a HIS user into consideration by interacting Hedonic theory, Flow theory with Technology Acceptance Model (TAM). The model was empirically tested by a field survey. The result indicates that emotional responses, imaginal responses, and flow experience are three main contributions of HIS acceptance.

  16. A Novel 14C-Postlabeling Assay Using Accelerator Mass Spectrometry For the Detection of O6-Methyldeoxyguanosine Adducts

    SciTech Connect

    Thompkins, E M; Farmer, P B; Lamb, J H; Jukes, R; Dingley, K; Ubick, E A; Turteltaub, K W; Martin, E A; Brown, K

    2005-11-17

    Accelerator mass spectrometry (AMS) is currently one of the most sensitive methods available for the trace detection of DNA adducts and is particularly valuable for measuring adducts in humans or animal models. However, the standard approach requires administration of a radiolabeled compound. As an alternative, we have developed a preliminary {sup 14}C-postlabeling assay for detection of the highly mutagenic O{sup 6}-MedG, by AMS. Procedures were developed for derivatizing O{sup 6}-MedG using unlabeled acetic anhydride. Using conventional LC-MS analysis, the limit of detection for the major product, triacetylated O{sup 6}-MedG, was 10 fmoles. On reaction with {sup 14}C-acetic anhydride, using a specially designed enclosed system, the predominant product was {sup 14}C-di-acetyl O{sup 6}-MedG. This change in reaction profile was due to a modification of the reaction procedure, introduced as a necessary safety precaution. The limit of detection for {sup 14}C-diacetyl O{sup 6}-MedG by AMS was determined as 79 attomoles, {approx}18,000 fold lower than that achievable by LSC. Although the assay has so far only been carried out with labeled standards, the degree of sensitivity obtained illustrates the potential of this assay for measuring O{sup 6}-MedG levels in humans.

  17. The André E. Lalonde AMS Laboratory - The new accelerator mass spectrometry facility at the University of Ottawa

    NASA Astrophysics Data System (ADS)

    Kieser, W. E.; Zhao, X.-L.; Clark, I. D.; Cornett, R. J.; Litherland, A. E.; Klein, M.; Mous, D. J. W.; Alary, J.-F.

    2015-10-01

    The University of Ottawa, Canada, has installed a multi-element, 3 MV tandem AMS system as the cornerstone of their new Advanced Research Complex and the principal analytical instrument of the André E. Lalonde Accelerator Mass Spectrometry Laboratory. Manufactured by High Voltage Engineering Europa B.V., the Netherlands, it is equipped with a 200 sample ion source, a high resolution, 120° injection magnet, a 90° high energy analysis magnet (mass-energy product 350 MeV-AMU), a 65°, 1.7 m radius electric analyzer and a 2 channel gas ionization detector. It is designed to analyze isotopes ranging from tritium to the actinides and to accommodate the use of fluoride target materials. This system is being extended with a second injection line, consisting of selected components from the IsoTrace Laboratory, University of Toronto. This line will contain a pre-commercial version of the Isobar Separator for Anions, manufactured by Isobarex Corp., Bolton, Ontario, Canada. This instrument uses selective ion-gas reactions in a radio-frequency quadrupole cell to attenuate both atomic and molecular isobars. This paper discusses the specifications of the new AMS equipment, reports on the acceptance test results for 10Be, 14C, 26Al and 127I and presents typical spectra for 10Be and actinide analyses.

  18. Analyzing Nuclear Fuel Cycles from Isotopic Ratios of Waste Products Applicable to Measurement by Accelerator Mass Spectrometry

    SciTech Connect

    Biegalski, S R; Whitney, S M; Buchholz, B

    2005-08-24

    An extensive study was conducted to determine isotopic ratios of nuclides in spent fuel that may be utilized to reveal historical characteristics of a nuclear reactor cycle. This forensic information is important to determine the origin of unknown nuclear waste. The distribution of isotopes in waste products provides information about a nuclear fuel cycle, even when the isotopes of uranium and plutonium are removed through chemical processing. Several different reactor cycles of the PWR, BWR, CANDU, and LMFBR were simulated for this work with the ORIGEN-ARP and ORIGEN 2.2 codes. The spent fuel nuclide concentrations of these reactors were analyzed to find the most informative isotopic ratios indicative of irradiation cycle length and reactor design. Special focus was given to long-lived and stable fission products that would be present many years after their creation. For such nuclides, mass spectrometry analysis methods often have better detection limits than classic gamma-ray spectroscopy. The isotopic ratios {sup 151}Sm/{sup 146}Sm, {sup 149}Sm/{sup 146}Sm, and {sup 244}Cm/{sup 246}Cm were found to be good indicators of fuel cycle length and are well suited for analysis by accelerator mass spectroscopy.

  19. A measurement of actinide neutron transmutations with accelerator mass spectrometry in order to infer neutron capture cross sections

    NASA Astrophysics Data System (ADS)

    Bauder, William K.

    Improved neutron capture cross section data for transuranic and minor actinides are essential for assessing possibilities for next generation reactors and advanced fuel cycles. The Measurement of Actinide Neutron TRAnsmutation (MANTRA) project aims to make a comprehensive set of energy integrated neutron capture cross section measurements for all relevant isotopes from Th to Cf. The ability to extract these cross sections relies on the use of Accelerator Mass Spectrometry (AMS) to analyze isotopic concentrations in samples irradiated in the Advanced Test Reactor (ATR). The AMS measurements were performed at the Argonne Tandem Linear Accelerator System (ATLAS) and required a number of key technical developments to the ion source, accelerator, and detector setup. In particular, a laser ablation material injection system was developed at the electron cyclotron resonance ion source. This system provides a more effective method to produce ion beams from samples containing only 1% actinide material and offers some benefits for reducing cross talk in the source. A series of four actinide measurements are described in this dissertation. These measurements represent the most substantial AMS work attempted at ATLAS and the first results of the MANTRA project. Isotopic ratios for one and two neutron captures were measured in each sample with total uncertainties around 10%. These results can be combined with a MCNP model for the neutron fluence to infer actinide neutron capture cross sections.

  20. Laser Ablation - Accelerator Mass Spectrometry: An Approach for Rapid Radiocarbon Analyses of Carbonate Archives at High Spatial Resolution.

    PubMed

    Welte, Caroline; Wacker, Lukas; Hattendorf, Bodo; Christl, Marcus; Fohlmeister, Jens; Breitenbach, Sebastian F M; Robinson, Laura F; Andrews, Allen H; Freiwald, André; Farmer, Jesse R; Yeman, Christiane; Synal, Hans-Arno; Günther, Detlef

    2016-09-01

    A new instrumental setup, combining laser ablation (LA) with accelerator mass spectrometry (AMS), has been investigated for the online radiocarbon ((14)C) analysis of carbonate records. Samples were placed in an in-house designed LA-cell, and CO2 gas was produced by ablation using a 193 nm ArF excimer laser. The (14)C/(12)C abundance ratio of the gas was then analyzed by gas ion source AMS. This configuration allows flexible and time-resolved acquisition of (14)C profiles in contrast to conventional measurements, where only the bulk composition of discrete samples can be obtained. Three different measurement modes, i.e. discrete layer analysis, survey scans, and precision scans, were investigated and compared using a stalagmite sample and, subsequently, applied to terrestrial and marine carbonates. Depending on the measurement mode, a precision of typically 1-5% combined with a spatial resolution of 100 μm can be obtained. Prominent (14)C features, such as the atomic bomb (14)C peak, can be resolved by scanning several cm of a sample within 1 h. Stalagmite, deep-sea coral, and mollusk shell samples yielded comparable signal intensities, which again were comparable to those of conventional gas measurements. The novel LA-AMS setup allowed rapid scans on a variety of sample materials with high spatial resolution. PMID:27396439

  1. Evaluation of Brāhmī ghṛtam in children suffering from Attention Deficit Hyperactivity Disorder

    PubMed Central

    Bhalerao, Supriya; Munshi, Renuka; Nesari, Tanuja; Shah, Heenal

    2013-01-01

    Introduction: Attention Deficit Hyperactivity Disorder (ADHD) is characterized by a persistent pattern of inattention and/or hyperactivity-impulsivity. In view of the adverse effects associated with psycho-stimulants used for the treatment of this disorder, efficacy of Brāhmī ghṛtam was evaluated in this condition. Materials and Methods: After following due ethical considerations, children of either sex between the age group of 6 and 12 years diagnosed to be suffering from mixed variety of ADHD as per The Diagnostic and Statistical Manual of Mental Disorders (DSM) IV criteria irrespective of other co-morbid psychiatric illnesses were recruited in the study. Initially a pilot study (n = 10) was carried out to confirm the efficacy of the identified dose of Brāhmī ghṛtam. Using this dose, further therapeutic confirmatory study (n = 27) was carried out, wherein Brāhmī ghṛtam was compared with methylphenidate. Effect on ADHD symptoms was assessed using the Dupaul ADHD rating scale and this was the main efficacy parameter. Results: In the pilot exploratory study, Brāhmī ghṛtam showed 66% decrease in total ADHD score. In the therapeutic confirmatory study, only 16% improvement was seen with Brāhmī ghṛtam, which was similar to methylphenidate, standard treatment for ADHD that was used as a comparator in the present study. No side-effects were reported in both studies. Conclusion: Our study thus has adequately demonstrated efficacy and safety of Brāhmī ghṛtam in ADHD. PMID:25284947

  2. Measurement of plutonium and other actinide elements at the center for accelerator mass spectrometry: a comparative assessments of competing techniques

    SciTech Connect

    Hamilton, T H; McAninch, J

    1999-02-01

    initiatives. One potential measurement technique for meeting these requirements is accelerator mass spectrometry (AMS). AMS is a widely accepted analytical technique for measurement of isotopes such as 14 C, 26 Al, 36 Cl (Vogel et al., 1995) but has only recently been demonstrated for the quantitative detection of actinides (Fifield et al., 1996). The Center for Accelerator Mass Spectrometry (CAMS) at the Lawrence Livermore National Laboratory (LLNL) operates the most versatile and most productive AMS instrument in the world (Roberts et al., 1996). The addition of a Heavy Ion Beamline and associated hardware for actinide detection are in an advanced stage of development. Detection limits for actinide elements are expected to be on the order of 1 ´ 10 6 atoms (~0.5 fg) or lower with an initial measurement capacity of a few hundred samples per year. The ultimate detection sensitivity is expected to be ~1 ´ 10 5 atoms. Here we provide a review of non-conventional measurement techniquesÑincluding AMSÑfor the determination of low-levels of 239 Pu and other actinide elements in environmental samples. We include a discussion of potential measurement interferences and sample preparation requirements for the different techniques, and outline our proposed AMS system design and strategic approach for the development of low-level actinide detection capability at CAMS.

  3. Human Vitamin B12 Absorption and Metabolism are Measured by Accelerator Mass Spectrometry Using Specifically Labeled 14C-Cobalamin

    SciTech Connect

    Carkeet, C; Dueker, S R; Lango, J; Buchholz, B A; Miller, J W; Green, R; Hammock, B D; Roth, J R; Anderson, P J

    2006-01-26

    There is need for an improved test of human ability to assimilate dietary vitamin B{sub 12}. Assaying and understanding absorption and uptake of B{sub 12} is important because defects can lead to hematological and neurological complications. Accelerator mass spectrometry (AMS) is uniquely suited for assessing absorption and kinetics of {sup 14}C-labeled substances after oral ingestion because it is more sensitive than decay counting and can measure levels of carbon-14 ({sup 14}C) in microliter volumes of biological samples, with negligible exposure of subjects to radioactivity. The test we describe employs amounts of B{sub 12} in the range of normal dietary intake. The B{sub 12} used was quantitatively labeled with {sup 14}C at one particular atom of the DMB moiety by exploiting idiosyncrasies of Salmonellametabolism. In order to grow aerobically on ethanolamine, S. entericamust be provided with either pre-formed B{sub 12} or two of its precursors: cobinamide and dimethylbenzimidazole (DMB). When provided with {sup 14}C-DMB specifically labeled in the C2 position, cells produced {sup 14}C-B{sub 12} of high specific activity (2.1 GBq/mmol, 58 mCi/mmol) and no detectable dilution of label from endogenous DMB synthesis. In a human kinetic study, a physiological dose (1.5 mg, 2.2 KBq/59 nCi) of purified {sup 14}C-B{sub 12} was administered and showed plasma appearance and clearance curves consistent with the predicted behavior of the pure vitamin. This method opens new avenues for study of B{sub 12} assimilation.

  4. Sequential injection approach for simultaneous determination of ultratrace plutonium and neptunium in urine with accelerator mass spectrometry.

    PubMed

    Qiao, Jixin; Hou, Xiaolin; Roos, Per; Lachner, Johannes; Christl, Marcus; Xu, Yihong

    2013-09-17

    An analytical method was developed for simultaneous determination of ultratrace level plutonium (Pu) and neptunium (Np) using iron hydroxide coprecipitation in combination with automated sequential injection extraction chromatography separation and accelerator mass spectrometry (AMS) measurement. Several experimental parameters affecting the analytical performance were investigated and compared including sample preboiling operation, aging time, amount of coprecipitating reagent, reagent for pH adjustment, sedimentation time, and organic matter decomposition approach. The overall analytical results show that preboiling and aging are important for obtaining high chemical yields for both Pu and Np, which is possibly related to the aggregation and adsorption behavior of organic substances contained in urine. Although the optimal condition for Np and Pu simultaneous determination requires 5-day aging time, an immediate coprecipitation without preboiling and aging could also provide fairly satisfactory chemical yields for both Np and Pu (50-60%) with high sample throughput (4 h/sample). Within the developed method, (242)Pu was exploited as chemical yield tracer for both Pu and Np isotopes. (242)Pu was also used as a spike in the AMS measurement for quantification of (239)Pu and (237)Np concentrations. The results show that, under the optimal experimental condition, the chemical yields of (237)Np and (242)Pu are nearly identical, indicating the high feasibility of (242)Pu as a nonisotopic tracer for (237)Np determination in real urine samples. The analytical method was validated by analysis of a number of urine samples spiked with different levels of (237)Np and (239)Pu. The measured values of (237)Np and (239)Pu by AMS exhibit good agreement (R(2) ≥ 0.955) with the spiked ones confirming the reliability of the proposed method. PMID:23952680

  5. The use of aluminum nitride to improve Aluminum-26 Accelerator Mass Spectrometry measurements and production of Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; Mills, Gerald D.; Romero-Romero, Elisa; Stracener, Daniel W.

    2015-10-01

    We present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al2O3 targets. However, Al2O3 is not an ideal source material because it does not form a prolific beam of Al- required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al2O3), aluminum nitride (AlN), mixed Al2O3-AlN as well as aluminum fluoride (AlF3) were tested and compared using the ion source test facility and the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al2O3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al2O3 with graphite powder at 1600 °C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. The potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.

  6. Kinetics of carboplatin-DNA binding in genomic DNA and bladder cancer cells as determined by accelerator mass spectrometry

    SciTech Connect

    Hah, S S; Stivers, K M; Vere White, R; Henderson, P T

    2005-12-29

    Cisplatin and carboplatin are platinum-based drugs that are widely used in cancer chemotherapy. The cytotoxicity of these drugs is mediated by platinum-DNA monoadducts and intra- and interstrand diadducts, which are formed following uptake of the drug into the nucleus of cells. The pharmacodynamics of carboplatin display fewer side effects than for cisplatin, albeit with less potency, which may be due to differences in rates of DNA adduct formation. We report the use of accelerator mass spectrometry (AMS), a sensitive detection method often used for radiocarbon quantitation, to measure both the kinetics of [{sup 14}C]carboplatin-DNA adduct formation with genomic DNA and drug uptake and DNA binding in T24 human bladder cancer cells. Only carboplatin-DNA monoadducts contain radiocarbon in the platinated DNA, which allowed for calculation of kinetic rates and concentrations within the system. The percent of radiocarbon bound to salmon sperm DNA in the form of monoadducts was measured by AMS over 24 h. Knowledge of both the starting concentration of the parent carboplatin and the concentration of radiocarbon in the DNA at a variety of time points allowed calculation of the rates of Pt-DNA monoadduct formation and conversion to toxic cross-links. Importantly, the rate of carboplatin-DNA monoadduct formation was approximately 100-fold slower than that reported for the more potent cisplatin analogue, which may explain the lower toxicity of carboplatin. T24 human bladder cancer cells were incubated with a subpharmacological dose of [{sup 14}C]carboplatin, and the rate of accumulation of radiocarbon in the cells and nuclear DNA was measured by AMS. The lowest concentration of radiocarbon measured was approximately 1 amol/10 {micro}g of DNA. This sensitivity may allow the method to be used for clinical applications.

  7. Determination of Atto- to Femtogram Levels of Americium and Curium Isotopes in Large-Volume Urine Samples by Compact Accelerator Mass Spectrometry.

    PubMed

    Dai, Xiongxin; Christl, Marcus; Kramer-Tremblay, Sheila; Synal, Hans-Arno

    2016-03-01

    Ultralow level analysis of actinides in urine samples may be required for dose assessment in the event of internal exposures to these radionuclides at nuclear facilities and nuclear power plants. A new bioassay method for analysis of sub-femtogram levels of Am and Cm in large-volume urine samples was developed. Americium and curium were co-precipitated with hydrous titanium oxide from the urine matrix and purified by column chromatography separation. After target preparation using mixed titanium/iron oxides, the final sample was measured by compact accelerator mass spectrometry. Urine samples spiked with known quantities of Am and Cm isotopes in the range of attogram to femtogram levels were measured for method evaluation. The results are in good agreement with the expected values, demonstrating the feasibility of compact accelerator mass spectrometry (AMS) for the determination of minor actinides at the levels of attogram/liter in urine samples to meet stringent sensitivity requirements for internal dosimetry assessment. PMID:26822907

  8. Bladder cancer cells re-educate TAMs through lactate shuttling in the microfluidic cancer microenvironment

    PubMed Central

    Liu, Pengfei; Cao, Yanwei; Wang, Yonghua; Yang, Xuecheng; Xu, Xiaodong; Wang, Xinsheng; Niu, Haitao

    2015-01-01

    Background In the present study, we aimed to investigate the influence of lactate shuttling on the functional polarization and spatial distribution of transitional cell carcinoma of the bladder (TCCB) cells and macrophages. Methods We designed a microfluidic coculture chip for real-time integrative assays. The effect of lactate shuttling on the re-education of macrophages by TCCB cells was explored by measuring the levels of NO using a total NO assay kit and by evaluating the protein expression of iNOS, p-NFkB-p65, Arg-1 and HIF-1α via cell immunofluorescence and western blotting. Additionally, we examined TCCB cell viability using acridine orange/ethidium bromide (AO/EB) and MitoTracker staining. Moreover, the concentration distributions of lactate and large signaling proteins in the culture chambers were measured using 4′,6-diamidino-2-phenylindole (DAPI) and fluorescein isothiocyanate-dextran (FITC-dextran). Furthermore, the recruitment of macrophages and the influence of macrophages on BC metastasis were observed via light microscopy. Results We confirmed that TCCB cells reprogrammed macrophages into an M2 phenotype. Moreover, lactate inhibited M1 polarization and induced M2 polarization of macrophages, but blockade of cancer cell-macrophage lactate flux significantly inhibited the re-education of macrophages by TCCB cells. In addition, lactate diffused faster and deeper than large signaling proteins in the microfluidic tumor microenvironment. Furthermore, lactate alone induced the migration of macrophages, and M1, but not M2, macrophages reduced the motility of TCCB cells. Conclusions TCCB cells reprogrammed macrophages into an M2 phenotype in a manner that depended on cancer cell-TAM lactate flux. Furthermore, the lactate shuttle may be a determinant of the density of TAMs in tumor tissue. PMID:26474279

  9. Validating the Satisfaction and Continuance Intention of E-Learning Systems: Combining TAM and IS Success Models

    ERIC Educational Resources Information Center

    Lin, Tung-Cheng; Chen, Ching-Jen

    2012-01-01

    Many e-learning studies have evaluated learning attitudes and behaviors, based on TAM. However, a successful e-learning system (ELS) should take both system and information quality into account by applying ISM developed by Delone and McLean. In addition, the acceptance for information system depends on the perceived usefulness and ease of use…

  10. A new hobo, Ac, Tam3 transposable element, hopper, from Bactrocera dorsalis is distantly related to hobo and Ac

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new transposable element from the hobo, Ac, TamJ transposon family was isolated as a genomic clone from the oriental fruit fly, BactrOCi!ro dorsalis. It is approximately 3.1 kb in length with 19-bp inverted terminal repeat sequences having a single mismatch.Though sharing several amino acid sequen...

  11. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  12. Human in Vivo Pharmacokinetics of [(14)C]Dibenzo[def,p]chrysene by Accelerator Mass Spectrometry Following Oral Microdosing.

    PubMed

    Madeen, Erin; Corley, Richard A; Crowell, Susan; Turteltaub, Kenneth; Ognibene, Ted; Malfatti, Mike; McQuistan, Tammie J; Garrard, Mary; Sudakin, Dan; Williams, David E

    2015-01-20

    Dibenzo(def,p)chrysene (DBC), (also known as dibenzo[a,l]pyrene), is a high molecular weight polycyclic aromatic hydrocarbon (PAH) found in the environment, including food, produced by the incomplete combustion of hydrocarbons. DBC, classified by IARC as a 2A probable human carcinogen, has a relative potency factor (RPF) in animal cancer models 30-fold higher than benzo[a]pyrene. No data are available describing the disposition of high molecular weight (>4 rings) PAHs in humans to compare to animal studies. Pharmacokinetics of DBC was determined in 3 female and 6 male human volunteers following oral microdosing (29 ng, 5 nCi) of [(14)C]-DBC. This study was made possible with highly sensitive accelerator mass spectrometry (AMS), capable of detecting [(14)C]-DBC equivalents in plasma and urine following a dose considered of de minimus risk to human health. Plasma and urine were collected over 72 h. The plasma Cmax was 68.8 ± 44.3 fg·mL(-1) with a Tmax of 2.25 ± 1.04 h. Elimination occurred in two distinct phases: a rapid (α)-phase, with a T1/2 of 5.8 ± 3.4 h and an apparent elimination rate constant (Kel) of 0.17 ± 0.12 fg·h(-1), followed by a slower (β)-phase, with a T1/2 of 41.3 ± 29.8 h and an apparent Kel of 0.03 ± 0.02 fg·h(-1). In spite of the high degree of hydrophobicity (log Kow of 7.4), DBC was eliminated rapidly in humans, as are most PAHs in animals, compared to other hydrophobic persistent organic pollutants such as, DDT, PCBs and TCDD. Preliminary examination utilizing a new UHPLC-AMS interface, suggests the presence of polar metabolites in plasma as early as 45 min following dosing. This is the first in vivo data set describing pharmacokinetics in humans of a high molecular weight PAH and should be a valuable addition to risk assessment paradigms. PMID:25418912

  13. Biological/biomedical accelerator mass spectrometry targets. 1. optimizing the CO2 reduction step using zinc dust.

    PubMed

    Kim, Seung-Hyun; Kelly, Peter B; Clifford, Andrew J

    2008-10-15

    Biological and biomedical applications of accelerator mass spectrometry (AMS) use isotope ratio mass spectrometry to quantify minute amounts of long-lived radioisotopes such as (14)C. AMS target preparation involves first the oxidation of carbon (in sample of interest) to CO 2 and second the reduction of CO 2 to filamentous, fluffy, fuzzy, or firm graphite-like substances that coat a -400-mesh spherical iron powder (-400MSIP) catalyst. Until now, the quality of AMS targets has been variable; consequently, they often failed to produce robust ion currents that are required for reliable, accurate, precise, and high-throughput AMS for biological/biomedical applications. Therefore, we described our optimized method for reduction of CO 2 to high-quality uniform AMS targets whose morphology we visualized using scanning electron microscope pictures. Key features of our optimized method were to reduce CO 2 (from a sample of interest that provided 1 mg of C) using 100 +/- 1.3 mg of Zn dust, 5 +/- 0.4 mg of -400MSIP, and a reduction temperature of 500 degrees C for 3 h. The thermodynamics of our optimized method were more favorable for production of graphite-coated iron powders (GCIP) than those of previous methods. All AMS targets from our optimized method were of 100% GCIP, the graphitization yield exceeded 90%, and delta (13)C was -17.9 +/- 0.3 per thousand. The GCIP reliably produced strong (12)C (-) currents and accurate and precise F m values. The observed F m value for oxalic acid II NIST SRM deviated from its accepted F m value of 1.3407 by only 0.0003 +/- 0.0027 (mean +/- SE, n = 32), limit of detection of (14)C was 0.04 amol, and limit of quantification was 0.07 amol, and a skilled analyst can prepare as many as 270 AMS targets per day. More information on the physical (hardness/color), morphological (SEMs), and structural (FT-IR, Raman, XRD spectra) characteristics of our AMS targets that determine accurate, precise, and high-hroughput AMS measurement are in the

  14. Observational infant exploratory [14C]-paracetamol pharmacokinetic microdose/therapeutic dose study with accelerator mass spectrometry bioanalysis

    PubMed Central

    Garner, Colin R; Park, Kevin B; French, Neil S; Earnshaw, Caroline; Schipani, Alessandro; Selby, Andrew M; Byrne, Lindsay; Siner, Sarah; Crawley, Francis P; Vaes, Wouter H J; van Duijn, Esther; deLigt, Rianne; Varendi, Heili; Lass, Jane; Grynkiewicz, Grzegorz; Maruszak, Wioletta; Turner, Mark A

    2015-01-01

    Aims The aims of the study were to compare [14C]-paracetamol ([14C]-PARA) paediatric pharmacokinetics (PK) after administration mixed in a therapeutic dose or an isolated microdose and to develop further and validate accelerator mass spectrometry (AMS) bioanalysis in the 0–2 year old age group. Methods [14C]-PARA concentrations in 10–15 µl plasma samples were measured after enteral or i.v. administration of a single [14C]-PARA microdose or mixed in with therapeutic dose in infants receiving PARA as part of their therapeutic regimen. Results Thirty-four infants were included in the PARA PK analysis for this study: oral microdose (n = 4), i.v. microdose (n = 6), oral therapeutic (n = 6) and i.v. therapeutic (n = 18). The respective mean clearance (CL) values (SDs in parentheses) for these dosed groups were 1.46 (1.00) l h–1, 1.76 (1.07) l h–1, 2.93 (2.08) l h–1 and 2.72 (3.10) l h–1, t1/2 values 2.65 h, 2.55 h, 8.36 h and 7.16 h and dose normalized AUC(0-t) (mg l–1 h) values were 0.90 (0.43), 0.84 (0.57), 0.7 (0.79) and 0.54 (0.26). Conclusions All necessary ethical, scientific, clinical and regulatory procedures were put in place to conduct PK studies using enteral and systemic microdosing in two European centres. The pharmacokinetics of a therapeutic dose (mg kg–1) and a microdose (ng kg–1) in babies between 35 to 127 weeks post-menstrual age. [14C]-PARA pharmacokinetic parameters were within a two-fold range after a therapeutic dose or a microdose. Exploratory studies using doses significantly less than therapeutic doses may offer ethical and safety advantages with increased bionalytical sensitivity in selected exploratory paediatric pharmacokinetic studies. PMID:25619398

  15. Human in Vivo Pharmacokinetics of [14C]Dibenzo[def,p]chrysene by Accelerator Mass Spectrometry Following Oral Microdosing

    PubMed Central

    2015-01-01

    Dibenzo(def,p)chrysene (DBC), (also known as dibenzo[a,l]pyrene), is a high molecular weight polycyclic aromatic hydrocarbon (PAH) found in the environment, including food, produced by the incomplete combustion of hydrocarbons. DBC, classified by IARC as a 2A probable human carcinogen, has a relative potency factor (RPF) in animal cancer models 30-fold higher than benzo[a]pyrene. No data are available describing the disposition of high molecular weight (>4 rings) PAHs in humans to compare to animal studies. Pharmacokinetics of DBC was determined in 3 female and 6 male human volunteers following oral microdosing (29 ng, 5 nCi) of [14C]-DBC. This study was made possible with highly sensitive accelerator mass spectrometry (AMS), capable of detecting [14C]-DBC equivalents in plasma and urine following a dose considered of de minimus risk to human health. Plasma and urine were collected over 72 h. The plasma Cmax was 68.8 ± 44.3 fg·mL–1 with a Tmax of 2.25 ± 1.04 h. Elimination occurred in two distinct phases: a rapid (α)-phase, with a T1/2 of 5.8 ± 3.4 h and an apparent elimination rate constant (Kel) of 0.17 ± 0.12 fg·h–1, followed by a slower (β)-phase, with a T1/2 of 41.3 ± 29.8 h and an apparent Kel of 0.03 ± 0.02 fg·h–1. In spite of the high degree of hydrophobicity (log Kow of 7.4), DBC was eliminated rapidly in humans, as are most PAHs in animals, compared to other hydrophobic persistent organic pollutants such as, DDT, PCBs and TCDD. Preliminary examination utilizing a new UHPLC-AMS interface, suggests the presence of polar metabolites in plasma as early as 45 min following dosing. This is the first in vivo data set describing pharmacokinetics in humans of a high molecular weight PAH and should be a valuable addition to risk assessment paradigms. PMID:25418912

  16. Compact Infrared Spectrometers

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2009-01-01

    Concentric spectrometer forms are advantageous for constructing a variety of systems spanning the entire visible to infrared range. Spectrometer examples are given, including broadband or high resolution forms. Some issues associated with the Dyson catadioptric type are also discussed.

  17. LLNL/UC (Lawrence Livermore National Laboratory)/(University of California) AMS (accelerator mass spectrometry) facility and research program

    SciTech Connect

    Davis, J.C.; Proctor, I.D.; Southon, J.R.; Caffee, M.W.; Heikkinen, D.W.; Roberts, M.L.; Moore, T.L.; Turteltaub, K.W.; Nelson, D.E.; Loyd, D.H.; Vogel, J.S.

    1990-04-18

    The Lawrence Livermore National Laboratory (LLNL) and the University of California (UC) now have in operation a large AMS spectrometer built as part of a new multiuser laboratory centered on an FN tandem. AMS measurements are expected to use half of the beam time of the accelerator. LLNL use of AMS is in research on consequences of energy usage. Examples include global warming, geophysical site characterization, radiation biology and dosimetry, and study of mutagenic and carcinogenic processes. UC research activities are in clinical applications, archaeology and anthropology, oceanography, and geophysical and geochemical research. Access is also possible for researchers outside the UC system. The technological focus of the laboratory is on achieving high rates of sample through-put, unattended operation, and advances in sample preparation methods. Because of the expected growth in the research programs and the other obligations of the present accelerator, we are designing a follow-on dedicated facility for only AMS and microprobe analysis that will contain at least two accelerators with multiple spectrometers. 10 refs., 1 fig.

  18. TAM receptor-dependent regulation of SOCS3 and MAPKs contributes to pro-inflammatory cytokine downregulation following chronic NOD2 stimulation of human macrophages1

    PubMed Central

    Zheng, Shasha; Hedl, Matija; Abraham, Clara

    2014-01-01

    Microbial-induced cytokine regulation is critical to intestinal immune homeostasis. Acute stimulation of NOD2, the Crohn’s disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, cytokines are attenuated after chronic NOD2 and pattern recognition receptor (PRR) stimulation of macrophages; similar attenuation is observed in intestinal macrophages. The role of Tyro3, Axl and Mer (TAM) receptors in regulating chronic PRR stimulation and NOD2-induced outcomes has not been examined. Moreover, TAM receptors have been relatively less investigated in human macrophages. Whereas TAM receptors did not downregulate acute NOD2-induced cytokines in primary human macrophages, they were essential for downregulating signaling and pro-inflammatory cytokine secretion after chronic NOD2 and TLR4 stimulation. Axl and Mer were similarly required in mice for cytokine downregulation after chronic NOD2 stimulation in vivo and in intestinal tissues. Consistently, TAM expression was increased in human intestinal myeloid-derived cells. Chronic NOD2 stimulation led to IL-10- and TGFβ-dependent TAM upregulation in human macrophages, which in turn, upregulated SOCS3 expression. Restoring SOCS3 expression under TAM knockdown conditions restored chronic NOD2-mediated pro-inflammatory cytokine downregulation. In contrast to the upregulated pro-inflammatory cytokines, attenuated IL-10 secretion was maintained in TAM-deficient macrophages upon chronic NOD2 stimulation. The level of MAPK activation in TAM-deficient macrophages after chronic NOD2 stimulation was insufficient to upregulate IL-10 secretion; however, full restoration of MAPK activation under these conditions restored c-Fos, c-Jun, MAFK and PU.1 binding to the IL-10 promoter and IL-10 secretion. Therefore, TAM receptors are critical for downregulating pro-inflammatory cytokines under the chronic NOD2 stimulation conditions observed in the intestinal environment. PMID:25567680

  19. Spherical grating spectrometers

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  20. Tritium retention measurements by accelerator mass spectrometry and full combustion of W-coated and uncoated CFC tiles from the JET divertor

    NASA Astrophysics Data System (ADS)

    Stan-Sion, C.; Bekris, N.; Kizane, G.; Enachescu, M.; Likonen, J.; Halitovs, M.; Petre, A.; contributors, JET

    2016-04-01

    Accelerator mass spectrometry (AMS) and the full combustion method (FCM) followed by liquid scintillation counting were applied to quantitatively determine the tritium retention in the tungsten-coated carbon fibre composites (CFC), in comparison to uncoated CFC tiles from the JET divertor. The tiles were adjacent and exposed to plasma operations between 2007 and 2009. The tritium depth profiles are showing that the tritium retention on the W-coated tile was reduced by a factor of 13.5 in comparison to the uncoated tile whereas the bulk tritium concentration is approximately the same for both tiles.

  1. Possible incorporation of petroleum-based carbons in biochemicals produced by bioprocess--biomass carbon ratio measured by accelerator mass spectrometry.

    PubMed

    Kunioka, Masao

    2010-06-01

    The biomass carbon ratios of biochemicals related to biomass have been reviewed. Commercial products from biomass were explained. The biomass carbon ratios of biochemical compounds were measured by accelerator mass spectrometry (AMS) based on the (14)C concentration of carbons in the compounds. This measuring method uses the mechanism that biomass carbons include a very low level of (14)C and petroleum carbons do not include (14)C similar to the carbon dating measuring method. It was confirmed that there were some biochemicals synthesized from petroleum-based carbons. This AMS method has a high accuracy with a small standard deviation and can be applied to plastic products. PMID:20454790

  2. Accelerator Mass Spectrometric (AMS) Measurements of Plutonium Activity Concentrations and 240Pu/239Pu Atom Ratios In Soil Extracts Supplied by the Carlsbad Environmental Monitoring & Research Center

    SciTech Connect

    Hamilton, T F; Brown, T A; Marchetti, A A; Martinelli, R E; Kehl, S R

    2005-02-28

    Plutonium-239 ({sup 239}Pu) and plutonium-239+240 ({sup 239+240}Pu) activities concentrations and {sup 240}Pu/{sup 239}Pu atom ratios are reported for a series of chemically purified soil extracts received from the Carlsbad Environmental Monitoring & Research Center (CEMRC) in New Mexico. Samples were analyzed without further purification at the Lawrence Livermore National Laboratory (LLNL) using accelerator mass spectrometry (AMS). This report also includes a brief description of the AMS system and internal laboratory procedures used to ensure the quality and reliability of the measurement data.

  3. Early Modern Humans and Morphological Variation in Southeast Asia: Fossil Evidence from Tam Pa Ling, Laos

    PubMed Central

    Demeter, Fabrice; Shackelford, Laura; Westaway, Kira; Duringer, Philippe; Bacon, Anne-Marie; Ponche, Jean-Luc; Wu, Xiujie; Sayavongkhamdy, Thongsa; Zhao, Jian-Xin; Barnes, Lani; Boyon, Marc; Sichanthongtip, Phonephanh; Sénégas, Frank; Karpoff, Anne-Marie; Patole-Edoumba, Elise; Coppens, Yves; Braga, José

    2015-01-01

    Little is known about the timing of modern human emergence and occupation in Eastern Eurasia. However a rapid migration out of Africa into Southeast Asia by at least 60 ka is supported by archaeological, paleogenetic and paleoanthropological data. Recent discoveries in Laos, a modern human cranium (TPL1) from Tam Pa Ling‘s cave, provided the first evidence for the presence of early modern humans in mainland Southeast Asia by 63-46 ka. In the current study, a complete human mandible representing a second individual, TPL 2, is described using discrete traits and geometric morphometrics with an emphasis on determining its population affinity. The TPL2 mandible has a chin and other discrete traits consistent with early modern humans, but it retains a robust lateral corpus and internal corporal morphology typical of archaic humans across the Old World. The mosaic morphology of TPL2 and the fully modern human morphology of TPL1 suggest that a large range of morphological variation was present in early modern human populations residing in the eastern Eurasia by MIS 3. PMID:25849125

  4. Early modern humans and morphological variation in Southeast Asia: fossil evidence from Tam Pa Ling, Laos.

    PubMed

    Demeter, Fabrice; Shackelford, Laura; Westaway, Kira; Duringer, Philippe; Bacon, Anne-Marie; Ponche, Jean-Luc; Wu, Xiujie; Sayavongkhamdy, Thongsa; Zhao, Jian-Xin; Barnes, Lani; Boyon, Marc; Sichanthongtip, Phonephanh; Sénégas, Frank; Karpoff, Anne-Marie; Patole-Edoumba, Elise; Coppens, Yves; Braga, José

    2015-01-01

    Little is known about the timing of modern human emergence and occupation in Eastern Eurasia. However a rapid migration out of Africa into Southeast Asia by at least 60 ka is supported by archaeological, paleogenetic and paleoanthropological data. Recent discoveries in Laos, a modern human cranium (TPL1) from Tam Pa Ling's cave, provided the first evidence for the presence of early modern humans in mainland Southeast Asia by 63-46 ka. In the current study, a complete human mandible representing a second individual, TPL 2, is described using discrete traits and geometric morphometrics with an emphasis on determining its population affinity. The TPL2 mandible has a chin and other discrete traits consistent with early modern humans, but it retains a robust lateral corpus and internal corporal morphology typical of archaic humans across the Old World. The mosaic morphology of TPL2 and the fully modern human morphology of TPL1 suggest that a large range of morphological variation was present in early modern human populations residing in the eastern Eurasia by MIS 3. PMID:25849125

  5. TAM 112’ Wheat, resistant to greenbug and wheat curl mite and adapted to the dryland production system in the Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TAM 112’ (PI 643143), a hard red winter wheat (Triticum aestivum L.) is an F4 derived line from the cross U1254-7-9-2-1/TXGH10440. U1254-7-9-2 is a USDA-ARS germplasm line from the Plant Science and Entomology Research unit, Manhattan, Kansas. It was developed from the cross TAM 200/TA2460. TA24...

  6. The Quadrupole Mass Spectrometer

    ERIC Educational Resources Information Center

    Matheson, E.; Harris, T. J.

    1969-01-01

    Describes the construction and operation of a quadrupole mass spectrometer for experiments in an advanced-teaching laboratory. Discusses the theory of operation of the spectrometer and the factors affecting the resolution. Some examples of mass spectra obtained with this instrument are presented and discussed. (LC)

  7. Differential Moessbauer spectrometer

    SciTech Connect

    Kurinyi, Yu.A.; Grotov, Yu.D.

    1988-07-01

    A spectrometer is described that permits hardware differentiation of spectra with respect to the energy of gamma radiation, specimen temperature, etc. Differentiation is performed by secondary modulation of source motion with subsequent phase-sensitive detection at the harmonics. The spectrometer is CAMAC-compatible and permits simultaneous measurement of the first four harmonics.

  8. Measurement of {sup 63}Ni and {sup 59}Ni by accelerator mass spectrometry using characteristic projectile x-rays

    SciTech Connect

    McAninch, J.E.; Hainsworth, L.J.; Marchetti, A.A.

    1996-05-01

    The long-lived isotopes of nickel ({sup 59}Ni, {sup 63}Ni) have current and potential use in a number of applications including cosmic radiation studies, biomedical tracing, characterization of low-level radioactive wastes, and neutron dosimetry. Methods are being developed at LLNL for the routine detection of these isotopes by AMS. One intended application is in Hiroshima dosimetry. The reaction {sup 63}Cu(n,p){sup 63}Ni has been identified as one of a small number of reactions which might be used for the direct determination of the fast neutron fluence emitted by the Hiroshima bomb. AMS measurement of {sup 63}Ni(t{sub 1/2} = 100 y) requires the chemical removal of {sup 63}Cu, which is a stable isobar of {sup 63}Ni. Following the electrochemical separation of Ni from gram-sized copper samples, the Cu concentration is further lowered to < 2 x 10{sup -8} (Cu/Ni) using the reaction of Ni with carbon monoxide to form the gas Ni(CO){sub 4}. The Ni(CO){sub 4} is thermally decomposed directly in sample holders for measurement by AMS. After analysis in the AMS spectrometer, the ions are identified using characteristic projectile x-rays, allowing further rejection of remaining {sup 63}Cu. In a demonstration experiment, {sup 63}Ni was measured in Cu wires (2-20 g) which had been exposed to neutrons from a {sup 252}Cf source. We successfully measured {sup 63}Ni at levels necessary for the measurement of Cu samples exposed near the Hiroshima hypocenter. For the demonstration samples, the Cu content was chemically reduced by a factor of 10{sup 12} with quantitative retention of {sup 63}Ni. Detection sensitivity (3{sigma}) was {approximately}20 fg {sup 63}Ni in 1 mg Ni carrier ({sup 63}Ni/Ni {approx} 2 x 10{sup -11}). Significant improvements in sensitivity are expected with planned incremental changes in the methods. Preliminary results indicate that a similar sensitivity is achievable for {sup 59}Ni (t{sub 1/2} = 10{sup 5} y).

  9. Measurement of 63Ni and 59Ni by accelerator mass spectrometry using characteristic projectile X-rays

    NASA Astrophysics Data System (ADS)

    McAninch, J. E.; Hainsworth, L. J.; Marchetti, A. A.; Leivers, M. R.; Jones, P. R.; Dunlop, A. E.; Mauthe, R.; Vogel, J. S.; Proctor, I. D.; Straume, T.

    1997-03-01

    The long-lived isotopes of nickel (59Ni, 63Ni) have current and potential use in a number of applications including cosmic radiation studies, biomedical tracing, characterization of low-level radioactive wastes, and neutron dosimetry. Methods are being developed at LLNL for the routine detection of these isotopes by AMS. One intended application is in Hiroshima dosimetry. The reaction 63Cu(n,p)63Ni has been identified as one of a small number of reactions which might be used for the direct determination of the fast neutron fluence emitted by the Hiroshima bomb. AMS measurement of 63Ni (t{1}/{2} = 100 y) requires the chemical removal of 63Cu, which is a stable isobar of 63Ni. Following the electrochemical separation of Ni from gram-sized copper samples, the Cu concentration is further lowered to < 2 × 10-8 ({Cu}/{Ni}) using the reaction of Ni with carbon monoxide to form the gas Ni(CO)4. The Ni(CO)4 is thermally decomposed directly in sample holders for measurement by AMS. After analysis in the AMS spectrometer, the ions are identified using characteristic projectile X-rays, allowing further rejection of remaining 63Cu. In a demonstration experiment, 63Ni was measured in Cu wires (2-20 g) which had been exposed to neutrons from a 252Cf source. We successfully measured 63Ni at levels necessary for the measurement of Cu samples exposed near the Hiroshima hypocenter. For the demonstration samples, the Cu content was chemically reduced by a factor of 1012 with quantitative retention of 63Ni. Detection sensitivity (3σ) was ˜ 20 fg 63Ni in 1 mg Ni carrier ({63Ni}/{Ni} ≈ 2 × 10-11). Significant improvements in sensitivity are expected with planned incremental changes in the methods. Preliminary results indicate that a similar sensitivity is achievable for 59Ni (t{1}/{2} = 105 y). Initial work has been undertaken on the application of this isotope as a biomedical tracer in living systems.

  10. The SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Pakarinen, J.; Papadakis, P.; Sorri, J.; Herzberg, R.-D.; Greenlees, P. T.; Butler, P. A.; Coleman-Smith, P. J.; Cox, D. M.; Cresswell, J. R.; Jones, P.; Julin, R.; Konki, J.; Lazarus, I. H.; Letts, S. C.; Mistry, A.; Page, R. D.; Parr, E.; Pucknell, V. F. E.; Rahkila, P.; Sampson, J.; Sandzelius, M.; Seddon, D. A.; Simpson, J.; Thornhill, J.; Wells, D.

    2014-03-01

    The SAGE spectrometer has been constructed for in-beam nuclear structure studies. SAGE combines a Ge-detector array and an electron spectrometer for detection of -rays and internal conversion electrons, respectively, and allows simultaneous observation of both electrons and -rays emitted from excited nuclei. SAGE is set up in the Accelerator Laboratory of the University of Jyväskylä and works in conjunction with the RITU gas-filled recoil separator and the GREAT focal-plane spectrometer allowing the use of the recoil-decay tagging method.

  11. High-precision measurements of {sup 14}C as a circulation tracer in the Pacific, Indian, and Southern Oceans with Accelerator Mass Spectrometry (AMS)

    SciTech Connect

    Reden, Karl F. von; Peden, John C.; Schneider, Robert J.; Bellino, Mary; Donoghue, Joanne; Elder, Kathryn L.; Gagnon, Alan R.; Long, Patricia; McNichol, Ann P.; Morin, Tracey; Stuart, Dana; Hayes, John M.; Key, Robert M.

    1999-04-26

    The National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS) has completed the carbon isotope analysis of a major fraction of the 13,500 sea water samples collected in the framework of the World Ocean Circulation Experiment (WOCE) from three of the major world oceans between 1991 and 1996. We will describe the AMS technique employed at NOSAMS and, using 3-D data visualization techniques we will demonstrate the present status of the data set and offer some preliminary conclusions about the distribution of natural and anthropogenic {sup 14}C in the oceans. In particular, we will be able to compare some of the data with results from the Geochemical Ocean Sections Study (GEOSECS, 1972-1978) to obtain information about the time dependence of oceanic circulation processes, tracing the {sup 14}C signal introduced into the oceans during the atmospheric nuclear bomb tests in the 1950's and 1960's.

  12. Accurate determination of ¹²⁹I concentrations and ¹²⁹I/¹³⁷Cs ratios in spent nuclear resins by Accelerator Mass Spectrometry.

    PubMed

    Nottoli, Emmanuelle; Bienvenu, Philippe; Labet, Alexandre; Bourlès, Didier; Arnold, Maurice; Bertaux, Maité

    2014-04-01

    Determining long-lived radionuclide concentrations in radioactive waste has fundamental implications for the long-term management of storage sites. This paper focuses on the measurement of low (129)I contents in ion exchange resins used for primary fluid purification in Pressurised Water Reactors (PWR). Iodine-129 concentrations were successfully determined using Accelerator Mass Spectrometry (AMS) following a chemical procedure which included (1) acid digestion of resin samples in HNO3/HClO4, (2) radioactive decontamination by selective iodine extraction using a new chromatographic resin (CL Resin), and (3) AgI precipitation. Measured (129)I concentrations ranged from 4 to 12 ng/g, i.e. from 0.03 to 0.08 Bq/g. The calculation of (129)I/(137)Cs activity ratios used for routine waste management produced values in agreement with the few available data for PWR resin samples. PMID:24525301

  13. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    DOE PAGESBeta

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; Brown, Thomas A.; Grant, Patrick M.; Henderson, Roger A.; Moody, Kent J.; Tumey, Scott J.; Shaughnessy, Dawn A.; Sudowe, Ralf

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less

  14. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    SciTech Connect

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; Brown, Thomas A.; Grant, Patrick M.; Henderson, Roger A.; Moody, Kent J.; Tumey, Scott J.; Shaughnessy, Dawn A.; Sudowe, Ralf

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg from Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.

  15. MANTRA: An Integral Reactor Physics Experiment to Infer Actinide Capture Cross-sections from Thorium to Californium with Accelerator Mass Spectrometry

    SciTech Connect

    G. Youinou; C. McGrath; G. Imel; M. Paul; R. Pardo; F. Kondev; M. Salvatores; G. Palmiotti

    2011-08-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectrometry technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am, 244Cm and 248Cm.

  16. Application of TAM III to study sensitivity of soil organic matter degradation to temperature

    NASA Astrophysics Data System (ADS)

    Vikegard, Peter; Barros, Nieves; Piñeiro, Verónica

    2014-05-01

    Traditionally, studies of soil biodegradation are based on CO2 dissipation rates. CO2 is a product of aerobic degradation of labile organic substrates like carbohydrates. That limits the biodegradation concept to just one of the soil organic matter fractions. This feature is responsible for some problems to settle the concept of soil organic matter (SOM) recalcitrance and for controversial results defining sensitivity of SOM to temperature. SOM consists of highly complex macromolecules constituted by fractions with different chemical nature and redox state affecting the chemical nature of biodegradation processes. Biodegradation of fractions more reduced than carbohydrates take place through metabolic pathways that dissipate less CO2 than carbohydrate respiration, that may not dissipate CO2, or that even may uptake CO2. These compounds can be considered more recalcitrant and with lower turnover times than labile SOM just because they are degraded at lower CO2 rates that may be just a consequence of the metabolic path. Nevertheless, decomposition of every kind of organic substrate always releases heat. For this reason, the measurement of the heat rate by calorimetry yields a more realistic measurement of the biodegradation of the SOM continuum. TAM III is one of the most recent calorimeters designed for directly measuring in real time the heat rate associated with any degradation process. It is designed as a multichannel system allowing the concomitant measurement of to up 24 samples at isothermal conditions or through a temperature scanning mode from 18 to 100ºC, allowing the continous measure of any sample at controlled non-isothermal conditions. The temperature scanning mode was tested in several soil samples collected at different depths to study their sensitivity to temperature changes from 18 to 35 ºC calculating the Q10 and the activation energy (EA) by the Arrhenius equation. It was attempted to associate the obtained EA values with the soil thermal

  17. Composite Spectrometer Prisms

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Page, N. A.; Rodgers, J. M.

    1985-01-01

    Efficient linear dispersive element for spectrometer instruments achieved using several different glasses in multiple-element prism. Good results obtained in both two-and three-element prisms using variety of different glass materials.

  18. The SLIM spectrometer.

    PubMed

    Cantrell, Kevin M; Ingle, James D

    2003-01-01

    A new spectrometer, here denoted the SLIM (simple, low-power, inexpensive, microcontroller-based) spectrometer, was developed that exploits the small size and low cost of solid-state electronic devices. In this device, light-emitting diodes (LED), single-chip integrated circuit photodetectors, embedded microcontrollers, and batteries replace traditional optoelectronic components, computers, and power supplies. This approach results in complete customizable spectrometers that are considerably less expensive and smaller than traditional instrumentation. The performance of the SLIM spectrometer, configured with a flow cell, was evaluated and compared to that of a commercial spectrophotometer. Thionine was the analyte, and the detection limit was approximately 0.2 microM with a 1.5-mm-path length flow cell. Nonlinearity due to the broad emission profile of the LED light sources is discussed. PMID:12530815

  19. Imaging Fourier transform spectrometer

    SciTech Connect

    Bennett, C.L.

    1993-09-13

    This invention is comprised of an imaging Fourier transform spectrometer having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer.

  20. The imaging spectrometer approach

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.

    1982-01-01

    Two important sensor design drivers are the requirement for spatial registration of the spectral components and the implementation of the advanced multispectral capability, including spectral band width, number of bands and programmability. The dispersive approach, fundamental to the imaging spectrometer concept, achieves these capabilities by utilizing a spectrometer to disperse the spectral content while preserving the spatial identity of the information in the cross-track direction. Area array detectors in the spectrometer focal plane detect and store the spatial and multispectral content for each line of the image. The choice of spectral bands, image IFOV and swath width is implemented by programmed readout of the focal plane. These choices in conjunction with data compression are used to match the output data rate with the telemetry link capability. Progress in the key technologies of optics, focal plane detector arrays, onboard processing, and focal plane cooling supports the viability of the imaging spectrometer approach.

  1. Microbolometer imaging spectrometer.

    PubMed

    Johnson, William R; Hook, Simon J; Shoen, Steven M

    2012-03-01

    Newly developed, high-performance, long-wave- and mid-wave-IR Dyson spectrometers offer a compact, low-distortion, broadband, imaging spectrometer design. The design is further accentuated when coupled to microbolometer array technology. This novel coupling allows radiometric and spectral measurements of high-temperature targets. It also serves to be unique since it allows for the system to be aligned warm. This eliminates the need for cryogenic temperature cycling. Proof of concept results are shown for a spectrometer with a 7.5 to 12.0 μm spectral range and approximately 20 nm per spectral band (~200 bands). Results presented in this Letter show performance for remote hot targets (>200 °C) using an engineering grade spectrometer and IR commercial lens assembly. PMID:22378399

  2. A Simple Raman Spectrometer.

    ERIC Educational Resources Information Center

    Blond, J. P.; Boggett, D. M.

    1980-01-01

    Discusses some basic physical ideas about light scattering and describes a simple Raman spectrometer, a single prism monochromator and a multiplier detector. This discussion is intended for British undergraduate physics students. (HM)

  3. Fourier Transform Spectrometer System

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  4. Noble metal nanoparticle-induced oxidative stress modulates tumor associated macrophages (TAMs) from an M2 to M1 phenotype: An in vitro approach.

    PubMed

    Pal, Ramkrishna; Chakraborty, Biswajit; Nath, Anupam; Singh, Leichombam Mohindro; Ali, Mohammed; Rahman, Dewan Shahidur; Ghosh, Sujit Kumar; Basu, Abhishek; Bhattacharya, Sudin; Baral, Rathindranath; Sengupta, Mahuya

    2016-09-01

    Diagnosis of cancer and photothermal therapy using optoelectronic properties of noble metal nanoparticles (NPs) has established a new therapeutic approach for treating cancer. Here we address the intrinsic properties of noble metal NPs (gold and silver) as well as the mechanism of their potential antitumor activity. For this, the study addresses the functional characterization of tumor associated macrophages (TAMs) isolated from murine fibrosarcoma induced by a chemical carcinogen, 3-methylcholanthrene (MCA). We have previously shown antitumor activity of both gold nanoparticles (AuNPs) and silver nanoparticle (AgNPs) in vivo in a murine fibrosarcoma model. In the present study, it has been seen that AuNPs and AgNPs modulate the reactive oxygen species (ROS) and reactive nitrogen species (RNS) production, suppressing the antioxidant system of cells (TAMs). Moreover, the antioxidant-mimetic action of these NPs maintain the ROS and RNS levels in TAMs which act as second messengers to activate the proinflammatory signaling cascades. Thus, while there is a downregulation of tumor necrosis factor-α (TNF-α) and Interleukin-10 (IL-10) in the TAMs, the proinflammatory cytokine Interleukin-12 (IL-12) is upregulated resulting in a polarization of TAMs from M2 (anti-inflammatory) to M1 (pro-inflammatory) nature. PMID:27344639

  5. An off Axis Cavity Enhanced Absorption Spectrometer and a Rapid Scan Spectrometer with a Room-Temperature External Cavity Quantum Cascade Laser

    NASA Astrophysics Data System (ADS)

    Liu, Xunchen; Kang, Cheolhwa; Xu, Yunjie

    2009-06-01

    Quantum cascade laser (QCL) is a new type of mid-infrared tunable diode lasers with superior output power and mode quality. Recent developments, such as room temperature operation, wide frequency tunability, and narrow line width, make QCLs an ideal light source for high resolution spectroscopy. Two slit jet infrared spectrometers, namely an off-axis cavity enhanced absorption (CEA) spectrometer and a rapid scan spectrometer with an astigmatic multi-pass cell assembly, have been coupled with a newly purchased room temperature tunable mod-hop-free QCL with a frequency coverage from 1592 cm^{-1} to 1698 cm^{-1} and a scan rate of 0.1 cm^{-1}/ms. Our aim is to utilize these two sensitive spectrometers, that are equipped with a molecular jet expansion, to investigate the chiral molecules-(water)_n clusters. To demonstrate the resolution and sensitivity achieved, the rovibrational transitions of the static N_2O gas and the bending rovibrational transitions of the Ar-water complex, a test system, at 1634 cm^{-1} have been measured. D. Hofstetter and J. Faist in High performance quantum cascade lasers and their applications, Vol.89 Springer-Verlag Berlin & Heidelberg, 2003, pp. 61-98. Y. Xu, X. Liu, Z. Su, R. M. Kulkarni, W. S. Tam, C. Kang, I. Leonov and L. D'Agostino, Proc. Spie, 2009, 722208 (1-11). M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 1997, 106, 3078-3089.

  6. Recombinant expression, purification, crystallization and preliminary X-ray diffraction analysis of the C-terminal DUF490963–1138 domain of TamB from Escherichia coli

    PubMed Central

    Josts, Inokentijs; Grinter, Rhys; Kelly, Sharon M.; Mosbahi, Khedidja; Roszak, Aleksander; Cogdell, Richard; Smith, Brian O.; Byron, Olwyn; Walker, Daniel

    2014-01-01

    TamB is a recently described inner membrane protein that, together with its partner protein TamA, is required for the efficient secretion of a subset of autotransporter proteins in Gram-negative bacteria. In this study, the C-terminal DUF490963–1138 domain of TamB was overexpressed in Escherichia coli K-12, purified and crystallized using the sitting-drop vapour-diffusion method. The crystals belonged to the primitive trigonal space group P3121, with unit-cell parameters a = b = 57.34, c = 220.74 Å, and diffracted to 2.1 Å resolution. Preliminary secondary-structure and X-ray diffraction analyses are reported. Two molecules are predicted to be present in the asymmetric unit. Experimental phasing using selenomethionine-labelled protein will be undertaken in the future. PMID:25195908

  7. Electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1973-01-01

    An electron-proton spectrometer was designed to measure the geomagnetically trapped radiation in a geostationary orbit at 6.6 earth radii in the outer radiation belt. This instrument is to be flown on the Applications Technology Satellite-F (ATS-F). The electron-proton spectrometer consists of two permanent magnet surface barrier detector arrays and associated electronics capable of selecting and detecting electrons in three energy ranges: (1) 30-50 keV, (2) 150-200 keV, and (3) 500 keV and protons in three energy ranges. The electron-proton spectrometer has the capability of measuring the fluxes of electrons and protons in various directions with respect to the magnetic field lines running through the satellite. One magnet detector array system is implemented to scan between EME north and south through west, sampling the directional flux in 15 steps. The other magnet-detector array system is fixed looking toward EME east.

  8. Accelerator mass spectrometry of 63Ni at the Munich Tandem Laboratory for estimating fast neutron fluences from the Hiroshima atomic bomb.

    PubMed

    Rühm, W; Knie, K; Rugel, G; Marchetti, A A; Faestermann, T; Wallner, C; McAninch, J E; Straume, T; Korschinek, G

    2000-10-01

    After the release of the present dosimetry system DS86 in 1987, measurements have shown that DS86 may substantially underestimate thermal neutron fluences at large distances (>1,000 m) from the hypocenter in Hiroshima. This discrepancy casts doubts on the DS86 neutron source term and, consequently, the survivors' estimated neutron doses. However, the doses were caused mainly by fast neutrons. To determine retrospectively fast neutron fluences in Hiroshima, the reaction 63Cu(n, p)63Ni can be used, if adequate copper samples can be found. Measuring 63Ni (half life 100 y) in Hiroshima samples requires a very sensitive technique, such as accelerator mass spectrometry (AMS), because of the relatively small amounts of 63Ni expected (approximately 10(5)-10(6) atoms per gram of copper). Experiments performed at Lawrence Livermore National Laboratory have demonstrated in 1996 that AMS can be used to measure 63Ni in Hiroshima copper samples. Subsequently, a collaboration was established with the Technical University of Munich in view of its potential to perform more sensitive measurements of 63Ni than the Livermore facility and in the interest of interlaboratory validation. This paper presents the progress made at the Munich facility in the measurement of 63Ni by AMS. The Munich accelerator mass spectrometry facility is a combination of a high energy tandem accelerator and a detection system featuring a gas-filled magnet. It is designed for high sensitivity measurements of long-lived radioisotopes. Optimization of the ion source setup has further improved the sensitivity for 63Ni by reducing the background level of the 63Cu isobar interference by about two orders of magnitude. Current background levels correspond to a ratio of 63Ni/Ni<2x10(-14) and suggest that, with adequate copper samples, the assessment of fast neutron fluences in Hiroshima and Nagasaki is possible for ground distances of up to 1500 m, and--under favorable conditions--even beyond. To demonstrate this

  9. Compact Grism Spectrometer

    NASA Astrophysics Data System (ADS)

    Teare, S. W.

    2003-05-01

    Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.

  10. Broad band waveguide spectrometer

    DOEpatents

    Goldman, Don S.

    1995-01-01

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  11. The Apollo Alpha Spectrometer.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Kubierschky, K.; Frank, R.; Carroll, J.

    1973-01-01

    Located in the Science Instrument Module of Apollo 15 and 16, the Alpha Particle Spectrometer was designed to detect and measure the energy of alpha particles emitted by the radon isotopes and their daughter products. The spectrometer sensor consisted of an array of totally depleted silicon surface barrier detectors. Biased amplifier and linear gate techniques were utilized to reduce resolution degradation, thereby permitting the use of a single 512 channel PHA. Sensor identification and in-flight radioactive calibration were incorporated to enhance data reduction.

  12. Comparison of imaging spectrometers

    SciTech Connect

    Bennett, C

    2000-01-09

    Realistic signal to noise performance estimates for the various types of instruments being considered for NGST are compared, based on the point source detection values quoted in the available ISIM final reports. The corresponding sensitivity of the various types of spectrometers operating in a full field imaging mode, for both emission line objects and broad spectral distribution objects, is computed and displayed. For the purpose of seeing the earliest galaxies, or the faintest possible emission line sources, the imaging Fourier transform spectrometer emerges superior to all others, by orders of magnitude in speed.

  13. Accelerator mass spectrometry analysis of ultra-low-level (129)I in carrier-free AgI-AgCl sputter targets.

    PubMed

    Liu, Qi; Hou, Xiaolin; Zhou, Weijian; Fu, Yunchong

    2015-05-01

    Separation of carrier-free iodine from low-level iodine samples and accurate measurement of ultra-low-level (129)I in microgram iodine target are essential but a bottleneck in geology and environment research using naturally produced (129)I. This article presents a detection technique of accelerator mass spectrometry (AMS) for accurate determination of ultra-low-level (129)I in carrier-free AgI-AgCl sputter targets. Copper instead of aluminum was selected as the suitable sample holder material to avoid the reaction of AgI-AgCl powder with aluminum. Niobium powder was selected as thermally and electrically conductive matrix to be mixed with AgI-AgCl powder, in order to obtain and maintain a stable and high iodine ion current intensity, as well as less memory effect and low background level of (129)I. The most optimal ratio of the Nb matrix to the AgI-AgCl powder was found to be 5:1 by mass. The typical current of (127)I(5+) using AgI-AgCl targets with iodine content from 5 to 80 μg was measured to be 5 to 100 nA. Four-year AMS measurements of the (129)I/(127)I ratios in standards of low iodine content and the machine blanks showed a good repeatability and stability. PMID:25743113

  14. Determination of cross sections for the 238U(n,3n)236U reaction induced by 14-MeV neutrons with accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Xianggao; Jiang, Shan; He, Ming; Dong, Kejun; Xiao, Caijing; Hu, Yueming; You, Qubo; Chen, Hongtao; Hou, Long; Yu, WeiXiang; Ruan, Xichao

    2013-01-01

    The cross sections of the 238U(n,3n)236U reaction induced by neutrons with energies around 14 MeV were determined using a combination of the activation technique and accelerator mass spectrometry (AMS) at the China Institute of Atomic Energy (CIAE). U3O8 samples were irradiated for 198 h by neutrons produced by the 3H(d,n)4He reaction on a 600-kV neutron generator at CIAE. Neutron flux was continuously determined by the activation of flux monitors, Co foils, closely attached to the sample. To accurately determine the long half-life product 236U, an AMS procedure was established with a sensitivity of about 10-11 for 236U/238U. As a result, the cross sections of 238U(n,3n)236U for the incident neutron energies of (14.18±0.30) and (14.65±0.40) MeV were obtained to be (489.3±48.0) and (556.7±27.8) mb, respectively.

  15. Accelerator mass spectrometry analysis of 14C-oxaliplatin concentrations in biological samples and 14C contents in biological samples and antineoplastic agents

    NASA Astrophysics Data System (ADS)

    Toyoguchi, Teiko; Kobayashi, Takeshi; Konno, Noboru; Shiraishi, Tadashi; Kato, Kazuhiro; Tokanai, Fuyuki

    2015-10-01

    Accelerator mass spectrometry (AMS) is expected to play an important role in microdose trials. In this study, we measured the 14C concentration in 14C-oxaliplatin-spiked serum, urine and supernatant of fecal homogenate samples in our Yamagata University (YU) - AMS system. The calibration curves of 14C concentration in serum, urine and supernatant of fecal homogenate were linear (the correlation coefficients were ⩾0.9893), and the precision and accuracy was within the acceptance criteria. To examine a 14C content of water in three vacuum blood collection tubes and a syringe were measured. 14C was not detected from water in these devices. The mean 14C content in urine samples of 6 healthy Japanese volunteers was 0.144 dpm/mL, and the intra-day fluctuation of 14C content in urine from a volunteer was little. The antineoplastic agents are administered to the patients in combination. Then, 14C contents of the antineoplastic agents were quantitated. 14C contents were different among 10 antineoplastic agents; 14C contents of paclitaxel injection and docetaxel hydrate injection were higher than those of the other injections. These results indicate that our quantitation method using YU-AMS system is suited for microdosing studies and that measurement of baseline and co-administered drugs might be necessary for the studies in low concentrations.

  16. Determination of cross sections of 60Ni(n,2n)59Ni induced by 14 MeV neutrons with accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    He, Ming; Xu, Yongning; Guan, Yongjing; Shen, Hongtao; Du, Liang; Hongtao, Chen; Dong, Kejun; Jiang, Shan; Yang, Xuran; Wang, Xiaoming; Ruan, Xiang dong; Liu, Jiancheng; Wu, Shaoyong; Zhao, Qingzhang; Cai, Li; Pang, Fangfang

    2015-10-01

    The cross section of the 60Ni(n,2n)59Ni induced by neutron with energy around 14 MeV is important for a fusion environment. However, the published values are strongly discordant. By taking advantage of the high sensitivity of 59Ni measurement at China Institute of Atomic Energy (CIAE), determination of the cross section has been carried out. A natural Nickel foil was irradiated by neutrons produce by a T(D,n)α neutron generator. 57Co and 58Co which produced in the Nickel foil were chosen for the neutron fluence determination. Then the ratio of 59Ni/60Ni for the irradiated sample was determined via accelerator mass spectrometry (AMS) utilizing a 13MV tandem accelerator and a Q3D magnet spectrometry at CIAE. As a result, the cross section of 60Ni(n,2n)59Ni for the incident neutron energy of (14.60 ± 0.40) MeV was determined to be (426 ± 53) mb.

  17. An effective method of UV-oxidation of dissolved organic carbon in natural waters for radiocarbon analysis by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Xue, Yuejun; Ge, Tiantian; Wang, Xuchen

    2015-12-01

    Radiocarbon (14C) measurement of dissolved organic carbon (DOC) is a very powerful tool to study the sources, transformation and cycling of carbon in the ocean. The technique, however, remains great challenges for complete and successful oxidation of sufficient DOC with low blanks for high precision carbon isotopic ratio analysis, largely due to the overwhelming proportion of salts and low DOC concentrations in the ocean. In this paper, we report an effective UV-Oxidation method for oxidizing DOC in natural waters for radiocarbon analysis by accelerator mass spectrometry (AMS). The UV-oxidation system and method show 95%±4% oxidation efficiency and high reproducibility for DOC in both river and seawater samples. The blanks associated with the method was also low (about 3 µg C) that is critical for 14C analysis. As a great advantage of the method, multiple water samples can be oxidized at the same time so it reduces the sample processing time substantially compared with other UV-oxidation method currently being used in other laboratories. We have used the system and method for 14C studies of DOC in rivers, estuaries, and oceanic environments and have received promise results.

  18. Early Upper Paleolithic chronology in the Levant: new ABOx-SC accelerator mass spectrometry results from the Mughr el-Hamamah Site, Jordan.

    PubMed

    Stutz, Aaron Jonas; Shea, John J; Rech, Jason A; Pigati, Jeffrey S; Wilson, Jim; Belmaker, Miriam; Albert, Rosa Maria; Arpin, Trina; Cabanes, Dan; Clark, Jamie L; Hartman, Gideon; Hourani, Fuad; White, Chantel E; Nilsson Stutz, Liv

    2015-08-01

    Methodological developments and new paleoanthropological data remain jointly central to clarifying the timing and systemic interrelationships between the Middle-Upper Paleolithic (MP-UP) archaeological transition and the broadly contemporaneous anatomically modern human-archaic biological turnover. In the recently discovered cave site of Mughr el-Hamamah, Jordan, in situ flint artifacts comprise a diagnostic early Upper Paleolithic (EUP) assemblage. Unusually well-preserved charcoal from hearths and other anthropogenic features associated with the lithic material were subjected to acid-base-wet oxidation-stepped combustion (ABOx-SC) pretreatment. This article presents the ABOx-SC accelerator mass spectrometry (AMS) radiocarbon dates on nine charcoal specimens from a single palimpsest occupation layer. Date calibration was carried out using the INTCAL13 radiocarbon calibration dataset. With the bulk of the material dating to 45-39 ka cal BP (thousands of years calibrated before present), the Mughr el-Hamamah lithic artifacts reveal important differences from penecontemporaneous sites in the region, documenting greater technological variability than previously known for this time frame in the Levant. The radiocarbon data from this EUP archaeological context highlight remaining challenges for increasing chronological precision in documenting the MP-UP transition. PMID:26073075

  19. A novel 14C-postlabeling assay using accelerator mass spectrometry for the detection of O6-methyldeoxy-guanosine adducts.

    PubMed

    Tompkins, Elaine M; Farmer, Peter B; Lamb, John H; Jukes, Rebekah; Dingley, Karen; Ubick, Esther; Turteltaub, Kenneth W; Martin, Elizabeth A; Brown, Karen

    2006-01-01

    Accelerator mass spectrometry (AMS) is currently one of the most sensitive methods available for the trace detection of DNA adducts and is particularly valuable for measuring adducts in humans or animal models. However, the standard approach requires administration of a radiolabeled compound. As an alternative, we have developed a preliminary 14C-postlabeling assay for detection of the highly mutagenic O6-methyldeoxyguanosine (O6-MedG), by AMS. Procedures were developed for derivatising O6-MedG using unlabeled acetic anhydride. Using conventional liquid chromatography/mass spectrometry (LC/MS) analysis, the limit of detection (LOD) for the major product, triacetylated O6-MedG, was 10 fmol. On reaction of O6-MedG with 14C-acetic anhydride, using a specially designed enclosed system, the predominant product was 14C-di-acetyl O6-MedG. This change in reaction profile was due to a modification of the reaction procedure, introduced as a necessary safety precaution. The LOD for 14C-di-acetyl O6-MedG by AMS was determined as 79 amol, approximately 18,000-fold lower than that achievable by liquid scintillation counting (LSC). Although the assay has so far only been carried out with labeled standards, the degree of sensitivity obtained illustrates the potential of this assay for measuring O6-MedG levels in humans. PMID:16470516

  20. Accelerator mass spectrometry measurements of the 13C (n ,γ )14C and 14N(n ,p )14C cross sections

    NASA Astrophysics Data System (ADS)

    Wallner, A.; Bichler, M.; Buczak, K.; Dillmann, I.; Käppeler, F.; Karakas, A.; Lederer, C.; Lugaro, M.; Mair, K.; Mengoni, A.; Schätzel, G.; Steier, P.; Trautvetter, H. P.

    2016-04-01

    The technique of accelerator mass spectrometry (AMS), offering a complementary tool for sensitive studies of key reactions in nuclear astrophysics, was applied for measurements of the 13C (n ,γ )14C and the 14N(n ,p )14C cross sections, which act as a neutron poison in s -process nucleosynthesis. Solid samples were irradiated at Karlsruhe Institute of Technology with neutrons closely resembling a Maxwell-Boltzmann distribution for k T =25 keV, and also at higher energies between En=123 and 182 keV. After neutron irradiation the produced amount of 14C in the samples was measured by AMS at the Vienna Environmental Research Accelerator (VERA) facility. For both reactions the present results provide important improvements compared to previous experimental data, which were strongly discordant in the astrophysically relevant energy range and missing for the comparably strong resonances above 100 keV. For 13C (n ,γ ) we find a four times smaller cross section around k T =25 keV than a previous measurement. For 14N(n ,p ), the present data suggest two times lower cross sections between 100 and 200 keV than had been obtained in previous experiments and data evaluations. The effect of the new stellar cross sections on the s process in low-mass asymptotic giant branch stars was studied for stellar models of 2 M⊙ initial mass, and solar and 1 /10th solar metallicity.

  1. Mass Spectrometers in Space!

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, William B.

    2012-01-01

    Exploration of our solar system over several decades has benefitted greatly from the sensitive chemical analyses offered by spaceflight mass spectrometers. When dealing with an unknown environment, the broadband detection capabilities of mass analyzers have proven extremely valuable in determining the composition and thereby the basic nature of space environments, including the outer reaches of Earth s atmosphere, interplanetary space, the Moon, and the planets and their satellites. Numerous mass analyzer types, including quadrupole, monopole, sector, ion trap, and time-of-flight have been incorporated in flight instruments and delivered robotically to a variety of planetary environments. All such instruments went through a rigorous process of application-specific development, often including significant miniaturization, testing, and qualification for the space environment. Upcoming missions to Mars and opportunities for missions to Venus, Europa, Saturn, Titan, asteroids, and comets provide new challenges for flight mass spectrometers that push to state of the art in fundamental analytical technique. The Sample Analysis at Mars (SAM) investigation on the recently-launch Mars Science Laboratory (MSL) rover mission incorporates a quadrupole analyzer to support direct evolved gas as well as gas chromatograph-based analysis of martian rocks and atmosphere, seeking signs of a past or present habitable environment. A next-generation linear ion trap mass spectrometer, using both electron impact and laser ionization, is being incorporated into the Mars Organic Molecule Analyzer (MOMA) instrument, which will be flown to Mars in 2018. These and other mass spectrometers and mission concepts at various stages of development will be described.

  2. Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Understanding the global atmospheric changes is difficult with today's current technology. However, with high resolution and nearly continuous observations from a satellite, it's possible to transform our understanding of the atmosphere. To enable the next generation of atmospheric science, a new class of orbiting atmospheric sensors is being developed. The foundation of this advanced concept is the Fourier Transform Spectrometer, or FTS.

  3. Cyclotrons as mass spectrometers

    SciTech Connect

    Clark, D.J.

    1984-04-01

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures.

  4. Seismicity in Central North Africa at low magnitudes: A first look at the TAM event detected data base

    SciTech Connect

    Harben, P.E.,

    1997-01-01

    Teleseismic observations of seismicity in the central North Africa region show that the region is aseismic. This is true for earthquakes with a body wave magnitude greater than about 4 or so. For earthquakes with body wave magnitudes substantially below about 4, the teleseismic observations of seismicity in the central Sahara are incomplete since smaller earthquakes would probably not be detected and located by the current teleseismic monitoring networks. Only one known open seismic station has been operating in the central Sahara. This is the Tamanrasset (TAM) seismic station in southern Algeria. A simple analysis of data records from this station can be used to determine if the central Sahara is also relatively aseismic at magnitudes substantially below 4. That is the primary purpose of this study.

  5. Assessing the Intention to Use Technology among Pre-Service Teachers in Singapore and Malaysia: A Multigroup Invariance Analysis of the Technology Acceptance Model (TAM)

    ERIC Educational Resources Information Center

    Teo, Timothy; Lee, Chwee Beng; Chai, Ching Sing; Wong, Su Luan

    2009-01-01

    This study assesses the pre-service teachers' self-reported future intentions to use technology in Singapore and Malaysia. A survey was employed to validate items from past research. Using the Technology Acceptance Model (TAM) as a research framework, 495 pre-service teachers from Singapore and Malaysia responded to an 11-item questionnaires…

  6. A novel RNA binding surface of the TAM domain of TIP5/BAZ2A mediates epigenetic regulation of rRNA genes

    PubMed Central

    Anosova, Irina; Melnik, Svitlana; Tripsianes, Konstantinos; Kateb, Fatiha; Grummt, Ingrid; Sattler, Michael

    2015-01-01

    The chromatin remodeling complex NoRC, comprising the subunits SNF2h and TIP5/BAZ2A, mediates heterochromatin formation at major clusters of repetitive elements, including rRNA genes, centromeres and telomeres. Association with chromatin requires the interaction of the TAM (TIP5/ARBP/MBD) domain of TIP5 with noncoding RNA, which targets NoRC to specific genomic loci. Here, we show that the NMR structure of the TAM domain of TIP5 resembles the fold of the MBD domain, found in methyl-CpG binding proteins. However, the TAM domain exhibits an extended MBD fold with unique C-terminal extensions that constitute a novel surface for RNA binding. Mutation of critical amino acids within this surface abolishes RNA binding in vitro and in vivo. Our results explain the distinct binding specificities of TAM and MBD domains to RNA and methylated DNA, respectively, and reveal structural features for the interaction of NoRC with non-coding RNA. PMID:25916849

  7. Smartphone spectrometer for colorimetric biosensing.

    PubMed

    Wang, Yi; Liu, Xiaohu; Chen, Peng; Tran, Nhung Thi; Zhang, Jinling; Chia, Wei Sheng; Boujday, Souhir; Liedberg, Bo

    2016-05-23

    We report on a smartphone spectrometer for colorimetric biosensing applications. The spectrometer relies on a sample cell with an integrated grating substrate, and the smartphone's built-in light-emitting diode flash and camera. The feasibility of the smartphone spectrometer is demonstrated for detection of glucose and human cardiac troponin I, the latter in conjunction with peptide-functionalized gold nanoparticles. PMID:27163736

  8. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  9. Simulation of the SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Cox, D. M.; Konki, J.; Greenlees, P. T.; Hauschild, K.; Herzberg, R.-D.; Pakarinen, J.; Papadakis, P.; Rahkila, P.; Sandzelius, M.; Sorri, J.

    2015-06-01

    The SAGE spectrometer combines a Ge-detector array with a Si detector to allow simultaneous detection of γ-rays and electrons. A comprehensive GEANT4 simulation package of the SAGE spectrometer has been developed with the ability to simulate the expected datasets based on user input files. The measured performance of the spectrometer is compared to the results obtained from the simulations.

  10. Vitamin K-dependent proteins GAS6 and Protein S and TAM receptors in patients of systemic lupus erythematosus: correlation with common genetic variants and disease activity

    PubMed Central

    2013-01-01

    Introduction Growth arrest-specific gene 6 protein (GAS6) and protein S (ProS) are vitamin K-dependent proteins present in plasma with important regulatory functions in systems of response and repair to damage. They interact with receptor tyrosine kinases of the Tyro3, Axl and MerTK receptor tyrosine kinase (TAM) family, involved in apoptotic cell clearance (efferocytosis) and regulation of the innate immunity. TAM-deficient mice show spontaneous lupus-like symptoms. Here we tested the genetic profile and plasma levels of components of the system in patients with systemic lupus erythematosus (SLE), and compare them with a control healthy population. Methods Fifty SLE patients and 50 healthy controls with matched age, gender and from the same geographic area were compared. Genetic analysis was performed in GAS6 and the TAM receptor genes on SNPs previously identified. The concentrations of GAS6, total and free ProS, and the soluble forms of the three TAM receptors (sAxl, sMerTK and sTyro3) were measured in plasma from these samples. Results Plasma concentrations of GAS6 were higher and, total and free ProS were lower in the SLE patients compared to controls, even when patients on oral anticoagulant treatment were discarded. Those parameters correlated with SLE disease activity index (SLEDAI) score, GAS6 being higher in the most severe cases, while free and total ProS were lower. All 3 soluble receptors increased its concentration in plasma of lupus patients. Conclusions The present study highlights that the GAS6/ProS-TAM system correlates in several ways with disease activity in SLE. We show here that this correlation is affected by common polymorphisms in the genes of the system. These findings underscore the importance of mechanism of regulatory control of innate immunity in the pathology of SLE. PMID:23497733

  11. Imaging Fourier Transform Spectrometer

    SciTech Connect

    Bennett, C.L.; Carter, M.R.; Fields, D.J.; Hernandez, J.

    1993-04-14

    The operating principles of an Imaging Fourier Transform Spectrometer (IFTS) are discussed. The advantages and disadvantages of such instruments with respect to alternative imaging spectrometers are discussed. The primary advantages of the IFTS are the capacity to acquire more than an order of magnitude more spectral channels than alternative systems with more than an order of magnitude greater etendue than for alternative systems. The primary disadvantage of IFTS, or FTS in general, is the sensitivity to temporal fluctuations, either random or periodic. Data from the IRIFTS (ir IFTS) prototype instrument, sensitive in the infrared, are presented having a spectral sensitivity of 0.01 absorbance units, a spectral resolution of 6 cm{sup {minus}1} over the range 0 to 7899 cm{sup {minus}1}, and a spatial resolution of 2.5 mr.

  12. FAST NEUTRON SPECTROMETER

    DOEpatents

    Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.

    1959-08-18

    An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.

  13. The Composite Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Calcutt, Simon; Taylor, Fredric; Ade, Peter; Kunde, Virgil; Jennings, Donald

    1992-01-01

    The Composite Infrared Spectrometer (CIRS) is a remote sensing instrument to be flown on the Cassini orbiter. It contains two Fourier transform spectrometers covering wavelengths of 7-1000 microns. The instrument is expected to have higher spectral resolution, smaller field of view, and better signal-to-noise performance than its counterpart, IRIS, on the Voyager missions. These improvements allow the study of the variability of the composition and temperature of the atmospheres of both Saturn and Titan with latitude, longitude and height, as well as allowing the possibility of discovery of previously undetected chemical species in these atmospheres. The long wavelengths accessible to CIRS allow sounding deeper into both atmospheres than was possible with IRIS.

  14. Surface Plasmon Based Spectrometer

    NASA Astrophysics Data System (ADS)

    Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom

    2008-03-01

    A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.

  15. Ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Inventor); Clay, D. R.; Goldstein, B. E.; Goldstein, R.

    1984-01-01

    An ion mass spectrometer is described which detects and indicates the characteristics of ions received over a wide angle, and which indicates the mass to charge ratio, the energy, and the direction of each detected ion. The spectrometer includes a magnetic analyzer having a sector magnet that passes ions received over a wide angle, and an electrostatic analyzer positioned to receive ions passing through the magnetic analyzer. The electrostatic analyzer includes a two dimensional ion sensor at one wall of the analyzer chamber, that senses not only the lengthwise position of the detected ion to indicate its mass to charge ratio, but also detects the ion position along the width of the chamber to indicate the direction in which the ion was traveling.

  16. Miniaturized Ion Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)

    2015-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.

  17. The Cryogenic Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Erickson, Edwin F.; Haas, Michael R.; Colgan, Sean W. J.; Simpson, Janet P.; Rubin, Robert H.

    1995-01-01

    The Cryogenic Grating Spectrometer (CGS) first flew on the KAO in 1982 December and has been open to guest investigators since 1984 October. In the past 12 years it has completed over 100 research flights supporting 13 different principal investigators studying a variety of objects. We briefly describe the instrument, its capabilities and accomplishments, and acknowledge the people who have contributed to its development and operation.

  18. Spherical electrostatic electron spectrometer

    NASA Astrophysics Data System (ADS)

    Yang, T.-S.; Kolk, B.; Kachnowski, T.; Trooster, J.; Benczer-Koller, N.

    1982-06-01

    A high transmission, low energy spherical electrostatic electron spectrometer particularly suited to the geometry required for Mössbauer-conversion electron spectroscopy was built. A transmission of 13% at an energy resolution of 2% was obtained with an 0.5 cm diameter source of 13.6 keV electrons. Applications to the study of hyperfine interactions of surfaces and interfaces are discussed.

  19. Negative ion-gas reaction studies using ion guides and accelerator mass spectrometry II: S-, SO- and Cl- with NO2 and N2O

    NASA Astrophysics Data System (ADS)

    Eliades, J. A.; Zhao, X.-L.; Litherland, A. E.; Kieser, W. E.

    2015-10-01

    Currently analysis of 36Cl by accelerator mass spectrometry (AMS) requires large facilities for separation of the isobar 36S. Previously, it has been shown possible to suppress S- by >6 orders of magnitude at low energies in a prototype radio-frequency quadrupole (RFQ) instrument by ion reactions in NO2 gas in the injection line of an AMS system. Reaction products for the negative ions S-, SO- and Cl- with NO2, and S- with N2O, have been surveyed in order to understand isobar attenuation plateaus and the losses of analyte ions. Ion energies were at eV levels, but had a large initial energy spread of at least several eV. Under these conditions, the aggregate total S- and SO- cross sections in NO2 were estimated to be 6.6 × 10-15 cm2 and 7.1 × 10-15 cm2 respectively and the major reaction channel observed was electron transfer producing NO2-. Other reaction products observed for S- were SO-, SO2-, NS-, and NSO2-. On the other hand, S-, SO- and NS- were found to be largely unreactive with N2O despite the existence of some highly exothermic reaction channels. When Cl- was injected into NO2, reaction products such as ClO- and NO2- were observed only at low levels suggesting that larger Cl- transmissions should be possible with some RFQ design modifications. The ClO- reaction product had only a small attenuation under the experimental conditions, despite having near resonant electron affinity with NO2.

  20. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  1. Mass spectrometers: instrumentation

    NASA Astrophysics Data System (ADS)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  2. Novel dimeric leuco-TAM dyes, 1,4-bis{(1E,3Z)-1,3-bis(1,3,3-trimethylindolin-2-ylidene)propan-2-yl}benzene derivatives: Structure and spectroscopic characterization

    NASA Astrophysics Data System (ADS)

    Keum, Sam-Rok; Ma, So-Young; Kim, Do-Kyung; Lim, Hyun-Woo; Roh, Se-Jung

    2012-04-01

    Novel dimeric leuco-triarylmethane (LTAM) dyes, 1,4-bis{(1E,3Z)-1,3-bis(1,3,3-trimethylindolin-2-ylidene)propan-2-yl}benzene derivatives, as precursors of dimeric TAM+ and TAM++ dyes, were synthesized and characterized by 1D and 2D NMR experiments including DEPT, COSY, HSQC, HMBC and NOESY. Judging from the 1H NMR analysis, the dimeric LTAM molecules were suggested to have a dual-propeller shaped structure. For the prepared dimeric leuco-TAM dyes, the ZE/EZ isomers were formed as the sole products from the reaction of 2-3 M excess Fischer base and terephthalaldehyde in absolute ethanol. The ZE/EZ isomers were equilibrated with other diastereomers (EE/EE and ZZ/ZZ) in organic solvents. UV-Vis spectroscopy of dimeric TAM++ dyes in organic solvents show an absorption band at >700 nm in the near-infrared (NIR) region. Formation of the dimeric TAM++ molecules was further confirmed by comparison of CV diagrams for monomeric TAM+ and dimeric TAM++ molecules.

  3. Astronomical Fourier spectrometer.

    PubMed

    Connes, P; Michel, G

    1975-09-01

    A high resolution near ir Fourier spectrometer with the same general design as previously described laboratory instruments has been built for astronomical observations at a coudé focus. Present spectral range is 0.8-3.5 microm with PbS and Ge detectors and maximum path difference 1 m. The servo system can accommodate various recording modes: stepping or continuous scan, path difference modulation, sky chopping. A real time computer is incorporated into the system, which has been set up at the Hale 500-cm telescope on Mount Palomar. Samples of the results are given. PMID:20154966

  4. Mossbauer spectrometer radiation detector

    NASA Technical Reports Server (NTRS)

    Singh, J. J. (Inventor)

    1973-01-01

    A Mossbauer spectrometer with high efficiencies in both transmission and backscattering techniques is described. The device contains a sodium iodide crystal for detecting radiation caused by the Mossbauer effect, and two photomultipliers to collect the radiation detected by the crystal. When used in the transmission technique, the sample or scatterer is placed between the incident radiation source and the detector. When used in a backscattering technique, the detector is placed between the incident radiation source and the sample of scatterer such that the incident radiation will pass through a hole in the crystal and strike the sample. Diagrams of the instrument are provided.

  5. Automated transportable mass spectrometer

    NASA Astrophysics Data System (ADS)

    Echo, M. W.

    1981-09-01

    The need was identified for a mass spectrometer (MS) which can be conveniently transported among several facilities for rapid verification of the isotopic composition of special nuclear material. This requirement for a light weight, transportable MS for U and Pu mass analysis was met by deleting the gas chromograph (GC) portions of a Hewlett-Packard Model 5992 Quadrupole GCMS and substituting a vacuum lock sample entry system. A programmable power supply and vacuum gauge were added and circuitry modifications were made to enable use of the supplied software.

  6. Neutron range spectrometer

    DOEpatents

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  7. Determination of the Tissue Distribution and Excretion by Accelerator Mass Spectrometry of the Nonadecapeptide 14C-Moli1901 in Beagle dogs after Intratracheal Instillation

    SciTech Connect

    Rickert, D E; Dingley, K H; Ubick, E; Dix, K J; Molina, L

    2004-07-02

    Administration of {sup 14}C-Moli1901 (duramycin, 2622U90), a 19 amino acid polycyclic peptide by intratracheal instillation (approximately 100 {micro}g) into the left cranial lobe of the lung of beagle dogs resulted in retention of 64% of the dose in the left cranial lobe for up to 28 days. In this study, we used accelerator mass spectrometry (AMS) to quantify Moli901 following administration of only 0.045 {micro}Ci of {sup 14}C-Moli901 per dog. Limits of quantitation of AMS were 0.03 (urine) to 0.3 (feces) ng equiv. Moli1901/g. Whole blood and plasma concentrations of {sup 14}C were <5ng/ml at all times after the dose. Concentrations of {sup 14}C in whole blood and plasma declined over the first day after the dose and rose thereafter, with the rise in plasma concentrations lagging behind those in whole blood. During the first 3 days after the dose, plasma accounted for the majority of {sup 14}C in whole blood, but after that time, plasma accounted for only 25-30% of the {sup 14}C in whole blood. Tissue (left and right caudal lung lobe, liver, kidney, spleen, brain) and bile concentrations were low, always less than 0.25% the concentrations found in the left cranial lung lobe. Approximately 13% of the dose was eliminated in urine and feces in 28 days, with fecal elimination accounting for about 10% of the dose. The data presented here are consistent with that obtained in other species. Moli1901 is slowly absorbed and excreted from the lung, and it does not accumulate in other tissues. Moli1901 is currently in the clinic and has proven to be safe in single dose studies in human volunteers and cystic fibrosis patients by the inhalation route. No information on the disposition of the compound in humans is available. This study in dogs demonstrates the feasibility of obtaining that information using {sup 14}C-Moli1901 and AMS.

  8. Quantification of absorption, retention and elimination of two different oral doses of vitamin A in Zambian boys using accelerator mass spectrometry

    SciTech Connect

    Aklamati, E K; Mulenga, M; Dueker, S R; Buchholz, B A; Peerson, J M; Kafwembe, E; Brown, K H; Haskell, M J

    2009-10-12

    A recent survey indicated that high-dose vitamin A supplements (HD-VAS) had no apparent effect on vitamin A (VA) status of Zambian children <5 y of age. To explore possible reasons for the lack of response to HD-VAS among Zambian children, we quantified the absorption, retention, and urinary elimination of either a single HDVAS (60 mg) or a smaller dose of stable isotope (SI)-labeled VA (5 mg), which was used to estimate VA pool size, in 3-4 y old Zambian boys (n = 4 for each VA dose). A 25 nCi tracer dose of [{sup 14}C{sub 2}]-labeled VA was co-administered with the HD-VAS or SI-labeled VA, and 24-hr stool and urine samples were collected for 3 and 7 consecutive days, respectively, and 24-hr urine samples at 4 later time points. Accelerator Mass Spectrometry (AMS) was used to measure the cumulative excretion of {sup 14}C in stool and urine 3d after dosing to estimate, respectively, absorption and retention of the VAS and SI-labeled VA. The urinary elimination rate (UER) was estimated by plotting {sup 14}C in urine vs. time, and fitting an exponential equation to the data. Estimates of mean absorption, retention and the UER were 83.8 {+-} 7.1%, 76.3 {+-} 6.7%, and 1.9 {+-} 0.6%/d, respectively, for the HD-VAS and 76.5 {+-} 9.5%, 71.1 {+-} 9.4%, and 1.8 {+-} 1.2%/d, respectively for the smaller dose of SI-labeled VA. Estimates of absorption, retention and the UER did not differ by size of the VA dose administered (P=0.26, 0.40, 0.88, respectively). Estimated absorption and retention were negatively associated with reported fever (P=0.011) and malaria (P =0.010). HD-VAS and SI-labeled VA were adequately absorbed, retained and utilized in apparently healthy Zambian preschool-age boys, although absorption and retention may be affected by recent infections.

  9. A Radio Frequency Quadrupole Instrument for use with Accelerator Mass Spectrometry: Application to Low Kinetic Energy Reactive Isobar Suppression and Gas--Phase Anion Reaction Studies

    NASA Astrophysics Data System (ADS)

    Eliades, John Alexander

    A radio frequency (rf) quadrupole instrument, currently known as an Isobar Separator for Anions (ISA), has been integrated into an Accelerator Mass Spectrometry (AMS) system to facilitate anion--gas reactions before the tandem accelerator. An AMS Cs+ sputter source provided ≥ 15 keV ions that were decelerated in the prototype ISA to < 20 eV for reaction in a single collision cell and re-accelerated for AMS analysis. Reaction based isobar suppression capabilities were assessed for smaller AMS systems and a new technique for gas--phase reaction studies was developed. Isobar suppression of 36S-- and 12C3-- for 36Cl analysis, and YF3-- and ZrF3-- for 90Sr analysis were studied in NO2 with deceleration to ≤ 12 eV. Observed attenuation cross sections, sigma [x 10--15 cm2], were sigma(S-- + NO2) = 6.6, sigma(C3-- + NO2) = 4.2, sigma(YF3-- + NO 2) = 7.6, sigma(ZrF3-- + NO2) = 19. With 8 mTorr NO2, relative attenuations of S-- /Cl-- ˜ 10--6, C 3--/Cl-- ˜ 10--7 , YF3--/SrF3-- ˜ 5 x 10--5 and ZrF3-- /SrF3-- ˜ 4 x 10--6 were observed with Cl-- ˜ 30% and SrF 3-- > 90% transmission. Current isobar attenuation limits with ≤ 1.75 MV accelerator terminal voltage and ppm impurity levels were calculated to be 36S--/Cl-- ˜ 4 x 10--16, 12C3 --/Cl-- ˜ 1.2 x 10--16, 90YF3--/SrF3-- ˜ 10--15 and 90ZrF3 --/SrF3-- ˜ 10--16 . Using 1.75 MV, four 36Cl reference standards in the range 4 x 10--13 ≤ 36Cl/Cl ≤ 4 x 10 --11 were analyzed with 8 mTorr NO2. The measured 36Cl/Cl ratios plotted very well against the accepted values. A sample impurity content S/Cl ≤ 6 x 10--5 was measured and a background level of 36S--/Cl ≤ 9 x 10--15 was determined. Useful currents of a wide variety of anions are produced in AMS sputter sources and molecules can be identified relatively unambiguously by stripping fragments from tandem accelerators. Reactions involving YF3 --, ZrF3--, S-- and SO-- + NO2 in the ISA analyzed by AMS are described, and some interesting reactants are identified.

  10. Improved multisphere spectrometer system

    SciTech Connect

    Shonka, J.J.; Schwahn, S.O.; Rogers, P.E.; Misko, C.J.

    1991-01-01

    Shonka Research Associated undertook a research program to improve the capabilities and ease of use of the Bonner sphere spectrometer system. Two key elements formed the heart of this research: replacement of the lithium iodide (LiI(Eu)) detector normally used in the spectrometer system with a spherical boron triflouride (BF{sub 3}) proportional counter and exploitation of an optimized set of nested polyethylene spheres, including boron-loaded spherical shells. Use of a spherical BF{sub 3} detector offers many advantages over the LiI(Eu) crystal. The BF{sub 3} detectors are insensitive to gamma radiation. Lack of gamma sensitivity permits acquiring data with simple electronics and allows determination of neutron spectra and dose in lower neutron-to-gamma ratio fields, including background terrestrial radiation fields. The importance of the lack of gamma sensitivity is underscored by the pending changes in neutron quality factors. The nearly perfect spherical symmetry offers advantages for BF{sub 3} over LiI(Eu) detectors as well. A light pipe, which perturbs measurements, is not needed. The bare BF{sub 3} detector response is not affected by the moderation of neutrons as is the case of the organic light pipe used with LiI(Eu). The spherical symmetry permits the use of smaller diameter shells, which add to the number of response functions.

  11. Spectrometers beyond the laboratory

    SciTech Connect

    Wadsworth, W.

    1996-11-01

    Two new types of miniature Fourier Transform Spectrometers (FTS) presently being built have enabled this technology to be taken out of the laboratory and into the field. Both designs are very rugged, use little power to run, and can be made extremely small and lightweight. They are excellent candidates for airborne use, both in aircraft and satellite applications. One, the Mcro FT, is a mass balanced linear reciprocating scan operating in the 1-2 scan per second speed range. The other, the Turbo FT, uses a rotary scan, enabling it to run at much higher speeds, from 10 to 1000 scans per second. Either type can be built in the visible, near K and thermal IR wavelength ranges, and provide spectral resolution of 1-2 wave-numbers. Results obtained in all these wavelength ranges are presented here. The rotary configuration is more suited to airborne and satellite survey type deployments, due mostly to its rapid scan rate. Either of these sensors will fit into a small, commercially available stabilized pod which can easily be attached to a helicopter or light plane. This results in a very economical flight spectrometer system. 11 figs.

  12. The Athena Raman Spectrometer

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Haskin, Larry A.; Jolliff, Bradley; Wdowiak, Tom; Agresti, David; Lane, Arthur L.

    2000-01-01

    Raman spectroscopy provides a powerful tool for in situ mineralogy, petrology, and detection of water and carbon. The Athena Raman spectrometer is a microbeam instrument intended for close-up analyses of targets (rock or soils) selected by the Athena Pancam and Mini-TES. It will take 100 Raman spectra along a linear traverse of approximately one centimeter (point-counting procedure) in one to four hours during the Mars' night. From these spectra, the following information about the target will extracted: (1) the identities of major, minor, and trace mineral phases, organic species (e.g., PAH or kerogen-like polymers), reduced inorganic carbon, and water-bearing phases; (2) chemical features (e.g. Mg/Fe ratio) of major minerals; and (3) rock textural features (e.g., mineral clusters, amygdular filling and veins). Part of the Athena payload, the miniaturized Raman spectrometer has been under development in a highly interactive collaboration of a science team at Washington University and the University of Alabama at Birmingham, and an engineering team at the Jet Propulsion Laboratory. The development has completed the brassboard stage and has produced the design for the engineering model.

  13. Resonant ultrasound spectrometer

    DOEpatents

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  14. Prototype Neutron Energy Spectrometer

    SciTech Connect

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  15. ISS Update: Alpha Magnetic Spectrometer

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries interviews Trent Martin, Johnson Space Center project manager for the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. Questions...

  16. Activation of TrkB with TAM-163 results in opposite effects on body weight in rodents and non-human primates.

    PubMed

    Perreault, Mylène; Feng, Guo; Will, Sarah; Gareski, Tiffany; Kubasiak, David; Marquette, Kimberly; Vugmeyster, Yulia; Unger, Thaddeus J; Jones, Juli; Qadri, Ariful; Hahm, Seung; Sun, Ying; Rohde, Cynthia M; Zwijnenberg, Raphael; Paulsen, Janet; Gimeno, Ruth E

    2013-01-01

    Strong genetic data link the Tyrosine kinase receptor B (TrkB) and its major endogenous ligand brain-derived neurotrophic factor (BDNF) to the regulation of energy homeostasis, with loss-of-function mutations in either gene causing severe obesity in both mice and humans. It has previously been reported that peripheral administration of the endogenous TrkB agonist ligand neurotrophin-4 (NT-4) profoundly decreases food intake and body weight in rodents, while paradoxically increasing these same parameters in monkeys. We generated a humanized TrkB agonist antibody, TAM-163, and characterized its therapeutic potential in several models of type 2 diabetes and obesity. In vitro, TAM-163 bound to human and rodent TrkB with high affinity, activated all aspects of the TrkB signaling cascade and induced TrkB internalization and degradation in a manner similar to BDNF. In vivo, peripheral administration of TAM-163 decreased food intake and/or body weight in mice, rats, hamsters, and dogs, but increased food intake and body weight in monkeys. The magnitude of weight change was similar in rodents and non-human primates, occurred at doses where there was no appreciable penetration into deep structures of the brain, and could not be explained by differences in exposures between species. Rather, peripherally administered TAM-163 localized to areas in the hypothalamus and the brain stem located outside the blood-brain barrier in a similar manner between rodents and non-human primates, suggesting differences in neuroanatomy across species. Our data demonstrate that a TrkB agonist antibody, administered peripherally, causes species-dependent effects on body weight similar to the endogenous TrkB ligand NT-4. The possible clinical utility of TrkB agonism in treating weight regulatory disorder, such as obesity or cachexia, will require evaluation in man. PMID:23700410

  17. Particle Spectrometers for FRIB

    NASA Astrophysics Data System (ADS)

    Amthor, A. M.

    2014-09-01

    FRIB promises to dramatically expand the variety of nuclear systems available for direct experimental study by providing rates of many rare isotopes orders of magnitude higher than those currently available. A new generation of experimental systems, including new particle spectrometers will be critical to our ability to take full advantage of the scientific opportunities offered by FRIB. The High-Rigidity Spectrometer (HRS) will allow for experiments with the most neutron-rich and short-lived isotopes produced by in-flight fragmentation at FRIB. The bending capability of the HRS (8 Tm) matches to the rigidity for which rare isotopes are produced at the highest intensity in the FRIB fragment separator. The experimental program will be focused on nuclear structure and astrophysics, and allow for the use of other cutting-edge detection systems for gamma, neutron, and charged-particle detection. Stopped and reaccelerated beam studies will be an important compliment to in-flight techniques at FRIB, providing world-unique, high quality, intense rare isotope beams at low energies up to and beyond the Coulomb barrier--with the completion of ReA12--and serving many of the science goals of the broader facility, from nuclear structure and astrophysics to applications. Two specialized recoil spectrometers are being developed for studies with reaccelerated beams. SECAR, the Separator for Capture Reactions, will be built following ReA3, coupled to a windowless gas jet target, JENSA, and will focus on radiative capture reactions for astrophysics, particularly those needed to improve our understanding of novae and X-ray bursts. A recoil separator following ReA12 is proposed to address a variety of physics cases based on fusion-evaporation, Coulomb excitation, transfer, and deep-inelastic reactions by providing a large angular, momentum and charge state acceptance; a high mass resolving power; and the flexibility to couple to a variety of auxiliary detector systems. Two designs

  18. Somatostatin Derivate (smsDX) Attenuates the TAM-Stimulated Proliferation, Migration and Invasion of Prostate Cancer via NF-κB Regulation

    PubMed Central

    Guo, Zhaoxin; Xing, Zhaoquan; Cheng, Xiangyu; Fang, Zhiqing; Jiang, Chao; Su, Jing; Zhou, Zunlin; Xu, Zhonghua; Holmberg, Anders; Nilsson, Sten; Liu, Zhaoxu

    2015-01-01

    Tumor development and progression are influenced by macrophages of the surrounding microenvironment. To investigate the influences of an inflammatory tumor microenvironment on the growth and metastasis of prostate cancer, the present study used a co-culture model of prostate cancer (PCa) cells with tumor-associated macrophage (TAM)-conditioned medium (MCM). MCM promoted PCa cell (LNCaP, DU145 and PC-3) growth, and a xenograft model in nude mice consistently demonstrated that MCM could promote tumor growth. MCM also stimulated migration and invasion in vitro. Somatostatin derivate (smsDX) significantly attenuated the TAM-stimulated proliferation, migration and invasion of prostate cancer. Immunohistochemistry revealed that NF-κB was over-expressed in PCa and BPH with chronic inflammatory tissue specimens and was positively correlated with macrophage infiltration. Further investigation into the underlying mechanism revealed that NF-κB played an important role in macrophage infiltration. SmsDX inhibited the paracrine loop between TAM and PCa cells and may represent a potential therapeutic agent for PCa. PMID:26010447

  19. Photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-12-26

    A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.

  20. Photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.

  1. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G.; Williams, Timothy; Horton, Keith A.

    2002-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote-sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly.

  2. Optical fiber smartphone spectrometer.

    PubMed

    Hossain, Md Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2016-05-15

    An optical fiber-based smartphone spectrometer incorporating an endoscopic fiber bundle is demonstrated. The endoscope allows transmission of the smartphone camera LED light to a sample, removing complications from varying background illumination. The reflected spectra collected from a surface or interface is dispersed onto the camera CMOS using a reflecting diffraction grating. A spectral resolution as low as δλ∼2.0  nm over a bandwidth of Δλ∼250  nm is obtained using a slit width, ωslit=0.7  mm. The instrument has vast potential in a number of industrial applications including agricultural produce analysis. Spectral analysis of apples shows straightforward measurement of the pigments anthocyanins, carotenoid, and chlorophyll, all of which decrease with increasing storage time. PMID:27176971

  3. Cryogenic Neutron Spectrometer Development

    SciTech Connect

    Niedermayr, T; Hau, I D; Friedrich, S; Burger, A; Roy, U N; Bell, Z W

    2006-03-08

    Cryogenic microcalorimeter detectors operating at temperatures around {approx}0.1 K have been developed for the last two decades, driven mostly by the need for ultra-high energy resolution (<0.1%) in X-ray astrophysics and dark matter searches [1]. The Advanced Detector Group at Lawrence Livermore National Laboratory has developed different cryogenic detector technologies for applications ranging from X-ray astrophysics to nuclear science and non-proliferation. In particular, we have adapted cryogenic detector technologies for ultra-high energy resolution gamma-spectroscopy [2] and, more recently, fast-neutron spectroscopy [3]. Microcalorimeters are essentially ultra-sensitive thermometers that measure the energy of the radiation from the increase in temperature upon absorption. They consist of a sensitive superconducting thermometer operated at the transition between its superconducting and its normal state, where its resistance changes very rapidly with temperature such that even the minute energies deposited by single radiation quanta are sufficient to be detectable with high precision. The energy resolution of microcalorimeters is fundamentally limited by thermal fluctuations to {Delta}E{sub FWHM} {approx} 2.355 (k{sub B}T{sup 2}C{sub abs}){sup 1/2}, and thus allows an energy below 1 keV for neutron spectrometers for an operating temperature of T {approx} 0.1 K . The {Delta}E{sub FWHM} does not depend on the energy of the incident photon or particle. This expression is equivalent to the familiar (F{var_epsilon}E{sub {gamma}}){sup 1/2} considering that an absorber at temperature T contains a total energy C{sub abs}T, and the associated fluctuation are due to variations in uncorrelated (F=1) phonons ({var_epsilon} = k{sub B}T) dominated by the background energy C{sub abs}T >> E{gamma}. The rationale behind developing a cryogenic neutron spectrometer is the very high energy resolution combined with the high efficiency. Additionally, the response function is simple

  4. Understanding the Mechanisms Enabling an Ultra-high Efficiency Moving Wire Interface for Real-time Carbon 14 Accelerator Mass Spectrometry Quantitation of Samples Suspended in Solvent

    NASA Astrophysics Data System (ADS)

    Thomas, Avraham Thaler

    Carbon 14 (14C) quantitation by accelerator mass spectrometry (AMS) is a powerfully sensitive and uniquely quantitative tool for tracking labeled carbonaceous molecules in biological systems. This is due to 14C's low natural abundance of 1 ppt, the nominal difference in biological activity between an unlabeled and a 14C-labeled molecule, and the ability of AMS to measure isotopic ratios independently of a sample's other characteristics. To make AMS more broadly accessible, a moving wire interface for real-time coupling of high pressure liquid chromatography (HPLC) to AMS and high throughput AMS quantitation of minute single samples has been developed. Prior to this work, samples needed to be converted to solid carbon before measurement. This conversion process has many steps and requires that the sample size be large enough to allow precise handling of the resulting graphite. These factors make the process susceptible to error and time consuming, as well as requiring 0.5 ug of carbon. Samples which do not contain enough carbon, such as HPLC fractions, must be bulked up. This adds background and increases effort. The moving wire interface overcomes these limitations by automating sample processing. Samples placed on the wire are transported through a solvent removal stage followed by a combustion stage after which the combustion products are directed to a gas accepting ion source. The ion source converts the carbon from the CO2 combustion product into C ions, from which an isotopic ratio can be determined by AMS. Although moving wire interfaces have been implemented for various tasks since 1964, the efficiency of these systems at transferring fluid from an HPLC to the wire was only 3%, the efficiency of transferring combustion products from the combustion oven to ion source was only 30%, the flow and composition of the carrier gas from the combustion oven to the ion source needed to be optimized for coupling to an AMS gas accepting ion source and the drying ovens

  5. Calculation of Transactinide Homolog Isotope Production Reactions Possible with the Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National Laboratory

    SciTech Connect

    Moody, K J; Shaughnessy, D A; Gostic, J M

    2011-11-29

    The LLNL heavy element group has been investigating the chemical properties of the heaviest elements over the past several years. The properties of the transactinides (elements with Z > 103) are often unknown due to their low production rates and short half-lives, which require lengthy cyclotron irradiations in order to make enough atoms for statistically significant evaluations of their chemistry. In addition, automated chemical methods are often required to perform consistent and rapid chemical separations on the order of minutes for the duration of the experiment, which can last from weeks to months. Separation methods can include extraction chromatography, liquid-liquid extraction, or gas-phase chromatography. Before a lengthy transactinide experiment can be performed at an accelerator, a large amount of preparatory work must be done both to ensure the successful application of the chosen chemical system to the transactinide chemistry problem being addressed, and to evaluate the behavior of the lighter elemental homologs in the same chemical system. Since transactinide chemistry is literally performed on one single atom, its chemical properties cannot be determined from bulk chemical matrices, but instead must be inferred from the behavior of the lighter elements that occur in its chemical group and in those of its neighboring elements. By first studying the lighter group homologs in a particular chemical system, when the same system is applied to the transactinide element under investigation, its decay properties can be directly compared to those of the homologues, thereby allowing an inference of its own chemistry. The Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National Laboratory (LLNL) includes a 1 MV Tandem accelerator, capable of accelerating light ions such as protons to energies of roughly 15 MeV. By using the CAMS beamline, tracers of transactinide homolog elements can be produced both for development of chemical systems and

  6. Lunar orbital mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Lord, W. P.

    1971-01-01

    The design, development, manufacture, test and calibration of five lunar orbital mass spectrometers with the four associated ground support equipment test sets are discussed. A mass spectrometer was installed in the Apollo 15 and one in the Apollo 16 Scientific Instrument Module within the Service Module. The Apollo 15 mass spectrometer was operated with collection of 38 hours of mass spectra data during lunar orbit and 50 hours of data were collected during transearth coast. The Apollo 16 mass spectrometer was operated with collection of 76 hours of mass spectra data during lunar orbit. However, the Apollo 16 mass spectrometer was ejected into lunar orbit upon malfunction of spacecraft boom system just prior to transearth insection and no transearth coast data was possible.

  7. VEGAS: VErsatile GBT Astronomical Spectrometer

    NASA Astrophysics Data System (ADS)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  8. Cascaded interferometric imaging spectrometer.

    PubMed

    Swinyard, Bruce; Ferlet, Marc

    2007-09-01

    We present what we believe to be a novel method for order sorting a Fabry-Perot interferometer using a Fourier transform spectrometer (FTS) in tandem. We demonstrate how the order sorting is achieved using a model instrument response as an example of an instrument working in the 5-25 microm band, although the method is generally applicable at all wavelengths. We show that an instrument of this type can be realized with a large bandwidth, a large field of view, and good transmission efficiency. These attributes make this instrument concept a useful technique in applications where true imaging spectroscopy is required, such as mapping large astronomical sources. We compare the performance of the new instrument to grating and standard FTS instruments in circumstances where the measurement is background and detector noise limited. We use a figure of merit based on the field of view and speed of detection and find that the new system has a speed advantage over a FTS with the same field of view in all circumstances. The instrument will be faster than a grating instrument with the same spectral resolution once the field of view is >13 times larger under high background conditions and >50 times larger with detector performances that match the photon noise from Zodiacal light. PMID:17805378

  9. Photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  10. Photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-08-08

    A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.

  11. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  12. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  13. Multiple order common path spectrometer

    NASA Technical Reports Server (NTRS)

    Newbury, Amy B. (Inventor)

    2010-01-01

    The present invention relates to a dispersive spectrometer. The spectrometer allows detection of multiple orders of light on a single focal plane array by splitting the orders spatially using a dichroic assembly. A conventional dispersion mechanism such as a defraction grating disperses the light spectrally. As a result, multiple wavelength orders can be imaged on a single focal plane array of limited spectral extent, doubling (or more) the number of spectral channels as compared to a conventional spectrometer. In addition, this is achieved in a common path device.

  14. Method for calibrating mass spectrometers

    DOEpatents

    Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

    2002-12-24

    A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

  15. Hydrologic and geochemical controls on the transport of radionuclides in natural undisturbed arid environments as determined by accelerator mass spectrometry measurements

    SciTech Connect

    Nimz, G; Caffee, M W; McAninch, J

    2000-04-01

    This project developed techniques for measuring globally distributed radionuclides that occur today in extremely low abundances (''fallout'' from the era of atmospheric nuclear testing), and then applied these techniques to better understand the mechanisms by which radionuclides migrate. The techniques employ accelerator mass spectrometry (AMS), a relatively new analytical tool that permits this work to be conducted for the first time. The goal in this project was to develop AMS analytical techniques for {sup 129}I (fallout concentration: {approx} 10{sup 6} atoms/g) {sup 99}Tc ({approx} 10{sup 9} atoms/g), {sup 90}Sr ({approx}10{sup 7} atoms/gram soil), and {sup 93}Zr ({approx} 10{sup 9} atoms/g), and improved methods for {sup 36}Cl ({approx} 10{sup 9} atoms/g). As a demonstration of the analytical techniques, and as an investigation of identified problems associated with characterizing moisture and radionuclide movement in unsaturated desert soils, we developed a vadose zone research site at the Nevada Test Site. Our findings can be summarized as follows: (1) The distribution of chloride and {sup 36}Cl at the research site indicates that the widely-used ''chloride accumulation'' method for estimating moisture flux is erroneous; some mechanism for attenuation of chloride exists, violating an assumption of the accumulation method; (2) {sup 129}I is fractionated into several soil compartments that have varying migration abilities; the two most mobile can be tentatively identified as Fe/Mn oxyhydroxides and organic acids based on our sequential leaching techniques; (3) These most mobile constituents are capable of migrating at a rate greater than that of {sup 36}Cl, usually considered the most mobile solute in hydrologic systems; these constituents may be colloidal in character, of neutral surface charge, and therefore conservative in aqueous migration; (4) {sup 99}Tc is readily measurable by AMS, as we demonstrate by the first AMS {sup 99}Tc measurements of

  16. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote-sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly.anomaly. Both the visible and infrared subsystems scan in "pushbroom" mode: that is, an aircraft carrying the system moves along a ground track, the system is aimed downward, and image data are acquired in acrosstrack linear arrays of pixels. Both subsystems operate at a frame rate of 30 Hz. The infrared and visible-light optics are adjusted so that both subsystems are aimed at the same moving swath, which has across-track angular width of 15. Data from the infrared and visible imaging subsystems are stored in the same file along with aircraft-position data acquired by a Global Positioning System receiver. The combination of the three sets of data is used to construct infrared and hyperspectral maps of scanned areas shown.

  17. Alpha Magnetic Spectrometer (AMS) Overview

    NASA Video Gallery

    The Alpha Magnetic Spectrometer (AMS) is flying to the station on STS-134. The AMS experiment is a state-of-the-art particle physics detector being operated by an international team composed of 60 ...

  18. Micromachined Slits for Imaging Spectrometers

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel; Kenny, James; White, Victor

    2008-01-01

    Slits for imaging spectrometers can now be fabricated to a precision much greater than previously attainable. What makes this possible is a micromachining process that involves the use of microlithographic techniques.

  19. Versatile cluster based photoelectron spectrometer

    SciTech Connect

    Knappenberger, K. L. Jr.; Jones, C. E. Jr.; Sobhy, M. A.; Castleman, A. W. Jr.

    2006-12-15

    A recently constructed cluster based photoelectron spectrometer is described. This instrumentation is unique in that it enables the kinetic energy analysis of electrons ejected from both anions and neutral clusters. This capability permits the investigation of discrete electronic levels in all charge states (anionic, neutral, and cationic). A laser vaporization plasma reactor cluster source affixed with a sublimation cell is employed to produce a variety of metal clusters, and the resulting cluster distributions are analyzed with time-of-flight mass spectrometry. The corresponding electronic structure is analyzed with a 'magnetic bottle' photoelectron spectrometer. Examples of instrument performance operating in both anion photodetachment and neutral multiphoton ionization (MPI) modes are provided. In the case of neutral MPI, the corresponding product distribution is collected with a Wiley-McLaren [Rev. Sci. Instrum. 26, 1150 (1955)] mass spectrometer mounted perpendicular to the magnetic bottle photoelectron spectrometer.

  20. Fast-neutron spectrometer developments

    NASA Technical Reports Server (NTRS)

    Moler, R. B.; Zagotta, W. E.; Baker, S. I.

    1973-01-01

    Li6 sandwich-type neutron spectrometer is equipped with proportional counter for particle identification. System uses current-sensitive preamplifiers to minimize pile-up of gamma-ray and particle pulses.

  1. The GRAVITY spectrometers: optical qualification

    NASA Astrophysics Data System (ADS)

    Yazici, Senol; Straubmeier, Christian; Wiest, Michael; Wank, Imke; Fischer, Sebastian; Horrobin, Matthew; Eisenhauer, Frank; Perrin, Guy; Perraut, Karine; Brandner, Wolfgang; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2014-07-01

    GRAVITY1 is a 2nd generation Very Large Telescope Interferometer (VLTI) operated in the astronomical K-band. In the Beam Combiner Instrument2 (BCI) four Fiber Couplers3 (FC) will feed the light coming from each telescope into two fibers, a reference channel for the fringe tracking spectrometer4 (FT) and a science channel for the science spectrometer4 (SC). The differential Optical Path Difference (dOPD) between the two channels will be corrected using a novel metrology concept.5 The metrology laser will keep control of the dOPD of the two channels. It is injected into the spectrometers and detected at the telescope level. Piezo-actuated fiber stretchers correct the dOPD accordingly. Fiber-fed Integrated Optics6 (IO) combine coherently the light of all six baselines and feed both spectrometers. Assisted by Infrared Wavefront Sensors7 (IWS) at each Unit Telescope (UT) and correcting the path difference between the channels with an accuracy of up to 5 nm, GRAVITY will push the limits of astrometrical accuracy to the order of 10 μas and provide phase-referenced interferometric imaging with a resolution of 4 mas. The University of Cologne developed, constructed and tested both spectrometers of the camera system. Both units are designed for the near infrared (1.95 - 2.45 μm) and are operated in a cryogenic environment. The Fringe Tracker is optimized for highest transmission with fixed spectral resolution (R = 22) realized by a double-prism.8 The Science spectrometer is more diverse and allows to choose from three different spectral resolutions8 (R = [22, 500, 4000]), where the lowest resolution is achieved with a prism and the higher resolutions are realized with grisms. A Wollaston prism in each spectrometer allows for polarimetric splitting of the light. The goal for the spectrometers is to concentrate at least 90% of the ux in 2 × 2 pixel (36 × 36 μm2) for the Science channel and in 1 pixel (24 × 24 μm) in the Fringe Tracking channel. In Section 1, we present

  2. Resonance-filtered beam spectrometer

    SciTech Connect

    Brugger, R.M.; Taylor, A.D.; Olsen, C.E.; Goldstone, J.A.; Soper, A.K.

    1982-01-01

    A new inelastic neutron scattering spectrometer which operates in the range 1 eV to 15 eV has been developed at the Los Alamos pulsed spallation source WNR. Based on a nuclear resonance filtering the beam, the concept has been tested in direct, inverted and sample geometries. A number of resonance filters have been tested to determine their effectiveness. The spectrometer is described and examples of data are presented.

  3. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G.; Williams, Timothy; Horton, Keith A.

    2004-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly. Both the visible and infrared subsystems scan in pushbroom mode: that is, an aircraft carrying the system moves along a ground track, the system is aimed downward, and image data are acquired in across-track linear arrays of pixels. Both subsystems operate at a frame rate of 30 Hz. The infrared and visible-light optics are adjusted so that both subsystems are aimed at the same moving swath, which has across-track angular width of 15 . Data from the infrared and visible imaging subsystems are stored in the same file along with aircraft- position data acquired by a Global Positioning System receiver. The combination of the three sets of data is used to construct infrared and hyperspectral maps of scanned areas (see figure). The visible subsystem is based on a grating spectrograph and a rapid-readout charge-coupled-device camera. Images of the swatch are acquired in 256 spectral bands at wavelengths from 400 to 800 nm. The infrared subsystem, which is sensitive in a single

  4. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Chrisp, Michael P.

    1988-01-01

    The development of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been completed at JPL. This paper outlines the functional requirements of the spectrometer optics subsystem, and describes the spectrometer optical design. The optical subsystem performance is shown in terms of spectral modulation transfer functions, radial energy distributions, and system transmission at selected wavelengths for the four spectrometers. An outline of the spectrometer alignment is included.

  5. Imaging spectrometers for remote sensing from space

    NASA Technical Reports Server (NTRS)

    Chrisp, M. P.; Breckinridge, J. B.; Macenka, S. A.; Page, N. A.

    1986-01-01

    Three imaging spectrometers and two camera systems for remote sensing are described. Two of the imaging spectrometers are versions of the Visible and Infrared Mapping Spectrometer (VIMS) for Mars Observer and the Comet Rendezvous Asteroid Flyby (CRAF) mission. The other spectrometer is the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) which is currently under construction. The optical imaging systems are the wide angle and narrow angle cameras for the CRAF mission.

  6. A Novel MOEMS NIR Spectrometer

    NASA Astrophysics Data System (ADS)

    Zhihai, Zhang; Xiangxia, Mo; Yuanjun, Guo; Wei, Wang

    In order to detect luminous intensity of light signal in NIR (Near-infrared) wavelength range, a novel MOEMS(Micro-Opto-Electro-Mechanical Systems) NIR spectrometer is proposed in the paper. It uses DMD (Digital Micro-mirror Device) to band filter the input spectrum. The merits of DMD are small size, low price and high scan speed. Especially, when DMD acts as a Hadamard Transform encoding mask, the SNR (signal-to-noise-ratio) can be improved by multiplexing the light intensities. The structure and the theory of this spectrometer are analyzed. The Hadamard-S matrix and mask of 63-order and 127-order are designed. The output spectrum of the new spectrometer coincides with experimental result of Shimadzu spectrometer. The resolution of the new spectrometer is 19 nm over the spectral range between 900∼1700 nm while single scan time is only 2.4S. The SNR is 44.67:1. The size of optical path is 70mm × 130 mm, and it has a weight less than 1Kg. It can meet the requirement of real time measurement and portable application.

  7. Resolution-enhanced Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Kumer, J. B.; Aubrun, J. N.; Rosenberg, W. J.; Roche, A. E.

    1993-01-01

    A familiar mapping spectrometer implementation utilizes two dimensional detector arrays with spectral dispersion along one direction and spatial along the other. Spectral images are formed by spatially scanning across the scene (i.e., push-broom scanning). For imaging grating and prism spectrometers, the slit is perpendicular to the spatial scan direction. For spectrometers utilizing linearly variable focal-plane-mounted filters the spatial scan direction is perpendicular to the direction of spectral variation. These spectrometers share the common limitation that the number of spectral resolution elements is given by the number of pixels along the spectral (or dispersive) direction. Resolution enhancement by first passing the light input to the spectrometer through a scanned etalon or Michelson is discussed. Thus, while a detector element is scanned through a spatial resolution element of the scene, it is also temporally sampled. The analysis for all the pixels in the dispersive direction is addressed. Several specific examples are discussed. The alternate use of a Michelson for the same enhancement purpose is also discussed. Suitable for weight constrained deep space missions, hardware systems were developed including actuators, sensor, and electronics such that low-resolution etalons with performance required for implementation would weigh less than one pound.

  8. Berberine enhances the anti‑tumor activity of tamoxifen in drug‑sensitive MCF‑7 and drug‑resistant MCF‑7/TAM cells.

    PubMed

    Wen, Chunjie; Wu, Lanxiang; Fu, Lijuan; Zhang, Xue; Zhou, Honghao

    2016-09-01

    Berberine, an isoquinoline alkaloid, has been previously demonstrated to possess anti‑breast cancer properties. Tamoxifen is widely used in the prevention and treatment of estrogen receptor-positive breast cancer. Thus, the aim of the present study was to assess whether berberine enhanced the anticancer effect of tamoxifen, and the underlying mechanism involved in this combined effect in tamoxifen-sensitive (MCF-7) and tamoxifen-resistant (MCF-7/TAM) cells using MTS, flow cytometry and western blot assays. The results indicated that berberine demonstrated dose‑ and time‑dependent anti‑proliferative activity in MCF‑7 and MCF‑7/TAM cells. Furthermore, the combination of berberine and tamoxifen induced cell growth inhibition more effectively than tamoxifen alone. The present study also demonstrated that combinational treatment is more effective in inducing G1 phase arrest and activating apoptosis compared tamoxifen alone, which may be due to upregulation of P21 expression and downregulation of the B‑cell CLL/lymphoma 2(Bcl‑2)/Bcl‑2 associated X protein ratio. The results of the present study suggested that berberine may potentially be useful as an adjuvant agent in cancer chemotherapy to enhance the effect of tamoxifen, which will be useful for anti‑tumor therapy and further research. PMID:27432642

  9. The expression of inflammatory cytokines, TAM tyrosine kinase receptors and their ligands is upregulated in venous leg ulcer patients: a novel insight into chronic wound immunity.

    PubMed

    Filkor, Kata; Németh, Tibor; Nagy, István; Kondorosi, Éva; Urbán, Edit; Kemény, Lajos; Szolnoky, Győző

    2016-08-01

    The systemic host defence mechanisms, especially innate immunity, in venous leg ulcer patients are poorly investigated. The aim of the current study was to measure Candida albicans killing activity and gene expressions of pro- and anti-inflammatory cytokines and innate immune response regulators, TAM receptors and ligands of peripheral blood mononuclear cells separated from 69 venous leg ulcer patients and 42 control probands. Leg ulcer patients were stratified into responder and non-responder groups on the basis of wound healing properties. No statistical differences were found in Candida killing among controls, responders and non-responders. Circulating blood mononuclear cells of patients overexpress pro-inflammatory (IL-1α, TNFα, CXCL-8) and anti-inflammatory (IL-10) cytokines as well as TAM receptors (Tyro, Axl, MerTK) and their ligands Gas6 and Protein S compared with those of control individuals. IL-1α is notably overexpressed in venous leg ulcer treatment non-responders; in contrast, Axl gene expression is robustly stronger among responders. These markers may be considered as candidates for the prediction of treatment response among venous leg ulcer patients. PMID:26192232

  10. Mobile spectrometer measures radar backscatter

    NASA Technical Reports Server (NTRS)

    Gogineni, S.; Moore, R. K.; Onstott, R. G.; Kim, Y. S.; Bushnell, D.

    1984-01-01

    The present article is concerned with a helicopter-borne spectrometer (Heloscat), which has been developed to permit high-quality scattering measurements from a mobile platform at remote sites. The term 'spectrometer' referes to a class of scatterometers. The term 'scatterometer' is employed to denote a specialized radar for measuring scattering coefficients as a function of angle. A spectrometer, on the other hand, is a scatterometer which can measure backscatter at several frequencies. The Heloscat system is discussed, taking into account two antennas, RF hardware, and an externally mounted pendulum for angle encoding. A dual-antenna configuration is used for cross-polarized measurements, while a single-antenna system is used for like-polarized measurements. Attention is also given to oscillator characteristics, efficient data handling, and aspects of calibration.

  11. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  12. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  13. Thermal Infrared Profiling Spectrometer (TIPS)

    NASA Astrophysics Data System (ADS)

    Lanzl, Franz; Miosga, G.; Lehmann, F.; Richter, R.; Tank, V.

    1989-12-01

    An airborne/spaceborne sensor concept developed for scientific observations in remote sensing of the earth surface is presented. The spectrometer design is based on a fast scanning Fourier spectrometer using a rotating retroreflector. The spectrometer covers the 3-13-micron band with a spectral resolution of 5/cm. The measured signal is an interferogramm, while derived quantities are spectral emissivity, spectral radiance, and surface temperature. The optical system consists of an aperture-filling plane tilting mirror to provide off-nadir observation and calibration modes. The collecting mirror focal length and the detector area yield an instantaneous field of view of 1.2 mrad, noise equivalent temperature resolution of 0.004 K, and a noise equivalent change in emissivity of 0.0006. The simulation results of signal-to-noise performance of the TIPS are presented and discussed.

  14. Multichannel Spectrometer of Time Distribution

    NASA Astrophysics Data System (ADS)

    Akindinova, E. V.; Babenko, A. G.; Vakhtel, V. M.; Evseev, N. A.; Rabotkin, V. A.; Kharitonova, D. D.

    2015-06-01

    For research and control of characteristics of radiation fluxes, radioactive sources in particular, for example, in paper [1], a spectrometer and methods of data measurement and processing based on the multichannel counter of time intervals of accident events appearance (impulses of particle detector) MC-2A (SPC "ASPECT") were created. The spectrometer has four independent channels of registration of time intervals of impulses appearance and correspondent amplitude and spectrometric channels for control along the energy spectra of the operation stationarity of paths of each of the channels from the detector to the amplifier. The registration of alpha-radiation is carried out by the semiconductor detectors with energy resolution of 16-30 keV. Using a spectrometer there have been taken measurements of oscillations of alpha-radiation 239-Pu flux intensity with a subsequent autocorrelative statistical analysis of the time series of readings.

  15. The GRAVITY spectrometers: thermal behaviour

    NASA Astrophysics Data System (ADS)

    Wank, Imke; Straubmeier, Christian; Wiest, Michael; Yazici, Senol; Fischer, Sebastian; Eisenhauer, Frank; Perrin, Guy S.; Perraut, Karine; Brandner, Wolfgang; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2014-07-01

    GRAVITY is a 2nd generation VLTI Instrument o which operates on 6 interferometric baselines by using all 4 Unit Telescopes. It will deliver narrow angle astrometry with 10μas accuracy at the infrared K-band. At the 1. Physikalische Institut of the University of Cologne, which is part of the international GRAVITY consortium, two spectrometers, one for the sciene object, and one for the fringe tracking object, have been designed, manufactured and tested. These spectrometers are two individual devices, each with own housing and interfaces. For a minimized thermal background, the spectrometers are actively cooled down to an operating temperature of 80K in the ambient temperature environment of the Beam Combiner Instrument (BCI) cryostat. The outer casings are mounted thermal isolated to the base plate by glass fiber reinforced plastic (GRP) stands, copper cooling structures conduct the cold inside the spectrometers where it is routed to components via Cu cooling stripes. The spectrometers are covered with shells made of multi insulation foil. There will be shown and compared 3 cooling installations: setups in the Cologne test dewar, in the BCI dewar and in a mock-up cad model. There are some striking differences between the setup in the 2 different dewars. In the Cologne Test dewar the spectrometers are connected to the coldplate (80K); a Cu cooling structure and the thermal isolating GRP stands are bolted to the coldplate. In the BCI dewer Cu cooling structure is connected to the bottom of the nitrogen tank (80K), the GRP stands are bolted to the base plate (240K). The period of time during the cooldown process will be analyzed.

  16. Portable smartphone optical fibre spectrometer

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2015-09-01

    A low cost, optical fibre based spectrometer has been developed on a smartphone platform for field-portable spectral analysis. Light of visible wavelength is collected using a multimode optical fibre and diffracted by a low cost nanoimprinted diffraction grating. A measurement range over 300 nm span (λ = 400 to 700 nm) is obtained using the smartphone CMOS chip. The spectral resolution is Δλ ~ 0.42 nm/screen pixel. A customized Android application processed the spectra on the same platform and shares with other devices. The results compare well with commercially available spectrometer.

  17. The Bruny Island Radio Spectrometer

    NASA Astrophysics Data System (ADS)

    Erickson, W. C.

    1997-11-01

    A radio spectrometer has been built on Bruny Island, south of Hobart, for the study of solar bursts in the rarely observed frequency range from 3 to 20 MHz. This spectrometer is an adaptive device that employs digital techniques to avoid most of the strong terrestrial interference prevalent in this frequency range. The residual interference that cannot be avoided is excised during off-line processing. As a result, successful observations are made down to the minimum frequency that can propagate through the ionosphere to the antenna. This minimum frequency depends upon the zenith distance of the Sun and it is usually between 4 and 8 MHz.

  18. JPL Fourier transform ultraviolet spectrometer

    NASA Technical Reports Server (NTRS)

    Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.

    1994-01-01

    The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.

  19. A cometary ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Simpson, D. A.

    1984-01-01

    The development of flight suitable analyzer units for that part of the GIOTTO Ion Mass Spectrometer (IMS) experiment designated the High Energy Range Spectrometer (HERS) is discussed. Topics covered include: design of the total ion-optical system for the HERS analyzer; the preparation of the design of analyzing magnet; the evaluation of microchannel plate detectors and associated two-dimensional anode arrays; and the fabrication and evaluation of two flight-suitable units of the complete ion-optical analyzer system including two-dimensional imaging detectors and associated image encoding electronics.

  20. Forward spectrometers at the SSC

    SciTech Connect

    Bjorken, J.D.

    1986-01-01

    Most of SSC phase space and a great deal of physics potential is in the forward/backward region (absolute value of theta < 100 mrad). Comprehensive open-geometry spectrometers are feasible and very cost effective. Examples of such devices are sketched. Because such spectrometers are very long and may operate at high ..beta.. and longer bunch spacing, they impact now on SSC interaction - region design. The data acquisition load is as heavy as for central detectors, although there may be less emphasis on speed and more emphasis on sophisticated parallel and/or distributed processing for event selection, as well as on high-capacity buffering.

  1. Towed seabed gamma ray spectrometer

    SciTech Connect

    Jones, D.G. )

    1994-08-01

    For more than 50 years, the measurement of radioactivity has been used for onshore geological surveys and in laboratories. The British Geological Survey (BGS) has extended the use of this type of equipment to the marine environment with the development of seabed gamma ray spectrometer systems. The present seabed gamma ray spectrometer, known as the Eel, has been successfully used for sediment and solid rock mapping, mineral exploration, and radioactive pollution studies. The range of applications for the system continues to expand. This paper examines the technological aspects of the Eel and some of the applications for which it has been used.

  2. Mass spectrometers and atomic oxygen

    NASA Technical Reports Server (NTRS)

    Hunton, D. E.; Trzcinski, E.; Cross, J. B.; Spangler, L. H.; Hoffbauer, M. H.; Archuleta, F. H.; Visentine, J. T.

    1987-01-01

    The likely role of atmospheric atomic oxygen in the recession of spacecraft surfaces and in the shuttle glow has revived interest in the accurate measurement of atomic oxygen densities in the upper atmosphere. The Air Force Geophysics Laboratory is supplying a quadrupole mass spectrometer for a materials interactions flight experiment being planned by the Johnson Space Center. The mass spectrometer will measure the flux of oxygen on test materials and will also identify the products of surface reactions. The instrument will be calibrated at a new facility for producing high energy beams of atomic oxygen at the Los Alamos National Laboratory. The plans for these calibration experiments are summarized.

  3. Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer

    SciTech Connect

    Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko; Paakkanen, Heikki; Ketola, Raimo A.; Kostiainen, Risto; Sysoev, Alexey; Kotiaho, Tapio

    2007-04-15

    This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate.

  4. Assessment of Protein Binding of 5-Hydroxythalidomide Bioactivated in Humanized Mice with Human P450 3A-Chromosome or Hepatocytes by Two-Dimensional Electrophoresis/Accelerator Mass Spectrometry.

    PubMed

    Yamazaki, Hiroshi; Suemizu, Hiroshi; Kazuki, Yasuhiro; Oofusa, Ken; Kuribayashi, Shunji; Shimizu, Makiko; Ninomiya, Shinichi; Horie, Toru; Shibata, Norio; Guengerich, F Peter

    2016-08-15

    Bioactivation of 5-hydroxy-[carbonyl-(14)C]thalidomide, a known metabolite of thalidomide, by human artificial or native cytochrome P450 3A enzymes, and nonspecific binding in livers of mice was assessed using two-dimensional electrophoresis combined with accelerator mass spectrometry. The apparent major target proteins were liver microsomal cytochrome c oxidase subunit 6B1 and ATP synthase subunit α in mice containing humanized P450 3A genes or transplanted humanized liver. Liver cytosolic retinal dehydrogenase 1 and glutathione transferase A1 were targets in humanized mice with P450 3A and hepatocytes, respectively. 5-Hydroxythalidomide is bioactivated by human P450 3A enzymes and trapped with proteins nonspecifically in humanized mice. PMID:27464947

  5. MICE Spectrometer Magnet System Progress

    SciTech Connect

    Green, Michael A.; Virostek, Steve P.

    2007-08-27

    The first magnets for the muon ionization cooling experimentwill be the tracker solenoids that form the ends of the MICE coolingchannel. The primary purpose of the tracker solenoids is to provide auniform 4 T field (to better than +-0.3 percent over a volume that is 1meter long and 0.3 meters in diameter) spectrometer magnet field for thescintillating fiber detectors that are used to analyze the muons in thechannel before and after ionization cooling. A secondary purpose for thetracker magnet is the matching of the muon beam between the rest of theMICE cooling channel and the uniform field spectrometer magnet. Thetracker solenoid is powered by three 300 amp power supplies. Additionaltuning of the spectrometer is provided by a pair of 50 amp power suppliesacross the spectrometer magnet end coils. The tracker magnet will becooled using a pair of 4 K pulse tube coolers that each provide 1.5 W ofcooling at 4.2 K. Final design and construction of the tracker solenoidsbegan during the summer of 2006. This report describes the progress madeon the construction of the tracker solenoids.

  6. A simple digital TDPAC spectrometer

    NASA Astrophysics Data System (ADS)

    Webb, T. A.; Nikkinen, Leo; Gallego, Juan; Ryan, D. H.

    2013-05-01

    We present a simplified digital time differential perturbed γ - γ angular correlation (TDPAC) spectrometer that demonstrates that such instruments can be built using primarily commercial components and with relatively modest coding effort. The system handles data rates of 70 kcps/detector with a timing resolution of better than 500 ps, and has been used with both 111In and 181Hf.

  7. Convex Diffraction Grating Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Chrisp, Michael P. (Inventor)

    1999-01-01

    A 1:1 Offner mirror system for imaging off-axis objects is modified by replacing a concave spherical primary mirror that is concentric with a convex secondary mirror with two concave spherical mirrors M1 and M2 of the same or different radii positioned with their respective distances d1 and d2 from a concentric convex spherical diffraction grating having its grooves parallel to the entrance slit of the spectrometer which replaces the convex secondary mirror. By adjusting their distances d1 and d2 and their respective angles of reflection alpha and beta, defined as the respective angles between their incident and reflected rays, all aberrations are corrected without the need to increase the spectrometer size for a given entrance slit size to reduce astigmatism, thus allowing the imaging spectrometer volume to be less for a given application than would be possible with conventional imaging spectrometers and still give excellent spatial and spectral imaging of the slit image spectra over the focal plane.

  8. Acoustically-tuned optical spectrometer

    NASA Technical Reports Server (NTRS)

    Sklar, E.

    1981-01-01

    Lens arrangement corrects for aberrations and gives resolution of 0.7 seconds of arc. In spectrometer, light from telescope is relayed by doublet lens to acoustically tuned optical filter. Selected wavelengths are relayed by triplet lens to charge coupled device camera. Intervening cylindrical lens, tilted at 12 degree angle, corrects for astigmatism and coma introduced by two element birefringent crystal in filter.

  9. IPNS-I chopper spectrometers

    SciTech Connect

    Price, D.L.; Carpenter, J.M.; Pelizzari, C.A.; Sinha, S.K.; Bresof, I.; Ostrowski, G.E.

    1982-01-01

    We briefly describe the layout and operation of the two chopper experiments at IPNS-I. The recent measurement on solid /sup 4/He by Hilleke et al. provides examples of time-of-flight data from the Low Resolution Chopper Spectrometer.

  10. Alpha proton x ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  11. Time of flight mass spectrometer

    DOEpatents

    Ulbricht, Jr., William H.

    1984-01-01

    A time-of-flight mass spectrometer is described in which ions are desorbed from a sample by nuclear fission fragments, such that desorption occurs at the surface of the sample impinged upon by the fission fragments. This configuration allows for the sample to be of any thickness, and eliminates the need for complicated sample preparation.

  12. Tracking System for Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.; Webster, C. R.; Menzies, R. T.; Morrison, G. B.; Riccio, J. H.

    1986-01-01

    Visible laser tracking system for infrared laser spectometer keeps probe infrared laser beam aimed at moving reflector, thereby keeping reflector image and return laser beam within spectrometer field of view. System includes tracking mirror tilted by stepping motors under microprocessor control to deflect beams toward continually changing reflector position.

  13. Imaging IR spectrometer, phase 2

    NASA Technical Reports Server (NTRS)

    Gradie, Jonathan; Lewis, Ralph; Lundeen, Thomas; Wang, Shu-I

    1990-01-01

    The development is examined of a prototype multi-channel infrared imaging spectrometer. The design, construction and preliminary performance is described. This instrument is intended for use with JPL Table Mountain telescope as well as the 88 inch UH telescope on Mauna Kea. The instrument is capable of sampling simultaneously the spectral region of 0.9 to 2.6 um at an average spectral resolution of 1 percent using a cooled (77 K) optical bench, a concave holographic grating and a special order sorting filter to allow the acquisition of the full spectral range on a 128 x 128 HgCdTe infrared detector array. The field of view of the spectrometer is 0.5 arcsec/pixel in mapping mode and designed to be 5 arcsec/pixel in spot mode. The innovative optical design has resulted in a small, transportable spectrometer, capable of remote operation. Commercial applications of this spectrometer design include remote sensing from both space and aircraft platforms as well as groundbased astronomical observations.

  14. Barrel Calorimeter for the Hall D Spectrometer

    SciTech Connect

    David Urner

    1998-06-01

    The barrel calorimeter for the hall D spectrometer is discussed for standard pointing geometry and a parallel geometry using Lead Scintillating fibres as active material. A comparison with a CSI spectrometer is shown.

  15. GreenHouse Observations of the Stratosphere and Troposphere (GHOST): a novel shortwave infrared spectrometer developed for the Global Hawk unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Humpage, Neil; Bösch, Hartmut; Palmer, Paul I.; Parr-Burman, Phil M.; Vick, Andrew J. A.; Bezawada, Naidu N.; Black, Martin; Born, Andrew J.; Pearson, David; Strachan, Jonathan; Wells, Martyn

    2014-10-01

    The tropospheric distribution of greenhouse gases (GHGs) depends on surface flux variations, atmospheric chemistry and transport processes over a range of spatial and temporal scales. Accurate and precise atmospheric concentration observations of GHGs can be used to infer surface flux estimates, though their interpretation relies on unbiased atmospheric transport models. GHOST is a novel, compact shortwave infrared spectrometer which will observe tropospheric columns of CO2, CO, CH4 and H2O (along with the HDO/H2O ratio) during deployment on board the NASA Global Hawk unmanned aerial vehicle. The primary science objectives of GHOST are to: 1) test atmospheric transport models; 2) evaluate satellite observations of GHG column observations over oceans; and 3) complement in-situ tropopause transition layer observations from other Global Hawk instruments. GHOST comprises a target acquisition module (TAM), a fibre slicer and feed system, and a multiple order spectrograph. The TAM is programmed to direct solar radiation reflected by the ocean surface into a fibre optic bundle. Incoming light is then split into four spectral bands, selected to optimise remote observations of GHGs. The design uses a single grating and detector for all four spectral bands. We summarise the GHOST concept and its objectives, and describe the instrument design and proposed deployment aboard the Global Hawk platform.

  16. Sample rotating turntable kit for infrared spectrometers

    DOEpatents

    Eckels, Joel Del; Klunder, Gregory L.

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  17. Measuring Transmission Efficiencies Of Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Srivastava, Santosh K.

    1989-01-01

    Coincidence counts yield absolute efficiencies. System measures mass-dependent transmission efficiencies of mass spectrometers, using coincidence-counting techniques reminiscent of those used for many years in calibration of detectors for subatomic particles. Coincidences between detected ions and electrons producing them counted during operation of mass spectrometer. Under certain assumptions regarding inelastic scattering of electrons, electron/ion-coincidence count is direct measure of transmission efficiency of spectrometer. When fully developed, system compact, portable, and used routinely to calibrate mass spectrometers.

  18. Electron/proton spectrometer certification documentation analyses

    NASA Technical Reports Server (NTRS)

    Gleeson, P.

    1972-01-01

    A compilation of analyses generated during the development of the electron-proton spectrometer for the Skylab program is presented. The data documents the analyses required by the electron-proton spectrometer verification plan. The verification plan was generated to satisfy the ancillary hardware requirements of the Apollo Applications program. The certification of the spectrometer requires that various tests, inspections, and analyses be documented, approved, and accepted by reliability and quality control personnel of the spectrometer development program.

  19. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    SciTech Connect

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  20. Electron spectrometer for gas-phase spectroscopy

    SciTech Connect

    Bozek, J.D.; Schlachter, A.S.

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  1. Multilayer scintillation spectrometer for charged pionium detection

    NASA Astrophysics Data System (ADS)

    Krasnov, V. A.; Karnyushina, L. V.; Kuznetsov, S. N.; Kurepin, A. B.; Livanov, A. N.; Pilyar, A. V.

    2013-01-01

    The design description and characteristics of a 14-layer scintillation spectrometer for meson recording are given. The results from testing the spectrometer, calibrating it with cosmic-ray particles, and using the particle beams at energies reaching 1 GeV are presented. The spectrometer design is based on flat scintillation plates glued with wavelength-shifting optic fibers.

  2. Imaging X-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E.

    1984-09-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  3. Exploiting a Transmission Grating Spectrometer

    SciTech Connect

    Ronald E. Bell

    2004-12-08

    The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics.

  4. Concerning the Spatial Heterodyne Spectrometer.

    PubMed

    Lenzner, Matthias; Diels, Jean-Claude

    2016-01-25

    A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order of the effective aperture of the device. The limits of usability are shown here together with some measurements of known spectral lines. PMID:26832561

  5. Concerning the Spatial Heterodyne Spectrometer

    DOE PAGESBeta

    Lenzner, Matthias; Diels, Jean -Claude

    2016-01-22

    A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order ofmore » the effective aperture of the device. In conclusion, the limits of usability are shown here together with some measurements of known spectral lines.« less

  6. Temporal dispersion of a spectrometer.

    PubMed

    Visco, A; Drake, R P; Froula, D H; Glenzer, S H; Pollock, B B

    2008-10-01

    The temporal dispersion of an optical spectrometer has been characterized for a variety of conditions related to optical diagnostics to be fielded at the National Ignition Facility (e.g., full-aperture backscatter station, Thomson scattering). Significant time smear is introduced into these systems by the path length difference through the spectrometer. The temporal resolution is shown to depend only on the order of the grating, wavelength, and the number of grooves illuminated. To enhance the temporal resolution, the spectral gratings can be masked limiting the number of grooves illuminated. Experiments have been conducted to verify these calculations. The size and shape of masks are investigated and correlated with the exact shape of the temporal instrument function, which is required when interpreting temporally resolved data. The experiments used a 300 fs laser pulse and a picosecond optical streak camera to determine the temporal dispersion. This was done for multiple spectral orders, gratings, and optical masks. PMID:19044687

  7. On-chip plasmonic spectrometer.

    PubMed

    Tsur, Yuval; Arie, Ady

    2016-08-01

    We report a numerical and experimental study of an on-chip optical spectrometer, utilizing propagating surface plasmon polaritons in the telecom spectral range. The device is based on two holographic gratings, one for coupling, and the other for decoupling free-space radiation with the surface plasmons. This 800 μm×100 μm on-chip spectrometer resolves 17 channels spectrally separated by 3.1 nm, spanning a freely tunable spectral window, and is based on standard lithography fabrication technology. We propose two potential applications for this new device; the first employs the holographic control over the amplitude and phase of the input spectrum, for intrinsically filtering unwanted frequencies, like pump radiation in Raman spectroscopy. The second prospect utilizes the unique plasmonic field enhancement at the metal-dielectric boundary for the spectral analysis of very small samples (e.g., Mie scatterers) placed between the two gratings. PMID:27472609

  8. Imaging X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E. (Inventor)

    1984-01-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  9. Gamma-ray spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Arnold, J. R.; Peterson, L. E.; Metzger, A. E.; Trombka, J. I.

    1972-01-01

    The experiments in gamma-ray spectrometry to determine the geochemical composition of the lunar surface are reported. The theory is discussed of discrete energy lines of natural radioactivity, and the lines resulting from the bombardment of the lunar surface by high energy cosmic rays. The gamma-ray spectrometer used in lunar orbit and during transearth coast is described, and a preliminary analysis of the results is presented.

  10. Landsat swath imaging spectrometer design

    NASA Astrophysics Data System (ADS)

    Mouroulis, Pantazis; Green, Robert O.; Van Gorp, Byron; Moore, Lori B.; Wilson, Daniel W.; Bender, Holly A.

    2016-01-01

    This paper describes the design of a high-throughput and high-uniformity pushbroom imaging spectrometer and telescope system that is capable of Landsat swath and resolution while providing better than 10 nm per pixel spectral resolution over the full visible to short-wave infrared band. The design is based on a 3200×480 element×18 μm pixel size focal plane array, two of which are utilized to cover the full swath. At an optical speed of F/1.8, the system is the fastest proposed to date to our knowledge. The utilization of only two Dyson-type spectrometer modules fed from the same telescope reduces system complexity while providing a solution within achievable detector technology. Two telescope designs are shown to achieve the required swath and resolution from different altitudes. Predictions of complete system response are shown. Also, it is shown that detailed ghost analysis is a requirement for this type of spectrometer and forms an essential part of a complete design.

  11. Thermal Infrared Profiling Spectrometer (TIPS)

    NASA Astrophysics Data System (ADS)

    Lanzl, Franz; Miosga, Gerhard; Lehmann, Frank; Richter, Rudolf; Tank, Volker; Boehl, R.

    1990-01-01

    The Thermal Infrared Profiling Spectrometer (TIPS) is an airborne/spaceborne sensor concept developed at DLR-Institute for Optoelectronics for scientific observations in remote sensing of the earth surface. The patented spectrometer design is based on a fast scanning Fourier spectrometer (FSM) using a rotating retroreflector to achieve the appropriate path alteration thus avoiding the usual linear movement of one of the mirrors in an conventional Michelson interferometer. The spectral band covers the 3 - 13 μm band with a spectral resolution of 5 cm-1 (50 nm at 10 μm). The measured signal is an interferogramm, derived quantities are spectral emissivity, spectral radiance and surface temperature. The optical system consists of an aperture filling plane tilting mirror to provide off-nadir observation and calibration mode. The collecting mirror focal length and the detector area yields an instantaneous field of view (ifov) of 1.2 mrad, noise equivalent temperature resolution of 0.04K (300K), and a noise equivalent change in emissivity Δɛof 6 x 10-4. Calibration is performed by two aperture filling area blackbodies at two different temperatures. An extensive simulation of signal/noise performance of the TIPS has been evaluated by means of the simulation programm SENSAT9, developed by DI.R. This simulation comprises the sensor performance, typical variations of atmospheric conditions and selected spectra from ground surfaces. Results of this simulation are discussed and a description of the sensor is presented.

  12. Spectrometers for Beta Decay Electrons

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Hirshfield, Jay

    2015-04-01

    Inspired by the neutrino mass direct measurement experiment Project 8, precision spectrometers are proposed to simultaneously measure energy and momentum of beta-decay electrons produced in rare nuclear events with improved energy resolution. For detecting single beta decay electrons near the end-point from a gaseous source such as tritium, one type of spectrometer is proposed to utilize stimulated cyclotron resonance interaction of microwaves with electrons in a waveguide immersed in a magnetic mirror. In the external RF fields, on-resonance electrons will satisfy both the cyclotron resonance condition and waveguide dispersion relationship. By correlating the resonances at two waveguide modes, one can associate the frequencies with both the energy and longitudinal momentum of an on-resonance electron to account for the Doppler shifts. For detecting neutrino-less double-beta decay, another spectrometer is proposed with thin foil of double-beta-allowed material immersed in a magnetic field, and RF antenna array for detection of synchrotron radiation from electrons. It utilizes the correlation between the antenna signals including higher harmonics of radiation to reconstruct the total energy distribution.

  13. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) spectrometer design and performance

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Chrisp, Michael P.

    1987-01-01

    The development of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been completed at JPL. This paper outlines the functional requirements of the spectrometer optics subsystem, and describes the spectrometer optical design. The optical subsystem performance is shown in terms of spectral modulation transfer functions, radial energy distributions, and system transmission at selected wavelengths for the four spectrometers. An outline of the spectrometer alignment is included.

  14. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    SciTech Connect

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  15. Ion Mobility Spectrometer / Mass Spectrometer (IMS-MS).

    SciTech Connect

    Hunka, Deborah E; Austin, Daniel

    2005-10-01

    The use of Ion Mobility Spectrometry (IMS)in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400).Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS)The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.3 AcronymsIMSion mobility spectrometryMAAMaterial Access AreaMSmass spectrometryoaTOForthogonal acceleration time

  16. The Pickup Ion Composition Spectrometer

    NASA Astrophysics Data System (ADS)

    Gilbert, Jason A.; Zurbuchen, Thomas H.; Battel, Steven

    2016-06-01

    Observations of newly ionized atoms that are picked up by the magnetic field in the expanding solar wind contain crucial information about the gas or dust compositions of their origins. The pickup ions (PUIs) are collected by plasma mass spectrometers and analyzed for their density, composition, and velocity distribution. In addition to measurements of PUIs from planetary sources, in situ measurements of interstellar gas have been made possible by spectrometers capable of differentiating between heavy ions of solar and interstellar origin. While important research has been done on these often singly charged ions, the instruments that have detected many of them were designed for the energy range and ionic charge states of the solar wind and energized particle populations, and not for pickup ions. An instrument optimized for the complete energy and time-of-flight characterization of pickup ions will unlock a wealth of data on these hitherto unobserved or unresolved PUI species. The Pickup Ion Composition Spectrometer (PICSpec) is one such instrument and can enable the next generation of pickup ion and isotopic mass composition measurements. By combining a large-gap time-of-flight-energy sensor with a -100 kV high-voltage power supply for ion acceleration, PUIs will not only be above the detection threshold of traditional solid-state energy detectors but also be resolved sufficiently in time of flight that isotopic composition can be determined. This technology will lead to a new generation of space composition instruments, optimized for measurements of both heliospheric and planetary pickup ions.

  17. Alpha-particle spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    Mapping the radon emanation of the moon was studied to find potential areas of high activity by detection of radon isotopes and their daughter products. It was felt that based on observation of regions overflown by Apollo spacecraft and within the field of view of the alpha-particle spectrometer, a radon map could be constructed, identifying and locating lunar areas of outgassing. The basic theory of radon migration from natural concentrations of uranium and thorium is discussed in terms of radon decay and the production of alpha particles. The preliminary analysis of the results indicates no significant alpha emission.

  18. FPGA based pulsed NQR spectrometer

    NASA Astrophysics Data System (ADS)

    Hemnani, Preeti; Rajarajan, A. K.; Joshi, Gopal; Motiwala, Paresh D.; Ravindranath, S. V. G.

    2014-04-01

    An NQR spectrometer for the frequency range of 1 MHz to 5 MHZ has been designed constructed and tested using an FPGA module. Consisting of four modules viz. Transmitter, Probe, Receiver and computer controlled (FPGA & Software) module containing frequency synthesizer, pulse programmer, mixer, detection and display, the instrument is capable of exciting nuclei with a power of 200W and can detect signal of a few microvolts in strength. 14N signal from NaNO2 has been observed with the expected signal strength.

  19. Fourier-Transform Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Schindler, R. A.

    1986-01-01

    Fourier-transform spectrometer provides approximately hundredfold increase in luminosity at detector plane over that achievable with older instruments of this type. Used to analyze such weak sources as pollutants and other low-concentration substances in atmosphere. Interferometer creates fringe patterns on two distinct arrays of light detectors, which observe different wavelength bands. Objective lens focuses scene on image plane, which contains optical chopper. To make instrument less susceptible to variations in scene under observation, field and detector lenses focus entrance aperture, rather that image, onto detector array.

  20. Static Fourier transform infrared spectrometer.

    PubMed

    Schardt, Michael; Murr, Patrik J; Rauscher, Markus S; Tremmel, Anton J; Wiesent, Benjamin R; Koch, Alexander W

    2016-04-01

    Fourier transform spectroscopy has established itself as the standard method for spectral analysis of infrared light. Here we present a robust and compact novel static Fourier transform spectrometer design without any moving parts. The design is well suited for measurements in the infrared as it works with extended light sources independent of their size. The design is experimentally evaluated in the mid-infrared wavelength region between 7.2 μm and 16 μm. Due to its large etendue, its low internal light loss, and its static design it enables high speed spectral analysis in the mid-infrared. PMID:27137061

  1. Automated mass spectrometer grows up

    SciTech Connect

    McInteer, B.B.; Montoya, J.G.; Stark, E.E.

    1984-01-01

    In 1980 we reported the development of an automated mass spectrometer for large scale batches of samples enriched in nitrogen-15 as ammonium salts. Since that time significant technical progress has been made in the instrument. Perhaps more significantly, administrative and institutional changes have permitted the entire effort to be transferred to the private sector from its original base at the Los Alamos National Laboratory. This has ensured the continuance of a needed service to the international scientific community as revealed by a development project at a national laboratory, and is an excellent example of beneficial technology transfer to private industry.

  2. Wide-range CCD spectrometer

    NASA Astrophysics Data System (ADS)

    Sokolova, Elena A.; Reyes Cortes, Santiago D.

    1996-08-01

    The utilization of wide range spectrometers is a very important feature for the design of optical diagnostics. This paper describes an innovative approach, based on charged coupled device, which allows to analyze different spectral intervals with the same diffraction grating. The spectral interval is varied by changing the position of the entrance slit when the grating is stationary. The optical system can also include a spherical mirror. In this case the geometric position of the mirror is calculated aiming at compensating the first order astigmatism and the meridional coma of the grating. This device is planned to be used in Thomson scattering diagnostic of the TOKAMAK of Instituto Superior Tecnico, Lisbon (ISTTOK).

  3. The MAGNEX large acceptance spectrometer

    SciTech Connect

    Cavallaro, M.; Cappuzzello, F.; Cunsolo, A.; Carbone, D.; Foti, A.

    2010-03-01

    The main features of the MAGNEX large acceptance magnetic spectrometer are described. It has a quadrupole + dipole layout and a hybrid detector located at the focal plane. The aberrations due to the large angular (50 msr) and momentum (+- 13%) acceptance are reduced by an accurate hardware design and then compensated by an innovative software ray-reconstruction technique. The obtained resolution in energy, angle and mass are presented in the paper. MAGNEX has been used up to now for different experiments in nuclear physics and astrophysics confirming to be a multipurpose device.

  4. High-Resolution Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff; Goetz, Alexander F. H.

    1990-01-01

    Earth resources observed in greater detail. High-Resolution Imaging Spectrometer, undergoing development for use in NASA's Earth Observing System, measures reflectance of Earth's surface in visible and near-infrared wavelengths. From an orbit around Earth, instrument scans surface of Earth in 200 wavelength bands simultaneously. Produces images enabling identification of minerals in rocks and soils, important algal pigments in oceans and inland waters, changes in spectra associated with biochemistry of plant canopies, compositions of atmospheric aerosols, sizes of grains in snow, and contamination of snow by impurities that absorb visible light.

  5. Portable neutron spectrometer and dosimeter

    DOEpatents

    Waechter, D.A.; Erkkila, B.H.; Vasilik, D.G.

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  6. Portable neutron spectrometer and dosimeter

    DOEpatents

    Waechter, David A.; Erkkila, Bruce H.; Vasilik, Dennis G.

    1985-01-01

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  7. Accelerator mass spectrometry in biomedical research

    NASA Astrophysics Data System (ADS)

    Vogel, J. S.; Turteltaub, K. W.

    1994-06-01

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10 9) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10 13-15 on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels for tracing biochemical pathways in natural systems. 14C-AMS has now been coupled to a variety of organic separation and definition technologies. Our primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subjects research using AMS includes nutrition, toxicity and elemental balance studies. 3H, 41Ca and 26Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications.

  8. Accelerator mass spectrometry in biomedical research

    SciTech Connect

    Vogel, J.S.; Turteltaub, K.W.

    1993-10-20

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10{sup 9}) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10{sup 13--15} on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels that are commonly used to trace biochemical pathways in natural systems. {sup 14}C-AMS has now been coupled to a variety of organic separation and definition technologies. The primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subject research using AMS includes nutrition, toxicity and elemental balance studies. {sup 3} H, {sup 41}Ca and {sup 26}Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications.

  9. Engine spectrometer probe and method of use

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, Sarkis (Inventor); Kittinger, Scott A. (Inventor)

    2006-01-01

    The engine spectrometer probe and method of using the same of the present invention provides a simple engine spectrometer probe which is both lightweight and rugged, allowing an exhaust plume monitoring system to be attached to a vehicle, such as the space shuttle. The engine spectrometer probe can be mounted to limit exposure to the heat and debris of the exhaust plume. The spectrometer probe 50 comprises a housing 52 having an aperture 55 and a fiber optic cable 60 having a fiber optic tip 65. The fiber optic tip 65 has an acceptance angle 87 and is coupled to the aperture 55 so that the acceptance angle 87 intersects the exhaust plume 30. The spectrometer probe can generate a spectrum signal from light in the acceptance angle 506 and the spectrum signal can be provided to a spectrometer 508.

  10. Imaging spectrometer/camera having convex grating

    NASA Technical Reports Server (NTRS)

    Reininger, Francis M. (Inventor)

    2000-01-01

    An imaging spectrometer has fore-optics coupled to a spectral resolving system with an entrance slit extending in a first direction at an imaging location of the fore-optics for receiving the image, a convex diffraction grating for separating the image into a plurality of spectra of predetermined wavelength ranges; a spectrometer array for detecting the spectra; and at least one concave sperical mirror concentric with the diffraction grating for relaying the image from the entrance slit to the diffraction grating and from the diffraction grating to the spectrometer array. In one embodiment, the spectrometer is configured in a lateral mode in which the entrance slit and the spectrometer array are displaced laterally on opposite sides of the diffraction grating in a second direction substantially perpendicular to the first direction. In another embodiment, the spectrometer is combined with a polychromatic imaging camera array disposed adjacent said entrance slit for recording said image.

  11. Automated mass spectrometer analysis system

    NASA Technical Reports Server (NTRS)

    Kuppermann, Aron (Inventor); Dreyer, William J. (Inventor); Giffin, Charles E. (Inventor); Boettger, Heinz G. (Inventor)

    1982-01-01

    An automated mass spectrometer analysis system is disclosed, in which samples are automatically processed in a sample processor and converted into volatilizable samples, or their characteristic volatilizable derivatives. Each volatilizable sample is sequentially volatilized and analyzed in a double focusing mass spectrometer, whose output is in the form of separate ion beams all of which are simultaneously focused in a focal plane. Each ion beam is indicative of a different sample component or different fragments of one or more sample components and the beam intensity is related to the relative abundance of the sample component. The system includes an electro-optical ion detector which automatically and simultaneously converts the ion beams, first into electron beams which in turn produce a related image which is transferred to the target of a vilicon unit. The latter converts the images into electrical signals which are supplied to a data processor, whose output is a list of the components of the analyzed sample and their abundances. The system is under the control of a master control unit, which in addition to monitoring and controlling various power sources, controls the automatic operation of the system under expected and some unexpected conditions and further protects various critical parts of the system from damage due to particularly abnormal conditions.

  12. Automated mass spectrometer analysis system

    NASA Technical Reports Server (NTRS)

    Boettger, Heinz G. (Inventor); Giffin, Charles E. (Inventor); Dreyer, William J. (Inventor); Kuppermann, Aron (Inventor)

    1978-01-01

    An automated mass spectrometer analysis system is disclosed, in which samples are automatically processed in a sample processor and converted into volatilizable samples, or their characteristic volatilizable derivatives. Each volatizable sample is sequentially volatilized and analyzed in a double focusing mass spectrometer, whose output is in the form of separate ion beams all of which are simultaneously focused in a focal plane. Each ion beam is indicative of a different sample component or different fragments of one or more sample components and the beam intensity is related to the relative abundance of the sample component. The system includes an electro-optical ion detector which automatically and simultaneously converts the ion beams, first into electron beams which in turn produce a related image which is transferred to the target of a vidicon unit. The latter converts the images into electrical signals which are supplied to a data processor, whose output is a list of the components of the analyzed sample and their abundances. The system is under the control of a master control unit, which in addition to monitoring and controlling various power sources, controls the automatic operation of the system under expected and some unexpected conditions and further protects various critical parts of the system from damage due to particularly abnormal conditions.

  13. Miniature Ion-Array Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    A figure is shown that depicts a proposed miniature ion-mobility spectrometer that would share many features of design and operation of the instrument described in another article. The main differences between that instrument and this one would lie in the configuration and mode of operation of the filter and detector electrodes. A filter electrode and detector electrodes would be located along the sides of a drift tube downstream from the accelerator electrode. These electrodes would apply a combination of (1) a transverse AC electric field that would effect differential transverse dispersal of ions and (2) a transverse DC electric field that would drive the dispersed ions toward the detector electrodes at different distances along the drift tube. The electric current collected by each detector electrode would be a measure of the current, and thus of the abundance of the species of ions impinging on that electrode. The currents collected by all the detector electrodes could be measured simultaneously to obtain continuous readings of abundances of species. The downstream momentum of accelerated ions would be maintained through neutralization on the electrodes; the momentum of the resulting neutral atoms would serve to expel gases from spectrometer, without need for a pump.

  14. Digital Spectrometers for Interplanetary Science Missions

    NASA Technical Reports Server (NTRS)

    Jarnot, Robert F.; Padmanabhan, Sharmila; Raffanti, Richard; Richards, Brian; Stek, Paul; Werthimer, Dan; Nikolic, Borivoje

    2010-01-01

    A fully digital polyphase spectrometer recently developed by the University of California Berkeley Wireless Research Center in conjunction with the Jet Propulsion Laboratory provides a low mass, power, and cost implementation of a spectrum channelizer for submillimeter spectrometers for future missions to the Inner and Outer Solar System. The digital polyphase filter bank spectrometer (PFB) offers broad bandwidth with high spectral resolution, minimal channel-to-channel overlap, and high out-of-band rejection.

  15. Compact reflective imaging spectrometer utilizing immersed gratings

    DOEpatents

    Chrisp, Michael P.

    2006-05-09

    A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.

  16. [Hadamard transform spectrometer mixed pixels' unmixing method].

    PubMed

    Yan, Peng; Hu, Bing-Liang; Liu, Xue-Bin; Sun, Wei; Li, Li-Bo; Feng, Yu-Tao; Liu, Yong-Zheng

    2011-10-01

    Hadamard transform imaging spectrometer is a multi-channel digital transform spectrometer detection technology, this paper based on digital micromirror array device (DMD) of the Hadamard transform spectrometer working principle and instrument structure, obtained by the imaging sensor mixed pixel were analyzed, theory derived the solution of pixel aliasing hybrid method, simulation results show that the method is simple and effective to improve the accuracy of mixed pixel spectrum more than 10% recovery. PMID:22250574

  17. The good, the bad, and the ugly: the unnecessarily broad impact of qui tam civil False Claims Act cases on rural health care providers.

    PubMed

    Hyer, Andrew M

    2013-01-01

    The civil False Claims Act (FCA) imposes harsh penalties against parties who misappropriate federal funds. The statute's qui tam whistle-blower provisions create strong financial incentives for private individuals to bring and pursue FCA cases against health providers on the government's behalf--even where government attorneys decline to intervene. FCA cases where the government declined to intervene account for less than 2 percent of all recoveries in health care FCA cases. Yet the costs of defending such cases may be very high, especially for rural providers with small operating margins. Federal provider self-referral and anti-kickback laws carve out various exceptions to support the financial viability of rural providers. The FCA, however, contains no such exceptions. Although Department of Justice (DOJ) policy directs officials to take into account community access to care in pursuing FCA cases against rural providers, the ability for private whistleblowers to pursue cases where the government declines to intervene undermines the DOJ's ability to achieve that aim. This Article highlights the liability risks rural providers commonly face under the FCA and argues for amending the FCA to allow a whistleblower claim to proceed against providers serving designated underserved areas only where government authorities intervene in the case. PMID:24341079

  18. A New Generation TDPAC Spectrometer

    NASA Astrophysics Data System (ADS)

    Herden, Christian H.; Alves, Mauro A.; Becker, Klaus D.; Gardner, John A.

    2004-12-01

    Time Differential gamma gamma Perturbed Angular Correlation spectroscopy has traditionally been done using scintillation detectors along with constant fraction discriminators, spectroscopy amplifiers, single channel analyzers, and time to amplitude detectors. We describe a new generation spectrometer where these electronics are replaced by high speed digital transient recorders that record the output from each scintillation detector. The energy and time-of-arrival of gamma rays in any detector can be determined accurately. Many experimental difficulties related to electronics are eliminated; the number of detectors can be increased with no increase in complexity of the apparatus; coincidences among any two detectors are measurable; and coincidences separated by as little as a ns are detectable in principle within one detector. All energies are collected, and energy windows are imposed by software filtering, permitting both high energy resolution and high data-gathering power.

  19. Airborne imaging spectrometer development tasks

    NASA Astrophysics Data System (ADS)

    Bolten, John

    The tasks that must be completed to design and build an airborne imaging spectrometer are listed. The manpower and resources required to do these tasks must be estimated by the people responsible for that work. The tasks are broken down by instrument subsystem or discipline. The instrument performance can be assessed at various stages during the development. The initial assessment should be done with the preliminary computer model. The instrument calibration facilities should be designed, but no calibration facilities are needed. The intermediate assessment can be done when the front end has been assembled. The preliminary instrument calibration facility should be available at this stage. The final assessment can only be done when the instrument is complete and ready for flight. For this, the final instrument calibration facility and the flight qualification facilities must be ready. The final assessment is discussed in each discipline under the section on integration and test.

  20. Clementine RRELAX SRAM Particle Spectrometer

    NASA Technical Reports Server (NTRS)

    Buehler, M.; Soli, G.; Blaes, B.; Ratliff, J.; Garrett, H.

    1994-01-01

    The Clementine RRELAX radiation monitor chip consists of a p-FET total dose monitor and a 4-kbit SRAM particle spectrometer. Eight of these chips were included in the RRELAX and used to detect the passage of the Clementine (S/C) and the innerstage adapter (ISA) through the earth's radiation belts and the 21-Feb 1994 solar flare. This is the first space flight for this 1.2 micron rad-soft custom CMOS radiation monitor. This paper emphasizes results from the SRAM particle detector which showed that it a) has a detection range of five orders of magnitude relative to the 21-Feb solar flare, b) is not affected by electrons, and c) detected microflares occurring with a 26.5 day period.

  1. Fluorescence imaging spectrometer optical design

    NASA Astrophysics Data System (ADS)

    Taiti, A.; Coppo, P.; Battistelli, E.

    2015-09-01

    The optical design of the FLuORescence Imaging Spectrometer (FLORIS) studied for the Fluorescence Explorer (FLEX) mission is discussed. FLEX is a candidate for the ESA's 8th Earth Explorer opportunity mission. FLORIS is a pushbroom hyperspectral imager foreseen to be embarked on board of a medium size satellite, flying in tandem with Sentinel-3 in a Sun synchronous orbit at a height of about 815 km. FLORIS will observe the vegetation fluorescence and reflectance within a spectral range between 500 and 780 nm. Multi-frames acquisitions on matrix detectors during the satellite movement will allow the production of 2D Earth scene images in two different spectral channels, called HR and LR with spectral resolution of 0.3 and 2 nm respectively. A common fore optics is foreseen to enhance by design the spatial co-registration between the two spectral channels, which have the same ground spatial sampling (300 m) and swath (150 km). An overlapped spectral range between the two channels is also introduced to simplify the spectral coregistration. A compact opto-mechanical solution with all spherical and plane optical elements is proposed, and the most significant design rationales are described. The instrument optical architecture foresees a dual Babinet scrambler, a dioptric telescope and two grating spectrometers (HR and LR), each consisting of a modified Offner configuration. The developed design is robust, stable vs temperature, easy to align, showing very high optical quality along the whole field of view. The system gives also excellent correction for transverse chromatic aberration and distortions (keystone and smile).

  2. A colloidal quantum dot spectrometer

    NASA Astrophysics Data System (ADS)

    Bao, Jie; Bawendi, Moungi G.

    2015-07-01

    Spectroscopy is carried out in almost every field of science, whenever light interacts with matter. Although sophisticated instruments with impressive performance characteristics are available, much effort continues to be invested in the development of miniaturized, cheap and easy-to-use systems. Current microspectrometer designs mostly use interference filters and interferometric optics that limit their photon efficiency, resolution and spectral range. Here we show that many of these limitations can be overcome by replacing interferometric optics with a two-dimensional absorptive filter array composed of colloidal quantum dots. Instead of measuring different bands of a spectrum individually after introducing temporal or spatial separations with gratings or interference-based narrowband filters, a colloidal quantum dot spectrometer measures a light spectrum based on the wavelength multiplexing principle: multiple spectral bands are encoded and detected simultaneously with one filter and one detector, respectively, with the array format allowing the process to be efficiently repeated many times using different filters with different encoding so that sufficient information is obtained to enable computational reconstruction of the target spectrum. We illustrate the performance of such a quantum dot microspectrometer, made from 195 different types of quantum dots with absorption features that cover a spectral range of 300 nanometres, by measuring shifts in spectral peak positions as small as one nanometre. Given this performance, demonstrable avenues for further improvement, the ease with which quantum dots can be processed and integrated, and their numerous finely tuneable bandgaps that cover a broad spectral range, we expect that quantum dot microspectrometers will be useful in applications where minimizing size, weight, cost and complexity of the spectrometer are critical.

  3. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Miller, Charles; Frankenberg, Christian; Natra, Vijay; Rider, David; Blavier, Jean-Francois; Bekker, Dmitriy; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for an earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. The GeoFTS instrument is a half meter cube size instrument designed to operate in geostationary orbit as a secondary "hosted" payload on a commercial geostationary satellite mission. The advantage of GEO is the ability to continuously stare at a region of the earth, enabling frequent sampling to capture the diurnal variability of biogenic fluxes and anthropogenic emissions from city to continental scales. The science goal is to obtain a process-based understanding of the carbon cycle from simultaneous high spatial resolution measurements of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) many times per day in the near infrared spectral region to capture their spatial and temporal variations on diurnal, synoptic, seasonal and interannual time scales. The GeoFTS instrument is based on a Michelson interferometer design with a number of advanced features incorporated. Two of the most important advanced features are the focal plane arrays and the optical path difference mechanism. A breadboard GeoFTS instrument has demonstrated functionality for simultaneous measurements in the visible and IR in the laboratory and subsequently in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson overlooking the Los Angeles basin. A GeoFTS engineering model instrument is being developed which will make simultaneous visible and IR measurements under space flight like environmental conditions (thermal-vacuum at 180 K). This will demonstrate critical instrument capabilities such as optical alignment stability, interferometer modulation efficiency, and high throughput FPA signal processing. This will reduce flight instrument development risk and show that the Geo

  4. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  5. Negative ion-gas reaction studies using ion guides and accelerator mass spectrometry I: SrF3-, YF3-, ZrF3-, YF4- and ZrF5- in NO2

    NASA Astrophysics Data System (ADS)

    Eliades, J. A.; Zhao, X.-L.; Litherland, A. E.; Kieser, W. E.

    2015-10-01

    Typical accelerator mass spectrometry (AMS) ion sources readily produce useable currents of a wide variety of negative ions, including exotic species, and the sensitivity and dynamic range of AMS can be used for relatively unambiguous ion identification at low count rates. Difficulty producing negative ion currents with high fluxes (ex. when electron binding energies are small) and unambiguous identification of reaction products can be obstacles to negative ion-gas reaction studies. Thus, an AMS setup can be considered to be suitable for certain ion-gas reaction studies. Presented here are preliminary studies on interactions of SrF3-, YF3-, ZrF3-, YF4- and ZrF5- with NO2 gas at <50 eV kinetic energies using a prototype radio-frequency quadrupole (RFQ) instrument installed before the accelerator on the low-energy side of an AMS system. The superhalogen anions SrF3-, YF4- and ZrF5- were found to be highly unreactive with NO2, consistent with expected electron binding energies greater than 3.6 eV. YF3- and ZrF3- were found to have large overall attenuation cross sections in NO2 of 7.6 × 10-15 ± 4.4% cm2 and 1.5 × 10-14 ± 21% cm2 respectively at the ion energies created under the experimental conditions. The major reaction channels were shown to be electron transfer and oxygen capture. A cluster NO2·(YF3-) was also observed.

  6. Spin Spectrometer at the ALS and APS

    SciTech Connect

    Lawrence Livermore National Laboratory; University of Missouri-Rolla; Boyd Technologies; Morton, Simon A; Morton, Simon A; Tobin, James G; Yu, Sung Woo; Komesu, Takashi; Waddill, George D; Boyd, Peter

    2007-04-20

    A spin-resolving photoelectron spectrometer, the"Spin Spectrometer," has been designed and built. It has been utilized at both the Advanced Light Source in Berkeley, CA, and the Advanced Photon Source in Argonne, IL. Technical details and an example of experimental results are presented here.

  7. An improved nuclear magnetic resonance spectrometer

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Manatt, S. L.

    1967-01-01

    Cylindrical sample container provides a high degree of nuclear stabilization to a nuclear magnetic resonance /nmr/ spectrometer. It is placed coaxially about the nmr insert and contains reference sample that gives a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system.

  8. A Mass Spectrometer Simulator in Your Computer

    ERIC Educational Resources Information Center

    Gagnon, Michel

    2012-01-01

    Introduced to study components of ionized gas, the mass spectrometer has evolved into a highly accurate device now used in many undergraduate and research laboratories. Unfortunately, despite their importance in the formation of future scientists, mass spectrometers remain beyond the financial reach of many high schools and colleges. As a result,…

  9. Apodization Control of Line Shape in Spectrometer

    NASA Technical Reports Server (NTRS)

    Pires, Antonio; Niple, Edward; Evans, Nathan L.

    1987-01-01

    Kaiser-Bessel apodization function reduces unwanted sidebands. Report discusses apodization in Fourier-transform spectrometer (FTS) for Advanced Moisture and Temperature Sounder (AMTS). Purpose of apodization in instrument to control shape of spectrum in wavenumber space to keep radiation at other wavelengths in passband of spectrometer out of AMTS wavenumber channel.

  10. LIFTIRS, the Livermore imaging FTIR spectrometer

    SciTech Connect

    Bennett, C.L.

    1998-06-01

    The imaging FTIR spectrometer was invented 25 years ago. Only recently, however, with the development of infrared focal plane array technology and high speed microprocessors, has the imaging FTIR spectrometer become a practical instrument. Among the class of imaging spectrometer instruments, the imaging Fourier transform spectrometer enjoys a great advantage in terms of calibratibility, sensitivity, broad band coverage and resolution flexibility. Recent experience with the LIFTIRS instrument is summarized. As a concrete example of the acquisition, calibration, and comprehension of the data from an imaging Fourier transform spectrometer, the case history of a geological sample is discussed in great detail. In particular, the importance of principle component analysis to imaging spectroscopy is especially emphasized. It is shown how the various spatial/spectral constituents within a sample can be detected, located, identified and quantified. {copyright} {ital 1998 American Institute of Physics.}

  11. Compact time-of-flight mass spectrometer

    SciTech Connect

    Belov, A.S.; Kubalov, S.A.; Kuzik, V.F.; Yakushev, V.P.

    1986-02-01

    This paper describes a time-of-flight mass spectrometer developed for measuring the parameters of a pulsed hydrogen beam. The duration of an electron-beam current pulse in the ionizer of the mass spectrometer can be varied within 2-20 usec, the pulse electron current is 0.6 mA, and the electron energy is 250 eV. The time resolution of the mass spectrometer is determined by the repetition period of the electron-beam current pulses and is 40 usec. The mass spectrometer has 100% transmission in the direction of motion of molecular-beam particles. The dimension of the mass spectrometer is 7 cm in this direction. The mass resolution is sufficient for determination of the composition of the hydrogen beam.

  12. Miniature Ion-Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to

  13. The hot plasma spectrometers on Freja

    NASA Astrophysics Data System (ADS)

    Norberg, O.; Eliasson, L.

    1991-11-01

    The hot plasma instrumentation F3H on the Swedish-German Freja satellite due for launch in 1992 will consist of electron and ion spectrometers. The spectrometer Magnetic imaging Two dimensional Electron (MATE) will measure the two dimensional electron distribution in the spin plane in the energy range 0.1 to 120 keV. The ion mass spectrometer Three dimensional Ion Composition Spectrometer (TICS) measures a full three dimensional distribution in the energy range 0.5 to 15000 eV/q with high mass resolution. The instruments use a particle 'imaging' detector technique based on a large diameter microchannel plate with position sensitive anode. The topics to be studied with the Freja hot plasma spectrometers include auroral particle acceleration, heating and acceleration of ionospheric ions, and the dynamics of auroral arc systems. Of special importance to the scientific objectives is the high data rate from the Freja instrumentation, the MATE and TICS spectrometers will be sampled every 10 ms, corresponding to a spatial resolution better than 70 m at ionospheric heights. The design, simulation, and calibration of the spectrometers are discussed.

  14. Handheld spectrometers: the state of the art

    NASA Astrophysics Data System (ADS)

    Crocombe, Richard A.

    2013-05-01

    "Small" spectrometers fall into three broad classes: small versions of laboratory instruments, providing data, subsequently processed on a PC; dedicated analyzers, providing actionable information to an individual operator; and process analyzers, providing quantitative or semi-quantitative information to a process controller. The emphasis of this paper is on handheld dedicated analyzers. Many spectrometers have historically been large, possible fragile, expensive and complicated to use. The challenge over the last dozen years, as instruments have moved into the field, has been to make spectrometers smaller, affordable, rugged, easy-to-use, but most of all capable of delivering actionable results. Actionable results can dramatically improve the efficiency of a testing process and transform the way business is done. There are several keys to this handheld spectrometer revolution. Consumer electronics has given us powerful mobile platforms, compact batteries, clearly visible displays, new user interfaces, etc., while telecomm has revolutionized miniature optics, sources and detectors. While these technologies enable miniature spectrometers themselves, actionable information has demanded the development of rugged algorithms for material confirmation, unknown identification, mixture analysis and detection of suspicious materials in unknown matrices. These algorithms are far more sophisticated than the `correlation' or `dot-product' methods commonly used in benchtop instruments. Finally, continuing consumer electronics advances now enable many more technologies to be incorporated into handheld spectrometers, including Bluetooth, wireless, WiFi, GPS, cameras and bar code readers, and the continued size shrinkage of spectrometer `engines' leads to the prospect of dual technology or `hyphenated' handheld instruments.

  15. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1998-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  16. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1997-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  17. Ultraviolet spectrometer observations of Uranus

    NASA Technical Reports Server (NTRS)

    Broadfoot, A. L.; Herbert, F.; Holberg, J. B.; Hunten, D. M.; Kumar, S.; Sandel, B. R.; Shemansky, D. E.; Dessler, A. J.; Linick, S.; Springer, R.

    1986-01-01

    The Voyager 2 UV spectrometer was used to scan the Uranus atmosphere at wavelengths from 500-1700 A with a field of view of 0.1 x 0.86 deg. The temperature and composition of the upper atmosphere were determined through occultations of light from gamma Pegasi, nu Geminorum and the sun. The data indicated a substantial gas density (100 million H atoms/cu cm) at about 28,000 km from the Uranus center, suggesting that gas drag plays a significant role in ring evolution. The distributions of CH4 and C2H2 in the lower atmosphere were also estimated. An electroglow emission was detected on the sunlit side, and attributed to emissions from atomic and molecular hydrogen excited by low energy electrons. An auroral glow was also observed, and exhibited evidence of an energy input equal to that of the electroglow. Finally, estimates of the C2H2 mixing ratio and the vertical column abundance of H2 are calculated.

  18. Spectrometer design approaching the limit

    NASA Astrophysics Data System (ADS)

    Riesenberg, Rainer; Wuttig, Andreas; Peschel, Thomas; Damm, Christoph; Dobschal, Hans-Jürgen

    2008-09-01

    The design limits of grating array spectral sensors are discussed. The limit of a grating spectrometer with respect to the resolution is given by the diffraction limit of the grating. To approach the limit for the visible spectral region the entrance slits should reach a width of 2 μm and larger depending on wavelength and numerical aperture. The detector pixel sizes should be in the same range, which is achieved virtually by the discussed double array arrangement with a transmissive, static slit array and detector array. A number of techniques are applied for optimizing the performance as well as for miniaturization. A sub-pixel imaging including a sub-pixel analysis based on the double array arrangement virtually reduces the detector pixel sizes down to about 20%. To avoid the imaging aberrations the spectra is imaged from different entrance positions by the entrance slit array. The throughput can be increased by using a two dimensional entrance slit array, which includes a multiplex pattern or a fixed adaptive pattern. The design example of a UV-Raman spectral sensor is presented including spectral measurements.

  19. Large Isotope Spectrometer for Astromag

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Klarmann, J.; Israel, M. H.; Garrard, T. L.; Mewaldt, R. A.; Stone, E. C.; Ormes, J. F.; Streitmatter, R. E.; Rasmussen, I. L.; Wiedenbeck, M. E.

    1990-01-01

    The Large Isotope Spectrometer for Astromag (LISA) is an experiment designed to measure the isotopic composition and energy spectra of cosmic rays for elements extending from beryllium through zinc. The overall objectives of this investigation are to study the origin and evolution of galactic matter; the acceleration, transport, and time scales of cosmic rays in the galaxy; and search for heavy antinuclei in the cosmic radiation. To achieve these objectives, the LISA experiment will make the first identifications of individual heavy cosmic ray isotopes in the energy range from about 2.5 to 4 GeV/n where relativistic time dilation effects enhance the abundances of radioactive clocks and where the effects of solar modulation and cross-section variations are minimized. It will extend high resolution measurements of individual element abundances and their energy spectra to energies of nearly 1 TeV/n, and has the potential for discovering heavy anti-nuclei which could not have been formed except in extragalactic sources.

  20. High-Resolution Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  1. The high sensitivity double beta spectrometer TGV

    NASA Astrophysics Data System (ADS)

    Briancon, Ch.; Brudanin, V. B.; Egorov, V. G.; Janout, Z.; Koníček, J.; Kovalík, A.; Kovalenko, V. E.; Kubašta, J.; Pospíšil, S.; Revenko, A. V.; Rukhadze, N. I.; Salamatin, A. V.; Sandukovsky, V. G.; Štekl, I.; Timkin, V. V.; Tsupko-Sitnikov, V. V.; Vorobel, V.; Vylov, Ts.

    1996-02-01

    A high sensitivity double beta spectrometer TGV (Telescope Germanium Vertical) has been developed. It is based on 16 HPGe detectors of volume 1200 × 6 mm 3 each in the same cryostat. The TGV spectrometer was proposed for the study of ultrarare nuclear processes (e.g. 2νββ, 0νββ, 2νEC/EC). Details of the TGV spectrometer construction are described, the principles of background suppression, the results of Monte Carlo simulations and the results of test background measurements (in Dubna and Modane underground laboratory) are provided.

  2. Mini-orange spectrometer at CIAE

    NASA Astrophysics Data System (ADS)

    Zheng, Yun; Wu, Xiao-Guang; Li, Guang-Sheng; Li, Cong-Bo; He, Chuang-Ye; Chen, Qi-Ming; Zhong, Jian; Zhou, Wen-Kui; Deng, Li-Tao; Zhu, Bao-Ji

    2016-08-01

    A mini-orange spectrometer used for in-beam measurements of internal conversion electrons, consisting of a Si(Li) detector and different sets of SmO5 permanent magnets for filtering and transporting the conversion electrons to the Si(Li) detector, has been developed at the China Institute of Atomic Energy. The working principles and configuration of the mini-orange spectrometer are described. The performance of the setup is illustrated by measured singles conversion electron spectra using the mini-orange spectrometer. Supported by National Natural Science Foundation of China (11305269, 11375267, 11475072, 11405274, 11205068, 11175259)

  3. Gas sampling system for a mass spectrometer

    DOEpatents

    Taylor, Charles E; Ladner, Edward P

    2003-12-30

    The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

  4. Spectrometer for cluster ion beam induced luminescence

    SciTech Connect

    Ryuto, H. Sakata, A.; Takeuchi, M.; Takaoka, G. H.; Musumeci, F.

    2015-02-15

    A spectrometer to detect the ultra-weak luminescence originated by the collision of cluster ions on the surfaces of solid materials was constructed. This spectrometer consists of 11 photomultipliers with band-pass interference filters that can detect the luminescence within the wavelength ranging from 300 to 700 nm and of a photomultiplier without filter. The calibration of the detection system was performed using the photons emitted from a strontium aluminate fluorescent tape and from a high temperature tungsten filament. Preliminary measurements show the ability of this spectrometer to detect the cluster ion beam induced luminescence.

  5. Spectrometer Observations Near Mawrth Vallis

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This targeted image from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) shows a region of heavily altered rock in Mars' ancient cratered highlands. The featured region is just south of Mawrth Vallis, a channel cut by floodwaters deep into the highlands.

    CRISM acquired the image at 1216 UTC (8:16 a.m. EDT) on Oct. 2, 2006, near 25.4 degrees north latitude, 340.7 degrees east longitude. It covers an area about 13 kilometers (8 miles) long and, at the narrowest point, about 9 kilometers (5.6 miles) wide. At the center of the image, the spatial resolution is as good as 35 meters (115 feet) per pixel. The image was taken in 544 colors covering 0.36-3.92 micrometers.

    This image includes four renderings of the data, all map-projected. At top left is an approximately true-color representation. At top right is false color showing brightness of the surface at selected infrared wavelengths. In the two bottom views, brightness of the surface at different infrared wavelengths has been compared to laboratory measurements of minerals, and regions that match different minerals have been colored. The bottom left image shows areas high in iron-rich clay, and the bottom right image shows areas high in aluminum-rich clay.

    Clay minerals are important to understanding the history of water on Mars because their formation requires that rocks were exposed to liquid water for a long time. Environments where they form include soils, cold springs, and hot springs. There are many clay minerals, and which ones form depends on the composition of the rock, and the temperature, acidity, and salt content of the water. CRISM's sister instrument on the Mars Express spacecraft, OMEGA, has spectrally mapped Mars at lower spatial resolution and found several regions rich in clay minerals. The Mawrth Vallis region, in particular, was found to contain iron-rich clay. CRISM is observing these regions at several tens of times higher spatial resolution, to correlate the

  6. Imaging Spectrometer on a Chip

    NASA Technical Reports Server (NTRS)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Zheng, Xinyu

    2007-01-01

    A proposed visible-light imaging spectrometer on a chip would be based on the concept of a heterostructure comprising multiple layers of silicon-based photodetectors interspersed with long-wavelength-pass optical filters. In a typical application, this heterostructure would be replicated in each pixel of an image-detecting integrated circuit of the active-pixel-sensor type (see figure). The design of the heterostructure would exploit the fact that within the visible portion of the spectrum, the characteristic depth of penetration of photons increases with wavelength. Proceeding from the front toward the back, each successive long-wavelength-pass filter would have a longer cutoff wavelength, and each successive photodetector would be made thicker to enable it to absorb a greater proportion of incident longer-wavelength photons. Incident light would pass through the first photodetector and encounter the first filter, which would reflect light having wavelengths shorter than its cutoff wavelength and pass light of longer wavelengths. A large portion of the incident and reflected shorter-wavelength light would be absorbed in the first photodetector. The light that had passed through the first photodetector/filter pair of layers would pass through the second photodetector and encounter the second filter, which would reflect light having wavelengths shorter than its cutoff wavelength while passing light of longer wavelengths. Thus, most of the light reflected by the second filter would lie in the wavelength band between the cutoff wavelengths of the first and second filters. Thus, further, most of the light absorbed in the second photodetector would lie in this wavelength band. In a similar manner, each successive photodetector would detect, predominantly, light in a successively longer wavelength band bounded by the shorter cutoff wavelength of the preceding filter and the longer cutoff wavelength of the following filter.

  7. The GIANO-TNG spectrometer

    NASA Astrophysics Data System (ADS)

    Oliva, E.; Origlia, L.; Baffa, C.; Biliotti, C.; Bruno, P.; D'Amato, F.; Del Vecchio, C.; Falcini, G.; Gennari, S.; Ghinassi, F.; Giani, E.; Gonzalez, M.; Leone, F.; Lolli, M.; Lodi, M.; Maiolino, R.; Mannucci, F.; Marcucci, G.; Mochi, I.; Montegriffo, P.; Rossetti, E.; Scuderi, S.; Sozzi, M.

    2006-06-01

    GIANO is an infrared (0.9-2.5 μm cross-dispersed echelle spectrometer designed to achieve high resolution, high throughput, wide band coverage and very high stability for accurate radial velocity measurements. It also includes polarimetric capabilities and a low resolution mode with RS ~ 400 and complete 0.75-2.5 μm coverage. This makes it a very versatile, common user instrument which will be permanently mounted and available on the Nasmyth-B foci of the Telescopio Nazionale Galileo (TNG) located at Roque de Los Muchachos Observatory (ORM), La Palma, Spain. The project is fast-track and relies on well known, relatively standard technologies. It has been recognized as one of the top priority instrumental projects of INAF (the Italian National Institute of Astronomy) and received its first financing for the phase-A study in October 2003. Integration in the laboratory is planned to start before the end of 2006, commissioning at the telescope is foreseen within 2007 and scientific operations in 2008. One of the most important scientific goals is the search for rocky planets with habitable conditions around low-mass stars. If completed on time, GIANO will be the first and only IR instrument operating worldwide providing the combination of efficiency, spectral resolution, wavelength coverage and stability necessary for this type of research. With its unique combination of high and low resolution modes, GIANO will also be a very flexible common-user instrument ideal e.g. for quantitative spectroscopy of brown dwarfs, stars and stellar clusters as well as for the determination of the spectral energy distribution of faint/red objects such as high redshift galaxies. The expected limiting magnitudes are such that GIANO will be able to deliver good quality HR spectra of any 2MASS object and LR spectra of any object detected in the UKIDSS large area survey.

  8. AUTOMATION OF AN ULTRAVIOLET-VISIBLE SPECTROMETER

    EPA Science Inventory

    This report is an overview of the functional description and major features of an automated ultraviolet-visible spectrometer system intended for environmental measurements application. As such, it defines functional specifications and requirements which are divided into the chlor...

  9. AVIRIS Spectrometer Maps Total Water Vapor Column

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg A.; Bruegge, Carol J.; Gary, Bruce L.

    1992-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) processes maps of vertical-column abundances of water vapor in atmosphere with good precision and spatial resolution. Maps provide information for meteorology, climatology, and agriculture.

  10. Electronically-Scanned Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Ocallaghan, F. G.

    1984-01-01

    Instrument efficient, lightweight, and stable. Fourier-transform spectrometer configuration uses electronic, instead of mechanical, scanning. Configuration insensitive to vibration-induced sampling errors introduced into mechanically scanned systems.

  11. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-O IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 micron (1000-4000/cm) to allow high-resolution, high-speed hyperspectral imaging applications. One application will be the remote sensing of the measurement of a large number of different atmospheric gases simultaneously in the same airmass. Due to the use of a combination of birefringent phase retarders and multiple achromatic phase switches to achieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventional Fourier transform spectrometer but without any moving parts. In this paper, the principle of operations, system architecture and recent experimental progress will be presented.

  12. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-0IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 pm (1000 -4000 cm-') to allow high-resolution, high-speed hyperspectral imaging applications [l-51. One application will be theremote sensing of the measurement of a large number of different atmospheric gases simultaneously in the sameairmass. Due to the use of a combination of birefiingent phase retarders and multiple achromatic phase switches toachieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventionalFourier transform spectrometer but without any moving parts. In this paper, the principle of operations, systemarchitecture and recent experimental progress will be presen.

  13. Ultra High Mass Range Mass Spectrometer System

    DOEpatents

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  14. Laboratory automation of a quadrupole mass spectrometer

    NASA Astrophysics Data System (ADS)

    Thompson, J. M.

    1983-12-01

    Efforts directed toward interfacing an LSI II bus of a PDP 11/23 desktop computer with a quadrupole mass spectrometer for the purpose of providing a convenient system whereby mass spectral data, of the products of thermal decomposition, may be rapidly acquired and processed under programmed conditions are described. The versatility and operations of the quadrupole mass spectrometer are discussed as well as the procedure for configurating the LSI II bus of the PDP 11/23 desktop computer for interfacing with the quadrupole mass spectrometer system. Data from the mass filter and other units of the spectrometer are digitally transferred to the computer whereupon mass spectral data and related data are generated.

  15. Laboratory Automation of a Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Thompson, J. M.

    1983-01-01

    Efforts directed toward interfacing an LSI II bus of a PDP 11/23 desktop computer with a quadrupole mass spectrometer for the purpose of providing a convenient system whereby mass spectral data, of the products of thermal decomposition, may be rapidly acquired and processed under programmed conditions are described. The versatility and operations of the quadrupole mass spectrometer are discussed as well as the procedure for configurating the LSI II bus of the PDP 11/23 desktop computer for interfacing with the quadrupole mass spectrometer system. Data from the mass filter and other units of the spectrometer are digitally transferred to the computer whereupon mass spectral data and related data are generated.

  16. Ruggedized Spectrometers Are Built for Tough Jobs

    NASA Technical Reports Server (NTRS)

    2015-01-01

    The Mars Curiosity Chemistry and Camera instrument, or ChemCam, analyzes the elemental composition of materials on the Red Planet by using a spectrometer to measure the wavelengths of light they emit. Principal investigator Roger Wiens worked with Ocean Optics, out of Dunedin, Florida, to rework the company's spectrometer to operate in cold and rowdy conditions and also during the stresses of liftoff. Those improvements have been incorporated into the firm's commercial product line.

  17. Optical Calibration For Jefferson Lab HKS Spectrometer

    SciTech Connect

    L. Yuan; L. Tang

    2005-11-04

    In order to accept very forward angle scattering particles, Jefferson Lab HKS experiment uses an on-target zero degree dipole magnet. The usual spectrometer optics calibration procedure has to be modified due to this on-target field. This paper describes a new method to calibrate HKS spectrometer system. The simulation of the calibration procedure shows the required resolution can be achieved from initially inaccurate optical description.

  18. 1987 calibration of the TFTR neutron spectrometers

    SciTech Connect

    Barnes, C.W.; Strachan, J.D.; Princeton Univ., NJ . Plasma Physics Lab.)

    1989-12-01

    The {sup 3}He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs.

  19. Mass Spectrometer for Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  20. SUB 1-Millimeter Size Fresnel Micro Spectrometer

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Koch, Laura; Song, Kyo D.; Park, Sangloon; King, Glen; Choi, Sang

    2010-01-01

    An ultra-small micro spectrometer with less than 1mm diameter was constructed using Fresnel diffraction. The fabricated spectrometer has a diameter of 750 nmicrometers and a focal length of 2.4 mm at 533nm wavelength. The micro spectrometer was built with a simple negative zone plate that has an opaque center with an ecliptic shadow to remove the zero-order direct beam to the aperture slit. Unlike conventional approaches, the detailed optical calculation indicates that the ideal spectral resolution and resolving power do not depend on the miniaturized size but only on the total number of rings. We calculated 2D and 3D photon distribution around the aperture slit and confirmed that improved micro-spectrometers below 1mm size can be built with Fresnel diffraction. The comparison between mathematical simulation and measured data demonstrates the theoretical resolution, measured performance, misalignment effect, and improvement for the sub-1mm Fresnel micro-spectrometer. We suggest the utilization of an array of micro spectrometers for tunable multi-spectral imaging in the ultra violet range.

  1. Commissioning Measurements of the KATRIN Main Spectrometer

    NASA Astrophysics Data System (ADS)

    Wierman, Kevin; Katrin Collaboration

    2013-10-01

    Beginning in May 2013, the KArlsruhe TRItium Neutrino experiment (KATRIN) collaboration began measurements to commission the 10-m diameter main spectrometer. KATRIN utilizes the spectrometer to provide magnetic adiabatic collimation and electrostatic filtering designed to analyze the tritium beta decay spectrum for contributions from the neutrino mass. In order to achieve an order-of-magnitude improvement on previous neutrino mass experiments the desired sensitivity of the apparatus must be 200 meV in the decay endpoint region. Goals of the recent measurements include identification and reduction of backgrounds and determination of the spectrometer transfer function. Backgrounds have been probed by utilizing electromagnetic field configurations to explore decays in the spectrometer, Penning traps and field emission. A 148-pixel PIN diode array is employed to detect particles exiting the spectrometer, which permits angular and radial distributions of particles to be analyzed. This has allowed for high precision comparison between measurements and simulations of expected backgrounds to be investigated in order to commission the spectrometer. This work is supported by grants from the DOE Office of Nuclear Physics and the Helmholtz Association.

  2. Improved Cloud Condensation Nucleus Spectrometer

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  3. The JPL Field Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Hook, Simon J.; Kahle, Anne B.

    1995-01-01

    The Jet Propulsion Laboratory (JPL) Field Emission Spectrometer (FES) was built by Designs and Prototypes based on a set of functional requirements supplied by JPL. The instrument has a spectral resolution of 6 wavenumbers (wn) and can acquire spectra from either the Mid Infrared (3-5 mu m) or the Thermal Infrared (8-12 pm) depending on whether the InSb or HgCdTe detector is installed respectively. The instrument consists of an optical head system unit and battery. The optical head which is tripod mounted includes the interferometer and detector dewar assembly. Wavelength calibration of the interferometer is achieved using a Helium-Neon laser diode. The dewar needs replenishing with liquid Nitrogen approximately every four hours. The system unit includes the controls for operation and the computer used for acquiring viewing and processing spectra. Radiometric calibration is achieved with an external temperature-controlled blackbody that mounts on the fore-optics of the instrument. The blackbody can be set at 5 C increments between 10 and 55 C. The instrument is compact and weighs about 33 kg. Both the wavelength calibration and radiometric calibration of the instrument have been evaluated. The wavelength calibration was checked by comparison of the position of water features in a spectrum of the sky with their position in the output from a high resolution atmospheric model. The results indicatethat the features in the sky spectrum are within 6-8 wn of their position ill the model spectrum. The radiometric calibration was checked by first calibrating the instrument using the external blackbody supplied with the instrument and then measuring the radiance from another external blackbody at a series of temperatures. The temperatures of these radiance spectra were then recovered by inventing Planck's law and the recovered temperatures compared lo the measured blackbody temperature. These results indicate that radiometric calibration is good to 0.5 C over the range of

  4. Multimedia. TAM Topical Guide #1.

    ERIC Educational Resources Information Center

    Boone, Randall, Ed.; Higgins, Kyle, Ed.

    Educational multimedia and hypermedia systems, which integrate computer-generated text and graphics with full-motion video and stereo sound, dominate much discussion about the future of computer use in education. This guide brings together the thoughts, ideas, and experience of elementary school students, classroom teachers, administrators,…

  5. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    SciTech Connect

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  6. Activation Measurements for Thermal Neutrons, U.S. Measurements of 36Cl in Mineral Samples from Hiroshima and Nagasaki; and Measurement of 63 Ni in Copper Samples From Hiroshima by Accelerator Mass Spectrometry

    SciTech Connect

    Tore Straume; Alfredo A. Marchetti; Stephen D. Egbert; James A. Roberts; Ping Men; Shoichiro Fujita; Kiyoshi Shizuma; Masaharu Hoshi; G. Rugel; W. Ruhm; G. Korschinek; J. E. McAninch; K. L. Carroll; T. Faestermann; K. Knie; R. E. Martinelli; A. Wallner; C. Wallner

    2005-01-14

    The present paper presents the {sup 36}Cl measurement effort in the US. A large number of {sup 36}Cl measurements have been made in both granite and concrete samples obtained from various locations and distances in Hiroshima and Nagasaki. These measurements employed accelerator mass spectrometry (AMS) to quantify the number of atoms of {sup 36}Cl per atom of total Cl in the sample. Results from these measurements are presented here and discussed in the context of the DS02 dosimetry reevaluation effort for Hiroshima and Nagasaki atomic-bomb survivors. The production of {sup 36}Cl by bomb neutrons in mineral samples from Hiroshima and Nagasaki was primarily via the reaction {sup 35}Cl(n,{gamma}){sup 36}Cl. This reaction has a substantial thermal neutron cross-section (43.6 b at 0.025 eV) and the product has a long half-life (301,000 y). hence, it is well suited for neutron-activation detection in Hiroshima and Nagasaki using AMS more than 50 years after the bombings. A less important reaction for bomb neutrons, {sup 39}K(n,{alpha}){sup 36}Cl, typically produces less than 10% of the {sup 36}Cl in mineral samples such as granite and concrete, which contain {approx} 2% potassium. In 1988, only a year after the publication of the DS86 final report (Roesch 1987), it was demonstrated experimentally that {sup 36}Cl measured using AMS should be able to detect the thermal neutron fluences at the large distances most relevant to the A-bomb survivor dosimetry. Subsequent measurements in mineral samples from both Hiroshima and Nagasaki validated the experimental findings. The potential utility of {sup 36}Cl as a thermal neutron detector in Hiroshima was first presented by Haberstock et al. who employed the Munich AMS facility to measure {sup 36}Cl/Cl ratios in a gravestone from near the hypocenter. That work subsequently resulted in an expanded {sup 36}Cl effort in Germany that paralleled the US work. More recently, there have also been {sup 36}Cl measurements made by a Japanese

  7. Exploring the role of ethnic media and the community readiness to combat stigma attached to mental illness among Vietnamese immigrants: the pilot project Tam An (Inner Peace in Vietnamese).

    PubMed

    Han, Meekyung; Cao, Lien; Anton, Karen

    2015-01-01

    Vietnamese Americans are at high risk for developing mental health disorders due to multiple risk factors such as trauma and acculturative stress. However, the utilization of mental health services has been low. The pilot project Tam An was implemented to raise mental health awareness by engaging community resources in the Vietnamese population. Informed by the Community Readiness Model and through local ethnic media sources, messages to destigmatize mental health and promote the willingness to initiate mental health treatment were presented. Using an exploratory perspective, findings from focus group data suggest that the project improved the community's stage of readiness. PMID:24989961

  8. Extinction of Harrington's Mountain Goat

    NASA Astrophysics Data System (ADS)

    Mead, Jim I.; Martin, Paul S.; Euler, Robert C.; Long, Austin; Jull, A. J. T.; Toolin, Laurence J.; Donahue, Douglas J.; Linick, T. W.

    1986-02-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 ± 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters.

  9. Extinction of Harrington's mountain goat

    SciTech Connect

    Mead, J.I.; Martin, P.S.; Euler, R.C.; Long, A.; Jull, A.J.T.; Toolin, L.J.; Donahue, D.J.; Linick, T.W.

    1986-02-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 +/- 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters.

  10. Determination of CA-41, I-129 and OS-187 in the Rochester tandem accelerator and some applications of these isotopes

    NASA Technical Reports Server (NTRS)

    Fehn, U.; Elmore, D.; Gove, H. E.; Kubik, P.; Teng, R.; Tubbs, L.

    1986-01-01

    The measurement of Ca-41 and I-129 utilizing the Rochester Tanden Accelerator Mass Spectrometer (TAMS) is discussed. Ca-41, having a half-life of 100,000 yrs., is of potential use for the dating of ground water as well as of bones in the age range between 50,000 and 1 million yrs. A major problem for the measurement of Ca-41 with TAMS is the fact that calcium does not readily form negative atomic ions. It does, however, form negative molecular ions. The production of CaO ions from compounds such as CaO and CaCO3 and from free Ca molecules sprayed with oxygen gas was studied. A project to utilize I-129 as a tracer for hydrothermal convection in sediment-covered oceanic crust is also briefly described. Finally, plans to use the Os-187/Os-186 ratio for the determination of extraterrestrial material in the Ries crater in Germany are summarized.

  11. Nuclear structure analysis using the Orange Spectrometer

    SciTech Connect

    Regis, J.-M.; Pascovici, Gh.; Christen, S.; Meersschout, T.; Bernards, C.; Fransen, Ch.; Dewald, A.; Braun, N.; Heinze, S.; Thiel, S.; Jolie, J.; Materna, Th.

    2009-01-28

    Recently, an Orange spectrometer, a focusing iron-free magnetic spectrometer, has been installed at a beam line of the 10 MV Tandem accelerator of the IKP of the University of Cologne. The high efficiency of 15% of 4{pi} for the detection of conversion electrons and the energy resolution of 1% makes the Orange spectrometer a powerful instrument. From the conversion electron spectrum, transition multipolarities can be determined using the so called K to L ratio. In combination with an array of germanium and lanthanum bromide detectors, e{sup -}-{gamma}-coincidences can be performed to investigate the level scheme. Moreover, the very fast lanthanum bromide scintillator with an energy resolution of 3% allows e{sup -}-{gamma} lifetime measurements down to 0.3 ns. A second Orange spectrometer can be added to build the Double Orange Spectrometer for e{sup -}-e{sup -}-coincidences. It is indispensable for lifetime measurements of low intensity or nearby lying transitions as often occur in odd-A and odd-odd nuclei. The capabilities are illustrated with several examples.

  12. Imaging Spectrometers Using Concave Holographic Gratings

    NASA Technical Reports Server (NTRS)

    Gradie, J.; Wang, S.

    1993-01-01

    Imaging spectroscopy combines the spatial attributes of imaging with the compositionally diagnostic attributes of spectroscopy. For spacebased remote sensing applications, mass, size, power, data rate, and application constrain the scanning approach. For the first three approaches, substantial savings in mass and size of the spectrometer can be achieved in some cases with a concave holographic grating and careful placement of an order-sorting filter. A hologram etched on the single concave surface contains the equivalent of the collimating, dispersing, and camera optics of a conventional grating spectrometer and provides substantial wavelength dependent corrections for spherical aberrations and a flat focal field. These gratings can be blazed to improve efficiency when used over a small wavelength range or left unblazed for broadband uniform efficiency when used over a wavelength range of up to 2 orders. More than 1 order can be imaged along the dispersion axis by placing an appropriately designed step order-sorting filter in front of the one- or two-dimensional detector. This filter can be shaped for additional aberration corrections. The VIRIS imaging spectrometer based on the broadband design provides simultaneous imaging of the entrance slit from lambda = 0.9 to 2.6 microns (1.5 orders) onto a 128 x 128 HgCdTe detector (at 77 K). The VIRIS spectrometer was used for lunar mapping with the UH 24.in telescope at Mauna Kea Observatory. The design is adaptable for small, low mass, space based imaging spectrometers.

  13. Modeling of the generic spatial heterodyne spectrometer and comparison with conventional spectrometer

    SciTech Connect

    Powell, Ian; Cheben, Pavel

    2006-12-20

    We describe the modeling of the generic spatial heterodyne spectrometer. This instrument resembles a somewhat modified Michelson interferometer, in which the power spectrum of the input source is determined by performing a one-dimensional Fourier transform on the output intensity profile. Code has been developed to analyze the performance of this type of spectrometer by determining the dependence of both spectral resolution and throughput on parameters such as aperture and field of view. An example of a heterodyne spectrometer is developed to illustrate the techniques employed in the modeling and a comparison undertaken between its performance and that of a conventional spectrometer. Unlike the traditional Fourier transform infrared system, the heterodyne spectrometer has the very desirable feature of having no moving components.

  14. Bulk and integrated acousto-optic spectrometers for molecular astronomy with heterodyne spectrometers

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    A survey of acousto-optic spectrometers for molecular astronomy is presented, noting a technique of combining the acoustic bending of a collimated coherent light beam with a Bragg cell followed by an array of sensitive photodetectors. This acousto-optic spectrometer has a large bandwidth, a large number of channels, high resolution, and is energy efficient. Receiver development has concentrated on high-frequency heterodyne systems for the study of the chemical composition of the interstellar medium. RF spectrometers employing acousto-optic diffraction cells are described. Acousto-optic techniques have been suggested for applications to electronic warfare, electronic countermeasures and electronic support systems. Plans to use integrated optics for the further miniaturization of acousto-optic spectrometers are described. Bulk acousto-optic spectrometers with 300 MHz and 1 GHz bandwidths are being developed for use in the back-end of high-frequency heterodyne receivers for astronomical research.

  15. Partial pressure measurements with an active spectrometer

    SciTech Connect

    Brooks, N.H.; Jensen, T.H.; Colchin, R.J.; Maingi, R.; Wade, M.R.; Finkenthal, D.F.; Naumenko, N.; Tugarinov, S.

    1998-07-01

    Partial pressure neutral ga measurements have been made using a commercial Penning gauge in conjunction with an active spectrometer. In prior work utilizing bandpass filters and conventional spectrometers, trace concentrations of the hydrogen isotopes H, D, T and of the noble gases He, Ne and Ar were determined from characteristic spectral lines in the light emitted by the neutral species of these elements. For all the elements mentioned, the sensitivity was limited by spectral contamination from a pervasive background of molecular hydrogen radiation. The active spectrometer overcomes this limitations by means of a digital lock-in method and correlation with reference spectra. Preliminary measurements of an admixture containing a trace amount of neon in deuterium show better than a factor of 20 improvement in sensitivity over conventional techniques. This can be further improved by correlating the relative intensities of multiple lines to sets of reference spectra.

  16. Acousto-optical spectrometers' frequency performance stability

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergei I.; Lavrov, Aleksandr P.; Molodyakov, Sergey A.; Saenko, Igor I.

    2004-02-01

    Performance characteristics of the acoutsto-optical spectrometers for some radioastronomical applications are discussed. The main attention is given to the long-term stability of the acousto-optical spectrometer's frequency characteristics. It is shown that a problem of the frequency scale thermal instabilities can be overcome by using the suitable correction, based on the proposed model of the frequency scale drifts. For the acousto-optical spectrometers under consideration a simple method of the frequency scale drifts correction by using the data from measuring of a single reference signal's frequency was developed and applied for correction of molecular lines observations data. More careful procedure for more exigent applications, such as pulsar timing, is considered.

  17. Fast neutron detection with a segmented spectrometer

    NASA Astrophysics Data System (ADS)

    Langford, T. J.; Bass, C. D.; Beise, E. J.; Breuer, H.; Erwin, D. K.; Heimbach, C. R.; Nico, J. S.

    2015-01-01

    A fast neutron spectrometer consisting of segmented plastic scintillator and 3He proportional counters was constructed for the measurement of neutrons in the energy range 1-200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130°N, 77.218°W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  18. Automated calibration of a flight particle spectrometer

    NASA Technical Reports Server (NTRS)

    Torbert, Roy B.

    1986-01-01

    An automatic calibration system was designed for use in the vacuum facility at the Space Science Laboratory of the Marshall Space Flight Center. That system was developed and used in the intervening winter to calibrate the ion spectrometer that eventually flew in May 1986 aboard the NASA project, CRIT 1. During this summer, it is planned to implement the calibration of both an ion and electron spectrometer of a new design whose basic elements were conceived during the winter of 1985 to 1986. This spectrometer was completed in the summer and successfully mounted in the vacuum tank for calibration. However, the source gate valve malfunctioned, and, at the end of the summer, it still needed a replacement. During the inevitable delays in the experimental research, the numerical model of the Critical Velocity effect was completed and these results were presented.

  19. A compact multichannel spectrometer for Thomson scattering

    SciTech Connect

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  20. Plasma Spectrochemistry with a Fourier Transform Spectrometer.

    NASA Astrophysics Data System (ADS)

    Manning, Thomas Joseph John

    1990-01-01

    This dissertation can be interpreted as being two-dimensional. The first dimension uses the Los Alamos Fourier Transform Spectrometer to uncover various physical aspects of a Inductively Coupled Plasma. The limits of wavenumber accuracy and resolution are pushed to measure line shifts and line profiles in an Inductively Coupled Argon Plasma. This is new physical information that the plasma spectroscopy community has been seeking for several years. Other plasma spectroscopy carried out includes line profile studies, plasma diagnostics, and exact identification of diatomic molecular spectra. The second aspect of the dissertation involves studies of light sources for Fourier Transform Spectroscopy. Sources developed use an inductively coupled plasma (ICP) power supply. New sources (neon ICP, closed cell ICP, and helium ICP) were developed and new methods to enhance the performance and understand a Fourier Transform Spectrometer were studied including a novel optical filter, a spectrum analyzer to study noises, and a standard to calibrate and evaluate a Fourier Transform Spectrometer.

  1. Compact real-time birefringent imaging spectrometer.

    PubMed

    Kudenov, Michael W; Dereniak, Eustace L

    2012-07-30

    The design and experimental demonstration of a snapshot hyperspectral imaging Fourier transform (SHIFT) spectrometer is presented. The sensor, which is based on a multiple-image FTS (MFTS), offers significant advantages over previous implementations using Michelson interferometers. Specifically, its use of birefringent interferometry creates a vibration insensitive and ultra-compact (15x15x10 mm(3)) common-path interferometer while offering rapid reconstruction rates through the graphics processing unit. The SHIFT spectrometer's theory and experimental prototype are described in detail. Included are reconstruction and spectral calibration procedures, followed by the spectrometer's validation using measurements of gas-discharge lamps. Lastly, outdoor measurements demonstrate the sensor's ability to resolve spectral signatures in typical outdoor lighting and environmental conditions. PMID:23038346

  2. SPEG: An energy loss spectrometer for GANIL

    NASA Astrophysics Data System (ADS)

    Bianchi, L.; Fernandez, B.; Gastebois, J.; Gillibert, A.; Mittig, W.; Barrette, J.

    1989-04-01

    Since July 1985, an energy loss spectrometer (SPEG) is under operation at the National Heavy Ion Laboratory (GANIL), at Caen (France). It has been designed to allow the study of quantum states populated in reactions induced by nuclei accelerated at energies up to 100 A MeV. The spectrometer has been designed by P. Birien. The optical properties and the main magnetic features have been calculated by Birien and Valero. A detailed reported of their study is given in ref. [1]. In the first part of the present paper, after recalling the specifications of the spectrometer, we shall give an overall description of the main characteristics, together with indications about the various shimming procedures which have been used to achieve the desired resolution (sections 1-4). In the second part, we shall describe various accessories and the different kinds of detectors which are used during experiments, with several illustrations of experimental results (sections 5 and 6).

  3. Miniature, sub-nanometer resolution Talbot spectrometer.

    PubMed

    Ye, Erika; Atabaki, Amir H; Han, Ningren; Ram, Rajeev J

    2016-06-01

    Miniaturization of optical spectrometers has a significant practical value as it can enable compact, affordable spectroscopic systems for chemical and biological sensing applications. For many applications, the spectrometer must gather light from sources that span a wide range of emission angles and wavelengths. Here, we report a lens-free spectrometer that is simultaneously compact (<0.6  cm3), of high resolution (<1  nm), and has a clear aperture (of 10×10  mm). The wavelength-scale pattern in the dispersive element strongly diffracts the input light to produce non-paraxial mid-field diffraction patterns that are then recorded using an optimally matched image sensor and processed to reconstruct the spectrum. PMID:27244382

  4. Miniature Neutron-Alpha Activation Spectrometer

    NASA Astrophysics Data System (ADS)

    Rhodes, Edgar; Holloway, James Paul; He, Zhong; Goldsten, John

    2002-10-01

    We are developing a miniature neutron-alpha activation spectrometer for in-situ analysis of chem-bio samples, including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform for Mars or outer-planet missions. In the neutron-activation mode, penetrating analysis will be performed of the whole sample using a γ spectrometer and in the α-activation mode, the sample surface will be analyzed using Rutherford-backscatter and x-ray spectrometers. Novel in our approach is the development of a switchable radioactive neutron source and a small high-resolution γ detector. The detectors and electronics will benefit from remote unattended operation capabilities resulting from our NEAR XGRS heritage and recent development of a Ge γ detector for MESSENGER. Much of the technology used in this instrument can be adapted to portable or unattended terrestrial applications for detection of explosives, chemical toxins, nuclear weapons, and contraband.

  5. Compact snapshot birefringent imaging Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Kudenov, Michael W.; Dereniak, Eustace L.

    2010-08-01

    The design and implementation of a compact multiple-image Fourier transform spectrometer (FTS) is presented. Based on the multiple-image FTS originally developed by A. Hirai, the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. The theory of the birefringent FTS is provided, followed by details of its specific embodiment. A laboratory proof of concept of the sensor, designed and developed at the Optical Detection Lab, is also presented. Spectral measurements of laboratory sources are provided, including measurements of light-emitting diodes and gas-discharge lamps. These spectra are verified against a calibrated Ocean Optics USB2000 spectrometer. Other data were collected outdoors, demonstrating the sensor's ability to resolve spectral signatures in standard outdoor lighting and environmental conditions.

  6. Testing of Josephson Spectrometer with Waveguide Coupling

    NASA Astrophysics Data System (ADS)

    Lyatti, M.; Gundareva, I.; Pavlovskii, V.; Poppe, U.; Divin, Y.

    2014-05-01

    One of the challenges in public security is the quick and reliable identification of threat liquids in bottles, when vapour analysis is not possible. Recently, we demonstrated that it is possible to rapidly identify liquids by EM measurements of their dielectric functions in the sub-THz range with a high-Tc Josephson spectrometer. Following this approach, we have developed a Josephson spectrometer with a new radiation coupling system, based on dielectric waveguides. In this paper, we present the results of spectroscopic measurements on liquid samples of various purities including 30% H2O2/H2O, performed using our Josephson spectrometer with waveguide coupling. Also, the signal and noise characteristics of a classical Josephson detector used in our liquid identifier were numerically simulated and the power dynamic range was estimated for a wide spread of junction parameters.

  7. Compact hydrogen/helium isotope mass spectrometer

    DOEpatents

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  8. Adaptive Tunable Laser Spectrometer for Space Applications

    NASA Technical Reports Server (NTRS)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  9. Miniaturized Energy Spectrometer for Space Plasma Measurements

    NASA Astrophysics Data System (ADS)

    Goes de Lima, Raphaela; Scime, Earl; Keesee, Amy; Lusk, Greg

    2015-11-01

    Taking advantage of technological developments in lithographic fabrication techniques over the past two decades, we have designed an ultra-compact plasma spectrometer that requires only low voltage power supplies, no microchannel plates, and has a high aperture area to instrument area ratio. The designed target is for ions in the 3- 20 keV range with a highly directional field of view. In addition to reducing mass, size, and voltage requirements, the new design will revolutionize the manufacturing process of plasma spectrometers, enabling large quantities of identical instruments to be manufactured at low individual unit cost. Such a plasma spectrometer is ideal for Heliophysics plasma investigations, particularly for small satellite and multi-spacecraft missions. Here we present initial measurements of the performance of the instrument components and designs of the electronics for the low energy threshold solid state detector. Work Support under NASA grant - NNX14AJ36G.

  10. Performance of an INTEGRAL spectrometer model

    NASA Technical Reports Server (NTRS)

    Jean, P.; Naya, J. E.; vonBallmoos, P.; Vedrenne, G.; Teegarden, B.

    1997-01-01

    Model calculations for the INTEGRAL spectrometer (SPI) onboard the future INTErnational Gamma Ray Astrophysics Laboratory (INTEGAL) are presented, where the sensitivity for narrow lines is based on estimates of the background level and the detection efficiency. The instrumental background rates are explained as the sum of various components that depend on the cosmic ray intensity and the spectrometer characteristics, such as the mass distribution around the Ge detectors, the passive material, the characteristics of the detector system and the background reduction techniques. Extended background calculations were performed with Monte Carlo simulations and using semi-empirical and calculated neutron and proton cross sections. In order to improve the INTEGRAL spectrometer sensitivity, several designs and background reduction techniques were compared for an instrument with a fixed detector volume.

  11. A neutron spectrometer using nested moderators.

    PubMed

    Dubeau, J; Hakmana Witharana, S S; Atanackovic, J; Yonkeu, A; Archambault, J P

    2012-06-01

    The design, simulation results and measurements of a new neutron energy spectrometer are presented. The device, which may be called NNS, for Nested Neutron Spectrometer, works under the same principles as a Bonner Sphere Spectrometer (BSS) System, i.e. whereby a thermal neutron detector is surrounded by a polyethylene moderator. However, the moderator is cylindrical in shape. The different thicknesses of moderator are created by inserting one cylinder into another, much like nested Russian dolls. This design results in a much lighter instrument that is also easier to use in the field. Simulations and measurements show that, despite its shape, the device can be made to offer a near angular isotropic response to neutrons and that unfolded neutron spectra are in agreement with those obtained with a more traditional BSS. PMID:21964903

  12. Degradation Free Spectrometers for Solar EUV Measurements

    NASA Astrophysics Data System (ADS)

    Wieman, S. R.; Didkovsky, L. V.; Judge, D. L.; McMullin, D. R.

    2011-12-01

    Solar EUV observations will be made using two new degradation-free EUV spectrometers on a sounding rocket flight scheduled for summer 2012. The two instruments, a rare gas photoionization-based Optics-Free Spectrometer (OFS) and a Dual Grating Spectrometer (DGS), are filter-free and optics-free. OFS can measure the solar EUV spectrum with a spectral resolution comparable to that of grating-based EUV spectrometers. The DGS selectable spectral bandwidth is designed to provide solar irradiance in a 10 nm band centered on the Lyman-alpha 121.6 nm line and a 4 nm band centered on the He-II 30.4 nm line to overlap EUV observations from the SDO/EUV Variability Experiment (EVE) and the SOHO/Solar EUV Monitor (SEM). A clone of the SOHO/SEM flight instrument and a Rare Gas Ionization Cell (RGIC) absolute EUV detector will also be flown to provide additional measurements for inter-comparison. Program delays related to the sounding rocket flight termination system, which was no longer approved by the White Sands Missile Range prevented the previously scheduled summer 2011 launch of these instruments. During this delay several enhancements have been made to the sounding rocket versions of the DFS instruments, including a lighter, simplified vacuum housing and gas system for the OFS and an improved mounting for the DGS, which allows more accurate co-alignment of the optical axes of the DGS, OFS, and the SOHO/SEM clone. Details of these enhancements and results from additional lab testing of the instruments are reported here. The spectrometers are being developed and demonstrated as part of the Degradation Free Spectrometers (DFS) project under NASA's Low Cost Access to Space (LCAS) program and are supported by NASA Grant NNX08BA12G.

  13. Automated calibration of a flight particle spectrometer

    NASA Technical Reports Server (NTRS)

    Torbert, R. B.

    1986-01-01

    A system for calibrating both electron and ion imaging particle spectrometers was devised to calibrate flight instruments in a large vacuum facility in the Space Science Laboratory at the Marshall Space Flight Center. An IBM-compatible computer was used to control, via an IEEE 488 buss protocol, a two-axis gimbled table, constructed to fit inside the tank. Test settings of various diagnostic voltages were also acquired via the buss. These spectrometers constructed by the author at UCSD were calibrated in an automatic procedure programmed on the small computer. Data was up-loaded to the SSL VAX where a program was developed to plot the results.

  14. Modular Spectrometers in the Undergraduate Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Bernazzani, Paul; Paquin, Francine

    2001-06-01

    A rapid evolution of fiber-optic and computer technology led to the concept of modular spectrometers. The Ocean Optics S2000 series of spectroscopic instruments, based on a 2048-element linear CCD-array, are examples of such equipment. We have introduced two of these modular systems into our undergraduate laboratory courses, for experiments that serve as an introduction to signal processing. The Ocean Optics spectrometers have proven to be both rapid and inexpensive and have improved the quality of learning of our students.

  15. Improved real-time imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Chao, Tien-Hsin (Inventor); Yu, Jeffrey W. (Inventor); Cheng, Li-Jen (Inventor)

    1993-01-01

    An improved AOTF-based imaging spectrometer that offers several advantages over prior art AOTF imaging spectrometers is presented. The ability to electronically set the bandpass wavelength provides observational flexibility. Various improvements in optical architecture provide simplified magnification variability, improved image resolution and light throughput efficiency and reduced sensitivity to ambient light. Two embodiments of the invention are: (1) operation in the visible/near-infrared domain of wavelength range 0.48 to 0.76 microns; and (2) infrared configuration which operates in the wavelength range of 1.2 to 2.5 microns.

  16. Compact Imaging Spectrometer Utilizing Immersed Gratings

    DOEpatents

    Chrisp, Michael P.; Lerner, Scott A.; Kuzmenko, Paul J.; Bennett, Charles L.

    2006-03-21

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, a system for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through an optical element to the detector array.

  17. A multichannel magneto-chiral dichroism spectrometer

    NASA Astrophysics Data System (ADS)

    Kopnov, G.; Rikken, G. L. J. A.

    2014-05-01

    In this work, we describe a multichannel magneto-chiral dichroism spectrometer for the visible and near infrared wavelength ranges. The optical signal acquisition is based on commercially available Czerny-Turner spectrograph systems equipped with solid state detector arrays. The signal analysis method is based on post-processing phase sensitive detection, where the optical properties of the sample are modulated by an alternating external magnetic field. As an illustration of the performance of this spectrometer, magneto-chiral dichroism was measured in crystals of α - NiSO4 . 6H2O and good agreement with literature results was obtained.

  18. Dyson spectrometers for infrared earth remote sensing

    NASA Astrophysics Data System (ADS)

    Warren, David W.; Gutierrez, David J.; Hall, Jeffrey L.; Keim, Eric R.

    2008-08-01

    The Dyson spectrometer form is capable of providing high throughput, excellent image quality, low spatial and spectral distortions, and high tolerance to fabrication and alignment errors in a compact format with modest demands for weight, volume, and cooling resources. These characteristics make it attractive for hyperspectral imaging from a space-based platform. After a brief discussion of history and basic principles, we present two examples of Dyson spectrometers being developed for airborne applications. We conclude with a concept for an earth science instrument soon to begin development under the Instrument Incubator Program of NASA's Earth Science Technology Office.

  19. A compact collinear AOTF Raman spectrometer.

    PubMed

    Gupta, N; Fell, N F

    1997-12-19

    A compact, lightweight, completely packaged, uncooled, fully-automated collinear acousto-optic tunable-filter (AOTF) based spectrometer has been used to measure Raman spectra of three organic energetic materials (NQ, HMX, and TNT) using argon-ion laser excitation. Even though the resolution of the AOTF spectrometer is modest (7.4 cm(-1)) and it was not specifically designed for measuring Raman spectra, it has performed impressively. Such an instrument is specially useful for remote sensing and field measurements. In this paper, we will describe this instrument, present the measured Raman spectra and their comparison with the corresponding FT-IR spectra. PMID:18967003

  20. Acousto-optic spectrometer for radio astronomy

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1980-01-01

    A prototype acousto-optic spectrometer which uses a discrete bulk acoustic wave Itek Bragg cell, 5 mW Helium Neon laser, and a 1024 element Reticon charge coupled photodiode array is described. The analog signals from the photodiode array are digitized, added, and stored in a very high speed custom built multiplexer board which allows synchronous detection of weak signals to be performed. The experiment is controlled and the data are displayed and stored with an LSI-2 microcomputer system with dual floppy discs. The performance of the prototype acousto-optic spectrometer obtained from initial tests is reported.

  1. The Constellation-X Reflection Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Allen, Jean C.

    2006-01-01

    The Reflection Grating Spectrometer on the Constellation-X mission will provide high sensitivity, high-resolution spectra in the soft x-ray band. The RGS performance requirements are specified as a resolving power of greater than 300 and an effective area of greater than 1000 sq cm across most of the 0.25 to 2.0 keV band. These requirements are driven by the science goals of the mission. We will describe the performance requirements and goals, the reference design of the spectrometer, and examples of science cases where we expect data from the RGS to significantly advance our current understanding of the universe.

  2. The Electron Spectrometer for the Cassini spacecraft

    NASA Astrophysics Data System (ADS)

    Coates, A. J.; Alsop, C.; Coker, A. J.; Linder, D. R.; Johnstone, A. D.; Woodliffe, R. D.; Grande, M.; Preece, A.; Burge, S.; Hall, D. S.

    1992-09-01

    One of the major aims of the Cassini spacecraft is to characterize in detail the interaction of the solar wind with the Saturnian system. The Cassini Plasma Spectrometer (CAPS) addresses this aim by measuring the plasma particles, ions and electrons, with a suite of three complementary state-of-the-art sensors. The Electron Spectrometer (ELS), contributed by the UK with assistance from Norway, will measure the energy and angular distributions of solar wind and magnetospheric electrons with unprecedented accuracy. This paper describes the scientific aims and design of CAPS concentrating particularly on the ELS sensor.

  3. The Diffuse X-ray Spectrometer Experiment

    NASA Technical Reports Server (NTRS)

    Sanders, W. T.; Edgar, R. J.; Juda, M.; Kraushaar, W. L.; Mccammon, D.; Snowden, S. L.; Zhang, J.; Skinner, M. A.

    1992-01-01

    The Diffuse X-ray Spectrometer Experiment, or 'DXS', is designed to measure the spectrum of the low-energy diffuse X-ray background with about 10 eV energy resolution and 15-deg spatial resolution. During a 5-day Space Shuttle mission, DXS is to measure the spectrum of ten 15 x 15 deg regions lying along a single 150-deg-long great circle arc on the sky. DXS carries two large-area X-ray Bragg spectrometers for the 44-84 A wavelength range; these permit measurement of the wavelength spectrum of the cosmic low-energy diffuse X-ray background with good spectral resolution.

  4. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  5. MICE Spectrometer Solenoid Magnetic Field Measurements

    SciTech Connect

    Leonova, M.

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  6. Time-of-flight Fourier UCN spectrometer

    NASA Astrophysics Data System (ADS)

    Kulin, G. V.; Frank, A. I.; Goryunov, S. V.; Kustov, D. V.; Geltenbort, P.; Jentschel, M.; Lauss, B.; Schmidt-Wellenburg, P.

    2016-05-01

    We describe a new time-of-flight Fourier spectrometer for investigation of UCN diffraction by a moving grating. The device operates in the regime of a discrete set of modulation frequencies. The results of the first experiments show that the spectrometer may be used for obtaining UCN energy spectra in the energy range of 60 - 200 neV with a resolution of about 5 neV. The accuracy of determination of the line position was estimated to be several units of 10-10 eV.

  7. The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family.

    PubMed

    Warren, W D; Atkinson, P W; O'Brochta, D A

    1994-10-01

    The genome of the house fly, Musca domestica, contains an active transposable element system, called Hermes. Using PCR and inverse PCR we amplified and sequenced overlapping segments of several Hermes elements and from these data we have constructed a 2749 bp consensus Hermes DNA sequence. Hermes termini are composed of 17 bp imperfect inverted repeats that are almost identical to the inverted terminal repeats of the hobo element of Drosophila melanogaster. Full length Hermes elements contain a single long ORF capable of encoding a protein of 612 amino acids which is 55% identical to the amino acid sequence of the hobo transposase. Comparison of the ends of the Hermes and hobo elements to those of the Ac element of Zea mays, and the Tam3 element of Antirrhinum majus, as well as several other plant and insect elements, revealed a conserved terminal sequence motif. Thus Hermes is clearly a member of the hobo, Ac and Tam3 (hAT) transposable element family, other members of which include the Tag1 element from Arabidopsis thaliana and the Bg element from Zea mays. The evolution of this class of transposable elements and the potential utility of Hermes as a genetic tool in M. domestica and related species are discussed. PMID:7813905

  8. Greenhouse Observations of the Stratosphere and Troposphere (GHOST): a novel shortwave infrared spectrometer developed for the Global Hawk unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Humpage, Neil; Boesch, Hartmut; Palmer, Paul; Parr-Burman, Phil; Vick, Andy; Bezawada, Naidu; Black, Martin; Born, Andy; Pearson, David; Strachan, Jonathan; Wells, Martyn

    2014-05-01

    The tropospheric distribution of greenhouse gases (GHGs) is dependent on surface flux variations, atmospheric chemistry and transport processes over a wide range of spatial and temporal scales. Errors in assumed atmospheric transport can adversely affect surface flux estimates inferred from surface, aircraft or satellite observations of greenhouse gas concentrations using inverse models. We present a novel, compact shortwave infrared spectrometer (GHOST) for installation on the NASA Global Hawk unmanned aerial vehicle to provide tropospheric column observations of CO2, CO, CH4, H2O and HDO over the ocean to address the need for large-scale, simultaneous, finely resolved measurements of key GHGs. These species cover a range of lifetimes and source processes, and measurements of their tropospheric columns will reflect the vertically integrated signal of their vertical and horizontal transport within the troposphere. The primary science objectives of GHOST are to: 1) provide observations which can be used to test atmospheric transport models; 2) validate satellite observations of GHG column observations over oceans, thus filling a critical gap in current validation capabilities; and 3) complement in-situ tropopause transition layer tracer observations from other instrumentation on board the Global Hawk to provide a link between upper and lower troposphere concentration measurements. The GHOST spectrometer system comprises a target acquisition module (TAM), a fibre slicer and feed system, and a multiple order spectrograph. The TAM design utilises a gimbal behind an optical dome, which is programmed to direct solar radiation reflected by the ocean surface into a fibre optic bundle. The fibre slicer and feed system then splits the light into the four spectral bands using order sorting filters. The fibres corresponding to each band are arranged with a small sideways offset to correctly centre each spectrum on the detector array. The spectrograph design is unique in that a

  9. HyTES: Thermal Imaging Spectrometer Development

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Realmuto, Vincent; Lamborn, Andy; Paine, Chris; Mumolo, Jason M.; Eng, Bjorn T.

    2011-01-01

    The Jet Propulsion Laboratory has developed the Hyperspectral Thermal Emission Spectrometer (HyTES). It is an airborne pushbroom imaging spectrometer based on the Dyson optical configuration. First low altitude test flights are scheduled for later this year. HyTES uses a compact 7.5-12 micrometer m hyperspectral grating spectrometer in combination with a Quantum Well Infrared Photodetector (QWIP) and grating based spectrometer. The Dyson design allows for a very compact and optically fast system (F/1.6). Cooling requirements are minimized due to the single monolithic prism-like grating design. The configuration has the potential to be the optimal science-grade imaging spectroscopy solution for high altitude, lighter-than-air (HAA, LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The QWIP sensor allows for optimum spatial and spectral uniformity and provides adequate responsivity which allows for near 100mK noise equivalent temperature difference (NEDT) operation across the LWIR passband. The QWIP's repeatability and uniformity will be helpful for data integrity since currently an onboard calibrator is not planned. A calibration will be done before and after eight hour flights to gage any inconsistencies. This has been demonstrated with lab testing. Further test results show adequate NEDT, linearity as well as applicable earth science emissivity target results (Silicates, water) measured in direct sunlight.

  10. Reflecting Schmidt/Littrow Prism Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Page, N. A.; Shack, R. V.; Shannon, R. R.

    1985-01-01

    High resolution achieved with wide field of view. Imaging Spectrometer features off-axis reflecting optics, including reflecting "slit" that also serves as field flattener. Only refracting element is prism. By scanning slit across object or scene and timing out signal, both spectral and spatial information in scene are obtained.

  11. Tropospheric Emission Spectrometer Product File Readers

    NASA Technical Reports Server (NTRS)

    Fisher, Brendan M.

    2010-01-01

    TES Product File Reader software extracts data from publicly available Tropospheric Emission Spectrometer (TES) HDF (Hierarchical Data Format) product data files using publicly available format specifications for scientific analysis in IDL (interactive data language). In this innovation, the software returns data fields as simple arrays for a given file. A file name is provided, and the contents are returned as simple IDL variables.

  12. Apollo 17 ultraviolet spectrometer experiment (S-169)

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1974-01-01

    The scientific objectives of the ultraviolet spectrometer experiment are discussed, along with design and operational details, instrument preparation and performance, and scientific results. Information gained from the experiment is given concerning the lunar atmosphere and albedo, zodiacal light, astronomical observations, spacecraft environment, and the distribution of atomic hydrogen in the solar system and in the earth's atmosphere.

  13. A miniature mass spectrometer for hydrazine detection

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Sinha, M. P.

    2003-01-01

    A Miniature Mass Spectrometer (MMS) with a focal plane (Mattauch-Herzog) geometry has been developed at the Jet Propulsion Laboratory. The MMS has the potential to meet the NASA requirements of 10 parts per billion sensitivity for Hydrazine detection, as well as the requirements for instant response, portability, and low maintenance.

  14. Real-Time Multidetector Neutron Spectrometer

    NASA Astrophysics Data System (ADS)

    Drejzin, V. E.; Grimov, A. A.; Logvinov, D. I.

    2016-07-01

    We explain a new approach to constructing a real-time neutron spectrometer, using several detectors with different spectral characteristics and coprocessing the data using a pre-trained neural network. We present the results of simulation and experimental studies on a prototype, demonstrating the effectiveness of this approach.

  15. Instrumentation for the Atmospheric Explorer photoelectron spectrometer

    NASA Technical Reports Server (NTRS)

    Peletier, D. P.

    1973-01-01

    The photoelectron spectrometer (PES) is part of the complements of scientific instruments aboard three NASA Atmosphere Explorer (AE) satellites. The PES measures the energy spectrum, angular distribution, and intensity of electrons in the earth's thermosphere. Measurements of energies between 2 and 500 eV are made at altitudes as low as 130 km. The design, characteristics, and performance of the instrument are described.

  16. Livermore Imaging Fourier Transform Infrared Spectrometer (LIFTIRS)

    SciTech Connect

    Carter, M.R.; Bennett, C.L.; Fields, D.J.; Lee, F.D.

    1995-05-10

    Lawrence Livermore National Laboratory is currently operating a hyperspectral imager, the Livermore Imaging Fourier Transform Infrared Spectrometer (LIFTIRS). This instrument is capable of operating throughout the infrared spectrum from 3 to 12.5 {mu}m with controllable spectral resolution. In this presentation we report on it`s operating characteristics, current capabilities, data throughput and calibration issues.

  17. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1990-11-27

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.

  18. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1990-01-01

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.

  19. Compact imaging spectrometer utilizing immersed gratings

    DOEpatents

    Lerner, Scott A.

    2005-12-20

    A compact imaging spectrometer comprising an entrance slit for directing light, lens means for receiving the light, refracting the light, and focusing the light; an immersed diffraction grating that receives the light from the lens means and defracts the light, the immersed diffraction grating directing the detracted light back to the lens means; and a detector that receives the light from the lens means.

  20. Digital Signal Processing in the GRETINA Spectrometer

    NASA Astrophysics Data System (ADS)

    Cromaz, Mario

    2015-10-01

    Developments in the segmentation of large-volume HPGe crystals has enabled the development of high-efficiency gamma-ray spectrometers which have the ability to track the path of gamma-rays scattering through the detector volume. This technology has been successfully implemented in the GRETINA spectrometer whose high efficiency and ability to perform precise event-by-event Doppler correction has made it an important tool in nuclear spectroscopy. Tracking has required the spectrometer to employ a fully digital signal processing chain. Each of the systems 1120 channels are digitized by 100 Mhz, 14-bit flash ADCs. Filters that provide timing and high-resolution energies are implemented on local FPGAs acting on the ADC data streams while interaction point locations and tracks, derived from the trace on each detector segment, are calculated in real time on a computing cluster. In this presentation we will give a description of GRETINA's digital signal processing system, the impact of design decisions on system performance, and a discussion of possible future directions as we look towards soon developing larger spectrometers such as GRETA with full 4 π solid angle coverage. This work was supported by the Office of Science in the Department of Energy under grant DE-AC02-05CH11231.

  1. A transmission grating spectrometer for plasma diagnostics

    SciTech Connect

    Bartlett, R.J.; Hockaday, R.G.; Gallegos, C.H.; Gonzales, J.M.; Mitton, V.

    1995-09-01

    Radiation temperature is an important parameter in characterizing the properties of hot plasmas. In most cases this temperature is time varying caused by the short lived and/or time dependent nature of the plasma. Thus, a measurement of the radiation flux as a function of time is quite valuable. To this end the authors have developed a spectrometer that can acquire spectra with a time resolution of less than 1 ns and covers the spectral energy range from {approximately} 60 to 1,000 eV. The spectrometer consists of an entrance slit placed relatively near the plasma, a thin gold film transmission grating with aperture, a micro channel plate (MCP) detector with a gold cathode placed at the dispersion plane and an electron lens to focus the electrons from the MCP onto a phosphor coated fiber optic plug. The phosphor (In:CdS) has a response time of {approximately} 500 ps. This detector system, including the fast phosphor is similar to one that has been previously described. The spectrometer is in a vacuum chamber that is turbo pumped to a base pressure of {approximately} 5 x 10{sup 7} torr. The light from the phosphor is coupled to two streak cameras through 100 m long fiber optic cables. The streak cameras with their CCD readouts provide the time resolution of the spectrum. The spectrometer has a built in alignment system that uses an alignment telescope and retractable prism.

  2. Imaging mass spectrometer with mass tags

    DOEpatents

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  3. Imaging mass spectrometer with mass tags

    DOEpatents

    Felton, James S.; Wu, Kuang Jen; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2010-06-01

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  4. Evaluation of Small Mass Spectrometer Systems

    NASA Technical Reports Server (NTRS)

    Arkin, C. Richard; Griffin, Timothy P.; Ottens, Andrew K.; Diaz, Jorge A.; Follistein, Duke W.; Adams, Fredrick W.; Helms, William R.; Voska, N. (Technical Monitor)

    2002-01-01

    Various mass analyzer systems were evaluated. Several systems show promise, including the Stanford Research Systems RGA-100, Inficon XPR-2, the University of Florida's Ion Trap, and the Compact Double Focus Mass Spectrometer. Areas that need improvement are the response time, recovery time, system volume, and system weight. Future work will investigate techniques to improve systems and will evaluate engineering challenges.

  5. A transmission grating spectrometer for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Bartlett, Roger J.; Hockaday, Robert G.; Gallegos, Cenobio H.; Gonzales, Joseph M.; Mitton, Vance

    Radiation temperature is an important parameter in characterizing the properties of hot plasmas. In most cases this temperature is time varying caused by the short lived and/or time dependent nature of the plasma. Thus, a measurement of the radiation flux as a function of time is quite valuable. To this end the authors have developed a spectrometer that can acquire spectra with a time resolution of less than 1 ns and covers the spectral energy range from approximately 60 to 1,000 eV. The spectrometer consists of an entrance slit placed relatively near the plasma, a thin gold film transmission grating with aperture, a micro channel plate (MCP) detector with a gold cathode placed at the dispersion plane and an electron lens to focus the electrons from the MCP onto a phosphor coated fiber optic plug. The phosphor (In:CdS) has a response time of (approximately) 500 ps. This detector system, including the fast phosphor is similar to one that has been previously described. The spectrometer is in a vacuum chamber that is turbo pumped to a base pressure of approximately 5 x 10(exp 7) torr. The light from the phosphor is coupled to two streak cameras through 100 m long fiber optic cables. The streak cameras with their CCD readouts provide the time resolution of the spectrum. The spectrometer has a built in alignment system that uses an alignment telescope and retractable prism.

  6. Expert system for imaging spectrometer analysis results

    NASA Technical Reports Server (NTRS)

    Borchardt, Gary C.

    1985-01-01

    Information on an expert system for imaging spectrometer analysis results is outlined. Implementation requirements, the Simple Tool for Automated Reasoning (STAR) program that provides a software environment for the development and operation of rule-based expert systems, STAR data structures, and rule-based identification of surface materials are among the topics outlined.

  7. ELECTRONICS UPGRADE OF HIGH RESOLUTION MASS SPECTROMETERS

    SciTech Connect

    Mcintosh, J; Joe Cordaro, J

    2008-03-10

    High resolution mass spectrometers are specialized systems that allow researchers to determine the exact mass of samples to four significant digits by using magnetic and electronic sector mass analyzers. Many of the systems in use today at research laboratories and universities were designed and built more than two decades ago. The manufacturers of these systems have abandoned the support for some of the mass spectrometers and parts to power and control them have become scarce or obsolete. The Savannah River National Laboratory has been involved in the upgrade of the electronics and software for these legacy machines. The Electronics Upgrade of High Resolution Mass Spectrometers consists of assembling high-end commercial instrumentation from reputable manufacturers with a minimal amount of customization to replace the electronics for the older systems. By taking advantage of advances in instrumentation, precise magnet control can be achieved using high resolution current sources and continuous feedback from a high resolution hall-effect probe. The custom equipment include a precision voltage divider/summing amplifier chassis, high voltage power supply chassis and a chassis for controlling the voltage emission for the mass spectrometer source tube. The upgrade package is versatile enough to interface with valve control, vacuum and other instrumentation. Instrument communication is via a combination of Ethernet and traditional IEEE-488 GPIB protocols. The system software upgrades include precision control, feedback and spectral waveform analysis tools.

  8. Multi-channel electric aerosol spectrometer

    NASA Astrophysics Data System (ADS)

    Mirme, A.; Noppel, M.; Peil, I.; Salm, J.; Tamm, E.; Tammet, H.

    Multi-channel electric mobility spectrometry is a most efficient technique for the rapid measurement of an unstable aerosol particle size spectrum. The measuring range of the spectrometer from 10 microns to 10 microns is achieved by applying diffusional and field charging mechanisms simultaneously. On-line data processing is carried out with a microcomputer. Experimental calibration ensures correctness of measurement.

  9. Broadband Infrared Heterodyne Spectrometer: Final Report

    SciTech Connect

    Stevens, C G; Cunningham, C T; Tringe, J W

    2010-12-16

    This report summarizes the most important results of our effort to develop a new class of infrared spectrometers based on a novel broadband heterodyne design. Our results indicate that this approach could lead to a near-room temperature operation with performance limited only by quantum noise carried by the incoming signal. Using a model quantum-well infrared photodetector (QWIP), we demonstrated key performance features of our approach. For example, we directly measured the beat frequency signal generated by superimposing local oscillator (LO) light of one frequency and signal light of another through a spectrograph, by injecting the LO light at a laterally displaced input location. In parallel with the development of this novel spectrometer, we modeled a new approach to reducing detector volume though plasmonic resonance effects. Since dark current scales directly with detector volume, this ''photon compression'' can directly lead to lower currents. Our calculations indicate that dark current can be reduced by up to two orders of magnitude in an optimized ''superlens'' structure. Taken together, our spectrometer and dark current reduction strategies provide a promising path toward room temperature operation of a mid-wave and possibly long-wave infrared spectrometer.

  10. Advanced Laboratory NMR Spectrometer with Applications.

    ERIC Educational Resources Information Center

    Biscegli, Clovis; And Others

    1982-01-01

    A description is given of an inexpensive nuclear magnetic resonance (NMR) spectrometer suitable for use in advanced laboratory courses. Applications to the nondestructive analysis of the oil content in corn seeds and in monitoring the crystallization of polymers are presented. (SK)

  11. Portable spectrometer monitors inert gas shield in welding process

    NASA Technical Reports Server (NTRS)

    Grove, E. L.

    1967-01-01

    Portable spectrometer using photosensitive readouts, monitors the amount of oxygen and hydrogen in the inert gas shield of a tungsten-inert gas welding process. A fiber optic bundle transmits the light from the welding arc to the spectrometer.

  12. Adapting Raman Spectra from Laboratory Spectrometers to Portable Detection Libraries

    SciTech Connect

    Weatherall, James; Barber, Jeffrey B.; Brauer, Carolyn S.; Johnson, Timothy J.; Su, Yin-Fong; Ball, Christopher D.; Smith, Barry; Cox, Rick; Steinke, Robert; McDaniel, Patricia; Wasserzug, Louis

    2013-02-01

    Raman spectral data collected with high-resolution laboratory spectrometers are processed into a for- mat suitable for importing as a user library on a 1064nm DeltaNu rst generation, eld-deployable spectrometer prototype. The two laboratory systems used are a 1064nm Bruker spectrometer and a 785nm Kaiser spectrometer. The steps taken to compensate for device-dependent spectral resolution, wavenumber shifts between instruments, and wavenumber sensitivity variation are described.

  13. Accurate wavelength calibration method for flat-field grating spectrometers.

    PubMed

    Du, Xuewei; Li, Chaoyang; Xu, Zhe; Wang, Qiuping

    2011-09-01

    A portable spectrometer prototype is built to study wavelength calibration for flat-field grating spectrometers. An accurate calibration method called parameter fitting is presented. Both optical and structural parameters of the spectrometer are included in the wavelength calibration model, which accurately describes the relationship between wavelength and pixel position. Along with higher calibration accuracy, the proposed calibration method can provide information about errors in the installation of the optical components, which will be helpful for spectrometer alignment. PMID:21929865

  14. Nuclear astrophysics studies by SAMURAI spectrometer in RIKEN RIBF

    SciTech Connect

    Yoneda, K.

    2012-11-12

    SAMURAI is a spectrometer which is now being constructed at RIKEN RI Beam Factory. This spectrometer is characterized by a large angular-and momentum-acceptance enabling, for example, multi-particle coincidence measurements. Here brief descriptions of SAMURAI spectrometer and physics topics relevant to nuclear astrophysics are presented.

  15. 21 CFR 862.2860 - Mass spectrometer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mass spectrometer for clinical use. 862.2860... Instruments § 862.2860 Mass spectrometer for clinical use. (a) Identification. A mass spectrometer for... by means of an electrical and magnetic field according to their mass. (b) Classification. Class...

  16. 21 CFR 862.2860 - Mass spectrometer for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Mass spectrometer for clinical use. 862.2860... Instruments § 862.2860 Mass spectrometer for clinical use. (a) Identification. A mass spectrometer for... by means of an electrical and magnetic field according to their mass. (b) Classification. Class...

  17. 21 CFR 862.2860 - Mass spectrometer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Mass spectrometer for clinical use. 862.2860... Instruments § 862.2860 Mass spectrometer for clinical use. (a) Identification. A mass spectrometer for... by means of an electrical and magnetic field according to their mass. (b) Classification. Class...

  18. 21 CFR 862.2860 - Mass spectrometer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Mass spectrometer for clinical use. 862.2860... Instruments § 862.2860 Mass spectrometer for clinical use. (a) Identification. A mass spectrometer for... by means of an electrical and magnetic field according to their mass. (b) Classification. Class...

  19. Fourier and Hadamard transform spectrometers - A limited comparison. II

    NASA Technical Reports Server (NTRS)

    Harwit, M.; Tai, M. H.

    1977-01-01

    A mathematical approach was used to compare interferometric spectrometers and Hadamard transform spectrometers. The principle results are reported, noting that the simple Hadamard spectrometer encodes more efficiently than a Michelson interferometer which, in turn, encodes less efficiently than is usually acknowledged. Hirschfeld's (1977) major objections to these findings are discussed, although it is noted that none of his objections is supported by evidence.

  20. 21 CFR 862.2860 - Mass spectrometer for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mass spectrometer for clinical use. 862.2860... Instruments § 862.2860 Mass spectrometer for clinical use. (a) Identification. A mass spectrometer for... by means of an electrical and magnetic field according to their mass. (b) Classification. Class...