Sample records for accelerators

  1. Schooling in Times of Acceleration

    ERIC Educational Resources Information Center

    Buddeberg, Magdalena; Hornberg, Sabine

    2017-01-01

    Modern societies are characterised by forms of acceleration, which influence social processes. Sociologist Hartmut Rosa has systematised temporal structures by focusing on three categories of social acceleration: technical acceleration, acceleration of social change, and acceleration of the pace of life. All three processes of acceleration are…

  2. Seismic hazard assessment for Guam and the Northern Mariana Islands

    USGS Publications Warehouse

    Mueller, Charles S.; Haller, Kathleen M.; Luco, Nicholas; Petersen, Mark D.; Frankel, Arthur D.

    2012-01-01

    We present the results of a new probabilistic seismic hazard assessment for Guam and the Northern Mariana Islands. The Mariana island arc has formed in response to northwestward subduction of the Pacific plate beneath the Philippine Sea plate, and this process controls seismic activity in the region. Historical seismicity, the Mariana megathrust, and two crustal faults on Guam were modeled as seismic sources, and ground motions were estimated by using published relations for a firm-rock site condition. Maps of peak ground acceleration, 0.2-second spectral acceleration for 5 percent critical damping, and 1.0-second spectral acceleration for 5 percent critical damping were computed for exceedance probabilities of 2 percent and 10 percent in 50 years. For 2 percent probability of exceedance in 50 years, probabilistic peak ground acceleration is 0.94 gravitational acceleration at Guam and 0.57 gravitational acceleration at Saipan, 0.2-second spectral acceleration is 2.86 gravitational acceleration at Guam and 1.75 gravitational acceleration at Saipan, and 1.0-second spectral acceleration is 0.61 gravitational acceleration at Guam and 0.37 gravitational acceleration at Saipan. For 10 percent probability of exceedance in 50 years, probabilistic peak ground acceleration is 0.49 gravitational acceleration at Guam and 0.29 gravitational acceleration at Saipan, 0.2-second spectral acceleration is 1.43 gravitational acceleration at Guam and 0.83 gravitational acceleration at Saipan, and 1.0-second spectral acceleration is 0.30 gravitational acceleration at Guam and 0.18 gravitational acceleration at Saipan. The dominant hazard source at the islands is upper Benioff-zone seismicity (depth 40–160 kilometers). The large probabilistic ground motions reflect the strong concentrations of this activity below the arc, especially near Guam.

  3. Covariant Uniform Acceleration

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2013-04-01

    We derive a 4D covariant Relativistic Dynamics Equation. This equation canonically extends the 3D relativistic dynamics equation , where F is the 3D force and p = m0γv is the 3D relativistic momentum. The standard 4D equation is only partially covariant. To achieve full Lorentz covariance, we replace the four-force F by a rank 2 antisymmetric tensor acting on the four-velocity. By taking this tensor to be constant, we obtain a covariant definition of uniformly accelerated motion. This solves a problem of Einstein and Planck. We compute explicit solutions for uniformly accelerated motion. The solutions are divided into four Lorentz-invariant types: null, linear, rotational, and general. For null acceleration, the worldline is cubic in the time. Linear acceleration covariantly extends 1D hyperbolic motion, while rotational acceleration covariantly extends pure rotational motion. We use Generalized Fermi-Walker transport to construct a uniformly accelerated family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the Weak Hypothesis of Locality, we obtain local spacetime transformations from a uniformly accelerated frame K' to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. We obtain velocity and acceleration transformations from a uniformly accelerated system K' to an inertial frame K. We introduce the 4D velocity, an adaptation of Horwitz and Piron s notion of "off-shell." We derive the general formula for the time dilation between accelerated clocks. We obtain a formula for the angular velocity of a uniformly accelerated object. Every rest point of K' is uniformly accelerated, and its acceleration is a function of the observer's acceleration and its position. We obtain an interpretation of the Lorentz-Abraham-Dirac equation as an acceleration transformation from K' to K.

  4. USPAS | U.S. Particle Accelerator School

    Science.gov Websites

    U.S. Particle Accelerator School U.S. Particle Accelerator School U.S. Particle Accelerator School U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology Home About About University Credits Joint International Accelerator School University-Style Programs Symposium-Style Programs

  5. Microelectromechanical acceleration-sensing apparatus

    DOEpatents

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  6. 1985 Particle Accelerator Conference: Accelerator Engineering and Technology, 11th, Vancouver, Canada, May 13-16, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Strathdee, A.

    1985-10-01

    The topics discussed are related to high-energy accelerators and colliders, particle sources and electrostatic accelerators, controls, instrumentation and feedback, beam dynamics, low- and intermediate-energy circular accelerators and rings, RF and other acceleration systems, beam injection, extraction and transport, operations and safety, linear accelerators, applications of accelerators, radiation sources, superconducting supercolliders, new acceleration techniques, superconducting components, cryogenics, and vacuum. Accelerator and storage ring control systems are considered along with linear and nonlinear orbit theory, transverse and longitudinal instabilities and cures, beam cooling, injection and extraction orbit theory, high current dynamics, general beam dynamics, and medical and radioisotope applications. Attention is given to superconducting RF structures, magnet technology, superconducting magnets, and physics opportunities with relativistic heavy ion accelerators.

  7. Social-emotional characteristics of gifted accelerated and non-accelerated students in the Netherlands.

    PubMed

    Hoogeveen, Lianne; van Hell, Janet G; Verhoeven, Ludo

    2012-12-01

    In the studies of acceleration conducted so far a multidimensional perspective has largely been neglected. No attempt has been made to relate social-emotional characteristics of accelerated versus non-accelerated students in perspective of environmental factors. In this study, social-emotional characteristics of accelerated gifted students in the Netherlands were examined in relation to personal and environmental factors. Self-concept and social contacts of accelerated (n = 148) and non-accelerated (n = 55) gifted students, aged 4 to 27 (M = 11.22, SD = 4.27) were measured. Self-concept and social contacts of accelerated and non-accelerated gifted students were measured using a questionnaire and a diary, and parents of these students evaluated their behavioural characteristics. Gender and birth order were studied as personal factors and grade, classroom, teachers' gender, teaching experience, and the quality of parent-school contact as environmental factors. The results showed minimal differences in the social-emotional characteristics of accelerated and non-accelerated gifted students. The few differences we found favoured the accelerated students. We also found that multiple grade skipping does not have negative effects on social-emotional characteristics, and that long-term effects of acceleration tend to be positive. As regards the possible modulation of personal and environmental factors, we merely found an impact of such factors in the non-accelerated group. The results of this study strongly suggest that social-emotional characteristics of accelerated gifted students and non-accelerated gifted students are largely similar. These results thus do not support worries expressed by teachers about the acceleration of gifted students. Our findings parallel the outcomes of earlier studies in the United States and Germany in that we observed that acceleration does not harm gifted students, not even in the case of multiple grade skipping. On the contrary, there is a suggestion in the data that accelerated students are more socially competent than non-accelerated students. The findings in this study can reassure those parents and teachers who worry about the social-emotional consequences of acceleration in school: If a student is gifted, acceleration seems to be a sound and, in many cases, appropriate measure in gifted education. ©2011 The British Psychological Society.

  8. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  9. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  10. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  11. Acceleration characteristics of human ocular accommodation.

    PubMed

    Bharadwaj, Shrikant R; Schor, Clifton M

    2005-01-01

    Position and velocity of accommodation are known to increase with stimulus magnitude, however, little is known about acceleration properties. We investigated three acceleration properties: peak acceleration, time-to-peak acceleration and total duration of acceleration to step changes in defocus. Peak velocity and total duration of acceleration increased with response magnitude. Peak acceleration and time-to-peak acceleration remained independent of response magnitude. Independent first-order and second-order dynamic components of accommodation demonstrate that neural control of accommodation has an initial open-loop component that is independent of response magnitude and a closed-loop component that increases with response magnitude.

  12. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemann, R.H.; /SLAC

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  13. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  14. Method and apparatus for varying accelerator beam output energy

    DOEpatents

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  15. Fermilab | Tevatron | Accelerator

    Science.gov Websites

    Leading accelerator technology Accelerator complex Illinois Accelerator Research Center Fermilab temperature. They were used to transfer particles from one part of the Fermilab accelerator complex to another center ring of Fermilab's accelerator complex. Before the Tevatron shut down, it had three primary

  16. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Seryi, Andrei

    2017-12-22

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  17. Development of Bipolar Pulse Accelerator for Pulsed Ion Beam Implantation to Semiconductor

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Kawahara, Yoshihiro; Mitsui, Chihiro; Kitamura, Iwao; Takahashi, Takakazu; Tanaka, Yasunori; Tanoue, Hisao; Arai, Kazuo

    2002-12-01

    To improve the purity of the ion beams new type of pulsed power ion accelerator named "bipolar pulse accelerator" was proposed. The accelerator consists of two acceleration gaps (an ion source gap and a post acceleration gap) and a drift tube, and a bipolar pulse is applied to the drift tube to accelerate the beam. In the accelerator intended ions are selectively accelerated and the purity of the ion beam is enhanced. As the first step of the development of the accelerator, a Br-type magnetically insulated acceleration gap is developed. The gap has an ion source of coaxial gas puff plasma gun on the grounded anode and a negative pulse is applied to the cathode to accelerate the ion beam. By using the plasma gun, ion source plasma (nitrogen) of current density around 100 A/cm2 is obtained. In the paper, the experimental results of the evaluation of the ion beam and the characteristics of the gap are shown with the principle and the design concept of the proposed accelerator.

  18. Pros and Cons of the Acceleration Scheme (NF-IDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, Alex; Bogacz, Slawomir

    The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and beam shaping can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a nonâ scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. Pros and cons of various stages are discussed here in detail. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain acrossmore » the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. Close proximity of strong solenoids and superc« less

  19. Amps particle accelerator definition study

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  20. Piezoelectric particle accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, Mark A.; Jongewaard, Erik N.; Haase, Andrew A.

    2017-08-29

    A particle accelerator is provided that includes a piezoelectric accelerator element, where the piezoelectric accelerator element includes a hollow cylindrical shape, and an input transducer, where the input transducer is disposed to provide an input signal to the piezoelectric accelerator element, where the input signal induces a mechanical excitation of the piezoelectric accelerator element, where the mechanical excitation is capable of generating a piezoelectric electric field proximal to an axis of the cylindrical shape, where the piezoelectric accelerator is configured to accelerate a charged particle longitudinally along the axis of the cylindrical shape according to the piezoelectric electric field.

  1. Ultra-high vacuum photoelectron linear accelerator

    DOEpatents

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  2. Source-to-accelerator quadrupole matching section for a compact linear accelerator

    NASA Astrophysics Data System (ADS)

    Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.

    2018-05-01

    Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.

  3. Detection of linear ego-acceleration from optic flow.

    PubMed

    Festl, Freya; Recktenwald, Fabian; Yuan, Chunrong; Mallot, Hanspeter A

    2012-07-20

    Human observers are able to estimate various ego-motion parameters from optic flow, including rotation, translational heading, time-to-collision (TTC), time-to-passage (TTP), etc. The perception of linear ego-acceleration or deceleration, i.e., changes of translational velocity, is less well understood. While time-to-passage experiments indicate that ego-acceleration is neglected, subjects are able to keep their (perceived) speed constant under changing conditions, indicating that some sense of ego-acceleration or velocity change must be present. In this paper, we analyze the relation of ego-acceleration estimates and geometrical parameters of the environment using simulated flights through cylindrical and conic (narrowing or widening) corridors. Theoretical analysis shows that a logarithmic ego-acceleration parameter, called the acceleration rate ρ, can be calculated from retinal acceleration measurements. This parameter is independent of the geometrical layout of the scene; if veridical ego-motion is known at some instant in time, acceleration rate allows updating of ego-motion without further depth-velocity calibration. Results indicate, however, that subjects systematically confuse ego-acceleration with corridor narrowing and ego-deceleration with corridor widening, while veridically judging ego-acceleration in straight corridors. We conclude that judgments of ego-acceleration are based on first-order retinal flow and do not make use of acceleration rate or retinal acceleration.

  4. Recirculating Electron Accelerators with Noncircular Electron Orbits as Radiation Sources for Applications (a Review)

    NASA Astrophysics Data System (ADS)

    Dubinov, Alexander E.; Ochkina, Elena I.

    2018-05-01

    State-of-the-art compact recirculating electron accelerators operating at intermediate energies (tens of MeV) are reviewed. The acceleration schemes implemented in the rhodotron, ridgetron, fantron, and cylindertron machines are discussed. Major accelerator components such as the electron guns, accelerating cavities, and bending magnets are described. The parameters of currently operating recirculating accelerators are tabulated, and applications of these accelerators in different processes of irradiation are exemplified.

  5. Observation of 690 MV m -1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootton, K. P.; Wu, Z.; Cowan, B. M.

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm -1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Salman, E-mail: sksafi@comsats.edu.pk

    The dynamics of tripartite entanglement of fermionic system in noninertial frames through linear contraction criterion when one or two observers are accelerated is investigated. In one observer accelerated case the entanglement measurement is not invariant with respect to the partial realignment of different subsystems and for two observers accelerated case it is invariant. It is shown that the acceleration of the frame does not generate entanglement in any bipartite subsystems. Unlike the bipartite states, the genuine tripartite entanglement does not completely vanish in both one observer accelerated and two observers accelerated cases even in the limit of infinite acceleration. Themore » degradation of tripartite entanglement is fast when two observers are accelerated than when one observer is accelerated. It is shown that tripartite entanglement is a better resource for quantum information processing than the bipartite entanglement in noninertial frames. - Highlights: • Tripartite entanglement of fermionic system in noninertial frames is studied. • Linear contraction criterion for quantifying tripartite entanglement is used. • Acceleration does not produce any bipartite entanglement. • The invariance of entanglement quantifier depends on accelerated observers. • The tripartite entanglement degrades against the acceleration, it never vanishes.« less

  7. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, Panagiotis; /Fermilab; Cary, John

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.« less

  8. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, M.; Edwards, H.; Harms, E.

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support themore » accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the OHEP mission of Accelerator Stewardship.« less

  9. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, P.; /Fermilab; Cary, J.

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.« less

  10. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  11. PARTICLE ACCELERATOR AND METHOD OF CONTROLLING THE TEMPERATURE THEREOF

    DOEpatents

    Neal, R.B.; Gallagher, W.J.

    1960-10-11

    A method and means for controlling the temperature of a particle accelerator and more particularly to the maintenance of a constant and uniform temperature throughout a particle accelerator is offered. The novel feature of the invention resides in the provision of two individual heating applications to the accelerator structure. The first heating application provided is substantially a duplication of the accelerator heat created from energization, this first application being employed only when the accelerator is de-energized thereby maintaining the accelerator temperature constant with regard to time whether the accelerator is energized or not. The second heating application provided is designed to add to either the first application or energization heat in a manner to create the same uniform temperature throughout all portions of the accelerator.

  12. Effects of Shock and Turbulence Properties on Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Qin, G.; Kong, F.-J.; Zhang, L.-H.

    2018-06-01

    Using test particle simulations, we study electron acceleration at collisionless shocks with a two-component model turbulent magnetic field with slab component including dissipation range. We investigate the importance of the shock-normal angle θ Bn, magnetic turbulence level {(b/{B}0)}2, and shock thickness on the acceleration efficiency of electrons. It is shown that at perpendicular shocks the electron acceleration efficiency is enhanced with the decrease of {(b/{B}0)}2, and at {(b/{B}0)}2=0.01 the acceleration becomes significant due to a strong drift electric field with long time particles staying near the shock front for shock drift acceleration (SDA). In addition, at parallel shocks the electron acceleration efficiency is increasing with the increase of {(b/{B}0)}2, and at {(b/{B}0)}2=10.0 the acceleration is very strong due to sufficient pitch-angle scattering for first-order Fermi acceleration, as well as due to the large local component of the magnetic field perpendicular to the shock-normal angle for SDA. On the other hand, the high perpendicular shock acceleration with {(b/{B}0)}2=0.01 is stronger than the high parallel shock acceleration with {(b/{B}0)}2=10.0, the reason might be the assumption that SDA is more efficient than first-order Fermi acceleration. Furthermore, for oblique shocks, the acceleration efficiency is small no matter whether the turbulence level is low or high. Moreover, for the effect of shock thickness on electron acceleration at perpendicular shocks, we show that there exists the bendover thickness, L diff,b. The acceleration efficiency does not noticeably change if the shock thickness is much smaller than L diff,b. However, if the shock thickness is much larger than L diff,b, the acceleration efficiency starts to drop abruptly.

  13. Signature energetic analysis of accelerate electron beam after first acceleration station by accelerating stand of Joint Institute for Nuclear Research

    NASA Astrophysics Data System (ADS)

    Sledneva, A. S.; Kobets, V. V.

    2017-06-01

    The linear electron accelerator based on the LINAC - 800 accelerator imported from the Netherland is created at Joint Institute for Nuclear Research in the framework of the project on creation of the Testbed with an electron beam of a linear accelerator with an energy up to 250 MV. Currently two accelerator stations with a 60 MV energy of a beam are put in operation and the work is to put the beam through accelerating section of the third accelerator station. The electron beam with an energy of 23 MeV is used for testing the crystals (BaF2, CsI (native), and LYSO) in order to explore the opportunity to use them in particle detectors in experiments: Muon g-2, Mu2e, Comet, whose preparation requires a detailed study of the detectors properties such as their irradiation by the accelerator beams.

  14. Association of hormonal responses and performance of student pilots during acceleration training on the human centrifuge

    NASA Astrophysics Data System (ADS)

    Wirth, D.; Rohleder, N.; Welsch, H.

    2005-08-01

    Prediction of student pilots' +Gz tolerance by stress hormone levels would be a useful tool in aviation medicine. The aim of the present study was to analyze the relationship between neuroendocrine parameters with performance during acceleration training on the human centrifuge (HC).We investigated 21 student pilots during self-controlled acceleration training on the HC. Adrenocorticotropic hormone (ACTH), cortisol, epinephrine, and norepinephrine were measured after individual training sessions and at rest. Performance was defined by several characteristics including maximum tolerated acceleration. ACTH and cortisol, were significantly higher 20 minutes after acceleration training compared to the resting condition. Subjects tolerated a maximal acceleration of +6.69 Gz. HPA hormone levels and responses were associated with maximum tolerated acceleration +Gz. These findings support the expectation that acceleration- induced increases in stress hormones may enable the organism to tolerate a higher acceleration and could therefore be used as predictors for acceleration tolerance.

  15. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  16. Generating clock signals for a cycle accurate, cycle reproducible FPGA based hardware accelerator

    DOEpatents

    Asaad, Sameth W.; Kapur, Mohit

    2016-01-05

    A method, system and computer program product are disclosed for generating clock signals for a cycle accurate FPGA based hardware accelerator used to simulate operations of a device-under-test (DUT). In one embodiment, the DUT includes multiple device clocks generating multiple device clock signals at multiple frequencies and at a defined frequency ratio; and the FPG hardware accelerator includes multiple accelerator clocks generating multiple accelerator clock signals to operate the FPGA hardware accelerator to simulate the operations of the DUT. In one embodiment, operations of the DUT are mapped to the FPGA hardware accelerator, and the accelerator clock signals are generated at multiple frequencies and at the defined frequency ratio of the frequencies of the multiple device clocks, to maintain cycle accuracy between the DUT and the FPGA hardware accelerator. In an embodiment, the FPGA hardware accelerator may be used to control the frequencies of the multiple device clocks.

  17. FERMILAB ACCELERATOR R&D PROGRAM TOWARDS INTENSITY FRONTIER ACCELERATORS : STATUS AND PROGRESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2016-11-15

    The 2014 P5 report indicated the accelerator-based neutrino and rare decay physics research as a centrepiece of the US domestic HEP program at Fermilab. Operation, upgrade and development of the accelerators for the near- term and longer-term particle physics program at the Intensity Frontier face formidable challenges. Here we discuss key elements of the accelerator physics and technology R&D program toward future multi-MW proton accelerators and present its status and progress. INTENSITY FRONTIER ACCELERATORS

  18. Analyzing radial acceleration with a smartphone acceleration sensor

    NASA Astrophysics Data System (ADS)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  19. Method of modeling transmissions for real-time simulation

    DOEpatents

    Hebbale, Kumaraswamy V.

    2012-09-25

    A transmission modeling system includes an in-gear module that determines an in-gear acceleration when a vehicle is in gear. A shift module determines a shift acceleration based on a clutch torque when the vehicle is shifting between gears. A shaft acceleration determination module determines a shaft acceleration based on at least one of the in-gear acceleration and the shift acceleration.

  20. First muon acceleration using a radio-frequency accelerator

    NASA Astrophysics Data System (ADS)

    Bae, S.; Choi, H.; Choi, S.; Fukao, Y.; Futatsukawa, K.; Hasegawa, K.; Iijima, T.; Iinuma, H.; Ishida, K.; Kawamura, N.; Kim, B.; Kitamura, R.; Ko, H. S.; Kondo, Y.; Li, S.; Mibe, T.; Miyake, Y.; Morishita, T.; Nakazawa, Y.; Otani, M.; Razuvaev, G. P.; Saito, N.; Shimomura, K.; Sue, Y.; Won, E.; Yamazaki, T.

    2018-05-01

    Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu- ), which are bound states of positive muons (μ+) and two electrons, are generated from μ+'s through the electron capture process in an aluminum degrader. The generated Mu- 's are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu- 's are accelerated to 89 keV. The accelerated Mu- 's are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  1. Electric rail gun projectile acceleration to high velocity

    NASA Technical Reports Server (NTRS)

    Bauer, D. P.; Mccormick, T. J.; Barber, J. P.

    1982-01-01

    Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.

  2. International Space Station Increment-6/8 Microgravity Environment Summary Report November 2002 to April 2004

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckart, Timothy

    2006-01-01

    This summary report presents the analysis results of some of the processed acceleration data measured aboard the International Space Station during the period of November 2002 to April 2004. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-6/8. However, not all of the activities during that period were analyzed in order to keep the size of the report manageable. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System to support microgravity science experiments that require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification as well as in support of the International Space Station support cadre. The International Space Station Increment-6/8 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1. The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2. The Space Acceleration Measurement System measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-6/8 from November 2002 to April 2004.

  3. International Space Station Increment-2 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2002-01-01

    This summary report presents the results of some of the processed acceleration data, collected aboard the International Space Station during the period of May to August 2001, the Increment-2 phase of the station. Two accelerometer systems were used to measure the acceleration levels during activities that took place during the Increment-2 segment. However, not all of the activities were analyzed for this report due to time constraints, lack of precise information regarding some payload operations and other station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of vehicle microgravity requirements verification. The International Space Station Increment-2 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and the vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 300 Hz. This summary report presents analysis of some selected quasisteady and vibratory activities measured by these accelerometers during Increment-2 from May to August 20, 2001.

  4. International Space Station Increment-3 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy; Grodsinksy, Carlos

    2002-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of August to December 2001. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-3. However, not all of the activities were analyzed for this report due to time constraint and lack of precise timeline information regarding some payload operations and station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The International Space Station Increment-3 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: (1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. (2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-3 from August to December, 2001.

  5. Accelerator Technology Division annual report, FY 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  6. Accurate Attitude Estimation Using ARS under Conditions of Vehicle Movement Based on Disturbance Acceleration Adaptive Estimation and Correction

    PubMed Central

    Xing, Li; Hang, Yijun; Xiong, Zhi; Liu, Jianye; Wan, Zhong

    2016-01-01

    This paper describes a disturbance acceleration adaptive estimate and correction approach for an attitude reference system (ARS) so as to improve the attitude estimate precision under vehicle movement conditions. The proposed approach depends on a Kalman filter, where the attitude error, the gyroscope zero offset error and the disturbance acceleration error are estimated. By switching the filter decay coefficient of the disturbance acceleration model in different acceleration modes, the disturbance acceleration is adaptively estimated and corrected, and then the attitude estimate precision is improved. The filter was tested in three different disturbance acceleration modes (non-acceleration, vibration-acceleration and sustained-acceleration mode, respectively) by digital simulation. Moreover, the proposed approach was tested in a kinematic vehicle experiment as well. Using the designed simulations and kinematic vehicle experiments, it has been shown that the disturbance acceleration of each mode can be accurately estimated and corrected. Moreover, compared with the complementary filter, the experimental results have explicitly demonstrated the proposed approach further improves the attitude estimate precision under vehicle movement conditions. PMID:27754469

  7. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    DOE PAGES

    O’Shea, B. D.; Andonian, G.; Barber, S. K.; ...

    2016-09-14

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m –1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m –1 using a dielectric wakefield accelerator of 15 cmmore » length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m –1. As a result, both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons.« less

  8. Accurate Attitude Estimation Using ARS under Conditions of Vehicle Movement Based on Disturbance Acceleration Adaptive Estimation and Correction.

    PubMed

    Xing, Li; Hang, Yijun; Xiong, Zhi; Liu, Jianye; Wan, Zhong

    2016-10-16

    This paper describes a disturbance acceleration adaptive estimate and correction approach for an attitude reference system (ARS) so as to improve the attitude estimate precision under vehicle movement conditions. The proposed approach depends on a Kalman filter, where the attitude error, the gyroscope zero offset error and the disturbance acceleration error are estimated. By switching the filter decay coefficient of the disturbance acceleration model in different acceleration modes, the disturbance acceleration is adaptively estimated and corrected, and then the attitude estimate precision is improved. The filter was tested in three different disturbance acceleration modes (non-acceleration, vibration-acceleration and sustained-acceleration mode, respectively) by digital simulation. Moreover, the proposed approach was tested in a kinematic vehicle experiment as well. Using the designed simulations and kinematic vehicle experiments, it has been shown that the disturbance acceleration of each mode can be accurately estimated and corrected. Moreover, compared with the complementary filter, the experimental results have explicitly demonstrated the proposed approach further improves the attitude estimate precision under vehicle movement conditions.

  9. Investigations into dual-grating THz-driven accelerators

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Ischebeck, R.; Dehler, M.; Ferrari, E.; Hiller, N.; Jamison, S.; Xia, G.; Hanahoe, K.; Li, Y.; Smith, J. D. A.; Welsch, C. P.

    2018-01-01

    Advanced acceleration technologies are receiving considerable interest in order to miniaturize future particle accelerators. One such technology is the dual-grating dielectric structures, which can support accelerating fields one to two orders of magnitude higher than the metal RF cavities in conventional accelerators. This opens up the possibility of enabling high accelerating gradients of up to several GV/m. This paper investigates numerically a quartz dual-grating structure which is driven by THz pulses to accelerate electrons. Geometry optimizations are carried out to achieve the trade-offs between accelerating gradient and vacuum channel gap. A realistic electron bunch available from the future Compact Linear Accelerator for Research and Applications (CLARA) is loaded into an optimized 100-period dual-grating structure for a detailed wakefield study. A THz pulse is then employed to interact with this CLARA bunch in the optimized structure. The computed beam quality is analyzed in terms of emittance, energy spread and loaded accelerating gradient. The simulations show that an accelerating gradient of 348 ± 12 MV/m with an emittance growth of 3.0% can be obtained.

  10. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    PubMed Central

    O'Shea, B. D.; Andonian, G.; Barber, S. K.; Fitzmorris, K. L.; Hakimi, S.; Harrison, J.; Hoang, P. D.; Hogan, M. J.; Naranjo, B.; Williams, O. B.; Yakimenko, V.; Rosenzweig, J. B.

    2016-01-01

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m−1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m−1 using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m−1. Both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons. PMID:27624348

  11. Anderson acceleration and application to the three-temperature energy equations

    NASA Astrophysics Data System (ADS)

    An, Hengbin; Jia, Xiaowei; Walker, Homer F.

    2017-10-01

    The Anderson acceleration method is an algorithm for accelerating the convergence of fixed-point iterations, including the Picard method. Anderson acceleration was first proposed in 1965 and, for some years, has been used successfully to accelerate the convergence of self-consistent field iterations in electronic-structure computations. Recently, the method has attracted growing attention in other application areas and among numerical analysts. Compared with a Newton-like method, an advantage of Anderson acceleration is that there is no need to form the Jacobian matrix. Thus the method is easy to implement. In this paper, an Anderson-accelerated Picard method is employed to solve the three-temperature energy equations, which are a type of strong nonlinear radiation-diffusion equations. Two strategies are used to improve the robustness of the Anderson acceleration method. One strategy is to adjust the iterates when necessary to satisfy the physical constraint. Another strategy is to monitor and, if necessary, reduce the matrix condition number of the least-squares problem in the Anderson-acceleration implementation so that numerical stability can be guaranteed. Numerical results show that the Anderson-accelerated Picard method can solve the three-temperature energy equations efficiently. Compared with the Picard method without acceleration, Anderson acceleration can reduce the number of iterations by at least half. A comparison between a Jacobian-free Newton-Krylov method, the Picard method, and the Anderson-accelerated Picard method is conducted in this paper.

  12. A Novel Method for Vertical Acceleration Noise Suppression of a Thrust-Vectored VTOL UAV.

    PubMed

    Li, Huanyu; Wu, Linfeng; Li, Yingjie; Li, Chunwen; Li, Hangyu

    2016-12-02

    Acceleration is of great importance in motion control for unmanned aerial vehicles (UAVs), especially during the takeoff and landing stages. However, the measured acceleration is inevitably polluted by severe noise. Therefore, a proper noise suppression procedure is required. This paper presents a novel method to reduce the noise in the measured vertical acceleration for a thrust-vectored tail-sitter vertical takeoff and landing (VTOL) UAV. In the new procedure, a Kalman filter is first applied to estimate the UAV mass by using the information in the vertical thrust and measured acceleration. The UAV mass is then used to compute an estimate of UAV vertical acceleration. The estimated acceleration is finally fused with the measured acceleration to obtain the minimum variance estimate of vertical acceleration. By doing this, the new approach incorporates the thrust information into the acceleration estimate. The method is applied to the data measured in a VTOL UAV takeoff experiment. Two other denoising approaches developed by former researchers are also tested for comparison. The results demonstrate that the new method is able to suppress the acceleration noise substantially. It also maintains the real-time performance in the final estimated acceleration, which is not seen in the former denoising approaches. The acceleration treated with the new method can be readily used in the motion control applications for UAVs to achieve improved accuracy.

  13. A Novel Method for Vertical Acceleration Noise Suppression of a Thrust-Vectored VTOL UAV

    PubMed Central

    Li, Huanyu; Wu, Linfeng; Li, Yingjie; Li, Chunwen; Li, Hangyu

    2016-01-01

    Acceleration is of great importance in motion control for unmanned aerial vehicles (UAVs), especially during the takeoff and landing stages. However, the measured acceleration is inevitably polluted by severe noise. Therefore, a proper noise suppression procedure is required. This paper presents a novel method to reduce the noise in the measured vertical acceleration for a thrust-vectored tail-sitter vertical takeoff and landing (VTOL) UAV. In the new procedure, a Kalman filter is first applied to estimate the UAV mass by using the information in the vertical thrust and measured acceleration. The UAV mass is then used to compute an estimate of UAV vertical acceleration. The estimated acceleration is finally fused with the measured acceleration to obtain the minimum variance estimate of vertical acceleration. By doing this, the new approach incorporates the thrust information into the acceleration estimate. The method is applied to the data measured in a VTOL UAV takeoff experiment. Two other denoising approaches developed by former researchers are also tested for comparison. The results demonstrate that the new method is able to suppress the acceleration noise substantially. It also maintains the real-time performance in the final estimated acceleration, which is not seen in the former denoising approaches. The acceleration treated with the new method can be readily used in the motion control applications for UAVs to achieve improved accuracy. PMID:27918422

  14. Amplitude-dependent orbital period in alternating gradient accelerators

    DOE PAGES

    Machida, S.; Kelliher, D. J.; Edmonds, C. S.; ...

    2016-03-16

    Orbital period in a ring accelerator and time of flight in a linear accelerator depend on the amplitude of betatron oscillations. The variation is negligible in ordinary particle accelerators with relatively small beam emittance. In an accelerator for large emittance beams like muons and unstable nuclei, however, this effect cannot be ignored. In this study, we measured orbital period in a linear non-scaling fixed-field alternating-gradient accelerator, which is a candidate for muon acceleration, and compared it with the theoretical prediction. The good agreement between them gives important ground for the design of particle accelerators for a new generation of particlemore » and nuclear physics experiments.« less

  15. Accelerations in Flight

    NASA Technical Reports Server (NTRS)

    Doolittle, J H

    1925-01-01

    This work on accelerometry was done at McCook Field for the purpose of continuing the work done by other investigators and obtaining the accelerations which occur when a high-speed pursuit airplane is subjected to the more common maneuvers. The accelerations obtained in suddenly pulling out of a dive with well-balanced elevators are shown to be within 3 or 4 per cent of the theoretically possible accelerations. The maximum acceleration which a pilot can withstand depends upon the length of time the acceleration is continued. It is shown that he experiences no difficulty under the instantaneous accelerations as high as 7.8 G., but when under accelerations in excess of 4.5 G., continued for several seconds, he quickly loses his faculties.

  16. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thaury, C.; Ta Phuoc, K.; Corde, S.

    2013-06-15

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction lengthmore » to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.« less

  17. ACCELERATION AND THE GIFTED.

    ERIC Educational Resources Information Center

    GIBSON, ARTHUR R.; STEPHANS, THOMAS M.

    ACCELERATION OF PUPILS AND SUBJECTS IS CONSIDERED A MEANS OF EDUCATING THE ACADEMICALLY GIFTED STUDENT. FIVE INTRODUCTORY ARTICLES PROVIDE A FRAMEWORK FOR THINKING ABOUT ACCELERATION. FIVE PROJECT REPORTS OF ACCELERATED PROGRAMS IN OHIO ARE INCLUDED. ACCELERATION IS NOW BEING REGARDED MORE FAVORABLY THAN FORMERLY, BECAUSE METHODS HAVE BEEN…

  18. The Spallation Neutron Source accelerator system design

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  19. Illinois Accelerator Research Center

    DOE PAGES

    Kroc, Thomas K.; Cooper, Charlie A.

    2017-10-26

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  20. Microgravity acceleration measurement and environment characterization science (17-IML-1)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Acceleration Measurement System (SAMS) is a general purpose instrumentation system designed to measure the accelerations onboard the Shuttle Orbiter and Shuttle/Spacelab vehicles. These measurements are used to support microgravity experiments and investigation into the microgravity environment of the vehicle. Acceleration measurements can be made at locations remote from the SAMS main instrumentation unit by the use of up to three remote triaxial sensor heads. The prime objective for SAMS on the International Microgravity Lab (IML-1) mission will be to measure the accelerations experienced by the Fluid Experiment System (FES). The SAMS acceleration measurements for FES will be complemented by low level, low frequency acceleration measurements made by the Orbital Acceleration Research Experiment (OARE) installed on the shuttle. Secondary objectives for SAMS will be to measure accelerations at several specific locations to enable the acceleration transfer function of the Spacelab module to be analyzed. This analysis effort will be in conjunction with similar measurements analyses on other Spacelab missions.

  1. Illinois Accelerator Research Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  2. Illinois Accelerator Research Center

    NASA Astrophysics Data System (ADS)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  3. Development of Acceleration Sensor and Acceleration Evaluation System for Super-Low-Range Frequencies

    NASA Astrophysics Data System (ADS)

    Asano, Shogo; Matsumoto, Hideki

    2001-05-01

    This paper describes the development process for acceleration sensors used on automobiles and an acceleration evaluation system designed specifically for acceleration at super-low-range frequencies. The features of the newly developed sensor are as follows. 1) Original piezo-bimorph design based on a disc-center-fixed structure achieves pyroeffect cancelling and stabilization of sensor characteristics and enables the detection of the acceleration of 0.0009 G at the super-low-range-frequency of 0.03 Hz. 2) The addition of a self-diagnostic function utilizing the characteristics of piezoceramics enables constant monitoring of sensor failure. The frequency range of acceleration for accurate vehicle motion control is considered to be from DC to about 50 Hz. However, the measurement of acceleration in the super-low-range frequency near DC has been difficult because of mechanical and electrical noise interruption. This has delayed the development of the acceleration sensor for automotive use. We have succeeded in the development of an acceleration evaluation system for super-low-range frequencies from 0.015 Hz to 2 Hz with detection of the acceleration range from 0.0002 G (0.2 gal) to 1 G, as well as the development of a piezoelectric-type acceleration sensor for automotive use.

  4. 76 FR 23543 - The Jobs and Innovation Accelerator Challenge; a Coordinated Initiative To Advance Regional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... Jobs and Innovation Accelerator Challenge; a Coordinated Initiative To Advance Regional Competitiveness... Obama Administration announces the Jobs and Innovation Accelerator Challenge (Accelerator Challenge), an initiative of 16 Federal agencies and bureaus to accelerate innovation-fueled job creation and economic...

  5. 76 FR 33305 - Medicare Program; Accelerated Development Sessions for Accountable Care Organizations-June 20, 21...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... as accelerated development sessions (ADSs) instead of accelerated development learning sessions... Sessions'' is corrected to read ``Accelerated Development Learning Sessions''. (2) In the SUMMARY, the... first of four accelerated development learning sessions (ADLSs) that will provide executives with the...

  6. Teacher Attitudes toward Subject-Specific Acceleration: Instrument Development and Validation

    ERIC Educational Resources Information Center

    Rambo, Karen E.; McCoach, D. Betsy

    2012-01-01

    Despite the research supporting acceleration, some teachers are still hesitant to recommend acceleration for advanced students. The Teacher Attitudes Toward Subject-Specific Acceleration (TATSSA) instrument was designed to uncover the factors that influence teacher decisions to recommend students for subject-specific acceleration. First, we…

  7. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  8. The Louisiana Accelerated Schools Project First Year Evaluation Report.

    ERIC Educational Resources Information Center

    St. John, Edward P.; And Others

    The Louisiana Accelerated Schools Project (LASP) is a statewide network of schools that are changing from the traditional mode of schooling for at-risk students, which stresses remediation, to one of acceleration, which stresses accelerated learning for all students. The accelerated schools process provides a systematic approach to the…

  9. 38 CFR 9.14 - Accelerated Benefits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accelerated Benefits. 9...' GROUP LIFE INSURANCE AND VETERANS' GROUP LIFE INSURANCE § 9.14 Accelerated Benefits. (a) What is an Accelerated Benefit? An Accelerated Benefit is a payment of a portion of your Servicemembers' Group Life...

  10. 38 CFR 9.14 - Accelerated Benefits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accelerated Benefits. 9...' GROUP LIFE INSURANCE AND VETERANS' GROUP LIFE INSURANCE § 9.14 Accelerated Benefits. (a) What is an Accelerated Benefit? An Accelerated Benefit is a payment of a portion of your Servicemembers' Group Life...

  11. 38 CFR 9.14 - Accelerated Benefits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accelerated Benefits. 9...' GROUP LIFE INSURANCE AND VETERANS' GROUP LIFE INSURANCE § 9.14 Accelerated Benefits. (a) What is an Accelerated Benefit? An Accelerated Benefit is a payment of a portion of your Servicemembers' Group Life...

  12. 38 CFR 9.14 - Accelerated Benefits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accelerated Benefits. 9...' GROUP LIFE INSURANCE AND VETERANS' GROUP LIFE INSURANCE § 9.14 Accelerated Benefits. (a) What is an Accelerated Benefit? An Accelerated Benefit is a payment of a portion of your Servicemembers' Group Life...

  13. 38 CFR 9.14 - Accelerated Benefits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accelerated Benefits. 9...' GROUP LIFE INSURANCE AND VETERANS' GROUP LIFE INSURANCE § 9.14 Accelerated Benefits. (a) What is an Accelerated Benefit? An Accelerated Benefit is a payment of a portion of your Servicemembers' Group Life...

  14. Advances in light-gas gun technology

    NASA Technical Reports Server (NTRS)

    Cowan, P. L.; Murphy, J. R.

    1968-01-01

    Constant-area accelerator used with light-gas guns increases the velocity of accelerating projectiles. A disposable accelerator on the muzzle of the gun uses the energy and momentum of a primary projectile, launched by the gun, to achieve high velocities of a light secondary projectile accelerated from rest in the accelerator.

  15. Social-Emotional Characteristics of Gifted Accelerated and Non-Accelerated Students in the Netherlands

    ERIC Educational Resources Information Center

    Hoogeveen, Lianne; van Hell, Janet G.; Verhoeven, Ludo

    2012-01-01

    Background: In the studies of acceleration conducted so far a multidimensional perspective has largely been neglected. No attempt has been made to relate social-emotional characteristics of accelerated versus non-accelerated students in perspective of environmental factors. Aims: In this study, social-emotional characteristics of accelerated…

  16. Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses

    DOE PAGES

    Wootton, Kent P.; Wu, Ziran; Cowan, Benjamin M.; ...

    2016-06-02

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. Achieving the desired GV m –1 accelerating gradients is possible only with laser pulse durations shorter than ~1 ps. In this Letter, we present, to the best of our knowledge, the first demonstration of acceleration of relativistic electrons at a dielectric microstructure driven by femtosecond duration laser pulses. Furthermore, using this technique, an electron accelerating gradient of 690±100 MV m –1 was measured—a record for dielectric laser accelerators.

  17. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  18. Intermittency of acceleration in isotropic turbulence.

    PubMed

    Lee, Sang; Lee, Changhoon

    2005-05-01

    The intermittency of acceleration is investigated for isotropic turbulence using direct numerical simulation. Intermittently found acceleration of large magnitude always points towards the rotational axis of a vortex filament, indicating that the intermittency of acceleration is associated with the rotational motion of the vortices that causes centripetal acceleration, which is consistent with the reported result for the near-wall turbulence. Furthermore, investigation on movements of such vortex filaments provides some insights into the dynamics of local dissipation, enstrophy and acceleration. Strong dissipation partially covering the edge of a vortex filament shows weak correlation with enstrophy, while it is strongly correlated with acceleration.

  19. Vibration environment - Acceleration mapping strategy and microgravity requirements for Spacelab and Space Station

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.; Baugher, Charles R.; Delombard, Richard

    1990-01-01

    In order to define the acceleration requirements for future Shuttle and Space Station Freedom payloads, methods and hardware characterizing accelerations on microgravity experiment carriers are discussed. The different aspects of the acceleration environment and the acceptable disturbance levels are identified. The space acceleration measurement system features an adjustable bandwidth, wide dynamic range, data storage, and ability to be easily reconfigured and is expected to fly on the Spacelab Life Sciences-1. The acceleration characterization and analysis project describes the Shuttle acceleration environment and disturbance mechanisms, and facilitates the implementation of the microgravity research program.

  20. Racetrack-shape fixed field induction accelerator for giant cluster ions

    NASA Astrophysics Data System (ADS)

    Takayama, Ken; Adachi, Toshikazu; Wake, Masayoshi; Okamura, Katsuya

    2015-05-01

    A novel scheme for a racetrack-shape fixed field induction accelerator (RAFFIA) capable of accelerating extremely heavy cluster ions (giant cluster ions) is described. The key feature of this scheme is rapid induction acceleration by localized induction cells. Triggering the induction voltages provided by the signals from the circulating bunch allows repeated acceleration of extremely heavy cluster ions. The given RAFFIA example is capable of realizing the integrated acceleration voltage of 50 MV per acceleration cycle. Using 90° bending magnets with a reversed field strip and field gradient is crucial for assuring orbit stability in the RAFFIA.

  1. Advanced accelerator and mm-wave structure research at LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya Ivanovna

    2016-06-22

    This document outlines acceleration projects and mm-wave structure research performed at LANL. The motivation for PBG research is described first, with reference to couplers for superconducting accelerators and structures for room-temperature accelerators and W-band TWTs. These topics are then taken up in greater detail: PBG structures and the MIT PBG accelerator; SRF PBG cavities at LANL; X-band PBG cavities at LANL; and W-band PBG TWT at LANL. The presentation concludes by describing other advanced accelerator projects: beam shaping with an Emittance Exchanger, diamond field emitter array cathodes, and additive manufacturing of novel accelerator structures.

  2. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    DOEpatents

    Grisham, Larry R

    2013-12-17

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  3. Introduction to Particle Acceleration in the Cosmos

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Horwitz, J. L.; Perez, J.; Quenby, J.

    2005-01-01

    Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.

  4. Analytical and experimental investigation of the coaxial plasma gun for use as a particle accelerator

    NASA Technical Reports Server (NTRS)

    Shriver, E. L.

    1972-01-01

    The coaxial plasma accelerator for use as a projectile accelerator is discussed. The accelerator is described physically and analytically by solution of circuit equations, and by solving for the magnetic pressures which are formed by the j cross B vector forces on the plasma. It is shown that the plasma density must be increased if the accelerator is to be used as a projectile accelerator. Three different approaches to increasing plasma density are discussed. When a magnetic field containment scheme was used to increase the plasma density, glass beads of 0.66 millimeter diameter were accelerated to 7 to 8 kilometers per second velocities. Glass beads of smaller diameter were accelerated to more than twice this velocity.

  5. Analysis of secondary particle behavior in multiaperture, multigrid accelerator for the ITER neutral beam injector.

    PubMed

    Mizuno, T; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Watanabe, K; Dairaku, M; Sakamoto, K; Inoue, T

    2010-02-01

    Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.

  6. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure

    DOE PAGES

    Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; ...

    2016-02-10

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic band gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. Wemore » conducted an experiment at the Argonne Wakefield Accelerator (AWA) test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Lastly, excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.« less

  7. Optimizing laser-driven proton acceleration from overdense targets

    PubMed Central

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  8. Recent results of studies of acceleration of compact toroids

    NASA Astrophysics Data System (ADS)

    Hammer, J. H.; Hartmen, C. W.; Eddleman, J.

    1984-03-01

    The observed gross stability and self-contained structure of compact toroids (CT's) give rise to the possibility, unique among magnetically confined plasmas, of translating CT's from their point of origin over distances many times their own length. This feature has led us to consider magnetic acceleration of CT's to directed kinetic energies much greater than their stored magnetic and thermal energies. A CT accelerator falls in the very broad gap between traditional particle accelerators at one extreme, which are limited in the number of particles per bunch by electrostatic repulsive forces, and mass accelerators such as rail guns at the other extreme, which accelerate many particles but are forced by the stress limitations of solids to far smaller accelerations. A typical CT has about a Coulomb of particles, weighs 10 micrograms and can be accelerated by magnetic forces of several tons, leading to an acceleration on the order of 10(11) gravities.

  9. A traveling-wave forward coupler design for a new accelerating mode in a silicon woodpile accelerator

    DOE PAGES

    Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.; ...

    2016-03-01

    Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less

  10. A traveling-wave forward coupler design for a new accelerating mode in a silicon woodpile accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.

    Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less

  11. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill

    PubMed Central

    Van Caekenberghe, Ine; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-01-01

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior–posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level of the hip and lower power absorption at the knee as the result of subtle differences in joint velocity. On a treadmill, ground reaction forces are not influenced by acceleration and, compared with overground, virtually no kinesiological adaptations to an accelerating belt are observed. Consequently, adaptations to acceleration during running differ from treadmill to overground and should be studied in the condition of interest. PMID:23676896

  12. International Space Station Increment-4/5 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2003-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of December 2001 to December 2002. Unlike the past two ISS Increment reports, which were increment specific, this summary report covers two increments: Increments 4 and 5, hereafter referred to as Increment-4/5. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-4/5. Due to time constraint and lack of precise timeline information regarding some payload operations and station activities, not a11 of the activities were analyzed for this report. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System supports science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit supports experiments requiring vibratory acceleration measurement. The International Space Station Increment-4/5 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: The Microgravity Acceleration Measurement System, which consists of two sensors: the low-frequency Orbital Acceleration Research Experiment Sensor Subsystem and the higher frequency High Resolution Accelerometer Package. The low frequency sensor measures up to 1 Hz, but is routinely trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to arbitrary locations for characterizing the quasi-steady environment for payloads and the vehicle. The high frequency sensor is used to characterize the vibratory environment up to 100 Hz at a single measurement location. The Space Acceleration Measurement System, which deploys high frequency sensors, measures vibratory acceleration data in the range of 0.01 to 400 Hz at multiple measurement locations. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment- 4/5 from December 2001 to December 2002.

  13. Current Fragmentation and Particle Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.; Vlahos, L.; Baumann, G.; Drake, J. F.; Nordlund, Å.

    2012-11-01

    Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a "standard flare model" is ill-conceived when the entire distribution of flare energies is considered.

  14. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    PubMed

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  16. Perception of linear acceleration in weightlessness

    NASA Technical Reports Server (NTRS)

    Arrott, A. P.; Young, L. R.

    1987-01-01

    Eye movements and subjective detection of acceleration were measured on human experimental subjects during vestibular sled acceleration during the D1 Spacelab Mission. Methods and results are reported on the time to detection of small acceleration steps, the threshold for detection of linear acceleration, perceived motion path, and CLOAT. A consistently shorter time to detection of small acceleration steps is found. Subjective reports of perceived motion during sinusoidal oscillation in weightlessness were qualitatively similar to reports on earth.

  17. Plasma production for electron acceleration by resonant plasma wave

    NASA Astrophysics Data System (ADS)

    Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Di Pirro, G. P.; Filippi, F.; Ghigo, A.; Lollo, V.; Pella, S.; Pompili, R.; Romeo, S.; Ferrario, M.

    2016-09-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV/m), enabling acceleration of electrons to GeV energy in few centimeter. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators (large energy spread, low repetition rate, and large emittance); radiofrequency-based accelerators, in fact, are limited in accelerating field (10-100 MV/m) requiring therefore hundred of meters of distances to reach the GeV energies, but can provide very bright electron bunches. To combine high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC_LAB (Ferrario et al., 2013 [1]). In particular here we focus on hydrogen plasma discharge, and in particular on the theoretical and numerical estimates of the ionization process which are very useful to design the discharge circuit and to evaluate the current needed to be supplied to the gas in order to have full ionization. Eventually, the current supplied to the gas simulated will be compared to that measured experimentally.

  18. Controlling flexible robot arms using a high speed dynamics process

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan (Inventor); Rodriguez, Guillermo (Inventor)

    1992-01-01

    Described here is a robot controller for a flexible manipulator arm having plural bodies connected at respective movable hinges, and flexible in plural deformation modes. It is operated by computing articulated body qualities for each of the bodies from the respective modal spatial influence vectors, obtaining specified body forces for each of the bodies, and computing modal deformation accelerations of the nodes and hinge accelerations of the hinges from the specified body forces, from the articulated body quantities and from the modal spatial influence vectors. In one embodiment of the invention, the controller further operates by comparing the accelerations thus computed to desired manipulator motion to determine a motion discrepancy, and correcting the specified body forces so as to reduce the motion discrepancy. The manipulator bodies and hinges are characterized by respective vectors of deformation and hinge configuration variables. Computing modal deformation accelerations and hinge accelerations is carried out for each of the bodies, beginning with the outermost body by computing a residual body force from a residual body force of a previous body, computing a resultant hinge acceleration from the body force, and then, for each one of the bodies beginning with the innermost body, computing a modal body acceleration from a modal body acceleration of a previous body, computing a modal deformation acceleration and hinge acceleration from the resulting hinge acceleration and from the modal body acceleration.

  19. Calculations of the Acceleration of Centrifugal Loading on Adherent Cells

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Song, Yang; Liu, Qing; Zhang, Chunqiu

    2017-07-01

    Studies have shown that the morphology and function of living cells are greatly affected by the state of different high acceleration. Based on the centrifuge, we designed a centrifugal cell loading machine for the mechanical biology of cells under high acceleration loading. For the machine, the feasibility of the experiment was studied by means of constant acceleration or variable acceleration loading in the Petri dish fixture and/or culture flask. Here we analyzed the distribution of the acceleration of the cells with the change of position and size of the culturing device quantitatively. It is obtained that Petri dish fixture and/or culture flask can be used for constant acceleration loading by experiments; the centripetal acceleration of the adherent cells increases with the increase of the distance between the rotor center of the centrifuge and the fixture of the Petri dish and the size of the fixture. It achieves the idea that the general biology laboratory can conduct the study of mechanical biology at high acceleration. It also provides a basis for more accurate study of the law of high acceleration on mechanobiology of cells.

  20. Non-Maximal Tripartite Entanglement Degradation of Dirac and Scalar Fields in Non-Inertial Frames

    NASA Astrophysics Data System (ADS)

    Salman, Khan; Niaz, Ali Khan; M. K., Khan

    2014-03-01

    The π-tangle is used to study the behavior of entanglement of a nonmaximal tripartite state of both Dirac and scalar fields in accelerated frame. For Dirac fields, the degree of degradation with acceleration of both one-tangle of accelerated observer and π-tangle, for the same initial entanglement, is different by just interchanging the values of probability amplitudes. A fraction of both one-tangles and the π-tangle always survives for any choice of acceleration and the degree of initial entanglement. For scalar field, the one-tangle of accelerated observer depends on the choice of values of probability amplitudes and it vanishes in the range of infinite acceleration, whereas for π-tangle this is not always true. The dependence of π-tangle on probability amplitudes varies with acceleration. In the lower range of acceleration, its behavior changes by switching between the values of probability amplitudes and for larger values of acceleration this dependence on probability amplitudes vanishes. Interestingly, unlike bipartite entanglement, the degradation of π-tangle against acceleration in the case of scalar fields is slower than for Dirac fields.

  1. The influence of polycarboxylate-type super-plasticizers on alkali-free liquid concrete accelerators performance

    NASA Astrophysics Data System (ADS)

    Guo, Wenkang; Yin, Haibo; Wang, Shuyin; He, Zhifeng

    2017-04-01

    Through studying on the setting times, cement mortar compressive strength and cement mortar compressive strength ratio, the influence of alkali-free liquid accelerators polycarboxylate-type super-plasticizers on the performance of alkali-free liquid accelerators in cement-based material was investigated. The results showed that the compatibility of super-plasticizers and alkali-free liquid accelerators was excellent. However, the dosage of super-plasticizers had a certain impact on the performance of alkali-free liquid accelerators as follows: 1) the setting times of alkali-free liquid accelerators was in the inverse proportional relationship to the dosage of super-plasticizers; 2)the influence of super-plasticizers dosage on the cement mortar compressive strength of alkali-free liquid accelerators was related to the types of accelerators, where exist an optimum super-plasticizers dosage for cement mortar compressive strength at 28d; 3)the later cement mortar compressive strength with alkali-free liquid accelerators were decreasing with the increment of the super-plasticizers dosage. In the practical application of alkali-free liquid accelerators and super-plasticizer, the dosage of super-plasticizer must be determined by dosage optimization test results.

  2. STS-107 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckhart, Timothy

    2005-01-01

    This summary report presents the results of the processed acceleration data measured aboard the Columbia orbiter during the STS-107 microgravity mission from January 16 to February 1, 2003. Two accelerometer systems were used to measure the acceleration levels due to vehicle and science operations activities that took place during the 16-day mission. Due to lack of precise timeline information regarding some payload's operations, not all of the activities were analyzed for this report. However, a general characterization of the microgravity environment of the Columbia Space Shuttle during the 16-day mission is presented followed by a more specific characterization of the environment for some designated payloads during their operations. Some specific quasi-steady and vibratory microgravity environment characterization analyses were performed for the following payloads: Structure of Flame Balls at Low Lewis-number-2, Laminar Soot Processes-2, Mechanics of Granular Materials-3 and Water Mist Fire-Suppression Experiment. The Physical Science Division of the National Aeronautics and Space Administration sponsors the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System for Free Flyer to support microgravity science experiments, which require microgravity acceleration measurements. On January 16, 2003, both the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System for Free Flyer accelerometer systems were launched on the Columbia Space Transportation System-107 from the Kennedy Space Center. The Orbital Acceleration Research Experiment supported science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System for Free Flyer unit supported experiments requiring vibratory acceleration measurement. The Columbia reduced gravity environment analysis presented in this report uses acceleration data collected by these two sets of accelerometer systems: The Orbital Acceleration Research Experiment is a low frequency sensor, which measures acceleration up to 1 Hz, but the 1 Hz acceleration data is trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to other locations for characterizing the quasi-steady environment for payloads and the vehicle. The Space Acceleration Measurement System for Free Flyer measures vibratory acceleration in the range of 0.01 to 200 Hz at multiple measurement locations. The vibratory acceleration data measured by this system is used to assess the local vibratory environment for payloads as well as to measure the disturbance causes by the vehicle systems, crew exercise devices and payloads operation disturbances. This summary report presents analysis of selected quasi-steady and vibratory activities measured by these two accelerometers during the Columbia 16-day microgravity mission from January 16 to February 1, 2003.

  3. Applications of the Strategic Defense Initiative's compact accelerators

    NASA Technical Reports Server (NTRS)

    Montanarelli, Nick; Lynch, Ted

    1991-01-01

    The Strategic Defense Initiative's (SDI) investment in particle accelerator technology for its directed energy weapons program has produced breakthroughs in the size and power of new accelerators. These accelerators, in turn, have produced spinoffs in several areas: the radio frequency quadrupole linear accelerator (RFQ linac) was recently incorporated into the design of a cancer therapy unit at the Loma Linda University Medical Center, an SDI-sponsored compact induction linear accelerator may replace Cobalt-60 radiation and hazardous ethylene-oxide as a method for sterilizing medical products, and other SDIO-funded accelerators may be used to produce the radioactive isotopes oxygen-15, nitrogen-13, carbon-11, and fluorine-18 for positron emission tomography (PET). Other applications of these accelerators include bomb detection, non-destructive inspection, decomposing toxic substances in contaminated ground water, and eliminating nuclear waste.

  4. REVIEWS OF TOPICAL PROBLEMS: Acceleration of cosmic rays by shock waves

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Krymskiĭ, G. F.

    1988-01-01

    Theoretical work on various processes by which shock waves accelerate cosmic rays is reviewed. The most efficient of these processes, Fermi acceleration, is singled out for special attention. A linear theory for this process is presented. The results found on the basis of nonlinear models of Fermi acceleration, which incorporate the modification of the structure caused by the accelerated particles, are reported. There is a discussion of various possibilities for explaining the generation of high-energy particles observed in interplanetary and interstellar space on the basis of a Fermi acceleration mechanism. The acceleration by shock waves from supernova explosions is discussed as a possible source of galactic cosmic rays. The most important unresolved questions in the theory of acceleration of charged particles by shock waves are pointed out.

  5. Torque-based optimal acceleration control for electric vehicle

    NASA Astrophysics Data System (ADS)

    Lu, Dongbin; Ouyang, Minggao

    2014-03-01

    The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.

  6. IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.

    2012-08-10

    Using high time cadence images from the STEREO EUVI, COR1, and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 coronal mass ejections (CMEs) in comparison with associated flares and filament eruptions. We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights, and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic fieldmore » is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events that were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME acceleration ends after the soft X-ray (SXR) peak time (for 77% of the events). In {approx}60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than {+-}5 minutes, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.« less

  7. Intermittent nature of acceleration in near wall turbulence.

    PubMed

    Lee, Changhoon; Yeo, Kyongmin; Choi, Jung-Il

    2004-04-09

    Using direct numerical simulation of a fully developed turbulent channel flow, we investigate the behavior of acceleration near a solid wall. We find that acceleration near the wall is highly intermittent and the intermittency is in large part associated with the near wall organized coherent turbulence structures. We also find that acceleration of large magnitude is mostly directed towards the rotation axis of the coherent vortical structures, indicating that the source of the intermittent acceleration is the rotational motion associated with the vortices that causes centripetal acceleration.

  8. Injury Prevention in Aircraft Crashes: Investigative Techniques and Applications (la Prevention des lesions lors des accidents d’ avions: les techniques d’investigation et leurs applications)

    DTIC Science & Technology

    1998-02-01

    provide the aircrew and passengers with a level of protection commensurate with the risk of operating aircraft in the military and civilian...the time taken to reach peak acceleration and upon the peak acceleration level attained. Long duration acceleration, which can be experienced in...acceleration depends principally on the plateau level of the acceleration imposed on the body, as the response to long duration acceleration is due

  9. Role of awareness in head-neck acceleration in low velocity rear-end impacts.

    PubMed

    Kumar, S; Narayan, Y; Amell, T

    2000-03-01

    Fourteen normal healthy seated and restrained young adults were delivered rear-end impacts of four intensities of acceleration. The chair was delivered a regulated and controlled pneumatic blow using a 30 cm cylinder to cause an acceleration of 0.5, 0.9, 1.1 and 1.4g. The accelerated chair was stopped suddenly by impacting the stopper at the other end of the 2 m long friction reduced track. In one set of trials, subjects were informed about the impending impact and in the other they were blindfolded and provided with loud auditory input to eliminate cues of the impact. The accelerations of the chair, shoulder and head of the participating subjects were measured triaxially and compared between levels of acceleration and expectation. The multiple analyses of variance revealed that the peak acceleration was significantly affected by the gender (P < 0.01), intensity of impact (P < 0.001), and expectation (P < 0.0001). The accelerations were significantly different in different axes (P < 0.001). A significant two-way interaction between acceleration and expectation (P < 0.03), and expectation and axes of acceleration (P < 0.02) would imply that awareness of the impending impact serves to significantly reduce the level of accelerations of head and neck.

  10. Plasma inverse transition acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ming

    It can be proved fundamentally from the reciprocity theorem with which the electromagnetism is endowed that corresponding to each spontaneous process of radiation by a charged particle there is an inverse process which defines a unique acceleration mechanism, from Cherenkov radiation to inverse Cherenkov acceleration (ICA) [1], from Smith-Purcell radiation to inverse Smith-Purcell acceleration (ISPA) [2], and from undulator radiation to inverse undulator acceleration (IUA) [3]. There is no exception. Yet, for nearly 30 years after each of the aforementioned inverse processes has been clarified for laser acceleration, inverse transition acceleration (ITA), despite speculation [4], has remained the least understood,more » and above all, no practical implementation of ITA has been found, until now. Unlike all its counterparts in which phase synchronism is established one way or the other such that a particle can continuously gain energy from an acceleration wave, the ITA to be discussed here, termed plasma inverse transition acceleration (PITA), operates under fundamentally different principle. As a result, the discovery of PITA has been delayed for decades, waiting for a conceptual breakthrough in accelerator physics: the principle of alternating gradient acceleration [5, 6, 7, 8, 9, 10]. In fact, PITA was invented [7, 8] as one of several realizations of the new principle.« less

  11. Accelerometer Data Analysis and Presentation Techniques

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; Moskowitz, Milton E.; Reckart, Timothy

    1997-01-01

    The NASA Lewis Research Center's Principal Investigator Microgravity Services project analyzes Orbital Acceleration Research Experiment and Space Acceleration Measurement System data for principal investigators of microgravity experiments. Principal investigators need a thorough understanding of data analysis techniques so that they can request appropriate analyses to best interpret accelerometer data. Accelerometer data sampling and filtering is introduced along with the related topics of resolution and aliasing. Specific information about the Orbital Acceleration Research Experiment and Space Acceleration Measurement System data sampling and filtering is given. Time domain data analysis techniques are discussed and example environment interpretations are made using plots of acceleration versus time, interval average acceleration versus time, interval root-mean-square acceleration versus time, trimmean acceleration versus time, quasi-steady three dimensional histograms, and prediction of quasi-steady levels at different locations. An introduction to Fourier transform theory and windowing is provided along with specific analysis techniques and data interpretations. The frequency domain analyses discussed are power spectral density versus frequency, cumulative root-mean-square acceleration versus frequency, root-mean-square acceleration versus frequency, one-third octave band root-mean-square acceleration versus frequency, and power spectral density versus frequency versus time (spectrogram). Instructions for accessing NASA Lewis Research Center accelerometer data and related information using the internet are provided.

  12. A link between occupant and vehicle accelerations during common driving tasks.

    PubMed

    Mathias, Anne C; Shibata, Peggy A; Sprague, James K

    2014-01-01

    When evaluating occupant motions during driving tasks, it is desirable to have a well-established correlation between vehicle and occupant accelerations. Therefore, this study demonstrated a methodology to quantify accelerations experienced by the driver of a passenger vehicle and compare them to associated vehicle motions. Acceleration levels were measured at the seat and the driver’s head, cervical spine, and lumbar spine during six non-collision driving tasks. Tasks included mounting a 127 mm (5 in) -high curb, crossing railroad tracks, driving on a rough road, braking heavily from 13.4 m/s (30 mph), having a 89 mm (3.5 in)-diameter roller sequentially pass under two tires, and dropping one tire from a 171-mm (6.75 in) height. The driver experienced peak resultant accelerations of similar magnitudes across all trials. Peak body accelerations were less than 1.2 g, including 0.82 g lumbar acceleration during heavy braking and 0.88 g head acceleration during the curb mount. These preliminary measurements are comparable to or lower than accelerations experienced during non-driving activities such as sitting quickly. This study contributes to the scientific understanding of accelerations experienced by vehicle occupants and demonstrates the potential to relate vehicle and occupant accelerations during common driving activities that do not involve collisions.

  13. Tanning accelerators: prevalence, predictors of use, and adverse effects.

    PubMed

    Herrmann, Jennifer L; Cunningham, Rachel; Cantor, Alan; Elewski, Boni E; Elmets, Craig A

    2015-01-01

    Tanning accelerators are topical products used by indoor tanners to augment and hasten the tanning process. These products contain tyrosine, psoralens, and/or other chemicals. We sought to better define the population using accelerators, identify predictors of their use, and describe any related adverse effects. This cross-sectional study surveyed 200 indoor tanners about their tanning practices and accelerator use. Primary analysis compared accelerator users with nonusers with respect to questionnaire variables. Descriptive statistics and χ(2) contingency tables were applied to identify statistically significant variables. Of respondents, 53% used accelerators; 97% were female and 3% were male with a median age of 22 years (range: 19-67). Users were more likely to spray tan, tan frequently, and be addicted to tanning. Acne and rashes were more common in accelerator users. Adverse reactions to accelerators prevented their further use 31% of the time. A limited adult population was evaluated; exact accelerator ingredients were not examined. Tanning accelerator users are high-risk indoor tanners who tan more frequently and who are more likely addicted to tanning. Acne and rashes are more common with these products and act as only mild deterrents to continued use. Additional research should investigate accelerators' longer-term health effects. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  14. The Los Alamos Laser Acceleration of Particles Workshop and beginning of the advanced accelerator concepts field

    NASA Astrophysics Data System (ADS)

    Joshi, C.

    2012-12-01

    The first Advanced Acceleration of Particles-AAC-Workshop (actually named Laser Acceleration of Particles Workshop) was held at Los Alamos in January 1982. The workshop lasted a week and divided all the acceleration techniques into four categories: near field, far field, media, and vacuum. Basic theorems of particle acceleration were postulated (later proven) and specific experiments based on the four categories were formulated. This landmark workshop led to the formation of the advanced accelerator R&D program in the HEP office of the DOE that supports advanced accelerator research to this day. Two major new user facilities at Argonne and Brookhaven and several more directed experimental efforts were built to explore the advanced particle acceleration schemes. It is not an exaggeration to say that the intellectual breadth and excitement provided by the many groups who entered this new field provided the needed vitality to then recently formed APS Division of Beams and the new online journal Physical Review Special Topics-Accelerators and Beams. On this 30th anniversary of the AAC Workshops, it is worthwhile to look back at the legacy of the first Workshop at Los Alamos and the fine groundwork it laid for the field of advanced accelerator concepts that continues to flourish to this day.

  15. Lab and Imaging Tests

    MedlinePlus

    ... Grant Grant Finder Therapy Acceleration Program Academic Concierge Biotechnology Accelerator Clinical Trials Division Resources for HCPs Continuing ... Grant Grant Finder Therapy Acceleration Program Academic Concierge Biotechnology Accelerator Clinical Trials Division Resources for HCPs Continuing ...

  16. The Accelerated Schools Movement: Expansion and Support through Accelerated Schools Centers.

    ERIC Educational Resources Information Center

    Brunner, Ilse; And Others

    From 1987 to 1995, the Accelerated Schools Project moved from a two-school pilot project to a national movement of over 700 schools in 35 states. This paper examines how the Accelerated Schools Centers have helped the expansion of the accelerated schools movement by recruiting and supporting schools in their regions, and how their institutional…

  17. Optimization of electrostatic dual-grid beam-deflection system

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Lathem, W. C.; Power, J. L.; Banks, B. A.

    1972-01-01

    Tests were performed to minimize accelerator grid erosion of a 5-cm diameter Kaufman ion thruster due to direct beam impingement. Several different screen hole diameters, pillow-shape-square screen holes, and dished screen grids were tried. The optimization was accomplished by copper plating the accelerator grid before testing each grid configuration on a thruster for a 2-hour run. The thruster beam sputtered copper and molybdenum from the accelerator grid where the beam impinged. The observed erosion patterns and measured accelerator currents were used to determine how to modify the accelerator system. The lowest erosion was obtained for a 50-percent open area pillow-shape-square-aperture screen grid, dished 0.043 centimeter convex toward the accelerator grid, which was positioned with the center of the screen grid 0.084 centimeter from the accelerator grid. During this investigation the accelerator current was reduced from 120 to 55 microamperes and was also more uniformly distributed over the area of the accelerator grid.

  18. The spinning disc: studying radial acceleration and its damping process with smartphone acceleration sensors

    NASA Astrophysics Data System (ADS)

    Hochberg, K.; Gröber, S.; Kuhn, J.; Müller, A.

    2014-03-01

    Here, we show the possibility of analysing circular motion and acceleration using the acceleration sensors of smartphones. For instance, the known linear dependence of the radial acceleration on the distance to the centre (a constant angular frequency) can be shown using multiple smartphones attached to a revolving disc. As a second example, the decrease of the radial acceleration and the rotation frequency due to friction can be measured and fitted with a quadratic function, in accordance with theory. Finally, because the disc is not set up exactly horizontal, each smartphone measures a component of the gravitational acceleration that adds to the radial acceleration during one half of the period and subtracts from the radial acceleration during the other half. Hence, every graph shows a small modulation, which can be used to determine the rotation frequency, thus converting a ‘nuisance effect’ into a source of useful information, making additional measurements with stopwatches or the like unnecessary.

  19. Effects of acceleration rate on Rayleigh-Taylor instability in elastic-plastic materials

    NASA Astrophysics Data System (ADS)

    Banerjee, Arindam; Polavarapu, Rinosh

    2016-11-01

    The effect of acceleration rate in the elastic-plastic transition stage of Rayleigh-Taylor instability in an accelerated non-Newtonian material is investigated experimentally using a rotating wheel experiment. A non-Newtonian material (mayonnaise) was accelerated at different rates by varying the angular acceleration of a rotating wheel and growth patterns of single mode perturbations with different combinations of amplitude and wavelength were analyzed. Experiments were run at two different acceleration rates to compare with experiments presented in prior years at APS DFD meetings and the peak amplitude responses are captured using a high-speed camera. Similar to the instability acceleration, the elastic-plastic transition acceleration is found to be increasing with increase in acceleration rate for a given amplitude and wavelength. The experimental results will be compared to various analytical strength models and prior experimental studies using Newtonian fluids. Authors acknowledge funding support from Los Alamos National Lab subcontract(370333) and DOE-SSAA Grant (DE-NA0001975).

  20. High brightness electron accelerator

    DOEpatents

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  1. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    DOEpatents

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  2. MABE multibeam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasti, D.E.; Ramirez, J.J.; Coleman, P.D.

    1985-01-01

    The Megamp Accelerator and Beam Experiment (MABE) was the technology development testbed for the multiple beam, linear induction accelerator approach for Hermes III, a new 20 MeV, 0.8 MA, 40 ns accelerator being developed at Sandia for gamma-ray simulation. Experimental studies of a high-current, single-beam accelerator (8 MeV, 80 kA), and a nine-beam injector (1.4 MeV, 25 kA/beam) have been completed, and experiments on a nine-beam linear induction accelerator are in progress. A two-beam linear induction accelerator is designed and will be built as a gamma-ray simulator to be used in parallel with Hermes III. The MABE pulsed power systemmore » and accelerator for the multiple beam experiments is described. Results from these experiments and the two-beam design are discussed. 11 refs., 6 figs.« less

  3. Accelerating gradient improvement using shape-tailor laser front in radiation pressure acceleration progress

    NASA Astrophysics Data System (ADS)

    Wang, W. P.; Shen, B. F.; Xu, Z. Z.

    2017-05-01

    The accelerating gradient of a proton beam is crucial for stable radiation pressure acceleration (RPA) because the multi-dimensional instabilities increase γ times slower in the relativistic region. In this paper, a shape-tailored laser is proposed to significantly accelerate the ions in a controllable high accelerating gradient. In this method, the fastest ions initially rest in the middle of the foil are controlled to catch the compressed electron layer at the end of the hole-boring stage, thus the light-sail stage can start as soon as possible. Then the compressed electron layer is accelerated tightly together with the fastest ions by the shaped laser intensity, which further increases the accelerating gradient in the light-sail stage. Such tailored pulse may be beneficial for the RPA driven by the 10-fs 10 petawatt laser in the future.

  4. A proposal for antiparallel acceleration of positrons using CEBAF

    NASA Astrophysics Data System (ADS)

    Tiefenback, M.; Wojtsekhowski, B.

    2018-05-01

    We present a scheme for positron beam acceleration in CEBAF antiparallel to the normal electron path, requiring no change in polarity of the magnet systems. This feature is essential to the principal benefit: enabling extremely simple configuration changes between conventional (clockwise) e- acceleration and counter clockwise e+ acceleration. Additionally, it appears possible to configure the accelerating cavity phases to support concurrent acceleration of the electron and positron beams. The last mode also may enable use of the higher peak current electron beam for system diagnostics. The inherent penalty of the concurrent mode in acceleration efficiency and increased energy spread may render this a commissioning-only diagnostic option, but the possibility appears worthy of consideration.

  5. A TE-mode accelerator

    NASA Astrophysics Data System (ADS)

    Takeuchi, S.; Sakai, K.; Matsumoto, M.; Sugihara, R.

    1987-04-01

    An accelerator is proposed in which a TE-mode wave is used to drive charged particles in contrast to the usual linear accelerators in which longitudinal electric fields or TM-mode waves are supposed to be utilized. The principle of the acceleration is based on the V(p) x B acceleration of a dynamo force acceleration, in which a charged particle trapped in a transverse wave feels a constant electric field (Faraday induction field) and subsequently is accelerated when an appropriate magnetic field is externally applied in the direction perpendicular to the wave propagation. A pair of dielectric plates is used to produce a slow TE mode. The conditions of the particle trapping the stabilization of the particle orbit are discussed.

  6. Plasma density characterization at SPARC_LAB through Stark broadening of Hydrogen spectral lines

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC_LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC_LAB is presented.

  7. Radiotherapy using a laser proton accelerator

    NASA Astrophysics Data System (ADS)

    Murakami, Masao; Hishikawa, Yoshio; Miyajima, Satoshi; Okazaki, Yoshiko; Sutherland, Kenneth L.; Abe, Mitsuyuki; Bulanov, Sergei V.; Daido, Hiroyuki; Esirkepov, Timur Zh.; Koga, James; Yamagiwa, Mitsuru; Tajima, Toshiki

    2008-06-01

    Laser acceleration promises innovation in particle beam therapy of cancer where an ultra-compact accelerator system for cancer beam therapy can become affordable to a broad range of patients. This is not feasible without the introduction of a technology that is radically different from the conventional accelerator-based approach. Because of its compactness and other novel characteristics, the laser acceleration method provides many enhanced capabilities

  8. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces

    PubMed Central

    Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.

    2015-01-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25–30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048

  9. Staging and laser acceleration of ions in underdense plasma

    NASA Astrophysics Data System (ADS)

    Ting, Antonio; Hafizi, Bahman; Helle, Michael; Chen, Yu-Hsin; Gordon, Daniel; Kaganovich, Dmitri; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Markus; Miao, Chenlong; Dover, Nicholas; Najmudin, Zulfikar; Ettlinger, Oliver

    2017-03-01

    Accelerating ions from rest in a plasma requires extra considerations because of their heavy mass. Low phase velocity fields or quasi-electrostatic fields are often necessary, either by operating above or near the critical density or by applying other slow wave generating mechanisms. Solid targets have been a favorite and have generated many good results. High density gas targets have also been reported to produce energetic ions. It is interesting to consider acceleration of ions in laser-driven plasma configurations that will potentially allow continuous acceleration in multiple consecutive stages. The plasma will be derived from gaseous targets, producing plasma densities slightly below the critical plasma density (underdense) for the driving laser. Such a plasma is experimentally robust, being repeatable and relatively transparent to externally injected ions from a previous stage. When optimized, multiple stages of this underdense laser plasma acceleration mechanism can progressively accelerate the ions to a high final energy. For a light mass ion such as the proton, relativistic velocities could be reached, making it suitable for further acceleration by high phase velocity plasma accelerators to energies appropriate for High Energy Physics applications. Negatively charged ions such as antiprotons could be similarly accelerated in this multi-staged ion acceleration scheme.

  10. Nonthermally dominated electron acceleration during magnetic reconnection in a low- β plasma

    DOE PAGES

    Li, Xiaocan; Guo, Fan; Li, Hui; ...

    2015-09-24

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization.more » We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. Thus, the nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the highly efficient electron acceleration in solar flares and other astrophysical systems.« less

  11. Future HEP Accelerators: The US Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Pushpalatha; Shiltsev, Vladimir

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN throughmore » its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.« less

  12. Acceleration Environment of the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Kelly, Eric; Keller, Jennifer

    2009-01-01

    Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available to the International Space Station scientific community, introduces plans for extending microgravity analysis results to the newly arrived scientific laboratories, and provides summary information for known microgravity environment disturbers.

  13. Basic features of the STS/Spacelab vibration environment

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R.; Ramachandran, N.

    1994-01-01

    The Space Shuttle acceleration environment is characterized. The acceleration environment is composed of a residual or quasi-steady component and higher frequency components induced by vehicle structural modes and the operation of onboard machinery. Quasi-steady accelerations are generally due to atmospheric drag, gravity gradient effects, and rotational forces. These accelerations tend to vary with the orbital frequency (approx. 10(exp -4) Hz) and have magnitudes less than or equal to 10(exp -6) g(sub 0) (where 1 g(sub 0) is terrestrial gravity). Higher frequency g-jitter is characterized by oscillatory disturbances in the 1-100 Hz range and transient components. Oscillatory accelerations are related to the response of large flexible structures like antennae, the Spacelab module, and the Orbiter itself, and to the operation of rotating machinery. The Orbiter structural modes in the 1-10 Hz range, are excited by oscillatory and transient disturbances and tend to dominate the energy spectrum of the acceleration environment. A comparison of the acceleration measurements from different Space Shuttle missions reveals the characteristic signature of the structural modes of the Orbiter overlaid with mission specific hardware induced disturbances and their harmonics. Transient accelerations are usually attributed to crew activity and Orbiter thruster operations. During crew sleep periods, the acceleration levels are typically on the order of 10(exp -6) g(sub 0) (1 micro-g). Crew work and exercise tend to raise the accelerations to the 10(exp -3) g(sub 0) (1 milli-g) level. Vernier reaction control system firings tend to cause accelerations of 10(exp -4) g(sub 0), while primary reaction control system and Orbiter maneuvering system firings cause accelerations as large as 10(exp -2) g(sub 0). Vibration isolation techniques (both active and passive systems) used during crew exercise have been shown to significantly reduce the acceleration magnitudes.

  14. The acceleration dependent validity and reliability of 10 Hz GPS.

    PubMed

    Akenhead, Richard; French, Duncan; Thompson, Kevin G; Hayes, Philip R

    2014-09-01

    To examine the validity and inter-unit reliability of 10 Hz GPS for measuring instantaneous velocity during maximal accelerations. Experimental. Two 10 Hz GPS devices secured to a sliding platform mounted on a custom built monorail were towed whilst sprinting maximally over 10 m. Displacement of GPS devices was measured using a laser sampling at 2000 Hz, from which velocity and mean acceleration were derived. Velocity data was pooled into acceleration thresholds according to mean acceleration. Agreement between laser and GPS measures of instantaneous velocity within each acceleration threshold was examined using least squares linear regression and Bland-Altman limits of agreement (LOA). Inter-unit reliability was expressed as typical error (TE) and a Pearson correlation coefficient. Mean bias ± 95% LOA during accelerations of 0-0.99 ms(-2) was 0.12 ± 0.27 ms(-1), decreasing to -0.40 ± 0.67 ms(-1) during accelerations >4 ms(-2). Standard error of the estimate ± 95% CI (SEE) increased from 0.12 ± 0.02 ms(-1) during accelerations of 0-0.99 ms(-2) to 0.32 ± 0.06 ms(-1) during accelerations >4 ms(-2). TE increased from 0.05 ± 0.01 to 0.12 ± 0.01 ms(-1) during accelerations of 0-0.99 ms(-2) and >4 ms(-2) respectively. The validity and reliability of 10 Hz GPS for the measurement of instantaneous velocity has been shown to be inversely related to acceleration. Those using 10 Hz GPS should be aware that during accelerations of over 4 ms(-2), accuracy is compromised. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Summary Report of Mission Acceleration Measurements for STS-78. Launched June 20, 1996

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Hrovat, Kenneth; McPherson, Kevin M.; Moskowitz, Milton E.; Rogers, Melissa J. B.

    1997-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-78 mission using accelerometers from three different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System and the Microgravity Measurement Assembly. The quasi-steady environment was also calculated in near real-time during the mission by the Microgravity Analysis Workstation. The Orbital Acceleration Research Experiment provided investigators with real-time quasi-steady acceleration measurements. The Space Acceleration Measurement System recorded higher frequency data on-board for post-mission analysis. The Microgravity Measurement Assembly provided investigators with real-time quasi-steady and higher frequency acceleration measurements. The Microgravity Analysis Workstation provided calculation of the quasi-steady environment. This calculation was presented to the science teams in real-time during the mission. The microgravity environment related to several different Orbiter, crew and experiment operations is presented and interpreted in this report. A radiator deploy, the Flight Control System checkout, and a vernier reaction control system reboost demonstration had minimal effects on the acceleration environment, with excitation of frequencies in the 0.01 to 10 Hz range. Flash Evaporator System venting had no noticeable effect on the environment while supply and waste water dumps caused excursions of 2 x lO(exp -6) to 4 x 10(exp -6) g in the Y(sub b) and Z(sub b) directions. Crew sleep and ergometer exercise periods can be clearly seen in the acceleration data, as expected. Accelerations related to the two Life Science Laboratory Equipment Refrigerator/Freezers were apparent in the data as are accelerations caused by the Johnson Space Center Projects Centrifuge. As on previous microgravity missions, several signals are present in the acceleration data for which a source has not been identified. The causes of these accelerations are under investigation.

  16. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma accelerators was developed by Cheng, et al. The Coaxial High ENerGy (CHENG) thruster operated on the 10-microseconds timescales of pulsed plasma thrusters, but claimed high thrust density, high efficiency and low electrode erosion rates, which are more consistent with the deflagration mode of acceleration. Separate work on gas-fed pulsed plasma thrusters (PPTs) by Ziemer, et al. identified two separate regimes of performance. The regime at higher mass bits (termed Mode I in that work) possessed relatively constant thrust efficiency (ratio of jet kinetic energy to input electrical energy) as a function of mass bit. In the second regime at very low mass bits (termed Mode II), the efficiency increased with decreasing mass bit. Work by Poehlmann et al. and by Sitaraman and Raja sought to understand the performance of the CHENG thruster and the Mode I / Mode II performance in PPTs by modeling the acceleration using the Hugoniot Relation, with the detonation and deflagration modes representing two distinct sets of solutions to the relevant conservation laws. These works studied the proposal that, depending upon the values of the various controllable parameters, the accelerator would operate in either the detonation or deflagration mode. In the present work, we propose a variation on the explanation for the differences in performance between the various pulsed plasma accelerators. Instead of treating the accelerator as if it were only operating in one mode or the other during a pulse, we model the initial stage of the discharge in all cases as an accelerating current sheet (detonation mode). If the current sheet reaches the exit of the accelerator before the discharge is completed, the acceleration mode transitions to the deflagration mode type found in the quasi-steady MPD thrusters. This modeling method is used to demonstrate that standard gas-fed pulsed plasma accelerators, the CHENG thruster, and the quasi-steady MPD accelerator are variations of the same device, with the overall acceleration of the plasma depending upon the behavior of the plasma discharge during initial transient phase and the relative lengths of the detonation and deflagration modes of operation.

  17. Exceedance statistics of accelerations resulting from thruster firings on the Apollo-Soyuz mission

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Holland, R. L.

    1981-01-01

    Spacecraft acceleration resulting from firings of vernier control system thrusters is an important consideration in the design, planning, execution and post-flight analysis of laboratory experiments in space. In particular, scientists and technologists involved with the development of experiments to be performed in space in many instances required statistical information on the magnitude and rate of occurrence of spacecraft accelerations. Typically, these accelerations are stochastic in nature, so that it is useful to characterize these accelerations in statistical terms. Statistics of spacecraft accelerations are summarized.

  18. EH 11n modes E type in the disk and washer accelerating structure

    NASA Astrophysics Data System (ADS)

    Andreev, V. G.; Belugin, V. M.; Daikovsky, A. G.; Esin, S. K.; Kravchuk, L. V.; Paramonov, V. V.; Ryabov, A. D.

    1983-01-01

    The disk and washer accelerating structure has a great deal to do with high-beta structures progress. The frequencies and electromagnetic fields for modes, which have a different number of azimuthal variations, are calculated to determined the dispersion properties and other characteristics of parasitic modes in a disc and washer accelerating structure. The main attention was given to the accelerating structure of the linear accelerator of the Institute for Nuclear Research (INR) of the USSR Academy of Sciences. Modification of a structure for PIGMI accelerator (LANL, USA) is considered briefly.

  19. Studies of dished accelerator grids for 30-cm ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    Eighteen geometrically different sets of dished accelerator grids were tested on five 30-cm thrusters. The geometric variation of the grids included the grid-to-grid spacing, the screen and accelerator hole diameters and thicknesses, the screen and accelerator open area fractions, ratio of dish depth to dish diameter, compensation, and aperture shape. In general, the data taken over a range of beam currents for each grid set included the minimum total accelerating voltage required to extract a given beam current and the minimum accelerator grid voltage required to prevent electron backstreaming.

  20. Accelerated magnetic resonance diffusion tensor imaging of the median nerve using simultaneous multi-slice echo planar imaging with blipped CAIPIRINHA.

    PubMed

    Filli, Lukas; Piccirelli, Marco; Kenkel, David; Boss, Andreas; Manoliu, Andrei; Andreisek, Gustav; Bhat, Himanshu; Runge, Val M; Guggenberger, Roman

    2016-06-01

    To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA. After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25-32) was performed at 3 T using a 16-channel hand/wrist coil. An EPI sequence (b-value, 1,000 s/mm(2); 20 gradient directions) was acquired without acceleration as well as with twofold and threefold slice acceleration. Fractional anisotropy (FA), mean diffusivity (MD) and quality of nerve tractography (number of tracks, average track length, track homogeneity, anatomical accuracy) were compared between the acquisitions using multivariate ANOVA and the Kruskal-Wallis test. Acquisition time was 6:08 min for standard DTI, 3:38 min for twofold and 2:31 min for threefold acceleration. No differences were found regarding FA (standard DTI: 0.620 ± 0.058; twofold acceleration: 0.642 ± 0.058; threefold acceleration: 0.644 ± 0.061; p ≥ 0.217) and MD (standard DTI: 1.076 ± 0.080 mm(2)/s; twofold acceleration: 1.016 ± 0.123 mm(2)/s; threefold acceleration: 0.979 ± 0.153 mm(2)/s; p ≥ 0.074). Twofold acceleration yielded similar tractography quality compared to standard DTI (p > 0.05). With threefold acceleration, however, average track length and track homogeneity decreased (p = 0.004-0.021). Accelerated DTI of the median nerve is feasible. Twofold acceleration yields similar results to standard DTI. • Standard DTI of the median nerve is limited by its long acquisition time. • Simultaneous multi-slice acquisition is a new technique for accelerated DTI. • Accelerated DTI of the median nerve yields similar results to standard DTI.

  1. Improvement of voltage holding and high current beam acceleration by MeV accelerator for ITER NB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, M.; Kashiwagi, M.; Inoue, T.

    Voltage holding of -1 MV is an essential issue in development of a multi-aperture multi-grid (MAMuG) negative ion accelerator, of which target is to accelerate 200 A/m{sup 2} H{sup -} ion beam up to the energy of 1 MeV for several tens seconds. Review of voltage holding results ever obtained with various geometries of the accelerators showed that the voltage holding capability was about a half of designed value based on the experiment obtained from ideal small electrode. This is considered due to local electric field concentration in the accelerators, such as edge and steps between multi-aperture grids and itsmore » support structures. Based on the detailed investigation with electric field analysis, accelerator was modified to reduce the electric field concentration by reshaping the support structures and expanding the gap length between the grid supports. After the modifications, the accelerator succeeded in sustaining -1 MV for more than one hour in vacuum. Improvement of the voltage holding characteristics progressed the energy and current accelerated by the MeV accelerator. Up to 2010, beam parameters achieved by the MAMuG accelerator were increased to 879 keV, 0.36 A (157 A/m{sup 2}) at perveance matched condition and 937 keV, 0.33 A (144 A/m{sup 2}) slightly under perveance.« less

  2. Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colby, Eric R.; Hogan, Mark J.; /SLAC

    Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As themore » department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.« less

  3. Accelerators for society: succession of European infrastructural projects: CARE, EuCARD, TIARA, EuCARD2

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the realization of CARE (Coordinated Accelerator R&D), EuCARD (European Coordination of Accelerator R&D) and during the national annual review meeting of the TIARA - Test Infrastructure of European Research Area in Accelerator R&D. The European projects on accelerator technology started in 2003 with CARE. TIARA is an European Collaboration of Accelerator Technology, which by running research projects, technical, networks and infrastructural has a duty to integrate the research and technical communities and infrastructures in the global scale of Europe. The Collaboration gathers all research centers with large accelerator infrastructures. Other ones, like universities, are affiliated as associate members. TIARA-PP (preparatory phase) is an European infrastructural project run by this Consortium and realized inside EU-FP7. The paper presents a general overview of CARE, EuCARD and especially TIARA activities, with an introduction containing a portrait of contemporary accelerator technology and a digest of its applications in modern society. CARE, EuCARD and TIARA activities integrated the European accelerator community in a very effective way. These projects are expected very much to be continued.

  4. Ion extraction capabilities of two-grid accelerator systems. [for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. A large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current is presented. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high.

  5. Effects of angular acceleration on man - Choice reaction time using visual and rotary motion information

    NASA Technical Reports Server (NTRS)

    Clark, B.; Stewart, J. D.

    1974-01-01

    This experiment was concerned with the effects of rotary acceleration on choice reaction time (RTc) to the motion of a luminous line on a cathode-ray tube. Specifically, it compared the (RTc) to rotary acceleration alone, visual acceleration alone, and simultaneous, double stimulation by both rotary and visual acceleration. Thirteen airline pilots were rotated about an earth-vertical axis in a precision rotation device while they observed a vertical line. The stimuli were 7 rotary and visual accelerations which were matched for rise time. The pilot responded as quickly as possible by displacing a vertical controller to the right or left. The results showed a decreasing (RTc) with increasing acceleration for all conditions, while the (RTc) to rotary motion alone was substantially longer than for all other conditions. The (RTc) to the double stimulation was significantly longer than that for visual acceleration alone.

  6. Choice reaction time to visual motion during prolonged rotary motion in airline pilots

    NASA Technical Reports Server (NTRS)

    Stewart, J. D.; Clark, B.

    1975-01-01

    Thirteen airline pilots were studied to determine the effect of preceding rotary accelerations on the choice reaction time to the horizontal acceleration of a vertical line on a cathode-ray tube. On each trial, one of three levels of rotary and visual acceleration was presented with the rotary stimulus preceding the visual by one of seven periods. The two accelerations were always equal and were presented in the same or opposite directions. The reaction time was found to increase with increases in the time the rotary acceleration preceded the visual acceleration, and to decrease with increased levels of visual and rotary acceleration. The reaction time was found to be shorter when the accelerations were in the same direction than when they were in opposite directions. These results suggest that these findings are a special case of a general effect that the authors have termed 'gyrovisual modulation'.

  7. Resonant ion acceleration by plasma jets: Effects of jet breaking and the magnetic-field curvature.

    PubMed

    Artemyev, A V; Vasiliev, A A

    2015-05-01

    In this paper we consider resonant ion acceleration by a plasma jet originating from the magnetic reconnection region. Such jets propagate in the background magnetic field with significantly curved magnetic-field lines. Decoupling of ion and electron motions at the leading edge of the jet results in generation of strong electrostatic fields. Ions can be trapped by this field and get accelerated along the jet front. This mechanism of resonant acceleration resembles surfing acceleration of charged particles at a shock wave. To describe resonant acceleration of ions, we use adiabatic theory of resonant phenomena. We show that particle motion along the curved field lines significantly influences the acceleration rate. The maximum gain of energy is determined by the particle's escape from the system due to this motion. Applications of the proposed mechanism to charged-particle acceleration in the planetary magnetospheres and the solar corona are discussed.

  8. Unaligned instruction relocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.

    In one embodiment, a computer-implemented method includes receiving source code to be compiled into an executable file for an unaligned instruction set architecture (ISA). Aligned assembled code is generated, by a computer processor. The aligned assembled code complies with an aligned ISA and includes aligned processor code for a processor and aligned accelerator code for an accelerator. A first linking pass is performed on the aligned assembled code, including relocating a first relocation target in the aligned accelerator code that refers to a first object outside the aligned accelerator code. Unaligned assembled code is generated in accordance with the unalignedmore » ISA and includes unaligned accelerator code for the accelerator and unaligned processor code for the processor. A second linking pass is performed on the unaligned assembled code, including relocating a second relocation target outside the unaligned accelerator code that refers to an object in the unaligned accelerator code.« less

  9. Multi-beam linear accelerator EVT

    NASA Astrophysics Data System (ADS)

    Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  10. Multi-beam linear accelerator EVT

    DOE PAGES

    Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.

    2016-03-29

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initialmore » specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. Furthermore, a relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.« less

  11. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  12. Unaligned instruction relocation

    DOEpatents

    Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.; Sura, Zehra N.

    2018-01-23

    In one embodiment, a computer-implemented method includes receiving source code to be compiled into an executable file for an unaligned instruction set architecture (ISA). Aligned assembled code is generated, by a computer processor. The aligned assembled code complies with an aligned ISA and includes aligned processor code for a processor and aligned accelerator code for an accelerator. A first linking pass is performed on the aligned assembled code, including relocating a first relocation target in the aligned accelerator code that refers to a first object outside the aligned accelerator code. Unaligned assembled code is generated in accordance with the unaligned ISA and includes unaligned accelerator code for the accelerator and unaligned processor code for the processor. A second linking pass is performed on the unaligned assembled code, including relocating a second relocation target outside the unaligned accelerator code that refers to an object in the unaligned accelerator code.

  13. Testing relativistic electron acceleration mechanisms

    NASA Astrophysics Data System (ADS)

    Green, Janet Carol

    2002-09-01

    This dissertation tests models of relativistic electron acceleration in the earth's outer radiation belt. The models fall into two categories: external and internal. External acceleration models transport and accelerate electrons from a source region in the outer magnetosphere to the inner magnetosphere. Internal acceleration models accelerate a population of electrons already present in the inner magnetosphere. In this dissertation, we test one specific external acceleration mechanism, perform a general test that differentiates between internal and external acceleration models, and test one promising internal acceleration model. We test the models using Polar-HIST data that we transform into electron phase space density (PSD) as a function of adiabatic invariants. We test the ultra low frequency (ULF) wave enhanced radial diffusion external acceleration mechanism by looking for a causal relationship between increased wave power and increased electron PSD at three L* values. One event with increased wave power at two L* values and no subsequent PSD increase does not support the model suggesting that ULF wave power alone is not sufficient to cause an electron response. Excessive loss of electrons and the duration of wave power do not explain the lack of a PSD enhancement at low L*. We differentiate between internal and external acceleration mechanisms by examining the radial profile of electron PSD. We observe PSD profiles that depend on local time. Nightside profiles are highly dependent on the magnetic field model used to calculate PSD as a function of adiabatic invariants and are not reliable. Dayside PSD profiles are more robust and consistent with internal acceleration of electrons. We test one internal acceleration model, the whistler/electromagnetic ion cyclotron wave model, by comparing observed pitch angle distributions to those predicted by the model using a superposed epoch analysis. The observations show pitch angle distributions corresponding to electrons with energy >=4.0 MeV becoming more peaked at 90° during the storm recovery phase. The observation is consistent with but does not confirm the model. Our tests indicate that relativistic electrons are accelerated by an internal source acceleration mechanism but we do not identify a unique mechanism.

  14. Simulation Studies of the Dielectric Grating as an Accelerating and Focusing Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soong, Ken; Peralta, E.A.; Byer, R.L.

    A grating-based design is a promising candidate for a laser-driven dielectric accelerator. Through simulations, we show the merits of a readily fabricated grating structure as an accelerating component. Additionally, we show that with a small design perturbation, the accelerating component can be converted into a focusing structure. The understanding of these two components is critical in the successful development of any complete accelerator. The concept of accelerating electrons with the tremendous electric fields found in lasers has been proposed for decades. However, until recently the realization of such an accelerator was not technologically feasible. Recent advances in the semiconductor industry,more » as well as advances in laser technology, have now made laser-driven dielectric accelerators imminent. The grating-based accelerator is one proposed design for a dielectric laser-driven accelerator. This design, which was introduced by Plettner, consists of a pair of opposing transparent binary gratings, illustrated in Fig. 1. The teeth of the gratings serve as a phase mask, ensuring a phase synchronicity between the electromagnetic field and the moving particles. The current grating accelerator design has the drive laser incident perpendicular to the substrate, which poses a laser-structure alignment complication. The next iteration of grating structure fabrication seeks to monolithically create an array of grating structures by etching the grating's vacuum channel into a fused silica wafer. With this method it is possible to have the drive laser confined to the plane of the wafer, thus ensuring alignment of the laser-and-structure, the two grating halves, and subsequent accelerator components. There has been previous work using 2-dimensional finite difference time domain (2D-FDTD) calculations to evaluate the performance of the grating accelerator structure. However, this work approximates the grating as an infinite structure and does not accurately model a realizable structure. In this paper, we will present a 3-dimensional frequency-domain simulation of both the infinite and the finite grating accelerator structure. Additionally, we will present a new scheme for a focusing structure based on a perturbation of the accelerating structure. We will present simulations of this proposed focusing structure and quantify the quality of the focusing fields.« less

  15. High gradient tests of metallic mm-wave accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2017-05-10

    This study explores the physics of vacuum rf breakdowns in high gradient mm-wave accelerating structures. We performed a series of experiments with 100 GHz and 200 GHz metallic accelerating structures, at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. This paper presents the experimental results of rf tests of 100 GHz travelling-wave accelerating structures, made of hard copper-silver alloy. The results are compared with pure hard copper structures. The rf fields were excited by the FACET ultra-relativistic electron beam. The accelerating structures have open geometries, 10 cm long, composed of two halves separated bymore » a variable gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changed from 90 GHz to 140 GHz. The measured frequency and pulse length are consistent with our simulations. When the beam travels off-axis, a deflecting field is induced in addition to the decelerating longitudinal field. We measured the deflecting forces by observing the displacement of the electron bunch and used this measurement to verify the expected accelerating gradient. We present the first quantitative measurement of rf breakdown rates in 100 GHz copper-silver accelerating structure, which was 10 –3 per pulse, with peak electric field of 0.42 GV/m, an accelerating gradient of 127 MV/m, at a pulse length of 2.3 ns. The goal of our studies is to understand the physics of gradient limitations in order to increase the energy reach of future accelerators.« less

  16. High gradient tests of metallic mm-wave accelerating structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon

    This study explores the physics of vacuum rf breakdowns in high gradient mm-wave accelerating structures. We performed a series of experiments with 100 GHz and 200 GHz metallic accelerating structures, at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. This paper presents the experimental results of rf tests of 100 GHz travelling-wave accelerating structures, made of hard copper-silver alloy. The results are compared with pure hard copper structures. The rf fields were excited by the FACET ultra-relativistic electron beam. The accelerating structures have open geometries, 10 cm long, composed of two halves separated bymore » a variable gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changed from 90 GHz to 140 GHz. The measured frequency and pulse length are consistent with our simulations. When the beam travels off-axis, a deflecting field is induced in addition to the decelerating longitudinal field. We measured the deflecting forces by observing the displacement of the electron bunch and used this measurement to verify the expected accelerating gradient. We present the first quantitative measurement of rf breakdown rates in 100 GHz copper-silver accelerating structure, which was 10 –3 per pulse, with peak electric field of 0.42 GV/m, an accelerating gradient of 127 MV/m, at a pulse length of 2.3 ns. The goal of our studies is to understand the physics of gradient limitations in order to increase the energy reach of future accelerators.« less

  17. PHYSICS OF OUR DAYS Physical conditions in potential accelerators of ultra-high-energy cosmic rays: updated Hillas plot and radiation-loss constraints

    NASA Astrophysics Data System (ADS)

    Ptitsyna, Kseniya V.; Troitsky, Sergei V.

    2010-10-01

    We review basic constraints on the acceleration of ultra-high-energy (UHE) cosmic rays (CRs) in astrophysical sources, namely, the geometric (Hillas) criterion and the restrictions from radiation losses in different acceleration regimes. Using the latest available astrophysical data, we redraw the Hillas plot and find potential UHECR accelerators. For the acceleration in the central engines of active galactic nuclei, we constrain the maximal UHECR energy for a given black hole mass. Among active galaxies, only the most powerful ones, radio galaxies and blazars, are able to accelerate protons to UHE, although acceleration of heavier nuclei is possible in much more abundant lower-power Seyfert galaxies.

  18. Beam dynamics simulation of a double pass proton linear accelerator

    DOE PAGES

    Hwang, Kilean; Qiang, Ji

    2017-04-03

    A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fullymore » 3D space-charge effects through the entire accelerator system.« less

  19. A proposal for antiparallel acceleration of positrons using CEBAF

    DOE PAGES

    Tiefenback, M.; Wojtsekhowski, B.

    2018-05-01

    Here, we present a scheme for positron beam acceleration in CEBAF antiparallel to the normal electron path, requiring no change in polarity of the magnet systems. This feature is essential to the principal benefit: enabling extremely simple configuration changes between conventional (clockwise) e - acceleration and counter clockwise e + acceleration. Additionally, it appears possible to configure the accelerating cavity phases to support concurrent acceleration of the electron and positron beams. The last mode also may enable use of the higher peak current electron beam for system diagnostics. The inherent penalty of the concurrent mode in acceleration efficiency and increasedmore » energy spread may render this a commissioning-only diagnostic option, but the possibility appears worthy of consideration.« less

  20. A systematic FPGA acceleration design for applications based on convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Dong, Hao; Jiang, Li; Li, Tianjian; Liang, Xiaoyao

    2018-04-01

    Most FPGA accelerators for convolutional neural network are designed to optimize the inner acceleration and are ignored of the optimization for the data path between the inner accelerator and the outer system. This could lead to poor performance in applications like real time video object detection. We propose a brand new systematic FPFA acceleration design to solve this problem. This design takes the data path optimization between the inner accelerator and the outer system into consideration and optimizes the data path using techniques like hardware format transformation, frame compression. It also takes fixed-point, new pipeline technique to optimize the inner accelerator. All these make the final system's performance very good, reaching about 10 times the performance comparing with the original system.

  1. A proposal for antiparallel acceleration of positrons using CEBAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiefenback, M.; Wojtsekhowski, B.

    Here, we present a scheme for positron beam acceleration in CEBAF antiparallel to the normal electron path, requiring no change in polarity of the magnet systems. This feature is essential to the principal benefit: enabling extremely simple configuration changes between conventional (clockwise) e - acceleration and counter clockwise e + acceleration. Additionally, it appears possible to configure the accelerating cavity phases to support concurrent acceleration of the electron and positron beams. The last mode also may enable use of the higher peak current electron beam for system diagnostics. The inherent penalty of the concurrent mode in acceleration efficiency and increasedmore » energy spread may render this a commissioning-only diagnostic option, but the possibility appears worthy of consideration.« less

  2. Uniformly accelerated black holes

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.; Oliveira, Samuel R.

    2001-09-01

    The static and stationary C metric are examined in a generic framework and their interpretations studied in some detail, especially those with two event horizons, one for the black hole and another for the acceleration. We find that (i) the spacetime of an accelerated static black hole is plagued by either conical singularities or a lack of smoothness and compactness of the black hole horizon, (ii) by using standard black hole thermodynamics we show that accelerated black holes have a higher Hawking temperature than Unruh temperature of the accelerated frame, and (iii) the usual upper bound on the product of the mass and acceleration parameters (<1/27) is just a coordinate artifact. The main results are extended to accelerated rotating black holes with no significant changes.

  3. US Particle Accelerators at Age 50.

    ERIC Educational Resources Information Center

    Wilson, R. R.

    1981-01-01

    Reviews the development of accelerators over the past 50 years. Topics include: types of accelerators, including cyclotrons; sociology of accelerators (motivation, financing, construction, and use); impact of war; national laboratories; funding; applications; future projects; foreign projects; and international collaborations. (JN)

  4. Desirable limits of accelerative forces in a space-based materials processing facility

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1990-01-01

    There are three categories of accelerations to be encountered on orbiting spacecraft: (1) quasi-steady accelerations, caused by atmospheric drag or by gravity gradients, 10(exp -6) to 10(exp -7) g sub o; (2) transient accelerations, caused by movements of the astronauts, mass translocations, landing and departure of other spacecraft, etc.; and (3) oscillary accelerations, caused by running machinery (fans, pumps, generators). Steady accelerations cause continuing displacements; transients cause time-limited displacements. The important aspect is the area under the acceleration curve, measured over a certain time interval. Note that this quantity is not equivalent to a velocity because of friction effects. Transient motions are probably less important than steady accelerations because they only produce constant displacements. If the accelerative forces were not equal and opposite, the displacement would increase with time. A steady acceleration will produce an increasing velocity of a particle, but eventually an equilibrium value will be reached where drag and acceleration forces are equal. From then on, the velocity will remain constant, and the displacement will increase linearly with time.

  5. Graduate Student Program in Materials and Engineering Research and Development for Future Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, Linda

    The objective of the proposal was to develop graduate student training in materials and engineering research relevant to the development of particle accelerators. Many components used in today's accelerators or storage rings are at the limit of performance. The path forward in many cases requires the development of new materials or fabrication techniques, or a novel engineering approach. Often, accelerator-based laboratories find it difficult to get top-level engineers or materials experts with the motivation to work on these problems. The three years of funding provided by this grant was used to support development of accelerator components through a multidisciplinary approachmore » that cut across the disciplinary boundaries of accelerator physics, materials science, and surface chemistry. The following results were achieved: (1) significant scientific results on fabrication of novel photocathodes, (2) application of surface science and superconducting materials expertise to accelerator problems through faculty involvement, (3) development of instrumentation for fabrication and characterization of materials for accelerator components, (4) student involvement with problems at the interface of material science and accelerator physics.« less

  6. Ion extraction capabilities of two-grid accelerator systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems.

  7. Understanding of Particle Acceleration by Foreshock Transients (invited)

    NASA Astrophysics Data System (ADS)

    Liu, T. Z.; Angelopoulos, V.; Hietala, H.; Lu, S.; Wilson, L. B., III

    2017-12-01

    Although plasma shocks are known to be a major particle accelerator at Earth's environment (e.g., the bow shock) and elsewhere in the universe, how particles are accelerated to very large energies compared to the shock potential is still not fully understood. Significant new information on such acceleration in the vicinity of Earth's bow shock has recently emerged due to the availability of multi-point observations, in particular from Cluster and THEMIS. These have revealed numerous types of foreshock transients, formed by shock-reflected ions, which could play a crucial role in particle pre-acceleration, i.e. before the particles reach the shock to be subjected again to even further acceleration. Foreshock bubbles (FBs) and hot flow anomalies (HFAs), are a subset of such foreshock transients that are especially important due to their large spatial scale (1-10 Earth radii), and their ability to have global effects at Earth.s geospace. These transients can accelerate particles that can become a particle source for the parent shock. Here we introduce our latest progress in understanding particle acceleration by foreshock transients including their statistical characteristics and acceleration mechanisms.

  8. Understanding of Particle Acceleration by Foreshock Transients

    NASA Astrophysics Data System (ADS)

    Liu, T. Z.; Angelopoulos, V.; Hietala, H.; Lu, S.; Wilson, L. B., III

    2017-12-01

    Although plasma shocks are known to be a major particle accelerator at Earth's environment (e.g., the bow shock) and elsewhere in the universe, how particles are accelerated to very large energies compared to the shock potential is still not fully understood. Significant new information on such acceleration in the vicinity of Earth's bow shock has recently emerged due to the availability of multi-point observations, in particular from Cluster and THEMIS. These have revealed numerous types of foreshock transients, formed by shock-reflected ions, which could play a crucial role in particle pre-acceleration, i.e. before the particles reach the shock to be subjected again to even further acceleration. Foreshock bubbles (FBs) and hot flow anomalies (HFAs), are a subset of such foreshock transients that are especially important due to their large spatial scale (1-10 Earth radii), and their ability to have global effects at Earth's geospace. These transients can accelerate particles that can become a particle source for the parent shock. Here we introduce our latest progress in understanding particle acceleration by foreshock transients including their statistical characteristics and acceleration mechanisms.

  9. Analysis of walking variability through simultaneous evaluation of the head, lumbar, and lower-extremity acceleration in healthy youth

    PubMed Central

    Toda, Haruki; Nagano, Akinori; Luo, Zhiwei

    2016-01-01

    [Purpose] The purpose of this study was to clarify whether walking speed affects acceleration variability of the head, lumbar, and lower extremity by simultaneously evaluating of acceleration. [Subjects and Methods] Twenty young individuals recruited from among the staff at Kurashiki Heisei Hospital participated in this study. Eight accelerometers were used to measure the head, lumbar and lower extremity accelerations. The participants were instructed to walk at five walking speeds prescribed by a metronome. Acceleration variability was assessed by a cross-correlation analysis normalized using z-transform in order to evaluate stride-to-stride variability. [Results] Vertical acceleration variability was the smallest in all body parts, and walking speed effect had laterality. Antero-posterior acceleration variability was significantly associated with walking speed at sites other than the head. Medio-lateral acceleration variability of the bilateral hip alone was smaller than the antero-posterior variability. [Conclusion] The findings of this study suggest that the effect of walking speed changes on the stride-to-stride acceleration variability was individual for each body parts, and differs among directions. PMID:27390419

  10. A 10 Billion MeV Cyclotron

    ERIC Educational Resources Information Center

    Edge, R. D.

    1974-01-01

    Discusses the design of a device which serves to demonstrate the principle of acceleration and phase stability by accelerating gravitationally a ball bearing along a spiral groove. Application of the design principle to the acceleration aspect of a linear accelerator is recommended. (CC)

  11. [Technical Gap of Chinese Medical Accelerator and Its Development Path].

    PubMed

    Tian, Xinzhi

    2017-11-30

    With the reform and opening up the tide through nearly four decades of development, our medical accelerator business isfacing new era demands now, in this new historical opportunity in front of the younger generation of medical accelerator staff must assume the older generation of scientific research personnel are different of the historical responsibility. Based on the development of the predecessors, we try to analyze the current situation of the domestic accelerator, establish the new development ideas of the domestic medical accelerator, and directly face and solve the dilemma facing the development of the domestic accelerator.

  12. Exceedance statistics of accelerations resulting from thruster firings on the Apollo-Soyuz mission

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Holland, R. L.

    1983-01-01

    Spacecraft acceleration resulting from firings of vernier control system thrusters is an important consideration in the design, planning, execution and post-flight analysis of laboratory experiments in space. In particular, scientists and technologists involved with the development of experiments to be performed in space in many instances required statistical information on the magnitude and rate of occurrence of spacecraft accelerations. Typically, these accelerations are stochastic in nature, so that it is useful to characterize these accelerations in statistical terms. Statistics of spacecraft accelerations are summarized. Previously announced in STAR as N82-12127

  13. Visual reaction times during prolonged angular acceleration parallel the subjective perception of rotation

    NASA Technical Reports Server (NTRS)

    Mattson, D. L.

    1975-01-01

    The effect of prolonged angular acceleration on choice reaction time to an accelerating visual stimulus was investigated, with 10 commercial airline pilots serving as subjects. The pattern of reaction times during and following acceleration was compared with the pattern of velocity estimates reported during identical trials. Both reaction times and velocity estimates increased at the onset of acceleration, declined prior to the termination of acceleration, and showed an aftereffect. These results are inconsistent with the torsion-pendulum theory of semicircular canal function and suggest that the vestibular adaptation is of central origin.

  14. Generation of auroral kilometric radiation and the structure of auroral acceleration region

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Kan, J. R.; Wu, C. S.

    1980-01-01

    Generation of auroral kilometric radiation (AKR) in the auroral acceleration region is studied. It is shown that auroral kilometric radiation can be generated by backscattered electrons trapped in the acceleration region via a cyclotron maser process. The parallel electric field in the acceleration region is required to be distributed over 1-2 earth radii. The observed AKR frequency spectrum can be used to estimate the altitude range of the auroral acceleration region. The altitudes of the lower and upper boundaries of the acceleration region determined from the AKR data are respectively approximately 2000 and 9000 km.

  15. Method of Calibrating a Force Balance

    NASA Technical Reports Server (NTRS)

    Parker, Peter A. (Inventor); Rhew, Ray D. (Inventor); Johnson, Thomas H. (Inventor); Landman, Drew (Inventor)

    2015-01-01

    A calibration system and method utilizes acceleration of a mass to generate a force on the mass. An expected value of the force is calculated based on the magnitude and acceleration of the mass. A fixture is utilized to mount the mass to a force balance, and the force balance is calibrated to provide a reading consistent with the expected force determined for a given acceleration. The acceleration can be varied to provide different expected forces, and the force balance can be calibrated for different applied forces. The acceleration may result from linear acceleration of the mass or rotational movement of the mass.

  16. Using tevatron magnets for HE-LHC or new ring in LHC tunnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piekarz, Henryk; /Fermilab

    Two injector accelerator options for HE-LHC of p{sup +} - p{sup +} collisions at 33 TeV cms energy are briefly outlined. One option is based on the Super-SPS (S-SPS) accelerator in the SPS tunnel, and the other one is based on the LER (Low-Energy-Ring) accelerator in the LHC tunnel. Expectations of performance of the main arc accelerator magnets considered for the construction of the S-SPS and of the LER accelerators are used to tentatively devise some selected properties of these accelerators as potential injectors to HE-LHC.

  17. Checkpointing for a hybrid computing node

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cher, Chen-Yong

    2016-03-08

    According to an aspect, a method for checkpointing in a hybrid computing node includes executing a task in a processing accelerator of the hybrid computing node. A checkpoint is created in a local memory of the processing accelerator. The checkpoint includes state data to restart execution of the task in the processing accelerator upon a restart operation. Execution of the task is resumed in the processing accelerator after creating the checkpoint. The state data of the checkpoint are transferred from the processing accelerator to a main processor of the hybrid computing node while the processing accelerator is executing the task.

  18. Rail accelerator research at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Cybyk, B. Z.

    1982-01-01

    A rail accelerator was chosen for study as an electromagnetic space propulsion device because of its simplicity and existing technology base. The results of a mission feasibility study using a large rail accelerator for direct launch of ton-size payloads from the Earth's surface to space, and the results of initial tests with a small, laboratory rail accelerator are presented. The laboratory rail accelerator has a bore of 3 by 3 mm and has accelerated 60 mg projectiles to velocities of 300 to 1000 m/s. Rail materials of Cu, W, and Mo were tested for efficiency and erosion rate.

  19. Effects of Current Guides Destruction at Ultra-fast Acceleration of Macrobodies

    NASA Astrophysics Data System (ADS)

    Kataev, V. N.; Boriskin, A. S.; Golosov, S. N.; Demidov, V. A.; Klimashov, M. V.; Korolev, P. V.; Makartsev, G. F.; Pikar, A. S.; Russkov, A. S.; Shapovalov, E. V.; Shibitov, Yu. M.

    2006-08-01

    The paper is devoted to discussion of current guides destruction effects in different accelerators: thermal-electric and electro-magnetic rail accelerator at macrobodies acceleration value of 108-109 m/s2. Experimental results with thermal-electric accelerators powering from megajoule capacitor battery and helical magneto-cumulative generator MCG-100 at currents up to 3.5 MA are analyzed. The process of rails destruction at railgun at pressure magnetic field excess over the limit of metal fluidity is presented. Methods of efficiency coefficient increase of capacitive storage energy transmission to kinetic energy of accelerating body are discussed.

  20. Dual linear accelerator system for use in sterilization of medical disposable supplies

    NASA Astrophysics Data System (ADS)

    Sadat, Theo

    1991-05-01

    Accelerators can be used for sterilization or decontamination (medical disposables, food, plastics, hospital waste, etc.). Most of these accelerators are located in an industrial environment and must have a high availability. A dual accelerator system (composed of two accelerators) offers optimal flexibility and reliability. The main advantage of this system is "all-in all-out" because it does not need a turnover of products. Such a dual system, composed of two 10 MeV 20 kW linear accelerators (instead of one 40 kW linac), has been chosen by a Swedish company (Mölnlycke).

  1. SHORT ACCELERATION TIMES FROM SUPERDIFFUSIVE SHOCK ACCELERATION IN THE HELIOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perri, S.; Zimbardo, G., E-mail: silvia.perri@fis.unical.it

    2015-12-10

    The analysis of time profiles of particles accelerated at interplanetary shocks allows particle transport properties to be inferred. The frequently observed power-law decay upstream, indeed, implies a superdiffusive particle transport when the level of magnetic field variance does not change as the time interval from the shock front increases. In this context, a superdiffusive shock acceleration (SSA) theory has been developed, allowing us to make predictions of the acceleration times. In this work we estimate for a number of interplanetary shocks, including the solar wind termination shock, the acceleration times for energetic protons in the framework of SSA and wemore » compare the results with the acceleration times predicted by standard diffusive shock acceleration. The acceleration times due to SSA are found to be much shorter than in the classical model, and also shorter than the interplanetary shock lifetimes. This decrease of the acceleration times is due to the scale-free nature of the particle displacements in the framework of superdiffusion. Indeed, very long displacements are possible, increasing the probability for particles far from the front of the shock to return, and short displacements have a high probability of occurrence, increasing the chances for particles close to the front to cross the shock many times.« less

  2. Muscle activation patterns in acceleration-based phases during reach-to-grasp movement.

    PubMed

    Tokuda, Keisuke; Lee, Bumsuk; Shiihara, Yasufumi; Takahashi, Kazuhiro; Wada, Naoki; Shirakura, Kenji; Watanabe, Hideomi

    2016-11-01

    [Purpose] An earlier study divided reaching activity into characteristic phases based on hand velocity profiles. By synchronizing muscle activities and the acceleration profile, a phasing approach for reaching movement, based on hand acceleration profiles, was attempted in order to elucidate the roles of individual muscle activities in the different phases of the acceleration profile in reaching movements. [Subjects and Methods] Ten healthy volunteer subjects participated in this study. The aim was to electromyographically evaluate muscles around the shoulder, the upper trapezius, the anterior deltoid, the biceps brachii, and the triceps brachii, most of which have been used to evaluate arm motion, as well as the acceleration of the upper limb during simple reaching movement in the reach-to-grasp task. [Results] Analysis showed the kinematic trajectories of the acceleration during a simple biphasic profile of the reaching movement could be divided into four phases: increasing acceleration (IA), decreasing acceleration (DA), increasing deceleration (ID), and decreasing deceleration (DD). Muscles around the shoulder showed different activity patterns, which were closely associated with these acceleration phases. [Conclusion] These results suggest the important role of the four phases, derived from the acceleration trajectory, in the elucidation of the muscular mechanisms which regulate and coordinate the muscles around the shoulder in reaching movements.

  3. Design of four-beam IH-RFQ linear accelerator

    NASA Astrophysics Data System (ADS)

    Ikeda, Shota; Murata, Aki; Hayashizaki, Noriyosu

    2017-09-01

    The multi-beam acceleration method is an acceleration technique for low-energy high-intensity heavy ion beams, which involves accelerating multiple beams to decrease space charge effects, and then integrating these beams by a beam funneling system. At the Tokyo Institute of Technology a two beam IH-RFQ linear accelerator was developed using a two beam laser ion source with direct plasma injection scheme. This system accelerated a carbon ion beam with a current of 108 mA (54 mA/channel × 2) from 5 up to 60 keV/u. In order to demonstrate that a four-beam IH-RFQ linear accelerator is suitable for high-intensity heavy ion beam acceleration, we have been developing a four-beam prototype. A four-beam IH-RFQ linear accelerator consists of sixteen RFQ electrodes (4 × 4 set) with stem electrodes installed alternately on the upper and lower ridge electrodes. As a part of this development, we have designed a four-beam IH-RFQ linear accelerator using three dimensional electromagnetic simulation software and beam tracking simulation software. From these simulation results, we have designed the stem electrodes, the center plate and the side shells by evaluating the RF properties such as the resonance frequency, the power loss and the electric strength distribution between the RFQ electrodes.

  4. Pressure fluctuation caused by moderate acceleration

    NASA Astrophysics Data System (ADS)

    Tagawa, Yoshiyuki; Kurihara, Chihiro; Kiyama, Akihito

    2017-11-01

    Pressure fluctuation caused by acceleration of a liquid column is observed in various important technologies, e.g. water-hammer in a pipeline. The magnitude of fluctuation can be estimated by two different approaches: When the duration time of acceleration is much shorter than the propagation time for a pressure wave to travel the length of the liquid column, e.g. sudden valve closure for a long pipe, Joukowsky equation is applied. In contrast, if the acceleration duration is much longer, the liquid is modeled as a rigid column, ignoring compressibility of the fluid. However, many of practical cases exist between these two extremes. In this study we propose a model describing pressure fluctuation when the duration of acceleration is in the same order of the propagation time for a pressure wave, i.e. under moderate acceleration. The novel model considers both temporal and spatial evolutions of pressure propagation as well as gradual pressure rise during the acceleration. We conduct experiments in which we impose acceleration to a liquid with varying the length of the liquid column, acceleration duration, and properties of liquids. The ratio between the acceleration duration and the propagation time is in the range of 0.02 - 2. The model agrees well with measurement results. JSPS KAKENHI Grant Numbers 26709007 and 17H01246.

  5. Emitting electron spectra and acceleration processes in the jet of PKS 0447-439

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Yan, Dahai; Dai, Benzhong; Zhang, Li

    2014-02-01

    We investigate the electron energy distributions (EEDs) and the corresponding acceleration processes in the jet of PKS 0447-439, and estimate its redshift through modeling its observed spectral energy distribution (SED) in the frame of a one-zone synchrotron-self Compton (SSC) model. Three EEDs formed in different acceleration scenarios are assumed: the power-law with exponential cut-off (PLC) EED (shock-acceleration scenario or the case of the EED approaching equilibrium in the stochastic-acceleration scenario), the log-parabolic (LP) EED (stochastic-acceleration scenario and the acceleration dominating), and the broken power-law (BPL) EED (no acceleration scenario). The corresponding fluxes of both synchrotron and SSC are then calculated. The model is applied to PKS 0447-439, and modeled SEDs are compared to the observed SED of this object by using the Markov Chain Monte Carlo method. The results show that the PLC model fails to fit the observed SED well, while the LP and BPL models give comparably good fits for the observed SED. The results indicate that it is possible that a stochastic acceleration process acts in the emitting region of PKS 0447-439 and the EED is far from equilibrium (acceleration dominating) or no acceleration process works (in the emitting region). The redshift of PKS 0447-439 is also estimated in our fitting: z = 0.16 ± 0.05 for the LP case and z = 0.17 ± 0.04 for BPL case.

  6. On the Radio-emitting Particles of the Crab Nebula: Stochastic Acceleration Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Shuta J.; Asano, Katsuaki, E-mail: sjtanaka@center.konan-u.ac.jp

    The broadband emission of pulsar wind nebulae (PWNe) is well described by non-thermal emissions from accelerated electrons and positrons. However, the standard shock acceleration model of PWNe does not account for the hard spectrum in radio wavelengths. The origin of the radio-emitting particles is also important to determine the pair production efficiency in the pulsar magnetosphere. Here, we propose a possible resolution for the particle energy distribution in PWNe; the radio-emitting particles are not accelerated at the pulsar wind termination shock but are stochastically accelerated by turbulence inside PWNe. We upgrade our past one-zone spectral evolution model to include themore » energy diffusion, i.e., the stochastic acceleration, and apply the model to the Crab Nebula. A fairly simple form of the energy diffusion coefficient is assumed for this demonstrative study. For a particle injection to the stochastic acceleration process, we consider the continuous injection from the supernova ejecta or the impulsive injection associated with supernova explosion. The observed broadband spectrum and the decay of the radio flux are reproduced by tuning the amount of the particle injected to the stochastic acceleration process. The acceleration timescale and the duration of the acceleration are required to be a few decades and a few hundred years, respectively. Our results imply that some unveiled mechanisms, such as back reaction to the turbulence, are required to make the energies of stochastically and shock-accelerated particles comparable.« less

  7. Observations of the Coronal Mass Ejection with a Complex Acceleration Profile

    NASA Astrophysics Data System (ADS)

    Reva, A. A.; Kirichenko, A. S.; Ulyanov, A. S.; Kuzin, S. V.

    2017-12-01

    We study the coronal mass ejection (CME) with a complex acceleration profile. The event occurred on 2009 April 23. It had an impulsive acceleration phase, an impulsive deceleration phase, and a second impulsive acceleration phase. During its evolution, the CME showed signatures of different acceleration mechanisms: kink instability, prominence drainage, flare reconnection, and a CME–CME collision. The special feature of the observations is the usage of the TESIS EUV telescope. The instrument could image the solar corona in the Fe 171 Å line up to a distance of 2 {R}ȯ from the center of the Sun. This allows us to trace the CME up to the LASCO/C2 field of view without losing the CME from sight. The onset of the CME was caused by kink instability. The mass drainage occurred after the kink instability. The mass drainage played only an auxiliary role: it decreased the CME mass, which helped to accelerate the CME. The first impulsive acceleration phase was caused by the flare reconnection. We observed the two-ribbon flare and an increase of the soft X-ray flux during the first impulsive acceleration phase. The impulsive deceleration and the second impulsive acceleration phases were caused by the CME–CME collision. The studied event shows that CMEs are complex phenomena that cannot be explained with only one acceleration mechanism. We should seek a combination of different mechanisms that accelerate CMEs at different stages of their evolution.

  8. Principal Investigator Microgravity Services Role in ISS Acceleration Data Distribution

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin

    1999-01-01

    Measurement of the microgravity acceleration environment on the International Space Station will be accomplished by two accelerometer systems. The Microgravity Acceleration Measurement System will record the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime comprised of vehicle, crew, and equipment disturbances will be accomplished by the Space Acceleration Measurement System-II. Due to the dynamic nature of the microgravity environment and its potential to influence sensitive experiments, Principal Investigators require distribution of microgravity acceleration in a timely and straightforward fashion. In addition to this timely distribution of the data, long term access to International Space Station microgravity environment acceleration data is required. The NASA Glenn Research Center's Principal Investigator Microgravity Services project will provide the means for real-time and post experiment distribution of microgravity acceleration data to microgravity science Principal Investigators. Real-time distribution of microgravity environment acceleration data will be accomplished via the World Wide Web. Data packets from the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System-II will be routed from onboard the International Space Station to the NASA Glenn Research Center's Telescience Support Center. Principal Investigator Microgravity Services' ground support equipment located at the Telescience Support Center will be capable of generating a standard suite of acceleration data displays, including various time domain and frequency domain options. These data displays will be updated in real-time and will periodically update images available via the Principal Investigator Microgravity Services web page.

  9. Rotational Acceleration during Head Impact Resulting from Different Judo Throwing Techniques

    PubMed Central

    MURAYAMA, Haruo; HITOSUGI, Masahito; MOTOZAWA, Yasuki; OGINO, Masahiro; KOYAMA, Katsuhiro

    2014-01-01

    Most severe head injuries in judo are reported as acute subdural hematoma. It is thus necessary to examine the rotational acceleration of the head to clarify the mechanism of head injuries. We determined the rotational acceleration of the head when the subject is thrown by judo techniques. One Japanese male judo expert threw an anthropomorphic test device using two throwing techniques, Osoto-gari and Ouchigari. Rotational and translational head accelerations were measured with and without an under-mat. For Osoto-gari, peak resultant rotational acceleration ranged from 4,284.2 rad/s2 to 5,525.9 rad/s2 and peak resultant translational acceleration ranged from 64.3 g to 87.2 g; for Ouchi-gari, the accelerations respectively ranged from 1,708.0 rad/s2 to 2,104.1 rad/s2 and from 120.2 g to 149.4 g. The resultant rotational acceleration did not decrease with installation of an under-mat for both Ouchi-gari and Osoto-gari. We found that head contact with the tatami could result in the peak values of translational and rotational accelerations, respectively. In general, because kinematics of the body strongly affects translational and rotational accelerations of the head, both accelerations should be measured to analyze the underlying mechanism of head injury. As a primary preventative measure, throwing techniques should be restricted to participants demonstrating ability in ukemi techniques to avoid head contact with the tatami. PMID:24477065

  10. Rotational acceleration during head impact resulting from different judo throwing techniques.

    PubMed

    Murayama, Haruo; Hitosugi, Masahito; Motozawa, Yasuki; Ogino, Masahiro; Koyama, Katsuhiro

    2014-01-01

    Most severe head injuries in judo are reported as acute subdural hematoma. It is thus necessary to examine the rotational acceleration of the head to clarify the mechanism of head injuries. We determined the rotational acceleration of the head when the subject is thrown by judo techniques. One Japanese male judo expert threw an anthropomorphic test device using two throwing techniques, Osoto-gari and Ouchi-gari. Rotational and translational head accelerations were measured with and without an under-mat. For Osoto-gari, peak resultant rotational acceleration ranged from 4,284.2 rad/s(2) to 5,525.9 rad/s(2) and peak resultant translational acceleration ranged from 64.3 g to 87.2 g; for Ouchi-gari, the accelerations respectively ranged from 1,708.0 rad/s(2) to 2,104.1 rad/s(2) and from 120.2 g to 149.4 g. The resultant rotational acceleration did not decrease with installation of an under-mat for both Ouchi-gari and Osoto-gari. We found that head contact with the tatami could result in the peak values of translational and rotational accelerations, respectively. In general, because kinematics of the body strongly affects translational and rotational accelerations of the head, both accelerations should be measured to analyze the underlying mechanism of head injury. As a primary preventative measure, throwing techniques should be restricted to participants demonstrating ability in ukemi techniques to avoid head contact with the tatami.

  11. IARC - Illinois Accelerator Research Center | Pilot Program

    Science.gov Websites

    Toggle navigation Pilot Program Agenda Directions Registration Illinois Accelerator Research Center National Laboratory present Accelerator Stewardship Test Facility Pilot Program Use accelerator technology , energy and environment. With this pilot program, the DOE Office of Science National Laboratories are

  12. Accelerated test design

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1980-01-01

    The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.

  13. On the longitudinal distribution of electric field in the acceleration zones of plasma accelerators and thrusters with closed electron drift

    NASA Astrophysics Data System (ADS)

    Kim, V. P.

    2017-04-01

    The long-term experience in controlling the electric field distribution in the discharge gaps of plasma accelerators and thrusters with closed electron drift and the key ideas determining the concepts of these devices and tendencies of their development are analyzed. It is shown that an electrostatic mechanism of ion acceleration in plasma by an uncompensated space charge of the cloud of magnetized electrons "kept" to the magnetic field takes place in the acceleration zones and that the electric field distribution can be controlled by varying the magnetic field in the discharge gap. The role played by the space charge makes the mechanism of ion acceleration in this type of thrusters is fundamentally different from the acceleration mechanism operating in purely electrostatic thrusters.

  14. The acceleration of particles at propagating interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Prinsloo, P. L.; Strauss, R. D. T.

    2017-12-01

    Enhancements of charged energetic particles are often observed at Earth following the eruption of coronal mass ejections (CMEs) on the Sun. These enhancements are thought to arise from the acceleration of those particles at interplanetary shocks forming ahead of CMEs, propagating into the heliosphere. In this study, we model the acceleration of these energetic particles by solving a set of stochastic differential equations formulated to describe their transport and including the effects of diffusive shock acceleration. The study focuses on how acceleration at halo-CME-driven shocks alter the energy spectra of non-thermal particles, while illustrating how this acceleration process depends on various shock and transport parameters. We finally attempt to establish the relative contributions of different seed populations of energetic particles in the inner heliosphere to observed intensities during selected acceleration events.

  15. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE PAGES

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  16. Accelerating gradient improvement from hole-boring to light-sail stage using shape-tailored laser front

    NASA Astrophysics Data System (ADS)

    Wang, W. P.; Shen, B. F.; Xu, Z. Z.

    2017-01-01

    The accelerating gradient of a proton beam is a crucial factor for the stable radiation pressure acceleration, because quickly accelerating protons into the relativistic region may reduce the multidimensional instability grow to a certain extent. In this letter, a shape-tailored laser is designed to accelerate the protons in a controllable high accelerating gradient in theory. Finally, a proton beam in the gigaelectronvolt range with an energy spread of ˜2.4% is obtained in one-dimensional particle-in-cell simulations. With the future development of the high-intense laser, the ability to accelerate a high energy proton beam using a shape-tailored laser will be important for realistic proton applications, such as fast ignition for inertial confinement fusion, medical therapy, and proton imaging.

  17. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  18. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter "linac"); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laserbased acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  19. Development of high intensity linear accelerator for heavy ion inertial fusion driver

    NASA Astrophysics Data System (ADS)

    Lu, Liang; Hattori, Toshiyuki; Hayashizaki, Noriyosu; Ishibashi, Takuya; Okamura, Masahiro; Kashiwagi, Hirotsugu; Takeuchi, Takeshi; Zhao, Hongwei; He, Yuan

    2013-11-01

    In order to verify the direct plasma injection scheme (DPIS), an acceleration test was carried out in 2001 using a radio frequency quadrupole (RFQ) heavy ion linear accelerator (linac) and a CO2-laser ion source (LIS) (Okamura et al., 2002) [1]. The accelerated carbon beam was observed successfully and the obtained current was 9.22 mA for C4+. To confirm the capability of the DPIS, we succeeded in accelerating 60 mA carbon ions with the DPIS in 2004 (Okamura et al., 2004; Kashiwagi and Hattori, 2004) [2,3]. We have studied a multi-beam type RFQ with an interdigital-H (IH) cavity that has a power-efficient structure in the low energy region. We designed and manufactured a two-beam type RFQ linac as a prototype for the multi-beam type linac; the beam acceleration test of carbon beams showed that it successfully accelerated from 5 keV/u up to 60 keV/u with an output current of 108 mA (2×54 mA/channel) (Ishibashi et al., 2011) [4]. We believe that the acceleration techniques of DPIS and the multi-beam type IH-RFQ linac are technical breakthroughs for heavy-ion inertial confinement fusion (HIF). The conceptual design of the RF linac with these techniques for HIF is studied. New accelerator-systems using these techniques for the HIF basic experiment are being designed to accelerate 400 mA carbon ions using four-beam type IH-RFQ linacs with DPIS. A model with a four-beam acceleration cavity was designed and manufactured to establish the proof of principle (PoP) of the accelerator.

  20. Overview of Accelerator Applications in Energy

    NASA Astrophysics Data System (ADS)

    Garnett, Robert W.; Sheffield, Richard L.

    An overview of the application of accelerators and accelerator technology in energy is presented. Applications span a broad range of cost, size, and complexity and include large-scale systems requiring high-power or high-energy accelerators to drive subcritical reactors for energy production or waste transmutation, as well as small-scale industrial systems used to improve oil and gas exploration and production. The enabling accelerator technologies will also be reviewed and future directions discussed.

  1. Physiological Effects of Acceleration Observed During a Centrifuge Study of Pilot Performance

    NASA Technical Reports Server (NTRS)

    Smedal, Harald A.; Creer, Brent Y.; Wingrove, Rodney C.

    1960-01-01

    An investigation was conducted by the National Aeronautics and Space Administration, Ames Research Center, and the Naval Air Development Center, Aviation Medical Acceleration Laboratory, to study the effects of acceleration on pilot performance and to obtain some meaningful data for use in establishing tolerance to acceleration levels. The flight simulator used in the study was the Johnsville centrifuge operated as a closed loop system. The pilot was required to perform a control task in various sustained acceleration fields typical of those that Might be encountered by a pilot flying an entry vehicle in which he is seated in a forward-facing position. A special restraint system was developed and designed to increase the pilot's tolerance to these accelerations. The results of this study demonstrated that a well-trained subject, such as a test pilot, can adequately carry out a control task during moderately high accelerations for prolonged periods of time. The maximum levels of acceleration tolerated were approximately 6 times that of gravity for approximately 6 minutes, and varied slightly with the acceleration direction. The tolerance runs were in each case terminated by the subject. In all but two instances, the cause was extreme fatigue. On two occasions the subject terminated the run when he "grayed out." Although there were subjective and objective findings involving the visual and cardiovascular systems, the respiratory system yielded the more critical limiting factors. It would appear that these limiting factors were less severe during the "eyeballs-out" accelerations when compared with the "eyeballs-in" accelerations. These findings are explained on the basis of the influence that the inertial forces of acceleration have on the mechanics of respiration. A condensed version of this report was presented at the Annual Meeting of the Aerospace Medical Association, Miami Beach, May 5-11, 1960, in a paper entitled "Ability of Pilots to Perform a Control Task in Various Sustained Acceleration Fields."

  2. Acceleration performance of individual European sea bass Dicentrarchus labrax measured with a sprint performance chamber: comparison with high-speed cinematography and correlates with ecological performance.

    PubMed

    Vandamm, Joshua P; Marras, Stefano; Claireaux, Guy; Handelsman, Corey A; Nelson, Jay A

    2012-01-01

    Locomotor performance can influence the ecological and evolutionary success of a species. For fish, favorable outcomes of predator-prey encounters are often presumably due to robust acceleration ability. Although escape-response or "fast-start" studies utilizing high-speed cinematography are prevalent, little is known about the contribution of relative acceleration performance to ecological or evolutionary success in a species. This dearth of knowledge may be due to the time-consuming nature of analyzing film, which imposes a practical limit on sample sizes. Herein, we present a high-throughput potential alternative for measuring fish acceleration performance using a sprint performance chamber (SPC). The acceleration performance of a large number of juvenile European sea bass (Dicentrarchus labrax) from two populations was analyzed. Animals from both hatchery and natural ontogenies were assessed, and animals of known acceleration ability had their ecological performance measured in a mesocosm environment. Individuals from one population also had their acceleration performance assessed by both high-speed cinematography and an SPC. Acceleration performance measured in an SPC was lower than that measured by classical high-speed video techniques. However, short-term repeatability and interindividual variation of acceleration performance were similar between the two techniques, and the SPC recorded higher sprint swimming velocities. Wild fish were quicker to accelerate in an SPC and had significantly greater accelerations than all groups of hatchery-raised fish. Acceleration performance had no significant effect on ecological performance (as assessed through animal growth and survival in the mesocosms). However, it is worth noting that wild animals did survive predation in the mesocosm better than farmed ones. Moreover, the hatchery-originated fish that survived the mesocosm experiment, when no predators were present, displayed significantly increased acceleration performance during their 6 mo in the mesocosm; this performance was found to be inversely proportional to growth rate.

  3. 75 FR 62410 - Notice of Proposed Information Collection: Comment Request; The Multifamily Accelerated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... Information Collection: Comment Request; The Multifamily Accelerated Processing Guide AGENCY: Office of the... also lists the following information: Title of Proposal: Multifamily Accelerated Processing Guide (MAP...-0541. Description of the need for the information and proposed use: Multifamily Accelerated Processing...

  4. Fermilab | Tritium at Fermilab | Frequently asked questions

    Science.gov Websites

    computing Quantum initiatives Research and development Key discoveries Benefits of particle physics Particle Accelerators Leading accelerator technology Accelerator complex Illinois Accelerator Research Center Fermilab questions about tritium Tritium in surface water Indian Creek Kress Creek Ferry Creek Tritium in sanitary

  5. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.

    PubMed

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  6. Experimental Results from a Resonant Dielectric Laser Accelerator

    NASA Astrophysics Data System (ADS)

    Yoder, Rodney; McNeur, Joshua; Sozer, Esin; Travish, Gil; Hazra, Kiran Shankar; Matthews, Brian; England, Joel; Peralta, Edgar; Wu, Ziran

    2015-04-01

    Laser-powered accelerators have the potential to operate with very large accelerating gradients (~ GV/m) and represent a path toward extremely compact colliders and accelerator technology. Optical-scale laser-powered devices based on field-shaping structures (known as dielectric laser accelerators, or DLAs) have been described and demonstrated recently. Here we report on the first experimental results from the Micro-Accelerator Platform (MAP), a DLA based on a slab-symmetric resonant optical-scale structure. As a resonant (rather than near-field) device, the MAP is distinct from other DLAs. Its cavity resonance enhances its accelerating field relative to the incoming laser fields, which are coupled efficiently through a diffractive optic on the upper face of the device. The MAP demonstrated modest accelerating gradients in recent experiments, in which it was powered by a Ti:Sapphire laser well below its breakdown limit. More detailed results and some implications for future developments will be discussed. Supported in part by the U.S. Defense Threat Reduction Agency (UCLA); U.S. Dept of Energy (SLAC); and DARPA (SLAC).

  7. Comparison of marginal accuracy of castings fabricated by conventional casting technique and accelerated casting technique: an in vitro study.

    PubMed

    Reddy, S Srikanth; Revathi, Kakkirala; Reddy, S Kranthikumar

    2013-01-01

    Conventional casting technique is time consuming when compared to accelerated casting technique. In this study, marginal accuracy of castings fabricated using accelerated and conventional casting technique was compared. 20 wax patterns were fabricated and the marginal discrepancy between the die and patterns were measured using Optical stereomicroscope. Ten wax patterns were used for Conventional casting and the rest for Accelerated casting. A Nickel-Chromium alloy was used for the casting. The castings were measured for marginal discrepancies and compared. Castings fabricated using Conventional casting technique showed less vertical marginal discrepancy than the castings fabricated by Accelerated casting technique. The values were statistically highly significant. Conventional casting technique produced better marginal accuracy when compared to Accelerated casting. The vertical marginal discrepancy produced by the Accelerated casting technique was well within the maximum clinical tolerance limits. Accelerated casting technique can be used to save lab time to fabricate clinical crowns with acceptable vertical marginal discrepancy.

  8. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    DOE PAGES

    Li, W.; Thorne, R. M.; Bortnik, J.; ...

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outermore » radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.« less

  9. High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Li, Y.; Xia, G.; Lotov, K. V.; Sosedkin, A. P.; Hanahoe, K.; Mete-Apsimon, O.

    2017-10-01

    Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate the efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with a preserved normalized emittance in a single channel of 700 m. This high-quality and high-charge beam may pave the way for the development of future plasma-based energy frontier colliders.

  10. Diffusive shock acceleration - Acceleration rate, magnetic-field direction and the diffusion limit

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1992-01-01

    This paper reviews the concept of diffusive shock acceleration, showing that the acceleration of charged particles at a collisionless shock is a straightforward consequence of the standard cosmic-ray transport equation, provided that one treats the discontinuity at the shock correctly. This is true for arbitrary direction of the upstream magnetic field. Within this framework, it is shown that acceleration at perpendicular or quasi-perpendicular shocks is generally much faster than for parallel shocks. Paradoxically, it follows also that, for a simple scattering law, the acceleration is faster for less scattering or larger mean free path. Obviously, the mean free path can not become too large or the diffusion limit becomes inapplicable. Gradient and curvature drifts caused by the magnetic-field change at the shock play a major role in the acceleration process in most cases. Recent observations of the charge state of the anomalous component are shown to require the faster acceleration at the quasi-perpendicular solar-wind termination shock.

  11. Development of an ultrasmall C-band linear accelerator guide for a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head.

    PubMed

    Kamino, Yuichiro; Miura, Sadao; Kokubo, Masaki; Yamashita, Ichiro; Hirai, Etsuro; Hiraoka, Masahiro; Ishikawa, Junzo

    2007-05-01

    We are developing a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head. It is capable of pursuing irradiation and delivering irradiation precisely with the help of an agile moving x-ray head on the gimbals. Requirements for the accelerator guide were established, system design was developed, and detailed design was conducted. An accelerator guide was manufactured and basic beam performance and leakage radiation from the accelerator guide were evaluated at a low pulse repetition rate. The accelerator guide including the electron gun is 38 cm long and weighs about 10 kg. The length of the accelerating structure is 24.4 cm. The accelerating structure is a standing wave type and is composed of the axial-coupled injector section and the side-coupled acceleration cavity section. The injector section is composed of one prebuncher cavity, one buncher cavity, one side-coupled half cavity, and two axial coupling cavities. The acceleration cavity section is composed of eight side-coupled nose reentrant cavities and eight coupling cavities. The electron gun is a diode-type gun with a cerium hexaboride (CeB6) direct heating cathode. The accelerator guide can be operated without any magnetic focusing device. Output beam current was 75 mA with a transmission efficiency of 58%, and the average energy was 5.24 MeV. Beam energy was distributed from 4.95 to 5.6 MeV. The beam profile, measured 88 mm from the beam output hole on the axis of the accelerator guide, was 0.7 mm X 0.9 mm full width at half maximum (FWHM) width. The beam loading line was 5.925 (MeV)-Ib (mA) X 0.00808 (MeV/mA), where Ib is output beam current. The maximum radiation leakage of the accelerator guide at 100 cm from the axis of the accelerator guide was calculated as 0.33 cGy/min at the rated x-ray output of 500 cGy/min from the measured value. This leakage requires no radiation shielding for the accelerator guide itself per IEC 60601-2-1.

  12. Instrumented mouthguard acceleration analyses for head impacts in amateur rugby union players over a season of matches.

    PubMed

    King, Doug; Hume, Patria A; Brughelli, Matt; Gissane, Conor

    2015-03-01

    Direct impacts with the head (linear acceleration or pressure) and inertial loading of the head (rotational acceleration or strain) have been postulated as the 2 major mechanisms of head-related injuries such as concussion. Although data are accumulating for soccer and American football, there are no published data for nonhelmeted collision sports such as rugby union. To quantify head impacts via instrumented mouthguard acceleration analyses for rugby union players over a season of matches. Descriptive epidemiology study. Data on impact magnitude and frequency were collected with molded instrumented mouthguards worn by 38 premier amateur senior rugby players participating in the 2013 domestic season of matches. A total of 20,687 impacts >10g (range, 10.0-164.9g) were recorded over the duration of the study. The mean ± SD number of impacts per player over the duration of the season of matches was 564 ± 618, resulting in a mean ± SD of 95 ± 133 impacts to the head per player, per match over the duration of the season of matches. The impact magnitudes for linear accelerations were skewed to the lower values (Sp = 3.7 ± 0.02; P < .001), with a mean linear acceleration of 22.2 ± 16.2g. Rotational accelerations were also skewed to the lower values (Sp = 2.0 ± 0.02; P < .001), with a mean rotational acceleration of 3902.9 ± 3948.8 rad/s(2). The acceleration magnitudes and number of head impacts in amateur rugby union players over a season of matches, measured via instrumented mouthguard accelerations, were higher than for most sports previously reported. Mean linear acceleration measured over a season of matches was similar to the mean linear accelerations previously reported for youth, high school, and collegiate American football players but lower than that for female youth soccer players. Mean rotational acceleration measured over a season of matches was similar to mean rotational accelerations for youth, high school, and collegiate American football players but less than those for female youth soccer players, concussed American collegiate players, collegiate American football players, and professional American football players. © 2014 The Author(s).

  13. Attrition and success rates of accelerated students in nursing courses: a systematic review.

    PubMed

    Doggrell, Sheila Anne; Schaffer, Sally

    2016-01-01

    There is a comprehensive literature on the academic outcomes (attrition and success) of students in traditional/baccalaureate nursing programs, but much less is known about the academic outcomes of students in accelerated nursing programs. The aim of this systematic review is to report on the attrition and success rates (either internal examination or NCLEX-RN) of accelerated students, compared to traditional students. For the systematic review, the databases (Pubmed, Cinahl and PsychINFO) and Google Scholar were searched using the search terms 'accelerated' or 'accreditation for prior learning', 'fast-track' or 'top up' and 'nursing' with 'attrition' or 'retention' or 'withdrawal' or 'success' from 1994 to January 2016. All relevant articles were included, regardless of quality. The findings of 19 studies of attrition rates and/or success rates for accelerated students are reported. For international accelerated students, there were only three studies, which are heterogeneous, and have major limitations. One of three studies has lower attrition rates, and one has shown higher success rates, than traditional students. In contrast, another study has shown high attrition and low success for international accelerated students. For graduate accelerated students, most of the studies are high quality, and showed that they have rates similar or better than traditional students. Thus, five of six studies have shown similar or lower attrition rates. Four of these studies with graduate accelerated students and an additional seven studies of success rates only, have shown similar or better success rates, than traditional students. There are only three studies of non-university graduate accelerated students, and these had weaknesses, but were consistent in reporting higher attrition rates than traditional students. The paucity and weakness of information available makes it unclear as to the attrition and/or success of international accelerated students in nursing programs. The good information available suggests that accelerated programs may be working reasonably well for the graduate students. However, the limited information available for non-university graduate students is weak, but consistent, in suggesting they may struggle in accelerated courses. Further studies are needed to determine the attrition and success rates of accelerated students, particularly for international and non-university graduate students.

  14. Upper limit for the acceleration gradient in the collinear wake field accelerator as a function of the transformer ratio

    DOE PAGES

    Baturin, Stanislav; Zholents, A.

    2017-06-19

    Here, the interrelation between the accelerating gradient and the transformer ratio in the collinear wake field accelerator has been analyzed. It has been shown that the high transformer ratio and the high efficiency of the energy transfer from the drive bunch to the witness bunch can only be achieved at the expense of the accelerating gradient. Rigorous proof is given that in best cases of meticulously shaped charge density distributions in the drive bunch, the maximum accelerating gradient falls proportionally to the gain in the transformer ratio. Conclusions are verified using several representative examples.

  15. Upper limit for the acceleration gradient in the collinear wake field accelerator as a function of the transformer ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baturin, Stanislav; Zholents, A.

    Here, the interrelation between the accelerating gradient and the transformer ratio in the collinear wake field accelerator has been analyzed. It has been shown that the high transformer ratio and the high efficiency of the energy transfer from the drive bunch to the witness bunch can only be achieved at the expense of the accelerating gradient. Rigorous proof is given that in best cases of meticulously shaped charge density distributions in the drive bunch, the maximum accelerating gradient falls proportionally to the gain in the transformer ratio. Conclusions are verified using several representative examples.

  16. Acceleration of runaway electrons and Joule heating in solar flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1985-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  17. Acceleration of runaway electrons and Joule heating in solar flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1984-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  18. Acceleration sensitivity of micromachined pressure sensors

    NASA Astrophysics Data System (ADS)

    August, Richard; Maudie, Theresa; Miller, Todd F.; Thompson, Erik

    1999-08-01

    Pressure sensors serve a variety of automotive applications, some which may experience high levels of acceleration such as tire pressure monitoring. To design pressure sensors for high acceleration environments it is important to understand their sensitivity to acceleration especially if thick encapsulation layers are used to isolate the device from the hostile environment in which they reside. This paper describes a modeling approach to determine their sensitivity to acceleration that is very general and is applicable to different device designs and configurations. It also describes the results of device testing of a capacitive surface micromachined pressure sensor at constant acceleration levels from 500 to 2000 g's.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Kilean; Qiang, Ji

    A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fullymore » 3D space-charge effects through the entire accelerator system.« less

  20. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  1. KLYNAC: Compact linear accelerator with integrated power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyzhenkov, Alexander

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scienti c community is working towards improving the quality of the accelerated beam and its parameters while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype, resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RFmore » source, an accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simpli ed theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using particle-in-cell simulation studies for mono- resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.« less

  2. Initiation of combustion in the thermally choked ram accelerator

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Burnham, E. A.; Knowlen, C.; Hertzberg, A.; Bogdanoff, D. W.

    1992-01-01

    The methodology for initiating stable combustion in a ram accelerator operating in the thermally choked mode is presented in this paper. The ram accelerator is a high velocity ramjet-in-tube projectile launcher whose principle of operation is similar to that of an airbreathing ramjet. The subcaliber projectile travels supersonically through a stationary tube filled with a premixed combustible gas mixture. In the thermally choked propulsion mode subsonic combustion takes place behind the base of the projectile and leads to thermal choking, which stabilizes a normal shock system on the projectile, thus producing forward thrust. Projectiles with masses in the 45-90 g range have been accelerated to velocities up to 2650 m/sec in a 38 mm bore, 16 m long accelerator tube. Operation of the ram accelerator is started by injecting the projectile into the accelerator tube at velocities in the 700 - 1300 m/sec range by means of a conventional gas gun. A specially designed obturator, which seals the bore of the gun during this initial acceleration, enters the ram accelerator together with the projectile. The interaction of the obturator with the propellant gas ignites the gas mixture and establishes stable combustion behind the projectile.

  3. Development of a Dielectric-Loaded Accelerator Test Facility Based on an X-Band Magnicon Amplifier

    NASA Astrophysics Data System (ADS)

    Gold, S. H.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.; Tantawi, S. G.; Nantista, C. D.; Hu, Y.; Du, X.; Tang, C.; Lin, Y.; Bruce, R. W.; Bruce, R. L.; Fliflet, A. W.; Lewis, D.

    2006-01-01

    The Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), are developing a dielectric-loaded accelerator (DLA) test facility powered by the 11.424-GHz magnicon amplifier that was developed jointly by NRL and Omega-P, Inc. Thus far, DLA structures developed by ANL have been tested at the NRL Magnicon Facility without injected electrons, including tests of alumina and magnesium calcium titanate structures at gradients up to ˜8 MV/m. The next step is to inject electrons in order to build a compact DLA test accelerator. The Accelerator Laboratory of Tsinghua University in Beijing, China has developed a 5-MeV electron injector for the accelerator, and SLAC is developing a means to combine the two magnicon output arms, and to drive the injector and an accelerator section with separate control of the power ratio and relative phase. Also, RWBruce Associates, working with NRL, is developing a means to join ceramic tubes to produce long accelerating sections using a microwave brazing process. The installation and commissioning of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year.

  4. Linear induction accelerators made from pulse-line cavities with external pulse injection.

    PubMed

    Smith, I

    1979-06-01

    Two types of linear induction accelerator have been reported previously. In one, unidirectional voltage pulses are generated outside the accelerator and injected into the accelerator cavity modules, which contain ferromagnetic material to reduce energy losses in the form of currents induced, in parallel with the beam, in the cavity structure. In the other type, the accelerator cavity modules are themselves pulse-forming lines with energy storage and switches; parallel current losses are made zero by the use of circuits that generate bidirectional acceleration waveforms with a zero voltage-time integral. In a third type of design described here, the cavities are externally driven, and 100% efficient coupling of energy to the beam is obtained by designing the external pulse generators to produce bidirectional voltage waveforms with zero voltage-time integral. A design for such a pulse generator is described that is itself one hundred percent efficient and which is well suited to existing pulse power techniques. Two accelerator cavity designs are described that can couple the pulse from such a generator to the beam; one of these designs provides voltage doubling. Comparison is made between the accelerating gradients that can be obtained with this and the preceding types of induction accelerator.

  5. Effects of TEA·HCl hardening accelerator on the workability of cement-based materials

    NASA Astrophysics Data System (ADS)

    Pan, Wenhao; Ding, Zhaoyang; Chen, Yanwen

    2017-03-01

    The aim of the test is to research the influence rules of TEA·HCl on the workability of cement paste and concrete. Based on the features of the new hardening accelerator, an experimental analysis system were established through different dosages of hardening accelerator, and the feasibility of such accelerator to satisfy the need of practical engineering was verified. The results show that adding of the hardening accelerator can accelerate the cement hydration, and what’s more, when the dosage was 0.04%, the setting time was the shortest while the initial setting time and final setting time were 130 min and 180 min, respectively. The initial fluidity of cement paste of adding accelerator was roughly equivalent compared with that of blank. After 30 min, fluidity loss would decrease with the dosage increasing, but fluidity may increase. The application of the hardening accelerator can make the early workability of concrete enhance, especially the slump loss of 30 min can improve more significantly. The bleeding rate of concrete significantly decreases after adding TEA·HCl. The conclusion is that the new hardening accelerator can meet the need of the workability of cement-based materials in the optimum dosage range.

  6. Semiconductor acceleration sensor

    NASA Astrophysics Data System (ADS)

    Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki

    1996-09-01

    This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.

  7. Sloshing dynamics modulated fluid angular momentum and moment fluctuations driven by orbital gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    The dynamical behavior of spacecraft propellant affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank has been investigated. Three different cases of orbital accelerations: (1) gravity gradient-dominated, (2) equally weighted between gravity gradient and jitter, and (3) gravity jitter-dominated accelerations are studied. The results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated accelerations provide a torsional moment with tidal motion of bubble oscillations in the rotating dewar. The results are clearly seen from the twisting shape of the bubble oscillations driven by gravity gradient-dominated acceleration. The results of slosh wave excitation along the liquid-vapor interface induced by gravity jitter-dominated acceleration indicate the results of bubble motion in a manner of down-and-up and leftward-and-rightward movement of oscillation when the bubble is rotating with respect to rotating dewar axis. Fluctuations of angular momentum, fluid moment and bubble mass center caused by slosh wave excitations driven by gravity gradient acceleration or gravity jitter acceleration are also investigated.

  8. Seismic hazard of American Samoa and neighboring South Pacific Islands--methods, data, parameters, and results

    USGS Publications Warehouse

    Petersen, Mark D.; Harmsen, Stephen C.; Rukstales, Kenneth S.; Mueller, Charles S.; McNamara, Daniel E.; Luco, Nicolas; Walling, Melanie

    2012-01-01

    American Samoa and the neighboring islands of the South Pacific lie near active tectonic-plate boundaries that host many large earthquakes which can result in strong earthquake shaking and tsunamis. To mitigate earthquake risks from future ground shaking, the Federal Emergency Management Agency requested that the U.S. Geological Survey prepare seismic hazard maps that can be applied in building-design criteria. This Open-File Report describes the data, methods, and parameters used to calculate the seismic shaking hazard as well as the output hazard maps, curves, and deaggregation (disaggregation) information needed for building design. Spectral acceleration hazard for 1 Hertz having a 2-percent probability of exceedance on a firm rock site condition (Vs30=760 meters per second) is 0.12 acceleration of gravity (1 second, 1 Hertz) and 0.32 acceleration of gravity (0.2 seconds, 5 Hertz) on American Samoa, 0.72 acceleration of gravity (1 Hertz) and 2.54 acceleration of gravity (5 Hertz) on Tonga, 0.15 acceleration of gravity (1 Hertz) and 0.55 acceleration of gravity (5 Hertz) on Fiji, and 0.89 acceleration of gravity (1 Hertz) and 2.77 acceleration of gravity (5 Hertz) on the Vanuatu Islands.

  9. Aligning the magnetic field of a linear induction accelerator with a low-energy electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, J.C.; Deadrick, F.J.; Kallman, J.S.

    1989-03-10

    The Experimental Test Accelerator II (ETA-II) linear induction accelerator at Lawrence Livermore National Laboratory uses a solenoid magnet in each acceleration cell to focus and transport an electron beam over the length of the accelerator. To control growth of the corkscrew mode the magnetic field must be precisely aligned over the full length of the accelerate. Concentric with each solenoid magnet is sine/cosmic-wound correction coil to steer the beam and correct field errors. A low-energy electron probe traces the central flux line through the accelerator referenced to a mechanical axis that is defined by a copropagating laser beam. Correction coilsmore » are activated to force the central flux line to cross the mechanical axis at the end of each acceleration cell. The ratios of correction coil currents determined by the low-energy electron probe are then kept fixed to correct for field errors during normal operation with an accelerated beam. We describe the construction of the low-energy electron probe and report the results of experiments we conducted to measure magnetic alignment with and without the correction coils activated. 5 refs., 3 figs.« less

  10. Tunnel flexibility effect on the ground surface acceleration response

    NASA Astrophysics Data System (ADS)

    Baziar, Mohammad Hassan; Moghadam, Masoud Rabeti; Choo, Yun Wook; Kim, Dong-Soo

    2016-09-01

    Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas.

  11. Klynac: Compact Linear Accelerator with Integrated Power Supply

    NASA Astrophysics Data System (ADS)

    Malyzhenkov, A. V.

    Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scientific community is working towards improving the quality of the accelerated beam and its parameters, while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype: resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RF source, accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simplified theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using Particle-In-Cell simulation studies for mono-resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.

  12. An Annotated Bibliography of Accelerated Learning

    ERIC Educational Resources Information Center

    Garcia, GNA

    2007-01-01

    A rich narrative-style bibliography of accelerated learning (reviewing six articles published between 1995-2003). Articles reviewed include: (1) Accelerative learning and the Emerging Science of Wholeness (D. D. Beale); (2) Effective Teaching in Accelerated Learning Programs (D. Boyd); (3) A Critical Theory Perspective on Accelerated Learning (S.…

  13. Effective Teaching in Accelerated Learning Programs

    ERIC Educational Resources Information Center

    Boyd, Drick

    2004-01-01

    According to Wlodkowski (2003), "accelerated learning programs are one of the fastest growing transformations in higher education" (p. 5). The Center for the Study of Accelerated Learning at Regis University has documented at least 250 colleges or universities that offer accelerated learning programs for working adults. By definition, accelerated…

  14. 42 CFR 412.116 - Method of payment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as hospital bills are... made on an interim basis. (f) Accelerated payments—(1) General rule. Upon request, an accelerated... intermediary beyond its normal billing cycle. (2) Approval of payment. A hospital's request for an accelerated...

  15. 42 CFR 412.116 - Method of payment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as hospital bills are... made on an interim basis. (f) Accelerated payments—(1) General rule. Upon request, an accelerated... intermediary beyond its normal billing cycle. (2) Approval of payment. A hospital's request for an accelerated...

  16. 42 CFR 412.116 - Method of payment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as hospital bills are... made on an interim basis. (f) Accelerated payments—(1) General rule. Upon request, an accelerated... intermediary beyond its normal billing cycle. (2) Approval of payment. A hospital's request for an accelerated...

  17. 42 CFR 412.116 - Method of payment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as hospital bills are... made on an interim basis. (f) Accelerated payments—(1) General rule. Upon request, an accelerated... intermediary beyond its normal billing cycle. (2) Approval of payment. A hospital's request for an accelerated...

  18. Magnetic Field Would Reduce Electron Backstreaming in Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2003-01-01

    The imposition of a magnetic field has been proposed as a means of reducing the electron backstreaming problem in ion thrusters. Electron backstreaming refers to the backflow of electrons into the ion thruster. Backstreaming electrons are accelerated by the large potential difference that exists between the ion-thruster acceleration electrodes, which otherwise accelerates positive ions out of the engine to develop thrust. The energetic beam formed by the backstreaming electrons can damage the discharge cathode, as well as other discharge surfaces upstream of the acceleration electrodes. The electron-backstreaming condition occurs when the center potential of the ion accelerator grid is no longer sufficiently negative to prevent electron diffusion back into the ion thruster. This typically occurs over extended periods of operation as accelerator-grid apertures enlarge due to erosion. As a result, ion thrusters are required to operate at increasingly negative accelerator-grid voltages in order to prevent electron backstreaming. These larger negative voltages give rise to higher accelerator grid erosion rates, which in turn accelerates aperture enlargement. Electron backstreaming due to accelerator-gridhole enlargement has been identified as a failure mechanism that will limit ionthruster service lifetime. The proposed method would make it possible to not only reduce the electron backstreaming current at and below the backstreaming voltage limit, but also reduce the backstreaming voltage limit itself. This reduction in the voltage at which electron backstreaming occurs provides operating margin and thereby reduces the magnitude of negative voltage that must be placed on the accelerator grid. Such a reduction reduces accelerator- grid erosion rates. The basic idea behind the proposed method is to impose a spatially uniform magnetic field downstream of the accelerator electrode that is oriented transverse to the thruster axis. The magnetic field must be sufficiently strong to impede backstreaming electrons, but not so strong as to significantly perturb ion trajectories. An electromagnet or permanent magnetic circuit can be used to impose the transverse magnetic field downstream of the accelerator-grid electrode. For example, in the case of an accelerator grid containing straight, parallel rows of apertures, one can apply nearly uniform magnetic fields across all the apertures by the use of permanent magnets of alternating polarity connected to pole pieces laid out parallel to the rows, as shown in the left part of the figure. For low-temperature operation, the pole pieces can be replaced with bar magnets of alternating polarity. Alternatively, for the same accelerator grid, one could use an electromagnet in the form of current-carrying rods laid out parallel to the rows.

  19. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered by Chen et al where the driver, instead of being a laser, is a whistler wave known as the magnetowave plasma accelerator. The application to electron--positron plasmas that are found around pulsars is studied in the paper by Shukla, and to muon acceleration by Peano et al. Electron wakefield experiments are now concentrating on control and optimisation of high-quality beams that can be used as drivers for novel radiation sources. Studies by Thomas et al show that filamentation has a deleterious effect on the production of high quality mono-energetic electron beams and is caused by non-optimal choice of focusing geometry and/or electron density. It is crucial to match the focusing with the right plasma parameters and new types of plasma channels are being developed, such as the magnetically controlled plasma waveguide reported by Froula et al. The magnetic field provides a pressure profile shaping the channel to match the guiding conditions of the incident laser, resulting in predicted electron energies of 3GeV. In the forced laser-wakefield experiment Fang et al show that pump depletion reduces or inhibits the acceleration of electrons. One of the earlier laser acceleration concepts known as the beat wave may be revived due to the work by Kalmykov et al who report on all-optical control of nonlinear focusing of laser beams, allowing for stable propagation over several Rayleigh lengths with pre-injected electrons accelerated beyond 100 MeV. With the increasing number of petawatt lasers, attention is being focused on different acceleration regimes such as stochastic acceleration by counterpropagating laser pulses, the relativistic mirror, or the snow-plough effect leading to single-step acceleration reported by Mendonca. During wakefield acceleration the leading edge of the pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake while the trailing edge of the laser pulse undergoes frequency up-shift. This is commonly known as photon deceleration and acceleration and is the result of a modulational instability. Simulations reported by Trines et al using a photon-in-cell code or wave kinetic code agree extremely well with experimental observation. Ion acceleration is actively studied; for example the papers by Robinson, Macchi, Marita and Tripathi all discuss different types of acceleration mechanisms from direct laser acceleration, Coulombic explosion and double layers. Ion acceleration is an exciting development that may have great promise in oncology. The surprising application is in muon acceleration, demonstrated by Peano et al who show that counterpropagating laser beams with variable frequencies drive a beat structure with variable phase velocity, leading to particle trapping and acceleration with possible application to a future muon collider and neutrino factory. Laser and plasma accelerators remain one of the exciting areas of plasma physics with applications in many areas of science ranging from laser fusion, novel high-brightness radiation sources, particle physics and medicine. The guest editor would like to thank all authors and referees for their invaluable contributions to this special issue.

  20. Luminosity Limitations of Linear Colliders Based on Plasma Acceleration

    DOE PAGES

    Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei

    2016-01-01

    Particle acceleration in plasma creates a possibility of exceptionally high accelerating gradients and appears as a very attractive option for future linear electron-positron and/or photon-photon colliders. These high accelerating gradients were already demonstrated in a number of experiments. Furthermore, a linear collider requires exceptionally high beam brightness which still needs to be demonstrated. In this article we discuss major phenomena which limit the beam brightness of accelerated beam and, consequently, the collider luminosity.

  1. Role of failure-mechanism identification in accelerated testing

    NASA Technical Reports Server (NTRS)

    Hu, J. M.; Barker, D.; Dasgupta, A.; Arora, A.

    1993-01-01

    Accelerated life testing techniques provide a short-cut method to investigate the reliability of electronic devices with respect to certain dominant failure mechanisms that occur under normal operating conditions. However, accelerated tests have often been conducted without knowledge of the failure mechanisms and without ensuring that the test accelerated the same mechanism as that observed under normal operating conditions. This paper summarizes common failure mechanisms in electronic devices and packages and investigates possible failure mechanism shifting during accelerated testing.

  2. Exploring the mechanical basis for acceleration: pelvic limb locomotor function during accelerations in racing greyhounds (Canis familiaris)

    PubMed Central

    Williams, S. B.; Usherwood, J. R.; Jespers, K.; Channon, A. J.; Wilson, A. M.

    2009-01-01

    Summary Animals in their natural environments are confronted with a regular need to perform rapid accelerations (for example when escaping from predators or chasing prey). Such acceleration requires net positive mechanical work to be performed on the centre of mass by skeletal muscle. Here we determined how pelvic limb joints contribute to the mechanical work and power that are required for acceleration in galloping quadrupeds. In addition, we considered what, if any, biomechanical strategies exist to enable effective acceleration to be achieved. Simultaneous kinematic and kinetic data were collected for racing greyhounds undergoing a range of low to high accelerations. From these data, joint moments and joint powers were calculated for individual hindlimb joints. In addition, the mean effective mechanical advantage (EMA) of the limb and the `gear ratio' of each joint throughout stance were calculated. Greatest increases in joint work and power with acceleration appeared at the hip and hock joints, particularly in the lead limb. Largest increases in absolute positive joint work occurred at the hip, consistent with the hypothesis that quadrupeds power locomotion by torque about the hip. In addition, hindlimb EMA decreased substantially with increased acceleration – a potential strategy to increase stance time and thus ground impulses for a given peak force. This mechanism may also increase the mechanical advantage for applying the horizontal forces necessary for acceleration. PMID:19181903

  3. Accelerated increase in plant species richness on mountain summits is linked to warming.

    PubMed

    Steinbauer, Manuel J; Grytnes, John-Arvid; Jurasinski, Gerald; Kulonen, Aino; Lenoir, Jonathan; Pauli, Harald; Rixen, Christian; Winkler, Manuela; Bardy-Durchhalter, Manfred; Barni, Elena; Bjorkman, Anne D; Breiner, Frank T; Burg, Sarah; Czortek, Patryk; Dawes, Melissa A; Delimat, Anna; Dullinger, Stefan; Erschbamer, Brigitta; Felde, Vivian A; Fernández-Arberas, Olatz; Fossheim, Kjetil F; Gómez-García, Daniel; Georges, Damien; Grindrud, Erlend T; Haider, Sylvia; Haugum, Siri V; Henriksen, Hanne; Herreros, María J; Jaroszewicz, Bogdan; Jaroszynska, Francesca; Kanka, Robert; Kapfer, Jutta; Klanderud, Kari; Kühn, Ingolf; Lamprecht, Andrea; Matteodo, Magali; di Cella, Umberto Morra; Normand, Signe; Odland, Arvid; Olsen, Siri L; Palacio, Sara; Petey, Martina; Piscová, Veronika; Sedlakova, Blazena; Steinbauer, Klaus; Stöckli, Veronika; Svenning, Jens-Christian; Teppa, Guido; Theurillat, Jean-Paul; Vittoz, Pascal; Woodin, Sarah J; Zimmermann, Niklaus E; Wipf, Sonja

    2018-04-01

    Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century 1-7 are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch 6 . While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying 8, 9 , it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.

  4. Compact torus accelerator as a driver for ICF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, M.T.; Meier, W.R.; Morse, E.C.

    1986-01-01

    The authors have carried out further investigations of the technical issues associated with using a compact torus (CT) accelerator as a driver for inertial confinement fusion (ICF). In a CT accelerator, a magnetically confined, torus-shaped plasma is compressed, accelerated, and focused by two concentric electrodes. After its initial formation, the torus shape is maintained for lifetimes exceeding 1 ms by inherent poloidal and toroidal currents. Hartman suggests acceleration and focusing of such a plasma ring will not cause dissolution within certain constraints. In this study, we evaluated a point design based on an available capacitor bank energy of 9.2 MJ.more » This accelerator, which was modeled by a zero-dimensional code, produces a xenon plasma ring with a 0.73-cm radius, a velocity of 4.14 x 10/sup 9/ cm/s, and a mass of 4.42 ..mu..g. The energy of the plasma ring as it leaves the accelerator is 3.8 MJ, or 41% of the capacitor bank energy. Our studies confirm the feasibility of producing a plasma ring with the characteristics required to induce fusion in an ICF target with a gain greater than 50. The low cost and high efficiency of the CT accelerator are particularly attractive. Uncertainties concerning propagation, accelerator lifetime, and power supply must be resolved to establish the viability of the accelerator as an ICF driver.« less

  5. Angular Impact Mitigation System for Bicycle Helmets to Reduce Head Acceleration and Risk of Traumatic Brain Injury

    PubMed Central

    Hansen, Kirk; Dau, Nathan; Feist, Florian; Deck, Caroline; Willinger, Rémy; Madey, Steven M.; Bottlang, Michael

    2013-01-01

    Angular acceleration of the head is a known cause of traumatic brain injury (TBI), but contemporary bicycle helmets lack dedicated mechanisms to mitigate angular acceleration. A novel Angular Impact Mitigation (AIM) system for bicycle helmets has been developed that employs an elastically suspended aluminum honeycomb liner to absorb linear acceleration in normal impacts as well as angular acceleration in oblique impacts. This study tested bicycle helmets with and without AIM technology to comparatively assess impact mitigation. Normal impact tests were performed to measure linear head acceleration. Oblique impact tests were performed to measure angular head acceleration and neck loading. Furthermore, acceleration histories of oblique impacts were analyzed in a computational head model to predict the resulting risk of TBI in the form of concussion and diffuse axonal injury (DAI). Compared to standard helmets, AIM helmets resulted in a 14% reduction in peak linear acceleration (p < 0.001), a 34% reduction in peak angular acceleration (p < 0.001), and a 22% to 32% reduction in neck loading (p < 0.001). Computational results predicted that AIM helmets reduced the risk of concussion and DAI by 27% and 44%, respectively. In conclusion, these results demonstrated that AIM technology could effectively improve impact mitigation compared to a contemporary expanded polystyrene-based bicycle helmet, and may enhance prevention of bicycle-related TBI. Further research is required. PMID:23770518

  6. C IV BROAD ABSORPTION LINE ACCELERATION IN SLOAN DIGITAL SKY SURVEY QUASARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grier, C. J.; Brandt, W. N.; Trump, J. R.

    2016-06-20

    We present results from the largest systematic investigation of broad absorption line (BAL) acceleration to date. We use spectra of 140 quasars from three Sloan Digital Sky Survey programs to search for global velocity offsets in BALs over timescales of ≈2.5–5.5 years in the quasar rest frame. We carefully select acceleration candidates by requiring monolithic velocity shifts over the entire BAL trough, avoiding BALs with velocity shifts that might be caused by profile variability. The C iv BALs of two quasars show velocity shifts consistent with the expected signatures of BAL acceleration, and the BAL of one quasar shows amore » velocity-shift signature of deceleration. In our two acceleration candidates, we see evidence that the magnitude of the acceleration is not constant over time; the magnitudes of the change in acceleration for both acceleration candidates are difficult to produce with a standard disk-wind model or via geometric projection effects. We measure upper limits to acceleration and deceleration for 76 additional BAL troughs and find that the majority of BALs are stable to within about 3% of their mean velocities. The lack of widespread acceleration/deceleration could indicate that the gas producing most BALs is located at large radii from the central black hole and/or is not currently strongly interacting with ambient material within the host galaxy along our line of sight.« less

  7. The history and future of accelerator radiological protection.

    PubMed

    Thomas, R H

    2001-01-01

    The development of accelerator radiological protection from the mid-1930s, just after the invention of the cyclotron, to the present day is described. Three major themes--physics, personalities and politics--are developed. In the sections describing physics the development of shielding design though measurement, radiation transport calculations, the impact of accelerators on the environment and dosimetry in accelerator radiation fields are described. The discussion is limited to high-energy, high-intensity electron and proton accelerators. The impact of notable personalities on the development of both the basic science and on the accelerator health physics profession itself is described. The important role played by scholars and teachers is discussed. In the final section. which discusses the future of accelerator radiological protection, some emphasis is given to the social and political aspects that must he faced in the years ahead.

  8. Particle acceleration in pulsar magnetospheres

    NASA Technical Reports Server (NTRS)

    Baker, K. B.

    1978-01-01

    The structure of pulsar magnetospheres and the acceleration mechanism for charged particles in the magnetosphere was studied using a pulsar model which required large acceleration of the particles near the surface of the star. A theorem was developed which showed that particle acceleration cannot be expected when the angle between the magnetic field lines and the rotation axis is constant (e.g. radial field lines). If this angle is not constant, however, acceleration must occur. The more realistic model of an axisymmetric neutron star with a strong dipole magnetic field aligned with the rotation axis was investigated. In this case, acceleration occurred at large distances from the surface of the star. The magnitude of the current can be determined using the model presented. In the case of nonaxisymmetric systems, the acceleration is expected to occur nearer to the surface of the star.

  9. Quasi-monoenergetic protons accelerated by laser radiation pressure and shocks in thin gaseous targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Minqing; Shao Xi; Liu Chuansheng

    Recent experiments and simulations have demonstrated effective CO{sub 2} laser acceleration of quasi-monoenergetic protons from thick gaseous hydrogen target (of thickness tens of laser wavelengths) via hole boring and shock accelerations. We present here an alternative novel acceleration scheme by combining laser radiation pressure acceleration with shock acceleration of protons in a thin gaseous target of thickness several laser wavelengths. The laser pushes the thin gaseous plasma forward while compressing it with protons trapped in it. We demonstrated the combined acceleration with two-dimensional particle-in-cell simulation and obtained quasi-monoenergetic protons {approx}44 MeV in a gas target of thickness twice of themore » laser wavelength irradiated by circularly polarized CO{sub 2} laser with normalized laser amplitude a{sub 0}=10.« less

  10. Effect of gravitational acceleration, hypokinesia and hypodynamia on the structure of the intestinal vascular bed

    NASA Technical Reports Server (NTRS)

    Nikitin, M. V.

    1980-01-01

    A series of experiments comparing single and combined effects of hypokinesia and gravitational acceleration on morphology of intestinal blood vessels are discussed. Results indicate that hypokinesia has a whole body nonspecific effect reflected even in an organ whose activity shows little or no change due to hypokinesia. In early hypokinetic stages blood redistribution caused anorexia, intestinal atonia, and secretory disruption. Destructive changes from further exposure include aneurisms, varicoses, extravascular movement of blood elements, and vascular wall muscle fiber degeneration. The effect of acceleration is greatest in the ventrodorsal direction. Changes due to acceleration then hypokinesia are like those due to hypokinesia alone; changes due to acceleration before and after hypokinesia are like those due to acceleration. Adaptation raises acceleration tolerance but the effects do not survive four-week hypokinesia.

  11. Synchronous acceleration with tapered dielectric-lined waveguides

    NASA Astrophysics Data System (ADS)

    Lemery, F.; Floettmann, K.; Piot, P.; Kärtner, F. X.; Aßmann, R.

    2018-05-01

    We present a general concept to accelerate nonrelativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program astra and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100 MV /m . Numerical simulations indicate that a ˜200 -keV electron beam can be accelerated to an energy of ˜10 MeV over ˜10 cm with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.

  12. Potential applications of the dielectric wakefield accelerators in the SINBAD facility at DESY

    NASA Astrophysics Data System (ADS)

    Nie, Y. C.; Assmann, R.; Dorda, U.; Marchetti, B.; Weikum, M.; Zhu, J.; Hüning, M.

    2016-09-01

    Short, high-brightness relativistic electron bunches can drive ultra-high wakefields in the dielectric wakefield accelerators (DWFAs). This effect can be used to generate high power THz coherent Cherenkov radiation, accelerate a witness bunch with gradient two or three orders of magnitude larger than that in the conventional RF linear accelerators, introduce energy modulation within the driving bunch itself, etc. The paper studies potential applications of the DWFAs in the SINBAD facility at DESY. The simulations show that the ultra-short relativistic bunches from the SINBAD injector ARES can excite accelerating wakefields with peak amplitudes as high as GV/m at THz frequencies in proper DWFA structures. In addition, it illustrates that the DWFA structure can serve as a dechirper to compensate the correlated energy spread of the bunches accelerated by the laser plasma wakefield accelerator.

  13. Traveling wave linear accelerator with RF power flow outside of accelerating cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgashev, Valery A.

    A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities hasmore » a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.« less

  14. Wake shed by an accelerating carangiform fish

    NASA Astrophysics Data System (ADS)

    Ting, Shang-Chieh; Yang, Jing-Tang

    2008-11-01

    We reveal an important fact that momentum change observed in the wake of an accelerating carangiform fish does not necessarily elucidate orientations of propulsive forces produced. An accelerating Crucian Carp (Carassius auratus) was found to shed a wake with net forward fluid momentum, which seemed drag-producing. Based on Newton's law, however, an accelerating fish is expected to shed a thrust wake with net rearward fluid momentum, rather than a drag wake. The unusual wake pattern observed is considered to be resulted primarily from the effect of pressure gradient created by accelerating movements of the fish. Ambient fluids tend to be sucked into low pressure zones behind an accelerating fish, resulting in forward orientations of jets recognizable in the wake. Accordingly, as to an accelerating fish, identifying force orientations from the wake requires considering also the effect of pressure gradient.

  15. Particle acceleration at shocks in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Parker, Linda Neergaard

    This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A multiple shock model is developed based in part on the box model of (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al. 1999) that accelerates particles at multiple shocks and decompresses the particles between shocks via two methods. The first method of decompression is based on the that used by Melrose and Pope (1993), which adiabatically decompresses particles between shocks. The second method solves the cosmic ray transport equation and adiabatically decompresses between shocks and includes the loss of particles through convection and diffusion. The transport method allows for the inclusion of a temporal variability and thus allows for a more representative frequency distribution of shocks. The transport method of decompression and loss is used to accelerate particles at seventy-three shocks in a thirty day time period. Comparisons with observations taken at 1 AU during the same time period are encouraging as the model is able to reproduce the observed amplitude of the accelerated particles and in part the variability. This work provides the basis for developing more sophisticated models that can be applied to a suite of observations

  16. Post-acceleration of laser driven protons with a compact high field linac

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Londrillo, Pasquale; Rossi, Francesco; Turchetti, Giorgio; Bolton, Paul R.

    2013-05-01

    We present a start-to-end 3D numerical simulation of a hybrid scheme for the acceleration of protons. The scheme is based on a first stage laser acceleration, followed by a transport line with a solenoid or a multiplet of quadrupoles, and then a post-acceleration section in a compact linac. Our simulations show that from a laser accelerated proton bunch with energy selection at ~ 30MeV, it is possible to obtain a high quality monochromatic beam of 60MeV with intensity at the threshold of interest for medical use. In the present day experiments using solid targets, the TNSA mechanism describes accelerated bunches with an exponential energy spectrum up to a cut-off value typically below ~ 60MeV and wide angular distribution. At the cut-off energy, the number of protons to be collimated and post-accelerated in a hybrid scheme are still too low. We investigate laser-plasma acceleration to improve the quality and number of the injected protons at ~ 30MeV in order to assure efficient post-acceleration in the hybrid scheme. The results are obtained with 3D PIC simulations using a code where optical acceleration with over-dense targets, transport and post-acceleration in a linac can all be investigated in an integrated framework. The high intensity experiments at Nara are taken as a reference benchmarks for our virtual laboratory. If experimentally confirmed, a hybrid scheme could be the core of a medium sized infrastructure for medical research, capable of producing protons for therapy and x-rays for diagnosis, which complements the development of all optical systems.

  17. 49 CFR 573.14 - Accelerated remedy program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Accelerated remedy program. 573.14 Section 573.14... § 573.14 Accelerated remedy program. (a) An accelerated remedy program is one in which the manufacturer expands the sources of replacement parts needed to remedy the defect or noncompliance, or expands the...

  18. 49 CFR 573.14 - Accelerated remedy program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Accelerated remedy program. 573.14 Section 573.14... § 573.14 Accelerated remedy program. (a) An accelerated remedy program is one in which the manufacturer expands the sources of replacement parts needed to remedy the defect or noncompliance, or expands the...

  19. Accelerator Science: Circular vs. Linear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.

  20. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  1. BIOCONAID System (Bionic Control of Acceleration Induced Dimming). Final Report.

    ERIC Educational Resources Information Center

    Rogers, Dana B.; And Others

    The system described represents a new technique for enhancing the fidelity of flight simulators during high acceleration maneuvers. This technique forces the simulator pilot into active participation and energy expenditure similar to the aircraft pilot undergoing actual accelerations. The Bionic Control of Acceleration Induced Dimming (BIOCONAID)…

  2. Modeling Reliability Growth in Accelerated Stress Testing

    DTIC Science & Technology

    2013-12-01

    MODELING RELIABILITY GROWTH IN ACCELERATED STRESS TESTING DISSERTATION Jason K. Freels Major...Defense, or the United States Government. AFIT-ENS-DS-13-D-02 MODELING RELIABILITY GROWTH IN ACCELERATED STRESS TESTING ...DISTRIBUTION UNLIMITED AFIT-ENS-DS-13-D-02 MODELING RELIABILITY GROWTH IN ACCELERATED STRESS TESTING Jason K. Freels

  3. Acceleration: It's Elementary

    ERIC Educational Resources Information Center

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  4. 49 CFR 563.8 - Data format.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the first acceleration data point; (3) The number of the last point (NLP), which is an integer that...; and (4) NLP—NFP + 1 acceleration values sequentially beginning with the acceleration at time NFP * TS and continue sampling the acceleration at TS increments in time until the time NLP * TS is reached...

  5. 42 CFR 412.632 - Method of payment under the inpatient rehabilitation facility prospective payment system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as inpatient rehabilitation...) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient.... (2) Approval of payment. An inpatient rehabilitation facility's request for an accelerated payment...

  6. 42 CFR 412.632 - Method of payment under the inpatient rehabilitation facility prospective payment system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as inpatient rehabilitation...) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient.... (2) Approval of payment. An inpatient rehabilitation facility's request for an accelerated payment...

  7. 42 CFR 412.632 - Method of payment under the inpatient rehabilitation facility prospective payment system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as inpatient rehabilitation...) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient.... (2) Approval of payment. An inpatient rehabilitation facility's request for an accelerated payment...

  8. 42 CFR 412.632 - Method of payment under the inpatient rehabilitation facility prospective payment system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as inpatient rehabilitation...) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient.... (2) Approval of payment. An inpatient rehabilitation facility's request for an accelerated payment...

  9. Two-stage Electron Acceleration by 3D Collisionless Guide-field Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Buechner, J.; Munoz, P.

    2017-12-01

    We discuss a two-stage process of electron acceleration near X-lines of 3D collisionless guide-field magnetic reconnection. Non-relativistic electrons are first pre-accelerated by magnetic-field-aligned (parallel) electric fields. At the nonlinear stage of 3D guide-field magnetic reconnection electric and magnetic fields become filamentary structured due to streaming instabilities. This causes an additional curvature-driven electron acceleration in the guide-field direction. The resulting spectrum of the accelerated electrons follows a power law.

  10. Accelerator tube construction and characterization for a tandem-electrostatic-quadrupole for accelerator-based boron neutron capture therapy.

    PubMed

    Cartelli, D; Vento, V Thatar; Castell, W; Di Paolo, H; Kesque, J M; Bergueiro, J; Valda, A A; Erhardt, J; Kreiner, A J

    2011-12-01

    The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava

    NASA Astrophysics Data System (ADS)

    Povinec, Pavel P.; Masarik, Jozef; Ješkovský, Miroslav; Kaizer, Jakub; Šivo, Alexander; Breier, Robert; Pánik, Ján; Staníček, Jaroslav; Richtáriková, Marta; Zahoran, Miroslav; Zeman, Jakub

    2015-10-01

    An Accelerator Mass Spectrometry (AMS) laboratory has been established at the Centre for Nuclear and Accelerator Technologies (CENTA) at the Comenius University in Bratislava comprising of a MC-SNICS ion source, 3 MV Pelletron tandem accelerator, and an analyzer of accelerated ions. The preparation of targets for 14C and 129I AMS measurements is described in detail. The development of AMS techniques for potassium, uranium and thorium analysis in radiopure materials required for ultra-low background underground experiments is briefly mentioned.

  12. Theory of unfolded cyclotron accelerator

    NASA Astrophysics Data System (ADS)

    Rax, J.-M.; Robiche, J.

    2010-10-01

    An acceleration process based on the interaction between an ion, a tapered periodic magnetic structure, and a circularly polarized oscillating electric field is identified and analyzed, and its potential is evaluated. A Hamiltonian analysis is developed in order to describe the interplay between the cyclotron motion, the electric acceleration, and the magnetic modulation. The parameters of this universal class of magnetic modulation leading to continuous acceleration without Larmor radius increase are expressed analytically. Thus, this study provides the basic scaling of what appears as a compact unfolded cyclotron accelerator.

  13. Accelerator based epithermal neutron source

    NASA Astrophysics Data System (ADS)

    Taskaev, S. Yu.

    2015-11-01

    We review the current status of the development of accelerator sources of epithermal neutrons for boron neutron capture therapy (BNCT), a promising method of malignant tumor treatment. Particular attention is given to the source of epithermal neutrons on the basis of a new type of charged particle accelerator: tandem accelerator with vacuum insulation and lithium neutron-producing target. It is also shown that the accelerator with specialized targets makes it possible to generate fast and monoenergetic neutrons, resonance and monoenergetic gamma-rays, alpha-particles, and positrons.

  14. Compact accelerator for medical therapy

    DOEpatents

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  15. Pulsed electron accelerator for radiation technologies in the enviromental applications

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  16. SLAC All Access: FACET

    ScienceCinema

    Hogan, Mark

    2018-02-13

    SLAC's Facility for Advanced Accelerator Experimental Tests, or FACET, is a test-bed where researchers are developing the technologies required for particle accelerators of the future. Scientists from all over the world come to explore ways of improving the power and efficiency of the particle accelerators used in basic research, medicine, industry and other areas important to society. In this video, Mark Hogan, head of SLAC's Advanced Accelerator Research Department, offers a glimpse into FACET, which uses part of SLAC's historic two-mile-long linear accelerator.

  17. Influence of the ambient acceleration field upon acute acceleration tolerance in chickens

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Spangler, W. L.; Rhode, E. A.; Burton, R. R.

    1979-01-01

    The paper measured the acceleration tolerance of domestic fowl (Rhode Island Red cocks), acutely exposed to a 6 Gz field, as the time over which a normal heart rate can be maintained. This period of circulatory adjustment ends abruptly with pronounced bradycardia. For chickens which previously have been physiologically adapted to 2.5 -G field, the acute acceleration tolerance is greatly increased. The influence of the ambient acceleration field on the adjustment of the circulatory system appears to be a general phenomenon.

  18. Rotating charged black holes accelerated by an electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bicak, Jiri; Kofron, David; Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Muehlenberg 1, D-14476 Golm

    The Ernst method of removing nodal singularities from the charged C-metric representing a uniformly accelerated black hole with mass m, charge q and acceleration A by 'adding' an electric field E is generalized. Utilizing the new form of the C-metric found recently, Ernst's simple 'equilibrium condition' mA=qE valid for small accelerations is generalized for arbitrary A. The nodal singularity is removed also in the case of accelerating and rotating charged black holes, and the corresponding equilibrium condition is determined.

  19. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Accelerator and Fusion Research Division (AFRD) and Laser Optics and Accelerator Systems Integrated Studies (LOASIS)

    2018-05-04

    Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  20. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema

    Leemans, Wim [LOASIS Program, AFRD

    2017-12-09

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  1. Fifty years of accelerator based physics at Chalk River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKay, John W.

    1999-04-26

    The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.

  2. Accelerated Electron-Beam Formation with a High Capture Coefficient in a Parallel Coupled Accelerating Structure

    NASA Astrophysics Data System (ADS)

    Chernousov, Yu. D.; Shebolaev, I. V.; Ikryanov, I. M.

    2018-01-01

    An electron beam with a high (close to 100%) coefficient of electron capture into the regime of acceleration has been obtained in a linear electron accelerator based on a parallel coupled slow-wave structure, electron gun with microwave-controlled injection current, and permanent-magnet beam-focusing system. The high capture coefficient was due to the properties of the accelerating structure, beam-focusing system, and electron-injection system. Main characteristics of the proposed systems are presented.

  3. On the relationship between collisionless shock structure and energetic particle acceleration

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.

    1983-01-01

    Recent experimental research on bow shock structure and theoretical studies of quasi-parallel shock structure and shock acceleration of energetic particles were reviewed, to point out the relationship between structure and particle acceleration. The phenomenological distinction between quasi-parallel and quasi-perpendicular shocks that has emerged from bow shock research; present efforts to extend this work to interplanetary shocks; theories of particle acceleration by shocks; and particle acceleration to shock structures using multiple fluid models were discussed.

  4. Research on Acceleration Compensation Strategy of Electric Vehicle Based on Fuzzy Control Theory

    NASA Astrophysics Data System (ADS)

    Zhu, Tianjun; Li, Bin; Zong, Changfu; Wei, Zhicheng

    2017-09-01

    Nowadays, the driving technology of electric vehicle is developing rapidly. There are many kinds of methods in driving performance control technology. The paper studies the acceleration performance of electric vehicle. Under the premise of energy management, an acceleration power compensation method by fuzzy control theory based on driver intention recognition is proposed, which can meet the driver’s subjective feelings better. It avoids the problem that the pedal opening and power output are single correspondence when the traditional vehicle accelerates. Through the simulation test, this method can significantly improve the performance of acceleration and output torque smoothly in non-emergency acceleration to ensure vehicle comfortable and stable.

  5. Laboratory laser acceleration and high energy astrophysics: {gamma}-ray bursts and cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajima, T.; Takahashi, Y.

    1998-08-20

    Recent experimental progress in laser acceleration of charged particles (electrons) and its associated processes has shown that intense electromagnetic pulses can promptly accelerate charged particles to high energies and that their energy spectrum is quite hard. On the other hand some of the high energy astrophysical phenomena such as extremely high energy cosmic rays and energetic components of {gamma}-ray bursts cry for new physical mechanisms for promptly accelerating particles to high energies. The authors suggest that the basic physics involved in laser acceleration experiments sheds light on some of the underlying mechanisms and their energy spectral characteristics of the promptlymore » accelerated particles in these high energy astrophysical phenomena.« less

  6. Acceleration and evolution of a hollow electron beam in wakefields driven by a Laguerre-Gaussian laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guo-Bo; College of Science, National University of Defense Technology, Changsha 410073; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com

    2016-03-15

    We show that a ring-shaped hollow electron beam can be injected and accelerated by using a Laguerre-Gaussian laser pulse and ionization-induced injection in a laser wakefield accelerator. The acceleration and evolution of such a hollow, relativistic electron beam are investigated through three-dimensional particle-in-cell simulations. We find that both the ring size and the beam thickness oscillate during the acceleration. The beam azimuthal shape is angularly dependent and evolves during the acceleration. The beam ellipticity changes resulting from the electron angular momenta obtained from the drive laser pulse and the focusing forces from the wakefield. The dependence of beam ring radiusmore » on the laser-plasma parameters (e.g., laser intensity, focal size, and plasma density) is studied. Such a hollow electron beam may have potential applications for accelerating and collimating positively charged particles.« less

  7. An Adiabatic Phase-Matching Accelerator

    DOE PAGES

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe; ...

    2018-05-25

    We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  8. Synchronous acceleration with tapered dielectric-lined waveguides

    DOE PAGES

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe; ...

    2018-05-25

    Here, we present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  9. An analytical reconstruction model of the spread-out Bragg peak using laser-accelerated proton beams.

    PubMed

    Tao, Li; Zhu, Kun; Zhu, Jungao; Xu, Xiaohan; Lin, Chen; Ma, Wenjun; Lu, Haiyang; Zhao, Yanying; Lu, Yuanrong; Chen, Jia-Er; Yan, Xueqing

    2017-07-07

    With the development of laser technology, laser-driven proton acceleration provides a new method for proton tumor therapy. However, it has not been applied in practice because of the wide and decreasing energy spectrum of laser-accelerated proton beams. In this paper, we propose an analytical model to reconstruct the spread-out Bragg peak (SOBP) using laser-accelerated proton beams. Firstly, we present a modified weighting formula for protons of different energies. Secondly, a theoretical model for the reconstruction of SOBPs with laser-accelerated proton beams has been built. It can quickly calculate the number of laser shots needed for each energy interval of the laser-accelerated protons. Finally, we show the 2D reconstruction results of SOBPs for laser-accelerated proton beams and the ideal situation. The final results show that our analytical model can give an SOBP reconstruction scheme that can be used for actual tumor therapy.

  10. Fisher information of accelerated two-qubit systems

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2018-02-01

    In this paper, Fisher information for an accelerated system initially prepared in the X-state is discussed. An analytical solution, which consists of three parts: classical, the average over all pure states and a mixture of pure states, is derived for the general state and for Werner state. It is shown that the Unruh acceleration has a depleting effect on the Fisher information. This depletion depends on the degree of entanglement of the initial state settings. For the X-state, for some intervals of Unruh acceleration, the Fisher information remains constant, irrespective to the Unruh acceleration. In general, the possibility of estimating the state’s parameters decreases as the acceleration increases. However, the precision of estimation can be maximized for certain values of the Unruh acceleration. We also investigate the contribution of the different parts of the Fisher information on the dynamics of the total Fisher information.

  11. Ion extraction capabilities of closely spaced grids

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1982-01-01

    The ion extraction capabilities of accelerator systems with small screen hole diameters (less than 2.0 mm) are investigated at net-accelerating voltages of 100, 300, and 500 V. Results show that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 1.0 mm, but impingement-limited performance was found to be dependent on the grid separation distance, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained using small hole diameters and closely spaced grids indicate a new mode of grid operation where high current density operation can be achieved with a specified net acceleration voltage by operating the grids at a high rather than low net-to-total acceleration voltage. Beam current densities as high as 25 mA/sq cm were obtained using grids with 1.0 mm diameter holes operating at a net accelerating voltage of 500 V.

  12. Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2017-12-01

    A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.

  13. Beam-driven acceleration in ultra-dense plasma media

    DOE PAGES

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10 25 m -3 and 1.6 x 10 28 m -3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlargingmore » the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  14. Early Acceleration of Mathematics Students and its Effect on Growth in Self-esteem: A Longitudinal Study

    NASA Astrophysics Data System (ADS)

    Ma, Xin

    2002-11-01

    The Longitudinal Study of American Youth (LSAY) database was employed to examine the educational practice of early acceleration of students of mathematics on the development of their self-esteem across the entire secondary grade levels. Students were classified into three different academic categories (gifted, honors, and regular). Results indicated that, in terms of the development of their self-esteem, gifted students benefited from early acceleration, honors students neither benefited nor were harmed by early acceleration, and regular students were harmed by early acceleration. Early acceleration in mathematics promoted significant growth in self-esteem among gifted male students and among gifted, honors, and regular minority students. When students were accelerated, schools showed similar average growth in self-esteem among gifted students and regular students and a large effect of general support for mathematics on the average growth in self-esteem among honors students.

  15. Guided post-acceleration of laser-driven ions by a miniature modular structure

    PubMed Central

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-01-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m−1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200

  16. RFQ design for the RAON accelerator's ISOL system

    NASA Astrophysics Data System (ADS)

    Choi, Bong Hyuk; Hong, In-Seok

    2015-10-01

    The heavy-ion accelerator RAON has the advantage of having both an in-flight (IF) and an isotope separator on-line (ISOL) system. Two radio frequency quadrupoles (RFQs) will be installed in the RAON: the main linear accelerator (LINAC) RFQ will be used to accelerate the two-charge state 238U for the IF system, while the post-accelerator RFQ will be used to accelerate low-current isotope beams from the ISOL system. In this paper, the post-accelerator RFQ design for the ISOL system is reported. A beam current of 1 pμA was used, and the input beam and the output beam energies were 5 keV/u and 400 keV/u, respectively. Moreover, the design was optimized by reducing the total length and power, adjusting the beam quality. To quantify the influence of thermal expansion on the frequency, we calculated the frequency difference according to deference between the vane's tip and the body's diameter.

  17. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  18. Overview of graduate training program of John Adams Institute for Accelerator Science

    NASA Astrophysics Data System (ADS)

    Seryi, Andrei

    The John Adams Institute for Accelerator Science is a center of excellence in the UK for advanced and novel accelerator technology, providing expertise, research, development and training in accelerator techniques, and promoting advanced accelerator applications in science and society. We work in JAI on design of novel light sources upgrades of 3-rd generation and novel FELs, on plasma acceleration and its application to industrial and medical fields, on novel energy recovery compact linacs and advanced beam diagnostics, and many other projects. The JAI is based on three universities - University of Oxford, Imperial College London and Royal Holloway University of London. Every year 6 to 10 accelerators science experts, trained via research on cutting edge projects, defend their PhD thesis in JAI partner universities. In this presentation we will overview the research and in particular the highly successful graduate training program in JAI.

  19. Mechanisms and Simulation of accelerated shrinkage of continental glaciers: a case study of Urumqi Glacier No. 1 Eastern Tianshan, Central Asia

    NASA Astrophysics Data System (ADS)

    Li, Zhongqin; Ren, Jiawen; Li, Huilin; Wang, Puyu; Wang, Feiteng

    2016-04-01

    Similar to most mountain glaciers in the world, Urumqi Glacier No. 1 (UG1), the best observed glacier in China with continued glaciological and climatological monitoring records of longer than 50 years has experienced an accelerated recession during the past several decades. The purpose of this study is to investigate the acceleration of recession. By taking UG1 as an example, we analyze the generic mechanisms of acceleration of shrinkage of continental mountain glaciers. The results indicate that the acceleration of mass loss of UG1 commenced first in 1985 and second in 1996 and that the latter was more vigorous. The air temperature rises during melting season, the ice temperature augment of the glacier and the albedo reduction on the glacier surface are considered responsible for the accelerated recession. In addition, the simulations of the accelerated shrinkage of UG1 are introduced.

  20. An Adiabatic Phase-Matching Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, Francois; Floettmann, Klaus; Piot, Philippe

    2017-12-22

    We present a general concept to accelerate non-relativistic charged particles. Our concept employs an adiabatically-tapered dielectric-lined waveguide which supports accelerating phase velocities for synchronous acceleration. We propose an ansatz for the transient field equations, show it satisfies Maxwell's equations under an adiabatic approximation and find excellent agreement with a finite-difference time-domain computer simulation. The fields were implemented into the particle-tracking program {\\sc astra} and we present beam dynamics results for an accelerating field with a 1-mm-wavelength and peak electric field of 100~MV/m. The numerical simulations indicate that amore » $$\\sim 200$$-keV electron beam can be accelerated to an energy of $$\\sim10$$~MeV over $$\\sim 10$$~cm. The novel scheme is also found to form electron beams with parameters of interest to a wide range of applications including, e.g., future advanced accelerators, and ultra-fast electron diffraction.« less

  1. Coaching versus Direct Service Models for University Training to Accelerated Schools.

    ERIC Educational Resources Information Center

    Kirby, Peggy C.; Meza, James, Jr.

    This paper examines the changing roles and relationships of schools, central offices, and university facilitators at 11 schools that implemented the nationally recognized Accelerated Schools process. The schools joined the Louisiana Accelerated Schools Network in the summer of 1994. The paper begins with an overview of the Accelerated Schools…

  2. Figuring the Acceleration of the Simple Pendulum

    ERIC Educational Resources Information Center

    Lieberherr, Martin

    2011-01-01

    The centripetal acceleration has been known since Huygens' (1659) and Newton's (1684) time. The physics to calculate the acceleration of a simple pendulum has been around for more than 300 years, and a fairly complete treatise has been given by C. Schwarz in this journal. But sentences like "the acceleration is always directed towards the…

  3. Accelerator Science: Circular vs. Linear

    ScienceCinema

    Lincoln, Don

    2018-06-12

    Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.

  4. Voltage regulation in linear induction accelerators

    DOEpatents

    Parsons, William M.

    1992-01-01

    Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

  5. Acceleration of boundary element method for linear elasticity

    NASA Astrophysics Data System (ADS)

    Zapletal, Jan; Merta, Michal; Čermák, Martin

    2017-07-01

    In this work we describe the accelerated assembly of system matrices for the boundary element method using the Intel Xeon Phi coprocessors. We present a model problem, provide a brief overview of its discretization and acceleration of the system matrices assembly using the coprocessors, and test the accelerated version using a numerical benchmark.

  6. The Adaptive Basis of Psychosocial Acceleration: Comment on beyond Mental Health, Life History Strategies Articles

    ERIC Educational Resources Information Center

    Nettle, Daniel; Frankenhuis, Willem E.; Rickard, Ian J.

    2012-01-01

    Four of the articles published in this special section of "Developmental Psychology" build on and refine psychosocial acceleration theory. In this short commentary, we discuss some of the adaptive assumptions of psychosocial acceleration theory that have not received much attention. Psychosocial acceleration theory relies on the behavior of…

  7. Psychological Adjustment in a College-Level Program of Marked Academic Acceleration.

    ERIC Educational Resources Information Center

    Robinson, Nancy M.; Janos, Paul M.

    1986-01-01

    The questionnaire responses of 24 markedly accelerated young students at the University of Washington were compared with those of 24 regular-aged university students, 23 National Merit Scholors, and 27 students who had qualified for acceleration but instead elected to participate in high school. Accelerants appeared as well adjusted as all…

  8. Modeling Nonlinear Change via Latent Change and Latent Acceleration Frameworks: Examining Velocity and Acceleration of Growth Trajectories

    ERIC Educational Resources Information Center

    Grimm, Kevin; Zhang, Zhiyong; Hamagami, Fumiaki; Mazzocco, Michele

    2013-01-01

    We propose the use of the latent change and latent acceleration frameworks for modeling nonlinear growth in structural equation models. Moving to these frameworks allows for the direct identification of "rates of change" and "acceleration" in latent growth curves--information available indirectly through traditional growth…

  9. Resource Letter AFHEP-1: Accelerators for the Future of High-Energy Physics

    NASA Astrophysics Data System (ADS)

    Barletta, William A.

    2012-02-01

    This Resource Letter provides a guide to literature concerning the development of accelerators for the future of high-energy physics. Research articles, books, and Internet resources are cited for the following topics: motivation for future accelerators, present accelerators for high-energy physics, possible future machine, and laboratory and collaboration websites.

  10. 42 CFR 484.245 - Accelerated payments for home health agencies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as HHA bills are processed... 42 Public Health 5 2013-10-01 2013-10-01 false Accelerated payments for home health agencies. 484... for Home Health Agencies § 484.245 Accelerated payments for home health agencies. (a) General rule...

  11. 42 CFR 484.245 - Accelerated payments for home health agencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as HHA bills are processed... 42 Public Health 5 2014-10-01 2014-10-01 false Accelerated payments for home health agencies. 484... for Home Health Agencies § 484.245 Accelerated payments for home health agencies. (a) General rule...

  12. Stochastic Acceleration of Galactic Cosmic Rays by Compressible Plasma Fluctuations in Supernova Shells

    NASA Astrophysics Data System (ADS)

    Zhang, Ming

    2015-10-01

    A theory of 2-stage acceleration of Galactic cosmic rays in supernova remnants is proposed. The first stage is accomplished by the supernova shock front, where a power-law spectrum is established up to a certain cutoff energy. It is followed by stochastic acceleration with compressible waves/turbulence in the downstream medium. With a broad \\propto {k}-2 spectrum for the compressible plasma fluctuations, the rate of stochastic acceleration is constant over a wide range of particle momentum. In this case, the stochastic acceleration process extends the power-law spectrum cutoff energy of Galactic cosmic rays to the knee without changing the spectral slope. This situation happens as long as the rate of stochastic acceleration is faster than 1/5 of the adiabatic cooling rate. A steeper spectrum of compressible plasma fluctuations that concentrate their power in long wavelengths will accelerate cosmic rays to the knee with a small bump before its cutoff in the comic-ray energy spectrum. This theory does not require a strong amplification of the magnetic field in the upstream interstellar medium in order to accelerate cosmic rays to the knee energy.

  13. On Solar Wind Origin and Acceleration: Measurements from ACE

    NASA Astrophysics Data System (ADS)

    Stakhiv, Mark; Lepri, Susan T.; Landi, Enrico; Tracy, Patrick; Zurbuchen, Thomas H.

    2016-10-01

    The origin and acceleration of the solar wind are still debated. In this paper, we search for signatures of the source region and acceleration mechanism of the solar wind in the plasma properties measured in situ by the Advanced Composition Explorer spacecraft. Using the elemental abundances as a proxy for the source region and the differential velocity and ion temperature ratios as a proxy for the acceleration mechanism, we are able to identify signatures pointing toward possible source regions and acceleration mechanisms. We find that the fast solar wind in the ecliptic plane is the same as that observed from the polar regions and is consistent with wave acceleration and coronal-hole origin. We also find that the slow wind is composed of two components: one similar to the fast solar wind (with slower velocity) and the other likely originating from closed magnetic loops. Both components of the slow solar wind show signatures of wave acceleration. From these findings, we draw a scenario that envisions two types of wind, with different source regions and release mechanisms, but the same wave acceleration mechanism.

  14. Summary Report of Mission Acceleration Measurements for MSL-1: STS-83, Launched April 14, 1997; STS-94, Launched July 1, 1997

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Kenneth; Tschen, Peter; McPherson, Kevin; Nati, Maurizio; Reckart, Timothy A.

    1998-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-83 and STS-94 flights of the Microgravity Science Laboratory (MSL-1) mission using four different accelerometer systems: the Orbital Acceleration Research Experiment (OARE), the Space Acceleration Measurement System (SAMS), the Microgravity Measurement Assembly (MMA), and the Quasi-Steady Acceleration Measurement (QSAM) system. All four accelerometer systems provided investigators with acceleration measurements downlinked in near-real-time. Data from each system was recorded for post-mission analysis. The OARE measured the Shuttle's acceleration with high resolution in the quasi-steady frequency regime below about 0.1 Hz. The SAMS provided investigators with higher frequency acceleration measurements up to 25 Hz. The QSAM and MMA systems provided investigators with quasi-steady and higher frequency (up to 100 Hz) acceleration measurements, respectively. The microgravity environment related to various Orbiter maneuvers, crew activities, and experiment operations as measured by the OARE and MMA is presented and interpreted in section 8 of this report.

  15. Driver-witness electron beam acceleration in dielectric mm-scale capillaries

    NASA Astrophysics Data System (ADS)

    Lekomtsev, K.; Aryshev, A.; Tishchenko, A. A.; Shevelev, M.; Lyapin, A.; Boogert, S.; Karataev, P.; Terunuma, N.; Urakawa, J.

    2018-05-01

    We investigated a corrugated mm-scale capillary as a compact accelerating structure in the driver-witness acceleration scheme, and suggested a methodology to measure the acceleration of the witness bunch. The accelerating fields produced by the driver bunch and the energy spread of the witness bunch in a corrugated capillary and in a capillary with a constant inner radius were measured and simulated for both on-axis and off-axis beam propagation. Our simulations predicted a change in the accelerating field structure for the corrugated capillary. Also, an approximately twofold increase of the witness bunch energy gain on the first accelerating cycle was expected for both capillaries for the off-axis beam propagation. These results were confirmed in the experiment, and the maximum measured acceleration of 170 keV /m at 20 pC driver beam charge was achieved for off-axis beam propagation. The driver bunch showed an increase in energy spread of up to 11%, depending on the capillary geometry and beam propagation, with a suppression of the longitudinal energy spread in the witness bunch of up to 15%.

  16. Collective acceleration of ions in a system with an insulated anode

    NASA Astrophysics Data System (ADS)

    Bystritskii, V. M.; Didenko, A. N.; Krasik, Ya. E.; Lopatin, V. S.; Podkatov, V. I.

    1980-11-01

    An investigation was made of the processes of collective acceleration of protons in vacuum in a system with an insulated anode and trans-anode electrodes, which were insulated or grounded, in high-current Tonus and Vera electron accelerators. The influence of external conditions and parameters of the electron beam on the efficiency of acceleration processes was investigated. Experiments were carried out in which protons were accelerated in a system with trans-anode electrodes. A study was made of the influence of a charge prepulse and of the number of trans-anode electrodes on the energy of the accelerated electrons. A system with a single anode produced Np=1014 protons of 2Ee < Ep < 3Ee energy. Suppression of a charge prepulse increased the proton energy to (6 8)Ee and the yield was then 1013. The maximum proton energy of 14Ee was obtained in a system with three trans-anode electrodes. A possible mechanism of proton acceleration was analyzed. The results obtained were compared with those of other investigations. Ways of increasing the efficiency of this acceleration method were considered.

  17. Status of MAPA (Modular Accelerator Physics Analysis) and the Tech-X Object-Oriented Accelerator Library

    NASA Astrophysics Data System (ADS)

    Cary, J. R.; Shasharina, S.; Bruhwiler, D. L.

    1998-04-01

    The MAPA code is a fully interactive accelerator modeling and design tool consisting of a GUI and two object-oriented C++ libraries: a general library suitable for treatment of any dynamical system, and an accelerator library including many element types plus an accelerator class. The accelerator library inherits directly from the system library, which uses hash tables to store any relevant parameters or strings. The GUI can access these hash tables in a general way, allowing the user to invoke a window displaying all relevant parameters for a particular element type or for the accelerator class, with the option to change those parameters. The system library can advance an arbitrary number of dynamical variables through an arbitrary mapping. The accelerator class inherits this capability and overloads the relevant functions to advance the phase space variables of a charged particle through a string of elements. Among other things, the GUI makes phase space plots and finds fixed points of the map. We discuss the object hierarchy of the two libraries and use of the code.

  18. A New Type of Plasma Wakefield Accelerator Driven By Magnetowaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; /KIPAC, Menlo Park /Taiwan, Natl. Taiwan U.; Chang, Feng-Yin

    2011-09-12

    We present a new concept for a plasma wakefield accelerator driven by magnetowaves (MPWA). This concept was originally proposed as a viable mechanism for the 'cosmic accelerator' that would accelerate cosmic particles to ultra-high energies in the astrophysical setting. Unlike the more familiar plasma wakefield accelerator (PWFA) and the laser wakefield accelerator (LWFA) where the drivers, the charged-particle beam and the laser, are independently existing entities, MPWA invokes the high-frequency and high-speed whistler mode as the driver, which is a medium wave that cannot exist outside of the plasma. Aside from the difference in drivers, the underlying mechanism that excitesmore » the plasma wakefield via the ponderomotive potential is common. Our computer simulations show that under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over many plasma wavelengths. We suggest that in addition to its celestial application, the MPWA concept can also be of terrestrial utility. A proof-of-principle experiment on MPWA would benefit both terrestrial and celestial accelerator concepts.« less

  19. Optimizations of Human Restraint Systems for Short-Period Acceleration

    NASA Technical Reports Server (NTRS)

    Payne, P. R.

    1963-01-01

    A restraint system's main function is to restrain its occupant when his vehicle is subjected to acceleration. If the restraint system is rigid and well-fitting (to eliminate slack) then it will transmit the vehicle acceleration to its occupant without modifying it in any way. Few present-day restraint systems are stiff enough to give this one-to-one transmission characteristic, and depending upon their dynamic characteristics and the nature of the vehicle's acceleration-time history, they will either magnify or attenuate the acceleration. Obviously an optimum restraint system will give maximum attenuation of an input acceleration. In the general case of an arbitrary acceleration input, a computer must be used to determine the optimum dynamic characteristics for the restraint system. Analytical solutions can be obtained for certain simple cases, however, and these cases are considered in this paper, after the concept of dynamic models of the human body is introduced. The paper concludes with a description of an analog computer specially developed for the Air Force to handle completely general mechanical restraint optimization programs of this type, where the acceleration input may be any arbitrary function of time.

  20. Spatially inhomogeneous acceleration of electrons in solar flares

    NASA Astrophysics Data System (ADS)

    Stackhouse, Duncan J.; Kontar, Eduard P.

    2018-04-01

    The imaging spectroscopy capabilities of the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) enable the examination of the accelerated electron distribution throughout a solar flare region. In particular, it has been revealed that the energisation of these particles takes place over a region of finite size, sometimes resolved by RHESSI observations. In this paper, we present, for the first time, a spatially distributed acceleration model and investigate the role of inhomogeneous acceleration on the observed X-ray emission properties. We have modelled transport explicitly examining scatter-free and diffusive transport within the acceleration region and compare with the analytic leaky-box solution. The results show the importance of including this spatial variation when modelling electron acceleration in solar flares. The presence of an inhomogeneous, extended acceleration region produces a spectral index that is, in most cases, different from the simple leaky-box prediction. In particular, it results in a generally softer spectral index than predicted by the leaky-box solution, for both scatter-free and diffusive transport, and thus should be taken into account when modelling stochastic acceleration in solar flares.

  1. ON SOLAR WIND ORIGIN AND ACCELERATION: MEASUREMENTS FROM ACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stakhiv, Mark; Lepri, Susan T.; Landi, Enrico

    The origin and acceleration of the solar wind are still debated. In this paper, we search for signatures of the source region and acceleration mechanism of the solar wind in the plasma properties measured in situ by the Advanced Composition Explorer spacecraft. Using the elemental abundances as a proxy for the source region and the differential velocity and ion temperature ratios as a proxy for the acceleration mechanism, we are able to identify signatures pointing toward possible source regions and acceleration mechanisms. We find that the fast solar wind in the ecliptic plane is the same as that observed frommore » the polar regions and is consistent with wave acceleration and coronal-hole origin. We also find that the slow wind is composed of two components: one similar to the fast solar wind (with slower velocity) and the other likely originating from closed magnetic loops. Both components of the slow solar wind show signatures of wave acceleration. From these findings, we draw a scenario that envisions two types of wind, with different source regions and release mechanisms, but the same wave acceleration mechanism.« less

  2. A new compact structure for a high intensity low-energy heavy-ion accelerator

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; He, Yuan; A. Kolomiets, A.; Liu, Shu-Hui; Du, Xiao-Nan; Jia, Huan; Li, Chao; Wang, Wang-Sheng; Chen, Xi-Meng

    2013-12-01

    A new compact accelerating structure named Hybrid RFQ is proposed to accelerate a high-intensity low-energy heavy ion beam in HISCL (High Intensive heavy ion SuperConducting Linear accelerator), which is an injector of HIAF (Heavy Ion Advanced Research Facility). It is combined by an alternative series of acceleration gaps and RFQ sections. The proposed structure has a high accelerating ability compared with a conventional RFQ and is more compact than traditional DTLs. A Hybrid RFQ is designed to accelerate 238U34+ from 0.38 MeV/u to 1.33 MeV/u. The operation frequency is described to be 81.25 MHz at CW (continuous wave) mode. The design beam current is 1.0 mA. The results of beam dynamics and RF simulation of the Hybrid RFQ show that the structure has a good performance at the energy range for ion acceleration. The emittance growth is less than 5% in both directions and the RF power is less than 150 kW. In this paper, the results of beam dynamics and RF simulation of the Hybrid RFQ are presented.

  3. The radiation field measurement and analysis outside the shielding of A 10 MeV electron irradiation accelerator

    NASA Astrophysics Data System (ADS)

    Shang, Jing; Li, Juexin; Xu, Bing; Li, Yuxiong

    2011-10-01

    Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the 60Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.

  4. Accelerated life assessment of coating on the radar structure components in coastal environment.

    PubMed

    Liu, Zhe; Ming, ZhiMao

    2016-07-04

    This paper aimed to build an accelerated life test scheme and carry out quantitative analysis between accelerated life test in the laboratory and actual service for the coating composed of epoxy primer and polyurethane paint on structure components of some kind of radar served in the coastal environment of South China Sea. The accelerated life test scheme was built based on the service environment and failure analysis of the coating. The quantitative analysis between accelerated life test and actual service was conducted by comparing the gloss loss, discoloration, chalking, blistering, cracking and electrochemical impedance spectroscopy of the coating. The main factors leading to the coating failure were ultraviolet radiation, temperature, moisture, salt fog and loads, the accelerated life test included ultraviolet radiation, damp heat, thermal shock, fatigue and salt spray. The quantitative relationship was that one cycle of the accelerated life test was equal to actual service for one year. It was established that one cycle of the accelerated life test was equal to actual service for one year. It provided a precise way to predict actual service life of newly developed coatings for the manufacturer.

  5. Accelerating rates of cognitive decline and imaging markers associated with β-amyloid pathology.

    PubMed

    Insel, Philip S; Mattsson, Niklas; Mackin, R Scott; Schöll, Michael; Nosheny, Rachel L; Tosun, Duygu; Donohue, Michael C; Aisen, Paul S; Jagust, William J; Weiner, Michael W

    2016-05-17

    To estimate points along the spectrum of β-amyloid pathology at which rates of change of several measures of neuronal injury and cognitive decline begin to accelerate. In 460 patients with mild cognitive impairment (MCI), we estimated the points at which rates of florbetapir PET, fluorodeoxyglucose (FDG) PET, MRI, and cognitive and functional decline begin to accelerate with respect to baseline CSF Aβ42. Points of initial acceleration in rates of decline were estimated using mixed-effects regression. Rates of neuronal injury and cognitive and even functional decline accelerate substantially before the conventional threshold for amyloid positivity, with rates of florbetapir PET and FDG PET accelerating early. Temporal lobe atrophy rates also accelerate prior to the threshold, but not before the acceleration of cognitive and functional decline. A considerable proportion of patients with MCI would not meet inclusion criteria for a trial using the current threshold for amyloid positivity, even though on average, they are experiencing cognitive/functional decline associated with prethreshold levels of CSF Aβ42. Future trials in early Alzheimer disease might consider revising the criteria regarding β-amyloid thresholds to include the range of amyloid associated with the first signs of accelerating rates of decline. © 2016 American Academy of Neurology.

  6. Accelerating rates of cognitive decline and imaging markers associated with β-amyloid pathology

    PubMed Central

    Mattsson, Niklas; Mackin, R. Scott; Schöll, Michael; Nosheny, Rachel L.; Tosun, Duygu; Donohue, Michael C.; Aisen, Paul S.; Jagust, William J.; Weiner, Michael W.

    2016-01-01

    Objective: To estimate points along the spectrum of β-amyloid pathology at which rates of change of several measures of neuronal injury and cognitive decline begin to accelerate. Methods: In 460 patients with mild cognitive impairment (MCI), we estimated the points at which rates of florbetapir PET, fluorodeoxyglucose (FDG) PET, MRI, and cognitive and functional decline begin to accelerate with respect to baseline CSF Aβ42. Points of initial acceleration in rates of decline were estimated using mixed-effects regression. Results: Rates of neuronal injury and cognitive and even functional decline accelerate substantially before the conventional threshold for amyloid positivity, with rates of florbetapir PET and FDG PET accelerating early. Temporal lobe atrophy rates also accelerate prior to the threshold, but not before the acceleration of cognitive and functional decline. Conclusions: A considerable proportion of patients with MCI would not meet inclusion criteria for a trial using the current threshold for amyloid positivity, even though on average, they are experiencing cognitive/functional decline associated with prethreshold levels of CSF Aβ42. Future trials in early Alzheimer disease might consider revising the criteria regarding β-amyloid thresholds to include the range of amyloid associated with the first signs of accelerating rates of decline. PMID:27164667

  7. Accelerating rates of cognitive decline and imaging markers associated with β-amyloid pathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Insel, Philip S.; Mattsson, Niklas; Mackin, R. Scott

    Objective: Our objective is to estimate points along the spectrum of β-amyloid pathology at which rates of change of several measures of neuronal injury and cognitive decline begin to accelerate. Methods: In 460 patients with mild cognitive impairment (MCI), we estimated the points at which rates of florbetapir PET, fluorodeoxyglucose (FDG) PET, MRI, and cognitive and functional decline begin to accelerate with respect to baseline CSF Aβ 42. Points of initial acceleration in rates of decline were estimated using mixed-effects regression. Results: Rates of neuronal injury and cognitive and even functional decline accelerate substantially before the conventional threshold for amyloidmore » positivity, with rates of florbetapir PET and FDG PET accelerating early. Temporal lobe atrophy rates also accelerate prior to the threshold, but not before the acceleration of cognitive and functional decline. Conclusions: A considerable proportion of patients with MCI would not meet inclusion criteria for a trial using the current threshold for amyloid positivity, even though on average, they are experiencing cognitive/functional decline associated with prethreshold levels of CSF Aβ 42. Lastly, future trials in early Alzheimer disease might consider revising the criteria regarding β-amyloid thresholds to include the range of amyloid associated with the first signs of accelerating rates of decline.« less

  8. Accelerating rates of cognitive decline and imaging markers associated with β-amyloid pathology

    DOE PAGES

    Insel, Philip S.; Mattsson, Niklas; Mackin, R. Scott; ...

    2016-04-15

    Objective: Our objective is to estimate points along the spectrum of β-amyloid pathology at which rates of change of several measures of neuronal injury and cognitive decline begin to accelerate. Methods: In 460 patients with mild cognitive impairment (MCI), we estimated the points at which rates of florbetapir PET, fluorodeoxyglucose (FDG) PET, MRI, and cognitive and functional decline begin to accelerate with respect to baseline CSF Aβ 42. Points of initial acceleration in rates of decline were estimated using mixed-effects regression. Results: Rates of neuronal injury and cognitive and even functional decline accelerate substantially before the conventional threshold for amyloidmore » positivity, with rates of florbetapir PET and FDG PET accelerating early. Temporal lobe atrophy rates also accelerate prior to the threshold, but not before the acceleration of cognitive and functional decline. Conclusions: A considerable proportion of patients with MCI would not meet inclusion criteria for a trial using the current threshold for amyloid positivity, even though on average, they are experiencing cognitive/functional decline associated with prethreshold levels of CSF Aβ 42. Lastly, future trials in early Alzheimer disease might consider revising the criteria regarding β-amyloid thresholds to include the range of amyloid associated with the first signs of accelerating rates of decline.« less

  9. Accelerator-Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek

    This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.

  10. Quasi-Steady Acceleration Direction Indicator in Three Dimensions

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Nelson, Emily S.; Jules, Kenol

    2000-01-01

    Many materials processing and fluids physics experiments conducted in a microgravity environment require knowledge of the orientation of the low-frequency acceleration vector. This need becomes especially acute for space experiments such as directional solidification of a molten semiconductor, which is extremely sensitive to orientation and may involve tens of hours of operations of a materials furnace. These low-frequency acceleration data have been measured for many Shuttle missions with the Orbital Acceleration Research Experiment. Previous attempts at using fluid chambers for acceleration measurements have met with limited success due to pointing and vehicle attitude complications. An acceleration direction indicator is described, which is comprised of two orthogonal short cylinders of fluid, each with a small bubble. The motion and the position of the bubble within the chamber will indicate the direction of the acceleration experienced at the sensor location. The direction of the acceleration vector may then be calculated from these data. The frequency response of such an instrument may be tailored for particular experiments with the proper selection of fluid and gas parameters, surface type, and geometry. A three-dimensional system for sensing and displaying the low-frequency acceleration direction via an innovative technique described in this paper has advantages in terms of size, mass, and power compared with electronic instrumentation systems.

  11. Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 1; Start-up

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Rogers, Paul; Hoff, Craig

    2000-01-01

    The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. They are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the first part of the experimental study, i.e. the effects of a centrifugal force on the LHP start-up. Tests were conducted by varying the heat load to the evaporator, sink temperature, magnitude and frequency of centrifugal force, and LHP orientation relative to the direction of the accelerating force. The accelerating force seems to have little effect on the loop start-up in terms of temperature overshoot and superheat at boiling incipience. Changes in these parameters seem to be stochastic with or without centrifugal accelerating forces. The LHP started successfully in all tests.

  12. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    DOE PAGES

    Doche, A.; Beekman, C.; Corde, S.; ...

    2017-10-27

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less

  13. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doche, A.; Beekman, C.; Corde, S.

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less

  14. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    DOE PAGES

    Persaud, A.; Ji, Q.; Feinberg, E.; ...

    2017-06-08

    Here, a new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number ofmore » parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further red ucing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Finally, ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.« less

  15. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  16. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.

    PubMed

    Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  17. The Role of Substorms in Storm-time Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Daglis, Ioannis A.; Kamide, Yohsuke

    The terrestrial magnetosphere has the capability to rapidly accelerate charged particles up to very high energies over relatively short times and distances. Acceleration of charged particles is an essential ingredient of both magnetospheric substorms and space storms. In the case of space storms, the ultimate result is a bulk flow of electric charge through the inner magnetosphere, commonly known as the ring current. Syun-Ichi Akasofu and Sydney Chapman, two of the early pioneers in space physics, postulated that the bulk acceleration of particles during storms is rather the additive result of partial acceleration during consecutive substorms. This paradigm has been heavily disputed during recent years. The new case is that substorm acceleration may be sufficient to produce individual high-energy particles that create auroras and possibly harm spacecraft, but it cannot produce the massive acceleration that constitutes a storm. This paper is a critical review of the long-standing issue of the storm-substorm relationship, or—in other words—the capability or necessity of substorms in facilitating or driving the build-up of the storm-time ring current. We mainly address the physical effect itself, i.e. the bulk acceleration of particles, and not the diagnostic of the process, i.e. the Dst index, which is rather often the case. Within the framework of particle acceleration, substorms retain their storm-importance due to the potential of substorm-induced impulsive electric fields in obtaining the massive ion acceleration needed for the storm-time ring current buildup.

  18. High Gradient Accelerator Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temkin, Richard

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave coldmore » test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.« less

  19. Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies

    NASA Astrophysics Data System (ADS)

    Susoeff, A. R.; Hawke, R. S.; Morrison, J. J.; Dimonte, G.; Remington, B. A.

    1993-12-01

    An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. The Rayleigh-Taylor instability is investigated by accelerating two dissimilar density fluids using the LEM to achieve a wide variety of acceleration and deceleration profiles. The acceleration profiles are achieved by independent control of rail and augmentation currents. A variety of acceleration-time profiles are possible including: (1) constant, (2) impulsive and (3) shaped. The LEM and support structure are a robust design in order to withstand high loads with deflections and to mitigate operational vibration. Vibration of the carriage during acceleration could create artifacts in the data which would interfere with the intended study of the Rayleigh-Taylor instability. The design allows clear access for diagnostic techniques such as laser induced fluorescence radiography, shadowgraphs and particle imaging velocimetry. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Results of contemporary studies for non-arcing sliding contact of solid armatures are used for the design of the driving armature and the dynamic electromagnetic braking system. A 0.6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM design which will accelerate masses of up to 3kg to a maximum of about 3000g(sub o), where g(sub o) is accelerated due to gravity.

  20. What can we learn from the self-attraction and loading fingerprints about pre-GRACE mass-loss acceleration from Greenland and Antarctica?

    NASA Astrophysics Data System (ADS)

    Davis, J. L.; Vinogradova, N. T.

    2017-12-01

    Tide-gauge records from the North Atlantic reveal significant acceleration in sea level starting in the late 20th century. We have analyzed the tide-gauge data using a model in which the accelerations are assumed to be zero prior to 1990. The estimated accelerations range from -1 to +3 m cy-2 and exhibit a systematic spatial variability. Davis and Vinogradova [2017] demonstrated that to model this variability in sea-level acceleration requires contributions from several distinct physical processes: accelerated mass loss from the Greenland and Antarctic Ice Sheets and acceleration associated with ocean circulation and heat uptake. Atmospheric pressure also contributes to the observed changes in sea level, at a much smaller amplitude. Because we are focusing on sea-level accelerations (i.e., sea-level rate changes), the contribution from Glacial Isostatic Adjustment (GIA) is negligible. Modeling of observed sea-level acceleration is achieved using external constraints for the important physical processes. Using GRACE results, we can calculate the sea-level "fingerprints" for Greenland and Antarctica associated with mass loading and gravitational perturbations. For the North Atlantic, Greenland induces a significant spatial variation in sea-level change—dominated by the solid-Earth response to the mass loss—whereas Antarctica contributes a spatially constant acceleration. The observations prefer a scaling of the solid-Earth/gravitational response, and we present the implications of this result for ice-mass changes prior to the onset of GRACE observations (2002-3).

  1. Plasma wakefield acceleration experiments at FACET II

    NASA Astrophysics Data System (ADS)

    Joshi, C.; Adli, E.; An, W.; Clayton, C. E.; Corde, S.; Gessner, S.; Hogan, M. J.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; O'shea, B.; Xu, Xinlu; White, G.; Yakimenko, V.

    2018-03-01

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the ‘blow-out regime’ have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currently under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. We then briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.

  2. Plasma wakefield acceleration experiments at FACET II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, C.; Adli, E.; An, W.

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less

  3. Characteristics of Four SPE Classes According to Onset Timing and Proton Acceleration Patterns

    NASA Astrophysics Data System (ADS)

    Kim, Roksoon

    2015-04-01

    In our previous work (Kim et al., 2015), we suggested a new classification scheme, which categorizes the SPEs into four groups based on association with flare or CME inferred from onset timings as well as proton acceleration patterns using multienergy observations. In this study, we have tried to find whether there are any typical characteristics of associated events and acceleration sites in each group using 42 SPEs from 1997 to 2012. We find: (i) if the proton acceleration starts from a lower energy, a SPE has a higher chance to be a strong event (> 5000 pfu) even if the associated flare and CME are not so strong. The only difference between the SPEs associated with flare and CME is the location of the acceleration site. For the former, the sites are very low ( ~1 Rs) and close to the western limb, while the latter has a relatively higher (mean=6.05 Rs) and wider acceleration sites. (ii) When the proton acceleration starts from the higher energy, a SPE tends to be a relatively weak event (< 1000 pfu), in spite of its associated CME is relatively stronger than previous group. (iii) The SPEs categorized by the simultaneous proton acceleration in whole energy range within 10 minutes, tend to show the weakest proton flux (mean=327 pfu) in spite of strong related eruptions. Their acceleration heights are very close to the locations of type II radio bursts. Based on those results, we suggest that the different characteristics of the four groups are mainly due to the different mechanisms governing the acceleration pattern and interval, and different condition such as the acceleration location.

  4. Quantitative comparison of the pivot shift test results before and after anterior cruciate ligament reconstruction by using the three-dimensional electromagnetic measurement system.

    PubMed

    Nagai, Kanto; Hoshino, Yuichi; Nishizawa, Yuichiro; Araki, Daisuke; Matsushita, Takehiko; Matsumoto, Tomoyuki; Takayama, Koji; Nagamune, Kouki; Kurosaka, Masahiro; Kuroda, Ryosuke

    2015-10-01

    Tibial acceleration during the pivot shift test is a potential quantitative parameter to evaluate rotational laxity of anterior cruciate ligament (ACL) insufficiency. However, clinical application of this measurement has not been fully examined. This study aimed to measure and compare tibial acceleration before and after ACL reconstruction (ACLR) in ACL-injured patients. We hypothesized tibial acceleration would be reduced by ACLR and tibial acceleration would be consistent in the same knee at different time points. Seventy ACL-injured patients who underwent ACLR were enrolled. Tibial acceleration during the pivot shift test was measured using an electromagnetic measurement system before ALCR and at the second-look arthroscopy 1 year post-operatively. Tibial acceleration was compared to clinical grading and between ACL-injured/ACL-reconstructed and contralateral knees. Pre-operative tibial acceleration was increased stepwise with the increase in clinical grading (P < 0.01). Tibial acceleration in ACL-injured knee (1.9 ± 1.2 m/s(2)) was larger than that in the contralateral knee (0.8 ± 0.3 m/s(2), P < 0.01), and reduced to 0.9 ± 0.3 m/s(2) post-operatively (P < 0.01). There was no difference between ACL-reconstructed and contralateral knee (n.s.). Tibial acceleration in contralateral knees was consistent pre- and post-operatively (n.s.). Tibial acceleration measurement demonstrated increased rotational laxity in ACL-injured knees and its reduction by ALCR. Additionally, consistent measurements were obtained in ACL-intact knees at different time points. Therefore, tibial acceleration during the pivot shift test could provide quantitative evaluation of rotational stability before and after ACL reconstruction. III.

  5. Structure of sheared and rotating turbulence: Multiscale statistics of Lagrangian and Eulerian accelerations and passive scalar dynamics.

    PubMed

    Jacobitz, Frank G; Schneider, Kai; Bos, Wouter J T; Farge, Marie

    2016-01-01

    The acceleration statistics of sheared and rotating homogeneous turbulence are studied using direct numerical simulation results. The statistical properties of Lagrangian and Eulerian accelerations are considered together with the influence of the rotation to shear ratio, as well as the scale dependence of their statistics. The probability density functions (pdfs) of both Lagrangian and Eulerian accelerations show a strong and similar dependence on the rotation to shear ratio. The variance and flatness of both accelerations are analyzed and the extreme values of the Eulerian acceleration are observed to be above those of the Lagrangian acceleration. For strong rotation it is observed that flatness yields values close to three, corresponding to Gaussian-like behavior, and for moderate and vanishing rotation the flatness increases. Furthermore, the Lagrangian and Eulerian accelerations are shown to be strongly correlated for strong rotation due to a reduced nonlinear term in this case. A wavelet-based scale-dependent analysis shows that the flatness of both Eulerian and Lagrangian accelerations increases as scale decreases, which provides evidence for intermittent behavior. For strong rotation the Eulerian acceleration is even more intermittent than the Lagrangian acceleration, while the opposite result is obtained for moderate rotation. Moreover, the dynamics of a passive scalar with gradient production in the direction of the mean velocity gradient is analyzed and the influence of the rotation to shear ratio is studied. Concerning the concentration of a passive scalar spread by the flow, the pdf of its Eulerian time rate of change presents higher extreme values than those of its Lagrangian time rate of change. This suggests that the Eulerian time rate of change of scalar concentration is mainly due to advection, while its Lagrangian counterpart is only due to gradient production and viscous dissipation.

  6. Plasma wakefield acceleration experiments at FACET II

    DOE PAGES

    Joshi, C.; Adli, E.; An, W.; ...

    2018-01-12

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less

  7. Results of the Quasi-Steady Acceleration Environment from the STS-62 Missions

    NASA Technical Reports Server (NTRS)

    Matisak, Brian; French, Larry; DeLombard, Richard; Wagar, William

    1995-01-01

    One of the clear benefits of conducting scientific research in space is to take advantage of the reduced acceleration environment. Many accelerometer packages have proven to accurately measure the acceleration environment at frequency levels above one Hz. However, for particular classes of experiments the quality of science returns is a direct function of the extremely low frequency (less than 0.01 Hz), quasi-steady acceleration environment. One class particularly interested in this acceleration regime is the group of crystal growth experimenters. These scientists are primarily interested in knowing the resultant quasi-steady acceleration vector at their respective crystal growth locations. The objective of many of these scientists is to minimize the amount of convective flow acting in a direction perpendicular to the growth axis of the crystal. Convective flow within the crystal can be induced by the direction and magnitude of the quasi-steady acceleration vector. Convective flows acting perpendicular to the growth axis of the crystal can cause nonuniformity within the crystal, thus reducing the quality of the results. The Orbital Acceleration Research Experiment (OARE), an accelerometer package hardmounted to the bottom of the payload bay of the orbiter Columbia (OV-102), has the capability of monitoring and recording the quasi-steady acceleration environment. This paper will describe the components that make up the on-orbit quasi-steady acceleration environment, detail how results from the OARE device were achieved, and compare modelled acceleration results with actual on-orbit OARE results from the STS-62 and STS-65 flights. A summary of the results will be provided along with possible recommendations of how to combine modelled and realtime quasi-steady accelerometer data for future Shuttle flights.

  8. The accelerated residency program: the Marshall University family practice 9-year experience.

    PubMed

    Petrany, Stephen M; Crespo, Richard

    2002-10-01

    In 1989, the American Board of Family Practice (ABFP) approved the first of 12 accelerated residency programs in family practice. These experimental programs provide a 1-year experience for select medical students that combines the requirements of the fourth year of medical school with those of the first year of residency, reducing the total training time by 1 year. This paper reports on the achievements and limitations of the Marshall University accelerated residency program over a 9-year period that began in 1992. Several parameters have been monitored since the inception of the accelerated program and provide the basis for comparison of accelerated and traditional residents. These include initial resident characteristics, performance outcomes, and practice choices. A total of 16 students were accepted into the accelerated track from 1992 through 1998. During the same time period, 44 residents entered the traditional residency program. Accelerated resident tended to be older and had more career experience than their traditional counterparts. As a group, the accelerated residents scored an average of 30 points higher on the final in-training exams provided by the ABFP. All residents in both groups remained at Marshall to complete the full residency training experience, and all those who have taken the ABFP certifying exam have passed. Accelerated residents were more likely to practice in West Virginia, consistent with one of the initial goals for the program. In addition, accelerated residents were more likely to be elected chief resident and choose an academic career than those in the traditional group. Both groups opted for small town or rural practice equally. The Marshall University family practice 9-year experience with the accelerated residency track demonstrates that for carefully selected candidates, the program can provide an overall shortened path to board certification and attract students who excel academically and have high leadership potential. Reports from other accelerated programs are needed to fully assess the outcomes of this experiment in postgraduate medical education.

  9. Analysis of the acceleration profile according to initial speed and positional role in elite professional male soccer players.

    PubMed

    de Hoyo, Moisés; Sañudo, Borja; Suárez-Arrones, Luis; Carrasco, Luis; Joel, Tom; Domínguez-Cobo, Sergio; Núñez, Francisco J

    2017-12-01

    The aim of the current study was to analyse the acceleration profile in elite professional soccer players according to their initial speed but also considering players' position. Players' accelerations profiles were analysed using a relative acceleration profile according to the initial speed (S1, from 0 to 7 km/h; S2, from 7.1 to 14.3 km/h; and S3, ≥14.4 km/h) and the maximum acceleration. Within-group analyses showed that Center Backs (CB) performed more high intensity accelerations (likely) when they started in S1 than S2 (ES: 0.50). Strikers (S) and Wide Midfielders (W-MD) achieved more accelerations (likely to almost certain) starting in S3 than S1 (ES: 0.80 and 0.59, respectively) and S2 (ES: 0.67 and 1.09, respectively). Full Backs (FB) completed more accelerations (almost certain) starting in S1 and S3 than S2 (ES: 1.39 and 1.36, respectively). Finally, Midfielders (MD) executed a greater number of high intensity accelerations (likely to almost certain) when they started in S1 than S2 (ES: 0.83) and S3 (ES: 0.66), and in S3 than S2 (ES: 4.72). Between-group analyses showed that S, W-MD, and FB performed a greater total number of high intensity accelerations (very likely to almost certain) than CB (ES: 1.94, 1.57, and 1.51, respectively) and MD (ES: 1.23, 0.92; and 0.81, respectively). Furthermore, MD performed substantially greater total number of high intensity accelerations (likely) than CB (ES: 0.56). Results suggest that CB achieved more high-intensity accelerations starting in low and moderate speed, S and W-MD in high speed, and FB combined low and high speed.

  10. Modelling of proton acceleration in application to a ground level enhancement

    NASA Astrophysics Data System (ADS)

    Afanasiev, A.; Vainio, R.; Rouillard, A. P.; Battarbee, M.; Aran, A.; Zucca, P.

    2018-06-01

    Context. The source of high-energy protons (above 500 MeV) responsible for ground level enhancements (GLEs) remains an open question in solar physics. One of the candidates is a shock wave driven by a coronal mass ejection, which is thought to accelerate particles via diffusive-shock acceleration. Aims: We perform physics-based simulations of proton acceleration using information on the shock and ambient plasma parameters derived from the observation of a real GLE event. We analyse the simulation results to find out which of the parameters are significant in controlling the acceleration efficiency and to get a better understanding of the conditions under which the shock can produce relativistic protons. Methods: We use the results of the recently developed technique to determine the shock and ambient plasma parameters, applied to the 17 May 2012 GLE event, and carry out proton acceleration simulations with the Coronal Shock Acceleration (CSA) model. Results: We performed proton acceleration simulations for nine individual magnetic field lines characterised by various plasma conditions. Analysis of the simulation results shows that the acceleration efficiency of the shock, i.e. its ability to accelerate particles to high energies, tends to be higher for those shock portions that are characterised by higher values of the scattering-centre compression ratio rc and/or the fast-mode Mach number MFM. At the same time, the acceleration efficiency can be strengthened by enhanced plasma density in the corresponding flux tube. The simulations show that protons can be accelerated to GLE energies in the shock portions characterised by the highest values of rc. Analysis of the delays between the flare onset and the production times of protons of 1 GV rigidity for different field lines in our simulations, and a subsequent comparison of those with the observed values indicate a possibility that quasi-perpendicular portions of the shock play the main role in producing relativistic protons.

  11. Accelerant-related burns and drug abuse: Challenging combination.

    PubMed

    Leung, Leslie T F; Papp, Anthony

    2018-05-01

    Accelerants are flammable substances that may cause explosion when added to existing fires. The relationships between drug abuse and accelerant-related burns are not well elucidated in the literature. Of these burns, a portion is related to drug manufacturing, which have been shown to be associated with increased burn complications. 1) To evaluate the demographics and clinical outcomes of accelerant-related burns in a Provincial Burn Centre. 2) To compare the clinical outcomes with a control group of non-accelerant related burns. 3) To analyze a subgroup of patients with history of drug abuse and drug manufacturing. Retrospective case control study. Patient data associated with accelerant-related burns from 2009 to 2014 were obtained from the British Columbia Burn Registry. These patients were compared with a control group of non-accelerant related burns. Clinical outcomes that were evaluated include inhalational injury, ICU length of stay, ventilator support, surgeries needed, and burn complications. Chi-square test was used to evaluate categorical data and Student's t-test was used to evaluate mean quantitative data with the p value set at 0.05. A logistic regression model was used to evaluate factors affecting burn complications. Accelerant-related burns represented 28.2% of all burn admissions (N=532) from 2009 to 2014. The accelerant group had higher percentage of patients with history of drug abuse and was associated with higher TBSA burns, ventilator support, ICU stay and pneumonia rates compared to the non-accelerant group. Within the accelerant group, there was no difference in clinical outcomes amongst people with or without history of drug abuse. Four cases were associated with methamphetamine manufacturing, all of which underwent ICU stay and ventilator support. Accelerant-related burns cause significant burden to the burn center. A significant proportion of these patients have history of drug abuse. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  12. Prolonged electron accelerations at a high-Mach-number, quasi-perpendicular shock

    NASA Astrophysics Data System (ADS)

    Matsumoto, Y.; Amano, T.; Kato, T.; Hoshino, M.

    2016-12-01

    Elucidating acceleration mechanisms of charged particles have been of great interests in laboratory, space, and astrophysical plasmas. Among other mechanisms, a collision-less shock is thought as an efficient particle accelerator. The idea has been strengthened by radio, X-ray, and gamma-ray observations of astrophysical objects such as supernova remnant shocks, where it has been indicated that protons and electrons are efficiently accelerated to TeV energies at such very strong shock waves. Efficient electron accelerations at high-Mach-number shocks was also suggested recently by in-situ measurements at the Saturn's bow shock. Motivated by these circumstances, laboratory experiments using high-power laser facilities emerge to provide a new platform to tackle these problems.Numerical simulations have revealed that electrons can be efficiently heated and accelerated via so-called the shock surfing acceleration mechanism in which electron-scale Buneman instability played key roles. Recently, Matsumoto et al. [2015] proposed a stochastic acceleration mechanism by turbulent reconnection in the shock transition region through excitation of the ion Weibel instability. In order to deal with the two different acceleration mechanisms in a self-consistent system, we examined 3D PIC simulations of a quasi-perpendicular, high-Mach-number shock. We successfully followed a long term evolution in which two different acceleration mechanisms coexist in the 3D shock structure. The Buneman instability is strongly excited ahead of the shock front in the same manner as have been found in 2D simulations. The surfing acceleration is found to be very effective in the present 3D system. In the transition region, the ion-beam Weibel instability generated strong magnetic field turbulence in 3D space. Energetic electrons, which initially experienced the surfing acceleration, undergo pitch-angle diffusion by interacting with the turbulent fields and thus stay in the upstream regions. The ion Weibel turbulence is essentially the key to prolonged acceleration processes which can produce relativistic particles with energies more than 1000 times the initial kinetic energy. We present how such relativistic electrons are produced during traveling in the 3D shock structure.

  13. Accelerator science and technology in Europe 2008-2017

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    European Framework Research Projects have recently added a lot of meaning to the building process of the ERA - the European Research Area. Inside this, the accelerator technology plays an essential role. Accelerator technology includes large infrastructure and intelligent, modern instrumentation embracing mechatronics, electronics, photonics and ICT. During the realization of the European research and infrastructure project FP6 CARE 2004-2008 (Coordinated Accelerator Research in Europe), concerning the development of large accelerator infrastructure in Europe, it was decided that a scientific editorial series of peer-reviewed monographs from this research area will be published in close relation with the projects. It was a completely new and quite brave idea to combine a kind of a strictly research publisher with a transient project, lasting only four or five years. Till then nobody did something like that. The idea turned out to be a real success. The publications now known and valued in the accelerator world, as the (CERN-WUT) Editorial Series on Accelerator Science and Technology, is successfully continued in already the third European project EuCARD2 and has logistic guarantees, for the moment, till the 2017, when it will mature to its first decade. During the realization of the European projects EuCARD (European Coordination for Accelerator R&D 2009-2013 and TIARA (Test Infrastructure of Accelerator Research Area in Europe) there were published 18 volumes in this series. The ambitious plans for the nearest years is to publish, hopefully, a few tens of new volumes. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, published in the monographs of the European Framework Projects (FP) on accelerator technology. The succession of CARE, EuCARD and EuCARD Projects is evidently creating a new quality in the European Accelerator Research. It is consolidating the technical and research communities in a new way, completely different than the traditional ones, for example via the periodic topical conferences.

  14. A pixel detector system for laser-accelerated ion detection

    NASA Astrophysics Data System (ADS)

    Reinhardt, S.; Draxinger, W.; Schreiber, J.; Assmann, W.

    2013-03-01

    Laser ion acceleration is an unique acceleration process that creates ultra-short ion pulses of high intensity ( > 107 ions/cm2/ns), which makes online detection an ambitious task. Non-electronic detectors such as radio-chromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39) are broadly used at present. Only offline information on ion pulse intensity and position are available by these detectors, as minutes to hours of processing time are required after their exposure. With increasing pulse repetition rate of the laser system, there is a growing need for detection of laser accelerated ions in real-time. Therefore, we have investigated a commercial pixel detector system for online detection of laser-accelerated proton pulses. The CMOS imager RadEye1 was chosen, which is based on a photodiode array, 512 × 1024 pixels with 48 μm pixel pitch, thus offering a large sensitive area of approximately 25 × 50 mm2. First detection tests were accomplished at the conventional electrostatic 14 MV Tandem accelerator in Munich as well as Atlas laser accelerator. Detector response measurements at the conventional accelerator have been accomplished in a proton beam in dc (15 MeV) and pulsed (20 MeV) irradiation mode, the latter providing comparable particle flux as under laser acceleration conditions. Radiation hardness of the device was studied using protons (20 MeV) and C-ions (77 MeV), additionally. The detector system shows a linear response up to a maximum pulse flux of about 107 protons/cm2/ns. Single particle detection is possible in a low flux beam (104 protons/cm2/s) for all investigated energies. The radiation hardness has shown to give reasonable lifetime for an application at the laser accelerator. The results from the irradiation at a conventional accelerator are confirmed by a cross-calibration with CR39 in a laser-accelerated proton beam at the MPQ Atlas Laser in Garching, showing no problems of detector operation in presence of electro-magnetic pulse (EMP). The calibrated detector system was finally used for online detection of laser-accelerated proton and carbon ions at the Astra-Gemini laser.

  15. Jerome Lewis Duggan: A Nuclear Physicist and a Well-Known, Six-Decade Accelerator Application Conference (CAARI) Organizer

    NASA Astrophysics Data System (ADS)

    Del McDaniel, Floyd; Doyle, Barney L.

    Jerry Duggan was an experimental MeV-accelerator-based nuclear and atomic physicist who, over the past few decades, played a key role in the important transition of this field from basic to applied physics. His fascination for and application of particle accelerators spanned almost 60 years, and led to important discoveries in the following fields: accelerator-based analysis (accelerator mass spectrometry, ion beam techniques, nuclear-based analysis, nuclear microprobes, neutron techniques); accelerator facilities, stewardship, and technology development; accelerator applications (industrial, medical, security and defense, and teaching with accelerators); applied research with accelerators (advanced synthesis and modification, radiation effects, nanosciences and technology); physics research (atomic and molecular physics, and nuclear physics); and many other areas and applications. Here we describe Jerry’s physics education at the University of North Texas (B. S. and M. S.) and Louisiana State University (Ph.D.). We also discuss his research at UNT, LSU, and Oak Ridge National Laboratory, his involvement with the industrial aspects of accelerators, and his impact on many graduate students, colleagues at UNT and other universities, national laboratories, and industry and acquaintances around the world. Along the way, we found it hard not to also talk about his love of family, sports, fishing, and other recreational activities. While these were significant accomplishments in his life, Jerry will be most remembered for his insight in starting and his industry in maintaining and growing what became one of the most diverse accelerator conferences in the world — the International Conference on the Application of Accelerators in Research and Industry, or what we all know as CAARI. Through this conference, which he ran almost single-handed for decades, Jerry came to know, and became well known by, literally thousands of atomic and nuclear physicists, accelerator engineers and vendors, medical doctors, cultural heritage experts... the list goes on and on. While thousands of his acquaintances already miss Jerry, this is being felt most by his family and us (B.D. and F.D.M).

  16. Jerome Lewis Duggan: A Nuclear Physicist and a Well-Known, Six-Decade Accelerator Application Conference (CAARI) Organizer

    NASA Astrophysics Data System (ADS)

    Del McDaniel, Floyd; Doyle, Barney L.

    Jerry Duggan was an experimental MeV-accelerator-based nuclear and atomic physicist who, over the past few decades, played a key role in the important transition of this field from basic to applied physics. His fascination for and application of particle accelerators spanned almost 60 years, and led to important discoveries in the following fields: accelerator-based analysis (accelerator mass spectrometry, ion beam techniques, nuclear-based analysis, nuclear microprobes, neutron techniques); accelerator facilities, stewardship, and technology development; accelerator applications (industrial, medical, security and defense, and teaching with accelerators); applied research with accelerators (advanced synthesis and modification, radiation effects, nanosciences and technology); physics research (atomic and molecular physics, and nuclear physics); and many other areas and applications. Here we describe Jerry's physics education at the University of North Texas (B. S. and M. S.) and Louisiana State University (Ph.D.). We also discuss his research at UNT, LSU, and Oak Ridge National Laboratory, his involvement with the industrial aspects of accelerators, and his impact on many graduate students, colleagues at UNT and other universities, national laboratories, and industry and acquaintances around the world. Along the way, we found it hard not to also talk about his love of family, sports, fishing, and other recreational activities. While these were significant accomplishments in his life, Jerry will be most remembered for his insight in starting and his industry in maintaining and growing what became one of the most diverse accelerator conferences in the world — the International Conference on the Application of Accelerators in Research and Industry, or what we all know as CAARI. Through this conference, which he ran almost single-handed for decades, Jerry came to know, and became well known by, literally thousands of atomic and nuclear physicists, accelerator engineers and vendors, medical doctors, cultural heritage experts... the list goes on and on. While thousands of his acquaintances already miss Jerry, this is being felt most by his family and us (B.D. and F.D.M).

  17. Direct longitudinal laser acceleration of electrons in free space

    NASA Astrophysics Data System (ADS)

    Carbajo, Sergio; Nanni, Emilio A.; Wong, Liang Jie; Moriena, Gustavo; Keathley, Phillip D.; Laurent, Guillaume; Miller, R. J. Dwayne; Kärtner, Franz X.

    2016-02-01

    Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008)]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London) 431, 535 (2004); T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006); S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009)] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: "Making the molecular movie,", Phil. Trans. R. Soc. A 364, 741 (2006)]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014)] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010); F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010); Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006); C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006); A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser pulses and soft-x-ray pulses from optical undulators, J. Phys. B 47, 015601 (2014)] avoiding the need of a medium or guiding structure entirely to achieve strong longitudinal energy transfer. Here we present the first observation of direct longitudinal laser acceleration of nonrelativistic electrons that undergo highly directional multi-GeV /m accelerating gradients. This demonstration opens a new frontier for direct laser-driven particle acceleration capable of creating well collimated and relativistic attosecond electron bunches [C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006)] and x-ray pulses [A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser pulses and soft-x-ray pulses from optical undulators, J. Phys. B 47, 015601 (2014)].

  18. Recent trends at the state and federal level in accelerating CERCLA clean-ups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clegg, B.

    Efforts at accelerating remedial action at the federal level focus on the following: the Superfund accelerated clean-up model (SCAM); Brownfields economic redevelopment initiative; guidance documents and policies; and collaboration with state voluntary cleanup programs. At the state level efforts involved in accelerating clean-ups include voluntary clean-up programs and Brownfields initiatives.

  19. Accelerator Science: Proton vs. Electron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  20. Voltage regulation in linear induction accelerators

    DOEpatents

    Parsons, W.M.

    1992-12-29

    Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In an advance that could dramatically shrink particle accelerators for science and medicine, researchers at DOE's SLAC National Accelerator Laboratory used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice. This technique uses ultrafast lasers to drive the accelerator. (This achievement was reported in Nature, 27 Sept 2013)

  2. ON THE PROBLEM OF PARTICLE GROUPINGS IN A TRAVELING WAVE LINEAR ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhileyko, G.I.

    1957-01-01

    A linear accelerator with traveling'' waves may be used for the production of especially short electron momenta, although in many cases the grouping capacity of the accelerator is not sufficient. Theoretically the case is derived in which grouping of the electrons takes place in the accelerator itself. (With 3 illustrations and 1 Slavic Reference). (TCO)

  3. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  4. 42 CFR 412.432 - Method of payment under the inpatient psychiatric facility prospective payment system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Recovery of accelerated payment. Recovery of the accelerated payment is made by recoupment as inpatient... cost report settlement specified in § 412.84(i) and § 412.84(m) of this part. (e) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient psychiatric...

  5. 42 CFR 412.432 - Method of payment under the inpatient psychiatric facility prospective payment system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Recovery of accelerated payment. Recovery of the accelerated payment is made by recoupment as inpatient... cost report settlement specified in § 412.84(i) and § 412.84(m) of this part. (e) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient psychiatric...

  6. 42 CFR 412.432 - Method of payment under the inpatient psychiatric facility prospective payment system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Recovery of accelerated payment. Recovery of the accelerated payment is made by recoupment as inpatient... cost report settlement specified in § 412.84(i) and § 412.84(m) of this part. (e) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient psychiatric...

  7. 42 CFR 412.432 - Method of payment under the inpatient psychiatric facility prospective payment system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Recovery of accelerated payment. Recovery of the accelerated payment is made by recoupment as inpatient... cost report settlement specified in § 412.84(i) and § 412.84(m) of this part. (e) Accelerated payments—(1) General rule. Upon request, an accelerated payment may be made to an inpatient psychiatric...

  8. Accelerator-based BNCT.

    PubMed

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. © 2013 Elsevier Ltd. All rights reserved.

  9. Three-grid accelerator system for an ion propulsion engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1994-01-01

    An apparatus is presented for an ion engine comprising a three-grid accelerator system with the decelerator grid biased negative of the beam plasma. This arrangement substantially reduces the charge-exchange ion current reaching the accelerator grid at high tank pressures, which minimizes erosion of the accelerator grid due to charge exchange ion sputtering, known to be the major accelerator grid wear mechanism. An improved method for life testing ion engines is also provided using the disclosed apparatus. In addition, the invention can also be applied in materials processing.

  10. Improvement of Space Shuttle Main Engine Low Frequency Acceleration Measurements

    NASA Technical Reports Server (NTRS)

    Stec, Robert C.

    1999-01-01

    The noise floor of low frequency acceleration data acquired on the Space Shuttle Main Engines is higher than desirable. Difficulties of acquiring high quality acceleration data on this engine are discussed. The approach presented in this paper for reducing the acceleration noise floor focuses on a search for an accelerometer more capable of measuring low frequency accelerations. An overview is given of the current measurement system used to acquire engine vibratory data. The severity of vibration, temperature, and moisture environments are considered. Vibratory measurements from both laboratory and rocket engine tests are presented.

  11. Compact Torus plasma ring accelerator: a new type driver for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, C.W.; Eddleman, J.L.; Hammer, J.H.

    1986-08-22

    We discuss the acceleration of magnetically-confined plasma rings to provide a driver for ICF. The acceleration of plasma rings is predicted to be efficient and following focusing, to generate ion-bombardment power in the range 10/sup 15/ to 10/sup 16/ W/cm/sup 2/ at a total deposition energy of multimegajoules. The simplicity of plasma ring accelerator suggests that a 5 MJ (on target) driver would cost in the range 1 to 5 $/joule. First experimental tests of the accelerator are described.

  12. Studies on Muon Induction Acceleration and an Objective Lens Design for Transmission Muon Microscope

    NASA Astrophysics Data System (ADS)

    Artikova, Sayyora; Yoshida, Mitsuhiro; Naito, Fujio

    Muon acceleration will be accomplished by a set of induction cells, where each increases the energy of the muon beam by an increment of up to 30 kV. The cells are arranged in a linear way resulting in total accelerating voltage of 300 kV. Acceleration time in the linac is about hundred nanoseconds. Induction field calculation is based on an electrostatic approximation. Beam dynamics in the induction accelerator is investigated and final beam focusing on specimen is realized by designing a pole piece lens.

  13. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  14. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  15. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  16. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  17. Rail accelerators for space transportation: An experimental investigation

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.; Sturman, J. L.

    1986-01-01

    An experimental program was conducted at the Lewis Research Center with the objective of investigating the technical feasibility of rail accelerators for propulsion applications. Single-stage, plasma driven rail accelerators of small (4 by 6 mm) and medium (12.5 by 12.5 mm) bores were tested at peak accelerating currents of 50 to 450 kA. Streak-camera photography was used to provide a qualitative description of plasma armature acceleration. The effects of plasma blowby and varying bore pressure on the behavior of plasma armatures were studied.

  18. The laser accelerator-another unicorn in the garden

    NASA Astrophysics Data System (ADS)

    Hand, L. N.

    1981-07-01

    Some proposed techniques for using laser beams to accelerate charged particles was reviewed. Two specific ideas for grating type accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a multipass collider; a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak power requirements to be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range.

  19. A new type of accelerator for charged particle cancer therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgecock, Rob

    2013-04-19

    Non-scaling Fixed Field Alternating Gradient accelerators (ns-FFAGs) show great potential for the acceleration of protons and light ions for the treatment of certain cancers. They have unique features as they combine techniques from the existing types of accelerators, cyclotrons and synchrotrons, and hence look to have advantages over both for this application. However, these unique features meant that it was necessary to build one of these accelerators to show that it works and to undertake a detailed conceptual design of a medical machine. Both of these have now been done. This paper will describe the concepts of this type ofmore » accelerator, show results from the proof-of-principle machine (EMMA) and described the medical machine (PAMELA).« less

  20. Shock Acceleration of Solar Energetic Protons: The First 10 Minutes

    NASA Technical Reports Server (NTRS)

    Ng, Chee K.; Reames, Donald V.

    2008-01-01

    Proton acceleration at a parallel coronal shock is modeled with self-consistent Alfven wave excitation and shock transmission. 18 - 50 keV seed protons at 0.1% of plasma proton density are accelerated in 10 minutes to a power-law intensity spectrum rolling over at 300 MeV by a 2500km s-1 shock traveling outward from 3.5 solar radius, for typical coronal conditions and low ambient wave intensities. Interaction of high-energy protons of large pitch-angles with Alfven waves amplified by low-energy protons of small pitch angles is key to rapid acceleration. Shock acceleration is not significantly retarded by sunward streaming protons interacting with downstream waves. There is no significant second-order Fermi acceleration.

  1. Optical, x-ray and microwave diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tudisco, S.; Mascali, D.; Altana, C.

    2013-07-26

    Laser-driven ion acceleration is a new approach for the particles acceleration, which allows obtaining ion beams with unique properties, such as short burst duration, large particle number, small size source size, low transverse emittance. Currently, two main acceleration mechanisms have been identified and investigated: target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA). Electrons dynamics and energies are strongly coupled to these acceleration mechanisms and they can be investigated with optical and X-ray techniques. The main aim of these studies are the identification of few physical observables that can be directly correlated to the proton emission obtained (in termsmore » of reproducibility and intensity) in operations with different target material and structure and laser-target interaction parameters.« less

  2. Competing explanations for cosmic acceleration or why is the expansion of the universe accelerating?

    NASA Astrophysics Data System (ADS)

    Ishak, Mustapha

    2012-06-01

    For more than a decade, a number of cosmological observations have been indicating that the expansion of the universe is accelerating. Cosmic acceleration and the questions associated with it have become one of the most challenging and puzzling problems in cosmology and physics. Cosmic acceleration can be caused by (i) a repulsive dark energy pervading the universe, (ii) an extension to General Relativity that takes effect at cosmological scales of distance, or (iii) the acceleration may be an apparent effect due to the fact that the expansion rate of space-time is uneven from one region to another in the universe. I will review the basics of these possibilities and provide some recent results including ours on these questions.

  3. Laser-driven magnetic reconnection in the multi-plasmoid regime

    NASA Astrophysics Data System (ADS)

    Totorica, Samuel; Abel, Tom; Fiuza, Frederico

    2017-10-01

    Magnetic reconnection is a promising candidate mechanism for accelerating the nonthermal particles associated with explosive astrophysical phenomena. Laboratory experiments are starting to probe multi-plasmoid regimes of relevance for particle acceleration. We have performed two- and three-dimensional particle-in-cell (PIC) simulations to explore particle acceleration for parameters relevant to laser-driven reconnection experiments. We have extended our previous work to explore particle acceleration in larger system sizes. Our results show the transition to plasmoid-dominated acceleration associated with the merging and contraction of plasmoids that further extend the maximum energy of the power-law tail of the particle distribution. Furthermore, we have modeled Coulomb collisions and will discuss the influence of collisionality on the plasmoid formation, dynamics, and particle acceleration.

  4. An extended car-following model considering the acceleration derivative in some typical traffic environments

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Chen, Dong; Liu, Weining

    2018-03-01

    Based on the full velocity difference and acceleration car-following model, an extended car-following model is proposed by considering the vehicle’s acceleration derivative. The stability condition is given by applying the control theory. Considering some typical traffic environments, the results of theoretical analysis and numerical simulation show the extended model has a more actual acceleration of string vehicles than that of the previous models in starting process, stopping process and sudden brake. Meanwhile, the traffic jams more easily occur when the coefficient of vehicle’s acceleration derivative increases, which is presented by space-time evolution. The results confirm that the vehicle’s acceleration derivative plays an important role in the traffic jamming transition and the evolution of traffic congestion.

  5. Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Vlahos, L.; Kowal, G.; Yan, H.; Beresnyak, A.; de Gouveia Dal Pino, E. M.

    2012-11-01

    Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700-718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.

  6. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor

    2013-07-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Clustermore » spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.« less

  7. Sci—Fri PM: Topics — 05: Experience with linac simulation software in a teaching environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlone, Marco; Harnett, Nicole; Jaffray, David

    Medical linear accelerator education is usually restricted to use of academic textbooks and supervised access to accelerators. To facilitate the learning process, simulation software was developed to reproduce the effect of medical linear accelerator beam adjustments on resulting clinical photon beams. The purpose of this report is to briefly describe the method of operation of the software as well as the initial experience with it in a teaching environment. To first and higher orders, all components of medical linear accelerators can be described by analytical solutions. When appropriate calibrations are applied, these analytical solutions can accurately simulate the performance ofmore » all linear accelerator sub-components. Grouped together, an overall medical linear accelerator model can be constructed. Fifteen expressions in total were coded using MATLAB v 7.14. The program was called SIMAC. The SIMAC program was used in an accelerator technology course offered at our institution; 14 delegates attended the course. The professional breakdown of the participants was: 5 physics residents, 3 accelerator technologists, 4 regulators and 1 physics associate. The course consisted of didactic lectures supported by labs using SIMAC. At the conclusion of the course, eight of thirteen delegates were able to successfully perform advanced beam adjustments after two days of theory and use of the linac simulator program. We suggest that this demonstrates good proficiency in understanding of the accelerator physics, which we hope will translate to a better ability to understand real world beam adjustments on a functioning medical linear accelerator.« less

  8. THE MECHANISMS OF ELECTRON ACCELERATION DURING MULTIPLE X LINE MAGNETIC RECONNECTION WITH A GUIDE FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huanyu; Lu, Quanming; Huang, Can

    2016-04-20

    The interactions between magnetic islands are considered to play an important role in electron acceleration during magnetic reconnection. In this paper, two-dimensional particle-in-cell simulations are performed to study electron acceleration during multiple X line reconnection with a guide field. Because the electrons remain almost magnetized, we can analyze the contributions of the parallel electric field, Fermi, and betatron mechanisms to electron acceleration during the evolution of magnetic reconnection through comparison with a guide-center theory. The results show that with the magnetic reconnection proceeding, two magnetic islands are formed in the simulation domain. Next, the electrons are accelerated by both themore » parallel electric field in the vicinity of the X lines and the Fermi mechanism due to the contraction of the two magnetic islands. Then, the two magnetic islands begin to merge into one, and, in such a process, the electrons can be accelerated by both the parallel electric field and betatron mechanisms. During the betatron acceleration, the electrons are locally accelerated in the regions where the magnetic field is piled up by the high-speed flow from the X line. At last, when the coalescence of the two islands into one big island finishes, the electrons can be further accelerated by the Fermi mechanism because of the contraction of the big island. With the increase of the guide field, the contributions of the Fermi and betatron mechanisms to electron acceleration become less and less important. When the guide field is sufficiently large, the contributions of the Fermi and betatron mechanisms are almost negligible.« less

  9. Demonstration of the hollow channel plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gessner, Spencer J.

    2016-09-17

    A plasma wakefield accelerator is a device that converts the energy of a relativistic particle beam into a large-amplitude wave in a plasma. The plasma wave, or wakefield, supports an enormous electricfield that is used to accelerate a trailing particle beam. The plasma wakefield accelerator can therefore be used as a transformer, transferring energy from a high-charge, low-energy particle beam into a high-energy, low-charge particle beam. This technique may lead to a new generation of ultra-compact, high-energy particle accelerators. The past decade has seen enormous progress in the field of plasma wakefield acceleration with experimental demonstrations of the acceleration ofmore » electron beams by several gigaelectron-volts. The acceleration of positron beams in plasma is more challenging, but also necessary for the creation of a high-energy electron-positron collider. Part of the challenge is that the plasma responds asymmetrically to electrons and positrons, leading to increased disruption of the positron beam. One solution to this problem, first proposed over twenty years ago, is to use a hollow channel plasma which symmetrizes the response of the plasma to beams of positive and negative charge, making it possible to accelerate positrons in plasma without disruption. In this thesis, we describe the theory relevant to our experiment and derive new results when needed. We discuss the development and implementation of special optical devices used to create long plasma channels. We demonstrate for the first time the generation of meter-scale plasma channels and the acceleration of positron beams therein.« less

  10. OARE and SAMS on STS-94/MSL-1

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton; Hrovat, Kenneth; McPherson, Kevin; Tschen, Peter; DeLombard, Richard; Nati, Maurizio

    1998-01-01

    Four microgravity acceleration measurement instruments were included on MSL-1 to measure the accelerations and vibrations to which science experiments were exposed during their operation on the mission. The data were processed and presented to the principal investigators in a variety of formats to aid their assessment of the microgravity environment during their experiment operations. Two accelerometer systems managed by the NASA Lewis Research Center (LeRC) supported the MSL-1 mission: the Orbital Acceleration Research Experiment (OARE), and the Space Acceleration Measurement System (SAMS). In addition, the Microgravity Measurement Assembly (MMA) and the Quasi- Steady Acceleration Measurement (QSAM) system, both sponsored by the Microgravity Research Division, collected acceleration data as a part of the MSL-1 mission. The NIMA was funded and designed by the European Space Agency in the Netherlands (ESA/ESTEC), and the QSAM system was funded and designed by the German Space Agency (DLR). The Principal Investigator Microgravity Services (PIMS) project at the NASA Lewis Research Center (LeRC) supports Principal Investigators (PIs) of the Microgravity science community as they evaluate the effects of acceleration on their experiments. PIMS primary responsibility is to support NASA-sponsored investigators in the area of acceleration data analysis and interpretation. A mission summary report was prepared and published by PIMS in order to furnish interested experiment investigators with a guide for evaluating the acceleration environment during the MSL-1 mission.

  11. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  12. Technical Design Report for the FACET-II Project at SLAC National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Electrons can “surf” on waves of plasma – a hot gas of charged particles – gaining very high energies in very short distances. This approach, called plasma wakefield acceleration, has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider has been the focus of FACET, a National User Facility at SLAC. FACET used part of SLAC’s two-mile-long linearmore » accelerator to generate high-density beams of electrons and their antimatter counterparts, positrons. Research into plasma wakefield acceleration was the primary motivation for constructing FACET. In April 2016, FACET operations came to an end to make way for the second phase of SLAC’s x-ray laser, the LCLS-II, which will use part of the tunnel occupied by FACET. FACET-II is a new test facility to provide the unique capability to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. FACET-II represents a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique.« less

  13. Large-scale particle acceleration by magnetic reconnection during solar flares

    NASA Astrophysics Data System (ADS)

    Li, X.; Guo, F.; Li, H.; Li, G.; Li, S.

    2017-12-01

    Magnetic reconnection that triggers explosive magnetic energy release has been widely invoked to explain the large-scale particle acceleration during solar flares. While great efforts have been spent in studying the acceleration mechanism in small-scale kinetic simulations, there have been rare studies that make predictions to acceleration in the large scale comparable to the flare reconnection region. Here we present a new arrangement to study this problem. We solve the large-scale energetic-particle transport equation in the fluid velocity and magnetic fields from high-Lundquist-number MHD simulations of reconnection layers. This approach is based on examining the dominant acceleration mechanism and pitch-angle scattering in kinetic simulations. Due to the fluid compression in reconnection outflows and merging magnetic islands, particles are accelerated to high energies and develop power-law energy distributions. We find that the acceleration efficiency and power-law index depend critically on upstream plasma beta and the magnitude of guide field (the magnetic field component perpendicular to the reconnecting component) as they influence the compressibility of the reconnection layer. We also find that the accelerated high-energy particles are mostly concentrated in large magnetic islands, making the islands a source of energetic particles and high-energy emissions. These findings may provide explanations for acceleration process in large-scale magnetic reconnection during solar flares and the temporal and spatial emission properties observed in different flare events.

  14. Effect of 3 Weeks Use of Compression Garments on Stride and Impact Shock during a Fatiguing Run.

    PubMed

    Lucas-Cuevas, A G; Priego-Quesada, J I; Aparicio, I; Giménez, J V; Llana-Belloch, S; Pérez-Soriano, P

    2015-10-01

    Excessive and prolonged exposure to impact acceleration during running is associated with increased injury rate. Acute use of compressive garments has been speculated to improve attenuation. However, it is unknown how longer interventions of compressive garments influence attenuation in running. 40 runners trained with compressive and placebo stockings for 3 weeks. Perception of comfort, stride parameters (rate, length) and impact acceleration (head and tibial peak acceleration, magnitude, acceleration rate and attenuation) were measured every 5 min during a fatigue run (30 min at 80% of the individual's maximal aerobic speed). Compressive stockings reduced tibial peak acceleration and magnitude compared to placebo stockings at every minute (p<0.05) except for the initial measurement (p>0.05). Moreover, compressive stockings led to a lower rate of increase in tibial peak acceleration (14%, p<0.005) and magnitude (16%, p<0.001) as a result of the development of fatigue compared to placebo stockings (24% and 26% increase, p=0.014 and p=0.003, respectively). Similar perception of comfort was reported for both garments. Training with compressive stockings for 3 weeks reduced impact acceleration and the rate of increase in acceleration compared to placebo stockings. These findings suggest that compressive stockings may play a protective role by reducing impact accelerations during running. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Figuring the Acceleration of the Simple Pendulum

    NASA Astrophysics Data System (ADS)

    Lieberherr, Martin

    2011-12-01

    The centripetal acceleration has been known since Huygens' (1659) and Newton's (1684) time.1,2 The physics to calculate the acceleration of a simple pendulum has been around for more than 300 years, and a fairly complete treatise has been given by C. Schwarz in this journal.3 But sentences like "the acceleration is always directed towards the equilibrium position" beside the picture of a swing on a circular arc can still be found in textbooks, as e.g. in Ref. 4. Vectors have been invented by Grassmann (1844)5 and are conveniently used to describe the acceleration in curved orbits, but acceleration is more often treated as a scalar with or without sign, as the words acceleration/deceleration suggest. The component tangential to the orbit is enough to deduce the period of the simple pendulum, but it is not enough to discuss the forces on the pendulum, as has been pointed out by Santos-Benito and A. Gras-Marti.6 A suitable way to address this problem is a nice figure with a catch for classroom discussions or homework. When I plotted the acceleration vectors of the simple pendulum in their proper positions, pictures as in Fig. 1 appeared on the screen. The endpoints of the acceleration vectors, if properly scaled, seemed to lie on a curve with a familiar shape: a cardioid. Is this true or just an illusion?

  16. Advanced induction accelerator designs for ground based and space based FELs

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1994-04-01

    The primary goal of this program was to improve the performance of induction accelerators with particular regards to their being used to drive Free Electron Lasers (FEL's). It is hoped that FEL's operating at visible wavelengths might someday be used to beam power from earth to extraterrestrial locations. One application of this technology might be strategic theater defense, but this power source might be used to propel vehicles or supplement solar energized systems. Our path toward achieving this goal was directed first toward optimization of the nonlinear magnetic material used in induction accelerator construction and secondly at the overall design in terms of cost, size and efficiency. We began this research effort with an in depth study into the properties of various nonlinear magnetic materials. With the data on nonlinear magnetic materials, so important to the optimization of efficiency, in hand, we envisioned a new induction accelerator design where all of the components were packaged together in one container. This induction accelerator module would combine an /ll-solid-state, nonlinear magnetic driver and the induction accelerator cells all in one convenient package. Each accelerator module (denoted SNOMAD-IVB) would produce 1.0 MeV of acceleration with the exception of the SNOMAD-IV injector module which would produce 0.5 MeV of acceleration for an electron beam current up to 1000 amperes.

  17. Iowa Acceleration Scale Manual: A Guide for Whole-Grade Acceleration K-8. (3rd Edition, Manual)

    ERIC Educational Resources Information Center

    Assouline, Susan G.; Colangelo, Nicholas; Lupkowski-Shoplik, Ann; Forstadt, Leslie; Lipscomb, Jonathon

    2009-01-01

    Feedback from years of nationwide use has resulted in a 3rd Edition of this unique, systematic, and objective guide to considering and implementing academic acceleration. Developed and tested by the Belin-Blank Center at the University of Iowa, the IAS ensures that acceleration decisions are systematic, thoughtful, well reasoned, and defensible.…

  18. Accelerator Science: Proton vs. Electron

    ScienceCinema

    Lincoln, Don

    2018-06-12

    Particle accelerators are one of the most powerful ways to study the fundamental laws that govern the universe. However, there are many design considerations that go into selecting and building a particular accelerator. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of building an accelerator that collides pairs of protons to one that collides electrons.

  19. Acceleration of objects to high velocity by electromagnetic forces

    DOEpatents

    Post, Richard F

    2017-02-28

    Two exemplary approaches to the acceleration of projectiles are provided. Both approaches can utilize concepts associated with the Inductrack maglev system. Either of them provides an effective means of accelerating multi-kilogram projectiles to velocities of several kilometers per second, using launchers of order 10 meters in length, thus enabling the acceleration of projectiles to high velocities by electromagnetic forces.

  20. 15 Years of R&D on high field accelerator magnets at FNAL

    DOE PAGES

    Barzi, Emanuela; Zlobin, Alexander V.

    2016-07-01

    The High Field Magnet (HFM) Program at Fermi National Accelerator Laboratory (FNAL) has been developing Nb 3Sn superconducting magnets, materials and technologies for present and future particle accelerators since the late 1990s. This paper summarizes the main results of the Nb 3Sn accelerator magnet and superconductor R&D at FNAL and outlines the Program next steps.

  1. Taking Stock and Creating a Vision: A Middle School Community Takes the First Steps toward Creating an Accelerated School.

    ERIC Educational Resources Information Center

    McBride, Ron E.; Stuessy, Carol

    1996-01-01

    Accelerated schools strive to bring at-risk students into the educational mainstream and perform at grade level through acceleration rather than remediation. Describes four steps to initiate the accelerated process and how a Texas middle school involved all members of the school community in implementing the first two steps, taking stock and…

  2. Accelerated life testing of spacecraft subsystems

    NASA Technical Reports Server (NTRS)

    Wiksten, D.; Swanson, J.

    1972-01-01

    The rationale and requirements for conducting accelerated life tests on electronic subsystems of spacecraft are presented. A method for applying data on the reliability and temperature sensitivity of the parts contained in a sybsystem to the selection of accelerated life test parameters is described. Additional considerations affecting the formulation of test requirements are identified, and practical limitations of accelerated aging are described.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    The 2014 P5 report indicated the accelerator-based neutrino and rare decay physics research as a centerpiece of the US domestic HEP program. Operation, upgrade and development of the accelerators for the near-term and longer-term particle physics program at the Intensity Frontier face formidable challenges. Here we discuss key elements of the accelerator physics and technology R&D program toward future multi-MW proton accelerators.

  4. PW-class laser-driven super acceleration systems in underdense plasmas

    NASA Astrophysics Data System (ADS)

    Yano, Masahiro; Zhidkov, Alexei; Kodama, Ryosuke

    2017-10-01

    Probing laser driven super-acceleration systems can be important tool to understand physics related to vacuum, space time, and particle acceleration. We show two proposals to probe the systems through Hawking-like effect using PW class lasers and x-ray free electron lasers. For that we study the interaction of ultrahigh intense laser pulses with intensity 1022 -1024 W/cm2 and underdense plasmas including ion motion and plasma radiation for the first time. While the acceleration w a0ωp /ωL in a wake is not maximal, the pulse propagation is much stable. The effect is that a constantly accelerated detector with acceleration w sees a boson's thermal bath at temperature ℏw / 2 πkB c . We present two designs for x-ray scattering from highly accelerated electrons produced in the plasma irradiated by intense laser pulses for such detection. Properly chosen observation angles enable us to distinguish spectral broadening from Doppler shift with a reasonable photon number. Also, ion motion and radiation damping on the interaction are investigated via fully relativistic 3D particle-in-cell simulation. We observe high quality electron bunches under super-acceleration when transverse plasma waves are excited by ponderomotive force producing plasma channel.

  5. Particle acceleration on a chip: A laser-driven micro-accelerator for research and industry

    NASA Astrophysics Data System (ADS)

    Yoder, R. B.; Travish, G.

    2013-03-01

    Particle accelerators are conventionally built from radio-frequency metal cavities, but this technology limits the maximum energy available and prevents miniaturization. In the past decade, laser-powered acceleration has been intensively studied as an alternative technology promising much higher accelerating fields in a smaller footprint and taking advantage of recent advances in photonics. Among the more promising approaches are those based on dielectric field-shaping structures. These ``dielectric laser accelerators'' (DLAs) scale with the laser wavelength employed and can be many orders of magnitude smaller than conventional accelerators; DLAs may enable the production of high-intensity, ultra-short relativistic electron bunches in a chip-scale device. When combined with a high- Z target or an optical-period undulator, these systems could produce high-brilliance x-rays from a breadbox-sized device having multiple applications in imaging, medicine, and homeland security. In our research program we have developed one such DLA, the Micro-Accelerator Platform (MAP). We describe the fundamental physics, our fabrication and testing program, and experimental results to date, along with future prospects for MAP-based light-sources and some remaining challenges. Supported in part by the Defense Threat Reduction Agency and National Nuclear Security Administration.

  6. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.

  7. Multipactor Physics, Acceleration, and Breakdown in Dielectric-Loaded Accelerating Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Richard P.; Gold, Steven H.

    2016-07-01

    The objective of this 3-year program is to study the physics issues associated with rf acceleration in dielectric-loaded accelerating (DLA) structures, with a focus on the key issue of multipactor loading, which has been found to cause very significant rf power loss in DLA structures whenever the rf pulsewidth exceeds the multipactor risetime (~10 ns). The experiments are carried out in the X-band magnicon laboratory at the Naval Research Laboratory (NRL) in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC, who develop the test structures with support from the DoE SBIR program. There are two main elements inmore » the research program: (1) high-power tests of DLA structures using the magnicon output (20 MW @11.4 GHz), and (2) tests of electron acceleration in DLA structures using relativistic electrons from a compact X-band accelerator. The work during this period has focused on a study of the use of an axial magnetic field to suppress multipactor in DLA structures, with several new high power tests carried out at NRL, and on preparation of the accelerator for the electron acceleration experiments.« less

  8. Electron acceleration by turbulent plasmoid reconnection

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Büchner, J.; Widmer, F.; Muñoz, P. A.

    2018-04-01

    In space and astrophysical plasmas, like in planetary magnetospheres, as that of Mercury, energetic electrons are often found near current sheets, which hint at electron acceleration by magnetic reconnection. Unfortunately, electron acceleration by reconnection is not well understood yet, in particular, acceleration by turbulent plasmoid reconnection. We have investigated electron acceleration by turbulent plasmoid reconnection, described by MHD simulations, via test particle calculations. In order to avoid resolving all relevant turbulence scales down to the dissipation scales, a mean-field turbulence model is used to describe the turbulence of sub-grid scales and their effects via a turbulent electromotive force (EMF). The mean-field model describes the turbulent EMF as a function of the mean values of current density, vorticity, magnetic field as well as of the energy, cross-helicity, and residual helicity of the turbulence. We found that, mainly around X-points of turbulent reconnection, strongly enhanced localized EMFs most efficiently accelerated electrons and caused the formation of power-law spectra. Magnetic-field-aligned EMFs, caused by the turbulence, dominate the electron acceleration process. Scaling the acceleration processes to parameters of the Hermean magnetotail, electron energies up to 60 keV can be reached by turbulent plasmoid reconnection through the thermal plasma.

  9. A new concept of a vacuum insulation tandem accelerator.

    PubMed

    Sorokin, I; Taskaev, S

    2015-12-01

    A tandem accelerator with vacuum insulation has been proposed and developed in the Budker Institute of Nuclear Physics. Negative hydrogen ions are accelerated by the positive 1 MV potential of the high voltage electrode, converted into protons in the gas stripping target inside the electrode, and then the protons are accelerated again by the same potential. The potential for high voltage and intermediate electrodes is supplied by the sectioned rectifier through a sectioned bushing insulator with a resistive divider. In this work, we propose a radical improvement of the accelerator concept. It is proposed to abandon the separate placement of the accelerator and the power supply and connect them through the bushing insulator. The source of high voltage is proposed to be located inside the accelerator insulator with high voltage and intermediate electrodes mounted on it. This will reduce the facility height from 7 m to 3m and make it really compact and attractive for placing in a clinic. This will significantly increase the stability of the accelerator because the potential for intermediate electrodes can be fed directly from the relevant sections of the rectifier. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Wilson Prize Talk

    NASA Astrophysics Data System (ADS)

    Symon, Keith R.

    2005-04-01

    In the late 1950's and the 1960's the MURA (Midwestern Universities Research Association) working group developed fixed field alternating gradient (FFAG) particle accelerators. FFAG accelerators are a natural corollary of the invention of alternating gradient focusing. The fixed guide field accommodates all orbits from the injection to the final energy. For this reason, the transverse motion in the guide field is nearly decoupled from the longitudinal acceleration. This allows a wide variety of acceleration schemes, using betatron or rf accelerating fields, beam stacking, bucket lifts, phase displacement, etc. It also simplifies theoretical and experimental studies of accelerators. Theoretical studies included an extensive analysis of rf acceleration processes, nonlinear orbit dynamics, and collective instabilities. Two FFAG designs, radial sector and spiral sector, were invented. The MURA team built small electron models of each type, and used them to study orbit dynamics, acceleration processes, orbit instabilities, and space charge limits. A practical result of these studies was the invention of the spiral sector cyclotron. Another was beam stacking, which led to the first practical way of achieving colliding beams. A 50 MeV two-way radial sector model was built in which it proved possible to stack a beam of over 10 amperes of electrons.

  11. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE PAGES

    Persaud, A.; Seidl, P. A.; Ji, Q.; ...

    2017-10-26

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  12. Teleportation with Multiple Accelerated Partners

    NASA Astrophysics Data System (ADS)

    Sagheer, A.; Hamdoun, H.; Metwally, N.

    2015-09-01

    As the current revolution in communication is underway, quantum teleportation can increase the level of security in quantum communication applications. In this paper, we present a quantum teleportation procedure that capable to teleport either accelerated or non-accelerated information through different quantum channels. These quantum channels are based on accelerated multi-qubit states, where each qubit of each of these channels represents a partner. Namely, these states are the W state, Greenberger-Horne-Zeilinger (GHZ) state, and the GHZ-like state. Here, we show that the fidelity of teleporting accelerated information is higher than the fidelity of teleporting non-accelerated information, both through a quantum channel that is based on accelerated state. Also, the comparison among the performance of these three channels shows that the degree of fidelity depends on type of the used channel, type of the measurement, and value of the acceleration. The result of comparison concludes that teleporting information through channel that is based on the GHZ state is more robust than teleporting information through channels that are based on the other two states. For future work, the proposed procedure can be generalized later to achieve communication through a wider quantum network.

  13. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE PAGES

    Lemery, F.; Piot, P.

    2015-08-03

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  14. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, F.; Piot, P.

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  15. Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy.

    PubMed

    Inoue, T; Hattori, T; Sugimoto, S; Sasai, K

    2014-02-01

    Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.

  16. Anomalous acceleration of ions in a plasma accelerator with an anodic layer

    NASA Astrophysics Data System (ADS)

    V, M. BARDAKOV; S, D. IVANOV; A, V. KAZANTSEV; N, A. STROKIN; A, N. STUPIN; Binhao, JIANG; Zhenyu, WANG

    2018-03-01

    In a plasma accelerator with an anodic layer (PAAL), we discovered experimentally the effect of ‘super-acceleration’ of the bulk of the ions to energies W exceeding the energy equivalent to the discharge voltage V d. The E × B discharge was ignited in an environment of atomic argon and helium and molecular nitrogen. Singly charged argon ions were accelerated most effectively in the case of the largest discharge currents and pressure P of the working gas. Helium ions with W > eV d (e being the electron charge) were only recorded at maximum pressures. Molecular nitrogen was not accelerated to energies W > eV d. Anomalous acceleration is realized in the range of radial magnetic fields on the anode 2.8 × 10 -2 ≤ B rA ≤ 4 × 10 -2 T. It was also found analytically that the cathode of the accelerator can receive anomalously accelerated ions. In this case, the value of the potential in the anodic layer becomes higher than the anode potential, and the anode current exceeds some critical value. Numerical modeling in terms of the developed theory showed qualitative agreement between modeling data and measurements.

  17. Mechanism and preparation of liquid alkali-free liquid setting accelerator for shotcrete

    NASA Astrophysics Data System (ADS)

    Qiu, Ying; Ding, Bei; Gan, Jiezhong; Guo, Zhaolai; Zheng, Chunyang; Jiang, Haidong

    2017-03-01

    A new alkali-free liquid accelerator for shotcrete was prepared through normal temperature drop process by using the nano activated alumina and the modified alcohol amine as the main raw materials. The effect of alkali-free liquid accelerator on the cement setting time and the mechanical properties of mortar, the effect of the penetration strength on the shotcrete rebound were investigated. And the accelerating mechanism of the as-prepared alkali-free liquid accelerator was also analyzed via XRD and SEM characterization methods. The experimental results indicated that the hydration of C3A was accelerated by the polyamine complexation of accelerator, resulting in forming a large number of acicular ettringite and reducing the amount of Ca(OH)2 crystal, which would not affect the later hydration of cement. When the content of alkali-free liquid accelerator was 6%, the initial setting time and final setting time were less than 3min and 8min respectively, and 1d and 28d compressive strength ratios reached 207.6% and 114.2% respectively; beside that, the shotcrete rebound was very low because of the high penetration strength within 30min.

  18. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persaud, A.; Seidl, P. A.; Ji, Q.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  19. Beam manipulation with velocity bunching for PWFA applications

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Galletti, M.; Gallo, A.; Giribono, A.; Li, W.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Petrillo, V.; Di Pirro, G.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zhu, J.

    2016-09-01

    The activity of the SPARC_LAB test-facility (LNF-INFN, Frascati) is currently focused on the development of new plasma-based accelerators. Particle accelerators are used in many fields of science, with applications ranging from particle physics research to advanced radiation sources (e.g. FEL). The demand to accelerate particles to higher and higher energies is currently limited by the effective efficiency in the acceleration process that requires the development of km-size facilities. By increasing the accelerating gradient, the compactness can be improved and costs reduced. Recently, the new technique which attracts main efforts relies on plasma acceleration. In the following, the current status of plasma-based activities at SPARC_LAB is presented. Both laser- and beam-driven schemes will be adopted with the aim to provide an adequate accelerating gradient (1-10 GV/m) while preserving the brightness of the accelerated beams to the level of conventional photo-injectors. This aspect, in particular, requires the use of ultra-short (< 100 fs) electron beams, consisting in one or more bunches. We show, with the support of simulations and experimental results, that such beams can be produced using RF compression by velocity-bunching.

  20. Dominance of hole-boring radiation pressure acceleration regime with thin ribbon of ionized solid hydrogen

    NASA Astrophysics Data System (ADS)

    Psikal, J.; Matys, M.

    2018-04-01

    Laser-driven proton acceleration from novel cryogenic hydrogen target of the thickness of tens of microns irradiated by multiPW laser pulse is investigated here for relevant laser parameters accessible in near future. It is demonstrated that the efficiency of proton acceleration from relatively thick hydrogen solid ribbon largely exceeds the acceleration efficiency for a thinner ionized plastic foil, which can be explained by enhanced hole boring (HB) driven by laser ponderomotive force in the case of light ions and lower target density. Three-dimensional particle-in-cell (PIC) simulations of laser pulse interaction with relatively thick hydrogen target show larger energies of protons accelerated in the target interior during the HB phase and reduced energies of protons accelerated from the rear side of the target by quasistatic electric field compared with the results obtained from two-dimensional PIC calculations. Linearly and circularly polarized multiPW laser pulses of duration exceeding 100 fs show similar performance in terms of proton acceleration from both the target interior as well as from the rear side of the target. When ultrashort pulse (∼30 fs) is assumed, the number of accelerated protons from the target interior is substantially reduced.

  1. Efficient injection of radiation-pressure-accelerated sub-relativistic protons into laser wakefield acceleration based on 10 PW lasers

    NASA Astrophysics Data System (ADS)

    Liu, M.; Weng, S. M.; Wang, H. C.; Chen, M.; Zhao, Q.; Sheng, Z. M.; He, M. Q.; Li, Y. T.; Zhang, J.

    2018-06-01

    We propose a hybrid laser-driven ion acceleration scheme using a combination target of a solid foil and a density-tailored background plasma. In the first stage, a sub-relativistic proton beam can be generated by radiation pressure acceleration in intense laser interaction with the solid foil. In the second stage, this sub-relativistic proton beam is further accelerated by the laser wakefield driven by the same laser pulse in a near-critical-density background plasma with decreasing density profile. The propagating velocity of the laser front and the phase velocity of the excited wakefield wave are effectively lowered at the beginning of the second stage. By decreasing the background plasma density gradually from near critical density along the laser propagation direction, the wake travels faster and faster, while it accelerates the protons. Consequently, the dephasing between the protons and the wake is postponed and an efficient wakefield proton acceleration is achieved. This hybrid laser-driven proton acceleration scheme can be realized by using ultrashort laser pulses at the peak power of 10 PW for the generation of multi-GeV proton beams.

  2. Investigation of longitudinal proton acceleration in exploded targets irradiated by intense short-pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, M.; CEA, DAM, DIF, 91297 Arpajon; Lévy, A.

    2014-01-15

    It was recently shown that a promising way to accelerate protons in the forward direction to high energies is to use under-dense or near-critical density targets instead of solids. Simulations have revealed that the acceleration process depends on the density gradients of the plasma target. Indeed, under certain conditions, the most energetic protons are predicted to be accelerated by a collisionless shock mechanism that significantly increases their energy. We report here the results of a recent experiment dedicated to the study of longitudinal ion acceleration in partially exploded foils using a high intensity (∼5 × 10{sup 18} W/cm{sup 2}) picosecond laser pulse. Wemore » show that protons accelerated using targets having moderate front and rear plasma gradients (up to ∼8 μm gradient length) exhibit similar maximum proton energy and number compared to proton beams that are produced, in similar laser conditions, from solid targets, in the well-known target normal sheath acceleration regime. Particle-In-Cell simulations, performed in the same conditions as the experiment and consistent with the measurements, allow laying a path for further improvement of this acceleration scheme.« less

  3. Apparatus and method for the acceleration of projectiles to hypervelocities

    DOEpatents

    Hertzberg, Abraham; Bruckner, Adam P.; Bogdanoff, David W.

    1990-01-01

    A projectile is initially accelerated to a supersonic velocity and then injected into a launch tube filled with a gaseous propellant. The projectile outer surface and launch tube inner surface form a ramjet having a diffuser, a combustion chamber and a nozzle. A catalytic coated flame holder projecting from the projectile ignites the gaseous propellant in the combustion chamber thereby accelerating the projectile in a subsonic combustion mode zone. The projectile then enters an overdriven detonation wave launch tube zone wherein further projectile acceleration is achieved by a formed, controlled overdriven detonation wave capable of igniting the gaseous propellant in the combustion chamber. Ultrahigh velocity projectile accelerations are achieved in a launch tube layered detonation zone having an inner sleeve filled with hydrogen gas. An explosive, which is disposed in the annular zone between the inner sleeve and the launch tube, explodes responsive to an impinging shock wave emanating from the diffuser of the accelerating projectile thereby forcing the inner sleeve inward and imparting an acceleration to the projectile. For applications wherein solid or liquid high explosives are employed, the explosion thereof forces the inner sleeve inward, forming a throat behind the projectile. This throat chokes flow behind, thereby imparting an acceleration to the projectile.

  4. Field characteristics of an alvarez-type linac structure having chain-like electrode array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odera, M.; Goto, A.; Hemmi, M.

    1985-10-01

    A chain-like electrode configuration in an Alvarez-type linac cavity was studied by models. The structure has been devised to get a moderate shunt impedance together with simplicity of operation, in ion velocity region of more than a few percent of that of light by incorporating focusing scheme by high frequency quadrupolar fields into an TM-010 accelerating field of an Alvarez linac. It has a chain-like electrode array instead of drift tubes containing quadrupole lenses for ordinary linacs. The chain-like electrode structure generates along its central axis, high frequency acceleration and focusing fields alternately, separating the acceleration and focusing functions inmore » space. The separation discriminates this structure from spatially uniform acceleration and focusing scheme of the RFQs devised by Kapchinsky and Teplyakov. It gives beam acceleration effects different from those by conventional linacs and reveals possibility of getting a high acceleration efficiency. Resonant frequency spectrum was found relatively simple by measurements on high frequency models. Separation of unwanted modes from the TM-010 acceleration mode is large; a few 10 MHz, at least. Tilt of the acceleration field is not very sensitive to pertubation in gap capacitance for the TM-010 mode.« less

  5. Numerical investigation on the effects of acceleration reversal times in Rayleigh-Taylor Instability with multiple reversals

    NASA Astrophysics Data System (ADS)

    Farley, Zachary; Aslangil, Denis; Banerjee, Arindam; Lawrie, Andrew G. W.

    2017-11-01

    An implicit large eddy simulation (ILES) code, MOBILE, is used to explore the growth rate of the mixing layer width of the acceleration-driven Rayleigh-Taylor instability (RTI) under variable acceleration histories. The sets of computations performed consist of a series of accel-decel-accel (ADA) cases in addition to baseline constant acceleration and accel-decel (AD) cases. The ADA cases are a series of varied times for the second acceleration reversal (t2) and show drastic differences in the growth rates. Upon the deceleration phase, the kinetic energy of the flow is shifted into internal wavelike patterns. These waves are evidenced by the examined differences in growth rate in the second acceleration phase for the set of ADA cases. Here, we investigate global parameters that include mixing width, growth rates and the anisotropy tensor for the kinetic energy to better understand the behavior of the growth during the re-acceleration period. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  6. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    NASA Astrophysics Data System (ADS)

    Minárik, Stanislav

    2015-08-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensity acts on ions in any stage. In general, non-relativistic dynamics is used for the description of the ion transport in tandem accelerator. Energies of accelerated ions are too low and relativistic effects cannot be commonly observed by standard experimental technique. Estimation of possible relativistic correction of ion trajectories is therefore only a matter of calculation. In this note, we briefly present such calculation. Our aim is to show how using the relativistic dynamics modifies the particles trajectory in tandem type accelerator and what parameters determine this modification.

  7. Gauging the cosmic acceleration with recent type Ia supernovae data sets

    NASA Astrophysics Data System (ADS)

    Velten, Hermano; Gomes, Syrios; Busti, Vinicius C.

    2018-04-01

    We revisit a model-independent estimator for cosmic acceleration based on type Ia supernovae distance measurements. This approach does not rely on any specific theory for gravity, energy content, nor parametrization for the scale factor or deceleration parameter and is based on falsifying the null hypothesis that the Universe never expanded in an accelerated way. By generating mock catalogs of known cosmologies, we test the robustness of this estimator, establishing its limits of applicability. We detail the pros and cons of such an approach. For example, we find that there are specific counterexamples in which the estimator wrongly provides evidence against acceleration in accelerating cosmologies. The dependence of the estimator on the H0 value is also discussed. Finally, we update the evidence for acceleration using the recent UNION2.1 and Joint Light-Curve Analysis samples. Contrary to recent claims, available data strongly favor an accelerated expansion of the Universe in complete agreement with the standard Λ CDM model.

  8. Choice reaction time to movement of eccentric visual targets during concurrent rotary acceleration

    NASA Technical Reports Server (NTRS)

    Hamerman, J. A.

    1979-01-01

    This study investigates the influence of concurrent rotary acceleration on choice reaction time (RT) to a small, accelerating visual cursor on a cathode-ray tube. Subjects sat in an enclosed rotating device at the center of rotation and observed a 3-mm dot accelerating at different rates across a cathode-ray tube. The dot was viewed at various eccentricities under conditions of visual stimulation alone and with concurrent rotary acceleration. Subjects responded to both vertical and horizontal dot movements. There was a significant inverse relationship between choice RT and level of dot acceleration (p less than .001), and a significant direct relationship between choice RT and eccentricity (p less than .001). There was no significant difference between choice RT to vertical or horizontal dot motion (p greater than .25), and choice RT was not significantly affected by concurrent rotary acceleration (p greater than .10). The results are discussed in terms of the effects of vestibular stimulation on choice RT to visual motion.

  9. Innovative single-shot diagnostics for electrons from laser wakefield acceleration at FLAME

    NASA Astrophysics Data System (ADS)

    Bisesto, F. G.; Anania, M. P.; Cianchi, A.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Pompili, R.; Zigler, A.

    2017-07-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC_LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and Optical Transition Radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC_LAB LINAC, used in an experiment on electrons from laser wakefield acceleration still undergoing, will be shown.

  10. A -100 kV Power Supply for Ion Acceleration in Space-based Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Gilbert, J. A.; Zurbuchen, T.; Battel, S.

    2017-12-01

    High voltage power supplies are used in many space-based time-of-flight (TOF) mass spectrometer designs to accelerate incoming ions and increase the probability of their measurement and proper identification. Ions are accelerated in proportion to their charge state, so singly charged ions such as pickup ions are accelerated less than their multiple-charge state solar wind counterparts. This lack of acceleration results in pickup ion measurements with lower resolution and without determinations of absolute energy. Acceleration reduces the effects of angular scattering and energy straggling when ions pass through thin membranes such as carbon foils, and it brings ion energies above the detection threshold of traditional solid state detectors. We have developed a power supply capable of operating at -100 kV for ion acceleration while also delivering up to 10 W of power for the operation of a floating TOF system. We also show results of benchtop calibration and ion beam tests to demonstrate the functionality and success of this approach.

  11. A Review of Microgravity Levels on Ten OARE Shuttle Missions

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin M.

    1998-01-01

    The Orbital Acceleration Research Experiment (OARE) is an accelerometer package with nano-g sensitivity and on-orbit bias calibration capabilities. The OARE consists of a three axis miniature electrostatic accelerometer (MESA), a full in-flight bias and scale factor calibration station, and an on-board microprocessor for experiment control and data storage. Originally designed to measure and record the aerodynamic acceleration environment of the NASA Space Shuttles during re-entry, the OARE has been used on ten shuttle missions to measure the quasi-steady acceleration environment (<1 Hz) of the Orbiter while in low-Earth orbit. The effects on the quasi-steady acceleration environment from Orbiter systems, Orbiter attitude, Orbiter altitude, and crew activity are well understood as a result of these ten shuttle missions. This knowledge of the quasi-steady acceleration realm has direct application to understanding the quasi-steady acceleration environment expected for the International Space Station (ISS). This paper will summarize the more salient aspects of this quasi-steady acceleration knowledge base.

  12. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  13. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, M. L.; Liu, B.; Hu, R. H.

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with highermore » energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.« less

  14. The LILIA (laser induced light ions acceleration) experiment at LNF

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Anania, M. P.; Caresana, M.; Cirrone, G. A. P.; De Martinis, C.; Delle Side, D.; Fazzi, A.; Gatti, G.; Giove, D.; Giulietti, D.; Gizzi, L. A.; Labate, L.; Londrillo, P.; Maggiore, M.; Nassisi, V.; Sinigardi, S.; Tramontana, A.; Schillaci, F.; Scuderi, V.; Turchetti, G.; Varoli, V.; Velardi, L.

    2014-07-01

    Laser-matter interaction at relativistic intensities opens up new research fields in the particle acceleration and related secondary sources, with immediate applications in medical diagnostics, biophysics, material science, inertial confinement fusion, up to laboratory astrophysics. In particular laser-driven ion acceleration is very promising for hadron therapy once the ion energy will attain a few hundred MeV. The limited value of the energy up to now obtained for the accelerated ions is the drawback of such innovative technique to the real applications. LILIA (laser induced light ions acceleration) is an experiment now running at LNF (Frascati) with the goal of producing a real proton beam able to be driven for significant distances (50-75 cm) away from the interaction point and which will act as a source for further accelerating structure. In this paper the description of the experimental setup, the preliminary results of solid target irradiation and start to end simulation for a post-accelerated beam up to 60 MeV are given.

  15. SDSS-IV MaNGA: a distinct mass distribution explored in slow-rotating early-type galaxies

    NASA Astrophysics Data System (ADS)

    Rong, Yu; Li, Hongyu; Wang, Jie; Gao, Liang; Li, Ran; Ge, Junqiang; Jing, Yingjie; Pan, Jun; Fernández-Trincado, J. G.; Valenzuela, Octavio; Ortíz, Erik Aquino

    2018-06-01

    We study the radial acceleration relation (RAR) for early-type galaxies (ETGs) in the SDSS MaNGA MPL5 data set. The complete ETG sample show a slightly offset RAR from the relation reported by McGaugh et al. (2016) at the low-acceleration end; we find that the deviation is due to the fact that the slow rotators show a systematically higher acceleration relation than the McGaugh's RAR, while the fast rotators show a consistent acceleration relation to McGaugh's RAR. There is a 1σ significant difference between the acceleration relations of the fast and slow rotators, suggesting that the acceleration relation correlates with the galactic spins, and that the slow rotators may have a different mass distribution compared with fast rotators and late-type galaxies. We suspect that the acceleration relation deviation of slow rotators may be attributed to more galaxy merger events, which would disrupt the original spins and correlated distributions of baryons and dark matter orbits in galaxies.

  16. Co-evolution of upstream waves and accelerated ions at parallel shocks

    NASA Astrophysics Data System (ADS)

    Fujimoto, M.; Sugiyama, T.

    2016-12-01

    Shock waves in space plasmas have been considered as the agents for various particle acceleration phenomena. The basic idea behind shock acceleration is that particles are accelerated as they move back-and-forth across a shock front. Detailed studies of ion acceleration at the terrestrial bow shock have been performed, however, the restricted maximum energies attained prevent a straight-forward application of obtained knowledge to more energetic astrophysical situations. Here we show by a large-scale self-consistent particle simulation that the co-evolution of magnetic turbulence and accelerated ion population is the foundation for continuous operation of shock acceleration to ever higher energies. Magnetic turbulence is created by ions reflected back upstream of a parallel shock front. The co-evolution arises because more energetic ions excite waves of longer wavelengths, and because longer wavelength modes are capable of scattering (in the upstream) and reflecting (at the shock front) more energetic ions. Via carefully designed numerical experiments, we show very clearly that this picture is true.

  17. Method for computationally efficient design of dielectric laser accelerator structures

    DOE PAGES

    Hughes, Tyler; Veronis, Georgios; Wootton, Kent P.; ...

    2017-06-22

    Here, dielectric microstructures have generated much interest in recent years as a means of accelerating charged particles when powered by solid state lasers. The acceleration gradient (or particle energy gain per unit length) is an important figure of merit. To design structures with high acceleration gradients, we explore the adjoint variable method, a highly efficient technique used to compute the sensitivity of an objective with respect to a large number of parameters. With this formalism, the sensitivity of the acceleration gradient of a dielectric structure with respect to its entire spatial permittivity distribution is calculated by the use of onlymore » two full-field electromagnetic simulations, the original and ‘adjoint’. The adjoint simulation corresponds physically to the reciprocal situation of a point charge moving through the accelerator gap and radiating. Using this formalism, we perform numerical optimizations aimed at maximizing acceleration gradients, which generate fabricable structures of greatly improved performance in comparison to previously examined geometries.« less

  18. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV

    PubMed Central

    Wang, Xiaoming; Zgadzaj, Rafal; Fazel, Neil; Li, Zhengyan; Yi, S. A.; Zhang, Xi; Henderson, Watson; Chang, Y.-Y.; Korzekwa, R.; Tsai, H.-E.; Pai, C.-H.; Quevedo, H.; Dyer, G.; Gaul, E.; Martinez, M.; Bernstein, A. C.; Borger, T.; Spinks, M.; Donovan, M.; Khudik, V.; Shvets, G.; Ditmire, T.; Downer, M. C.

    2013-01-01

    Laser-plasma accelerators of only a centimetre’s length have produced nearly monoenergetic electron bunches with energy as high as 1 GeV. Scaling these compact accelerators to multi-gigaelectronvolt energy would open the prospect of building X-ray free-electron lasers and linear colliders hundreds of times smaller than conventional facilities, but the 1 GeV barrier has so far proven insurmountable. Here, by applying new petawatt laser technology, we produce electron bunches with a spectrum prominently peaked at 2 GeV with only a few per cent energy spread and unprecedented sub-milliradian divergence. Petawatt pulses inject ambient plasma electrons into the laser-driven accelerator at much lower density than was previously possible, thereby overcoming the principal physical barriers to multi-gigaelectronvolt acceleration: dephasing between laser-driven wake and accelerating electrons and laser pulse erosion. Simulations indicate that with improvements in the laser-pulse focus quality, acceleration to nearly 10 GeV should be possible with the available pulse energy. PMID:23756359

  19. Study of Car Acceleration and Deceleration Characteristics at Dangerous Route FT050

    NASA Astrophysics Data System (ADS)

    Omar, N.; Prasetijo, J.; Daniel, B. D.; Abdullah, M. A. E.; Ismail, I.

    2018-04-01

    Individual vehicle acceleration and deceleration are important to generate vehicles speed profile. This study covered acceleration and deceleration characteristics of passenger car in Federal Route FT050 Jalan Batu Pahat-Ayer Hitam that was the top ranking dangerous road. Global Positioning System was used to record 10 cars speed to develop speed profile with clustering zone. At the acceleration manoeuver, the acceleration rate becomes lower as the drivers get near to desired speed. While, at deceleration manoeuver, vehicles with high speed needs more time to stop compare to low speed vehicle. This is because, the drivers need to accelerate more from zero speed to achieve desired speed and drivers need more distance and time to stop their vehicles. However, it was found out that 30% to 50% are driving in dangerous condition that was proven in clustering acceleration and deceleration speed profile. As conclusion, this excessive drivers are the factor that creating high risk in rear-end collision that inline FT050 as dangerous road in Malaysia

  20. An Endogenous Accelerator for Viral Gene Expression Confers a Fitness Advantage

    PubMed Central

    Teng, Melissa W.; Bolovan-Fritts, Cynthia; Dar, Roy D.; Womack, Andrew; Simpson, Michael L.; Shenk, Thomas; Weinberger, Leor S.

    2012-01-01

    Many signaling circuits face a fundamental tradeoff between accelerating their response speed while maintaining final levels below a cytotoxic threshold. Here, we describe a transcriptional circuitry that dynamically converts signaling inputs into faster rates without amplifying final equilibrium levels. Using time-lapse microscopy, we find that transcriptional activators accelerate human cytomegalovirus (CMV) gene expression in single cells without amplifying steady-state expression levels, and this acceleration generates a significant replication advantage. We map the accelerator to a highly self-cooperative transcriptional negative-feedback loop (Hill coefficient ~ 7) generated by homo-multimerization of the virus’s essential transactivator protein IE2 at nuclear PML bodies. Eliminating the IE2-accelerator circuit reduces transcriptional strength through mislocalization of incoming viral genomes away from PML bodies and carries a heavy fitness cost. In general, accelerators may provide a mechanism for signal-transduction circuits to respond quickly to external signals without increasing steady-state levels of potentially cytotoxic molecules. PMID:23260143

  1. Astrophysical particle acceleration mechanisms in colliding magnetized laser-produced plasmas

    DOE PAGES

    Fox, W.; Park, J.; Deng, W.; ...

    2017-08-11

    Significant particle energization is observed to occur in numerous astrophysical environments, and in the standard models, this acceleration occurs alongside energy conversion processes including collisionless shocks or magnetic reconnection. Recent platforms for laboratory experiments using magnetized laser-produced plasmas have opened opportunities to study these particle acceleration processes in the laboratory. Through fully kinetic particle-in-cell simulations, we investigate acceleration mechanisms in experiments with colliding magnetized laser-produced plasmas, with geometry and parameters matched to recent high-Mach number reconnection experiments with externally controlled magnetic fields. 2-D simulations demonstrate significant particle acceleration with three phases of energization: first, a “direct” Fermi acceleration driven bymore » approaching magnetized plumes; second, x-line acceleration during magnetic reconnection of anti-parallel fields; and finally, an additional Fermi energization of particles trapped in contracting and relaxing magnetic islands produced by reconnection. Furthermore, the relative effectiveness of these mechanisms depends on plasma and magnetic field parameters of the experiments.« less

  2. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  3. Multilevel acceleration of scattering-source iterations with application to electron transport

    DOE PAGES

    Drumm, Clif; Fan, Wesley

    2017-08-18

    Acceleration/preconditioning strategies available in the SCEPTRE radiation transport code are described. A flexible transport synthetic acceleration (TSA) algorithm that uses a low-order discrete-ordinates (S N) or spherical-harmonics (P N) solve to accelerate convergence of a high-order S N source-iteration (SI) solve is described. Convergence of the low-order solves can be further accelerated by applying off-the-shelf incomplete-factorization or algebraic-multigrid methods. Also available is an algorithm that uses a generalized minimum residual (GMRES) iterative method rather than SI for convergence, using a parallel sweep-based solver to build up a Krylov subspace. TSA has been applied as a preconditioner to accelerate the convergencemore » of the GMRES iterations. The methods are applied to several problems involving electron transport and problems with artificial cross sections with large scattering ratios. These methods were compared and evaluated by considering material discontinuities and scattering anisotropy. Observed accelerations obtained are highly problem dependent, but speedup factors around 10 have been observed in typical applications.« less

  4. Evaluating secular acceleration in geomagnetic field model GRIMM-3

    NASA Astrophysics Data System (ADS)

    Lesur, V.; Wardinski, I.

    2012-12-01

    Secular acceleration of the magnetic field is the rate of change of its secular variation. One of the main results of studying magnetic data collected by the German survey satellite CHAMP was the mapping of field acceleration and its evolution in time. Questions remain about the accuracy of the modeled acceleration and the effect of the applied regularization processes. We have evaluated to what extent the regularization affects the temporal variability of the Gauss coefficients. We also obtained results of temporal variability of the Gauss coefficients where alternative approaches to the usual smoothing norms have been applied for regularization. Except for the dipole term, the secular acceleration of the Gauss coefficients is fairly well described up to spherical harmonic degree 5 or 6. There is no clear evidence from observatory data that the spectrum of this acceleration is underestimated at the Earth surface. Assuming a resistive mantle, the observed acceleration supports a characteristic time scale for the secular variation of the order of 11 years.

  5. Investigation of acceleration characteristics of a single-spool turbojet engine

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L; Pack, George J

    1953-01-01

    Operation of a single-spool turbojet engine with constant exhaust-nozzle area was investigated at one flight condition. Data were obtained by subjecting the engine to approximate-step changes in fuel flow, and the information necessary to show the relations of acceleration to the sensed engine variables was obtained. These data show that maximum acceleration occurred prior to stall and surge. In the low end of the engine-speed range the margin was appreciable; in the high-speed end the margin was smaller but had not been completely defined by these data. Data involving acceleration as a function of speed, fuel flow, turbine-discharge temperature, compressor-discharge pressure, and thrust have been presented and an effort has been made to show how a basic control system could be improved by addition of an override in which the acceleration characteristic is used not only to prevent the engine from entering the surge region but also to obtain acceleration along the maximum acceleration line during throttle bursts.

  6. Roadmap to the Future

    NASA Astrophysics Data System (ADS)

    Colby, Eric R.; Len, L. K.

    Most particle accelerators today are expensive devices found only in the largest laboratories, industries, and hospitals. Using techniques developed nearly a century ago, the limiting performance of these accelerators is often traceable to material limitations, power source capabilities, and the cost tolerance of the application. Advanced accelerator concepts aim to increase the gradient of accelerators by orders of magnitude, using new power sources (e.g. lasers and relativistic beams) and new materials (e.g. dielectrics, metamaterials, and plasmas). Worldwide, research in this area has grown steadily in intensity since the 1980s, resulting in demonstrations of accelerating gradients that are orders of magnitude higher than for conventional techniques. While research is still in the early stages, these techniques have begun to demonstrate the potential to radically change accelerators, making them much more compact, and extending the reach of these tools of science into the angstrom and attosecond realms. Maturation of these techniques into robust, engineered devices will require sustained interdisciplinary, collaborative R&D and coherent use of test infrastructure worldwide. The outcome can potentially transform how accelerators are used.

  7. Roadmap to the Future

    NASA Astrophysics Data System (ADS)

    Colby, Eric R.; Len, L. K.

    Most particle accelerators today are expensive devices found only in the largest laboratories, industries, and hospitals. Using techniques developed nearly a century ago, the limiting performance of these accelerators is often traceable to material limitations, power source capabilities, and the cost tolerance of the application. Advanced accelerator conceptsa aim to increase the gradient of accelerators by orders of magnitude, using new power sources (e.g. lasers and relativistic beams) and new materials (e.g. dielectrics, metamaterials, and plasmas). Worldwide, research in this area has grown steadily in intensity since the 1980s, resulting in demonstrations of accelerating gradients that are orders of magnitude higher than for conventional techniques. While research is still in the early stages, these techniques have begun to demonstrate the potential to radically change accelerators, making them much more compact, and extending the reach of these tools of science into the angstrom and attosecond realms. Maturation of these techniques into robust, engineered devices will require sustained interdisciplinary, collaborative R&D and coherent use of test infrastructure worldwide. The outcome can potentially transform how accelerators are used.

  8. Recent results from the University of Washington's 38 mm ram accelerator

    NASA Technical Reports Server (NTRS)

    De Turenne, J. A.; Chew, G.; Bruckner, A. P.

    1992-01-01

    The ram accelerator is a propulsive device that accelerates projectiles using gasdynamic cycles similar to those which generate thrust in airbreathing ramjets. The projectile, analogous to the centerbody of a ramjet, travels supersonically through a stationary tube containing a gaseous fuel and oxidizer mixture. The projectile itself carries no onboard propellant. A combustion zone follows the projectile and stabilizes the shock structure. The resulting pressure distribution continuously accelerates the projectile. Several modes of ram accelerator operation have been investigated experimentally and theoretically. At velocities below the Chapman-Jouguet (C-J) detonation speed of the propellant mixture, the thermally choked propulsion mode accelerates the projectiles. At projectile velocities between approximately 90 and 110 percent of the C-J speed, a transdetonative propulsion mode occurs. At velocities beyond 110 percent of the C-J speed, projectiles experience superdetonative propulsion. This paper presents recent experimental results from these propulsion modes obtained with the University of Washington's 38-mm bore ram accelerator. Data from investigations with hydrogen diluted-gas mixtures are also introduced.

  9. Electric thruster research

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The multipole discharge chamber of an electrostatic ion thruster is discussed. No reductions in discharge losses were obtained, despite repeated demonstration of anode potentials more positive than the bulk of the discharge plasma. The penalty associated with biased anode operation was reduced as the magnetic integral above the biased anodes was increased. The hollow cathode is discussed. The experimental configuration of the Hall current thruster had a uniform field throughout the ion generation and acceleration regions. To obtain reliable ion generation, it was necessary to reduce the magnetic field strength, to the point where excessive electron backflow was required to establish ion acceleration. The theoretical study of ion acceleration with closed electron drift paths resulted in two classes of solutions. One class has the continuous potential variation in the acceleration region that is normally associated with a Hall current accelerator. The other class has an almost discontinuous potential step near the anode end of the acceleration region. This step includes a significant fraction of the total acceleration potential difference.

  10. [Effect of vibrational factors on the evaluation of whole-body vibrational intensity].

    PubMed

    Suzuki, H

    1997-12-01

    The aim of this study is to obtain basic data useful to evaluate the riding comfort of railway vehicles. The apparatus used in the present experiment made it possible to simulate various vibrations of railway vehicles. Twenty-two adult subjects participated in this experiment. They were exposed to lateral vibration with varying peak and root mean square (rms) accelerations and frequencies. The types and ranges of vibrations used in this experiment approximated to the typical vibrations of railway vehicles. The subjects were asked to rate the intensity of each vibration given to them successively, using the 7-step rating scale. Results indicated that both peak and rms accelerations significantly affected for the evaluation, although the effect of frequency was not significant. As for interactions, it was found that there were significant interacting effects between frequency and peak acceleration, between frequency and rms acceleration, and between peak and rms accelerations. It was also found that the relationship between the rms acceleration and the evaluated score changed with varying peak accelerations.

  11. A Summary of the Quasi-Steady Acceleration Environment on-Board STS-94 (MSL-1)

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin M.; Nati, Maurizio; Touboul, Pierre; Schuette, Andreas; Sablon, Gert

    1999-01-01

    The continuous free-fall state of a low Earth orbit experienced by NASA's Orbiters results in a unique reduced gravity environment. While microgravity science experiments are conducted in this reduced gravity environment, various accelerometer systems measure and record the microgravity acceleration environment for real-time and post-flight correlation with microgravity science data. This overall microgravity acceleration environment is comprised of quasi-steady, oscillatory, and transient contributions. The First Microgravity Science Laboratory (MSL-1) payload was dedicated to experiments studying various microgravity science disciplines, including combustion, fluid physics, and materials processing. In support of the MSL-1 payload, two systems capable of measuring the quasi-steady acceleration environment were flown: the Orbital Acceleration Research Experiment (OARE) and the Microgravity Measurement Assembly (MMA) system's Accelerometre Spatiale Triaxiale most evident in the quasi-steady acceleration regime. Utilizing such quasi-steady events, a comparison and summary of the quasi-steady acceleration environment for STS-94 will be presented

  12. Electron cyclotron harmonic wave acceleration

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Menyuk, C. R.; Sprangle, P.; Vlahos, L.

    1987-01-01

    A nonlinear analysis of particle acceleration in a finite bandwidth, obliquely propagating electromagnetic cyclotron wave is presented. It has been suggested by Sprangle and Vlahos in 1983 that the narrow bandwidth cyclotron radiation emitted by the unstable electron distribution inside a flaring solar loop can accelerate electrons outside the loop by the interaction of a monochromatic wave propagating along the ambient magnetic field with the ambient electrons. It is shown here that electrons gyrating and streaming along a uniform, static magnetic field can be accelerated by interacting with the fundamental or second harmonic of a monochromatic, obliquely propagating cyclotron wave. It is also shown that the acceleration is virtually unchanged when a wave with finite bandwidth is considered. This acceleration mechanism can explain the observed high-energy electrons in type III bursts.

  13. Dense plasma focus (DPF) accelerated non radio isotopic radiological source

    DOEpatents

    Rusnak, Brian; Tang, Vincent

    2017-01-31

    A non-radio-isotopic radiological source using a dense plasma focus (DPF) to produce an intense z-pinch plasma from a gas, such as helium, and which accelerates charged particles, such as generated from the gas or injected from an external source, into a target positioned along an acceleration axis and of a type known to emit ionizing radiation when impinged by the type of accelerated charged particles. In a preferred embodiment, helium gas is used to produce a DPF-accelerated He2+ ion beam to a beryllium target, to produce neutron emission having a similar energy spectrum as a radio-isotopic AmBe neutron source. Furthermore, multiple DPFs may be stacked to provide staged acceleration of charged particles for enhancing energy, tunability, and control of the source.

  14. Small-scale laser based electron accelerators for biology and medicine: a comparative study of the biological effectiveness

    NASA Astrophysics Data System (ADS)

    Labate, Luca; Andreassi, Maria Grazia; Baffigi, Federica; Basta, Giuseppina; Bizzarri, Ranieri; Borghini, Andrea; Candiano, Giuliana C.; Casarino, Carlo; Cresci, Monica; Di Martino, Fabio; Fulgentini, Lorenzo; Ghetti, Francesco; Gilardi, Maria Carla; Giulietti, Antonio; Köster, Petra; Lenci, Francesco; Levato, Tadzio; Oishi, Yuji; Russo, Giorgio; Sgarbossa, Antonella; Traino, Claudio; Gizzi, Leonida A.

    2013-05-01

    Laser-driven electron accelerators based on the Laser Wakefield Acceleration process has entered a mature phase to be considered as alternative devices to conventional radiofrequency linear accelerators used in medical applications. Before entering the medical practice, however, deep studies of the radiobiological effects of such short bunches as the ones produced by laser-driven accelerators have to be performed. Here we report on the setup, characterization and first test of a small-scale laser accelerator for radiobiology experiments. A brief description of the experimental setup will be given at first, followed by an overview of the electron bunch characterization, in particular in terms of dose delivered to the samples. Finally, the first results from the irradiation of biological samples will be briefly discussed.

  15. A simulator study on information requirements for precision hovering

    NASA Technical Reports Server (NTRS)

    Lemons, J. L.; Dukes, T. A.

    1975-01-01

    A fixed base simulator study of an advanced helicopter instrument display utilizing translational acceleration, velocity and position information is reported. The simulation involved piloting a heavy helicopter using the Integrated Trajectory Error Display (ITED) in a precision hover task. The test series explored two basic areas. The effect on hover accuracy of adding acceleration information was of primary concern. Also of interest was the operators' ability to use degraded information derived from less sophisticated sources. The addition of translational acceleration to a display containing velocity and position information did not appear to improve the hover performance significantly. However, displayed acceleration information seemed to increase the damping of the man machine system. Finally, the pilots could use translational information synthesized from attitude and angular acceleration as effectively as perfect acceleration.

  16. Determination of the cosmological rate of change of G and the tidal accelerations of earth and moon from ancient and modern astronomical data

    NASA Technical Reports Server (NTRS)

    Muller, P. M.

    1976-01-01

    The theory and numerical analysis of ancient astronomical observations (1374 to 1715) are combined with modern data in a simultaneous solution for: the tidal acceleration of the lunar longitude; the observed apparent acceleration of the earth's rotation; the true nontidal geophysical part of this acceleration; and the rate of change in the gravitational constant. Provided are three independent determinations of a rate of change of G consistent with the Hubble Constant and a near zero nontidal rotational acceleration of the earth. The tidal accelerations are shown to have remained constant during the historical period within uncertainties. Ancient and modern solar system data, and extragalactic observations provided a completely consistent astronomical and cosmological scheme.

  17. Chromaticity of the lattice and beam stability in energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Litvinenko, Vladimir N.

    2012-07-01

    Energy recovery linacs (ERLs) are an emerging generation of accelerators that promises to revolutionize the fields of high-energy physics and photon sciences. These accelerators combine the advantages of linear accelerators with that of storage rings, and augur the delivery of electron beams of unprecedented power and quality. The use of superconducting radio-frequency cavities converts ERLs into nearly perfect “perpetuum mobile” accelerators, wherein the beam is accelerated to the desired energy, used, and then yields the energy back to the rf field. However, one potential weakness of these devices is transverse beam breakup instability that could severely limit the available beam current. In this paper, I propose a novel method of suppressing these dangerous effects via a natural phenomenon in the accelerators, viz., the chromaticity of the transverse motion.

  18. Efficient particle acceleration in shocks

    NASA Astrophysics Data System (ADS)

    Heavens, A. F.

    1984-10-01

    A self-consistent non-linear theory of acceleration of particles by shock waves is developed, using an extension of the two-fluid hydrodynamical model by Drury and Völk. The transport of the accelerated particles is governed by a diffusion coefficient which is initially assumed to be independent of particle momentum, to obtain exact solutions for the spectrum. It is found that steady-state shock structures with high acceleration efficiency are only possible for shocks with Mach numbers less than about 12. A more realistic diffusion coefficient is then considered, and this maximum Mach number is reduced to about 6. The efficiency of the acceleration process determines the relative importance of the non-relativistic and relativistic particles in the distribution of accelerated particles, and this determines the effective specific heat ratio.

  19. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  20. Effects of Experiment Location and Orbiter Attitude on the Residual Acceleration On-Board STS-73 (USML-2)

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; McPherson, Kevin M.; Matisak, Brian P.; Wagar, William O.

    1997-01-01

    A knowledge of the quasi-steady acceleration environment on the NASA Space Shuttle Orbiter is of particular importance for materials processing experiments which are limited by slow diffusive processes. The quasi-steady (less than 1 HZ) acceleration environment on STS-73 (USML-2) was measured using the Orbital Acceleration Research Experiment (OARE) accelerometer. One of the facilities flown on USML-2 was the Crystal Growth Furnace (CGF), which was used by several Principal Investigators (PIS) to grow crystals. In this paper the OARE data mapped to the sample melt location within this furnace is presented. The ratio of the axial to radial components of the quasi-steady acceleration at the melt site is presented. Effects of Orbiter attitude on the acceleration data is discussed.

  1. The LeRC rail accelerators: Test designs and diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.; Sturman, J. C.; Wang, S. Y.; Terdan, F. F.

    1983-01-01

    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed.

  2. Plasmon-driven acceleration in a photo-excited nanotube

    DOE PAGES

    Shin, Young -Min

    2017-02-21

    A plasmon-assisted channeling acceleration can be realized with a large channel, possibly at the nanometer scale. Carbon nanotubes (CNTs) are the most typical example of nano-channels that can confine a large number of channeled particles in a photon-plasmon coupling condition. This paper presents a theoretical and numerical study on the concept of high-field charge acceleration driven by photo-excited Luttinger-liquid plasmons in a nanotube. An analytic description of the plasmon-assisted laser acceleration is detailed with practical acceleration parameters, in particular, with the specifications of a typical tabletop femtosecond laser system. Lastly, the maximally achievable acceleration gradients and energy gains within dephasingmore » lengths and CNT lengths are discussed with respect to laser-incident angles and CNT-filling ratios.« less

  3. Rotary acceleration of a subject inhibits choice reaction time to motion in peripheral vision

    NASA Technical Reports Server (NTRS)

    Borkenhagen, J. M.

    1974-01-01

    Twelve pilots were tested in a rotation device with visual simulation, alone and in combination with rotary stimulation, in experiments with variable levels of acceleration and variable viewing angles, in a study of the effect of S's rotary acceleration on the choice reaction time for an accelerating target in peripheral vision. The pilots responded to the direction of the visual motion by moving a hand controller to the right or left. Visual-plus-rotary stimulation required a longer choice reaction time, which was inversely related to the level of acceleration and directly proportional to the viewing angle.

  4. Magnetogasdynamic compression of a coaxial plasma accelerator flow for micrometeoroid simulation

    NASA Technical Reports Server (NTRS)

    Igenbergs, E. B.; Shriver, E. L.

    1974-01-01

    A new configuration of a coaxial plasma accelerator with self-energized magnetic compressor coil attached is described. It is shown that the circuit may be treated theoretically by analyzing an equivalent circuit mesh. The results obtained from the theoretical analysis compare favorably with the results measured experimentally. Using this accelerator configuration, glass beads of 125 micron diameter were accelerated to velocities as high as 11 kilometers per second, while 700 micron diameter glass beads were accelerated to velocities as high as 5 kilometers per second. The velocities are within the hypervelocity regime of meteoroids.

  5. Acceleration and stability of a high-current ion beam in induction fields

    NASA Astrophysics Data System (ADS)

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-01

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  6. Turbulence Evolution and Shock Acceleration of Solar Energetic Particles

    NASA Technical Reports Server (NTRS)

    Chee, Ng K.

    2007-01-01

    We model the effects of self-excitation/damping and shock transmission of Alfven waves on solar-energetic-particle (SEP) acceleration at a coronal-mass-ejection (CME) driven parallel shock. SEP-excited outward upstream waves speedily bootstrap acceleration. Shock transmission further raises the SEP-excited wave intensities at high wavenumbers but lowers them at low wavenumbers through wavenumber shift. Downstream, SEP excitation of inward waves and damping of outward waves tend to slow acceleration. Nevertheless, > 2000 km/s parallel shocks at approx. 3.5 solar radii can accelerate SEPs to 100 MeV in < 5 minutes.

  7. Proceedings of the 1995 Particle Accelerator Conference and international Conference on High-Energy Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1996-01-01

    Papers from the sixteenth biennial Particle Accelerator Conference, an international forum on accelerator science and technology held May 1–5, 1995, in Dallas, Texas, organized by Los Alamos National Laboratory (LANL) and Stanford Linear Accelerator Center (SLAC), jointly sponsored by the Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Plasma Sciences Society (NPSS), the American Physical Society (APS) Division of Particles and Beams (DPB), and the International Union of Pure and Applied Physics (IUPAP), and conducted with support from the US Department of Energy, the National Science Foundation, and the Office of Naval Research.

  8. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  9. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  10. BBU design of linear induction accelerator cells for radiography application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C.C.; Chen, Y.J.; Gaporaso, G.J.

    1997-05-06

    There is an ongoing effort to develop accelerating modules for high-current electron accelerators for advanced radiography application. Accelerating modules with low beam-cavity coupling impedances along with gap designs with acceptable field stresses comprise a set of fundamental design criteria. We examine improved cell designs which have been developed for accelerator application in several radiographic operating regimes. We evaluate interaction impedances, analyze the effects of beam structure coupling on beam dynamics (beam break-up instability and corkscrew motion). We also provide estimates of coupling through interesting new high-gradient insulators and evaluate their potential future application in induction cells.

  11. Pulse - Accelerator Science in Medicine

    Science.gov Websites

    discoveries in particle accelerator science may lead to unexpected applications for medical diagnosis, healing perhaps to new tools for medical science. National laboratories build particle accelerators for physicists

  12. Linear Accelerator (LINAC)

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? A linear accelerator (LINAC) is the ... Therapy (SBRT) . top of page How does the equipment work? The linear accelerator uses microwave technology (similar ...

  13. Coronal tibial slope is associated with accelerated knee osteoarthritis: data from the Osteoarthritis Initiative.

    PubMed

    Driban, Jeffrey B; Stout, Alina C; Duryea, Jeffrey; Lo, Grace H; Harvey, William F; Price, Lori Lyn; Ward, Robert J; Eaton, Charles B; Barbe, Mary F; Lu, Bing; McAlindon, Timothy E

    2016-07-19

    Accelerated knee osteoarthritis may be a unique subset of knee osteoarthritis, which is associated with greater knee pain and disability. Identifying risk factors for accelerated knee osteoarthritis is vital to recognizing people who will develop accelerated knee osteoarthritis and initiating early interventions. The geometry of an articular surface (e.g., coronal tibial slope), which is a determinant of altered joint biomechanics, may be an important risk factor for incident accelerated knee osteoarthritis. We aimed to determine if baseline coronal tibial slope is associated with incident accelerated knee osteoarthritis or common knee osteoarthritis. We conducted a case-control study using data and images from baseline and the first 4 years of follow-up in the Osteoarthritis Initiative. We included three groups: 1) individuals with incident accelerated knee osteoarthritis, 2) individuals with common knee osteoarthritis progression, and 3) a control group with no knee osteoarthritis at any time. We did 1:1:1 matching for the 3 groups based on sex. Weight-bearing, fixed flexion posterior-anterior knee radiographs were obtained at each visit. One reader manually measured baseline coronal tibial slope on the radiographs. Baseline femorotibial angle was measured on the radiographs using a semi-automated program. To assess the relationship between slope (predictor) and incident accelerated knee osteoarthritis or common knee osteoarthritis (outcomes) compared with no knee osteoarthritis (reference outcome), we performed multinomial logistic regression analyses adjusted for sex. The mean baseline slope for incident accelerated knee osteoarthritis, common knee osteoarthritis, and no knee osteoarthritis were 3.1(2.0), 2.7(2.1), and 2.6(1.9); respectively. A greater slope was associated with an increased risk of incident accelerated knee osteoarthritis (OR = 1.15 per degree, 95 % CI = 1.01 to 1.32) but not common knee osteoarthritis (OR = 1.04, 95 % CI = 0.91 to 1.19). These findings were similar when adjusted for recent injury. Among knees with varus malalignment a greater slope increases the odds of incident accelerated knee osteoarthritis; there is no significant relationship between slope and incident accelerated knee osteoarthritis among knees with normal alignment. Coronal tibial slope, particularly among knees with malalignment, may be an important risk factor for incident accelerated knee osteoarthritis.

  14. Fermilab | Fermilab Disclaimer

    Science.gov Websites

    Accelerator Science and Technology Facility LHC, LCLS-II and future accelerators Accelerators for science and usefulness of any information, apparatus, product or process disclosed, or represents that its use would not

  15. Method of forming frozen spheres in a force-free drop tower

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Jr. (Inventor)

    1982-01-01

    Hollow glass spheres are shaped by the effects of surface tension acting on bubbles of glass in its molten state. A downwardly flowing stream of air accelerated at a one-G rate of acceleration is established through a drop bubbles on molten glass are introduced into the stream of air and frozen and as they are accelerated at a one-G rate of acceleration.

  16. Beam transport results on the multi-beam MABE accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, P.D.; Alexander, J.A.; Hasti, D.E.

    1985-10-01

    MABE is a multistage, electron beam linear accelerator. The accelerator has been operated in single beam (60 kA, 7 Mev) and multiple beam configurations. This paper deals with the multiple beam configuration in which typically nine approx. = 25 kA injected beams are transported through three accelerating gaps. Experimental results from the machine are discussed, including problems encountered and proposed solutions to those problems.

  17. Review of ESA Experimental Research Activities for Electric Propulsion

    DTIC Science & Technology

    2011-01-01

    detect gravitational waves, distortions of space-time occurring when a massive body is accelerated or disturbed. To achieve that goal the relative...thrusters of Electric Propulsion systems accelerate the propellant ions to velocities of tens of kilometers per second making it a propulsion option that is...expanded through nozzle Ion electrostatically accelerated . Plasma accelerated via interaction of current and magnetic field. Concept Resistojets

  18. Physical Interpretation of the Schott Energy of An Accelerating Point Charge and the Question of Whether a Uniformly Accelerating Charge Radiates

    ERIC Educational Resources Information Center

    Rowland, David R.

    2010-01-01

    A core topic in graduate courses in electrodynamics is the description of radiation from an accelerated charge and the associated radiation reaction. However, contemporary papers still express a diversity of views on the question of whether or not a uniformly accelerating charge radiates suggesting that a complete "physical" understanding of the…

  19. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byer, Robert L.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  20. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  1. Planning for an Accelerated School. A Two Day Workshop (Stanford, California, November 17-18, 1988). Illinois Network of Accelerated Schools.

    ERIC Educational Resources Information Center

    Illinois State Board of Education, Springfield. Dept. of School Improvement Services.

    The thesis of this conference report is that acceleration is a much more effective method than remediation for bringing at-risk children into the educational mainstream at an early age. The papers summarized in the report provide a background on the history, politics, and demography of at-risk students and suggest applications of acceleration to…

  2. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    NASA Astrophysics Data System (ADS)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D.

    2013-07-01

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from ˜20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.

  3. An overview of the facilities, activities, and developments at the University of North Texas Ion Beam Modification and Analysis Laboratory (IBMAL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.

    2013-07-03

    The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. Formore » the low-energy beam line, the ion energy can be varied from {approx}20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.« less

  4. Stochastic Particle Acceleration in Impulsive Solar Flares

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    2001-01-01

    The acceleration of a huge number of electrons and ions to relativistic energies over timescales ranging from several seconds to several tens of seconds is the fundamental problem in high-energy solar physics. The cascading turbulence model we have developed has been shown previously (e.g., Miller 2000; Miller & Roberts 1995; Miner, LaRosa, & Moore 1996) to account for all the bulk features (such as acceleration timescales, fluxes, total number of energetic particles, and maximum energies) of electron and proton acceleration in impulsive solar flares. While the simulation of this acceleration process is involved, the essential idea of the model is quite simple, and consists of just a few parts: 1. During the primary flare energy release phase, we assume that low-amplitude MHD Alfven and fast mode waves are excited at long wavelengths, say comparable to the size of the event (although the results are actually insensitive to this initial wavelength). While an assumption, this appears reasonable in light of the likely highly turbulent nature of the flare. 2. These waves then cascade in a Kolmogorov-like fashion to smaller wavelengths (e.g., Verma et al. 1996), forming a power-law spectral density in wavenumber space through the inertial range. 3. When the mean wavenumber of the fast mode waves has increased sufficiently, the transit-time acceleration rate (Miller 1997) for superAlfvenic electrons can overcome Coulomb energy losses, and these electrons are accelerated out of the thermal distribution and to relativistic energies (Miller et al. 1996). As the Alfven waves cascade to higher wavenumbers, they can cyclotron resonate with progressively lower energy protons. Eventually, they will resonate with protons in the tail of the thermal distribution, which will then be accelerated to relativistic energies as well (Miller & Roberts 1995). Hence, both ions and electrons are stochastically accelerated, albeit by different mechanisms and different waves. 4. When the protons become superAlfvenic (above about 1 MeV/nucleon), they too can suffer transit-time acceleration by the fast mode waves and will receive an extra acceleration "kick." The basic overall objective of this 1 year effort was to construct a spatially-dependent version of this acceleration model and this has been realized.

  5. Industrialization of Superconducting RF Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project currently being designed by the international collaboration GDE (`global design effort'). If the ILC will be built, about 18,000 SRF cavities need to be manufactured worldwide within about five years. The industrialization of SRF accelerator technology is analyzed and reviewed in this article in view of the main accelerator projects of the last two to three decades.

  6. From laser particle acceleration to the synthesis of extremely neutron rich isotopes via the novel fission-fusion mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thirolf, P. G., E-mail: Peter.Thirolf@lmu.de

    2015-02-24

    High-power, short pulse lasers have emerged in the last decade as attractive tools for accelerating charged particles (electrons, ions) to high energies over mm-scale acceleration lengths, thus promising to rival conventional acceleration techniques in the years ahead. In the first part of the article, the principles of laser-plasma interaction as well as the techniques and the current status of the acceleration of electron and ion beams will be briefly introduced. In particular with the upcoming next generation of multi-PW class laser systems, such as the one under construction for the ELI-Nuclear Physics project in Bucharest (ELI-NP), very efficient acceleration mechanismsmore » for brilliant ion beams like radiation pressure acceleration (RPA) come into reach. Here, ultra-dense ion beams reaching solid-state density can be accelerated from thin target foils, exceeding the density of conventionally accelerated ion beams by about 14 orders of magnitude. This unique property of laser-accelerated ion beams can be exploited to explore the scenario of a new reaction mechanism called ‘fission-fusion’, which will be introduced in the second part of the article. Accelerating fissile species (e.g. {sup 232}Th) towards a second layer of the same material will lead to fission both of the beam-like and target-like particles. Due to the close to solid-state density of the accelerated ion bunches, fusion may occur between neutron-rich (light) fission products. This may open an access path towards extremely neutron-rich nuclides in the vicinity of the N=126 waiting point of the astrophysical r process. ‘Waiting points’ at closed nucleon shells play a crucial role in controlling the reaction rates. However, since most of the pathway of heavy-element formation via the rapid-neutron capture process (r-process) runs in ‘terra incognita’ of the nuclear landscape, in particular the waiting point at N=126 is yet unexplored and will remain largely inaccessible to conventional nuclear reaction schemes even at next-generation radioactive beam facilities, underlining the attractive perspectives offered, e.g., by ELI-NP.« less

  7. Simultaneous Multislice Echo Planar Imaging With Blipped Controlled Aliasing in Parallel Imaging Results in Higher Acceleration: A Promising Technique for Accelerated Diffusion Tensor Imaging of Skeletal Muscle.

    PubMed

    Filli, Lukas; Piccirelli, Marco; Kenkel, David; Guggenberger, Roman; Andreisek, Gustav; Beck, Thomas; Runge, Val M; Boss, Andreas

    2015-07-01

    The aim of this study was to investigate the feasibility of accelerated diffusion tensor imaging (DTI) of skeletal muscle using echo planar imaging (EPI) applying simultaneous multislice excitation with a blipped controlled aliasing in parallel imaging results in higher acceleration unaliasing technique. After federal ethics board approval, the lower leg muscles of 8 healthy volunteers (mean [SD] age, 29.4 [2.9] years) were examined in a clinical 3-T magnetic resonance scanner using a 15-channel knee coil. The EPI was performed at a b value of 500 s/mm2 without slice acceleration (conventional DTI) as well as with 2-fold and 3-fold acceleration. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in all 3 acquisitions. Fiber tracking performance was compared between the acquisitions regarding the number of tracks, average track length, and anatomical precision using multivariate analysis of variance and Mann-Whitney U tests. Acquisition time was 7:24 minutes for conventional DTI, 3:53 minutes for 2-fold acceleration, and 2:38 minutes for 3-fold acceleration. Overall FA and MD values ranged from 0.220 to 0.378 and 1.595 to 1.829 mm2/s, respectively. Two-fold acceleration yielded similar FA and MD values (P ≥ 0.901) and similar fiber tracking performance compared with conventional DTI. Three-fold acceleration resulted in comparable MD (P = 0.199) but higher FA values (P = 0.006) and significantly impaired fiber tracking in the soleus and tibialis anterior muscles (number of tracks, P < 0.001; anatomical precision, P ≤ 0.005). Simultaneous multislice EPI with blipped controlled aliasing in parallel imaging results in higher acceleration can remarkably reduce acquisition time in DTI of skeletal muscle with similar image quality and quantification accuracy of diffusion parameters. This may increase the clinical applicability of muscle anisotropy measurements.

  8. Novel Linac Structures For Low-Beta Ions And For Muons

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey S.

    2011-06-01

    Development of two innovative linacs is discussed. (1) High-efficiency normal-conducting accelerating structures for ions with beam velocities in the range of a few percent of the speed of light. Two existing accelerator technologies—the H-mode resonator cavities and transverse beam focusing by permanent-magnet quadrupoles (PMQ)—are merged to create efficient structures for light-ion beams of considerable currents. The inter-digital H-mode accelerator with PMQ focusing (IH-PMQ) has the shunt impedance 10-20 times higher than the standard drift-tube linac. Results of the combined 3-D modeling for an IH-PMQ accelerator tank—electromagnetic computations, beam-dynamics simulations, and thermal-stress analysis—are presented. H-PMQ structures following a short RFQ accelerator can be used in the front end of ion linacs or in stand-alone applications like a compact mobile deuteron-beam accelerator up to a few MeV. (2) A large-acceptance high-gradient linac for accelerating low-energy muons in a strong solenoidal magnetic field. When a proton beam hits a target, many low-energy pions are produced almost isotropically, in addition to a small number of high-energy pions in the forward direction. We propose to collect and accelerate copious muons created as the low-energy pions decay. The acceleration should bring muons to a kinetic energy of ˜200 MeV in about 10 m, where both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. One potential solution is a normal-conducting linac consisting of independently fed 0-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. Potential applications range from basic research to homeland defense to industry and medicine.

  9. The Challenge of Evaluating the Intensity of Short Actions in Soccer: A New Methodological Approach Using Percentage Acceleration.

    PubMed

    Sonderegger, Karin; Tschopp, Markus; Taube, Wolfgang

    2016-01-01

    There are several approaches to quantifying physical load in team sports using positional data. Distances in different speed zones are most commonly used. Recent studies have used acceleration data in addition in order to take short intense actions into account. However, the fact that acceleration decreases with increasing initial running speed is ignored and therefore introduces a bias. The aim of our study was to develop a new methodological approach that removes this bias. For this purpose, percentage acceleration was calculated as the ratio of the maximal acceleration of the action (amax,action) and the maximal voluntary acceleration (amax) that can be achieved for a particular initial running speed (percentage acceleration [%] = amax,action / amax * 100). To define amax, seventy-two highly trained junior male soccer players (17.1 ± 0.6 years) completed maximal sprints from standing and three different constant initial running speeds (vinit; trotting: ~6.0 km·h-1; jogging: ~10.8 km·h-1; running: ~15.0 km·h-1). The amax was 6.01 ± 0.55 from a standing start, 4.33 ± 0.40 from trotting, 3.20 ± 0.49 from jogging and 2.29 ± 0.34 m·s-2 from running. The amax correlated significantly with vinit (r = -0.98) and the linear regression equation of highly-trained junior soccer players was: amax = -0.23 * vinit + 5.99. Using linear regression analysis, we propose to classify high-intensity actions as accelerations >75% of the amax, corresponding to acceleration values for our population of >4.51 initiated from standing, >3.25 from trotting, >2.40 from jogging, and >1.72 m·s-2 from running. The use of percentage acceleration avoids the bias of underestimating actions with high and overestimating actions with low initial running speed. Furthermore, percentage acceleration allows determining individual intensity thresholds that are specific for one population or one single player.

  10. Plasma Accelerators Race to 10 GeV and Beyond

    NASA Astrophysics Data System (ADS)

    Katsouleas, Tom

    2005-10-01

    This paper reviews the concepts, recent progress and current challenges for realizing the tremendous electric fields in relativistic plasma waves for applications ranging from tabletop particle accelerators to high-energy physics. Experiments in the 90's on laser-driven plasma wakefield accelerators at several laboratories around the world demonstrated the potential for plasma wakefields to accelerate intense bunches of self-trapped particles at rates as high as 100 GeV/m in mm-scale gas jets. These early experiments offered impressive gradients but large energy spread (100%) and short interaction lengths. Major breakthroughs have recently occurred on both fronts. Three groups (LBL-US, LOA-France and RAL-UK) have now entered a new regime of laser wakefield acceleration resulting in 100 MeV mono-energetic beams with up to nanoCoulombs of charge and very small angular spread. Simulations suggest that current lasers are just entering this new regime, and the scaling to higher energies appears attractive. In parallel with the progress in laser-driven wakefields, particle-beam driven wakefield accelerators are making large strides. A series of experiments using the 30 GeV beam of the Stanford Linear Accelerator Center (SLAC) has demonstrated high-gradient acceleration of electrons and positrons in meter-scale plasmas. The UCLA/USC/SLAC collaboration has accelerated electrons beyond 1 GeV and is aiming at 10 GeV in 30 cm as the next step toward a ``plasma afterburner,'' a concept for doubling the energy of a high-energy collider in a few tens of meters of plasma. In addition to wakefield acceleration, these and other experiments have demonstrated the rich physics bounty to be reaped from relativistic beam-plasma interactions. This includes plasma lenses capable of focusing particle beams to the highest density ever produced, collective radiation mechanisms capable of generating high-brightness x-ray beams, collective refraction of particles at a plasma interface, and acceleration of intense proton beams from laser-irradiated foils.

  11. Accelerated approval of oncology products: the food and drug administration experience.

    PubMed

    Johnson, John R; Ning, Yang-Min; Farrell, Ann; Justice, Robert; Keegan, Patricia; Pazdur, Richard

    2011-04-20

    We reviewed the regulatory history of the accelerated approval process and the US Food and Drug Administration (FDA) experience with accelerated approval of oncology products from its initiation in December 11, 1992, to July 1, 2010. The accelerated approval regulations allowed accelerated approval of products to treat serious or life-threatening diseases based on surrogate endpoints that are reasonably likely to predict clinical benefit. Failure to complete postapproval trials to confirm clinical benefit with due diligence could result in removal of the accelerated approval indication from the market. From December 11, 1992, to July 1, 2010, the FDA granted accelerated approval to 35 oncology products for 47 new indications. Clinical benefit was confirmed in postapproval trials for 26 of the 47 new indications, resulting in conversion to regular approval. The median time between accelerated approval and regular approval of oncology products was 3.9 years (range = 0.8-12.6 years) and the mean time was 4.7 years, representing a substantial time savings in terms of earlier availability of drugs to cancer patients. Three new indications did not show clinical benefit when confirmatory postapproval trials were completed and were subsequently removed from the market or had restricted distribution plans implemented. Confirmatory trials were not completed for 14 new indications. The five longest intervals from receipt of accelerated approval to July 1, 2010, without completion of trials to confirm clinical benefit were 10.5, 6.4, 5.5, 5.5, and 4.7 years. The five longest intervals between accelerated approval and successful conversion to regular approval were 12.6, 9.7, 8.1, 7.5, and 7.4 years. Trials to confirm clinical benefit should be part of the drug development plan and should be in progress at the time of an application seeking accelerated approval to prevent an ineffective drug from remaining on the market for an unacceptable time.

  12. Accelerating Particles with Plasma

    ScienceCinema

    Litos, Michael; Hogan, Mark

    2018-05-18

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  13. Diffusive Shock Acceleration and Turbulent Reconnection

    NASA Astrophysics Data System (ADS)

    Garrel, Christian; Vlahos, Loukas; Isliker, Heinz; Pisokas, Theophilos

    2018-05-01

    Diffusive Shock Acceleration (DSA) cannot efficiently accelerate particles without the presence of self-consistently generated or pre-existing strong turbulence (δB/B ˜ 1) in the vicinity of the shock. The problem we address in this article is: if large amplitude magnetic disturbances are present upstream and downstream of a shock then Turbulent Reconnection (TR) will set in and will participate not only in the elastic scattering of particles but also in their heating and acceleration. We demonstrate that large amplitude magnetic disturbances and Unstable Current Sheets (UCS), spontaneously formed in the strong turbulence in the vicinity of a shock, can accelerate particles as efficiently as DSA in large scale systems and on long time scales. We start our analysis with "elastic" scatterers upstream and downstream and estimate the energy distribution of particles escaping from the shock, recovering the well known results from the DSA theory. Next we analyze the additional interaction of the particles with active scatterers (magnetic disturbances and UCS) upstream and downstream of the shock. We show that the asymptotic energy distribution of the particles accelerated by DSA/TR has very similar characteristics with the one due to DSA alone, but the synergy of DSA with TR is much more efficient: The acceleration time is an order of magnitude shorter and the maximum energy reached two orders of magnitude higher. We claim that DSA is the dominant acceleration mechanism in a short period before TR is established, and then strong turbulence will dominate the heating and acceleration of the particles. In other words, the shock serves as the mechanism to set up a strongly turbulent environment, in which the acceleration mechanism will ultimately be the synergy of DSA and TR.

  14. The effects of resisted sprint training on acceleration performance and kinematics in soccer, rugby union, and Australian football players.

    PubMed

    Spinks, Christopher D; Murphy, Aron J; Spinks, Warwick L; Lockie, Robert G

    2007-02-01

    Acceleration is a significant feature of game-deciding situations in the various codes of football. However little is known about the acceleration characteristics of football players, the effects of acceleration training, or the effectiveness of different training modalities. This study examined the effects of resisted sprint (RS) training (weighted sled towing) on acceleration performance (0-15 m), leg power (countermovement jump [CMJ], 5-bound test [5BT], and 50-cm drop jump [50DJ]), gait (foot contact time, stride length, stride frequency, step length, and flight time), and joint (shoulder, elbow, hip, and knee) kinematics in men (N = 30) currently playing soccer, rugby union, or Australian football. Gait and kinematic measurements were derived from the first and second strides of an acceleration effort. Participants were randomly assigned to 1 of 3 treatment conditions: (a) 8-week sprint training of two 1-h sessions x wk(-1) plus RS training (RS group, n = 10), (b) 8-week nonresisted sprint training program of two 1-h sessions x wk(-1) (NRS group, n = 10), or (c) control (n = 10). The results indicated that an 8-week RS training program (a) significantly improves acceleration and leg power (CMJ and 5BT) performance but is no more effective than an 8-week NRS training program, (b) significantly improves reactive strength (50DJ), and (c) has minimal impact on gait and upper- and lower-body kinematics during acceleration performance compared to an 8-week NRS training program. These findings suggest that RS training will not adversely affect acceleration kinematics and gait. Although apparently no more effective than NRS training, this training modality provides an overload stimulus to acceleration mechanics and recruitment of the hip and knee extensors, resulting in greater application of horizontal power.

  15. The converter mechanism of particle acceleration and the maximum energy of cosmic rays

    NASA Astrophysics Data System (ADS)

    Kocharovsky, Vl. V.; Aharonian, F. A.; Derishev, E. V.; Kocharovsky, V. V.

    We consider the fundamental limits on the energy of particles accelerated by electromagnetic forces in various astrophysical objects [1]. We show that accelerator's parameters are strongly limited not only by the particle confinement in large-scale magnetic field or by the difference in electric potentials (generalized Hillas criterion) but also by the curvature and other types of radiative losses of accelerated particles. Optimization of these requirements in terms of accelerator's size and the magnetic field strength results in the ultimate lower limit on the overall source energy budget, which scales as the fifth power of attainable particle energy. It is demonstrated that the curvature gamma-rays accompanying the acceleration gives further restrictions for potential acceleration sites. We compare different acceleration mechanisms and show, that the converter mechanism, which we suggested earlier [2], is the least sensitive to the geometry of the magnetic field in accelerators and allows to reach cosmic-ray energies close to the fundamental limit. The converter mechanism works most efficiently in relativistic shocks or shear flows. It utilizes multiple conversions of charged particles into neutral ones (protons to neutrons and electrons/positrons to photons) and back by means of photon-induced reactions or inelastic nucleon- nucleon collisions. We discuss the properties of gamma-ray radiation, which accompanies acceleration of cosmic rays via the converter mechanism and can provide an evidence for the latter. 1. F.A. Aharonian, A.A. Belyanin, E.V. Derishev, V.V. Kocharovsky, and Vl.V. Kocharovsky, Phys. Rev. D 66, 023005 (2002). 2. E.V. Derishev, F.A. Aharonian, V.V. Kocharovsky, and Vl.V. Kocharovsky, Phys. Rev. D 68, 043003 (2003).

  16. rf breakdown measurements in electron beam driven 200 GHz copper and copper-silver accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2016-11-30

    This study explores the physics of vacuum rf breakdowns in subterahertz high-gradient traveling-wave accelerating structures. We present the experimental results of rf tests of 200 GHz metallic accelerating structures, made of copper and copper-silver. These experiments were carried out at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. The traveling-wave structure is an open geometry, 10 cm long, composed of two halves separated by a gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changedmore » from 160 to 235 GHz. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measure the deflecting forces by observing the displacement of the electron bunch and use this measurement to verify the expected accelerating gradient. Furthermore, we present the first quantitative measurement of rf breakdown rates in 200 GHz metallic accelerating structures. The breakdown rate of the copper structure is 10 –2 per pulse, with a peak surface electric field of 500 MV/m and a rf pulse length of 0.3 ns, which at a relatively large gap of 1.5 mm, or one wavelength, corresponds to an accelerating gradient of 56 MV/m. For the same breakdown rate, the copper-silver structure has a peak electric field of 320 MV/m at a pulse length of 0.5 ns. For a gap of 1.1 mm, or 0.74 wavelengths, this corresponds to an accelerating gradient of 50 MV/m.« less

  17. TU-H-BRA-06: Characterization of a Linear Accelerator Operating in a Compact MRIGuided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, O; Mutic, S; Li, H

    2016-06-15

    Purpose: To describe the performance of a linear accelerator operating in a compact MRI-guided radiation therapy system. Methods: A commercial linear accelerator was placed in an MRI unit that is employed in a commercial MR-based image guided radiation therapy (IGRT) system. The linear accelerator components were placed within magnetic field-reducing hardware that provided magnetic fields of less than 40 G for the magnetron, gun driver, and port circulator, with 1 G for the linear accelerator. The system did not employ a flattening filter. The test linear accelerator was an industrial 4 MV model that was employed to test the abilitymore » to run an accelerator in the MR environment. An MR-compatible diode detector array was used to measure the beam profiles with the accelerator outside and inside the MR field and with the gradient coils on and off to examine if there was any effect on the delivered dose distribution. The beam profiles and time characteristics of the beam were measured. Results: The beam profiles exhibited characteristic unflattened Bremsstrahlung features with less than ±1.5% differences in the profile magnitude when the system was outside and inside the magnet and less than 1% differences with the gradient coils on and off. The central axis dose rate fluctuated by less than 1% over a 30 second period when outside and inside the MRI. Conclusion: A linaccompatible MR design has been shown to be effective in not perturbing the operation of a commercial linear accelerator. While the accelerator used in the tests was 4MV, there is nothing fundamentally different with the operation of a 6MV unit, implying that the design will enable operation of the proposed clinical unit. Research funding provided by ViewRay, Inc.« less

  18. Analysis of flame acceleration in open or vented obstructed pipes

    NASA Astrophysics Data System (ADS)

    Bychkov, Vitaly; Sadek, Jad; Akkerman, V'yacheslav

    2017-01-01

    While flame propagation through obstacles is often associated with turbulence and/or shocks, Bychkov et al. [V. Bychkov et al., Phys. Rev. Lett. 101, 164501 (2008), 10.1103/PhysRevLett.101.164501] have revealed a shockless, conceptually laminar mechanism of extremely fast flame acceleration in semiopen obstructed pipes (one end of a pipe is closed; a flame is ignited at the closed end and propagates towards the open one). The acceleration is devoted to a powerful jet flow produced by delayed combustion in the spaces between the obstacles, with turbulence playing only a supplementary role in this process. In the present work, this formulation is extended to pipes with both ends open in order to describe the recent experiments and modeling by Yanez et al. [J. Yanez et al., arXiv:1208.6453] as well as the simulations by Middha and Hansen [P. Middha and O. R. Hansen, Process Safety Prog. 27, 192 (2008) 10.1002/prs.10242]. It is demonstrated that flames accelerate strongly in open or vented obstructed pipes and the acceleration mechanism is similar to that in semiopen ones (shockless and laminar), although acceleration is weaker in open pipes. Starting with an inviscid approximation, we subsequently incorporate hydraulic resistance (viscous forces) into the analysis for the sake of comparing its role to that of a jet flow driving acceleration. It is shown that hydraulic resistance is actually not required to drive flame acceleration. In contrast, this is a supplementary effect, which moderates acceleration. On the other hand, viscous forces are nevertheless an important effect because they are responsible for the initial delay occurring before the flame acceleration onset, which is observed in the experiments and simulations. Accounting for this effect provides good agreement between the experiments, modeling, and the present theory.

  19. Foot strike pattern differently affects the axial and transverse components of shock acceleration and attenuation in downhill trail running.

    PubMed

    Giandolini, Marlene; Horvais, Nicolas; Rossi, Jérémy; Millet, Guillaume Y; Samozino, Pierre; Morin, Jean-Benoît

    2016-06-14

    Trail runners are exposed to a high number of shocks, including high-intensity shocks on downhill sections leading to greater risk of osseous overuse injury. The type of foot strike pattern (FSP) is known to influence impact severity and lower-limb kinematics. Our purpose was to investigate the influence of FSP on axial and transverse components of shock acceleration and attenuation during an intense downhill trail run (DTR). Twenty-three trail runners performed a 6.5-km DTR (1264m of negative elevation change) as fast as possible. Four tri-axial accelerometers were attached to the heel, metatarsals, tibia and sacrum. Accelerations were continuously recorded at 1344Hz and analyzed over six sections (~400 steps per subject). Heel and metatarsal accelerations were used to identify the FSP. Axial, transverse and resultant peak accelerations, median frequencies and shock attenuation within the impact-related frequency range (12-20Hz) were assessed between tibia and sacrum. Multiple linear regressions showed that anterior (i.e. forefoot) FSPs were associated with higher peak axial acceleration and median frequency at the tibia, lower transverse median frequencies at the tibia and sacrum, and lower transverse peak acceleration at the sacrum. For resultant acceleration, higher tibial median frequency but lower sacral peak acceleration were reported with forefoot striking. FSP therefore differently affects the components of impact shock acceleration. Although a forefoot strike reduces impact severity and impact frequency content along the transverse axis, a rearfoot strike decreases them in the axial direction. Globally, the attenuation of axial and resultant impact-related vibrations was improved using anterior FSPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. PROBING DYNAMICS OF ELECTRON ACCELERATION WITH RADIO AND X-RAY SPECTROSCOPY, IMAGING, AND TIMING IN THE 2002 APRIL 11 SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleishman, Gregory D.; Nita, Gelu M.; Gary, Dale E.

    Based on detailed analysis of radio and X-ray observations of a flare on 2002 April 11 augmented by realistic three-dimensional modeling, we have identified a radio emission component produced directly at the flare acceleration region. This acceleration region radio component has distinctly different (1) spectrum, (2) light curves, (3) spatial location, and, thus, (4) physical parameters from those of the separately identified trapped or precipitating electron components. To derive evolution of physical parameters of the radio sources we apply forward fitting of the radio spectrum time sequence with the gyrosynchrotron source function with five to six free parameters. At themore » stage when the contribution from the acceleration region dominates the radio spectrum, the X-ray- and radio-derived electron energy spectral indices agree well with each other. During this time the maximum energy of the accelerated electron spectrum displays a monotonic increase with time from {approx}300 keV to {approx}2 MeV over roughly one minute duration indicative of an acceleration process in the form of growth of the power-law tail; the fast electron residence time in the acceleration region is about 2-4 s, which is much longer than the time of flight and so requires a strong diffusion mode there to inhibit free-streaming propagation. The acceleration region has a relatively strong magnetic field, B {approx} 120 G, and a low thermal density, n{sub e} {approx}< 2 Multiplication-Sign 10{sup 9} cm{sup -3}. These acceleration region properties are consistent with a stochastic acceleration mechanism.« less

Top