Science.gov

Sample records for accelerometer scale factor

  1. Linearity enhancement of scale factor in an optical interrogated micromechanical accelerometer.

    PubMed

    Zhang, Yu; Feng, Lishuang; Wang, Xiao; Wang, Yang

    2016-08-01

    A method to reduce the residual stress of support arms in an optical interrogated micromechanical accelerometer is proposed in order to enhance the linearity of the scale factor of the accelerometer. First, the behavior of residual stress in support arms is analyzed in detail, and the simulation of shape curvature caused by residual stress in aluminum-made support arms is completed using finite element analysis. Then, by comparing two different materials of support arms (aluminum-made and silicon-made support arms), a modified fabrication is introduced in order to reduce the unexpected residual stress in support arms. Finally, based on contrast experiments, the linearity of the scale factor of accelerometers with aluminum-made and silicon-made support arms is measured using the force feedback test system, respectively. Results show that the linearity of the scale factor of the accelerometer with silicon-made support arms is 0.85%, which is reduced about an order of magnitude compared to that of the accelerometer with aluminum-made support arms with the linearity of scale factor of 7.48%; linearity enhancement of the scale factor is validated. This allows accuracy improvement of the optical interrogated micromechanical accelerometer in the application of inertial navigation and positioning.

  2. Innovative self-calibration method for accelerometer scale factor of the missile-borne RINS with fiber optic gyro.

    PubMed

    Zhang, Qian; Wang, Lei; Liu, Zengjun; Zhang, Yiming

    2016-09-19

    The calibration of an inertial measurement unit (IMU) is a key technique to improve the preciseness of the inertial navigation system (INS) for missile, especially for the calibration of accelerometer scale factor. Traditional calibration method is generally based on the high accuracy turntable, however, it leads to expensive costs and the calibration results are not suitable to the actual operating environment. In the wake of developments in multi-axis rotational INS (RINS) with optical inertial sensors, self-calibration is utilized as an effective way to calibrate IMU on missile and the calibration results are more accurate in practical application. However, the introduction of multi-axis RINS causes additional calibration errors, including non-orthogonality errors of mechanical processing and non-horizontal errors of operating environment, it means that the multi-axis gimbals could not be regarded as a high accuracy turntable. As for its application on missiles, in this paper, after analyzing the relationship between the calibration error of accelerometer scale factor and non-orthogonality and non-horizontal angles, an innovative calibration procedure using the signals of fiber optic gyro and photoelectric encoder is proposed. The laboratory and vehicle experiment results validate the theory and prove that the proposed method relaxes the orthogonality requirement of rotation axes and eliminates the strict application condition of the system.

  3. ACCELEROMETER

    DOEpatents

    Pope, K.E.

    1958-11-25

    A device, commonly known as an accelerometer, is described which may be utllized for measuring acceleratlon with high sensitivity and accuracy tbroughout a relatively wlde range of values. In general, the accelerometer consists of an assembly, including an electric motor stator and a mass element located away from the axis of rotation of the stator, rotatably mounted on a support, and an electric motor rotor positioned within the stator and rotatable thereln. An electrlcal switching circuit controlled by the movement of the stator lntermittently energizes the rotor winding and retards move ment of the stator, and a centrifugal switch is rotatable with the rotor to operate upon attainment of a predetermined rotor rotational velocity.

  4. Factors associated with participant compliance in studies using accelerometers.

    PubMed

    Lee, Paul H; Macfarlane, Duncan J; Lam, T H

    2013-09-01

    Participant compliance is an important issue in studies using accelerometers. Some participants wear the accelerometer for the duration specified by the researchers but many do not. We investigated a range of demographic factors associated with participant compliance in obtaining analyzable accelerometer data. A total of 3601 participants (aged 47.6±13.1 years, 44.6% male) were included. They were asked to wear an accelerometer (ActiGraph) for four consecutive days after completing a household survey during March 2009-January 2011 in Hong Kong. Participants wore the accelerometer on average for 13.9h in a 24-h day. No significant difference was found between males and females (p=0.38). Using log-linear regression, it was found that older participants (0.5% more wearing hours for each year of age, p<0.001), those with full-time job (p<0.01), with tertiary education (p<0.01), non-smokers (p<0.01) and with high self-reported health (p<0.05) wore the accelerometer for more hours. These results provide details for estimating compliance rates for samples with different characteristics and thus sample size calculation to account for participant compliance.

  5. Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study

    PubMed Central

    Jackson, Dan; Hammerla, Nils; Granat, Malcolm H.; van Hees, Vincent T.; Trenell, Michael I.; Owen, Christoper G.; Preece, Stephen J.; Peakman, Tim; Brage, Soren

    2017-01-01

    Background Physical activity has not been objectively measured in prospective cohorts with sufficiently large numbers to reliably detect associations with multiple health outcomes. Technological advances now make this possible. We describe the methods used to collect and analyse accelerometer measured physical activity in over 100,000 participants of the UK Biobank study, and report variation by age, sex, day, time of day, and season. Methods Participants were approached by email to wear a wrist-worn accelerometer for seven days that was posted to them. Physical activity information was extracted from 100Hz raw triaxial acceleration data after calibration, removal of gravity and sensor noise, and identification of wear / non-wear episodes. We report age- and sex-specific wear-time compliance and accelerometer measured physical activity, overall and by hour-of-day, week-weekend day and season. Results 103,712 datasets were received (44.8% response), with a median wear-time of 6.9 days (IQR:6.5–7.0). 96,600 participants (93.3%) provided valid data for physical activity analyses. Vector magnitude, a proxy for overall physical activity, was 7.5% (2.35mg) lower per decade of age (Cohen’s d = 0.9). Women had a higher vector magnitude than men, apart from those aged 45-54yrs. There were major differences in vector magnitude by time of day (d = 0.66). Vector magnitude differences between week and weekend days (d = 0.12 for men, d = 0.09 for women) and between seasons (d = 0.27 for men, d = 0.15 for women) were small. Conclusions It is feasible to collect and analyse objective physical activity data in large studies. The summary measure of overall physical activity is lower in older participants and age-related differences in activity are most prominent in the afternoon and evening. This work lays the foundation for studies of physical activity and its health consequences. Our summary variables are part of the UK Biobank dataset and can be used by researchers as

  6. Design and Implementation of a Micromechanical Silicon Resonant Accelerometer

    PubMed Central

    Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing

    2013-01-01

    The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C. PMID:24256978

  7. Accelerometer design

    NASA Technical Reports Server (NTRS)

    Norton, F H; Warner, Edward P

    1921-01-01

    In connection with the development of an accelerometer for measuring the loads on airplanes in free flight a study of the theory of such instruments has been made, and the results of this study are summarized in this report. A portion of the analysis deals particularly with the sources of error and with the limitations placed on the location of the instrument in the airplane. The discussion of the dynamics of the accelerometer includes a study of its theoretical motions and of the way in which they are affected by the natural period of vibration and by the damping, together with a report of some experiments on the effect of forced vibrations on the record.

  8. A New Z-axis Resonant Micro-Accelerometer Based on Electrostatic Stiffness

    PubMed Central

    Yang, Bo; Wang, Xingjun; Dai, Bo; Liu, Xiaojun

    2015-01-01

    Presented in the paper is the design, the simulation, the fabrication and the experiment of a new z-axis resonant accelerometer based on the electrostatic stiffness. The new z-axis resonant micro-accelerometer, which consists of a torsional accelerometer and two plane resonators, decouples the sensing movement of the accelerometer from the oscillation of the plane resonators by electrostatic stiffness, which will improve the performance. The new structure and the sensitive theory of the acceleration are illuminated, and the equation of the scale factor is deduced under ideal conditions firstly. The Ansys simulation is implemented to verify the basic principle of the torsional accelerometer and the plane resonator individually. The structure simulation results prove that the effective frequency of the torsional accelerometer and the plane resonator are 0.66 kHz and 13.3 kHz, respectively. Then, the new structure is fabricated by the standard three-mask deep dry silicon on glass (DDSOG) process and encapsulated by parallel seam welding. Finally, the detecting and control circuits are designed to achieve the closed-loop self-oscillation, to trace the natural frequency of resonator and to measure the system frequency. Experimental results show that the new z-axis resonant accelerometer has a scale factor of 31.65 Hz/g, a bias stability of 727 μg and a dynamic range of over 10 g, which proves that the new z-axis resonant micro-accelerometer is practicable. PMID:25569748

  9. Differential accelerometer for equivalence principle tests: the common mode rejection factor and separation of signal from noise

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Lucchesi, D. M.; Nozzoli, S.; Santoli, F.; Lorenzini, E. C.; Shapiro, I. I.; Ashenberg, J.; Bombardelli, C.; Glashow, S.

    Testing the Equivalence Principle EP with an accuracy higher than the present state of the art requires to detect a very small signal out of the instrument s intrinsic noise and to the quite high common mode signals acting on the pair of test masses constituting the differential accelerometer Usually the rotation of the experiment permits to modulate the violation signal at a frequency separated from other signals with frequencies associated with the motion orbital or not of the instrument carrier and gravity gradients The possibility to detect the very small violation signal is related with a very high value for the Common Mode Rejection Factor CMRF and the separation of the differential signal due to a possible EP violation from the differential signal due to the gravity gradients Will be presented an experiment under development by our team TEPEE GReAT to test for a violation of the EP in an Einstein Elevator Particular emphasis on the experimental activity concerning the implementation of the differential accelerometer to its CMRF and the indication on the algorithm to separate the signal from noise sources will be given A numerical simulation of the detector s dynamics in the presence of relevant perturbations having assumed realistic errors and construction imperfections will be also presented In the experiment the detector spins about a horizontal axis while free falling for about 25 s in vacuum inside a co-moving capsule released from a stratospheric balloon A possible EP violation signal of a few parts in 10 15 needs to be extracted from the

  10. Sensing and Control Electronics for Low-Mass Low-Capacitance MEMS Accelerometers

    DTIC Science & Technology

    2002-05-01

    applications generally require sub µg/rtHz noise floor and less than 0.1% overall scale factor error in acceleration measurement. Micro accelerometers...Figure 1-2 shows a generic block diagram of the system under study. The first goal of this research is to design a low noise capacitive sensing...µg/ Transducer Sensing Circuit Control System Acceleration Digital Output Figure 1-2: Generic block diagram of accelerometer system studied in this

  11. Characterization of a MEMS Accelerometer for Inertial Navigating Applications

    SciTech Connect

    Kinney, R.D.

    1999-02-12

    Inertial MEMS sensors such as accelerometers and angular rotation sensing devices continue to improve in performance as advances in design and processing are made. Present state-of-the-art accelerometers have achieved performance levels in the laboratory that are consistent with requirements for successful application in tactical weapon navigation systems. However, sensor performance parameters that are of interest to the designer of inertial navigation systems are frequently not adequately addressed by the MEMS manufacturer. This paper addresses the testing and characterization of a MEMS accelerometer from an inertial navigation perspective. The paper discusses test objectives, data reduction techniques and presents results from the test of a three-axis MEMS accelerometer conducted at Sandia National Laboratories during 1997. The test was structured to achieve visibility and characterization of the accelerometer bias and scale factor stability overtime and temperature. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94AL85000.

  12. Space vehicle accelerometer applications

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The physics of accelerometer applications are reviewed, and details are given on accelerometer instruments and the principles of their operations. The functions to which accelerometers are applied are listed, and terms commonly used in accelerometer reports are defined. Criteria guides state what rule, limitation, or standard must be imposed on each essential design element to insure successful design. Elaboration of these criteria in the form of recommended practices show how to satisfy each of these criteria, with the best procedure described when possible.

  13. Measurement of Impact Acceleration: Mouthpiece Accelerometer Versus Helmet Accelerometer

    PubMed Central

    Higgins, Michael; Halstead, P. David; Snyder-Mackler, Lynn; Barlow, David

    2007-01-01

    Context: Instrumented helmets have been used to estimate impact acceleration imparted to the head during helmet impacts. These instrumented helmets may not accurately measure the actual amount of acceleration experienced by the head due to factors such as helmet-to-head fit. Objective: To determine if an accelerometer attached to a mouthpiece (MP) provides a more accurate representation of headform center of gravity (HFCOG) acceleration during impact than does an accelerometer attached to a helmet fitted on the headform. Design: Single-factor research design in which the independent variable was accelerometer position (HFCOG, helmet, MP) and the dependent variables were g and Severity Index (SI). Setting: Independent impact research laboratory. Intervention(s): The helmeted headform was dropped (n = 168) using a National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop system from the standard heights and impact sites according to NOCSAE test standards. Peak g and SI were measured for each accelerometer position during impact. Main Outcome Measures: Upon impact, the peak g and SI were recorded for each accelerometer location. Results: Strong relationships were noted for HFCOG and MP measures, and significant differences were seen between HFCOG and helmet g measures and HFCOG and helmet SI measures. No statistically significant differences were noted between HFCOG and MP g and SI measures. Regression analyses showed a significant relationship between HFCOG and MP measures but not between HFCOG and helmet measures. Conclusions: Upon impact, MP acceleration (g) and SI measurements were closely related to and more accurate in measuring HFCOG g and SI than helmet measurements. The MP accelerometer is a valid method for measuring head acceleration. PMID:17597937

  14. GPS-Based Reduced Dynamic Orbit Determination Using Accelerometer Data

    NASA Technical Reports Server (NTRS)

    VanHelleputte, Tom; Visser, Pieter

    2007-01-01

    Currently two gravity field satellite missions, CHAMP and GRACE, are equipped with high sensitivity electrostatic accelerometers, measuring the non-conservative forces acting on the spacecraft in three orthogonal directions. During the gravity field recovery these measurements help to separate gravitational and non-gravitational contributions in the observed orbit perturbations. For precise orbit determination purposes all these missions have a dual-frequency GPS receiver on board. The reduced dynamic technique combines the dense and accurate GPS observations with physical models of the forces acting on the spacecraft, complemented by empirical accelerations, which are stochastic parameters adjusted in the orbit determination process. When the spacecraft carries an accelerometer, these measured accelerations can be used to replace the models of the non-conservative forces, such as air drag and solar radiation pressure. This approach is implemented in a batch least-squares estimator of the GPS High Precision Orbit Determination Software Tools (GHOST), developed at DLR/GSOC and DEOS. It is extensively tested with data of the CHAMP and GRACE satellites. As accelerometer observations typically can be affected by an unknown scale factor and bias in each measurement direction, they require calibration during processing. Therefore the estimated state vector is augmented with six parameters: a scale and bias factor for the three axes. In order to converge efficiently to a good solution, reasonable a priori values for the bias factor are necessary. These are calculated by combining the mean value of the accelerometer observations with the mean value of the non-conservative force models and empirical accelerations, estimated when using these models. When replacing the non-conservative force models with accelerometer observations and still estimating empirical accelerations, a good orbit precision is achieved. 100 days of GRACE B data processing results in a mean orbit fit of

  15. The role of accelerometer data calibration within GRACE gravity field recovery: Results from ITSG-Grace2016

    NASA Astrophysics Data System (ADS)

    Klinger, Beate; Mayer-Gürr, Torsten

    2016-11-01

    For more than 14 years, the Gravity Recovery and Climate Experiment (GRACE) mission has provided information about Earth's gravity field with unprecedented accuracy. The twin satellites GRACE-A and GRACE-B are both equipped with a three-axis electrostatic accelerometer, measuring the non-gravitational forces acting on the spacecraft. In order to make use of the uncalibrated Level-1B accelerometer (ACC1B) data during gravity field recovery, bias and scale parameters have to be estimated. The proposed calibration method is a two-step approach and makes use of modeled non-conservative accelerations. The simulated non-conservative accelerations serve as reference for the a priori accelerometer calibration, i.e. for the ACC1B data. During gravity field recovery the calibration parameters are re-estimated. Several calibration parameters for the GRACE accelerometers using different methods have already been published. The aim of our study was primarily to analyze the temperature-dependent behavior of the accelerometer scale factors and biases, and the impact of the parametrization of scale factors and biases on the recovered gravity field solutions; but not to obtain calibrated accelerometer data. Within the ITSG-Grace2016 release, the accelerometer biases are estimated daily using uniform cubic basis splines (UCBS), the scale factors are also estimated daily using a fully-populated scale factor matrix. Therefore, not only the scale factors in along-track, cross-track, and radial direction are estimated, but also the non-orthogonality of the accelerometer axes (cross-talk) and the misalignment between the Accelerometer Frame (AF) and Science Reference Frame (SRF) are taken into account. The time evolution of the estimated calibration parameters over the whole GRACE period (2002-04 to 2016-01) shows a clear temperature-dependency for both scale factors and biases. Using this new approach, the estimates of the C20 coefficient significantly improve, with results now

  16. Scaling factors: transcription factors regulating subcellular domains.

    PubMed

    Mills, Jason C; Taghert, Paul H

    2012-01-01

    Developing cells acquire mature fates in part by selective (i.e. qualitatively different) expression of a few cell-specific genes. However, all cells share the same basic repertoire of molecular and subcellular building blocks. Therefore, cells must also specialize according to quantitative differences in cell-specific distributions of those common molecular resources. Here we propose the novel hypothesis that evolutionarily-conserved transcription factors called scaling factors (SFs) regulate quantitative differences among mature cell types. SFs: (1) are induced during late stages of cell maturation; (2) are dedicated to specific subcellular domains; and, thus, (3) allow cells to emphasize specific subcellular features. We identify candidate SFs and discuss one in detail: MIST1 (BHLHA15, vertebrates)/DIMM (CG8667, Drosophila); professional secretory cells use this SF to scale up regulated secretion. Because cells use SFs to develop their mature properties and also to adapt them to ever-changing environmental conditions, SF aberrations likely contribute to diseases of adult onset.

  17. Measurement Method of Magnetic Field for the Wire Suspended Micro-Pendulum Accelerometer

    PubMed Central

    Lu, Yongle; Li, Leilei; Hu, Ning; Pan, Yingjun; Ren, Chunhua

    2015-01-01

    Force producer is one of the core components of a Wire Suspended Micro-Pendulum Accelerometer; and the stability of permanent magnet in the force producer determines the consistency of the acceleration sensor’s scale factor. For an assembled accelerometer; direct measurement of magnetic field strength is not a feasible option; as the magnetometer probe cannot be laid inside the micro-space of the sensor. This paper proposed an indirect measurement method of the remnant magnetization of Micro-Pendulum Accelerometer. The measurement is based on the working principle of the accelerometer; using the current output at several different scenarios to resolve the remnant magnetization of the permanent magnet. Iterative Least Squares algorithm was used for the adjustment of the data due to nonlinearity of this problem. The calculated remnant magnetization was 1.035 T. Compared to the true value; the error was less than 0.001 T. The proposed method provides an effective theoretical guidance for measuring the magnetic field of the Wire Suspended Micro-Pendulum Accelerometer; correcting the scale factor and temperature influence coefficients; etc. PMID:25871721

  18. Measurement method of magnetic field for the wire suspended micro-pendulum accelerometer.

    PubMed

    Lu, Yongle; Li, Leilei; Hu, Ning; Pan, Yingjun; Ren, Chunhua

    2015-04-13

    Force producer is one of the core components of a Wire Suspended Micro-Pendulum Accelerometer; and the stability of permanent magnet in the force producer determines the consistency of the acceleration sensor's scale factor. For an assembled accelerometer; direct measurement of magnetic field strength is not a feasible option; as the magnetometer probe cannot be laid inside the micro-space of the sensor. This paper proposed an indirect measurement method of the remnant magnetization of Micro-Pendulum Accelerometer. The measurement is based on the working principle of the accelerometer; using the current output at several different scenarios to resolve the remnant magnetization of the permanent magnet. Iterative Least Squares algorithm was used for the adjustment of the data due to nonlinearity of this problem. The calculated remnant magnetization was 1.035 T. Compared to the true value; the error was less than 0.001 T. The proposed method provides an effective theoretical guidance for measuring the magnetic field of the Wire Suspended Micro-Pendulum Accelerometer; correcting the scale factor and temperature influence coefficients; etc.

  19. A Basic Research for the Development and Evaluation of Novel MEMS Digital Accelerometers

    DTIC Science & Technology

    2013-02-01

    A, to the characteristic physical scale of the flow . In the case of accelerometer beam motion, the characteristic scale for the gas damping problem...and dynamic conditions encountered in the MEMS accelerometer. Typical ESBGK simulation results for the gas flow around the moving accelerometer beam... gas damping response have been compared with measurements of MEMS accelerometer beam closing and opening response done at various acceleration pulse

  20. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Christophe, Bruno; Foulon, Bernard; Boulanger, Damien; Liorzou, Françoise; Lebat, Vincent

    2013-04-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after substracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing and manufacturing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation. To reach this stability, the sensor unit is enclosed in a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure mechanical

  1. A Comparison of Self-Report Scales and Accelerometer-Determined Moderate to Vigorous Physical Activity Scores of Finnish School Students

    ERIC Educational Resources Information Center

    Gråstén, Arto; Watt, Anthony

    2016-01-01

    The current article provides an important insight into measurement differences between two commonly used self-reports and accelerometer-determined moderate to vigorous physical activity (MVPA) scores within matched samples across 1 school year. Participants were 998 fifth- through eighth-grade students who completed self-reports and 76 fifth- and…

  2. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, D.R.

    1982-09-23

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  3. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, Dale R.

    1984-01-01

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  4. Superconducting Rebalance Accelerometer

    NASA Technical Reports Server (NTRS)

    Torti, R. P.; Gerver, M.; Leary, K. J.; Jagannathan, S.; Dozer, D. M.

    1996-01-01

    A multi-axis accelerometer which utilizes a magnetically-suspended, high-TC proof mass is under development. The design and performance of a single axis device which is stabilized actively in the axial direction but which utilizes ring magnets for passive radial stabilization is discussed. The design of a full six degree-of-freedom device version is also described.

  5. Scientific improvement proposed in the realisation of the electrostatic accelerometer for the GRACE Follow-On mission

    NASA Astrophysics Data System (ADS)

    Christophe, B.; Foulon, B.; Boulanger, D.; Liorzou, F.; Lebat, V.; Perrot, E.

    2012-12-01

    The return of experience of the SuperSTAR instrument operating since ten years on board the twin GRACE satellites, as the new development of the six GRADIO accelerometers composing the three axis gravity gradiometer of the GOCE ESA mission, have been used to improve the design of the accelerometers for the future GRACE Follow-On mission. The instruments shall exhibit a more accurate pre launch calibration. On anti-seimic pendulum, ONERA will match the scale factor of the two flight models. Then during common drop of the accelerometers in the Zarm tower in catapult configuration, the bias will be estimated. These ground calibrations should improve the post-processing of the accelerometer data, in particular by allowing a good discrimination between scale factor and bias. In addition to thermal stability improvement through a modification of the design, thermal sensors will be mounted around the electrode cage to have a better survey of the temperature and gradient of temperature around the accelerometer. The download of these housekeepings could be used for improving the post-processing of the data.

  6. Low G accelerometer testing

    NASA Technical Reports Server (NTRS)

    Vaughan, M. S.

    1972-01-01

    Eight different types of low-g accelerometer tests are covered on the Bell miniature electrostatically suspended accelerometer (MESA) which is known to be sensitive to less than 10 to the minus 7th power earth's gravity. These tests include a mass attracting scheme, Leitz dividing head, Wild theodolite, precision gage blocks, precision tiltmeters, Hilger Watts autocollimator, Razdow Mark 2 autocollimator, and laser interferometer measuring system. Each test is described and a comparison of the results is presented. The output of the MESA was as linear and consistent as any of the available devices were capable of measuring. Although the extent of agreement varied with the test equipment used, it can only be concluded that the indicated errors were attributable to the test equipment coupled with the environmental conditions.

  7. Improving the Factor Structure of Psychological Scales

    PubMed Central

    Zhang, Xijuan; Savalei, Victoria

    2015-01-01

    Many psychological scales written in the Likert format include reverse worded (RW) items in order to control acquiescence bias. However, studies have shown that RW items often contaminate the factor structure of the scale by creating one or more method factors. The present study examines an alternative scale format, called the Expanded format, which replaces each response option in the Likert scale with a full sentence. We hypothesized that this format would result in a cleaner factor structure as compared with the Likert format. We tested this hypothesis on three popular psychological scales: the Rosenberg Self-Esteem scale, the Conscientiousness subscale of the Big Five Inventory, and the Beck Depression Inventory II. Scales in both formats showed comparable reliabilities. However, scales in the Expanded format had better (i.e., lower and more theoretically defensible) dimensionalities than scales in the Likert format, as assessed by both exploratory factor analyses and confirmatory factor analyses. We encourage further study and wider use of the Expanded format, particularly when a scale’s dimensionality is of theoretical interest. PMID:27182074

  8. Fiber optic micro accelerometer

    DOEpatents

    Swierkowski, Steve P.

    2005-07-26

    An accelerometer includes a wafer, a proof mass integrated into the wafer, at least one spring member connected to the proof mass, and an optical fiber. A Fabry-Perot cavity is formed by a partially reflective surface on the proof mass and a partially reflective surface on the end of the optical fiber. The two partially reflective surfaces are used to detect movement of the proof mass through the optical fiber, using an optical detection system.

  9. Levitated micro-accelerometer.

    SciTech Connect

    Warne, Larry Kevin; Schmidt, Carrie Frances; Peterson, Kenneth Allen; Kravitz, Stanley H.; Renn, Rosemarie A.; Peter, Frank J.; Kinney, Ragon D.; Gilkey, Jeffrey C.

    2004-06-01

    The objective is a significant advancement in the state-of-the-art of accelerometer design for tactical grade (or better) applications. The design goals are <1 milli-G bias stability across environments and $200 cost. This quantum leap in performance improvement and cost reduction can only be achieved by a radical new approach, not incremental improvements to existing concepts. This novel levitated closed-loop accelerometer is implemented as a hybrid micromachine. The hybrid approach frees the designer from the limitations of any given monolithic process and dramatically expands the available design space. The design can be tailored to the dynamic range, resolution, bandwidth, and environmental requirements of the application while still preserving all of the benefits of monolithic MEMS fabrication - extreme precision, small size, low cost, and low power. An accelerometer was designed and prototype hardware was built, driving the successful development and refinement of several 'never been done before' fabrication processes. Many of these process developments are commercially valuable and are key enablers for the realization of a wide variety of useful micro-devices. While controlled levitation of a proof mass has yet to be realized, the overall design concept remains sound. This was clearly demonstrated by the stable and reliable closed-loop control of a proof mass at the test structure level. Furthermore, the hybrid MEMS implementation is the most promising approach for achieving the ambitious cost and performance targets. It is strongly recommended that Sandia remain committed to the original goal.

  10. A Simple Accelerometer Calibrator

    NASA Astrophysics Data System (ADS)

    Salam, R. A.; Islamy, M. R. F.; Munir, M. M.; Latief, H.; Irsyam, M.; Khairurrijal

    2016-08-01

    High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM.

  11. Smartphone MEMS accelerometers and earthquake early warning

    NASA Astrophysics Data System (ADS)

    Kong, Q.; Allen, R. M.; Schreier, L.; Kwon, Y. W.

    2015-12-01

    The low cost MEMS accelerometers in the smartphones are attracting more and more attentions from the science community due to the vast number and potential applications in various areas. We are using the accelerometers inside the smartphones to detect the earthquakes. We did shake table tests to show these accelerometers are also suitable to record large shakings caused by earthquakes. We developed an android app - MyShake, which can even distinguish earthquake movements from daily human activities from the recordings recorded by the accelerometers in personal smartphones and upload trigger information/waveform to our server for further analysis. The data from these smartphones forms a unique datasets for seismological applications, such as earthquake early warning. In this talk I will layout the method we used to recognize earthquake-like movement from single smartphone, and the overview of the whole system that harness the information from a network of smartphones for rapid earthquake detection. This type of system can be easily deployed and scaled up around the global and provides additional insights of the earthquake hazards.

  12. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Lebat, V.; Foulon, B.; Christophe, B.

    2013-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation, and reached by a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure the launch vibrations and the thermal environment at

  13. A novel piezoresistive polymer nanocomposite MEMS accelerometer

    NASA Astrophysics Data System (ADS)

    Seena, V.; Hari, K.; Prajakta, S.; Pratap, Rudra; Ramgopal Rao, V.

    2017-01-01

    A novel polymer MEMS (micro electro mechanical systems) accelerometer with photo-patternable polymer nanocomposite as a piezoresistor is presented in this work. Polymer MEMS Accelerometer with beam thicknesses of 3.3 µm and embedded nanocomposite piezoresistive layer having a gauge factor of 90 were fabricated. The photosensitive nanocomposite samples were prepared and characterized for analyzing the mechanical and electrical properties and thereby ensuring proper process parameters for incorporating the piezoresistive layer into the polymer MEMS accelerometer. The microfabrication process flow and unit processes followed are extremely low cost with process temperatures below 100 °C. This also opens up a new possibility for easy integration of such polymer MEMS with CMOS (complementary metal oxide semiconductor) devices and circuits. The fabricated devices were characterized using laser Doppler vibrometer (LDV) and the devices exhibited a resonant frequency of 10.8 kHz and a response sensitivity of 280 nm g-1 at resonance. The main focus of this paper is on the SU-8/CB nanocomposite piezoresistive MEMS accelerometer technology development which covers the material and the fabrication aspects of these devices. CoventorWare FEA analysis performed using the extracted material properties from the experimental characterization which are in close agreement to performance parameters of the fabricated devices is also discussed. The simulated piezoresistive polymer MEMS devices showed an acceleration sensitivity of 126 nm g-1 and 82 ppm of ΔR/R per 1 g of acceleration.

  14. Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries.

    PubMed

    Alecu, I M; Zheng, Jingjing; Zhao, Yan; Truhlar, Donald G

    2010-09-14

    Optimized scale factors for calculating vibrational harmonic and fundamental frequencies and zero-point energies have been determined for 145 electronic model chemistries, including 119 based on approximate functionals depending on occupied orbitals, 19 based on single-level wave function theory, three based on the neglect-of-diatomic-differential-overlap, two based on doubly hybrid density functional theory, and two based on multicoefficient correlation methods. Forty of the scale factors are obtained from large databases, which are also used to derive two universal scale factor ratios that can be used to interconvert between scale factors optimized for various properties, enabling the derivation of three key scale factors at the effort of optimizing only one of them. A reduced scale factor optimization model is formulated in order to further reduce the cost of optimizing scale factors, and the reduced model is illustrated by using it to obtain 105 additional scale factors. Using root-mean-square errors from the values in the large databases, we find that scaling reduces errors in zero-point energies by a factor of 2.3 and errors in fundamental vibrational frequencies by a factor of 3.0, but it reduces errors in harmonic vibrational frequencies by only a factor of 1.3. It is shown that, upon scaling, the balanced multicoefficient correlation method based on coupled cluster theory with single and double excitations (BMC-CCSD) can lead to very accurate predictions of vibrational frequencies. With a polarized, minimally augmented basis set, the density functionals with zero-point energy scale factors closest to unity are MPWLYP1M (1.009), τHCTHhyb (0.989), BB95 (1.012), BLYP (1.013), BP86 (1.014), B3LYP (0.986), MPW3LYP (0.986), and VSXC (0.986).

  15. Single-Axis Accelerometer

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis Stephen (Inventor); Capo-Lugo, Pedro A. (Inventor)

    2016-01-01

    A single-axis accelerometer includes a housing defining a sleeve. An object/mass is disposed in the sleeve for sliding movement therein in a direction aligned with the sleeve's longitudinal axis. A first piezoelectric strip, attached to a first side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The first piezoelectric strip includes a first strip of a piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A second piezoelectric strip, attached to a second side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The second piezoelectric strip includes a second strip of the piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A voltage sensor is electrically coupled to at least one of the first and second piezoelectric strips.

  16. FACTOR ANALYSIS OF THE ELKINS HYPNOTIZABILITY SCALE

    PubMed Central

    Elkins, Gary; Johnson, Aimee K.; Johnson, Alisa J.; Sliwinski, Jim

    2015-01-01

    Assessment of hypnotizability can provide important information for hypnosis research and practice. The Elkins Hypnotizability Scale (EHS) consists of 12 items and was developed to provide a time-efficient measure for use in both clinical and laboratory settings. The EHS has been shown to be a reliable measure with support for convergent validity with the Stanford Hypnotic Susceptibility Scale, Form C (r = .821, p < .001). The current study examined the factor structure of the EHS, which was administered to 252 adults (51.3% male; 48.7% female). Average time of administration was 25.8 minutes. Four factors selected on the basis of the best theoretical fit accounted for 63.37% of the variance. The results of this study provide an initial factor structure for the EHS. PMID:25978085

  17. Observational constraints on finite scale factor singularities

    SciTech Connect

    Denkiewicz, Tomasz

    2012-07-01

    We discuss the combined constraints on a Finite Scale Factor Singularity (FSF) universe evolution scenario, which come from the shift parameter R, baryon acoustic oscillations (BAO) A, and from the type Ia supernovae. We show that observations allow existence of such singularities in the 2 × 10{sup 9} years in future (at 1σ CL) which is much farther than a Sudden Future Singularity (SFS), and that at the present moment of the cosmic evolution, one cannot differentiate between cosmological scenario which allow finite scale factor singularities and the standard ΛCDM dark energy models. We also show that there is an allowed value of m = 2/3 within 1σ CL, which corresponds to a dust-filled Einstein-de-Sitter universe limit of the early time evolution and so it is pasted into a standard early-time scenario.

  18. Equation-of-State Scaling Factors

    SciTech Connect

    Scannapieco, Anthony J.

    2016-06-28

    Equation-of-State scaling factors are needed when using a tabular EOS in which the user de ned material isotopic fractions di er from the actual isotopic fractions used by the table. Additionally, if a material is dynamically changing its isotopic structure, then an EOS scaling will again be needed, and will vary in time and location. The procedure that allows use of a table to obtain information about a similar material with average atomic mass Ms and average atomic number Zs is described below. The procedure is exact for a fully ionized ideal gas. However, if the atomic number is replace by the e ective ionization state the procedure can be applied to partially ionized material as well, which extends the applicability of the scaling approximation continuously from low to high temperatures.

  19. Status of Electrostatic Accelerometer Development for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent; Huynh, Phuong-Anh

    2015-04-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the first Flight Model has begun on December 2014

  20. Tests Results of the Electrostatic Accelerometer Flight Models for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, E.; Boulanger, D.; Christophe, B.; Foulon, B.; Lebat, V.; Huynh, P. A.; Liorzou, F.

    2015-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the output measurement of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the two Flight Models was done on July 2015. The

  1. GOCE Accelerometers Data Revisited: Stability And Detector Noise

    NASA Astrophysics Data System (ADS)

    Berge, J.; Christophe, B.; Foulon, B.

    2013-12-01

    We report on our analyses of Gravity field and steady- state Ocean Circulation Explorer (GOCE) data aiming to characterize the stability and the noise of GOCE's ac- celerometers. We first measure science and detector co- herence signals, which allow us to infer the role of the accelerometers Digital Voltage Amplifiers and measure- ment chanel in the overall quadratic factor and scale fac- tor; we show that their temporal stability is as low as ex- pected. We then investigate the effect of the aliasing of high frequency detector's noise on the measured noise, in an attempt to explain why the measured noise is higher than originally expected. We find that although this alias- ing explains part of the higher noise, it does not account for the total of the difference seen between the expected and the measured noise.

  2. A very low noise monolithic Horizontal accelerometer.

    NASA Astrophysics Data System (ADS)

    Bertolini, Alessandro; Takamori, Akiteru; Cella, Giancarlo; Fidecaro, Francesco; Francesconi, Mario; Desalvo, Riccardo; Sannibale, Virginio

    2000-04-01

    We present a new low noise, low frequency, horizontal accelerometer. The mechanical design and the machining process aim to improve the sensitivity in the frequency region between 0.01 and 1 Hz, where metal internal friction and thermal elastic effects become critical. The accelerometer mechanics is shaped as a small folded pendulum in order to obtain a very low resonant frequency and low mechanical losses. A folded pendulum is essentially a mass suspended on one side by a simple pendulum and on the other by an inverted pendulum working antagonistically. The straight pendulum positive gravitational spring constant is balanced by the inverted pendulum’s negative one; by changing the center of mass position one can lower arbitrarily the resonant frequency. The only dissipation is in the anelasticity of the mechanical flex joint and in the readout/actuation system. If the spring constant is minimised, the mechanical losses are minimal. The monolithic design of the accelerometer eliminates the stick-and-slip friction localised in the flexure clamps. Low stiffness, 10 micron thick flex joints are achieved by EDM and electropolishing. The instrument is equipped with a low capacitance position sensor; the signal from the sensor is filtered by a PID controller and fed back to the mass through capacitive force actuator for feedback closed-loop operation. The sensor noise matches the expected thermal noise performances, 10-12 m/√Hz , with measuring range of a few microns. The expected sensitivity, less than 10-11 m/ s^2 / √Hz around 150 mHz, is a factor 30 below the state of the art limit. This accelerometer was designed to be integrated in the active control of the LIGO II mirror seismic isolators.

  3. The LISA accelerometer

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Touboul, P.

    2003-10-01

    In the frame of investigating the fundamental nature of gravity, the Laser Interferometer Space Antenna (LISA) mission could open the way to a new kind of observations unreachable from ground. The experiment, based on a V-formation of six drag-free spacecraft, uses the cubic proof masses of inertial sensors to reflect the laser light, acting as reference mirrors of a 5 × 10 9 m arm length interferometer. The proof masses are also used as inertial references for the drag-free control of the spacecraft which constitute in return a shield against external forces. Derived from space electrostatic accelerometers developed at ONERA, such as GRADIO for the ESA ARISTOTELES and now GOCE mission (Bernard and Touboul, 1991), the proposed LISA sensor should shield its proof mass from any accelerometric disturbance at a level of 10 -15ms-2Hz- 1/2. The accurate capacitive sensing of the mass provides its position relative to the satellite with a resolution better than 10 -9m Hz- 1/2 in order to control the satellite orbit and to minimise the disturbances induced by the satellite self gravity or by the proof mass charge. The sensor configuration and accomodation has to be specifically optimised for the mission requirements. Fortunately, the sensor will benefit from the thermal stability of the LISA optical bench environment, i.e. 10 -6K Hz- 1/2, and of the selected materials that exhibit a very low coefficient of thermal expansion (CTE), ensuring a high geometrical stability. Apart from the modeling and the evaluation of the flight characteristics, the necessary indirect ground demonstration of the performance and the interfaces with the drag-free control will have to be considered in detail in the future.

  4. Scale factor duality for conformal cyclic cosmologies

    NASA Astrophysics Data System (ADS)

    Camara da Silva, U.; Alves Lima, A. L.; Sotkov, G. M.

    2016-11-01

    The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose's Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.

  5. Wearable accelerometer in clinical use.

    PubMed

    Tamura, Toshiyo

    2005-01-01

    To improve the equality of life, we must prevent the falls in both healthy elderly and patients with the cerebrovascular diseases. Wearable accelerometer was applied to monitor. In this paper, we introduced two different clinical applications. On is fall detector and the other is monitoring device for screening test. 1) We have developed body-worn accelerometer with data loggers and monitored the daily of life in patient with Parkinson disease. The patients wore the device and monitored falls while walking and standing. As a result, we could obtain fall times for a long period. 2) The ability of walking and standing have been evaluated by Timed up & go test. We used telemetry with accelerometer. The stability of walking could be evaluated by the acceleration signals. The simple body-won device can be useful for fall study.

  6. In-fiber integrated accelerometer.

    PubMed

    Peng, Feng; Yang, Jun; Li, Xingliang; Yuan, Yonggui; Wu, Bing; Zhou, Ai; Yuan, Libo

    2011-06-01

    A compact in-fiber integrated fiber-optic Michelson interferometer based accelerometer is proposed and investigated. In the system, the sensing element consists of a twin-core fiber acting as a bending simple supported beam. By demodulating the optical phase shift, we obtain that the acceleration is proportional to the force applied on the central position of the twin-core fiber. A simple model has been established to calculate the sensitivity and resonant frequency. The experimental results show that such an accelerometer has a sensitivity of 0.09 rad/g at the resonant frequency of 680 Hz.

  7. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent

    2014-05-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link, and optionally a laser link, measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The Preliminary Design Review was achieved successfully on November 2013. The FEEU Engineering Model is under test. Preliminary results on electronic unit will be compared with the expected performance. The integration of the SUM Engineering Model and the first ground levitation of the proof-mass will be presented. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with

  8. Time Ephemeris and General Relativistic Scale Factor

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2010-11-01

    Time ephemeris is the location-independent part of the transformation formula relating two time coordinates such as TCB and TCG (Fukushima 2009). It is computed from the corresponding (space) ephemerides providing the relative motion of two spatial coordinate origins such as the motion of geocenter relative to the solar system barycenter. The time ephemerides are inevitably needed in conducting precise four dimensional coordinate transformations among various spacetime coordinate systems such as the GCRS and BCRS (Soffel et al. 2003). Also, by means of the time average operation, they are used in determining the information on scale conversion between the pair of coordinate systems, especially the difference of the general relativistic scale factor from unity such as LC. In 1995, we presented the first numerically-integrated time ephemeris, TE245, from JPL's planetary ephemeris DE245 (Fukushima 1995). It gave an estimate of LC as 1.4808268457(10) × 10-8, which was incorrect by around 2 × 10-16. This was caused by taking the wrong sign of the post-Newtonian contribution in the final summation. Four years later, we updated TE245 to TE405 associated with DE405 (Irwin and Fukushima 1999). This time the renewed vale of LC is 1.48082686741(200) × 10-8 Another four years later, by using a precise technique of time average, we improved the estimate of Newtonian part of LC for TE405 as 1.4808268559(6) × 10-8 (Harada and Fukushima 2003). This leads to the value of LC as LC = 1.48082686732(110) × 10-8. If we combine this with the constant defining the mean rate of TCG-TT, LG = 6.969290134 × 10-10 (IAU 2001), we estimate the numerical value of another general relativistic scale factor LB = 1.55051976763(110) × 10-8, which has the meaning of the mean rate of TCB-TT. The main reasons of the uncertainties are the truncation effect in time average and the uncertainty of asteroids' perturbation. As a compact realization of the time ephemeris, we prepared HF2002, a Fortran

  9. Time ephemeris and general relativistic scale factor

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2010-01-01

    Time ephemeris is the location-independent part of the transformation formula relating two time coordinates such as TCB and TCG (Fukushima 1995). It is computed from the corresponding (space) ephemerides providing the relative motion of two spatial coordinate origins such as the motion of geocenter relative to the solar system barycenter. The time ephemerides are inevitably needed in conducting precise four dimensional coordinate transformations among various spacetime coordinate systems such as the GCRS and BCRS (Soffel et al. 2003). Also, by means of the time average operation, they are used in determining the information on scale conversion between the pair of coordinate systems, especially the difference of the general relativistic scale factor from unity such as LC. In 1995, we presented the first numerically-integrated time ephemeris, TE245, from JPL's planetary ephemeris DE245 (Fukushima 1995). It gave an estimate of LC as 1.4808268457(10) × 10-8, which was incorrect by around 2 × 10-16. This was caused by taking the wrong sign of the post-Newtonian contribution in the final summation. Four years later, we updated TE245 to TE405 associated with DE405 (Irwin and Fukushima 1999). This time the renewed vale of LC is 1.48082686741(200) × 10-8 Another four years later, by using a precise technique of time average, we improved the estimate of Newtonian part of LC for TE405 as 1.4808268559(6) × 10-8 (Harada and Fukushima 2003). This leads to the value of LC as LC = 1.48082686732(110) × 10-8. If we combine this with the constant defining the mean rate of TCG-TT, LG = 6.969290134 × 10-10 (IAU 2001), we estimate the numerical value of another general relativistic scale factor LB = 1.55051976763(110) × 10-8, which has the meaning of the mean rate of TCB-TT. The main reasons of the uncertainties are the truncation effect in time average and the uncertainty of asteroids' perturbation. The former is a natural limitation caused by the finite length of numerical

  10. Accelerometer having integral fault null

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1995-01-01

    An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.

  11. Variometric Tests for Accelerometer Sensors

    NASA Astrophysics Data System (ADS)

    D'Urso, M. G.; Barbati, N.

    2012-07-01

    This paper has been re-published as: VARIOMETRIC TESTS FOR ACCELEROMETER SENSORS M. G. D'Urso and N. Barbati ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I-4, 2012 Page(s) 315-320

  12. Multiple-stage integrating accelerometer

    DOEpatents

    Devaney, H.F.

    1984-06-27

    An accelerometer assembly is provided for use in activating a switch in response to multiple acceleration pulses in series. The accelerometer includes a housing forming a chamber. An inertial mass or piston is slidably disposed in the chamber and spring biased toward a first or reset position. A damping system is also provided to damp piston movement in response to first and subsequent acceleration pulses. Additionally, a cam, including a Z-shaped slot, and cooperating follower pin slidably received therein are mounted to the piston and the housing. The middle or cross-over leg of the Z-shaped slot cooperates with the follower pin to block or limit piston movement and prevent switch activation in response to a lone acceleration pulse. The switch of the assembly is only activated after two or more separate acceleration pulses are sensed and the piston reaches the end of the chamber opposite the reset position.

  13. Multiple-stage integrating accelerometer

    DOEpatents

    Devaney, Howard F.

    1986-01-01

    An accelerometer assembly is provided for use in activating a switch in response to multiple acceleration pulses in series. The accelerometer includes a housing forming a chamber. An inertial mass or piston is slidably disposed in the chamber and spring biased toward a first or reset position. A damping system is also provided to damp piston movement in response to first and subsequent acceleration pulses. Additionally, a cam, including a Z-shaped slot, and cooperating follower pin slidably received therein are mounted to the piston and the housing. The middle or cross-over leg of the Z-shaped slot cooperates with the follower pin to block or limit piston movement and prevent switch activation in response to a lone acceleration pulse. The switch of the assembly is only activated after two or more separate acceleration pulses are sensed and the piston reaches the end of the chamber opposite the reset position.

  14. Helmsman’s Recording Accelerometer.

    DTIC Science & Technology

    2007-11-02

    Silage , Principal Electrical Engineer Mitchell B. Oslon, Research Engineer Conrad Technologies, Inc. Station Square One, Suite 102 Paoli, PA 19301...SUBTITLE Helmsman’s Recording Accelerometer 6. AUTHOR(S) Donald F. DeCleene Mitchell B. Oslon Dennis A. Silage 7. PERFORMING ORGANIZATION NAME(S) AND...58,1995. McCreight, K. K., "Assessing the Seaworthiness of SWATH Ships," SNAME Transactions, vol. 95, pp. 189-214,1987. Silage , D., Hartmann, B

  15. Scale Factor Study for 1:30 Local Scour Model

    DTIC Science & Technology

    2016-08-01

    ERDC/CHL CHETN-VII-15 August 2016 Approved for public release; distribution is unlimited. Scale Factor Study for 1:30 Local Scour Model by...contains a description of the process used to generate a scale factor for a 1:30 physical model of the Burlington Northern Santa Fe Railway Company (BNSF...railway crossing on the Santa Ana River near Corona, CA. Data from the scale factor study provide an adjustment for applying documented scour

  16. Mars Reconnaissance Orbiter Accelerometer Experiment Results

    NASA Astrophysics Data System (ADS)

    Keating, G. M.; Bougher, S. W.; Theriot, M. E.; Zurek, R. W.; Blanchard, R. C.; Tolson, R. H.; Murphy, J. R.

    2007-05-01

    The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005, designed for aerobraking, achieved Mars Orbital Insertion (MOI), March 10, 2006. Atmospheric density decreases exponentially with increasing height. By small propulsive adjustments of the apoapsis orbital velocity, periapsis altitude is fine tuned to the density surface that safely used the atmosphere of Mars to aerobrake over 400 orbits. MRO periapsis precessed from the South Pole at 6pm LST to near the equator at 3am LST. Meanwhile, apoapsis was brought dramatically from 40,000km at MOI to 460 km at aerobraking completion (ABX) August 30, 2006. After ABX, a few small propulsive maneuvers established the Primary Science Orbit (PSO), which without aerobraking would have required an additional 400 kg of fuel. Each of the 400 plus aerobraking orbits provided a vertical structure and distribution of density, scale heights, and temperatures, along the orbital path, providing key in situ insight into various upper atmosphere (greater than 100 km) processes. One of the major questions for scientists studying Mars is: "Where did the water go?" Honeywell's substantially improved electronics package for its IMU (QA-2000 accelerometer, gyro, electronics) maximized accelerometer sensitivities at the requests of The George Washington University, JPL, and Lockheed Martin. The improved accelerometer sensitivities allowed density measurements to exceed 200km, at least 40 km higher than with Mars Odyssey (MO). This extended vertical structures from MRO into the neutral lower exosphere, a region where various processes may allow atmospheric gasses to escape. Over the eons, water may have been lost in both near the surface and in the upper atmosphere. Thus the water balance throughout the entire atmosphere from subsurface to exosphere may both be critical. Comparisons of data from Mars Global Surveyor (MGS), MO and MRO help characterize key temporal and spatial cycles including: winter polar warming, planetary scale

  17. Factor Structure of the Exercise Self-Efficacy Scale

    ERIC Educational Resources Information Center

    Cornick, Jessica E.

    2015-01-01

    The current study utilized exercise self-efficacy ratings from undergraduate students to assess the factor structure of the Self-Efficacy to Regulate Exercise Scale (Bandura, 1997, 2006). An exploratory factor analysis (n = 759) indicated a two-factor model solution and three separate confirmatory factor analyses (n = 1,798) supported this…

  18. Accelerometer and strain gage evaluation

    NASA Astrophysics Data System (ADS)

    Ammerman, D. J.; Madsen, M. M.; Uncapher, W. L.; Stenberg, D. R.; Bronowski, D. R.

    1991-06-01

    This document describes the method developed by Sandia National Laboratories (SNL) to evaluate transducer used in the design certification testing of nuclear material shipping packages. This testing project was performed by SNL for the Office of Civilian Radioactive Waste Management (OCRWM). This evaluation is based on the results of tests conducted to measure ruggedness, failure frequency, repeatability, and manufacturers' calibration data under both field and laboratory conditions. The results of these tests are provided and discussed. The transducer were selected for testing by surveying cask contractors and testing facilities. Important insights relating to operational characteristics of accelerometer types were gained during field testing.

  19. Density perturbations in a finite scale factor singularity universe

    NASA Astrophysics Data System (ADS)

    Balcerzak, Adam; Denkiewicz, Tomasz

    2012-07-01

    We discuss evolution of density perturbations in cosmological models which admit finite scale factor singularities. After solving the matter perturbations equations we find that there exists a set of parameters which admits a finite scale factor singularity in future and instantaneously recover matter density evolution history which is indistinguishable from the standard ΛCDM scenario.

  20. Confirmatory Factor Analysis and Profile Analysis via Multidimensional Scaling

    ERIC Educational Resources Information Center

    Kim, Se-Kang; Davison, Mark L.; Frisby, Craig L.

    2007-01-01

    This paper describes the Confirmatory Factor Analysis (CFA) parameterization of the Profile Analysis via Multidimensional Scaling (PAMS) model to demonstrate validation of profile pattern hypotheses derived from multidimensional scaling (MDS). Profile Analysis via Multidimensional Scaling (PAMS) is an exploratory method for identifying major…

  1. Revision and Factor Analysis of a Death Anxiety Scale.

    ERIC Educational Resources Information Center

    Thorson, James A.; Powell, F. C.

    Earlier research on death anxiety using the 34-item scale developed by Nehrke-Templer-Boyar (NTB) indicated that females and younger persons have significantly higher death anxiety. To simplify a death anxiety scale for use with different age groups, and to determine the conceptual factors actually measured by the scale, a revised 25-item…

  2. Factor Scales for Assessing Marital Disharmony and Disaffection.

    ERIC Educational Resources Information Center

    Snyder, Douglas K.; Regts, John M.

    1982-01-01

    Describes two broad-band factor scales of marital distress constructed to supplement existing profile scales of the Marital Satisfaction Inventory. The two new scales, labeled Disaffection and Disharmony, both discriminated between normative and clinical samples. Distinct distributions support the concept of two separate, interactive components of…

  3. Superconducting six-axis accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  4. A triaxial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Jia, Jingqing; Feng, Shuo; Liu, Wei

    2015-06-01

    Optimal sensor placement (OSP) technique is a vital part of the field of structural health monitoring (SHM). Triaxial accelerometers have been widely used in the SHM of large-scale structures in recent years. Triaxial accelerometers must be placed in such a way that all of the important dynamic information is obtained. At the same time, the sensor configuration must be optimal, so that the test resources are conserved. The recommended practice is to select proper degrees of freedom (DOF) based upon several criteria and the triaxial accelerometers are placed at the nodes corresponding to these DOFs. This results in non-optimal placement of many accelerometers. A ‘triaxial accelerometer monkey algorithm’ (TAMA) is presented in this paper to solve OSP problems of triaxial accelerometers. The EFI3 measurement theory is modified and involved in the objective function to make it more adaptable in the OSP technique of triaxial accelerometers. A method of calculating the threshold value based on probability theory is proposed to improve the healthy rate of monkeys in a troop generation process. Meanwhile, the processes of harmony ladder climb and scanning watch jump are proposed and given in detail. Finally, Xinghai NO.1 Bridge in Dalian is implemented to demonstrate the effectiveness of TAMA. The final results obtained by TAMA are compared with those of the original monkey algorithm and EFI3 measurement, which show that TAMA can improve computational efficiency and get a better sensor configuration.

  5. Display-And-Alarm Circuit For Accelerometer

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Compact accelerometer assembly consists of commercial accelerometer retrofit with display-and-alarm circuit. Provides simple means for technician attending machine to monitor vibrations. Also simpifies automatic safety shutdown by providing local alarm or shutdown signal when vibration exceeds preset level.

  6. Micromachined high-g accelerometers: a review

    NASA Astrophysics Data System (ADS)

    Narasimhan, V.; Li, H.; Jianmin, M.

    2015-03-01

    This Topical Review reviews research and commercial development of high-g micromachined accelerometers. Emphasis is placed on different high-g sensing schemes and popular design templates used to achieve high-g sensing. Additionally, trends in high-g micromachined accelerometer development both in research and in the market are discussed.

  7. Status of Electrostatic Accelerometer Development for Gravity Recovery and Climate Experiment Follow-on Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Lebat, V.; Boulanger, D.; Christophe, B.; Foulon, B.; Liorzou, F.; Perrot, E.; Huynh, P. A.

    2014-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Preliminary Design Review was achieved successfully on November 2013. The Engineering Model (EM) was integrated successfully and is under test, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The complete EM tests will be achieved on October 2014. The

  8. Demographic Correlates and Factor Structure of the Family Environment Scale.

    ERIC Educational Resources Information Center

    Boake, Corwin; Salmon, Paul G.

    1983-01-01

    Factor analyzed the Family Environment Scale (FES) subscale scores of 204 families and correlated them with family demographic characteristics. The obtained factor structure showed two major factors similar to "control" and "acceptance-rejection" dimensions in previous research. Results support the FES as part of multimethod…

  9. Correlations of MMPI factor scales with measures of the five factor model of personality.

    PubMed

    Costa, P T; Busch, C M; Zonderman, A B; McCrae, R R

    1986-01-01

    Two recent item factor analyses of the Minnesota Multiphasic Personality Inventory (MMPI) classified the resulting factors according to a conceptual scheme offered by Norman's (1963) five factor model. The present article empirically evaluates those classifications by correlating MMPI factor scales with self-report and peer rating measures of the five factor model in a sample of 153 adult men and women. Both sets of predictions were generally supported, although MMPI factors derived in a normal sample showed closer correspondences with the five normal personality dimensions. MMPI factor scales were also correlated with 18 scales measuring specific traits within the broader domains of Neuroticism, Extraversion, and Openness. The nine Costa, Zonderman, McCrae, and Williams (1985) MMPI factor scales appear to give useful global assessments of four of the five factors; other instruments are needed to provide detailed information on more specific aspects of normal personality. The use of the five factor model in routine clinical assessment is discussed.

  10. Maximum Likelihood Factor Structure of the Family Environment Scale.

    ERIC Educational Resources Information Center

    Fowler, Patrick C.

    1981-01-01

    Presents the maximum likelihood factor structure of the Family Environment Scale. The first bipolar dimension, "cohesion v conflict," measures relationship-centered concerns, while the second unipolar dimension is an index of "organizational and control" activities. (Author)

  11. Factor Structure of the Behavior Flexibility Rating Scale (BFRS)

    ERIC Educational Resources Information Center

    Pituch, Keenan A.; Green, Vanessa A.; Sigafoos, Jeff; Itchon, Jonathan; O'Reilly, Mark; Lancioni, Giulio E.; Didden, Robert

    2007-01-01

    The Behavior Flexibility Rating Scale (BFRS) is designed to assess insistence on sameness or lack of behavioral flexibility, which is often associated with autism and other developmental disabilities. This study was designed to assess the factor structure of this scale for a sample of 968 individuals with autism, Asperger's syndrome, and Down…

  12. A Factor Analytic Study of the Internet Usage Scale

    ERIC Educational Resources Information Center

    Monetti, David M.; Whatley, Mark A.; Hinkle, Kerry T.; Cunningham, Kerry T.; Breneiser, Jennifer E.; Kisling, Rhea

    2011-01-01

    This study developed an Internet Usage Scale (IUS) for use with adolescent populations. The IUS is a 26-item scale that measures participants' beliefs about how their Internet usage impacts their behavior. The sample for this study consisted of 947 middle school students. An exploratory factor analysis with varimax rotation was conducted on the…

  13. Determination of optimum data points for scaling factor determination

    SciTech Connect

    Fernandez, Michael Dennis T.; Sang Chui Lee; Kun Jai Lee

    2007-07-01

    Scaling factors are calculated based on a database from radiochemical analyses of representative waste samples. Several data points are needed to derive a reliable scaling factor. The more the number of data points, the better is the correlation, but more costly because of number of needed radiochemical analyses. Therefore, optimization of data points should be considered to minimize the cost without compromising reliability and prediction of the scaling factor. Scaling factors for Ni-63, Sr-90, and C-14 were calculated using Co-60 and Cs-137 as Key nuclides based on the published data in EPRI-4037. Correlation coefficient, percent error and relative standard deviation were plotted against the number of data points used in the estimation of scaling factor. The optimum number of data points was obtained to where there was no significant improvement in the statistical uncertainties by using additional samples. Even though non-segregated (all data points) has greater effect in calculating scaling factor because of its more data points, this study showed that even segregated data points can also give good DTM characterization. (authors)

  14. The BepiColombo mission to Mercury: ISA accelerometer on-ground and in-flight calibration procedures

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Lucchesi, D.; Fiorenza, E.; Lucente, M.; Lefevre, C.; Magnafico, C.; Peron, R.; Santoli, F.; Nozzoli, S.; Argada, A.

    2012-04-01

    The key role of the Italian Spring Accelerometer (ISA) in the radio science measurements of the ESA BepiColombo mission to Mercury is to remove, aposteriori, the non-gravitational accelerations acting on the Mercury Planetary Orbiter (MPO) due to the very strong radiation environment around Mercury. This presentation is devoted to describe the main on-ground and in-flight calibration procedures that are necessary to guarantee the accelerometer performance in order to reach the very ambitious objectives of the Radio Science Experiments (RSE) of the ESA mission: the accelerometer sensitivity has to be 10-8 m/s2/√Hz in the frequency band 3·10-5 -10-1 Hz. ISA is a three axes torsional accelerometer and the calibration procedures are necessary in order to estimate scale factors and axes misalignments and couplings. The on-ground calibration procedures are primarily finalized to the determination of the actuator transducer factor of the proof-masses capacitor plates and to the determination of the proof-masses axes orthogonality and orientation with respect to a reference optical cube. The in-flight calibration procedures are devoted to the determination of the accelerometer pick-up transducer factors, which are different from those determined on-ground during the calibration of ISA's actuators, and to the determination of the axes alignment in order to check if launch shocks have produced possible variations with respect to their nominal orientation in the MPO body-fixed frame as determined during the pre-launch characterization and calibration. A by-product of the in-flight calibration procedures is the determination of ISA proof-masses position with respect to spacecraft effective center-of-mass. This allows to check if the MPO center-of-mass variations are in line with on-ground estimates based on fuel consumption computations and the mass distribution of the spacecraft appendices and movable parts, as in the case of the orientation of the solar array panels and

  15. GRADIO three-axis electrostatic accelerometers

    NASA Technical Reports Server (NTRS)

    Bernard, A.

    1987-01-01

    Dedicated accelerometers for satellite gravity gradiometry (GRADIO project) are described. The design profits from experience acquired with the CACTUS accelerometer payload of the satellite CASTOR-D5B and studies of highly accurate accelerometers for inertial navigation. The principle of operation, based on a three-axis electrostatic suspension of a cubic proof mass, is well suited for the measurements of accelerations less than 0.0001 m/sec/sec. A resolution better than 10 to the minus 11th power m/sec/sec/sq root Hz is expected.

  16. Hybridizing matter-wave and classical accelerometers

    SciTech Connect

    Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A.

    2014-10-06

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.

  17. Characteristics associated with requested and required accelerometer wear in children

    PubMed Central

    Wells, Sian L; Kipping, Ruth R; Jago, Russell; Brown, Judith; Hucker, Daniel; Blackett, Ali; Lawlor, Debbie A

    2013-01-01

    Objective To investigate characteristics associated with wearing an accelerometer for the required and requested time among 8-year-old to 10-year-old children. Design Cross-sectional. Setting 60 Bristol and North Somerset primary schools taking part in the ‘Active for Life Year 5’ randomised controlled trial (RCT) in 2011. Participants 2048 children, aged 8–10 years, invited to wear an accelerometer for 5 days of recording. Primary outcome measure Numbers meeting required wear-time for inclusion in main RCT analysis (≥8 h/day ≥3 days) and numbers meeting requested wear-time (≥8 h/day for all 5 days). Results 817 (40%) of the children wore the accelerometer for the requested time and 1629 (80%) for the required time. In adjusted multivariable analyses the odds of wearing the accelerometer for the required time were greater in females as compared with males (OR 1.76 (1.42–2.18)), those with higher scores for reporting their mother restricted time on sedentary behaviours (1.26 (1.04–1.52) per increase of 1 on a 1–4 scale) and in children from schools with larger year group sizes (1.01 (1.00–1.02) per additional child). Living in a neighbourhood with higher levels of deprivation (0.49 (0.33–0.72) comparing highest to lowest third of the deprivation score) or reporting higher levels of weekday outdoor play (0.97 (0.94, 1.00) per 30 min more) were associated with reduced odds of meeting required time. Results were essentially the same for requested wear-time. Other characteristics, including child body mass index, were not associated with required or requested wear-time. Conclusions Only 40% of children wore the accelerometer for the requested time but 80% fulfilled the required criteria to be included in the main study analyses. Knowing which characteristics are associated with accelerometer wear could help target interventions to increase wear-time. PMID:23975106

  18. Reliability, Validity, and Factor Structure of the Imaginative Capability Scale

    ERIC Educational Resources Information Center

    Liang, Chaoyun; Chia, Tsorng-Lin

    2014-01-01

    Three studies were combined to test the reliability, validity, and factor structure of the imaginative capability scale (ICS). The ICS was a new self-report measure, which was developed to be empirically valid and easy to administer. Study 1 consisted in an exploratory factor analysis to determine the most appropriate structure of the ICS in a…

  19. Factor Structure Evaluation of the Childhood Autism Rating Scale

    ERIC Educational Resources Information Center

    Magyar, Caroline I.; Pandolfi, Vincent

    2007-01-01

    This study investigated the factor structure of the Childhood Autism Rating Scale (CARS). Principal components analysis (PCA) and principal axis factor analysis (PAF) evaluated archival data from children presenting to a university clinic with suspected autism spectrum disorders (ASDs; N = 164). PCA did not replicate components identified by…

  20. Factor Structure of Japanese Versions of Two Emotional Intelligence Scales

    ERIC Educational Resources Information Center

    Fukuda, Eriko; Saklofske, Donald H.; Tamaoka, Katsuo; Fung, Tak Shing; Miyaoka, Yayoi; Kiyama, Sachiko

    2011-01-01

    This article reports the psychometric properties of two emotional intelligence measures translated into Japanese. Confirmatory factor analysis (CFA) was conducted to examine the factor structure of a Japanese version of the Wong and Law Emotional Intelligence Scale (WLEIS) completed by 310 Japanese university students. A second study employed CFA…

  1. Accelerometer Measurements in the Amusement Park.

    ERIC Educational Resources Information Center

    Reno, Charles; Speers, Robert R.

    1995-01-01

    Describes the use of the Texas Instruments' calculator-based laboratory (CBL) and Vernier accelerometer for measuring the vector sum of the gravitational field and the acceleration of amusement park rides. (JRH)

  2. Examining the factor structure of the Multiple Sclerosis Impact Scale.

    PubMed

    Fitzgerald, Shawn M; Li, Jian; Rumrill, Phillip D; Merchant, William; Bishop, Malachy

    2014-01-01

    The purpose of this study was to investigate the factor structure of the Multiple Sclerosis Impact Scale (MSIS-29) to assess its suitability for modeling the impact of MS on a nation-wide sample of individuals from the United States. Investigators completed a Confirmatory Factor Analysis (CFA) to examine the two-factor structure proposed by Hobart et al. [17]. Although the original MSIS-29 factor structure did not fit the data exactly, the hypothesized two-factor model was partially supported in the current data. Implications for future instrument development and rehabilitation practice are discussed.

  3. High resolution interface circuit for closed-loop accelerometer

    NASA Astrophysics Data System (ADS)

    Liang, Yin; Xiaowei, Liu; Weiping, Chen; Zhiping, Zhou

    2011-04-01

    This paper reports a low noise switched-capacitor CMOS interface circuit for the closed-loop operation of a capacitive accelerometer. The time division multiplexing of the same electrode is adopted to avoid the strong feedthrough between capacitance sensing and electrostatic force feedback. A PID controller is designed to ensure the stability and dynamic response of a high Q closed-loop accelerometer with a vacuum package. The architecture only requires single ended operational amplifiers, transmission gates and capacitors. Test results show that a full scale acceleration of ±3 g, non-linearity of 0.05% and signal bandwidth of 1000 Hz are achieved. The complete module operates from a ±5 V supply and has a measured sensitivity of 1.2 V/g with a noise of floor of in closed-loop. The chip is fabricated in the 2 μm two-metal and two-poly n-well CMOS process with an area of 15.2 mm2. These results prove that this circuit is suitable for high performance micro-accelerometer applications like seismic detection and oil exploration.

  4. Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones

    PubMed Central

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-01

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications. PMID:25643056

  5. Improved mapping of planetary gravitational field with an electrostatic accelerometer/gradiometer

    NASA Astrophysics Data System (ADS)

    Foulon, Bernard; Huynh, Phuong-Anh; Liorzou, Francoise; Christophe, Bruno; Hardy, Emilie; Boulanger, Damien; Lebat, Vincent; Perrot, Eddy

    2015-04-01

    ONERA has a proven record spanning several years in developing the most accurate accelerometers for geodesy missions. They are still operational in the GRACE mission and their successors for the GRACE-FO mission will fly in 2017. Finally, the GOCE mission has shown the benefit of using a gradiometer for the direct measurement of the gravity field. Now, ONERA proposes a new accelerometer design, MicroSTAR, for interplanetary missions. This design based on the same technology as for the GRACE and GOCE space missions, with the notable addition of a bias rejection system, has a reduced mass and consumption. The accelerometer is embarked on Uranus Pathfinder (mission proposal for Cosmic M4) as up-scope instrument to achieve two scientific objectives: 1) to determine the gravity fields of Uranus and the satellites, allowing for a better understanding of the planet interior composition, 2) to test gravity at the largest possible length scales to search for deviations from General Relativity. The success of using accelerometer for geodesy mission could be imported in the planetary science field. The poster details the accuracy which can be achieved on the gravity potential field according to different accelerometer configurations. It describes the instrument and its integration inside an interplanetary probe. Finally, it explains the benefit of using this electrostatic accelerometer complementary to radio science technology for improved planetary gravitational field measurements.

  6. The factor structure of the Social Interaction Anxiety Scale and the Social Phobia Scale.

    PubMed

    Heidenreich, Thomas; Schermelleh-Engel, Karin; Schramm, Elisabeth; Hofmann, Stefan G; Stangier, Ulrich

    2011-05-01

    The Social Interaction Anxiety Scale (SIAS) and the Social Phobia Scale (SPS) are two compendium measures that have become some of the most popular self-report scales of social anxiety. Despite their popularity, it remains unclear whether it is necessary to maintain two separate scales of social anxiety. The primary objective of the present study was to examine the factor analytic structure of both measures to determine the factorial validity of each scale. For this purpose, we administered both scales to 577 patients at the beginning of outpatient treatment. Analyzing both scales simultaneously, a CFA with two correlated factors showed a better fit to the data than a single factor model. An additional EFA with an oblique rotation on all 40 items using the WLSMV estimator further supported the two factor solution. These results suggest that the SIAS and SPS measure similar, but not identical facets of social anxiety. Thus, our findings provide support to retain the SIAS and SPS as two separate scales.

  7. Optomechanical accelerometers and gravity gradiometers

    NASA Astrophysics Data System (ADS)

    Guzman Cervantes, F.; Pratt, J. R.; Taylor, J. M.

    2015-12-01

    Compact optical cavities can be combined with highly stable mechanical oscillators to yield accelerometers and gravity gradiometers of exquisite sensitivity, which are also traceable to the SI.We have incorporated Fabry-Pérot fiber-optic micro-cavities onto low-loss monolithic fused-silica mechanical oscillators for gradiometry, acceleration, and force sensing. These devices consist solely of a glass oscillator and fiber optics to inject and read out the coherent optical signal, making them very simple and compatible with space applications.We have demonstrated displacement sensitivities better than 200 am/√Hz with these fiber-optic micro-sensors. This translates into broadband acceleration noise floors below 100 nano-g/√Hz over a 10kHz, when combined with compact high frequency mechanical oscillators. Similarly, we have developed monolithic oscillators with resonance frequencies near and below 10 Hz, yielding measurement sensitivities better than 10-9 m/s2.We will introduce our sensor concepts and present results on our fiber-optic displacement sensors and novel optomechanical devices.

  8. Optomechanical accelerometers and gravity gradiometers

    NASA Astrophysics Data System (ADS)

    Guzman, Felipe

    2016-04-01

    Compact optical cavities can be combined with highly stable mechanical oscillators to yield accelerometers and gravity gradiometers of exquisite sensitivity, which are also traceable to the SI. We have incorporated Fabry-Pérot fiber-optic micro-cavities onto low-loss monolithic fused-silica mechanical oscillators for gradiometry, acceleration, and force sensing. These devices consist solely of a glass oscillator and fiber optics to inject and read out the coherent optical signal, making them very simple and compatible with space applications. We have demonstrated displacement sensitivities better than 200 am/√Hz with these fiber-optic micro-sensors. This translates into broadband acceleration noise floors below 100 nano-g/√Hz over a 10kHz, when combined with compact high frequency mechanical oscillators. Similarly, we have developed monolithic oscillators with resonance frequencies near and below 10 Hz, yielding measurement sensitivities better than 10-9 m/s2. We will introduce our sensor concepts and present results on our fiber-optic displacement sensors and novel optomechanical devices.

  9. High G MEMS integrated accelerometer

    SciTech Connect

    Davies, B.R.; Barron, C.C.; Montague, S.; Smith, J.H.; Murray, J.R.; Christenson, T.R.; Bateman, V.I.

    1996-12-31

    This paper describes the design and implementation of a surface micromachined accelerometer for measuring very high levels of acceleration (up to 50,000 G). Both the mechanical and electronic portions of the sensor were integrated on a single substrate using a process developed at Sandia National Laboratories. In this process, the mechanical components of the sensor were first fabricated at the bottom of a trench etched into the water substrate. The trench was then filled with oxide and sealed to protect the mechanical components during subsequent microelectronics processing. The wafer surface was then planarized in preparation for CMOS processing using Chemical Mechanical Polishing (CMP). Next, the CMOS electronics were fabricated on areas of the wafer adjacent to the embedded structures. Finally, the mechanical structures were released and the sensor tested. The mechanical structure of the sensor consisted of two polysilicon plate masses suspended by multiple springs (cantilevered beam structures) over corresponding polysilicon plates fixed to the substrate to form two parallel plate capacitors. The first polysilicon plate mass was suspended using compliant springs (cantilever beams) and acted as a variable capacitor during sensor acceleration. The second polysilicon plate mass was suspended using very stiff springs and acted as a fixed capacitor during acceleration. Acceleration was measured by comparing the capacitance of the variable capacitor (compliant suspension) with the fixed capacitance (stiff suspension).

  10. Calibration of Gyros with Temperature Dependent Scale Factors

    NASA Technical Reports Server (NTRS)

    Belur, Sheela V.; Harman, Richard

    2001-01-01

    The general problem of gyro calibration can be stated as the estimation of the scale factors, misalignments, and drift-rate biases of the gyro using the on-orbit sensor measurements. These gyro parameters have been traditionally treated as temperature-independent in the operational flight dynamics ground systems at NASA Goddard Space Flight Center (GSFC), a scenario which has been successfully applied in the gyro calibration of a large number of missions. A significant departure from this is the Microwave Anisotropy Probe (MAP) mission where, due to the high thermal variations expected during the mission phase, it is necessary to model the scale factors as functions of temperature. This paper addresses the issue of gyro calibration for the MAP gyro model using a manufacturer-supplied model of the variation of scale factors with temperature. The problem is formulated as a least squares problem and solved using the Levenberg-Marquardt algorithm in the MATLAB(R) library function NLSQ. The algorithm was tested on simulated data with Gaussian noise for the quaternions as well as the gyro rates and was found to consistently converge close to the true values. Significant improvement in accuracy was noticed due to the estimation of the temperature-dependent scale factors as against constant scale factors.

  11. Data replicating the factor structure and reliability of commonly used measures of resilience: The Connor-Davidson Resilience Scale, Resilience Scale, and Scale of Protective Factors.

    PubMed

    Madewell, A N; Ponce-Garcia, E; Martin, S E

    2016-09-01

    The data presented in this article are related to the article entitled "Assessing Resilience in Emerging Adulthood: The Resilience Scale (RS), Connor Davidson Resilience Scale (CD-RISC), and Scale of Protective Factors (SPF)" (Madewell and Ponce-Garcia, 2016) [1]. The data were collected from a sample of 451 college students from three universities located in the Southwestern region of the United States: 374 from a large public university and 67 from two smaller regional universities. The data from the three universities did not significantly differ in terms of demographics. The data represent participant responses on six measurements to include the Resilience Scale-25 (RS-25), Resilience Scale-14 (RS-14), Connor Davidson Resilience Scale-25 (CD-RISC-25), Connor Davidson Resilience Scale-10 (CD-RISC-10), Scale of Protective Factors-24 (SPF-24), and the Life Stressor Checklist Revised (LSC-R).

  12. Error analyses and calibration methods with accelerometers for optical angle encoders in rotational inertial navigation systems.

    PubMed

    Liu, Fang; Wang, Wei; Wang, Lei; Feng, Peide

    2013-11-10

    By rotating a strapdown inertial navigation system (INS) over one or more axes, a number of error sources originating from the employed sensors cancel out during the integration process. Rotary angle accuracy has an effect on the performance of rotational INS (RINS). The application of existing calibration methods based on gyroscope measurements is restricted by the structure of the inertial measurement unit (IMU) and scale factor stability of the gyroscope. The multireadhead method has problems in miniaturization and cost. Hence, optical angle encoder calibration methods using accelerometers are proposed, on the basis of navigation error and accuracy requirement analyses for a single-axis RINS. The test results show that the accuracy of calibration methods proposed is higher than 4 arcsec (1σ).

  13. A Confirmatory Factoring of the Self-Consciousness Scale.

    PubMed

    Bernstein, I H; Teng, G; Garbin, C P

    1986-10-01

    Fenigstein, Scheier, and Buss (1975) developed a three subscale inventory designed to measure self-consciousness. Burnkrant and Page (1984) used confirmatory factor analysis to evaluate the scale and concluded that five items did not belong to their assigned scales and that one of the original subscales really measured two separable traits. Burnkrant and Page's conclusions may simply reflect incidental properties of the item statistics and could weaken the scale if adopted. Fenigstein et al.'s representation fits the data quite well in its original form. However, items on their social anxiety scale also tend to evoke relatively large variability over subjects and items on their public self-consciousness scale tend to evoke relatively little variability. In other words, items on their subscales differ nearly as much statistically as they do substantively.

  14. CHAMP Tracking and Accelerometer Data Analysis Results

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Luthcke, S. B.; Rowlands, D. D.; Pavlis, D. E.; Colombo, O. L.; Ray, Richard D.; Thompson, B.; Nerem, R. S.; Williams, Teresa A.; Smith, David E. (Technical Monitor)

    2002-01-01

    The CHAMP (Challenging Minisatellite Payload) mission's unique combination of sensors and orbit configuration will enable unprecedented improvements in modeling and understanding the Earth's static gravity field and its temporal variations. CHAMP is the first of two missions (GRACE (Gravity Recovery and Climate Experiment) to be launched in the later part of '01) that combine a new generation of GPS (Global Positioning System) receivers, a high precision three axis accelerometer, and star cameras for the precision attitude determination. In order to isolate the gravity signal for science investigations, it is necessary to perform a detailed reduction and analysis of the GPS and SLR tracking data in conjunction with the accelerometer and attitude data. Precision orbit determination based on the GPS and SLR (Satellite Laser Ranging) tracking data will isolate the orbit perturbations, while the accelerometer data will be used to distinguish the surface forces from those due to the geopotential (static, and time varying). In preparation for the CHAMP and GRACE missions, extensive modifications have been made to NASA/GSFC's GEODYN orbit determination software to enable the simultaneous reduction of spacecraft tracking (e.g. GPS and SLR), three axis accelerometer and precise attitude data. Several weeks of CHAMP tracking and accelerometer data have been analyzed and the results will be presented. Precision orbit determination analysis based on tracking data alone in addition to results based on the simultaneous reduction of tracking and accelerometer data will be discussed. Results from a calibration of the accelerometer will be presented along with the results from various orbit determination strategies. Gravity field modeling status and plans will be discussed.

  15. A Confirmatory Factor Analysis of the Professional Opinion Scale

    ERIC Educational Resources Information Center

    Greeno, Elizabeth J.; Hughes, Anne K.; Hayward, R. Anna; Parker, Karen L.

    2007-01-01

    The Professional Opinion Scale (POS) was developed to measure social work values orientation. Objective: A confirmatory factor analysis was performed on the POS. Method: This cross-sectional study used a mailed survey design with a national random (simple) sample of members of the National Association of Social Workers. Results: The study…

  16. Rosenberg's Self-Esteem Scale: Two Factors or Method Effects.

    ERIC Educational Resources Information Center

    Tomas, Jose M.; Oliver, Amparo

    1999-01-01

    Results of a study with 640 Spanish high school students suggest the existence of a global self-esteem factor underlying responses to Rosenberg's (M. Rosenberg, 1965) Self-Esteem Scale, although the inclusion of method effects is needed to achieve a good model fit. Method effects are associated with item wording. (SLD)

  17. Confirmatory factor analysis of the supports intensity scale for children.

    PubMed

    Verdugo, Miguel A; Guillén, Verónica M; Arias, Benito; Vicente, Eva; Badia, Marta

    2016-01-01

    Support needs assessment instruments and recent research related to this construct have been more focused on adults with intellectual disability than on children. However, the design and implementation of Individualized Support Plans (ISP) must start at an early age. Currently, a project for the translation, adaptation and validation of the supports intensity scale for children (SIS-C) is being conducted in Spain. In this study, the internal structure of the scale was analyzed to shed light on the nature of this construct when evaluated in childhood. A total of 814 children with intellectual disability between 5 and 16 years of age participated in the study. Their support need level was assessed by the SIS-C, and a confirmatory factor analysis (CFA), including different hypotheses, was carried out to identify the optimal factorial structure of this scale. The CFA results indicated that a unidimensional model is not sufficient to explain our data structure. On the other hand, goodness-of-fit indices showed that both correlated first-order factors and higher-order factor models of the construct could explain the data obtained from the scale. Specifically, a better fit of our data with the correlated first-order factors model was found. These findings are similar to those identified in previous analyses performed with adults. Implications and directions for further research are discussed.

  18. [Cross validity of the UCLA Loneliness Scale factorization].

    PubMed

    Borges, Africa; Prieto, Pedro; Ricchetti, Giacinto; Hernández-Jorge, Carmen; Rodríguez-Naveiras, Elena

    2008-11-01

    Loneliness is an unpleasant experience that takes place when a person's network of social relationships is significantly deficient in quality and quantity, and it is associated with negative feelings. Loneliness is a fundamental construct that provides information about several psychological processes, especially in the clinical setting. It is well known that this construct is related to isolation and emotional loneliness. One of the most well-known psychometric instruments to measure loneliness is the revised UCLA Loneliness Scale, which has been factorized in several populations. A controversial issue related to the UCLA Loneliness Scale is its factor structure, because the test was first created based on a unidimensional structure; however, subsequent research has proved that its structure may be bipolar or even multidimensional. In the present work, the UCLA Loneliness Scale was completed by two populations: Spanish and Italian undergraduate university students. Results show a multifactorial structure in both samples. This research presents a theoretically and analytically coherent bifactorial structure.

  19. Improvement of modal scaling factors using mass additive technique

    NASA Technical Reports Server (NTRS)

    Zhang, Qiang; Allemang, Randall J.; Wei, Max L.; Brown, David L.

    1987-01-01

    A general investigation into the improvement of modal scaling factors of an experimental modal model using additive technique is discussed. Data base required by the proposed method consists of an experimental modal model (a set of complex eigenvalues and eigenvectors) of the original structure and a corresponding set of complex eigenvalues of the mass-added structure. Three analytical methods,i.e., first order and second order perturbation methods, and local eigenvalue modification technique, are proposed to predict the improved modal scaling factors. Difficulties encountered in scaling closely spaced modes are discussed. Methods to compute the necessary rotational modal vectors at the mass additive points are also proposed to increase the accuracy of the analytical prediction.

  20. Characterizing performance of ultra-sensitive accelerometers

    NASA Technical Reports Server (NTRS)

    Sebesta, Henry

    1990-01-01

    An overview is given of methodology and test results pertaining to the characterization of ultra sensitive accelerometers. Two issues are of primary concern. The terminology ultra sensitive accelerometer is used to imply instruments whose noise floors and resolution are at the state of the art. Hence, the typical approach of verifying an instrument's performance by measuring it with a yet higher quality instrument (or standard) is not practical. Secondly, it is difficult to find or create an environment with sufficiently low background acceleration. The typical laboratory acceleration levels will be at several orders of magnitude above the noise floor of the most sensitive accelerometers. Furthermore, this background must be treated as unknown since the best instrument available is the one to be tested. A test methodology was developed in which two or more like instruments are subjected to the same but unknown background acceleration. Appropriately selected spectral analysis techniques were used to separate the sensors' output spectra into coherent components and incoherent components. The coherent part corresponds to the background acceleration being measured by the sensors being tested. The incoherent part is attributed to sensor noise and data acquisition and processing noise. The method works well for estimating noise floors that are 40 to 50 dB below the motion applied to the test accelerometers. The accelerometers being tested are intended for use as feedback sensors in a system to actively stabilize an inertial guidance component test platform.

  1. Electret accelerometers: physics and dynamic characterization.

    PubMed

    Hillenbrand, J; Haberzettl, S; Motz, T; Sessler, G M

    2011-06-01

    Electret microphones are produced in numbers that significantly exceed those for all other microphone types. This is due to the fact that air-borne electret sensors are of simple and low-cost design but have very good acoustical properties. In contrast, most of the discrete structure-borne sound sensors (or accelerometers) are based on the piezoelectric effect. In the present work, capacitive accelerometers utilizing the electret principle were constructed, built, and characterized. These electret accelerometers comprise a metallic seismic mass, covered by an electret film, a ring of a soft cellular polymer supplying the restoring force, and a metallic backplate. These components replace membrane, spacer, and back electrode, respectively, of the electret microphone. An adjustable static pressure to the seismic mass is generated by two metal springs. The dynamic characterization of the accelerometers was carried out by using an electrodynamic shaker and an external charge or voltage amplifier. Sensors with various seismic masses, air gap distances, and electret voltages were investigated. Charge sensitivities from 10 to 40 pC/g, voltage sensitivities from 600 to 2000 mV/g, and resonance frequencies from 3 to 1.5 kHz were measured. A model describing both the charge and the voltage sensitivity is presented. Good agreement of experimental and calculated values is found. The experimental results show that sensitive, lightweight, and inexpensive electret accelerometers can be built.

  2. Comparison of IPAQ-SF and Two Other Physical Activity Questionnaires with Accelerometer in Adolescent Boys

    PubMed Central

    Mäestu, Jarek; Lätt, Evelin; Jürimäe, Jaak; Vainik, Uku

    2017-01-01

    Self-report measures of physical activity (PA) are easy to use and popular but their reliability is often questioned. Therefore, the general aim of the present study was to investigate the association of PA questionnaires with accelerometer derived PA, in a sample of adolescent boys. In total, 191 pubertal boys (mean age 14.0 years) completed three self-report questionnaires and wore an accelerometer (ActiGraph GT1M) for 7 consecutive days. The PA questionnaires were: International Physical Activity Questionnaire-Short Form (IPAQ-SF), Tartu Physical Activity Questionnaire (TPAQ), and the Inactivity subscale from Domain-Specific Impulsivity (DSI) scale. All three questionnaires were significantly correlated with accelerometer derived MVPA: the correlations were 0.31 for the IPAQ-SF MVPA, 0.34 for the TPAQ MVPA and -0.29 for the DSI Inactivity scale. Nevertheless, none of the questionnaires can be used as a reliable individual-level estimate of MVPA in male adolescents. The boys underreported their MVPA in IPAQ-SF as compared to accelerometer-derived MVPA (respective averages 43 and 56 minutes); underreporting was more marked in active boys with average daily MVPA at least 60 minutes, and was not significant in less active boys. Conversely, MVPA index from TPAQ overestimated the MVPA in less active boys but underestimated it in more active boys. The sedentary time reported in IPAQ-SF was an underestimate as compared to accelerometer-derived sedentary time (averages 519 and 545 minutes, respectively). PMID:28056080

  3. Factor Validity of a Proactive and Reactive Aggression Rating Scale.

    PubMed

    Kaat, Aaron; Farmer, Cristan; Gadow, Kenneth; Findling, Robert L; Bukstein, Oscar; Arnold, L Eugene; Bangalore, Srihari; McNamara, Nora; Aman, Michael

    2015-09-01

    Aggressive behaviors can be classified into proactive and reactive functions, though there is disagreement about whether these are distinct constructs. Data suggest that proactive and reactive aggression have different etiologies, correlates, and response to treatment. Several rating scales are available to characterize aggressive behavior as proactive or reactive; one commonly used scale was originally developed for teacher ratings, referred to here as the Antisocial Behavior Scale (ABS). However, no data are available on the psychometric properties of the ABS for parent ratings. This study examined the factor structure and convergent/divergent validity of the parent-rated ABS among 168 children aged 6-12 years with attention-deficit hyperactivity disorder, a disruptive behavior disorder, and severe aggression enrolled in a randomized clinical trial. Multidimensional item response theory was used to confirm the original factor structure. The proactive and reactive factors were distinct but moderately correlated; the algorithm items exhibited acceptable fit on the original factors. The non-algorithm items caused theoretical problems and model misfit. Convergent and divergent validity of the scale was explored between the ABS and other parent-report measures. Proactive and reactive aggression showed differential correlates consistent with expectations for externalizing symptoms. The subscales were correlated weakly or not at all with most non-externalizing symptoms, with some exceptions. Thus, the original factor structure was supported and we found preliminary evidence for the validity of the scale, though the results suggest that the constructs measured by the ABS may not be totally distinct from general behavior problems in this clinical sample.

  4. Factor Validity of a Proactive and Reactive Aggression Rating Scale

    PubMed Central

    Kaat, Aaron; Gadow, Kenneth; Findling, Robert L.; Bukstein, Oscar; Arnold, L. Eugene; Bangalore, Srihari; McNamara, Nora; Aman, Michael

    2014-01-01

    Aggressive behaviors can be classified into proactive and reactive functions, though there is disagreement about whether these are distinct constructs. Data suggest that proactive and reactive aggression have different etiologies, correlates, and response to treatment. Several rating scales are available to characterize aggressive behavior as proactive or reactive; one commonly used scale was originally developed for teacher ratings, referred to here as the Antisocial Behavior Scale (ABS). However, no data are available on the psychometric properties of the ABS for parent ratings. This study examined the factor structure and convergent/divergent validity of the parent-rated ABS among 168 children aged 6–12 years with attention-deficit hyperactivity disorder, a disruptive behavior disorder, and severe aggression enrolled in a randomized clinical trial. Multidimensional item response theory was used to confirm the original factor structure. The proactive and reactive factors were distinct but moderately correlated; the algorithm items exhibited acceptable fit on the original factors. The non-algorithm items caused theoretical problems and model misfit. Convergent and divergent validity of the scale was explored between the ABS and other parent-report measures. Proactive and reactive aggression showed differential correlates consistent with expectations for externalizing symptoms. The subscales were correlated weakly or not at all with most non-externalizing symptoms, with some exceptions. Thus, the original factor structure was supported and we found preliminary evidence for the validity of the scale, though the results suggest that the constructs measured by the ABS may not be totally distinct from general behavior problems in this clinical sample. PMID:26504369

  5. Feelings about culture scales: development, factor structure, reliability, and validity.

    PubMed

    Maffini, Cara S; Wong, Y Joel

    2015-04-01

    Although measures of cultural identity, values, and behavior exist in the multicultural psychological literature, there is currently no measure that explicitly assesses ethnic minority individuals' positive and negative affect toward culture. Therefore, we developed 2 new measures called the Feelings About Culture Scale--Ethnic Culture and Feelings About Culture Scale--Mainstream American Culture and tested their psychometric properties. In 6 studies, we piloted the measures, conducted factor analyses to clarify their factor structure, and examined reliability and validity. The factor structure revealed 2 dimensions reflecting positive and negative affect for each measure. Results provided evidence for convergent, discriminant, criterion-related, and incremental validity as well as the reliability of the scales. The Feelings About Culture Scales are the first known measures to examine both positive and negative affect toward an individual's ethnic culture and mainstream American culture. The focus on affect captures dimensions of psychological experiences that differ from cognitive and behavioral constructs often used to measure cultural orientation. These measures can serve as a valuable contribution to both research and counseling by providing insight into the nuanced affective experiences ethnic minority individuals have toward culture.

  6. Designing Electrostatic Accelerometers for Next Gravity Missions

    NASA Astrophysics Data System (ADS)

    Huynh, Phuong-Anh; Foulon, Bernard; Christophe, Bruno; Liorzou, Françoise; Boulanger, Damien; Lebat, Vincent

    2016-04-01

    Square cuboid electrostatic accelerometers sensor core have been used in various combinations in recent and still flying missions (CHAMP, GRACE, GOCE). ONERA is now in the process of delivering such accelerometers for the GRACE Follow-On mission. The goal is to demonstrate the performance benefits of an interferometry laser ranging method for future low-low satellite to satellite missions. The electrostatic accelerometer becoming thus the system main performance limiter, we propose for future missions a new symmetry which will allow for three ultrasensitive axes instead of two. This implies no performance ground testing, as the now cubic proof-mass will be too heavy, but only free fall tests in catapult mode, taking advantage of the additional microgravity testing time offered by the updated ZARM tower. The updated mission will be in better adequacy with the requirements of a next generation of smaller and drag compensated micro-satellites. In addition to the measurement of the surface forces exerted on the spacecraft by the atmospheric drag and by radiation pressures, the accelerometer will become a major part of the attitude and orbit control system by acting as drag free sensor and by accurately measuring the angular accelerations. ONERA also works on a hybridization of the electrostatic accelerometer with an atomic interferometer to take advantage of the absolute nature of the atomic interferometer acceleration measurement and its great accuracy in the [5-100] mHz bandwidth. After a description of the improvement of the GRACE-FO accelerometer with respect to the still in-orbit previous models and a status of its development, the presentation will describe the new cubic configuration and how its operations and performances can be verified in the Bremen drop tower.

  7. UCLA Loneliness Scale (Version 3): reliability, validity, and factor structure.

    PubMed

    Russell, D W

    1996-02-01

    In this article I evaluated the psychometric properties of the UCLA Loneliness Scale (Version 3). Using data from prior studies of college students, nurses, teachers, and the elderly, analyses of the reliability, validity, and factor structure of this new version of the UCLA Loneliness Scale were conducted. Results indicated that the measure was highly reliable, both in terms of internal consistency (coefficient alpha ranging from .89 to .94) and test-retest reliability over a 1-year period (r = .73). Convergent validity for the scale was indicated by significant correlations with other measures of loneliness. Construct validity was supported by significant relations with measures of the adequacy of the individual's interpersonal relationships, and by correlations between loneliness and measures of health and well-being. Confirmatory factor analyses indicated that a model incorporating a global bipolar loneliness factor along with two method factor reflecting direction of item wording provided a very good fit to the data across samples. Implications of these results for future measurement research on loneliness are discussed.

  8. Passive Accelerometer System Measurements on MIR

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1997-01-01

    The Passive Accelerometer System (PAS) is a simple moving ball accelerometer capable of measuring the small magnitude steady relative acceleration that occurs in a low earth orbit spacecraft due to atmospheric drag and the earth's gravity gradient. The acceleration is measured by recording the average velocity of the spherical ball over a suitable time increment. A modified form of Stokes law is used to convert the average velocity into an acceleration. PAS was used to measure acceleration on the MIR space station and on the first United States Microgravity Laboratory (USML-1). The PAS measurement on MIR revealed remarkably low acceleration levels in the SPEKTR module.

  9. Strong Motion Seismograph Based On MEMS Accelerometer

    NASA Astrophysics Data System (ADS)

    Teng, Y.; Hu, X.

    2013-12-01

    The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The

  10. Application of Accelerometer Data to Mars Odyssey Aerobraking and Atmospheric Modeling

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.; Keating, G. M.; George, B. E.; Escalera, P. E.; Werner, M. R.; Dwyer, A. M.; Hanna, J. L.

    2002-01-01

    Aerobraking was an enabling technology for the Mars Odyssey mission even though it involved risk due primarily to the variability of the Mars upper atmosphere. Consequently, numerous analyses based on various data types were performed during operations to reduce these risk and among these data were measurements from spacecraft accelerometers. This paper reports on the use of accelerometer data for determining atmospheric density during Odyssey aerobraking operations. Acceleration was measured along three orthogonal axes, although only data from the component along the axis nominally into the flow was used during operations. For a one second count time, the RMS noise level varied from 0.07 to 0.5 mm/s2 permitting density recovery to between 0.15 and 1.1 kg per cu km or about 2% of the mean density at periapsis during aerobraking. Accelerometer data were analyzed in near real time to provide estimates of density at periapsis, maximum density, density scale height, latitudinal gradient, longitudinal wave variations and location of the polar vortex. Summaries are given of the aerobraking phase of the mission, the accelerometer data analysis methods and operational procedures, some applications to determining thermospheric properties, and some remaining issues on interpretation of the data. Pre-flight estimates of natural variability based on Mars Global Surveyor accelerometer measurements proved reliable in the mid-latitudes, but overestimated the variability inside the polar vortex.

  11. Confirmatory Factor Analysis and Profile Analysis via Multidimensional Scaling.

    PubMed

    Kim, Se-Kang; Davison, Mark L; Frisby, Craig L

    2007-01-01

    This paper describes the Confirmatory Factor Analysis (CFA) parameterization of the Profile Analysis via Multidimensional Scaling (PAMS) model to demonstrate validation of profile pattern hypotheses derived from multidimensional scaling (MDS). Profile Analysis via Multidimensional Scaling (PAMS) is an exploratory method for identifying major profiles in a multi-subtest test battery. Major profile patterns are represented as dimensions extracted from a MDS analysis. PAMS represents an individual observed score as a linear combination of dimensions where the dimensions are the most typical profile patterns present in a population. While the PAMS approach was initially developed for exploratory purposes, its results can later be confirmed in a different sample by CFA. Since CFA is often used to verify results from an exploratory factor analysis, the present paper makes the connection between a factor model and the PAMS model, and then illustrates CFA with a simulated example (that was generated by the PAMS model) and at the same time with a real example. The real example demonstrates confirmation of PAMS exploratory results by using a different sample. Fit indexes can be used to indicate whether the CFA reparameterization as a confirmatory approach works for the PAMS exploratory results.

  12. Dual Accelerometer Usage Strategy for Onboard Space Navigation

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; D'Souza, Chris

    2012-01-01

    This work introduces a dual accelerometer usage strategy for onboard space navigation. In the proposed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it is used to estimate its errors otherwise. Numerical examples and comparison to other accelerometer usage schemes are presented to validate the proposed approach.

  13. Three-axis MEMS Accelerometer for Structural Inspection

    NASA Astrophysics Data System (ADS)

    Barbin, E.; Koleda, A.; Nesterenko, T.; Vtorushin, S.

    2016-01-01

    Microelectromechanical system accelerometers are widely used for metrological measurements of acceleration, tilt, vibration, and shock in moving objects. The paper presents the analysis of MEMS accelerometer that can be used for the structural inspection. ANSYS Multiphysics platform is used to simulate the behavior of MEMS accelerometer by employing a finite element model and MATLAB/Simulink tools for modeling nonlinear dynamic systems.

  14. Assessment of Differing Definitions of Accelerometer Nonwear Time

    ERIC Educational Resources Information Center

    Evenson, Kelly R.; Terry, James W., Jr.

    2009-01-01

    Measuring physical activity with objective tools, such as accelerometers, is becoming more common. Accelerometers measure acceleration multiple times within a given frequency and summarize this as a count over a pre-specified time period or epoch. The resultant count represents acceleration over the epoch length. Accelerometers eliminate biases…

  15. Micro-Accelerometers Monitor Equipment Health

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Glenn Research Center awarded SBIR funding to Ann Arbor, Michigan-based Evigia Systems to develop a miniaturized accelerometer to account for gravitational effects in space experiments. The company has gone on to implement the technology in its suite of prognostic sensors, which are used to monitor the integrity of industrial machinery. As a result, five employees have been hired.

  16. Low-Cost Accelerometers for Physics Experiments

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Straulino, Samuele

    2007-01-01

    The implementation of a modern game-console controller as a data acquisition interface for physics experiments is discussed. The investigated controller is equipped with three perpendicular accelerometers and a built-in infrared camera to evaluate its own relative position. A pendulum experiment is realized as a demonstration of the proposed…

  17. Time Domain Switched Accelerometer Design and Fabrication

    DTIC Science & Technology

    2014-09-01

    TECHNICAL REPORT 2052 September 2014 Time -Domain Switched Accelerometer Design and Fabrication Paul Swanson Andrew Wang...Approved for public release. SSC Pacific San Diego, CA 92152-5001 TECHNICAL REPORT 2052 September 2014 Time ...objective of this report is to record the decision-making process for developing the device design and fabrication workflow for the time -domain switched

  18. Accelerometer-controlled automatic braking system

    NASA Technical Reports Server (NTRS)

    Dreher, R. C.; Sleeper, R. K.; Nayadley, J. R., Sr.

    1973-01-01

    Braking system, which employs angular accelerometer to control wheel braking and results in low level of tire slip, has been developed and tested. Tests indicate that system is feasible for operations on surfaces of different slipperinesses. System restricts tire slip and is capable of adapting to rapidly-changing surface conditions.

  19. Extended Scaling Factors for Estimating Solar UV Variations

    NASA Astrophysics Data System (ADS)

    DeLand, M. T.; Tiruchirapalli, R. A.

    2011-12-01

    Accurate characterization of solar ultraviolet (UV) irradiance variations is important for understanding solar behavior and for proper forcing of terrestrial atmospheric models. Determining long-term irradiance variations from satellite measurements is challenging because of the complex effects of instrument response changes and the limited lifetime of any single instrument. An alternative method of tracking long-term solar UV variations is to observe a proxy index of UV activity, and parameterize its variations to represent spectral irradiance changes. Examples of this approach using the Mg II core-to-wing ratio solar activity proxy and solar rotational irradiance variations have been developed for mid-UV wavelengths (170-300 nm) using Nimbus-7 SBUV, NOAA-9 SBUV/2, and NOAA-11 SBUV/2 irradiance data, and for far-UV wavelengths (120-180 nm) using UARS SOLSTICE irradiance data. Each of these results gives predicted long-term irradiance changes in good agreement with independent observations. However, current scaling factors are only based on data from a portion of a single solar cycle. If the scaling between proxy index variations and solar UV irradiance changes with solar cycle phase or overall activity, then the usefulness of these approaches is reduced. Numerous additional data sets (UARS SUSIM; NOAA-16, NOAA-17, NOAA-18 SBUV/2; SORCE SOLSTICE, SORCE SIM) are now available to supplement the original scaling factor studies. These measurements cover all activity phases for multiple solar cycles, and the overlapping data sets provide many opportunities for validation. We will present comparisons of these new scale factor values with previous results.

  20. Factor structure of the compulsive internet use scale.

    PubMed

    Guertler, Diana; Broda, Anja; Bischof, Anja; Kastirke, Nadin; Meerkerk, Gert-Jan; John, Ulrich; Meyer, Christian; Rumpf, Hans-Juergen

    2014-01-01

    An important step in Internet addiction research is to develop standardized instruments for assessing Internet addiction-related symptoms. The Compulsive Internet Use Scale (CIUS) is a promising brief questionnaire. The aim of this study was to examine the factor structure of a German version of the CIUS with confirmatory factor analysis in a general population sample. In addition, the best fitting structure was tested for factorial invariance across sex, age, education level, and weekly Internet use. We used a weighted general population sample (N=8,132) of 14-64 years olds spending at least 1 hour online for private purposes per typical working or weekend day. Findings include that a one-factor model was found to fit well. It was invariant across sex, age, education level, and weekly Internet use. The findings support the validity of the CIUS as a short screening instrument.

  1. First Analysis of Densities Inferred from Accelerometer Data on ESA's Venus Express

    NASA Astrophysics Data System (ADS)

    Bruinsma, S.; Mueller-Wodarg, I. C. F.; Marty, J. C.; Svedhem, H.

    2015-12-01

    After completing its primary science mission, ESA decided to do a risky aerobraking campaign with Venus Express (VEx) in order to gain operational experience as well as to measure high-resolution density profiles at high northern latitude. VEx was in a polar and highly eccentric orbit (e=0.84). In the aerobraking period from 24 June to 11 July 2014, the pericenter was at 75°N at an altitude of 130-134 km, and the local solar time drifted from 6.2 to 4.5 hr. One density profile extending about 3° in latitude on both sides of the pericenter has been obtained for each of the 18 consecutive days at 1 Hz sampling, after ingestion of the 8 Hz accelerometer data in the GINS software. The uncertainty in the derived density is the sum of a systematic part due to the uncertainty in Cd, estimated to be 10%, and a noise and bias part due to the accelerometers. Using the accelerometer errors according to specifications, a signal-to-noise ratio of one is reached on average at 139 km altitude. The validity range of the VEx densities can also be evaluated by means of comparison with a model. The VEx-to-VTS3 density ratios were computed for each profile, and these results are consistent with the specified instrument resolution. VEx densities are on average nearly a factor of 2 smaller than VTS3, which is in agreement with Precise Orbit Determination results obtained for higher altitudes (160-170 km). However, variability of up to tens of percent is visible in the form of wavelike activity as well as an altitude-dependent variation that is revealed by ratios that become smaller towards the start and end of the profile. The latter model error hints at an inaccurate the temperature profile, errors in constituent concentrations, or both. The waves can be interpreted as a superposition of two wave trains with wavelengths of around 100 km and 250 km. Average scale heights over the range of observations (130-140 km) are found to be 2.9+/-0.6 km.

  2. Improving the Factor Structure of Psychological Scales: The Expanded Format as an Alternative to the Likert Scale Format

    ERIC Educational Resources Information Center

    Zhang, Xijuan; Savalei, Victoria

    2016-01-01

    Many psychological scales written in the Likert format include reverse worded (RW) items in order to control acquiescence bias. However, studies have shown that RW items often contaminate the factor structure of the scale by creating one or more method factors. The present study examines an alternative scale format, called the Expanded format,…

  3. The underlying factor structure of National Institutes of Health Stroke scale: an exploratory factor analysis.

    PubMed

    Zandieh, Ali; Kahaki, Zahra Zeynali; Sadeghian, Homa; Pourashraf, Maryam; Parviz, Sara; Ghaffarpour, Majid; Ghabaee, Mojdeh

    2012-03-01

    The underlying structure of National Institutes of Health Stroke Scale (NIHSS) as the most widely used scale in clinical trials has been the focus of little attention. The aim of the current study was to elucidate the clustering pattern of NIHSS items in ischemic stroke patients. A series of 152 consecutive patients with first-ever ischemic strokes admitted to a university affiliated hospital were enrolled. NIHSS score was estimated on admission and correlation coefficients between its items were calculated. Further, exploratory factor analysis was used to study the clustering pattern of NIHSS items. Extinction neglect, visual field, and facial palsy were weakly associated with other NIHSS items. Factor analysis led to a four-factor structure. Factors 1 and 3 were determined by left brain function as items of right arm and leg motor, language and dysarthria loaded on both of them. By contrast, factor 2 reflected right brain involvement. Since visual field and ataxia loaded on factor 4, this factor was primarily associated with posterior strokes. Our study shows that a four-factor structure model is plausible for NIHSS. Further, for the first time, a single distinct factor is identified for posterior strokes.

  4. Robust Optimization of a MEMS Accelerometer Considering Temperature Variations

    PubMed Central

    Liu, Guangjun; Yang, Feng; Bao, Xiaofan; Jiang, Tao

    2015-01-01

    A robust optimization approach for a MEMS accelerometer to minimize the effects of temperature variations is presented. The mathematical model of the accelerometer is built. The effects of temperature variations on the output performance of the accelerometer are determined, and thermal deformation of the accelerometer is analyzed. The deviations of the output capacitance and resonance frequency due to temperature fluctuations are calculated and discussed. The sensitivity analysis method is employed to determine the design variables for robust optimization and find out the key structural parameters that have most significant influence on the output capacitance and resonance frequency of the accelerometer. The mathematical model and procedure for the robust optimization of the accelerometer are proposed. The robust optimization problem is solved and discussed. The robust optimization results show that an optimized accelerometer with high sensitivity, high temperature robustness and decoupling structure is finally obtained. PMID:25785308

  5. Feasibility study of ZnO nanowire made accelerometer

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Chan; Ko, Hyun-U.; Song, Sangho; Yun, Youngmin; Kim, Jaehwan

    2016-04-01

    Vertically aligned arrays of ZnO nanowire can be used for many applications such as energy harvesters, UV sensors and mechanical sensors. Here we report the feasibility of a miniaturized accelerometer made with ZnO nanowire. For improving the sensitivity of miniaturized piezoelectric accelerometer, size of piezoelectric ceramic should be large which results in heavy accelerometer and low resonance frequency. To resolve the problem for the miniaturized accelerometer fabrication, ZnO nanowire is chosen. ZnO nanowire, which has piezoelectric property with Wurtzite structure. Since it has high aspect ratio, the use of ZnO nanowire leads to increase deformation and piezoelectric response output. The vertically ZnO nanowire array is grown on a copper substrate by hydrothermal synthesis process. Detail Fabrication process of the miniaturized accelerometer is illustrated. To prove the feasibility of the fabricated accelerometer, dynamic response test is performed in comparison with a commercial accelerometer.

  6. The New Calibration Method of Accelerometer in GRACE Satellites Based on Precise Solar Radiation Model

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Xiong, Y. Q.; Zhao, C. Y.

    2016-09-01

    In this paper, we adopt the precise solar radiation model to compute the real perturbation force caused by solar radiation on the GRACE satellites, and estimate the scale factors of accelerometer's y-axis and z-axis, which are set to be constant values in the following calibration process. Then, we estimate the rest of four parameters by the dynamic orbit determination (OD), such as the scale factor of x-axis, and the biases of three axes. Through these steps, we get the daily calibration parameters from 2002 to 2014. The average value and standard deviation of scale factors of x-, y-, and z-axis are 0.9435± 0.0187, 0.9393± 0.0444, 1.0371± 0.0391 for GRACE-A, and 0.9313± 0.0170, 0.9488± 0.0452, 1.0274± 0.0446 for GRACE-B, respectively. Different from our early work, the new method constrains the scale factors of y-axis and z-axis with the precise solar radiation model, which could decrease the measurement error's effect on the weak-signal axes (y, z) as well as reduce the correlation between scale factor and bias, and eventually improve the stability of calibration parameters. Taking the results of y- and z-axis of GRACE-A as example, the standard deviation of scale factors with the new method is about 0.0391-0.0444, while the early results by the unconstrained dynamic orbit determination are about 0.21-0.31. It is shown that the standard deviations of scale factor with this paper's method have been decreased by more than 78%, and those of bias have been decreased by more than 85%. Therefore, the calibration parameters estimated with the new method are more stable than our early results, and will have a special value for the study on the rotation speed and wind field of the earth's thermosphere.

  7. Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2009-01-01

    For some time our community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cooldown, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of TBC's refer to this process. It is most apparent for relatively adherent alumina scales that have survived cool down in a dry environment, built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sweet zone" can be defined that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen as a reaction product or detected interfacial species. Further support is provided by critical experiments that produce the same moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H2-containing atmospheres or cathodic hydrogen charging.

  8. A mechanical filter for FBG accelerometers

    NASA Astrophysics Data System (ADS)

    Bocciolone, Marco; Bucca, Giuseppe; Collina, Andrea; Comolli, Lorenzo

    2014-05-01

    Many applications are characterized by very severe environment from the sensors point of view. An example is the railway field, where often the measurement setup is subjected to high voltage and electromagnetic emission. In these work conditions, optical sensors are more suitable than electrical ones due to their characteristics. In this paper, the acceleration measurements are taken into account. Nowadays many optical accelerometers are present on the market. In particular, in this work FBG accelerometers are considered. This kind of sensors is characterized by an undamped resonance that can produce the break of the sensor. One possibility to avoid this problem is to add a damping effect in order to reduce the resonance amplification. In the following section, the method to reproduce a mechanical filter able to increase the damping coefficient of the sensor is presented. Experimental results in laboratory will be discussed, showing the effectiveness of the solution.

  9. MGRA: Motion Gesture Recognition via Accelerometer.

    PubMed

    Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen

    2016-04-13

    Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods.

  10. Multi-Axis Accelerometer Calibration System

    NASA Technical Reports Server (NTRS)

    Finley, Tom; Parker, Peter

    2010-01-01

    A low-cost, portable, and simplified system has been developed that is suitable for in-situ calibration and/or evaluation of multi-axis inertial measurement instruments. This system overcomes facility restrictions and maintains or improves the calibration quality for users of accelerometer-based instruments with applications in avionics, experimental wind tunnel research, and force balance calibration applications. The apparatus quickly and easily positions a multi-axis accelerometer system into a precisely known orientation suitable for in-situ quality checks and calibration. In addition, the system incorporates powerful and sophisticated statistical methods, known as response surface methodology and statistical quality control. These methods improve calibration quality, reduce calibration time, and allow for increased calibration frequency, which enables the monitoring of instrument stability over time.

  11. Dark matter direct detection with accelerometers

    NASA Astrophysics Data System (ADS)

    Graham, Peter W.; Kaplan, David E.; Mardon, Jeremy; Rajendran, Surjeet; Terrano, William A.

    2016-04-01

    The mass of the dark matter particle is unknown, and may be as low as ˜1 0-22 eV . The lighter part of this range, below ˜eV , is relatively unexplored both theoretically and experimentally but contains an array of natural dark matter candidates. An example is the relaxion, a light boson predicted by cosmological solutions to the hierarchy problem. One of the few generic signals such light dark matter can produce is a time-oscillating, equivalence-principle-violating force. We propose searches for this using accelerometers, and consider in detail the examples of torsion balances, atom interferometry, and pulsar timing. These approaches have the potential to probe large parts of unexplored parameter space in the next several years. Thus such accelerometers provide radically new avenues for the direct detection of dark matter.

  12. MGRA: Motion Gesture Recognition via Accelerometer

    PubMed Central

    Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen

    2016-01-01

    Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods. PMID:27089336

  13. Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2010-01-01

    For some time the oxidation community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cool down, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of thermal barrier coatings (TBCs) refer to this process. It is most apparent for relatively adherent alumina scales that have survived initial cool down in a dry environment, have built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sensitive zone" can be described that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement. Hydrogen is derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen-induced effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic-tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen detection as a reaction product or interfacial species. Further support is provided by critical experiments that recreate the moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H 2-containing atmospheres or cathodic hydrogen charging. Accordingly, they strongly indicate that interfacial hydrogen, derived from moisture, is the key chemical species accounting for delayed alumina scale spallation.

  14. The GRADIO accelerometer - Design and development status

    NASA Astrophysics Data System (ADS)

    Bernard, A.; Touboul, P.

    The concept of Satellite Gravity Gradiometry based on differential microaccelerometry has been proposed by ONERA in the early eighties. Since 1986, an important effort is devoted to the development of the GRADIO accelerometers. Their configuration has been optimized for the ARISTOTELES mission with the objective of 0.01 Eotvos resolution for an integrating time of 4 s. The achieved resolution, better than 10 exp -9 G, is limited by the actual stability of alignments on the testing equipment.

  15. A novel differential optical fiber accelerometer

    NASA Astrophysics Data System (ADS)

    Pi, Shaohua; Zhao, Jiang; Hong, Guangwei; Jia, Bo

    2013-08-01

    The development of sensitive fiber-optic accelerometers is a subject of continuing interest. To acquire high resolution, Michelson phase interferometric techniques are widely adopted. Among the variety structures, the compliant cylinder approach is particularly attractive due to its high sensitivity that is defined as the induced phase shift per applied acceleration. While the two arms of Michelson interferometer should be at the same optical path, it is inconvenient to adjust the two arms' length to equal, also the polarization instability and phase random drift will cause a signal decline. To overcome these limitations, a novel optical fiber accelerometer based on differential interferometric techniques is proposed and investigated. The interferometer is a Sagnac-like white light interferometer, which means the bandwidth of laser spectrum can be as wide as tens nanometers. This interferometer was firstly reported by Levin in 1990s. Lights are divided to two paths before entering the coupler. To induce time difference, one passes through a delay arm and another goes a direct arm. After modulated by the sensing component, they reflect to opposite arm. The sensing part is formed by a seismic mass that is held to only one compliant cylinder, where the single-mode optical fiber is wrapped tightly. When sticking to vibrations, the cylinder compresses or stretches as a spring. The corresponding changes in cylinder circumference lead to strain in the sensing fibers, which is detected as an optical phase shift by the interferometer. The lights from two arms reach the vibration source at different time, sensing a different accelerate speed; produce a different optic path difference. Integrating the dissimilarity of the accelerated speed by time can obtain the total acceleration graph. A shaker's vibration has been tested by the proposed accelerometer referring to a standard piezoelectric accelerometer. A 99.8% linearity of the optical phase shift to the ground acceleration

  16. High performance MEMS accelerometers for concrete SHM applications and comparison with COTS accelerometers

    NASA Astrophysics Data System (ADS)

    Kavitha, S.; Joseph Daniel, R.; Sumangala, K.

    2016-01-01

    Accelerometers used for civil and huge mechanical structural health monitoring intend to measure the shift in the natural frequency of the monitored structures (<100 Hz) and such sensors should have large sensitivity and extremely low noise floor. Sensitivity of accelerometers is inversely proportional to the frequency squared. Commercial MEMS (Micro Electro-Mechanical System) accelerometers that are generally designed for large bandwidth (e.g 25 kHz in ADXL150) have poor sensor level sensitivity and therefore uses complex signal conditioning electronics to achieve large sensitivity and low noise floor which in turn results in higher cost. In this work, an attempt has been made to design MEMS capacitive and piezoresistive accelerometers for smaller bandwidth using IntelliSuite and CoventorWare MEMS tools respectively. The various performance metrics have been obtained using simulation experiments and the results show that these sensors have excellent voltage sensitivity, noise performance and high resolution at sensor level and are even superior to commercial MEMS accelerometers.

  17. Accelerometer Data Analysis and Presentation Techniques

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; Moskowitz, Milton E.; Reckart, Timothy

    1997-01-01

    The NASA Lewis Research Center's Principal Investigator Microgravity Services project analyzes Orbital Acceleration Research Experiment and Space Acceleration Measurement System data for principal investigators of microgravity experiments. Principal investigators need a thorough understanding of data analysis techniques so that they can request appropriate analyses to best interpret accelerometer data. Accelerometer data sampling and filtering is introduced along with the related topics of resolution and aliasing. Specific information about the Orbital Acceleration Research Experiment and Space Acceleration Measurement System data sampling and filtering is given. Time domain data analysis techniques are discussed and example environment interpretations are made using plots of acceleration versus time, interval average acceleration versus time, interval root-mean-square acceleration versus time, trimmean acceleration versus time, quasi-steady three dimensional histograms, and prediction of quasi-steady levels at different locations. An introduction to Fourier transform theory and windowing is provided along with specific analysis techniques and data interpretations. The frequency domain analyses discussed are power spectral density versus frequency, cumulative root-mean-square acceleration versus frequency, root-mean-square acceleration versus frequency, one-third octave band root-mean-square acceleration versus frequency, and power spectral density versus frequency versus time (spectrogram). Instructions for accessing NASA Lewis Research Center accelerometer data and related information using the internet are provided.

  18. Atmospheric structure from Mars Reconnaissance Orbiter accelerometer measurements

    NASA Astrophysics Data System (ADS)

    Keating, G.; Bougher, S.; Theriot, M.; Zurek, R.; Blanchard, R.; Tolson, R.; Murphy, J.

    Designed for aerobraking, Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005, achieved Mars Orbital Insertion (MOI), March 10, 2006. Atmospheric density decreases exponentially with increasing height. By small propulsive adjustments of the apoapsis orbital velocity, periapsis altitude is fine tuned to the density surface that will safely use the atmosphere of Mars to aerobrake over 500 orbits. MRO periapsis precesses from the South Pole at 6pm LST to near the equator at 3am LST. Meanwhile, apoapsis is brought dramatically from ˜40,000km at MOI to 460 km at aerobraking completion (ABX) mid September 2006. After ABX, a few small propulsive maneuvers will establish the Primary Science Orbit (PSO), which without aerobraking would have required an additional 400 kg of fuel. Each of the 500 plus aerobraking orbits provides a vertical structure and distribution of density, scale heights, and temperatures, along the orbital path, providing key in situ insight into various upper atmosphere (> 100 km) processes. One of the major questions for scientists studying Mars is: "Where did the water go?" Honeywell's substantially improved electronics package for its IMU (QA-2000 accelerometer, gyro, electronics) maximized accelerometer sensitivities at the requests of The George Washington University, JPL, and Lockheed Martin. The improved accelerometer sensitivities allowed density measurements to exceed 200km, at least 40 km higher than with Mars Odyssey (MO). This extends vertical structures from MRO into the neutral lower exosphere, a region where various processes may allow atmospheric gasses to escape. Over the eons, water may have been lost in both the lower atmosphere and the upper atmosphere, thus the water balance throughout the entire atmosphere from subsurface to exosphere may be equally critical. Comparisons of data from Mars Global Surveyor (MGS), MO and MRO will help characterize key temporal and spatial cycles including: polar vortices, winter polar

  19. Dynamics of decoherence: Universal scaling of the decoherence factor

    NASA Astrophysics Data System (ADS)

    Suzuki, Sei; Nag, Tanay; Dutta, Amit

    2016-01-01

    We study the time dependence of the decoherence factor (DF) of a qubit globally coupled to an environmental spin system (ESS) which is driven across the quantum critical point (QCP) by varying a parameter of its Hamiltonian in time t as 1 -t /τ or -t /τ , to which the qubit is coupled starting at the time t →-∞ ; here τ denotes the inverse quenching rate. In the limit of weak coupling we analyze the time evolution of the DF in the vicinity of the QCP (chosen to be at t =0 ) and define three quantities, namely, the generalized fidelity susceptibility χF(τ ) (defined right at the QCP), and the decay constants α1(τ ) and α2(τ ) which dictate the decay of the DF at a small but finite t (>0 ). Using a dimensional analysis argument based on the Kibble-Zurek healing length, we show that χF(τ ) as well as α1(τ ) and α2(τ ) indeed satisfy universal power-law scaling relations with τ and the exponents are solely determined by the spatial dimensionality of the ESS and the exponents associated with its QCP. Remarkably, using the numerical t-DMRG method, these scaling relations are shown to be valid in both the situations when the ESS is integrable and nonintegrable and also for both linear and nonlinear variation of the parameter. Furthermore, when an integrable ESS is quenched far away from the QCP, there is a predominant Gaussian decay of the DF with a decay constant which also satisfies a universal scaling relation.

  20. A biomimetic accelerometer inspired by the cricket's clavate hair.

    PubMed

    Droogendijk, H; de Boer, M J; Sanders, R G P; Krijnen, G J M

    2014-08-06

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model is presented for the design of the accelerometer, and guidelines are derived to reduce responsivity due to flow-induced contributions to the accelerometer's output. Measurements show that this microelectromechanical systems (MEMS) hair-based accelerometer has a resonance frequency of 320 Hz, a detection threshold of 0.10 ms(-2) and a dynamic range of more than 35 dB. The accelerometer exhibits a clear directional response to external accelerations and a low responsivity to airflow. Further, the accelerometer's physical limits with respect to noise levels are addressed and the possibility for short-term adaptation of the sensor to the environment is discussed.

  1. Comparison and validation of capacitive accelerometers for health care applications.

    PubMed

    Büsching, Felix; Kulau, Ulf; Gietzelt, Matthias; Wolf, Lars

    2012-05-01

    Fall detection, gait analysis and context recognition are examples of applications where capacitive accelerometers are widely used in health care. In most of the existing work, algorithms were developed for a specific platform and accelerometers were used without explicitly choosing a specific type. With this work we present an inexpensive and practical test setup for replicable and repeatable testing of accelerometers. In addition we use this setup to evaluate six of the most commonly available accelerometers today and list their outcomes for linearity, power consumption and correlation of the tested sensors. We also attempt to an answer to the question of whether applications and algorithms developed for one platform and one type of accelerometer can be easily transferred to another accelerometer.

  2. A new accelerometer recording system for shuttle use

    NASA Technical Reports Server (NTRS)

    Lichtenberg, Byron

    1990-01-01

    Microgravity investigators are interested in enhancing the capabilities and improving the information return from accelerometers used in microgravity research. In addition to improving the accelerometer sensor, efforts should be directed towards using recent advances in microprocessor technology and system design techniques to improve sensor calibration and temperature compensation, online data display and analysis, and data reduction and information storage. Results from the above areas of investigation should be combined in an integrated design for a spaceflight microgravity accelerometer package.

  3. Dimensionality of the hospital anxiety and depression scale (HADS) in cardiac patients: comparison of Mokken scale analysis and factor analysis.

    PubMed

    Emons, Wilco H M; Sijtsma, Klaas; Pedersen, Susanne S

    2012-09-01

    The hospital anxiety and depression scale (HADS) measures anxiety and depressive symptoms and is widely used in clinical and nonclinical populations. However, there is some debate about the number of dimensions represented by the HADS. In a sample of 534 Dutch cardiac patients, this study examined (a) the dimensionality of the HADS using Mokken scale analysis and factor analysis and (b) the scale properties of the HADS. Mokken scale analysis and factor analysis suggested that three dimensions adequately capture the structure of the HADS. Of the three corresponding scales, two scales of five items each were found to be structurally sound and reliable. These scales covered the two key attributes of anxiety and (anhedonic) depression. The findings suggest that the HADS may be reduced to a 10-item questionnaire comprising two 5-item scales measuring anxiety and depressive symptoms.

  4. Suitability of MEMS Accelerometers for Condition Monitoring: An experimental study

    PubMed Central

    Albarbar, Alhussein; Mekid, Samir; Starr, Andrew; Pietruszkiewicz, Robert

    2008-01-01

    With increasing demands for wireless sensing nodes for assets control and condition monitoring; needs for alternatives to expensive conventional accelerometers in vibration measurements have been arisen. Micro-Electro Mechanical Systems (MEMS) accelerometer is one of the available options. The performances of three of the MEMS accelerometers from different manufacturers are investigated in this paper and compared to a well calibrated commercial accelerometer used as a reference for MEMS sensors performance evaluation. Tests were performed on a real CNC machine in a typical industrial environmental workshop and the achieved results are presented. PMID:27879734

  5. Suitability of MEMS Accelerometers for Condition Monitoring: An experimental study.

    PubMed

    Albarbar, Alhussein; Mekid, Samir; Starr, Andrew; Pietruszkiewicz, Robert

    2008-02-06

    With increasing demands for wireless sensing nodes for assets control and condition monitoring; needs for alternatives to expensive conventional accelerometers in vibration measurements have been arisen. Micro-Electro Mechanical Systems (MEMS) accelerometer is one of the available options. The performances of three of the MEMS accelerometers from different manufacturers are investigated in this paper and compared to a well calibrated commercial accelerometer used as a reference for MEMS sensors performance evaluation. Tests were performed on a real CNC machine in a typical industrial environmental workshop and the achieved results are presented.

  6. A three-axis ultrasensitive accelerometer for space

    NASA Astrophysics Data System (ADS)

    Bernard, A.

    A three-axis ultrasensitive accelerometer ASTRE (Accelerometre Spatial Triaxial Electrostatique) is a simplified version of the GRADIO accelerometer designed for the ARISTOTELES mission, which operates by measuring the force provided by a three-axis electrostatic suspension of the proof-mass. It covers the g-spectrum from 10 exp -8 to 10 exp -4 in the frequency range dc to 5 Hz. A dedicated test bench was developed in order to preserve the accelerometer from the seismic noise. The paper presents the performance parameters of the ASTRE accelerometer and some of the design schemes.

  7. Factor solutions of the Social Phobia Scale (SPS) and the Social Interaction Anxiety Scale (SIAS) in a Swedish population.

    PubMed

    Mörtberg, Ewa; Reuterskiöld, Lena; Tillfors, Maria; Furmark, Tomas; Öst, Lars-Göran

    2016-11-29

    Culturally validated rating scales for social anxiety disorder (SAD) are of significant importance when screening for the disorder, as well as for evaluating treatment efficacy. This study examined construct validity and additional psychometric properties of two commonly used scales, the Social Phobia Scale and the Social Interaction Anxiety Scale, in a clinical SAD population (n = 180) and in a normal population (n = 614) in Sweden. Confirmatory factor analyses of previously reported factor solutions were tested but did not reveal acceptable fit. Exploratory factor analyses (EFA) of the joint structure of the scales in the total population yielded a two-factor model (performance anxiety and social interaction anxiety), whereas EFA in the clinical sample revealed a three-factor solution, a social interaction anxiety factor and two performance anxiety factors. The SPS and SIAS showed good to excellent internal consistency, and discriminated well between patients with SAD and a normal population sample. Both scales showed good convergent validity with an established measure of SAD, whereas the discriminant validity of symptoms of social anxiety and depression could not be confirmed. The optimal cut-off score for SPS and SIAS were 18 and 22 points, respectively. It is concluded that the factor structure and the additional psychometric properties of SPS and SIAS support the use of the scales for assessment in a Swedish population.

  8. The GRADIO accelerometer: Design and development status

    NASA Astrophysics Data System (ADS)

    Bernard, Alain; Touboul, M. P.

    1991-12-01

    The concept of Satellite Gravity Gradiometry (SGG) based on differential microaccelerometry as proposed in the early eighties is summarized. Work devoted to the development of the GRADIO accelerometers is described. The configuration was optimized for the Aristoteles mission with the objective of increasing resolution for an integrating time of 4 s. Thanks to the selected three axis configuration, very sensitive differential tests were carried out between two very representative laboratory models, in directions perpendicular to gravity. The resolution of these tests, limited by the actual stability of alignments of the testing equipment is described.

  9. Factorial Structure of the Career Decision Scale: Incremental Validity of the Five-Factor Domains

    ERIC Educational Resources Information Center

    Feldt, Ronald C.; Ferry, Ashley; Bullock, Melinda; Camarotti-Carvalho, Ana; Collingwood, Melinda; Eilers, Scott; Meyer, Luke; Nurre, Emily; Woelfel, Cheryl

    2010-01-01

    For comparison of one-, three-, and four-factor structures of the Indecision scale of the Career Decision Scale, results of confirmatory factor analysis (N = 686) indicated the best fit for the three-factor structure. Multiple regression analysis results indicated incremental validity of the five-factor model for predicting dimensions of career…

  10. Atmospheric Modeling Using Accelerometer Data During Mars Atmosphere and Volatile Evolution (MAVEN) Flight Operations

    NASA Technical Reports Server (NTRS)

    Tolson, Robert H.; Lugo, Rafael A.; Baird, Darren T.; Cianciolo, Alicia D.; Bougher, Stephen W.; Zurek, Richard M.

    2017-01-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is a NASA orbiter designed to explore the Mars upper atmosphere, typically from 140 to 160 km altitude. In addition to the nominal science mission, MAVEN has performed several Deep Dip campaigns in which the orbit's closest point of approach, also called periapsis, was lowered to an altitude range of 115 to 135 km. MAVEN accelerometer data were used during mission operations to estimate atmospheric parameters such as density, scale height, along-track gradients, and wave structures. Density and scale height estimates were compared against those obtained from the Mars Global Reference Atmospheric Model and used to aid the MAVEN navigation team in planning maneuvers to raise and lower periapsis during Deep Dip operations. This paper describes the processes used to reconstruct atmosphere parameters from accelerometers data and presents the results of their comparison to model and navigation-derived values.

  11. Analysis and modeling for fiber-optic gyroscope scale factor based on environment temperature.

    PubMed

    Shen, Chong; Chen, Xiyuan

    2012-05-10

    To explore and reduce the nonlinear error and temperature dependency of fiber-optic gyroscope (FOG) scale factor, a scale factor modeling method based on temperature is presented in this paper. A hyperbolic curve fitting is proposed according to the characteristic of scale factor under stable temperature at first. Compared to traditional modeling methods, it shows that a higher precision model of scale factor can be obtained. Then the influence of temperature on scale factor is analyzed and then the hyperbolic curve fitting method is extended based on temperature, making it possible to work over the whole potential temperature range of the FOG without degrading the performance. This paper also provides the experimental and verification results. It can be seen that a high precision model of scale factor has been established, the temperature dependency of scale factor has been reduced effectively, and the error due to environment temperature is reduced by one order at least.

  12. Calibrating Accelerometers Using an Electromagnetic Launcher

    SciTech Connect

    Erik Timpson

    2012-05-13

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering a desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  13. Classification of Sporting Activities Using Smartphone Accelerometers

    PubMed Central

    Mitchell, Edmond; Monaghan, David; O'Connor, Noel E.

    2013-01-01

    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today's society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach. PMID:23604031

  14. Validation of cardiac accelerometer sensor measurements.

    PubMed

    Remme, Espen W; Hoff, Lars; Halvorsen, Per Steinar; Naerum, Edvard; Skulstad, Helge; Fleischer, Lars A; Elle, Ole Jakob; Fosse, Erik

    2009-12-01

    In this study we have investigated the accuracy of an accelerometer sensor designed for the measurement of cardiac motion and automatic detection of motion abnormalities caused by myocardial ischaemia. The accelerometer, attached to the left ventricular wall, changed its orientation relative to the direction of gravity during the cardiac cycle. This caused a varying gravity component in the measured acceleration signal that introduced an error in the calculation of myocardial motion. Circumferential displacement, velocity and rotation of the left ventricular apical region were calculated from the measured acceleration signal. We developed a mathematical method to separate translational and gravitational acceleration components based on a priori assumptions of myocardial motion. The accuracy of the measured motion was investigated by comparison with known motion of a robot arm programmed to move like the heart wall. The accuracy was also investigated in an animal study. The sensor measurements were compared with simultaneously recorded motion from a robot arm attached next to the sensor on the heart and with measured motion by echocardiography and a video camera. The developed compensation method for the varying gravity component improved the accuracy of the calculated velocity and displacement traces, giving very good agreement with the reference methods.

  15. Six Degree Freedom Optical Fiber Accelerometer

    NASA Astrophysics Data System (ADS)

    Cazo, Rogerio Moreira; dos Reis Ribeiro, Erik; Nunes, Marcelo Buonocore; Barbosa, Carmem Lucia; de Siqueira Ferreira, Jorge Luis; de Barros Caldas, Tales; dos Santos, Josemir Coelho; de Arruda, Josiel Urbaninho

    2008-10-01

    Linear accelerations measurements are needed in many applications, as industry, military, aircrafts, space navigation, robotics and others. Actually, the most usual solutions to measure linear accelerations are three piezoelectric sensors used in orthogonal mounting, or MEM's sensors chips. Angular accelerations also are interesting to control and stabilize structures, like satellites and servo motors. It is possible to measure angular accelerations in two ways: direct measurement (using special sensors), or indirect measurements (obtaining acceleration of the angular velocity information) [1]. This work intends to present the structural and optical requirements of a six degree freedom opto-mechanical accelerometer based on fiber Bragg grating (FBG). With this sensor, it will be possible the direct measurement of three axial accelerations, and of three angular accelerations, with unlimited rotation angle, using one single proof mass. The FBG's are used as strain sensors and sustaining elements of the proof mass in the structure. Simulations have demonstrated that cross influences of 10 parts per million at worst case are possible. This kind of accelerometer may be used in navigation control, structural monitoring, satellite stabilization, guidance control and harsh environments, for example. The project requirements include the wavelength of FBG's, pre-strain and length of active segment of optical fibers, dimensions, material and structure of inertial proof mass and position of the fibers in the sustaining structure

  16. A System for Monitoring Posture and Physical Activity Using Accelerometers

    DTIC Science & Technology

    2007-11-02

    Abstract- Accelerometers can be used to monitor physical activity in the home over prolonged periods. We describe a novel system for...processing schema in which these parameters are extracted is described. Keywords - physical activity , accelerometers, congestive heart failure, chronic...When monitoring the condition of patients with neurodegenerative or chronic diseases, a knowledge of their body movement and physical activity

  17. Identification of Accelerometer Nonwear Time and Sedentary Behavior

    ERIC Educational Resources Information Center

    Oliver, Melody; Badland, Hannah M.; Schofield, Grant M.; Shepherd, Janine

    2011-01-01

    The primary aim of the current study was to investigate the accuracy of various automated rules for determining accelerometer nonwear time in a sample of predominantly desk-based office workers (using their self-reported nonwear times as a criterion). Second, the authors examined the effect of applying these rules to accelerometer data retention…

  18. Validation of a wireless accelerometer network for energy expenditure measurement.

    PubMed

    Montoye, Alexander H K; Dong, Bo; Biswas, Subir; Pfeiffer, Karin A

    2016-11-01

    The purpose of this study was to validate a wireless network of accelerometers and compare it to a hip-mounted accelerometer for predicting energy expenditure in a semi-structured environment. Adults (n = 25) aged 18-30 engaged in 14 sedentary, ambulatory, exercise, and lifestyle activities over a 60-min protocol while wearing a portable metabolic analyser, hip-mounted accelerometer, and wireless network of three accelerometers worn on the right wrist, thigh, and ankle. Participants chose the order and duration of activities. Artificial neural networks were created separately for the wireless network and hip accelerometer for energy expenditure prediction. The wireless network had higher correlations (r = 0.79 vs. r = 0.72, P < 0.01) but similar root mean square error (2.16 vs. 2.09 METs, P > 0.05) to the hip accelerometer. Measured (from metabolic analyser) and predicted energy expenditure from the hip accelerometer were significantly different for the 3 of the 14 activities (lying down, sweeping, and cycle fast); conversely, measured and predicted energy expenditure from the wireless network were not significantly different for any activity. In conclusion, the wireless network yielded a small improvement over the hip accelerometer, providing evidence that the wireless network can produce accurate estimates of energy expenditure in adults participating in a range of activities.

  19. Technical Reliability Assessment of the Actigraph GT1M Accelerometer

    ERIC Educational Resources Information Center

    Silva, Pedro; Mota, Jorge; Esliger, Dale; Welk, Gregory

    2010-01-01

    The purpose of this study was to determine the reliability of the Actigraph GT1M (Pensacola, FL, USA) accelerometer activity count and step functions. Fifty GT1M accelerometers were initialized to collect simultaneous acceleration counts and steps data using 15-sec epochs. All reliability testing was completed using a mechanical shaker plate to…

  20. High sensitivity optical waveguide accelerometer based on Fano resonance.

    PubMed

    Wan, Fenghua; Qian, Guang; Li, Ruozhou; Tang, Jie; Zhang, Tong

    2016-08-20

    An optical waveguide accelerometer based on tunable asymmetrical Fano resonance in a ring-resonator-coupled Mach-Zehnder interferometer (MZI) is proposed and analyzed. A Fano resonance accelerometer has a relatively large workspace of coupling coefficients with high sensitivity, which has potential application in inertial navigation, missile guidance, and attitude control of satellites. Due to the interference between a high-Q resonance pathway and a coherent background pathway, a steep asymmetric line shape is generated, which greatly improves the sensitivity of this accelerometer. The sensitivity of the accelerometer is about 111.75 mW/g. A 393-fold increase in sensitivity is achieved compared with a conventional MZI accelerometer and is approximately equal to the single ring structure.

  1. Strong New Evidence for Oscillation of the Cosmological Scale Factor Observed in the Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Ringermacher, Harry I.; Mead, Lawrence R.

    2017-01-01

    We have analyzed SDSSIII-BOSS, DR9 galaxy number count data using 2 independent approaches, a relativistic expanding space model based on work by Ostriker and direct Fourier analysis, and found incontrovertible evidence for a scale factor oscillation at 7 Hubble-Hertz (HHz) in both methods, where we define 1 HHz as 1 cycle over 1 Hubble-time. The number count of galaxies on these scales should be relatively smooth. However, a DR9 plot of galaxy number count per 0.01 redshift bin as a function of redshift shows significant bumps to redshift 0.5. We take the SDSSIII data (about ¼ of the sky) to be a fair representation of the entire sky when using number count. Our model fits essentially all bumps at a 99.8% R-squared goodness level if and only if the 7 HHz oscillation ( plus 2nd and 3rd harmonics at 14 HHz and 21 HHz) is included. These are the same frequencies observed by us in AJ 149, 137 (2015) using SNe data. Since the SDSSIII data set only goes to redshift 0.8, only one cycle of oscillation is included compared to 2-3 in our earlier work. Thus a Fourier analysis performed on the SDSS redshift data converted to equal-time binning leaves a broadened spectrum over the range where harmonics would normally reside but nevertheless peaked at 7 HHz. A scalar field model presented in the AJ paper describes the oscillation and enters the Friedmann equations by replacing the LCDM dark matter density parameter with the scalar field density. Thus, LCDM dark matter is the median of the wave which appears to act like a fluid with a changing equation-of-state. The oscillation may be a longitudinal gravitational wave originating with the Big Bang and requiring a massive graviton. 7 HHz is consistent with a graviton mass of 10^ -32 eV.

  2. Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications

    PubMed Central

    Dechesne, Arnaud; Badawi, Nora; Aamand, Jens; Smets, Barth F.

    2014-01-01

    Pesticide biodegradation is a soil microbial function of critical importance for modern agriculture and its environmental impact. While it was once assumed that this activity was homogeneously distributed at the field scale, mounting evidence indicates that this is rarely the case. Here, we critically examine the literature on spatial variability of pesticide biodegradation in agricultural soil. We discuss the motivations, methods, and main findings of the primary literature. We found significant diversity in the approaches used to describe and quantify spatial heterogeneity, which complicates inter-studies comparisons. However, it is clear that the presence and activity of pesticide degraders is often highly spatially variable with coefficients of variation often exceeding 50% and frequently displays non-random spatial patterns. A few controlling factors have tentatively been identified across pesticide classes: they include some soil characteristics (pH) and some agricultural management practices (pesticide application, tillage), while other potential controlling factors have more conflicting effects depending on the site or the pesticide. Evidence demonstrating the importance of spatial heterogeneity on the fate of pesticides in soil has been difficult to obtain but modeling and experimental systems that do not include soil's full complexity reveal that this heterogeneity must be considered to improve prediction of pesticide biodegradation rates or of leaching risks. Overall, studying the spatial heterogeneity of pesticide biodegradation is a relatively new field at the interface of agronomy, microbial ecology, and geosciences and a wealth of novel data is being collected from these different disciplinary perspectives. We make suggestions on possible avenues to take full advantage of these investigations for a better understanding and prediction of the fate of pesticides in soil. PMID:25538691

  3. Factor Structure of Child Behavior Scale Scores in Peruvian Preschoolers

    ERIC Educational Resources Information Center

    Meyer, Erin L.; Schaefer, Barbara A.; Soto, Cesar Merino; Simmons, Crystal S.; Anguiano, Rebecca; Brett, Jeremy; Holman, Alea; Martin, Justin F.; Hata, Heidi K.; Roberts, Kimberly J.; Mello, Zena R.; Worrell, Frank C.

    2011-01-01

    Behavior rating scales aid in the identification of problem behaviors, as well as the development of interventions to reduce such behavior. Although scores on many behavior rating scales have been validated in the United States, there have been few such studies in other cultural contexts. In this study, the structural validity of scores on a…

  4. An Exploratory Investigation of the Factor Structure of the Reynolds Intellectual Assessment Scales (RIAS)

    ERIC Educational Resources Information Center

    Dombrowski, Stefan C.; Watkins, Marley W.; Brogan, Michael J.

    2009-01-01

    This study investigated the factor structure of the Reynolds Intellectual Assessment Scales (RIAS) using rigorous exploratory factor analytic and factor extraction procedures. The results of this study indicate that the RIAS is a single factor test. Despite these results, higher order factor analysis using the Schmid-Leiman procedure indicates…

  5. Factor Structure of the Social Appearance Anxiety Scale in Turkish Early Adolescents

    ERIC Educational Resources Information Center

    Sahin, Ertugrul; Topkaya, Nursel

    2015-01-01

    Although the Social Appearance Anxiety Scale (SAAS) is most often validated with the use of confirmatory factor analysis (CFA) on undergraduate students, exploratory factor analysis and multiple factor retention decision criteria necessitate the analysis of underlying factor structure to prevent over and under factoring as well as to reveal…

  6. Modeling of the vibrating beam accelerometer nonlinearities

    NASA Astrophysics Data System (ADS)

    Romanowski, P. A.; Knop, R. C.

    Successful modeling and processing of the output of a quartz Vibrating Beam Accelerometer (VBA), whose errors are inherently nonlinear with respect to input acceleration, are reported. The VBA output, with two signals that are frequencies of vibrating quartz beams, has inherent higher-order terms. In order to avoid vibration rectification errors, the signal output must be sampled at a rapid rate and the output must be reduced using a nonlinear model. The present model, with acceleration as a function of frequency, is derived by a least-squares process where the covariance matrix is obtained from simulated data. The system performance is found to be acceptable to strategic levels, and it is shown that a vibration rectification error of 400 micrograms/sq g can be reduced to 4 micrograms/sq g by using the processor electronics and a nonlinear model.

  7. Validation study of Polar V800 accelerometer

    PubMed Central

    Hernández-Vicente, Adrián; De Cocker, Katrien; Garatachea, Nuria

    2016-01-01

    Background The correct quantification of physical activity (PA) and energy expenditure (EE) in daily life is an important target for researchers and professionals. The objective of this paper is to study the validity of the Polar V800 for the quantification of PA and the estimation of EE against the ActiGraph (ActiTrainer) in healthy young adults. Methods Eighteen Caucasian active people (50% women) aged between 19–23 years wore an ActiTrainer on the right hip and a Polar V800 on the preferred wrist during 7 days. Paired samples t-tests were used to analyze differences in outcomes between devices, and Pearson’s correlation coefficients to examine the correlation between outcomes. The agreement was studied using the Bland-Altman method. Also, the association between the difference and the magnitude of the measurement (heteroscedasticity) was examined. Sensitivity, specificity and area under the receiver operating characteristic curve (ROC-AUC value) were calculated to evaluate the ability of the devices to accurately define a person who fulfills the recommendation of 10,000 daily steps. Results The devices significantly differed from each other on all outcomes (P<0.05), except for Polar V800’s alerts vs. ActiTrainer’s 1 hour sedentary bouts (P=0.595) and Polar V800’s walking time vs. ActiTrainer’s lifestyle time (P=0.484). Heteroscedasticity analyses were significant for all outcomes, except for Kcal and sitting time. The ROC-AUC value was fair (0.781±0.048) and the sensitivity and specificity was 98% and 58%, respectively. Conclusions The Polar V800 accelerometer has a comparable validity to the accelerometer in free-living conditions, regarding “1 hour sedentary bouts” and “V800’s walking time vs. ActiTrainer’s lifestyle time” in young adults. PMID:27570772

  8. Problems with Single Interest Scales: Implications of the General Factor

    ERIC Educational Resources Information Center

    Tracey, Terence J. G.

    2012-01-01

    The presence of the general factor in interest and self-efficacy assessment and its meaning are reviewed. The general factor is found in all interest and self-efficacy assessment and has been viewed as (a) a nuisance factor with little effect on assessment, (b) a variable having substantive meaning and thus worthy of including in interpretation,…

  9. Associations of Accelerometer-Measured and Self-Reported Sedentary Time With Leukocyte Telomere Length in Older Women.

    PubMed

    Shadyab, Aladdin H; Macera, Caroline A; Shaffer, Richard A; Jain, Sonia; Gallo, Linda C; LaMonte, Michael J; Reiner, Alexander P; Kooperberg, Charles; Carty, Cara L; Di, Chongzhi; Manini, Todd M; Hou, Lifang; LaCroix, Andrea Z

    2017-01-18

    Few studies have assessed the association of sedentary time with leukocyte telomere length (LTL). In a cross-sectional study conducted in 2012-2013, we examined associations of accelerometer-measured and self-reported sedentary time with LTL in a sample of 1,481 older white and African-American women from the Women's Health Initiative and determined whether associations varied by level of moderate- to vigorous-intensity physical activity (MVPA). The association between sedentary time and LTL was evaluated using multiple linear regression models. Women were aged 79.2 (standard deviation, 6.7) years, on average. Self-reported sedentary time was not associated with LTL. In a model adjusting for demographic characteristics, lifestyle behaviors, and health-related factors, among women at or below the median level of accelerometer-measured MVPA, those in the highest quartile of accelerometer-measured sedentary time had significantly shorter LTL than those in the lowest quartile, with an average difference of 170 base pairs (95% confidence interval: 4, 340). Accelerometer-measured sedentary time was not associated with LTL in women above the median level of MVPA. Findings suggest that, on the basis of accelerometer measurements, higher sedentary time may be associated with shorter LTL among less physically active women.

  10. Development of wafer-level-packaging technology for simultaneous sealing of accelerometer and gyroscope under different pressures

    NASA Astrophysics Data System (ADS)

    Aono, T.; Suzuki, K.; Kanamaru, M.; Okada, R.; Maeda, D.; Hayashi, M.; Isono, Y.

    2016-10-01

    This research demonstrates a newly developed anodic bonding-based wafer-level-packaging technique to simultaneously seal an accelerometer in the atmosphere and a gyroscope in a vacuum with a glass cap for micro-electromechanical systems sensors. It is necessary for the accelerometer, with a damping oscillator, to be sealed in the atmosphere to achieve a high-speed response. As the gyroscope can achieve high sensitivity with a large displacement at the resonant frequency without air-damping, the gyroscope must be sealed in a vacuum. The technique consists of three processing steps: the first bonding step in the atmosphere for the accelerometer, the pressure control step and the second bonding step in a vacuum for the gyroscope. The process conditions were experimentally determined to achieve higher shear strength at the interface of the packaging. The packaging performance of the accelerometer and gyroscope after wafer-level packaging was also investigated using a laser Doppler velocimeter at room temperature. The amplitude at the resonant frequency of the accelerometer was reduced by air damping, and the quality factor of the gyroscope showed a value higher than 1000. The reliability of the gyroscope was also confirmed by a thermal cyclic test and an endurance test at high humidity and high temperature.

  11. Error analysis and compensation research of scale factor for MEMS gyroscope

    NASA Astrophysics Data System (ADS)

    Liu, Chang-zheng; Wang, Xiangjun; Tang, Qi-jian

    2014-11-01

    In dynamic condition, scale factor has been one of the main errors for MEMS (micro electromechanical system) gyroscopes. This paper, based on one kind of gyroscope in the airborne optoelectronic pod, studies the variation law of the scale factor and its compensation under different environment temperature and operating speed, and then puts forward to the method of combination of ambient temperature and actual angular velocity when compensating the MEMS gyroscope's scale factor error. Test result demonstrates that the scale factor error can be effectively suppressed, and compared with compensation method only based on temperature or angular velocity separately, this new method is easy practical and presents better performance.

  12. Two-scale-factor universality near the critical point of fluids

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Moldover, M. R.

    1978-01-01

    Thermodynamic data from interferometric density profile studies and light-scattering experiments near the critical isochore of Xe, CO2 and SF6 provide a basis for examining the hypothesized two-scale-factor universality for the correlation function of fluids near the gas-liquid critical point. For the investigation, three-scale-factor universality is assumed, with Ising-like critical exponent values obtained through the renormalization group technique. The two thermodynamic scale factors are found from the density profiles, while the scale factor for the correlation length is obtained from the light-scattering data.

  13. Confirmatory Factor Analysis of the Combined Social Phobia Scale and Social Interaction Anxiety Scale: Support for a Bifactor Model

    PubMed Central

    Gomez, Rapson; Watson, Shaun D.

    2017-01-01

    For the Social Phobia Scale (SPS) and the Social Interaction Anxiety Scale (SIAS) together, this study examined support for a bifactor model, and also the internal consistency reliability and external validity of the factors in this model. Participants (N = 526) were adults from the general community who completed the SPS and SIAS. Confirmatory factor analysis (CFA) of their ratings indicated good support for the bifactor model. For this model, the loadings for all but six items were higher on the general factor than the specific factors. The three positively worded items had negligible loadings on the general factor. The general factor explained most of the common variance in the SPS and SIAS, and demonstrated good model-based internal consistency reliability (omega hierarchical) and a strong association with fear of negative evaluation and extraversion. The practical implications of the findings for the utilization of the SPS and SIAS, and the theoretical and clinical implications for social anxiety are discussed. PMID:28210232

  14. Confirmatory Factor Analysis of the Combined Social Phobia Scale and Social Interaction Anxiety Scale: Support for a Bifactor Model.

    PubMed

    Gomez, Rapson; Watson, Shaun D

    2017-01-01

    For the Social Phobia Scale (SPS) and the Social Interaction Anxiety Scale (SIAS) together, this study examined support for a bifactor model, and also the internal consistency reliability and external validity of the factors in this model. Participants (N = 526) were adults from the general community who completed the SPS and SIAS. Confirmatory factor analysis (CFA) of their ratings indicated good support for the bifactor model. For this model, the loadings for all but six items were higher on the general factor than the specific factors. The three positively worded items had negligible loadings on the general factor. The general factor explained most of the common variance in the SPS and SIAS, and demonstrated good model-based internal consistency reliability (omega hierarchical) and a strong association with fear of negative evaluation and extraversion. The practical implications of the findings for the utilization of the SPS and SIAS, and the theoretical and clinical implications for social anxiety are discussed.

  15. A Multi-factor Rasch Scale for Artistic Judgment.

    ERIC Educational Resources Information Center

    Bezruczko, Nikolaus

    2002-01-01

    Developed a multifactor Rasch scale for a visual designs test of artistic judgment and tested the instrument with 462 adult examinees at an aptitude assessment service. The sound measurement properties identified suggest promise for a comprehensive artistic judgment construct. (SLD)

  16. Placement of Accelerometers for High Sensing Resolution in Micromanipulation

    PubMed Central

    Latt, W. T.; Tan, U-X.; Riviere, C. N.; Ang, W. T.

    2012-01-01

    High sensing resolution is required in sensing of surgical instrument motion in micromanipulation tasks. Accelerometers can be employed to sense physiological motion of the instrument during micromanipulation. Various configurations of accelerometer placement had been introduced in the past to sense motion of a rigid-body such as a surgical instrument. Placement (location and orientation) of accelerometers fixed in the instrument plays a significant role in achieving high sensing resolution. However, there is no literature or work on the effect of placement of accelerometers on sensing resolution. In this paper, an approach of placement of accelerometers within an available space to obtain highest possible sensing resolution in sensing of rigid-body motion in micromanipulation tasks is proposed. Superiority of the proposed placement approach is shown in sensing of a microsurgical instrument angular motion by comparing sensing resolutions achieved as a result of employing the configuration following the proposed approach and the existing configurations. Apart from achieving high sensing resolution, and design simplicity, the proposed placement approach also provides flexibility in placing accelerometers; hence it is especially useful in applications with limited available space to mount accelerometers. PMID:22423176

  17. Vibration sensing in smart machine rotors using internal MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Jiménez, Samuel; Cole, Matthew O. T.; Keogh, Patrick S.

    2016-09-01

    This paper presents a novel topology for enhanced vibration sensing in which wireless MEMS accelerometers embedded within a hollow rotor measure vibration in a synchronously rotating frame of reference. Theoretical relations between rotor-embedded accelerometer signals and the vibration of the rotor in an inertial reference frame are derived. It is thereby shown that functionality as a virtual stator-mounted displacement transducer can be achieved through appropriate signal processing. Experimental tests on a prototype rotor confirm that both magnitude and phase information of synchronous vibration can be measured directly without additional stator-mounted key-phasor sensors. Displacement amplitudes calculated from accelerometer signals will become erroneous at low rotational speeds due to accelerometer zero-g offsets, hence a corrective procedure is introduced. Impact tests are also undertaken to examine the ability of the internal accelerometers to measure transient vibration. A further capability is demonstrated, whereby the accelerometer signals are used to measure rotational speed of the rotor by analysing the signal component due to gravity. The study highlights the extended functionality afforded by internal accelerometers and demonstrates the feasibility of internal sensor topologies, which can provide improved observability of rotor vibration at externally inaccessible rotor locations.

  18. Self Diagnostic Accelerometer Testing on the C-17 Aircraft

    NASA Technical Reports Server (NTRS)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. To demonstrate the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The SDA attachment conditions were varied from fully tight to loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first.

  19. A Comparison of Accelerometer Accuracy in Older Adults.

    PubMed

    Phillips, Lorraine J; Petroski, Gregory F; Markis, Natalie E

    2015-01-01

    Older adults' gait disorders present challenges for accurate activity monitoring. The current study compared the accuracy of accelerometer-detected to hand-tallied steps in 50 residential care/assisted living residents. Participants completed two walking trials wearing a Fitbit® Tracker and waist-, wrist-, and ankle-mounted Actigraph GT1M. Agreement between accelerometer and observed counts was calculated using concordance correlation coefficients (CCC), accelerometer to observed count ratios, accelerometer and observed count differences, and Bland-Altman plots. Classification and Regression Tree analysis identified minimum gait speed thresholds to achieve accelerometer accuracy ≥0.80. Participants' mean age was 84.2 and gait speed was 0.64 m/s. All accelerometers underestimated true steps. Only the ankle-mounted GT1M demonstrated positive agreement with observed counts (CCC = 0.205). Thresholds for 0.80 accuracy were gait speeds ≥0.56 m/s for the Fitbit and gait speeds ≥0.71 m/s for the ankle-mounted GT1M. Gait speed and accelerometer placement affected activity monitor accuracy in older adults.

  20. Recent Results from CHAMP Tracking and Accelerometer Data Analysis

    NASA Technical Reports Server (NTRS)

    Luthcke, S. B.; Rowlands, D. D.; Lemoine, F. G.; Nerem, R. S.; Thompson, B.; Pavlis, E.; Williams, T. A.; Colombo, O. L.; Chao, Benjamin F. (Technical Monitor)

    2002-01-01

    The CHAMP mission's unique combination of sensors and orbit configuration will enable unprecedented improvements in modeling and understanding the Earth's static gravity field and its temporal variations. CHAMP is the first of two missions (GRACE to be launched in the early part of 02') that combine a new generation of Global Positioning System (GPS) receivers, a high precision three-axis accelerometer, and star cameras for the precision attitude determination. In order to isolate the gravity signal for science investigations, it is necessary to perform a detailed reduction and analysis of the GPS and Satellite Laser Ranging (SLR) tracking data in conjunction with the accelerometer and attitude data. Precision orbit determination based on the GPS and SLR tracking data will isolate the orbit perturbations, while the accelerometer data will be used to distinguish the non-gravitational forces from those due to the geopotential (static, and time varying). In preparation for the CHAMP and GRACE missions, extensive modifications have been made to NASA/GSFC's GEODYN orbit determination software to enable the simultaneous reduction of spacecraft tracking (e.g. GPS and SLR), three-axis accelerometer and precise attitude data. Several weeks of CHAMP tracking and accelerometer data have been analyzed and the results will be presented. Precision orbit determination analysis based on tracking data alone in addition to results based on the simultaneous reduction of tracking and accelerometer data will be discussed. Results from a calibration of the accelerometer will be presented along with the results from various orbit determination strategies.

  1. Factor Structure of the Student-Teacher Relationship Scale for Norwegian School-Age Children Explored with Confirmatory Factor Analysis

    ERIC Educational Resources Information Center

    Drugli, May Britt; Hjemdal, Odin

    2013-01-01

    The validity of the Student-Teacher Relationship Scale (STRS) was examined in a national sample of 863 Norwegian schoolchildren in grades 1-7 (aged 6-13). The original factor structure of the STRS was tested by confirmatory factor analysis (CFA). The CFA results did not support the original three-factor structure of the STRS. Subsequent CFA of the…

  2. A confirmatory factor analysis of the Self-Directed Learning Readiness Scale.

    PubMed

    Williams, Brett; Brown, Ted

    2013-12-01

    The Self-Directed Learning Readiness Scale measures readiness for self-directed learning among undergraduate healthcare students. While several exploratory factor analyses and one confirmatory factor analysis have examined the psychometric properties of the Self-Directed Learning Readiness Scale, questions have been raised regarding the underlying latent constructs being measured. The objective of this study was to determine the best-fitting Self-Directed Learning Readiness Scale factorial structure among three models published in the literature. Data from the three-factor 40-item Self-Directed Learning Readiness Scale completed by 233 undergraduate paramedic students from four Australian universities (response rate of 26%) were analyzed using maximum likelihood confirmatory factor analysis. Comparison of model fit from the 40-item version was undertaken with the previously documented four-factor 36-item and three-factor 29-item Self-Directed Learning Readiness Scales. The model fit indices of the three one-factor congeneric models with maximum likelihood analysis demonstrate that the 40-item Self-Directed Learning Readiness Scale does not fit the data well. The best fitting model was the four-factor 36-item Self-Directed Learning Readiness Scale followed by the three-factor 29-item models. The confirmatory factor analysis results did not support the overall construct validity of the original 40-item Self-Directed Learning Readiness Scale.

  3. Predicting Human Movement with Multiple Accelerometers Using Movelets

    PubMed Central

    He, Bing; Bai, Jiawei; Zipunnikov, Vadim V.; Koster, Annemarie; Caserotti, Paolo; Lange-Maia, Brittney; Glynn, Nancy W.; Harris, Tamara B.; Crainiceanu, Ciprian M.

    2014-01-01

    Purpose The study aims were: 1) to develop transparent algorithms that use short segments of training data for predicting activity types; and 2) to compare prediction performance of proposed algorithms using single accelerometers and multiple accelerometers. Methods Sixteen participants (age, 80.6 yr (4.8 yr); BMI, 26.1 kg·m−2 (2.5 kg·m−2)) performed fifteen life-style activities in the laboratory, each wearing three accelerometers at the right hip, left and right wrists. Triaxial accelerometry data were collected at 80 Hz using Actigraph GT3X+. Prediction algorithms were developed, which, instead of extracting features, build activity specific dictionaries composed of short signal segments called movelets. Three alternative approaches were proposed to integrate the information from the multiple accelerometers. Results With at most several seconds of training data per activity, the prediction accuracy at the second-level temporal resolution was very high for lying, standing, normal/fast walking, and standing up from a chair (the median prediction accuracy ranged from 88.2% to 99.9% based on the single-accelerometer movelet approach). For these activities wrist-worn accelerometers performed almost as well as hip-worn accelerometers (the median difference in accuracy between wrist and hip ranged from −2.7% to 5.8%). Modest improvements in prediction accuracy were achieved by integrating information from multiple accelerometers. Discussion and conclusions It is possible to achieve high prediction accuracy at the secondlevel temporal resolution with very limited training data. To increase prediction accuracy from the simultaneous use of multiple accelerometers, a careful selection of integrative approaches is required. PMID:25134005

  4. Computing measures of simplicity of fit for loadings in factor-analytically derived scales.

    PubMed

    Fleming, James S

    2003-11-01

    A very simple structure is sought when factor analysis is used to develop measurement scales. The SIMLOAD program computes measures of factorial simplicity for rows and columns of loading matrices (usually the factor pattern) as well as some overall measures. These include Kaiser's (1974) index of factorial simplicity for variables (rows), the author's scale fit index for factors (columns), Bentler's (1977) scale-free matrix measure, and hyperplane counts. Routine use of these measures is recommended for multifactor scale development. The measures may also be useful in more general factor applications and in confirmatory as well as exploratory analyses. SIMLOAD also computes factor scale intercorrelations, scale alpha coefficients (including alpha when an item is removed), and sorted loadings for ease of interpretation.

  5. Questionnaire Response Scales: Design Factors That Influence Respondent Satisfaction.

    ERIC Educational Resources Information Center

    Heller, Eric S.; Rife, Frank N.

    The goal of this study was to assess the relative merit of various ranges and types of response scales in terms of respondent satisfaction and comfort and the nature of the elicited information in a population of seventh grade students. Three versions of an attitudinal questionnaire, each containing the same items but employing a different…

  6. Transcultural Factors in Hypnotizability Scales: Limits and Prospects.

    PubMed

    Champigny, Claire M; Raz, Amir

    2015-10-01

    Hypnotic suggestibility--loosely termed hypnotizability--is difficult to assess across cultures. Investigators often use translated research instruments to guide their inquiry in disparate geographic locations. Present-day hypnosis researchers rely heavily on two primary scales that are more than half a century old: the Stanford Hypnotic Susceptibility Scale: Form C (SHSS:C) (Weitzenhoffer & Hilgard, 1959) and the Harvard Group Scale of Hypnotic Susceptibility: Form A (HGSHS:A) (Shor & Orne, 1962). Scholars typically translate these scales to measure hypnotizability transculturally. This approach, however, operates under the specious assumption that the concept of hypnotizability is largely monolithic or universal across cultures. Whereas translations likely conserve the linguistic content, they may arguably imply different cultural meanings and historical subtexts. Whereas social scientists acknowledge the importance of qualitative and phenomenological accounts in the study of altered consciousness, including suggestibility, researchers interested in hypnotizability consider the impact of findings from anthropology and ethnography too little. Clinicians and scholars of hypnosis would stand to benefit from incorporating the insights afforded by transcultural research in the overarching investigation of a concept as nuanced as hypnotizability.

  7. Acquiescent Responding in Balanced Multidimensional Scales and Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Lorenzo-Seva, Urbano; Rodriguez-Fornells, Antoni

    2006-01-01

    Personality tests often consist of a set of dichotomous or Likert items. These response formats are known to be susceptible to an agreeing-response bias called acquiescence. The common assumption in balanced scales is that the sum of appropriately reversed responses should be reasonably free of acquiescence. However, inter-item correlation (or…

  8. A Factor Analysis of the Research Self-Efficacy Scale.

    ERIC Educational Resources Information Center

    Bieschke, Kathleen J.; And Others

    Counseling professionals' and counseling psychology students' interest in performing research seems to be waning. Identifying the impediments to graduate students' interest and participation in research is important if systematic efforts to engage them in research are to succeed. The Research Self-Efficacy Scale (RSES) was designed to measure…

  9. Revisiting the Leadership Scale for Sport: Examining Factor Structure Through Exploratory Structural Equation Modeling.

    PubMed

    Chiu, Weisheng; Rodriguez, Fernando M; Won, Doyeon

    2016-10-01

    This study examines the factor structure of the shortened version of the Leadership Scale for Sport, through a survey of 201 collegiate swimmers at National Collegiate Athletic Association Division II and III institutions, using both exploratory structural equation modeling and confirmatory factor analysis. Both exploratory structural equation modeling and confirmatory factor analysis showed that a five-factor solution fit the data adequately. The sizes of factor loadings on target factors substantially differed between the confirmatory factor analysis and exploratory structural equation modeling solutions. In addition, the inter-correlations between factors of the Leadership Scale for Sport and the correlations with athletes' satisfaction were found to be inflated in the confirmatory factor analysis solution. Overall, the findings provide evidence of the factorial validity of the shortened Leadership Scale for Sport.

  10. Theoretical Analysis of an Optical Accelerometer Based on Resonant Optical Tunneling Effect

    PubMed Central

    Jian, Aoqun; Wei, Chongguang; Guo, Lifang; Hu, Jie; Tang, Jun; Liu, Jun; Zhang, Xuming; Sang, Shengbo

    2017-01-01

    Acceleration is a significant parameter for monitoring the status of a given objects. This paper presents a novel linear acceleration sensor that functions via a unique physical mechanism, the resonant optical tunneling effect (ROTE). The accelerometer consists of a fixed frame, two elastic cantilevers, and a major cylindrical mass comprised of a resonant cavity that is separated by two air tunneling gaps in the middle. The performance of the proposed sensor was analyzed with a simplified mathematical model, and simulated using finite element modeling. The simulation results showed that the optical Q factor and the sensitivity of the accelerometer reach up to 8.857 × 107 and 9 pm/g, respectively. The linear measurement range of the device is ±130 g. The work bandwidth obtained is located in 10–1500 Hz. The results of this study provide useful guidelines to improve measurement range and resolution of integrated optical acceleration sensors. PMID:28218642

  11. Theoretical Analysis of an Optical Accelerometer Based on Resonant Optical Tunneling Effect.

    PubMed

    Jian, Aoqun; Wei, Chongguang; Guo, Lifang; Hu, Jie; Tang, Jun; Liu, Jun; Zhang, Xuming; Sang, Shengbo

    2017-02-17

    Acceleration is a significant parameter for monitoring the status of a given objects. This paper presents a novel linear acceleration sensor that functions via a unique physical mechanism, the resonant optical tunneling effect (ROTE). The accelerometer consists of a fixed frame, two elastic cantilevers, and a major cylindrical mass comprised of a resonant cavity that is separated by two air tunneling gaps in the middle. The performance of the proposed sensor was analyzed with a simplified mathematical model, and simulated using finite element modeling. The simulation results showed that the optical Q factor and the sensitivity of the accelerometer reach up to 8.857 × 10⁷ and 9 pm/g, respectively. The linear measurement range of the device is ±130 g. The work bandwidth obtained is located in 10-1500 Hz. The results of this study provide useful guidelines to improve measurement range and resolution of integrated optical acceleration sensors.

  12. Higher-Order Exploratory Factor Analysis of the Reynolds Intellectual Assessment Scales with a Referred Sample

    ERIC Educational Resources Information Center

    Nelson, Jason M.; Canivez, Gary L.; Lindstrom, Will; Hatt, Clifford V.

    2007-01-01

    The factor structure of the Reynolds Intellectual Assessment Scales (RIAS; [Reynolds, C.R., & Kamphaus, R.W. (2003). "Reynolds Intellectual Assessment Scales". Lutz, FL: Psychological Assessment Resources, Inc.]) was investigated with a large (N=1163) independent sample of referred students (ages 6-18). More rigorous factor extraction criteria…

  13. Piecewise compensation for the nonlinear error of fiber-optic gyroscope scale factor

    NASA Astrophysics Data System (ADS)

    Zhang, Yonggang; Wu, Xunfeng; Yuan, Shun; Wu, Lei

    2013-08-01

    Fiber-Optic Gyroscope (FOG) scale factor nonlinear error will result in errors in Strapdown Inertial Navigation System (SINS). In order to reduce nonlinear error of FOG scale factor in SINS, a compensation method is proposed in this paper based on curve piecewise fitting of FOG output. Firstly, reasons which can result in FOG scale factor error are introduced and the definition of nonlinear degree is provided. Then we introduce the method to divide the output range of FOG into several small pieces, and curve fitting is performed in each output range of FOG to obtain scale factor parameter. Different scale factor parameters of FOG are used in different pieces to improve FOG output precision. These parameters are identified by using three-axis turntable, and nonlinear error of FOG scale factor can be reduced. Finally, three-axis swing experiment of SINS verifies that the proposed method can reduce attitude output errors of SINS by compensating the nonlinear error of FOG scale factor and improve the precision of navigation. The results of experiments also demonstrate that the compensation scheme is easy to implement. It can effectively compensate the nonlinear error of FOG scale factor with slightly increased computation complexity. This method can be used in inertial technology based on FOG to improve precision.

  14. Factor Structure and Scale Reliabilities of the Adjective Check List Across Time

    ERIC Educational Resources Information Center

    Miller, Stephen H.; And Others

    1978-01-01

    Investigated factor structure and scale reliabilities of Gough's Adjective Check List (ACL) and their stability over time. Employees in a community mental health center completed the ACL twice, separated by a one-year interval. After each administration, separate factor analyses were computed. All scales had highly significant test-retest…

  15. The vertical accelerometer, a new instrument for air navigation

    NASA Technical Reports Server (NTRS)

    Laboccetta, Letterio

    1923-01-01

    This report endeavors to show the possibility of determining the rate of acceleration and the advantage of having such an accelerometer in addition to other aviation instruments. Most of the discussions concern balloons.

  16. Design and fabrication of wireless remotely readable MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Subramanian, Hareesh; Varadan, Vasundara V.

    1997-11-01

    The integration of MEMS, SAW devices and required microelectronics and conformal antenna to realize a programmable wireless accelerometer is presented in this paper. This unique combination of technologies results in a novel accelerometer that can be remotely sensed by a microwave system with the advantage of no power requirements at the sensor site. The microaccelerometer presented is simple in construction and easy to manufacture with existing silicon micromachining techniques. The relatively small size of the sensor makes it an ideal conformal sensor. The accelerometer finds application as air bag deployment sensors, vibration sensors for noise control, deflection and strain sensors, inertial and dimensional positioning systems, ABS/traction control, smart suspension, active roll stabilization and four wheel steering. The wireless accelerometer is very attractive to study the response of a 'dummy' in automobile crash test.

  17. Wireless accelerometer iPod application for quantifying gait characteristics.

    PubMed

    LeMoyne, Robert; Mastroianni, Timothy; Grundfest, Warren

    2011-01-01

    The capability to quantify gait characteristics through a wireless accelerometer iPod application in an effectively autonomous environment may alleviate the progressive strain on highly specific medical resources. The iPod consists of the inherent attributes imperative for robust gait quantification, such as a three dimensional accelerometer, data storage, flexible software, and the capacity for wireless transmission of the gait data through email. Based on the synthesis of the integral components of the iPod, a wireless accelerometer iPod application for quantifying gait characteristics has been tested and evaluated in an essentially autonomous environment. The quantified gait acceleration waveforms were wirelessly transmitted using email for postprocessing. The site for the gait experiment occurred in a remote location relative to the location where the postprocessing was conducted. The wireless accelerometer iPod application for quantifying gait characteristics demonstrated sufficient accuracy and consistency.

  18. LANCE Q-flex accelerometer qualification test program

    NASA Astrophysics Data System (ADS)

    Hunter, J. S.; Mitchell, J. N.; Hester, T.; Searcy, D.

    1982-03-01

    This report covers the performance obtained on six Sundstrand Q-Flex accelerometers during the qualification test program for the LANCE missile. The Qualification Test Program was divided into three parts: (1) Flight Assurance Tests (FAT), (2) Storage and Transportation Tests (SATT), and (3) Reliability Overstress Tests (ROT). All testing was performed in accordance with Vought accelerometer procurement specification 704-166C dated 8 June 1978.

  19. Optical fiber accelerometer based on a silicon micromachined cantilever

    NASA Astrophysics Data System (ADS)

    Malki, Abdelrafik; Lecoy, Pierre; Marty, Jeanine; Renouf, Christine; Ferdinand, Pierre

    1995-12-01

    An intensity-modulated fiber-optic accelerometer based on backreflection effects has been manufactured and tested. It uses a multimode fiber placed at a spherical mirror center, and the beam intensity is modulated by a micromachined silicon cantilever. This device has applications as an accelerometer and vibrometer for rotating machines. It exhibits an amplitude linearity of +/-1.2% in the range of 0.1-22 m s-2, a frequency linearity of +/-1% in the

  20. A PFV2 accelerometer for high shock applications

    NASA Astrophysics Data System (ADS)

    Tise, Bert; Smith, Talbot

    1989-08-01

    The development, fabrication, and testing of a high-g piezoelectric accelerometer that uses polyvinlylidene fluoride as the piezoelectric transducer is described. The accelerometer is designed to continuously measure accelerations up to 1000,000 g. The device is packages in a 3/8 inch hex head bolt and can include a built-in hybrid buffer to provide a low output impedance analog signal. Included are fabrication procedures, mechanical drawings, and software listings for test data analysis programs.

  1. The geographical scale factor in orientation of migrating birds

    PubMed

    Alerstam

    1996-01-01

    Migration routes of birds throw light on orientation performance at different geographic scales, over distances ranging from a few kilometres to more than 104 km. Detailed knowledge about the flight routes may be used to test predictions about optimal orientation according to theoretical principles and about the use of compasses based on celestial or magnetic cues. Ringing recoveries demonstrate that the migratory journey of many species, such as the wheatear and willow warbler, is divided into successive legs with different main orientation. Autumn and spring migration routes are often different, sometimes diverging on a continental scale. Aerial radiotracking of whooping cranes in North America and satellite tracking of brent geese migrating from Iceland across the Greenland ice cap point to the significant role of large-scale topography for the shaping of migration routes. Compass and position control are also required, e.g. during long passages across featureless sea or ice, but how these elements are integrated into the birds' orientation system remains unclear. Radar studies from the Arctic Ocean illustrate the importance of map projections for interpreting flight paths and suggest that birds accomplish approximate great circle orientation. Gradual course changes shown by migrating knots monitored by radar in Scandinavia are at variance with expected changes if the birds were to use a star, sun or magnetic compass over longer distances. Accurate recording of short flight segments shows how flying birds respond to visual, audible and electromagnetic cues, and also documents orientation precision and capacity to integrate rapidly shifting courses into a consistent resulting orientation. Analyses of flight patterns are crucial for understanding how birds find and follow their migration routes over different ranges of geographical scale.

  2. Emission Factor from Small Scale Tropical Peat Combustion

    NASA Astrophysics Data System (ADS)

    Setyawati, W.; Damanhuri, E.; Lestari, P.; Dewi, K.

    2017-03-01

    Peatfire in Indonesia recently had become an important issue regarding its global warming impact of green house gases emitted. Emission factor is one of important variables to determine total emission of carbon released by peatfire. But currently there were only a few studies about Indonesian peat fire emission factors. The previous studies of Indonesian peat fire emission factor reported the results from a very limited number of samples and during smoldering combustion stages only. Therefore this study attempts to quantify carbon dioxide (CO2) and methane (CH4) emission factors from laboratory peat combustion based on higher number of samples and taken both of combustion stages (flaming and smoldering) into consideration. Peats were sampled from five different districts in Pontianak, West Kalimantan. Ultimate analysis showed that pure peat composed of relatively high carbon content (52.85 – 59.43% dry basis). Laboratory experiments were carried out by burning small amout of peats in a mini furnace and measuring their CO2 and CH4 emission concentration during flaming and smoldering. CO2, CO and CH4 average emission factors and their related average MCE for flaming were found to be 2,088 ± 21 g/kg (n = 17), 3.104 ± 7.173 g/kg (n = 17), 0.143 ± 0.132 g/kg (n = 17) and 0.998 ± 0.005 (n = 17), respectively, while for smoldering were 1,831 ± 131 g/kg (n = 17), 138 ± 72 g/kg (n = 17), 17 ± 12 g/kg (n = 17) and 0.894 ± 0.055 g/kg (n = 17), respectively. This emission factors based on the laboratory combustion experiment can be conveniently used to estimate CO2 and CH4 emission from Indonesian peat fire. Equation models to correlate between MCE and emission factors for both flaming and smoldering were developed. MCE and CO2 emission factor during flaming was relatively higher than smoldering. On the contrary, CO and CH4 emission factors were relatively smaller during flaming than smoldering.

  3. Factorization in large-scale many-body calculations

    SciTech Connect

    Johnson, Calvin W.; Ormand, W. Erich; Krastev, Plamen G.

    2013-08-07

    One approach for solving interacting many-fermion systems is the configuration-interaction method, also sometimes called the interacting shell model, where one finds eigenvalues of the Hamiltonian in a many-body basis of Slater determinants (antisymmetrized products of single-particle wavefunctions). The resulting Hamiltonian matrix is typically very sparse, but for large systems the nonzero matrix elements can nonetheless require terabytes or more of storage. An alternate algorithm, applicable to a broad class of systems with symmetry, in our case rotational invariance, is to exactly factorize both the basis and the interaction using additive/multiplicative quantum numbers; such an algorithm recreates the many-body matrix elements on the fly and can reduce the storage requirements by an order of magnitude or more. Here, we discuss factorization in general and introduce a novel, generalized factorization method, essentially a ‘double-factorization’ which speeds up basis generation and set-up of required arrays. Although we emphasize techniques, we also place factorization in the context of a specific (unpublished) configuration-interaction code, BIGSTICK, which runs both on serial and parallel machines, and discuss the savings in memory due to factorization.

  4. Factorization in large-scale many-body calculations

    DOE PAGES

    Johnson, Calvin W.; Ormand, W. Erich; Krastev, Plamen G.

    2013-08-07

    One approach for solving interacting many-fermion systems is the configuration-interaction method, also sometimes called the interacting shell model, where one finds eigenvalues of the Hamiltonian in a many-body basis of Slater determinants (antisymmetrized products of single-particle wavefunctions). The resulting Hamiltonian matrix is typically very sparse, but for large systems the nonzero matrix elements can nonetheless require terabytes or more of storage. An alternate algorithm, applicable to a broad class of systems with symmetry, in our case rotational invariance, is to exactly factorize both the basis and the interaction using additive/multiplicative quantum numbers; such an algorithm recreates the many-body matrix elementsmore » on the fly and can reduce the storage requirements by an order of magnitude or more. Here, we discuss factorization in general and introduce a novel, generalized factorization method, essentially a ‘double-factorization’ which speeds up basis generation and set-up of required arrays. Although we emphasize techniques, we also place factorization in the context of a specific (unpublished) configuration-interaction code, BIGSTICK, which runs both on serial and parallel machines, and discuss the savings in memory due to factorization.« less

  5. Performance of several low-cost accelerometers

    USGS Publications Warehouse

    Evans, J.R.; Allen, R.M.; Chung, A. I.; Cochran, E.S.; Guy, R.; Hellweg, M.; Lawrence, J. F.

    2014-01-01

    Several groups are implementing low‐cost host‐operated systems of strong‐motion accelerographs to support the somewhat divergent needs of seismologists and earthquake engineers. The Advanced National Seismic System Technical Implementation Committee (ANSS TIC, 2002), managed by the U.S. Geological Survey (USGS) in cooperation with other network operators, is exploring the efficacy of such systems if used in ANSS networks. To this end, ANSS convened a working group to explore available Class C strong‐motion accelerometers (defined later), and to consider operational and quality control issues, and the means of annotating, storing, and using such data in ANSS networks. The working group members are largely coincident with our author list, and this report informs instrument‐performance matters in the working group’s report to ANSS. Present examples of operational networks of such devices are the Community Seismic Network (CSN; csn.caltech.edu), operated by the California Institute of Technology, and Quake‐Catcher Network (QCN; Cochran et al., 2009; qcn.stanford.edu; November 2013), jointly operated by Stanford University and the USGS. Several similar efforts are in development at other institutions. The overarching goals of such efforts are to add spatial density to existing Class‐A and Class‐B (see next paragraph) networks at low cost, and to include many additional people so they become invested in the issues of earthquakes, their measurement, and the damage they cause.

  6. Isolation of a piezoresistive accelerometer used in high acceleration tests

    NASA Astrophysics Data System (ADS)

    Bateman, V. I.; Brown, F. A.; Davie, N. T.

    Both uniaxial and triaxial shock isolation techniques for a piezoresistive accelerometer have been developed for pyroshock and impact tests. The uniaxial shock isolation technique has demonstrated acceptable characteristics for a temperature range of -50 to +186 F and a frequency bandwidth of DC to 10 kHz. The triaxial shock isolation technique has demonstrated acceptable results for a temperature range of -50 to 70 F and a frequency bandwidth of DC to 10 kHz. These temperature ranges, that are beyond the accelerometer manufacturer's operational limits of -30 and +150 F, required the calibration of accelerometers at high shock levels and at the temperature extremes of -50 and +160 F. The purposes of these calibrations were to insure that the accelerometers operated at the field test temperatures and to provide an accelerometer sensitivity at each test temperature. Since there is no NIST-traceable (National Institute of Standards and Technology traceable) calibration capability at shock levels of 5,000 - 15,000 g for the temperature extremes of -50 and +160 F, a method for calibrating and certifying the Hopkinson bar with a transfer standard was developed. Time domain and frequency domain results are given that characterize the Hopkinson bar. The NIST-traceable accuracy for the standard accelerometer in shock is +\\-5%. The Hopkinson bar has been certified by the Sandia Secondary Standards Division with an uncertainty of 6%.

  7. Processing of multi-satellite accelerometer data for thermospheric modelling

    NASA Astrophysics Data System (ADS)

    Doornbos, Eelco; Visser, Pieter N. A. M.; van Helleputte, Tom; van den Ijssel, Jose; Foerster, Matthias; Luehr, Hermann; Rees, David; Koppenwallner, Georg; Fritsche, Bent; Kern, Michael; Haagmans, Roger

    Satellite accelerometers, such as those carried on the CHAMP and GRACE satellites, provide valuable data for improving our knowledge of thermosphere density and winds. These data are now available over a full range of solar activity conditions and over a wide range of heights and local times. The fact that the CHAMP and GRACE accelerometer data sets are largely overlapping in time offers the opportunity to study their synergy. Continuity of this multisatellite accelerometer data set will be provided by ESA's Swarm mission, a constellation of three satellites for studying the Earth's magnetic field. This overview will cover both the processing steps required for converting accelerometer data into density and wind data, and the scientific investigations resulting from this data. Scientific investigations that make use of the accelerometer data sets include comparisons with and adjustment of empirical and physical thermosphere models, studies of the response of the thermosphere on geomagnetic storm conditions and characterization of thermospheric structures by analysis of long-term averages. Accelerometer calibration errors and attitude errors in the satellite aerodynamic model can be largely reduced by making use of data from the satellite's GPS receivers and star cameras. However, considerable uncertainties remain due to insufficient knowledge of the in-track wind speed, the gas-surface interaction and cross-track calibration. These uncertainties can be characterized by using error analysis, by comparing different processing approaches and by comparisons with force models.

  8. Examination of factor structure for the consumers' responses to the Value Consciousness Scale.

    PubMed

    Conrad, C A; Williams, J R

    2000-12-01

    The psychometric properties of the Value Consciousness Scale developed by Lichtenstein, Netemeyer, and Burton in 1990 were examined in a retail grocery study (N = 497). Original assessment of scale properties was undertaken using two convenience samples in a nonretail setting and additional scale performance has been documented by the scale authors. This study furthers previous research by (1) examining performance on the items in the retail grocery setting and (2) utilizing an appropriately rigorous sampling procedure. A confirmatory factor analysis indicated that the Value Consciousness Scale does not exhibit unidimensional properties, and one must be cautious if this scale is used in applications of market segmentation until further clarification can be provided.

  9. Smoke emission factors from medium scale fires: Part 2

    SciTech Connect

    Dod, R.L.; Brown, N.J.; Mowrer, F.W.; Novakov, T.; Williamson, R.B.

    1988-04-01

    Smoke emmission factors, (i.e., the mass of smoke per mass of fuel burned), were measured in eleven separate experiments. The size distribution of the smoke particles was determined using a cascade impactor. The percentages of ''black'' carbon (also called ''graphitic'' or ''elemental'' carbon) and organic carbon have been determined for all the experiments as a function of particle aerodynamic diameter. Values in the range of .1 to .2% are reported for the smoke particle emission factors for Douglas fire whole wood and plywood burning under well ventilated conditions. Approximately 65% of the particles have aerodynamic diameters less than 1 ..mu..m. Douglas fir whole wood gave smoke emission factors in the range of 2 to 3.5% when burned under poorly ventilated conditions representative of a building fire that is limited by air entrainment. For this case the size distribution was much broader, with substantial quantities of particles up to 5 ..mu..m aerodynamic diameter. For all experiments, the black carbon content represented between 50 and 75% of the total mass of the smoke particles. The smoke emission factor for burning asphalt roofing shingles is reported as 12.1% with black carbon content greater than 70%. Over half of the mass consisted of particles of less than 1 ..mu..m aerodynamic diameter.

  10. Identification of the underlying factor structure of the Derriford Appearance Scale 24

    PubMed Central

    Lawson, Victoria; White, Paul

    2015-01-01

    Background. The Derriford Appearance Scale24 (DAS24) is a widely used measure of distress and dysfunction in relation to self-consciousness of appearance. It has been used in clinical and research settings, and translated into numerous European and Asian languages. Hitherto, no study has conducted an analysis to determine the underlying factor structure of the scale. Methods. A large (n = 1,265) sample of community and hospital patients with a visible difference were recruited face to face or by post, and completed the DAS24. Results. A two factor solution was generated. An evaluation of the congruence of the factor solutions on each of the the hospital and the community samples using Tucker’s Coefficient of Congruence (rc = .979) and confirmatory factor analysis, which demonstrated a consistent factor structure. A main factor, general self consciousness (GSC), was represented by 18 items. Six items comprised a second factor, sexual and body self-consciousness (SBSC). The SBSC scale demonstrated greater sensitivity and specificity in identifying distress for sexually significant areas of the body. Discussion. The factor structure of the DAS24 facilitates a more nuanced interpretation of scores using this scale. Two conceptually and statistically coherent sub-scales were identified. The SBSC sub-scale offers a means of identifying distress and dysfunction around sexually significant areas of the body not previously possible with this scale. PMID:26157633

  11. Scaling of Gene Expression with Transcription-Factor Fugacity

    PubMed Central

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2015-01-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve. PMID:25554908

  12. Scaling of gene expression with transcription-factor fugacity.

    PubMed

    Weinert, Franz M; Brewster, Robert C; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K

    2014-12-19

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve.

  13. Italian spring accelerometer (ISA) a high sensitive accelerometer for ``BepiColombo'' ESA CORNERSTONE

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Nozzoli, S.

    2001-12-01

    The targets of the ESA CORNERSTONE mission to Mercury "BepiColombo" are concerned with both planetary and magnetospheric physics and to test some aspects of the general relativity. A payload devoted to a set of experiments named radio science is located within one of the three proposed modules, the Mercury Planetary Orbiter (MPO). In particular, a high sensitivity accelerometer ( a min<10 -9√g/ Hz in the range 10 -4- 10 -1 Hz) will measure the inertial acceleration acting on the MPO. Such data, together with tracking data are used to evaluate the purely gravitational trajectory of the MPO, transforming it to a virtual drag-free satellite system. The ISA accelerometer, considered for this mission, is a well-studied instrument developed at the Istituto di Fisica dello Spazio Interplanetario (IFSI), with the financial support of the Agenzia Spaziale Italiana (ASI). A prototype of such an instrument was constructed, matching the requirements of the radio science experiment. Results of the study concerning the use of ISA in the BepiColombo mission are reported here, particular care being devoted to the description of the instrument and to its sensitivity and thermal stabilisation.

  14. Design and analysis of a novel virtual gyroscope with multi-gyroscope and accelerometer array

    NASA Astrophysics Data System (ADS)

    Luo, Zhang; Liu, Chaojun; Yu, Shuai; Zhang, Shengzhi; Liu, Sheng

    2016-08-01

    A new virtual gyroscope with multi-gyroscope and accelerometer array (MGAA) is proposed in this article for improving the performance of angular rate measurement. Outputs of the virtual gyroscope are obtained by merging the signals from gyroscopes and accelerometers through a novel Kalman filter, which intentionally takes the consideration of the MEMS gyroscope error model and kinematics theory of rigid body. A typical configuration of the virtual gyroscope, consisting of four accelerometers and three gyroscopes mounted on designated positions, is initiated to verify the feasibility of the virtual gyroscope with MGAA. Static test and dynamic test are performed subsequently to evaluate its performance. The angular random walk (ARW) and bias instability, two static performance parameters of gyroscope, are reduced from 0.019°/√s and 14.4°/h to 0.0074°/√s and 8.7°/h, respectively. The average root mean square error (RMSE) is reduced from 0.274°/s to 0.133°/s under dynamic test. Compared with the published multi-gyroscope array method, the virtual gyroscope proposed here has a better performance both in static and dynamic tests, with improvement factors of ARW and RMSE about 44.1% and 44.5% higher, respectively.

  15. Design and analysis of a novel virtual gyroscope with multi-gyroscope and accelerometer array.

    PubMed

    Luo, Zhang; Liu, Chaojun; Yu, Shuai; Zhang, Shengzhi; Liu, Sheng

    2016-08-01

    A new virtual gyroscope with multi-gyroscope and accelerometer array (MGAA) is proposed in this article for improving the performance of angular rate measurement. Outputs of the virtual gyroscope are obtained by merging the signals from gyroscopes and accelerometers through a novel Kalman filter, which intentionally takes the consideration of the MEMS gyroscope error model and kinematics theory of rigid body. A typical configuration of the virtual gyroscope, consisting of four accelerometers and three gyroscopes mounted on designated positions, is initiated to verify the feasibility of the virtual gyroscope with MGAA. Static test and dynamic test are performed subsequently to evaluate its performance. The angular random walk (ARW) and bias instability, two static performance parameters of gyroscope, are reduced from 0.019°/√s and 14.4°/h to 0.0074°/√s and 8.7°/h, respectively. The average root mean square error (RMSE) is reduced from 0.274°/s to 0.133°/s under dynamic test. Compared with the published multi-gyroscope array method, the virtual gyroscope proposed here has a better performance both in static and dynamic tests, with improvement factors of ARW and RMSE about 44.1% and 44.5% higher, respectively.

  16. Automatic compensation for the errors of a gyroscopic linear integrating accelerometer

    SciTech Connect

    Bezvesil`naya, E.N.

    1995-10-01

    The method of least squares and the Kalman filter are the basis for developing algorithms and studying the errors of estimation of the state of a gyroscopic linear integrating accelerometer with digital processing of the data. The article considers the development of algorithms for self-compensation of the errors of a gyroscopic linear integrating accelerometer (GLIA). One of the promising applications of a gyroscopic linear integrating accelerometer is its use as a sensing element for an aviration gravimetric system. At the same time, a GLIA has errors due to nonlinear distortions of the path of the sensing element or gyroscope, the nonzero damping factor of precessional oscillations due to viscous friction moments acting frequency of the precessional oscillations used in the estimation algorithms and the frequency of the precessional oscillations of the gyroscope, and the disturbances that affect the law of motion of the gyroscope. These errors may have an unacceptably large effect (roughly 0.5 g) if not taken into account. The goal here, therefore, is to obtain an algorithm of automatic compensation for the indicated errors. Such a problem has not hitherto been formulated and solved in the theory and practice of gravimetric measurements.

  17. Estimation of seismic response of buildings with a few accelerometers without input data

    NASA Astrophysics Data System (ADS)

    Suzuki, Yu; Mita, Akira

    2016-04-01

    To assess the health of buildings, maximum inter-story drift angle is recognized as an important indicator. If we have to estimate maximum inter-story drift angle very precisely, we need to install accelerometers on all floors. However, it is not realistic due to the cost. In many methods to estimate the response using small number of accelerometers, the excitation (input) is assumed to be available. However, in some cases, some sensors including the input sensor may not be available. Thus, in this paper, we propose a method for the estimating inter-story drift angle using small number of accelerometers without knowing input information. The proposed method is based on two assumptions. One is that the response is represented by the superposition of the response of only lower modes. The other is that mode vectors and participation factors are available from the structural design model. Based on the assumption, first, we estimate modal frequencies and damping ratios using the subspace method from obtained acceleration data. Second, we decompose observed acceleration data to each mode by solving simultaneous equations using pseudo-inverse matrix. Third, we calculate mode response by focusing on the vibration equation of each mode. It was verified that this method could successfully estimate the modal response as well as the inter-story drift angles.

  18. High resolution space quartz-flexure accelerometer based on capacitive sensing and electrostatic control technology.

    PubMed

    Tian, W; Wu, S C; Zhou, Z B; Qu, S B; Bai, Y Z; Luo, J

    2012-09-01

    High precision accelerometer plays an important role in space scientific and technical applications. A quartz-flexure accelerometer operating in low frequency range, having a resolution of better than 1 ng/Hz(1/2), has been designed based on advanced capacitive sensing and electrostatic control technologies. A high precision capacitance displacement transducer with a resolution of better than 2 × 10(-6) pF/Hz(1/2) above 0.1 Hz, is used to measure the motion of the proof mass, and the mechanical stiffness of the spring oscillator is compensated by adjusting the voltage between the proof mass and the electrodes to induce a proper negative electrostatic stiffness, which increases the mechanical sensitivity and also suppresses the position measurement noise down to 3 × 10(-10) g/Hz(1/2) at 0.1 Hz. A high resolution analog-to-digital converter is used to directly readout the feedback voltage applied on the electrodes in order to suppress the action noise to 4 × 10(-10) g/Hz(1/2) at 0.1 Hz. A prototype of the quartz-flexure accelerometer has been developed and tested, and the preliminary experimental result shows that its resolution comes to about 8 ng/Hz(1/2) at 0.1 Hz, which is mainly limited by its mechanical thermal noise due to low quality factor.

  19. Statistical approaches to account for missing values in accelerometer data: Applications to modeling physical activity.

    PubMed

    Xu, Selene Yue; Nelson, Sandahl; Kerr, Jacqueline; Godbole, Suneeta; Patterson, Ruth; Merchant, Gina; Abramson, Ian; Staudenmayer, John; Natarajan, Loki

    2016-07-10

    Physical inactivity is a recognized risk factor for many chronic diseases. Accelerometers are increasingly used as an objective means to measure daily physical activity. One challenge in using these devices is missing data due to device nonwear. We used a well-characterized cohort of 333 overweight postmenopausal breast cancer survivors to examine missing data patterns of accelerometer outputs over the day. Based on these observed missingness patterns, we created psuedo-simulated datasets with realistic missing data patterns. We developed statistical methods to design imputation and variance weighting algorithms to account for missing data effects when fitting regression models. Bias and precision of each method were evaluated and compared. Our results indicated that not accounting for missing data in the analysis yielded unstable estimates in the regression analysis. Incorporating variance weights and/or subject-level imputation improved precision by >50%, compared to ignoring missing data. We recommend that these simple easy-to-implement statistical tools be used to improve analysis of accelerometer data.

  20. Confirmatory Factor Analysis of the Scales for Diagnosing Attention Deficit Hyperactivity Disorder (SCALES)

    ERIC Educational Resources Information Center

    Ryser, Gail R.; Campbell, Hilary L.; Miller, Brian K.

    2010-01-01

    The diagnostic criteria for attention deficit hyperactivity disorder have evolved over time with current versions of the "Diagnostic and Statistical Manual", (4th edition), text revision, ("DSM-IV-TR") suggesting that two constellations of symptoms may be present alone or in combination. The SCALES instrument for diagnosing attention deficit…

  1. Factor Structure of the Wechsler Intelligence Scale for Children--Fourth Edition among Referred Students

    ERIC Educational Resources Information Center

    Watkins, Marley W.; Wilson, Sharise M.; Kotz, Kasey M.; Carbone, Maria C.; Babula, Teresa

    2006-01-01

    Factor analysis was applied to the Wechsler Intelligence Scale for Children--Fourth Edition (WISC-IV) scores of 432 Pennsylvania students referred for evaluation for special education services to determine the factor structure of the WISC-IV with this population. A first-order, four-factor oblique solution that mirrored that found in the WISC-IV…

  2. A Confirmatory Factor Analysis of the Academic Motivation Scale with Black College Students

    ERIC Educational Resources Information Center

    Cokley, Kevin

    2015-01-01

    The factor structure of the Academic Motivation Scale (AMS) was examined with a sample of 578 Black college students. A confirmatory factor analysis of the AMS was conducted. Results indicated that the hypothesized seven-factor model did not fit the data. Implications for future research with the AMS are discussed.

  3. Factor Structure of the Korean Version of Wong and Law's Emotional Intelligence Scale

    ERIC Educational Resources Information Center

    Fukuda, Eriko; Saklofske, Donald H.; Tamaoka, Katsuo; Lim, Hyunjung

    2012-01-01

    This study reports the factor structure of a Korean version of the 16-item Wong and Law Emotional Intelligence Scale (WLEIS) for a sample of 161 Korean university students. Confirmatory factor analysis supported the four-factor model of the WLEIS: (1) self-emotional appraisal, (2) others' emotional appraisal, (3) use of emotion, and (4) regulation…

  4. Examination of the Factor Structure and Concurrent Validity of the Langer Mindfulness/Mindlessness Scale

    ERIC Educational Resources Information Center

    Haigh, Emily A. P.; Moore, Michael T.; Kashdan, Todd B.; Fresco, David M.

    2011-01-01

    Langer's theory of mindfulness proposes that a mindful person seeks out and produces novelty, is attentive to context, and is flexible in thought and behavior. In three independent studies, the factor structure of the Langer Mindfulness/Mindlessness Scale was examined. Confirmatory factor analysis failed to replicate the four-factor model and a…

  5. Multilevel Confirmatory Factor Analysis of a Scale Measuring Interagency Collaboration of Children's Mental Health Agencies

    ERIC Educational Resources Information Center

    Dedrick, Robert F.; Greenbaum, Paul E.

    2011-01-01

    Multilevel confirmatory factor analysis was used to evaluate the factor structure underlying the 12-item, three-factor "Interagency Collaboration Activities Scale" (ICAS) at the informant level and at the agency level. Results from 378 professionals (104 administrators, 201 service providers, and 73 case managers) from 32 children's mental health…

  6. Relative performance of several inexpensive accelerometers

    USGS Publications Warehouse

    Evans, John R.; Rogers, John A.

    1995-01-01

    We examined the performance of several low-cost accelerometers for highly cost-driven applications in recording earthquake strong motion. We anticipate applications for such sensors in providing the lifeline and emergency-response communities with an immediate, comprehensive picture of the extent and characteristics of likely damage. We also foresee their use as 'filler' instruments sited between research-grade instruments to provide spatially detailed and near-field records of large earthquakes (on the order of 1000 stations at 600-m intervals in San Fernando Valley, population 1.2 million, for example). The latter applications would provide greatly improved attenuation relationships for building codes and design, the first examples of mainshock information (that is, potentially nonlinear regime) for microzonation, and a suite of records for structural engineers. We also foresee possible applications in monitoring structural inter-story drift during earthquakes, possibly leading to local and remote alarm functions as well as design criteria. This effort appears to be the first of its type at the USGS. It is spurred by rapid advances in sensor technology and the recognition of potential non-classical applications. In this report, we estimate sensor noise spectra, relative transfer functions and cross-axis sensitivity of six inexpensive sensors. We tested three micromachined ('silicon-chip') sensors in addition to classical force-balance and piezoelectric examples. This sample of devices is meant to be representative, not comprehensive. Sensor noise spectra were estimated by recording system output with the sensor mounted on a pneumatically supported 545-kg optical-bench isolation table. This isolation table appears to limit ground motion to below our system noise level. These noise estimates include noise introduced by signal-conditioning circuitry, the analog-to-digital converter (ADC), and noise induced in connecting wiring by ambient electromagnetic fields in

  7. Improving the scale factor for rotation sensing in a frequency sensitive integrated optical gyroscope

    NASA Astrophysics Data System (ADS)

    Zhao, Long; Li, Wenxiu; Zhang, Hao; Yang, Yang; Huang, Anping; Xiao, Zhisong

    2016-01-01

    We theoretically analyze the characteristics of scale factor in frequency sensitive integrated optical gyroscope consisting of a ring resonator coupled with double ring resonators. The impact of through coupling coefficients is investigated to decide the optimal parameters located at 0s-1 for improving the scale factor. It demonstrates that the scale factor enhancement in this frequency sensitive optical gyroscope, without increasing the overall footprint, can be improved compared with conventional single ring resonator gyroscope and presents the characteristic of better performance within low-rate range. It implies a broad prospect in highly integrated on-chip applications, especially in aeronautic and astronautic area.

  8. Validation of Accelerometer Wear and Nonwear Time Classification Algorithm

    PubMed Central

    Choi, Leena; Liu, Zhouwen; Matthews, Charles E.; Buchowski, Maciej S.

    2011-01-01

    Introduction The use of movement monitors (accelerometers) for measuring physical activity (PA) in intervention and population-based studies is becoming a standard methodology for the objective measurement of sedentary and active behaviors and for validation of subjective PA self-reports. A vital step in PA measurements is classification of daily time into accelerometer wear and nonwear intervals using its recordings (counts) and an accelerometer-specific algorithm. Purpose To validate and improve a commonly used algorithm for classifying accelerometer wear and nonwear time intervals using objective movement data obtained in the whole-room indirect calorimeter. Methods We conducted a validation study of a wear/nonwear automatic algorithm using data obtained from 49 adults and 76 youth wearing accelerometers during a strictly monitored 24-h stay in a room calorimeter. The accelerometer wear and nonwear time classified by the algorithm was compared with actual wearing time. Potential improvements to the algorithm were examined using the minimum classification error as an optimization target. Results The recommended elements in the new algorithm are: 1) zero-count threshold during a nonwear time interval, 2) 90-min time window for consecutive zero/nonzero counts, and 3) allowance of 2-min interval of nonzero counts with the up/downstream 30-min consecutive zero counts window for detection of artifactual movements. Compared to the true wearing status, improvements to the algorithm decreased nonwear time misclassification during the waking and the 24-h periods (all P < 0.001). Conclusions The accelerometer wear/nonwear time algorithm improvements may lead to more accurate estimation of time spent in sedentary and active behaviors. PMID:20581716

  9. Brazilian version of the Jefferson Scale of Empathy: psychometric properties and factor analysis

    PubMed Central

    2012-01-01

    Background Empathy is a central characteristic of medical professionalism and has recently gained attention in medical education research. The Jefferson Scale of Empathy is the most commonly used measure of empathy worldwide, and to date it has been translated in 39 languages. This study aimed to adapt the Jefferson Scale of Empathy to the Brazilian culture and to test its reliability and validity among Brazilian medical students. Methods The Portuguese version of the Jefferson Scale of Empathy was adapted to Brazil using back-translation techniques. This version was pretested among 39 fifth-year medical students in September 2010. During the final fifth- and sixth-year Objective Structured Clinical Examination (October 2011), 319 students were invited to respond to the scale anonymously. Cronbach’s alpha, exploratory factor analysis, item-total correlation, and gender comparisons were performed to check the reliability and validity of the scale. Results The student response rate was 93.7% (299 students). Cronbach’s coefficient for the scale was 0.84. A principal component analysis confirmed the construct validity of the scale for three main factors: Compassionate Care (first factor), Ability to Stand in the Patient’s Shoes (second factor), and Perspective Taking (third factor). Gender comparisons did not reveal differences in the scores between female and male students. Conclusions The adapted Brazilian version of the Jefferson Scale of Empathy proved to be a valid, reliable instrument for use in national and cross-cultural studies in medical education. PMID:22873730

  10. Emission factors from small scale appliances burning wood and pellets

    NASA Astrophysics Data System (ADS)

    Ozgen, Senem; Caserini, Stefano; Galante, Silvia; Giugliano, Michele; Angelino, Elisabetta; Marongiu, Alessandro; Hugony, Francesca; Migliavacca, Gabriele; Morreale, Carmen

    2014-09-01

    Four manually fed (6-11 kW) firewood burning and two automatic wood pellets (8.8-25 kW) residential heating appliances were tested under real-world operating conditions in order to determine emission factors (EFs) of macropollutants, i.e., carbon monoxide (CO), nitrogen oxides (NOx), non-methane hydrocarbons (NMHC), particulate matter (PM) and trace pollutants such as polycyclic aromatic hydrocarbons (PAH) and dioxins. The results were examined for the influence of different factors (i.e., type of wood, appliance and combustion cycle). The experimental EFs were also compared with the values proposed by the European emission inventory guidebook used in the local inventory in order to evaluate their representativeness of real world emissions. The composite macropollutant EFs for manually fed appliances were: for CO 5858 g GJ-1, for NOx 122 g GJ-1, NMHC 542 g GJ-1, PM 254 g GJ-1, whereas emissions were much lower for automatic pellets appliances: CO 219 g GJ-1, for NOx 66 g GJ-1, NMHC 5 g GJ-1, PM 85 g GJ-1. The highest emissions were generally observed for the open fireplace, however traditional and advanced stoves have the highest overall CO EFs. Especially for the advanced stove real-world emissions are far worse than those measured under cycles used for type testing of residential solid fuel appliances. No great difference is observed for different firewood types in batch working appliances, diversely the quality of the pellets is observed to influence directly the emission performance of the automatic appliances. Benzo(b)fluoranthene is the PAH with the highest contribution (110 mg GJ-1 for manual appliances and 2 mg GJ-1 for automatic devices) followed by benzo(a)pyrene (77 mg GJ-1 for manual appliances and 0.8 mg GJ-1 for automatic devices).

  11. Examination of the factor structure and concurrent validity of the Langer Mindfulness/Mindlessness Scale.

    PubMed

    Haigh, Emily A P; Moore, Michael T; Kashdan, Todd B; Fresco, David M

    2011-03-01

    Langer's theory of mindfulness proposes that a mindful person seeks out and produces novelty, is attentive to context, and is flexible in thought and behavior. In three independent studies, the factor structure of the Langer Mindfulness/Mindlessness Scale was examined. Confirmatory factor analysis failed to replicate the four-factor model and a subsequent exploratory factor analysis revealed the presence of a two-factor (mindfulness and mindlessness) solution. Study 2 demonstrated that the two factors assessed discrete constructs and were not merely products of acquiescence. Support was also found for a nine-item, one-factor model comprised solely of mindfulness items. On comparing models, Study 3 suggested the superiority of the one-factor mindfulness model. Finally, a preliminary investigation of the concurrent validity of the revised nine-item Langer Mindfulness/Mindlessness Scale is presented. The current article offers researchers a revised version of a mindfulness measure derived from a cognitive perspective.

  12. A toxic equivalency factor scale for polychlorinated dibenzofurans

    USGS Publications Warehouse

    Tysklind, M.; Tillitt, D.; Eriksson, L.; Lundgren, K.; Rappe, C.

    1994-01-01

    The ethoxyresorufin O-deethylase (EROD) induction of 20 polychiorinated dibenzofurans (PCDFs) was examined in the H4IIE rat hepatoma cell bioassay. The selection of the compounds tested was based on a multivariate chemical characterization laying the groundwork for covering the whole chemical series of PCDFs. The EROD induction potency was found to vary in ED50 values from 25 to 100,000,000 pg/mg, i.e., nearly seven orders of magnitude. The response of the bioassay was calibrated against the 2,3,7,8-tetrachlorodibenzo-p-dioxin, enabling the corresponding toxic equivalency factors (TEFs) to be calculated. In order to establish a quantitative structure-activity relationship (QSAR) for the TEF values, 37 physicochemical descriptor variables were used to chemically characterize the 87 tetra- to octachlorinated PCDFs. Using partial least-squares modeling on a training set of 10 congeners, a QSAR model with sound predictive power was obtained. The QSAR model was validated with a validation set of additional 10 congeners. The predicted TEFs indicate that a large number of congeners are potent EROD inducers.

  13. Factors and Clusters for the Brazelton Scale: An Investigation of the Dimensions of Neonatal Behavior.

    ERIC Educational Resources Information Center

    Jacobson, Joseph L.; And Others

    1984-01-01

    Examines the psychometric properties of two procedures for reducing data from the Brazelton Neonatal Behavioral Assessment Scale: factor and cluster analysis. The sample consisted of 85 male and 77 female newborns. (RH)

  14. Optimal Placement of Accelerometers for the Detection of Everyday Activities

    PubMed Central

    Cleland, Ian; Kikhia, Basel; Nugent, Chris; Boytsov, Andrey; Hallberg, Josef; Synnes, Kåre; McClean, Sally; Finlay, Dewar

    2013-01-01

    This article describes an investigation to determine the optimal placement of accelerometers for the purpose of detecting a range of everyday activities. The paper investigates the effect of combining data from accelerometers placed at various bodily locations on the accuracy of activity detection. Eight healthy males participated within the study. Data were collected from six wireless tri-axial accelerometers placed at the chest, wrist, lower back, hip, thigh and foot. Activities included walking, running on a motorized treadmill, sitting, lying, standing and walking up and down stairs. The Support Vector Machine provided the most accurate detection of activities of all the machine learning algorithms investigated. Although data from all locations provided similar levels of accuracy, the hip was the best single location to record data for activity detection using a Support Vector Machine, providing small but significantly better accuracy than the other investigated locations. Increasing the number of sensing locations from one to two or more statistically increased the accuracy of classification. There was no significant difference in accuracy when using two or more sensors. It was noted, however, that the difference in activity detection using single or multiple accelerometers may be more pronounced when trying to detect finer grain activities. Future work shall therefore investigate the effects of accelerometer placement on a larger range of these activities. PMID:23867744

  15. Ionospheric Delay Compensation Using a Scale Factor Based on an Altitude of a Receiver

    NASA Technical Reports Server (NTRS)

    Zhao, Hui (Inventor); Savoy, John (Inventor)

    2014-01-01

    In one embodiment, a method for ionospheric delay compensation is provided. The method includes determining an ionospheric delay based on a signal having propagated from the navigation satellite to a location below the ionosphere. A scale factor can be applied to the ionospheric delay, wherein the scale factor corresponds to a ratio of an ionospheric delay in the vertical direction based on an altitude of the satellite navigation system receiver. Compensation can be applied based on the ionospheric delay.

  16. Factor Structure and Invariance across Gender of the Devereux Early Childhood Assessment Protective Factor Scale

    ERIC Educational Resources Information Center

    Ogg, Julia A.; Brinkman, Tara M.; Dedrick, Robert F.; Carlson, John S.

    2010-01-01

    Early childhood social-emotional assessment has traditionally focused on risk factors or psychopathology, and has less frequently examined protective factors that may serve to promote positive developmental outcomes for children. To advance conceptual models that include protective factors as key explanatory constructs, there is a need for…

  17. Examination of the Spanish Trait Meta-Mood Scale-24 Factor Structure in a Mexican Setting

    ERIC Educational Resources Information Center

    Valdivia Vázquez, Juan Antonio; Rubio Sosa, Juan Carlos A.; French, Brian F.

    2015-01-01

    The Trait Meta-Mood Scale (TMMS) is an emotional intelligence (EI) assessment originally developed for the U.S. population. This scale measures three EI factors--attention, clarity, and repair--to evaluate how an individual perceives one's own EI skills. Although the TMMS has been adapted for use in several languages and cultures, the structure of…

  18. The Teacher Efficacy for Inclusive Practices (TEIP) Scale: Dimensionality and Factor Structure

    ERIC Educational Resources Information Center

    Park, Mi-Hwa; Dimitrov, Dimiter M.; Das, Ajay; Gichuru, Margaret

    2016-01-01

    The "Teacher Efficacy for Inclusive Practices" (TEIP) scale is designed to measure teacher-self efficacy to teach in inclusive classrooms. The original study identified three scale factors: "efficacy in using inclusive instruction" ("EII"), "efficacy in collaboration" ("EC"), and "efficacy in…

  19. Agri-Environmental Resource Management by Large-Scale Collective Action: Determining KEY Success Factors

    ERIC Educational Resources Information Center

    Uetake, Tetsuya

    2015-01-01

    Purpose: Large-scale collective action is necessary when managing agricultural natural resources such as biodiversity and water quality. This paper determines the key factors to the success of such action. Design/Methodology/Approach: This paper analyses four large-scale collective actions used to manage agri-environmental resources in Canada and…

  20. Motivations and Characteristics of Adult Students: Factor Stability and Construct Validity of the Educational Participation Scale.

    ERIC Educational Resources Information Center

    Fujita-Starck, Pamela J.

    1996-01-01

    Data from 1,142 adult students confirmed the seven-factor typology of the Educational Participation Scale. Reliability of scales was acceptable. Construct validity was tested by predicting membership in three curricular groups: arts/leisure, personal development, and professional development. Results revealed distinctive characteristics and…

  1. Factor Structure of Scores from the Conners' Rating Scales-Revised among Nepali Children

    ERIC Educational Resources Information Center

    Pendergast, Laura L.; Vandiver, Beverly J.; Schaefer, Barbara A.; Cole, Pamela M.; Murray-Kolb, Laura E.; Christian, Parul

    2014-01-01

    This study used exploratory and confirmatory factor analyses to examine the structures of scores from the Conners' Teacher and Parent Rating Scales-Revised (CTRS-R and CPRS-R, respectively; Conners, 1997). The scales were administered to 1,835 parents and 1,387 teachers of children in Nepal's Sarlahi district, a region where no other measures of…

  2. Spatially varying relationships between land-cover change and driving factors at multiple sampling scales.

    PubMed

    Du, Shihong; Wang, Qiao; Guo, Luo

    2014-05-01

    Modeling the relationships between environment, human activity, and natural conditions is very important for understanding human-environment interactions. This study aims at examining how these relationships vary over spatial sampling scales and investigating the spatially varying relationships between land-cover changes and driving factors, as well as the variations in the relationships at different sampling scales in the Tibetan Autonomous Prefecture of Qinghai Province, P.R. China. Regular sampling methods are used first to generate eight sets of data points at different scales, and then the values for land-cover changes and the factors are extracted for these data points. Geographically weighted regression (GWR) model is applied to analyze the relationships between land-cover changes and the factors at different sampling scales. The results indicate that the influences of the factors (e.g. the signs, significances, and values of coefficients) change greatly over different sampling scales; similarly, for different types of land-cover changes, the contributions of the factors also vary. Generally, roads, rivers, and lakes contribute greatly to land-cover changes, while villages, temples, and elevations contribute less. A possible reason is that the densities of roads, rivers, and lakes is much greater than those of villages and temples, and the populations in temples and villages are too small to have much effect on land-cover changes. The results demonstrate that the sampling scales have an important influence on the relationships between land-cover change and the factors.

  3. Assessing acceptance of violence toward women: a factor analysis of Burt's Acceptance of Interpersonal Violence Scale.

    PubMed

    Ogle, Richard L; Noel, Nora E; Maisto, Stephen A

    2009-07-01

    The Acceptance of Interpersonal Violence Scale (AIV) is a self-report inventory assessing beliefs about violence toward women. This study's purpose was to test the multidimensionality of the AIV. Exploratory factor analysis (EFA) was conducted on half a sample of 772 male participants and confirmatory factor analysis (CFA) on the other half. EFA indicated a two-factor solution. Factors were labeled Intimate Partner Violence and Sexual Violence. The CFA showed this model provided a good fit and was superior to the original one-factor model. Potential problems when using the single sum score and the applicability of the derived factor structure to violence research are discussed.

  4. [Social capital in rural areas: adaptation to Spanish and factor validation of a scale].

    PubMed

    Fernández Niño, Julián Alfredo; Pinzón Flórez, Carlos Eduardo; Moreno Montoya, José; Cepeda Gil, Magda Cristiana; Idrovo Velandia, Alvaro Javier

    2014-07-01

    Social capital is considered a structural determinant of social development and wellbeing. Its cognitive component assesses the degree of confidence of the population in their systems for social organization, as well as community interactions to coordinate social responses to social problems. There are few available scales for measuring this construct. This work presents the adaptation to Spanish and psychometric validation of a scale for measuring social capital in a rural setting. The Wang Social Cognitive Scale was also adapted to Spanish. 1200 questionnaires were applied to adults in 12 villages of the municipality of Tierra Alta, (Colombia) recruited by random sampling. Factor analysis of the scale was performed based on a polychoric correlation matrix. Exploratory factor analysis suggests the existence of two principal factors distributed as follows: 7 items for factor 1, trust (eigenvalue 3.23) and 2 items, for factor 2, distrust (eigenvalue 1.40). As observed by Wang, Q9 and Q10 could be ambiguous questions which do not contribute enough to either of the factors. The first factor validation to Spanish language of the Wang Social Capital Scale is presented in the social context of rural Colombia.

  5. Initial Borehole Accelerometer Array Observations Near the North Portal of the ESF

    SciTech Connect

    David von Seggern

    2005-08-17

    This report addresses observed ground motions at the site of the proposed surface facilities associated with the designated repository for high-level nuclear waste at Yucca Mountain, Nevada. In 2003 an accelerometer array was installed at three boreholes on the pad of the north portal of the ESF (Exploratory Studies Facility) at Yucca Mountain, Nevada, by the Nevada Seismological Laboratory (NSL). These boreholes, roughly 150 m apart and initially used for extensive geological and geophysical surveys, were ideal locations to measure the subsurface ground motions at the proposed site of surface facilities such as the Waste Handling Building. Such measurements will impact the design of the facilities. Accelerometer emplacement depths of approximately 15 m from the surface and then at the bottom of the boreholes, roughly 100 m, were chosen. Accelerometers were also placed at the surface next to the boreholes, for a total of nine accelerometers, all three-component. Data recording was accomplished with onsite recorders, with the onsite data transmitted to a central computer at a trailer on the pad. All requirements were met to qualify these data as ''Q''. Due to the lack of significant recordings during 2003, several low signal-to-noise (S/N) quality events were chosen for processing. The maximum horizontal peak ground acceleration (PGA) recorded at the pad was approximately 1 cm/s2 in 2003; the corresponding peak ground velocity (PGV) was approximately 0.01 cm/s. PGA and PGV were obtained at all nine accelerometers for most of these events, and spectra were computed. Ground motion amplitudes varied significantly across the boreholes. Higher ground amplifications were observed at the surface for the two boreholes that penetrated a thick amount ({approx} 30 m) of fill and Quaternary alluvium compared to the one that had less than 2 m of such. Additionally, surface-to-deep recordings showed as much as a factor of five amplification at these two boreholes. Signal

  6. The ISA accelerometer for BepiColombo mission .

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Fiorenza, E.; Lefevre, C.; Nozzoli, S.; Peron, R.; Reale, A.; Santoli, F.

    The Italian Spring Accelerometer (ISA) will give a fundamental contribution to the Radio Science Experiments of BepiColombo mission, enabling substantial improvement of the knowledge of Mercury's orbit and rotation, and of the relativistic dynamics in the solar system. ISA is a three-axis accelerometer devoted to the measurement of the non-gravitational acceleration of Mercury Planetary Orbiter (MPO), whose knowledge is important in order to fully exploit the quality of the tracking data. ISA shall have an intrinsic noise level of (10^{-9} m/s^2/&sqrt;{Hz}) in the (3 \\cdot 10^{-5}) Hz to (10^{-1}) Hz frequency range, to guarantee the fulfilment of the RSE scientific goals. A comprehensive presentation of ISA accelerometer is given, including details about its scientific and technological features, the updated measurement error budget, the ongoing experimental activities and foreseen calibration and science operations strategies.

  7. Terrestrial Applications of a Nano-g Accelerometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    1996-01-01

    The ultra-sensitive accelerometer, developed for NASA to monitor the microgravity environments of Space Shuttle, five orbiters and Space Station, needed to measure accelerations up to 10 mg with an absolute accuracy of 10 nano-g (10(exp -8)g) for at least two orbits (10(exp 4) seconds) to resolve accelerations associated with orbital drag. Also, the accelerometers needed to have less than 10(exp -9) F.S. off-axis sensitivity; to be thermally and magnetically inert; to be immune to quiescent shock, and to have an in-situ calibration capability. Multi-axis compact seismometers, designs that have twelve decades of dynamic range will be described. Density profilometers, precision gradiometers, gyros and vibration isolation designs and applications will be discussed. Finally, examples of transformations of the accelerometer into sensitive anemometers and imaging spectrometers will be presented.

  8. Accelerometer Method and Apparatus for Integral Display and Control Functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1998-01-01

    Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto is discussed. An accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.

  9. Thermospheric density and winds from GRACE accelerometer data

    NASA Astrophysics Data System (ADS)

    Cheng, Minkang; Tapley, Byron D.; Bettadpur, Srinivas; Ries, John C.

    The high-accuracy accelerometer data carried by the GRACE satellites represents the best measurements of the total surface forces acting on the spacecraft, including atmospheric drag, solar and earth radiation pressure. The GRACE accelerometer data are particularly well suited for exploring the variation in the thermospheric density and winds in response to changes in the solar and magnetic activity. In this study, the total atmospheric neutral density and winds are derived from analysis of the accelerometer data over a six-year period starting August 2002, which spans the complete range of solar activity. This paper will present the comparison of the six-year GRACE density with several density models, including DTM-78, NRLMSIS-00, JB2006 and HASDM. The GRACE-derived thermospheric winds will be compared with the HWM-93 model.

  10. Micromachined force-balance feedback accelerometer with optical displacement detection

    DOEpatents

    Nielson, Gregory N.; Langlois, Eric; Baker, Michael; Okandan, Murat; Anderson, Robert

    2014-07-22

    An accelerometer includes a proof mass and a frame that are formed in a handle layer of a silicon-on-an-insulator (SOI). The proof mass is separated from the frame by a back-side trench that defines a boundary of the proof mass. The accelerometer also includes a reflector coupled to a top surface of the proof mass. An optical detector is located above the reflector at the device side. The accelerometer further includes at least one suspension spring. The suspension spring has a handle anchor that extends downwards from the device side to the handle layer to mechanically support upward and downward movement of the proof mass relative to a top surface of the proof mass.

  11. The impact of variation in scaling factors on the estimation of internal dose metrics: a case study using bromodichloromethane (BDCM)

    EPA Science Inventory

    Many physiologically based pharmacokinetic (PBPK) models include values for metabolic rate parameters extrapolated from in vitro metabolism studies using scaling factors such as mg of microsomal protein per gram of liver (MPPGL) and liver mass (FVL). Variation in scaling factor ...

  12. Isolation of a piezoresistive accelerometer used in high acceleration tests

    SciTech Connect

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1992-12-31

    Both uniaxial and triaxial shock isolation techniques for a piezoresistive accelerometer have been developed for pyroshock and impact tests. The uniaxial shock isolation technique has demonstrated acceptable characteristics for a temperature range of {minus}50{degree}F to +186{degree}F and a frequency bandwidth of DC to 10 kHz. The triaxial shock isolation technique has demonstrated acceptable results for a temperature range of {minus}50{degree}F to 70{degree}F and a frequency bandwidth of DC to 10 kHz. These temperature ranges, that are beyond the accelerometer manufacturer`s operational limits of {minus}30{degree}F and +150{degree}F, required the calibration of accelerometers at high shock levels and at the temperature extremes of {minus}50{degree}F and +160{degree}F. The purposes of these calibrations were to insure that the accelerometers operated at the field test temperatures and to provide an accelerometer sensitivity at each test temperature. Since there is no NIST-traceable (National Institute of Standards and Technology traceable) calibration capability at shock levels of 5,000 g - 15,000 g for the temperature extremes of {minus}50{degree}F and +160{degree}F, a method for calibrating and certifying the Hopkinson bar with a transfer standard was developed. Time domain and frequency domain results are given that characterize the Hopkinson bar. The NIST-traceable accuracy for the standard accelerometer in shock is {plus_minus}5%. The Hopkinson bar has been certified by the Sandia Secondary Standards Division with an uncertainty of 6%.

  13. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to

  14. Homework Management Scale: Confirming the Factor Structure with Middle School Students in China

    ERIC Educational Resources Information Center

    Xu, Jianzhong; Fan, Xitao; Du, Jianxia

    2015-01-01

    This study presents a psychometric evaluation of the Homework Management Scale (HMS) for mathematics, consisting of five subscales for measuring homework management strategies. Confirmatory factor analyses were conducted with a sample of middle school students (N = 796). Results indicated that the factor structure of the Chinese version of the HMS…

  15. Validation of the Social Appearance Anxiety Scale: Factor, Convergent, and Divergent Validity

    ERIC Educational Resources Information Center

    Levinson, Cheri A.; Rodebaugh, Thomas L.

    2011-01-01

    The Social Appearance Anxiety Scale (SAAS) was created to assess fear of overall appearance evaluation. Initial psychometric work indicated that the measure had a single-factor structure and exhibited excellent internal consistency, test-retest reliability, and convergent validity. In the current study, the authors further examined the factor,…

  16. Factor Structure Analysis of the Schutte Self-Report Emotional Intelligence Scale on International Students

    ERIC Educational Resources Information Center

    Ng, Kok-Mun; Wang, Chuang; Kim, Do-Hong; Bodenhorn, Nancy

    2010-01-01

    The authors investigated the factor structure of the Schutte Self-Report Emotional Intelligence (SSREI) scale on international students. Via confirmatory factor analysis, the authors tested the fit of the models reported by Schutte et al. and five other studies to data from 640 international students in the United States. Results show that…

  17. The Three Domains of Disgust Scale: Factor Structure, Psychometric Properties, and Conceptual Limitations

    ERIC Educational Resources Information Center

    Olatunji, Bunmi O.; Adams, Thomas; Ciesielski, Bethany; David, Bieke; Sarawgi, Shivali; Broman-Fulks, Joshua

    2012-01-01

    This investigation examined the measurement properties of the Three Domains of Disgust Scale (TDDS). Principal components analysis in Study 1 (n = 206) revealed three factors of Pathogen, Sexual, and Moral Disgust that demonstrated excellent reliability, including test-retest over 12 weeks. Confirmatory factor analyses in Study 2 (n = 406)…

  18. Confirming the Factor Structure of the Cognitive Test Anxiety Scale: Comparing the Utility of Three Solutions

    ERIC Educational Resources Information Center

    Cassady, Jerrell C.; Finch, W. Holmes

    2014-01-01

    This study validated the factor structure of a popular assessment of learner's cognitive test anxiety. Following recent findings in a study with Argentinean students' use of the Spanish version of the Cognitive Test Anxiety Scale (CTAS), this study tested the factor structure using data from 742 students who completed the original English version…

  19. Development and Validation of a Coping with Discrimination Scale: Factor Structure, Reliability, and Validity

    ERIC Educational Resources Information Center

    Wei, Meifen; Alvarez, Alvin N.; Ku, Tsun-Yao; Russell, Daniel W.; Bonett, Douglas G.

    2010-01-01

    Four studies were conducted to develop and validate the Coping With Discrimination Scale (CDS). In Study 1, an exploratory factor analysis (N = 328) identified 5 factors: Education/Advocacy, Internalization, Drug and Alcohol Use, Resistance, and Detachment, with internal consistency reliability estimates ranging from 0.72 to 0.90. In Study 2, a…

  20. Factor Structure and Psychometric Properties of the Injection Phobia Scale-Anxiety

    ERIC Educational Resources Information Center

    Olatunji, Bunmi O.; Sawchuk, Craig N.; Moretz, Melanie W.; David, Bieke; Armstrong, Thomas; Ciesielski, Bethany G.

    2010-01-01

    The present investigation examined the factor structure and psychometric properties of the Injection Phobia Scale-Anxiety (IPS-Anx). Principal components analysis of IPS-Anx items in Study 1 (n = 498) revealed a 2-factor structure consisting of Distal Fear and Contact Fear. However, CFA results in Study 2 (n = 567) suggest that a 1-factor…

  1. Factor Structure of Scores on the State Version of the Four Dimension Mood Scale

    ERIC Educational Resources Information Center

    Gregg, Vernon H.; Shepherd, Alex J.

    2009-01-01

    This study examines the factor structure of scores on the Four Dimension Mood Scale (4DMS) developed by Huelsman, Nemanick, and Munz in response to criticisms of the Positive and Negative Affect Schedule. The results showed that the factor structure of 4DMS scores obtained with a sample of U.K. residents assessed for state affect corresponded…

  2. Factor Structure of the Acute Stress Disorder Scale in a Sample of Hurricane Katrina Evacuees

    ERIC Educational Resources Information Center

    Edmondson, Donald; Mills, Mary Alice; Park, Crystal L.

    2010-01-01

    Acute stress disorder (ASD) is a poorly understood and controversial diagnosis (A. G. Harvey & R. A. Bryant, 2002). The present study used confirmatory factor analysis (CFA) to test the factor structure of the most widely used self-report measure of ASD, the Acute Stress Disorder Scale (R. A. Bryant, M. L. Moulds, & R. M. Guthrie, 2000),…

  3. Children's Perception of Interparental Conflict Scale (CPIC): Factor Structure and Invariance across Adolescents and Emerging Adults

    ERIC Educational Resources Information Center

    Moura, Octavio; dos Santos, Rute Andrade; Rocha, Magda; Matos, Paula Mena

    2010-01-01

    The Children's Perception of Interparental Conflict Scale (CPIC) is based on the cognitive-contextual framework for understanding interparental conflict. This study investigates the factor validity and the invariance of two factor models of CPIC within a sample of Portuguese adolescents and emerging adults (14 to 25 years old; N = 677). At the…

  4. Factor Structure and Construct Validity of the Interaction with Disabled Persons Scale.

    ERIC Educational Resources Information Center

    Thomas, Adrian; Palmer, Jerry K.; Coker-Juneau, Carla J.; Williams, David J.

    2002-01-01

    Investigated the psychometric properties of the Interaction with Disabled Persons Scale (IDP; L. Gething, 1991). Exploratory factor analysis with 358 undergraduates and confirmatory factor analysis with a sample of 272 undergraduates suggest that the IDP may provide a reasonable measurement of multidimensional attitudes toward individuals with…

  5. Construct Validation of the Child Sex Abuse Attitude Scale (CSAAS) through Confirmatory Factor Analysis.

    ERIC Educational Resources Information Center

    Ferrara, Filomena Felicia

    A validation study was conducted on the Child Sex Abuse Attitude Scale (CSAAS) using confirmatory factor analysis (CFA) to examine the factor structure of three comparative CFA models. Multitrait multimethod analysis was also used to examine the convergent and discriminant validity of the CSAAS. The instrument was developed based on the theory of…

  6. Factor Structure of the Family Environment Scale: Effects of Social Desirability.

    ERIC Educational Resources Information Center

    Fowler, Patrick C.

    1982-01-01

    Presented for 64 subjects a replication of the Family Environment Scale's maximum likelihood factor structure for which the two-factor, Varimax-rotated solution was found to be stable when the correlations among the subscales were corrected for the effects of social desirability response bias. (Author)

  7. An Approach to Identify Site Response Directivity of Accelerometer Sites and Application to the Iranian Area

    NASA Astrophysics Data System (ADS)

    Del Gaudio, Vincenzo; Pierri, Pierpaolo; Rajabi, Ali M.

    2015-06-01

    In recent years, several workers have found numerous cases of sites characterised by significant azimuthal variation of dynamic response to seismic shaking. The causes of this phenomenon are still unclear, but are possibly related to combinations of geological and geomorphological factors determining a polarisation of resonance effects. To improve their comprehension, it would be desirable to extend the database of observations on this phenomenon. Thus, considering that unrevealed cases of site response directivity can be "hidden" among the sites of accelerometer networks, we developed a two-stage approach of data mining from existing strong motion databases to identify sites affected by directional amplification. The proposed procedure first calculates Arias Intensity tensor components from accelerometer recordings of each site to determine mean directional variations of total shaking energy. Then, at the sites where a significant anisotropy appears in ground motion, azimuthal variations of HVSR values (spectral ratios between horizontal and vertical components of recordings) are analysed to confirm the occurrence of site resonance conditions. We applied this technique to a database of recordings acquired by accelerometer stations in the Iranian area. The results of this investigation pointed out some sites affected by directional resonance that appear to be correlated to the orientation of local tectonic lineaments, these being mostly transversal to the direction of maximum shaking. Comparing Arias Intensities observed at these sites with theoretical estimates provided by ground motion prediction equations, the presence of significant site amplifications was confirmed. The magnitude of the amplification factors appear to be correlated to the results of HVSR analysis, even though the pattern of dispersion of HVSR values suggests that while high peak values of spectral ratios are indicative of strong amplifications, lower values do not necessarily imply lower

  8. Using Multilevel Factor Analysis with Clustered Data: Investigating the Factor Structure of the Positive Values Scale

    ERIC Educational Resources Information Center

    Huang, Francis L.; Cornell, Dewey G.

    2016-01-01

    Advances in multilevel modeling techniques now make it possible to investigate the psychometric properties of instruments using clustered data. Factor models that overlook the clustering effect can lead to underestimated standard errors, incorrect parameter estimates, and model fit indices. In addition, factor structures may differ depending on…

  9. A Confirmatory Factor Analysis of the Structure of Abbreviated Math Anxiety Scale

    PubMed Central

    Farrokhi, Farahman

    2011-01-01

    Objective The aim of this study is to explore the confirmatory factor analysis results of the Persian adaptation of Abbreviated Math Anxiety Scale (AMAS), proposed by Hopko, Mahadevan, Bare & Hunt. Method The validity and reliability assessments of the scale were performed on 298 college students chosen randomly from Tabriz University in Iran. The confirmatory factor analysis (CFA) was carried out to determine the factor structures of the Persian version of AMAS. Results As expected, the two-factor solution provided a better fit to the data than a single factor. Moreover, multi-group analyses showed that this two-factor structure was invariant across sex. Hence, AMAS provides an equally valid measure for use among college students. Conclusions Brief AMAS demonstrates adequate reliability and validity. The AMAS scores can be used to compare symptoms of math anxiety between male and female students. The study both expands and adds support to the existing body of math anxiety literature. PMID:22952521

  10. Scale-model charge-transfer technique for measuring enhancement factors

    NASA Technical Reports Server (NTRS)

    Kositsky, J.; Nanevicz, J. E.

    1991-01-01

    Determination of aircraft electric field enhancement factors is crucial when using airborne field mill (ABFM) systems to accurately measure electric fields aloft. SRI used the scale model charge transfer technique to determine enhancement factors of several canonical shapes and a scale model Learjet 36A. The measured values for the canonical shapes agreed with known analytic solutions within about 6 percent. The laboratory determined enhancement factors for the aircraft were compared with those derived from in-flight data gathered by a Learjet 36A outfitted with eight field mills. The values agreed to within experimental error (approx. 15 percent).

  11. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests

    PubMed Central

    Kim, Hyun Chan; Song, Sangho; Kim, Jaehwan

    2016-01-01

    This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO) nanowire (NW) grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices. PMID:27649184

  12. Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.

    2010-01-01

    The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.

  13. The factor structure underlying three self-report multicultural counseling competence scales.

    PubMed

    Constantine, Madonna G; Gloria, Alberta M; Ladany, Nicholas

    2002-11-01

    This study examined the extent to which 3 self-report multicultural scales were measuring the predominant 3-factor conceptualization of multicultural counseling competence as consisting of multicultural attitudes/beliefs, knowledge, and skills. Results of a confirmatory factor analysis revealed that the 3-factor model was not fully supported. An exploratory factor analysis identified a 2-factor structure (i.e., self-perceived multicultural counseling skills and multicultural counseling attitudes/beliefs) underlying these instruments. Implications of the findings for clinical practice, training, and research are discussed.

  14. Testing the Factor Structure of a Scale to Assess African American Acculturation: A Confirmatory Factor Analysis

    ERIC Educational Resources Information Center

    Reid, Robert J.; Brown, Tiffany L.; Peterson, N. Andrew; Snowden, Lonnie; Hines, Alice

    2009-01-01

    Research has pointed to the important role that acculturation plays in understanding a range of physical health behaviors as well as psychological functioning, but only a few studies have attempted to establish reliable and valid measures of African American acculturation. The scale developed by Snowden and Hines (1999) to assess African American…

  15. The New Factor Structure of the Korean Version of the Difficulties in Emotion Regulation Scale (K-DERS) Incorporating Method Factor

    ERIC Educational Resources Information Center

    Cho, Yongrae; Hong, Sehee

    2013-01-01

    The factor structure of the Korean version of the Difficulties in Emotion Regulation Scale was examined. Rather than the six-factor model, the five-factor model with a method factor was supported. This result suggests that the AWARENESS and CLARITY factors can be combined into one construct, controlling for the method factor. (Contains 1 figure.)

  16. Factor Structure and Reliability of the Revised Conflict Tactics Scales' (CTS2) 10-Factor Model in a Community-Based Female Sample

    ERIC Educational Resources Information Center

    Yun, Sung Hyun

    2011-01-01

    The present study investigated the factor structure and reliability of the revised Conflict Tactics Scales' (CTS2) 10-factor model in a community-based female sample (N = 261). The underlying factor structure of the 10-factor model was tested by the confirmatory multiple group factor analysis, which demonstrated complex factor cross-loadings…

  17. ISA - An Accelerometer to Detect the Disturbing Accelerations Acting on the Mercury Planetary Orbiter of the BepiColombo ESA Cornerstone Mission to Mercury: on Ground Calibration

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Lucchesi, D. M.; Nozzoli, S.; Santoli, F.; Fois, M.; Persichini, M.

    2006-06-01

    To reach the ambitious goals of the Radio Science Experiment of the BepiColombo space mission to Mercury, among which the planet structure and rotation and test Einstein's theory of General Relativity (GR) to an unprecedented accuracy, an accelerometer has been selected to fly on-board the MPO (Mercury Planetary Orbiter), the main spacecraft of the two to be placed around the innermost planet of our solar system around 2017. The key role of the on-board accelerometer is to remove from the list of unknowns the non-gravitational accelerations that disturbs the pure gravitational orbit of the MPO spacecraft in the strong radiation environment of Mercury. In this way the ``corrected'' orbit of the MPO may be regarded as a geodesic in the field of Mercury. Then, thanks to the very precise tracking from Earth, the possibility to study Mercury's center-of-mass around the Sun and estimate several parameters related to the planet structure and verify the theory of GR. The selected accelerometer named ISA (Italian Spring Accelerometer) is an high sensitive instrument with an intrinsic noise of 10-10 g⊕ / Hz (with g⊕ ≅ 9.8 m / s2) in the frequency band 3 . 10-5 -10-1 Hz. ISA is a three axis accelerometer with a characteristic configuration, in order to minimize the disturbing accelerations due to the gravity-gradients and the apparent forces on the Nadir pointing MPO spacecraft. Because of the complex and strong radiation environment of Mercury, the modelling of the non-gravitational acceleration is quite difficult, while, with the use of ISA accelerometer we are able to gain a factor 100 in accuracy. In this brief paper we will focus on the characteristics of the ISA accelerometer, on its positioning on-board the MPO and in particularly to the techniques for on ground calibration, avoiding the effects of the Earth gravity.

  18. Scale-factor variations due to wavelength-dependent optical losses in fiber optic gyros

    NASA Astrophysics Data System (ADS)

    Hammond, James A.

    1996-11-01

    Most sources of optical loss in a fiber optic gyro (FOG) depend on wavelength. Because of the broadband sources used in interferometric FOGs, these losses result in an effective shift of mean wavelength of the light producing the interference signal. For some signal processing methods, these wavelength variations produce proportional changes in the IFOG scale factor. Using well documented approximations, losses are calculated and plotted versus wavelength. A discussion of the qualitative effects on scale factor is presented and expected mean wavelength variations are computed using a representative approximation of the spectrum of a FOG source. The types of losses considered include: fiber-fiber or fiber-wave guide misalignments; microbend losses, bending losses and mode diameter mismatches. Preliminary results indicate that scale factor variations caused by such losses will contribute significantly to the total scale factor thermal sensitivity for some FOG designs. While closed loop operation results in a scale factor with fundamentally low sensitivity to variations in optical losses, most implementations are sensitive to changes in mean wavelength, thus the effects discussed here should be considered when designing high performance IFOGs and their electronics.

  19. Self-noise models of five commercial strong-motion accelerometers

    USGS Publications Warehouse

    Ringler, Adam; Evans, John R.; Hutt, Charles R.

    2015-01-01

    To better characterize the noise of a number of commonly deployed accelerometers in a standardized way, we conducted noise measurements on five different models of strong‐motion accelerometers. Our study was limited to traditional accelerometers (Fig. 1) and is in no way exhaustive.

  20. Scale-dependent factors affecting North American river otter distribution in the midwest

    USGS Publications Warehouse

    Jeffress, Mackenzie R.; Paukert, C.P.; Whittier, Joanna B.; Sandercock, B.K.; Gipson, P.S.

    2011-01-01

    The North American river otter (Lontra canadensis) is recovering from near extirpation throughout much of its range. Although reintroductions, trapping regulations and habitat improvements have led to the reestablishment of river otters in the Midwest, little is known about how their distribution is influenced by local- and landscape-scale habitat. We conducted river otter sign surveys from Jan. to Apr. in 2008 and 2009 in eastern Kansas to assess how local- and landscape-scale habitat factors affect river otter occupancy. We surveyed three to nine 400-m stretches of stream and reservoir shorelines for 110 sites and measured local-scale variables (e.g., stream order, land cover types) within a 100 m buffer of the survey site and landscape-scale variables (e.g., road density, land cover types) for Hydrological Unit Code 14 watersheds. We then used occupancy models that account for the probability of detection to estimate occupancy as a function of these covariates using Program PRESENCE. The best-fitting model indicated river otter occupancy increased with the proportion of woodland cover and decreased with the proportion of cropland and grassland cover at the local scale. Occupancy also increased with decreased shoreline diversity, waterbody density and stream density at the landscape scale. Occupancy was not affected by land cover or human disturbance at the landscape scale. Understanding the factors and scale important to river otter occurrence will be useful in identifying areas for management and continued restoration. ?? 2011, American Midland Naturalist.

  1. Single point optical calibration of accelerometers at NIST

    NASA Astrophysics Data System (ADS)

    Payne, Bev

    2006-06-01

    Typical accelerometer calibrations by laser interferometer are performed by measuring displacement at three places on the shaker table. Each of these measurements, made along the perimeter of the accelerometer, requires repositioning and realigning of the interferometer. This is done to approximate the actual displacement of the accelerometer. Using a dual-coil shaker with a small moving element and two coaxially-located and rigidly-attached mounting tables allows placing the accelerometer on one table and measuring displacement directly on the center axis of the second table. This was found to work effectively at lower frequencies, up to about 5 kHz, with mounting tables of conventional materials such as stainless steel. However, for higher frequencies the use of steel results in unwanted relative motion between the two mounting tables. Mounting tables of beryllium with nickel coating have been used at NIST to overcome this difficulty. This paper shows the calibration results of single point, on-axis measurements, using fringe counting and sine-approximation methods. The results compare favorably with three point measurements made by fringe disappearance using a conventional piezo-electric shaker at frequencies up to 15 kHz.

  2. High Sensitivity Optomechanical Reference Accelerometer over 10 kHz

    DTIC Science & Technology

    2014-06-05

    measurements and observations in seismology and gravimetry. 2 High sensitivity optomechanical reference accele Approved for public release; distribution is...and this category of accelerometers, outlining a path for high sensitivity reference acceleration measurements and observations in seismology and...Traditional applications require either high acceleration resolution, such as in gravimetry or seismology well below 100 Hz, or large bandwidths, as for

  3. Estimating Energy Expenditure with the RT3 Triaxial Accelerometer

    ERIC Educational Resources Information Center

    Maddison, Ralph; Jiang, Yannan; Vander Hoorn, Stephen; Mhurchu, Cliona Ni; Lawes, Carlene M. M.; Rodgers, Anthony; Rush, Elaine

    2009-01-01

    The RT3 is a relatively new triaxial accelerometer that has replaced the TriTrac. The aim of this study was to validate the RT3 against doubly labeled water (DLW) in a free-living, mixed weight sample of adults. Total energy expenditure (TEE) was measured over a 15-day period using DLW. Activity-related energy expenditure (AEE) was estimated by…

  4. An overview of the evolution of vibrating beam accelerometer technology

    NASA Astrophysics Data System (ADS)

    Norling, B. L.

    The history of vibrating beam accelerometers (VBA) is briefly outlined, and the current status of VBA technology is reviewed. In particular, attention is given to the VBA design fundamentals and the performance characteristics of several state-of-the-art VBA models. Finally, prospects for the future development of VBAs and the effect of VBA technology on the inertial navigation industry are discussed.

  5. Micromachined low frequency rocking accelerometer with capacitive pickoff

    DOEpatents

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  6. Use of Accelerometers to Measure Real-Life Physical Activity in Ambulatory Individuals with Multiple Sclerosis

    PubMed Central

    Fjeldstad, Anette S.; Pardo, Gabriel

    2015-01-01

    Background: Multiple sclerosis (MS) may negatively affect individuals' participation in physical activity (PA). We used accelerometers to determine PA level in individuals with MS with varying degrees of disability as measured by the Expanded Disability Status Scale (EDSS) during regular daily activities. Methods: Participants wore an accelerometer from 8 a.m. to 9 p.m. for 7 consecutive days. Activity counts recorded during this period were analyzed in 1-minute epochs and categorized into one of four PA levels: light, moderate, hard, and very hard. Results: The study cohort comprised 13 patients with MS and 12 controls. There were significant negative correlations for minutes spent in PA and EDSS measures on weekdays (r = −0.61), weekend (r = −0.64), and full week (r = −0.61) and number of steps taken on weekdays (r = −0.56), weekend (r = −0.80), and full-week average (r = −0.68). Significant positive correlations were found for minutes spent in light PA and EDSS score (r = 0.69). Significant negative correlations were found for minutes spent in moderate and hard PA and EDSS score. No significant difference was seen between the MS group and controls on any parameters (P > .05). Conclusions: This study showed that accelerometers can be used to objectively quantify PA levels in individuals with MS with different disability levels. This cohort demonstrated that the amount of PA is inversely proportional to the degree of physical disability. Collected data revealed not only the amount but also the intensity of PA performed in real-life circumstances. PMID:26472942

  7. High Sensitive Precise 3D Accelerometer for Solar System Exploration with Unmanned Spacecrafts

    NASA Astrophysics Data System (ADS)

    Savenko, Y. V.; Demyanenko, P. O.; Zinkovskiy, Y. F.

    Solutions of several space and geophysical tasks require creating high sensitive precise accelerometers with sensitivity in order of 10 -13 g. These several tasks are following: inertial navigation of the Earth and Space; gravimetry nearby the Earth and into Space; geology; geophysics; seismology etc. Accelerometers (gravimeters and gradientmeters) with required sensitivity are not available now. The best accelerometers in the world have sensitivity worth on 4-5 orders. It has been developed a new class of fiber-optical sensors (FOS) with light pulse modulation. These sensors have super high threshold sensitivity and wide (up to 10 orders) dynamic range, and can be used as a base for creating of measurement units of physical values as 3D superhigh sensitive precise accelerometers of linear accelerations that is suitable for highest requirements. The principle of operation of the FOS is organically combined with a digital signal processing. It allows decreasing hardware of the accelerometer due to using a usual air-borne or space-borne computer; correcting the influence of natural, design, technological drawbacks of FOS on measured results; neutralising the influence of extraordinary situations available during using of FOS; decreasing the influence of internal and external destabilising factors (as for FOS), such as oscillation of environment temperature, instability of pendulum cycle frequency of sensitive element of the accelerometer etc. We were conducted a quantitative estimation of precise opportunities of analogue FOS in structure of fiber optical measuring devices (FOMD) for elementary FOMD with analogue FOS built on modern element basis of fiber optics (FO), at following assumptions: absolute parameter stability of devices of FOS measuring path; single transmission band of registration path; maximum possible inserted in optical fiber (OF) a radiated power. Even at such idealized assumptions, a calculated value in limit reached minimum inaccuracy of

  8. Factor structure of the Emotional Eating Scale in overweight and obese adults seeking treatment ✩

    PubMed Central

    Goldbacher, E.M.; Grunwald, H.E.; LaGrotte, C.A.; Klotz, A.A.; Oliver, T.L.; Musliner, K.L.; VanderVeur, S.S.; Foster, G.D.

    2012-01-01

    The purpose of this study was to examine the factor structure and anthropometric correlates of the Emotional Eating Scale in overweight and obese adults presenting for weight loss. Participants were 217 men and women with a mean body-mass index of 33.1 (±3.4) kg/m2. Results indicated a four factor structure: depression, anger, anxiety, and somatic arousal. These factors demonstrated strong internal consistency, and together accounted for approximately 60% of the total variance. Women had significantly higher depression and total scores than did men. There were no significant correlations between the Emotional Eating Scale scores and anthropometric measures. This work begins to add to the literature base regarding the applicability of the original design of the Emotional Eating Scale for samples consisting of men and African Americans. PMID:22510311

  9. Development of a Three-Factor Psychological Sense of Community Scale

    PubMed Central

    Jason, Leonard A.; Stevens, Ed; Ram, Daphna

    2016-01-01

    A variety of measures of sense of community have been developed, but the identification of latent factors in developed scales to measure this construct have encountered significant psychometric problems involving reliability and validity. We present a new measure called the Psychological Sense of Community Scale, which is based on 3 distinct ecological domains involving the individual, microsystem and macrosystem. We used an exploratory factor analysis to investigate our three theoretical domains involving Self (identity and importance to self), Membership (social relationships), and Entity (a group's organization and purpose). Three theoretically derived factors emerged with good measurement model fit, internal reliabilities, and convergent validity. Our study also found multiplicative over additive effects, suggesting each of the 3 domains is necessary to understand the experience of sense of community. This scale can be adapted to a variety of contexts and situations in future research. PMID:27667867

  10. Plant community assembly at small scales: Spatial vs. environmental factors in a European grassland

    NASA Astrophysics Data System (ADS)

    Horn, Sebastian; Hempel, Stefan; Ristow, Michael; Rillig, Matthias C.; Kowarik, Ingo; Caruso, Tancredi

    2015-02-01

    Dispersal limitation and environmental conditions are crucial drivers of plant species distribution and establishment. As these factors operate at different spatial scales, we asked: Do the environmental factors known to determine community assembly at broad scales operate at fine scales (few meters)? How much do these factors account for community variation at fine scales? In which way do biotic and abiotic interactions drive changes in species composition? We surveyed the plant community within a dry grassland along a very steep gradient of soil characteristics like pH and nutrients. We used a spatially explicit sampling design, based on three replicated macroplots of 15 × 15, 12 × 12 and 12 × 12 m in extent. Soil samples were taken to quantify several soil properties (carbon, nitrogen, plant available phosphorus, pH, water content and dehydrogenase activity as a proxy for overall microbial activity). We performed variance partitioning to assess the effect of these variables on plant composition and statistically controlled for spatial autocorrelation via eigenvector mapping. We also applied null model analysis to test for non-random patterns in species co-occurrence using randomization schemes that account for patterns expected under species interactions. At a fine spatial scale, environmental factors explained 18% of variation when controlling for spatial autocorrelation in the distribution of plant species, whereas purely spatial processes accounted for 14% variation. Null model analysis showed that species spatially segregated in a non-random way and these spatial patterns could be due to a combination of environmental filtering and biotic interactions. Our grassland study suggests that environmental factors found to be directly relevant in broad scale studies are present also at small scales, but are supplemented by spatial processes and more direct interactions like competition.

  11. Classification accuracy of the wrist-worn GENEA accelerometer

    PubMed Central

    Welch, Whitney A.; Bassett, David R.; Thompson, Dixie L.; Freedson, Patty S.; Staudenmayer, John W.; John, Dinesh; Steeves, Jeremy A.; Conger, Scott A.; Ceaser, Tyrone; Howe, Cheryl A.; Sasaki, Jeffer E.; Fitzhugh, Eugene C.

    2013-01-01

    Purpose The purpose of this study was to determine whether the published left-wrist cut-points for the triaxial GENEA accelerometer, are accurate for predicting intensity categories during structured activity bouts. Methods A convenience sample of 130 adults wore a GENEA accelerometer on their left wrist while performing 14 different lifestyle activities. During each activity, oxygen consumption was continuously measured using the Oxycon mobile. Statistical analysis used Spearman's rank correlations to determine the relationship between measured and estimated intensity classifications. Cross tabulation tables were constructed to show under- or over-estimation of misclassified intensities. One-way chi-square tests were used to determine whether the intensity classification accuracy for each activity differed from 80%. Results For all activities the GENEA accelerometer-based physical activity monitor explained 41.1% of the variance in energy expenditure. The intensity classification accuracy was 69.8% for sedentary activities, 44.9% for light activities, 46.2% for moderate activities, and 77.7% for vigorous activities. The GENEA correctly classified intensity for 52.9% of observations when all activities were examined; this increased to 61.5% with stationary cycling removed. Conclusion A wrist-worn triaxial accelerometer has modest intensity classification accuracy across a broad range of activities, when using the cut-points of Esliger et al. Although the sensitivity and specificity are less than those reported by Esliger et al., they are generally in the same range as those reported for waist-worn, uniaxial accelerometer cut-points. PMID:23584403

  12. Factor structure of a multidimensional gender identity scale in a sample of Chinese elementary school children.

    PubMed

    Yu, Lu; Xie, Dong; Shek, Daniel T L

    2012-01-01

    This study examined the factor structure of a scale based on the four-dimensional gender identity model (Egan and Perry, 2001) in 726 Chinese elementary school students. Exploratory factor analyses suggested a three-factor model, two of which corresponded to "Felt Pressure" and "Intergroup Bias" in the original model. The third factor "Gender Compatibility" appeared to be a combination of "Gender Typicality" and "Gender Contentment" in the original model. Follow-up confirmatory factor analysis (CFA) indicated that, relative to the initial four-factor structure, the three-factor model fits the current Chinese sample better. These results are discussed in light of cross-cultural similarities and differences in development of gender identity.

  13. FACTOR ANALYSIS OF A SOCIAL SKILLS SCALE FOR HIGH SCHOOL STUDENTS.

    PubMed

    Wang, H-Y; Lin, C-K

    2015-10-01

    The objective of this study was to develop a social skills scale for high school students in Taiwan. This study adopted stratified random sampling. A total of 1,729 high school students were included. The students ranged in age from 16 to 18 years. A Social Skills Scale was developed for this study and was designed for classroom teachers to fill out. The test-retest reliability of this scale was tested by Pearson's correlation coefficient. Exploratory factor analysis was used to determine construct validity. The Social Skills Scale had good overall test-retest reliability of .92, and the internal consistency of the five subscales was above .90. The results of the factor analysis showed that the Social Skills Scale covered the five domains of classroom learning skills, communication skills, individual initiative skills, interaction skills, and job-related social skills, and the five factors explained 68.34% of the variance. Thus, the Social Skills Scale had good reliability and validity and would be applicable to and could be promoted for use in schools.

  14. Control factors and scale analysis of annual river water, sediments and carbon transport in China

    PubMed Central

    Song, Chunlin; Wang, Genxu; Sun, Xiangyang; Chang, Ruiying; Mao, Tianxu

    2016-01-01

    Under the context of dramatic human disturbances on river system, the processes that control the transport of water, sediment, and carbon from river basins to coastal seas are not completely understood. Here we performed a quantitative synthesis for 121 sites across China to find control factors of annual river exports (Rc: runoff coefficient; TSSC: total suspended sediment concentration; TSSL: total suspended sediment loads; TOCL: total organic carbon loads) at different spatial scales. The results indicated that human activities such as dam construction and vegetation restoration might have a greater influence than climate on the transport of river sediment and carbon, although climate was a major driver of Rc. Multiple spatial scale analyses indicated that Rc increased from the small to medium scale by 20% and then decreased at the sizable scale by 20%. TSSC decreased from the small to sizeable scale but increase from the sizeable to large scales; however, TSSL significantly decreased from small (768 g·m−2·a−1) to medium spatial scale basins (258 g·m−2·a−1), and TOCL decreased from the medium to large scale. Our results will improve the understanding of water, sediment and carbon transport processes and contribute better water and land resources management strategies from different spatial scales. PMID:27166177

  15. Control factors and scale analysis of annual river water, sediments and carbon transport in China

    NASA Astrophysics Data System (ADS)

    Song, Chunlin; Wang, Genxu; Sun, Xiangyang; Chang, Ruiying; Mao, Tianxu

    2016-05-01

    Under the context of dramatic human disturbances on river system, the processes that control the transport of water, sediment, and carbon from river basins to coastal seas are not completely understood. Here we performed a quantitative synthesis for 121 sites across China to find control factors of annual river exports (Rc: runoff coefficient; TSSC: total suspended sediment concentration; TSSL: total suspended sediment loads; TOCL: total organic carbon loads) at different spatial scales. The results indicated that human activities such as dam construction and vegetation restoration might have a greater influence than climate on the transport of river sediment and carbon, although climate was a major driver of Rc. Multiple spatial scale analyses indicated that Rc increased from the small to medium scale by 20% and then decreased at the sizable scale by 20%. TSSC decreased from the small to sizeable scale but increase from the sizeable to large scales; however, TSSL significantly decreased from small (768 g·m‑2·a‑1) to medium spatial scale basins (258 g·m‑2·a‑1), and TOCL decreased from the medium to large scale. Our results will improve the understanding of water, sediment and carbon transport processes and contribute better water and land resources management strategies from different spatial scales.

  16. Do climate factors govern soil microbial community composition and biomass at a regional scale?

    NASA Astrophysics Data System (ADS)

    Ma, L.; Guo, C.; Lü, X.; Yuan, S.; Wang, R.

    2014-12-01

    Soil microbial communities play important role in organic matter decomposition, nutrient cycling and vegetation dynamic. However, little is known about factors driving soil microbial community composition at large scales. The objective of this study was to determine whether climate dominates among environmental factors governing microbial community composition and biomass at a regional scale. Here, we compared soil microbial communities using phospholipid fatty acid method across 7 land use types from 23 locations in North-East China Transect (850 km x 50 km). The results showed that soil water availability and land use changes exhibited the dominant effects on soil microbial community composition and biomass at the regional scale, while climate factors (expressed as a function of large-scale spatial variation) did not show strong relationships with distribution of microbial community composition. Likewise, factors such as spatial structure, soil texture, nutrient availability and vegetation types were not important. Wetter soils had higher contributions of gram-positive bacteria, whereas drier soils had higher contributions of gram-negative bacteria and fungi. Heavily disturbed soils had lower contributions of gram-negative bacteria and fungi than historically disturbed and undisturbed soils. The lowest microbial biomass appeared in the wettest and driest soils. In conclusion, dominant climate factors, commonly known to structure distribution of macroorganisms, were not the most important drivers governing regional pattern of microbial communities because of inclusion of irrigated and managed practices. In comparison, soil water regime and land use types appear to be primary determinants of microbial community composition and biomass.

  17. Factor Analysis of the Omega Scale: A Scale Designed To Measure the Attitudes of College Students toward Their Own Deaths and the Disposition of Their Bodies.

    ERIC Educational Resources Information Center

    Staik, Irene M.

    A study was undertaken to provide a factor analysis of the Omega Scale, a 25-item, Likert-type scale developed in 1984 to assess attitudes toward death and funerals and other body disposition practices. The Omega Scale was administered to 250 students enrolled in introductory psychology classes at two higher education institutions in Alabama.…

  18. Vibrational frequency scaling factors for correlation consistent basis sets and the methods CC2 and MP2 and their spin-scaled SCS and SOS variants

    SciTech Connect

    Friese, Daniel H.; Törk, Lisa; Hättig, Christof

    2014-11-21

    We present scaling factors for vibrational frequencies calculated within the harmonic approximation and the correlated wave-function methods coupled cluster singles and doubles model (CC2) and Møller-Plesset perturbation theory (MP2) with and without a spin-component scaling (SCS or spin-opposite scaling (SOS)). Frequency scaling factors and the remaining deviations from the reference data are evaluated for several non-augmented basis sets of the cc-pVXZ family of generally contracted correlation-consistent basis sets as well as for the segmented contracted TZVPP basis. We find that the SCS and SOS variants of CC2 and MP2 lead to a slightly better accuracy for the scaled vibrational frequencies. The determined frequency scaling factors can also be used for vibrational frequencies calculated for excited states through response theory with CC2 and the algebraic diagrammatic construction through second order and their spin-component scaled variants.

  19. Confirmatory factor analysis of the Drive for Muscularity Scale-S (DMS-S) and Male Body Attitudes Scale-S (MBAS-S) among male university students in Buenos Aires.

    PubMed

    Compte, Emilio J; Sepúlveda, Ana R; de Pellegrin, Yolanda; Blanco, Miriam

    2015-06-01

    Several studies have demonstrated that men express body dissatisfaction differently than women. Although specific instruments that address body dissatisfaction in men have been developed, only a few have been validated in Latin-American male populations. The aim of this study was to reassess the factor structure of the Spanish versions of the Drive for Muscularity Scale (DMS-S) and the Male Body Attitudes Scale (MBAS-S) in an Argentinian sample. A cross-sectional study was conducted among 423 male students to examine: the factorial structure (confirmatory factor analysis), the internal consistency reliability, and the concurrent, convergent and discriminant validity of both scales. Results replicated the two factor structures for the DMS-S and MBAS-S. Both scales showed excellent levels of internal consistency, and various measures of construct validity indicated that the DMS-S and MBAS-S were acceptable and valid instruments to assess body dissatisfaction in Argentinian males.

  20. Validity of a Wearable Accelerometer Device to Measure Average Acceleration Values During High-Speed Running.

    PubMed

    Alexander, Jeremy P; Hopkinson, Trent L; Wundersitz, Daniel W T; Serpell, Benjamin G; Mara, Jocelyn K; Ball, Nick B

    2016-11-01

    Alexander, JP, Hopkinson, TL, Wundersitz, DWT, Serpell, BG, Mara, JK, and Ball, NB. Validity of a wearable accelerometer device to measure average acceleration values during high-speed running. J Strength Cond Res 30(11): 3007-3013, 2016-The aim of this study was to determine the validity of an accelerometer to measure average acceleration values during high-speed running. Thirteen subjects performed three sprint efforts over a 40-m distance (n = 39). Acceleration was measured using a 100-Hz triaxial accelerometer integrated within a wearable tracking device (SPI-HPU; GPSports). To provide a concurrent measure of acceleration, timing gates were positioned at 10-m intervals (0-40 m). Accelerometer data collected during 0-10 m and 10-20 m provided a measure of average acceleration values. Accelerometer data was recorded as the raw output and filtered by applying a 3-point moving average and a 10-point moving average. The accelerometer could not measure average acceleration values during high-speed running. The accelerometer significantly overestimated average acceleration values during both 0-10 m and 10-20 m, regardless of the data filtering technique (p < 0.001). Body mass significantly affected all accelerometer variables (p < 0.10, partial η = 0.091-0.219). Body mass and the absence of a gravity compensation formula affect the accuracy and practicality of accelerometers. Until GPSports-integrated accelerometers incorporate a gravity compensation formula, the usefulness of any accelerometer-derived algorithms is questionable.

  1. Confirmatory factor analysis of the Appraisal of Self-Care Agency Scale - Revised 1

    PubMed Central

    Stacciarini, Thaís Santos Guerra; Pace, Ana Emilia

    2017-01-01

    ABSTRACT Objective: to analyze the factor structure of the Appraisal of Self-Care Agency Scale-Revised (ASAS-R), adapted for Brazil. Method: methodological study conducted with 150 individuals with diabetes mellitus cared for by the Family Health Strategy, most of whom are elderly with low educational levels. The test of the hypothesis concerning the confirmatory factor composition of the ASAS-R was performed using latent variables structural equations. Results: the model’s goodness-of-fit indexes were satisfactory (χ2 = 259.19; χ2/g.l = 2.97, p < 0.001; GFI = 0.85; RMR = 0.07; RMSEA = 0.09); the factor loads were greater than 0.40; and most item-to-factor-correlations presented moderate to strong magnitude (0.34 to 0.58); total alpha value was 0.74, while the alpha of the three factors were 0.69, 0.38 and 0.69, respectively. Conclusion: the scale’s factor structure presented satisfactory validity and reliability results, with the exception of one factor. Application of this scale to samples of the general population is desirable in order to strengthen analyses of internal consistency and the dimensionality of the factor structure. This study is expected to contribute to further studies addressing the self-care agency construct and the development of the ASAS-R. PMID:28146182

  2. Examining the Effect of Reverse Worded Items on the Factor Structure of the Need for Cognition Scale

    PubMed Central

    Noor, Ramsha; Savalei, Victoria

    2016-01-01

    Reverse worded (RW) items are often used to reduce or eliminate acquiescence bias, but there is a rising concern about their harmful effects on the covariance structure of the scale. Therefore, results obtained via traditional covariance analyses may be distorted. This study examined the effect of the RW items on the factor structure of the abbreviated 18-item Need for Cognition (NFC) scale using confirmatory factor analysis. We modified the scale to create three revised versions, varying from no RW items to all RW items. We also manipulated the type of the RW items (polar opposite vs. negated). To each of the four scales, we fit four previously developed models. The four models included a 1-factor model, a 2-factor model distinguishing between positively worded (PW) items and RW items, and two 2-factor models, each with one substantive factor and one method factor. Results showed that the number and type of the RW items affected the factor structure of the NFC scale. Consistent with previous research findings, for the original NFC scale, which contains both PW and RW items, the 1-factor model did not have good fit. In contrast, for the revised scales that had no RW items or all RW items, the 1-factor model had reasonably good fit. In addition, for the scale with polar opposite and negated RW items, the factor model with a method factor among the polar opposite items had considerably better fit than the 1-factor model. PMID:27305001

  3. Evaluation of psychological factors in orthodontic patients with TMD as applied to the "TMJ Scale".

    PubMed

    Yamaguchi, Daisuke; Motegi, Etsuko; Nomura, Mayumi; Narimiya, Yukie; Katsumura, Sakura; Miyazaki, Haruyo; Kaji, Hatsuhiko; Watanabe, Kazuya; Yamaguchi, Hideharu

    2002-05-01

    Physical and psychological evaluation have been required for TMD patients whose problems are multi dimensional. The questionnaire named the "TMJ Scale" was created to differentiate subjective TMD symptoms of patients. The purpose of this study was to clarify the reliability of the TMJ Scale for Japanese orthodontic patients with TMD and to differentiate the symptoms. Fifty orthodontic patients (average age 21y4m) with a chief complaint of TMD symptoms were compared with thirty patients (average age 21y1m) without TMD symptoms. The results were as follows: female patients in the symptom group in particular showed a higher degree of stress due to the chronic pain and abnormalities than those in the non-symptom group. Significant differences were observed in Pain Report, Joint Dysfunction and Global Scale at the 0.1% significant level, in Non-TM Disorder, Psychological Factor and Chronicity at the 1% level, and in Palpation Pain and Perceived Malocclusion at the 5% level in females. Few psychological problems were observed in male patients in the symptom group. Significant differences were observed in Range of Motion limitation at the 5% level in males. The differences in the psychological factors between male and female patients were clarified by using the TMJ Scale. These findings suggested that it was useful to differentiate the multiple symptoms, especially the psychological factors, by using the TMJ Scale for orthodontic patients with TMD.

  4. New modes and mechanisms of thermospheric mass density variations from GRACE accelerometers

    NASA Astrophysics Data System (ADS)

    Calabia, Andres; Jin, Shuanggen

    2016-11-01

    Monitoring and understanding the upper atmosphere processes is important for orbital decay and space physics. Nowadays, Low Earth Orbit (LEO) accelerometers provide a unique opportunity to study thermospheric density variations with unprecedented details. In this paper, thermospheric mass densities variations from Gravity Recovery and Climate Experiment (GRACE) accelerometers are investigated for the period 2003-2016 using the principal component analysis (PCA). The resulting modes are analyzed and parameterized in terms of solar and magnetospheric forcing, local solar time (LST), and annual variations. A better understanding of global thermospheric air density variations is presented, which validates the suitability of our technique and model. The parameterization of the subsolar-point annual variation shows two maxima around June and only one in December. The LST parameterization shows a new fluctuation controlling a middle latitude four-wave pattern, with two maxima at 12 h and 21 h LST and two minima at 1 h and 17 h LST. Our parameterizations are suitable to represent small-scale variations including, e.g., the equatorial mass density anomaly (EMA) and the midnight density maximum (MDM). Finally, the residuals are analyzed in the spectral domain, and additional contributions are found at the frequencies of the radiational tides and at the periods of 83, 93, 152, and 431 days.

  5. Microgravity Level Measurement of the Beijing Drop Tower Using a Sensitive Accelerometer

    PubMed Central

    Liu, T. Y.; Wu, Q. P.; Sun, B. Q.; Han, F. T.

    2016-01-01

    Drop tower is the most common ground-based facility to provide microgravity environment and widely used in many science experiments. A differential space accelerometer has been proposed to test the spin-gravity interaction between rotating extended bodies onboard a drag-free satellite. In order to assist design and test of this inertial sensor in a series of ground- based pre-flight experiments, it is very important to know accurately the residual acceleration of drop towers. In this report, a sensitive instrument for this purpose was built with a high-performance servo quartz accelerometer, and the dedicated interface electronics design providing small full-scale range and high sensitivity, up to 136.8 V/g0. The residual acceleration at the Beijing drop tower was measured using two different drop capsules. The experimental result shows that the microgravity level of the free-falling double capsule is better than 2 × 10−4g0 (Earth’s gravity). The measured data in this report provides critical microgravity information for design of the following ground experiments. PMID:27530726

  6. Microgravity Level Measurement of the Beijing Drop Tower Using a Sensitive Accelerometer.

    PubMed

    Liu, T Y; Wu, Q P; Sun, B Q; Han, F T

    2016-08-17

    Drop tower is the most common ground-based facility to provide microgravity environment and widely used in many science experiments. A differential space accelerometer has been proposed to test the spin-gravity interaction between rotating extended bodies onboard a drag-free satellite. In order to assist design and test of this inertial sensor in a series of ground- based pre-flight experiments, it is very important to know accurately the residual acceleration of drop towers. In this report, a sensitive instrument for this purpose was built with a high-performance servo quartz accelerometer, and the dedicated interface electronics design providing small full-scale range and high sensitivity, up to 136.8 V/g0. The residual acceleration at the Beijing drop tower was measured using two different drop capsules. The experimental result shows that the microgravity level of the free-falling double capsule is better than 2 × 10(-4)g0 (Earth's gravity). The measured data in this report provides critical microgravity information for design of the following ground experiments.

  7. Accelerometer-derived activity correlates with volitional swimming speed in lake sturgeon (Acipenser fulvescens)

    USGS Publications Warehouse

    Thiem, J.D.; Dawson, J.W.; Gleiss, A.C.; Martins, E.G.; Haro, Alexander J.; Castro-Santos, Theodore R.; Danylchuk, A.J.; Wilson, R.P.; Cooke, S.J.

    2015-01-01

    Quantifying fine-scale locomotor behaviours associated with different activities is challenging for free-swimming fish.Biologging and biotelemetry tools can help address this problem. An open channel flume was used to generate volitionalswimming speed (Us) estimates of cultured lake sturgeon (Acipenser fulvescens Rafinesque, 1817) and these were paired withsimultaneously recorded accelerometer-derived metrics of activity obtained from three types of data-storage tags. This studyexamined whether a predictive relationship could be established between four different activity metrics (tail-beat frequency(TBF), tail-beat acceleration amplitude (TBAA), overall dynamic body acceleration (ODBA), and vectorial dynamic body acceleration(VeDBA)) and the swimming speed of A. fulvescens. Volitional Us of sturgeon ranged from 0.48 to 2.70 m·s−1 (0.51–3.18 bodylengths (BL) · s−1). Swimming speed increased linearly with all accelerometer-derived metrics, and when all tag types werecombined, Us increased 0.46 BL·s−1 for every 1 Hz increase in TBF, and 0.94, 0.61, and 0.94 BL·s−1 for every 1g increase in TBAA,ODBA, and VeDBA, respectively. Predictive relationships varied among tag types and tag-specific parameter estimates of Us arepresented for all metrics. This use of acceleration data-storage tags demonstrated their applicability for the field quantificationof sturgeon swimming speed.

  8. College Students and Condom Attitude: Validation of the Multi-Factor Attitude toward Condoms Scale (MFACS)

    ERIC Educational Resources Information Center

    Hollub, Ariane V.; Reece, Michael; Herbenick, Debby; Hensel, Devon J.; Middlestadt, Susan E.

    2011-01-01

    Objective: Sexually transmitted infections and the human immunodeficiency virus incidence rates remain high among college-aged individuals. This study examined the validity and reliability of the Multi-Factor Attitude toward Condoms Scale (MFACS). Participants: Participants were recruited from a large midwestern university during February and…

  9. Factor Structure of the New Imaginary Audience Scale in a Sample of Female College Students

    ERIC Educational Resources Information Center

    Kuterbach, James M.

    2007-01-01

    The New Imaginary Audience Scale (NIAS; Lapsley, FitzGerald, Rice, & Jackson, 1989) has been used as a research tool with both high school and college aged samples, yet there is no structural validity evidence for its use with college students. This study examined the structural validity of the NIAS via an exploratory factor analysis, using a…

  10. General Factor Loadings and Specific Effects of the Differential Ability Scales, Second Edition Composites

    ERIC Educational Resources Information Center

    Maynard, Jennifer L.; Floyd, Randy G.; Acklie, Teresa J.; Houston, Lawrence, III

    2011-01-01

    The purpose of this study was to investigate the "g" loadings and specific effects of the core and diagnostic composite scores from the Differential Abilities Scales, Second Edition (DAS-II; Elliott, 2007a). Scores from a subset of the DAS-II standardization sample for ages 3:6 to 17:11 were submitted to principal factor analysis. Four…

  11. Factor Structure, Reliability and Validity of the Taiwanese Version of the Multidimensional Anxiety Scale for Children

    ERIC Educational Resources Information Center

    Yen, Cheng-Fang; Yang, Pinchen; Wu, Yu-Yu; Hsu, Fan-Ching; Cheng, Chung-Ping

    2010-01-01

    The aims of this study were to examine the factor structure, internal consistency 1 month test-retest reliability and the discriminant validity for the diagnosis of anxiety disorder of the Taiwanese version of the Multidimensional Anxiety Scale for Children (MASC-T). A total of 12,536 Taiwanese children and adolescents in the community were…

  12. Factor Structure of the Liebowitz Social Anxiety Scale for Children and Adolescents

    ERIC Educational Resources Information Center

    Storch, Eric A.; Masia-Warner, Carrie; Heidgerken, Amanda D.; Fisher, Paige H.; Pincus, Donna B.; Liebowitz, Michael R.

    2006-01-01

    The purpose of this study was to evaluate the factor structure of the Liebowitz Social Anxiety Scale for Children and Adolescents (LSAS-CA). The LSAS-CA was administered to 225 children and adolescents as a component of various clinical studies. In addition, other measures of psychopathology and impairment were administered to a subgroup of the…

  13. The Factor Structure and Screening Utility of the Social Interaction Anxiety Scale

    ERIC Educational Resources Information Center

    Rodebaugh, Thomas L.; Woods, Carol M.; Heimberg, Richard G.; Liebowitz, Michael R.; Schneier, Franklin R.

    2006-01-01

    The widely used Social Interaction Anxiety Scale (SIAS; R. P. Mattick & J. C. Clarke, 1998) possesses favorable psychometric properties, but questions remain concerning its factor structure and item properties. Analyses included 445 people with social anxiety disorder and 1,689 undergraduates. Simple unifactorial models fit poorly, and models that…

  14. Assessing Disharmony and Disaffection in Intimate Relationships: Revision of the Marital Satisfaction Inventory Factor Scales

    ERIC Educational Resources Information Center

    Herrington, Rachael L.; Mitchell, Alexandra E.; Castellani, Angela M.; Joseph, Jana I.; Snyder, Douglas K.; Gleaves, David H.

    2008-01-01

    Previous research has identified 2 broad components of distress in intimate relationships: overt conflict, or "disharmony", and emotional distance, or "disaffection". Using confirmatory factor analysis, the authors derived 2 broadband scales of disharmony and disaffection from the Marital Satisfaction Inventory-Revised (D. K. Snyder, 1997),…

  15. Replication of the Adjustment Scales for Children and Adolescents Core Syndrome Factor Structure

    ERIC Educational Resources Information Center

    Canivez, Gary L.

    2004-01-01

    Independent examination and replication of the core syndrome factor structure of the Adjustment Scales for Children and Adolescents (ASCA; McDermott, Marston, & Stott, 1993) is reported. A sample of 1,020 children were randomly selected from their classroom and rated on the ASCA by their teacher. The six ASCA core syndromes produced a…

  16. Factor Structure and Differential Validity of the Expanded Brief Psychiatric Rating Scale

    ERIC Educational Resources Information Center

    Thomas, Adrian; Donnell, Alison J.; Young, Tony R.

    2004-01-01

    The Brief Psychiatric Rating Scale (BPRS) is one of the most widely used measures in psychiatric outcome and clinical psychopharmacology research. To date, however, research on the psychometric properties of the expanded version of the BPRS (BPRS-E) has been limited. An exploratory factor analysis (n = 360) using maximum likelihood extraction with…

  17. Landscape-scale variation in an anthropogenic factor shapes immune gene variation within a wild population.

    PubMed

    Gonzalez-Quevedo, Catalina; Davies, Richard G; Phillips, Karl P; Spurgin, Lewis G; Richardson, David S

    2016-09-01

    Understanding the spatial scale at which selection acts upon adaptive genetic variation in natural populations is fundamental to our understanding of evolutionary ecology, and has important ramifications for conservation. The environmental factors to which individuals of a population are exposed can vary at fine spatial scales, potentially generating localized patterns of adaptation. Here, we compared patterns of neutral and major histocompatibility complex (MHC) variation within an island population of Berthelot's pipit (Anthus berthelotii) to assess whether landscape-level differences in pathogen-mediated selection generate fine-scale spatial structuring in these immune genes. Specifically, we tested for spatial associations between the distribution of avian malaria, and the factors previously shown to influence that distribution, and MHC variation within resident individuals. Although we found no overall genetic structure across the population for either neutral or MHC loci, we did find localized associations between environmental factors and MHC variation. One MHC class I allele (ANBE48) was directly associated with malaria infection risk, while the presence of the ANBE48 and ANBE38 alleles within individuals correlated (positively and negatively, respectively) with distance to the nearest poultry farm, an anthropogenic factor previously shown to be an important determinant of disease distribution in the study population. Our findings highlight the importance of considering small spatial scales when studying the patterns and processes involved in evolution at adaptive loci.

  18. Factor Structure of the Restricted Academic Situation Scale: Implications for ADHD

    ERIC Educational Resources Information Center

    Karama, Sherif; Amor, Leila Ben; Grizenko, Natalie; Ciampi, Antonio; Mbekou, Valentin; Ter-Stepanian, Marina; Lageix, Philippe; Baron, Chantal; Schwartz, George; Joober, Ridha

    2009-01-01

    Background: To study the factor structure of the Restricted Academic Situation Scale (RASS), a psychometric tool used to assess behavior in children with ADHD, 117 boys and 21 girls meeting "Diagnostic and Statistical Manual of Mental Disorders" (4th ed.; "DSM-IV") criteria for ADHD and aged between 6 and 12 years were recruited. Assessments were…

  19. Confirmatory Factor Analytical Study of the Revised Developmental Work Personality Scale

    ERIC Educational Resources Information Center

    Wong, Alex W. K.; O'Sullivan, Deirdre; Strauser, David R.

    2012-01-01

    This study investigated psychometric properties of the Revised Developmental Work Personality Scale (RDWPS). Results yielded a 14-item three-factor model that aligns with the original DWPS and fits the data very well. RDWPS scores were useful in predicting the resolution of Erikson's fourth stage of development, indicating construct validity.…

  20. Homework Distraction Scale: Confirming the Factor Structure With Middle School Students

    ERIC Educational Resources Information Center

    Xu, Jianzhong; Fan, Xitao; Du, Jianxia

    2016-01-01

    The goal of the current investigation was to evaluate psychometric properties of the Homework Distraction Scale (HDS) using 796 middle school students. Results from confirmatory factor analyses (CFAs) supported the presence of two distinct yet related subscales for the HDS: Conventional Distraction and Tech-Related Distraction. Results of…

  1. Societal Factors Impacting Child Welfare: Validating the Perceptions of Child Welfare Scale

    ERIC Educational Resources Information Center

    Auerbach, Charles; Zeitlin, Wendy; Augsberger, Astraea; McGowan, Brenda G.; Claiborne, Nancy; Lawrence, Catherine K.

    2015-01-01

    Objective: This research examines the psychometric properties of the Perceptions of Child Welfare Scale (PCWS). This instrument is designed to assess child welfare workers' understanding of how society views their role and their work. Methods: Confirmatory factor analysis (CFA) was utilized to analyze data on 538 child welfare workers. Results:…

  2. An Evaluation of the Factor Structure of the Frost Multidimensional Perfectionism Scale

    ERIC Educational Resources Information Center

    Harvey, Bronwyn; Pallant, Julie; Harvey, David

    2004-01-01

    The purpose of the study was to investigate whether the six-factor structure of the Frost Multidimensional Perfectionism Scale could be replicated in a community-based sample. A sample of 255 adult participants (55.7% female, 44.3% male) ranging in age from 18 to 78 (mean = 37.0) completed the questionnaire. Based on the screen test and parallel…

  3. Factor Structure and Correlates of the Dissociative Experiences Scale in a Large Offender Sample

    ERIC Educational Resources Information Center

    Ruiz, Mark A.; Poythress, Norman G.; Lilienfeld, Scott O.; Douglas, Kevin S.

    2008-01-01

    The authors examined the psychometric properties, factor structure, and construct validity of the Dissociative Experiences Scale (DES) in a large offender sample (N = 1,515). Although the DES is widely used with community and clinical samples, minimal work has examined offender samples. Participants were administered self-report and interview…

  4. Teacher Reporting Attitudes Scale (TRAS): Confirmatory and Exploratory Factor Analyses with a Malaysian Sample

    ERIC Educational Resources Information Center

    Choo, Wan Yuen; Walsh, Kerryann; Chinna, Karuthan; Tey, Nai Peng

    2013-01-01

    The Teacher Reporting Attitude Scale (TRAS) is a newly developed tool to assess teachers' attitudes toward reporting child abuse and neglect. This article reports on an investigation of the factor structure and psychometric properties of the short form Malay version of the TRAS. A self-report cross-sectional survey was conducted with 667 teachers…

  5. Trauma Resilience Scale: Validation of Protective Factors Associated with Adaptation following Violence

    ERIC Educational Resources Information Center

    Madsen, Machelle D.; Abell, Neil

    2010-01-01

    Objectives: The Trauma Resilience Scale (TRS), assessing protective factors associated with positive adaptation following violence, was tested in three waves of data collection. Empirical and theoretical literature shaped subscale and item formation emphasizing resilience following physical abuse, sexual abuse, intimate partner violence, and/or a…

  6. The Factor Structure of Preschool Learning Behaviors Scale Scores in Peruvian Children

    ERIC Educational Resources Information Center

    Hahn, Kathryn R.; Schaefer, Barbara A.; Merino, Cesar; Worrell, Frank C.

    2009-01-01

    The factor structure of the Escala de Conductas de Aprendizaje Preescolar (ECAP), a Spanish translation of the Preschool Learning Behaviors Scale (PLBS), was examined in this study. Children aged 2 to 6 years (N = 328) enrolled in public and private preschools in the Republic of Peru were rated by classroom teachers on the frequency of observable,…

  7. Unrestricted Factor Analytic Procedures for Assessing Acquiescent Responding in Balanced, Theoretically Unidimensional Personality Scales

    ERIC Educational Resources Information Center

    Ferrando, Pere J.; Lorenzo-Seva, Urbano; Chico, Eliseo

    2003-01-01

    This article describes and proposes an unrestricted factor analytic procedure to: (a) assess the dimensionality and structure of a balanced personality scale taking into account the potential effects of acquiescent responding, and (b) correct the individual trait estimates for acquiescence. The procedure can be considered as an extension of ten…

  8. Defining Distinct Negative Beliefs about Uncertainty: Validating the Factor Structure of the Intolerance of Uncertainty Scale

    ERIC Educational Resources Information Center

    Sexton, Kathryn A.; Dugas, Michel J.

    2009-01-01

    This study examined the factor structure of the English version of the Intolerance of Uncertainty Scale (IUS; French version: M. H. Freeston, J. Rheaume, H. Letarte, M. J. Dugas, & R. Ladouceur, 1994; English version: K. Buhr & M. J. Dugas, 2002) using a substantially larger sample than has been used in previous studies. Nonclinical…

  9. Factor Structure of the Stanford-Binet Intelligence Scale (Fourth Ed.) for Gifted Children.

    ERIC Educational Resources Information Center

    McCallum, R. Steve; And Others

    1988-01-01

    Administration of the Stanford-Binet Intelligence Scale (fourth edition) to 60 elementary school students (in grades four, five, and six) resulted in means consistent with their gifted status. Factor analyses, including LISREL confirmatory analysis, offered only partial support to the Binet model. (TJH)

  10. Validity of wrist worn accelerometers and comparability between hip and wrist placement sites in estimating physical activity behaviour in preschool children.

    PubMed

    Hislop, Jane; Palmer, Nicole; Anand, Priya; Aldin, Tara

    2016-09-21

    Wrist-worn accelerometers can increase compliance with wearing accelerometers, however, several large scale studies continue to use hip-worn accelerometers and it is unclear how comparable data is from the two sites. The study aims were: to investigate agreement between wrist- and hip- worn accelerometers and to determine the validity of Johansson et al cut-points for wrist worn accelerometers in preschool children. A sample of 32 preschool children (21 boys, 4.2 (0.5) years, BMI 16.6 (1.1)) were videoed wearing GT3X+  accelerometers on their wrist and hip while they engaged in 1 h of free-play in their nursery. Children's activity were coded using, the children's activity rating scale (CARS): with CARS, level 1 'sedentary' and levels 2-5 were classified as time spent in total physical activity (TPA). Accelerometry data were processed using Johansson et al cut-points for the wrist data and Evenson et al cut-points for the hip data, into time spent in different intensities of physical activity (PA). The mean counts per minute (cpm) from the hip and wrist were compared. There was a strong correlation between the hip and wrist cpm (r  =  0.81, p  <  0.01) and total count data (r  =  0.83 p  <  0.01), however there was a large systematic bias with wide limits of agreement. Good agreement (mean difference (LOA) 1.1 (-9.9, 12.1) was found between the CARS estimate of TPA (29.5 (10.4) mins) and the wrist estimate, using the Johansson et al cut points (28.4 (9.8) mins). There was also a reasonable agreement between the hip estimates with the Evenson et al cut-points and Johansson et al estimate (mean difference (LOA):6.3 (-8.8, 21.4) mins. In conclusion, the findings suggest that the Johansson et al (2013 Pediatr. Obes. 10 1-6) cut-points applied to wrist worn accelerometers provides a valid estimate of TPA in preschool children and have reasonable agreement with Evenson et al cut-points applied to hip accelerometers.

  11. Factor analysis of the Career Decision Scale on South African high school students.

    PubMed

    Watson, M B; Foxcroft, C D; Stead, G B

    1991-12-01

    A factor analytic study of the Career Decision Scale-High School version of Hartman and Hartman on 312 white South African adolescents from Grades 11 and 12 was undertaken. A simple two-factor structure emerged which accounted for 47.36% of the total variance in the scores. These results support the use of the version as a differential measure of career indecision and indicate that the number and structure of factors can change across populations. The implications of these results for research in South Africa are considered.

  12. Potential Application Of Radionuclide Scaling Factors To High Level Waste Characterization

    SciTech Connect

    Reboul, S. H.

    2013-09-30

    Production sources, radiological properties, relative solubilities in waste, and laboratory analysis techniques for the forty-five radionuclides identified in Hanford's Waste Treatment and Immobilization Plant (WTP) Feed Acceptance Data Quality Objectives (DQO) document are addressed in this report. Based on Savannah River Site (SRS) experience and waste characteristics, thirteen of the radionuclides are judged to be candidates for potential scaling in High Level Waste (HLW) based on the concentrations of other radionuclides as determined through laboratory measurements. The thirteen radionuclides conducive to potential scaling are: Ni-59, Zr-93, Nb-93m, Cd-113m, Sn-121m, Sn-126, Cs-135, Sm-151, Ra-226, Ra-228, Ac-227, Pa-231, and Th-229. The ability to scale radionuclides is useful from two primary perspectives: 1) it provides a means of checking the radionuclide concentrations that have been determined by laboratory analysis; and 2) it provides a means of estimating radionuclide concentrations in the absence of a laboratory analysis technique or when a complex laboratory analysis technique fails. Along with the rationale for identifying and applying the potential scaling factors, this report also provides examples of using the scaling factors to estimate concentrations of radionuclides in current SRS waste and into the future. Also included in the report are examples of independent laboratory analysis techniques that can be used to check results of key radionuclide analyses. Effective utilization of radionuclide scaling factors requires understanding of the applicable production sources and the chemistry of the waste. As such, the potential scaling approaches identified in this report should be assessed from the perspective of the Hanford waste before reaching a decision regarding WTP applicability.

  13. Effects of message framing on self-report and accelerometer-assessed physical activity across age and gender groups.

    PubMed

    Li, Kin-Kit; Cheng, Sheung-Tak; Fung, Helene H

    2014-02-01

    This study compared message-framing effects on physical activity (PA) across age and gender groups. Participants included 111 younger and 100 older adults (68% were women), randomly assigned to read gain-framed or loss-framed PA messages in promotion pamphlets, and who wore accelerometers for the following 14 days. Using regression analyses controlling for demographic and health factors, we found significant age-by-gender-by-framing interactions predicting self-report (B = -4.39, p = .01) and accelerometer-assessed PA (B = -2.44, p = .02) during the follow-up period. Gain-framed messages were more effective than loss-framed messages in promoting PA behaviors only among older men. We speculated that the age-related positivity effect, as well as the age and gender differences in issue involvement, explained the group differences in framing. In addition, more time availability and higher self-efficacy among older men might have contributed to the results.

  14. Factor Structure and Psychometric Properties of the Work-Family Balance Scale in an Urban Chinese Sample

    ERIC Educational Resources Information Center

    Zhang, Huiping; Yip, Paul S. F.; Chi, Peilian; Chan, Kinsun; Cheung, Yee Tak; Zhang, Xiulan

    2012-01-01

    The purpose of this study was to explore the factor structure of the Work-Family Balance Scale (WFBS) and examine its reliability and validity in use in the urban Chinese population. The scale was validated using a sample of 605 urban Chinese residents from 7 cities. Exploratory factor analysis identified two factors: work-family conflict and…

  15. Vibrational frequency scale factors for density functional theory and the polarization consistent basis sets.

    PubMed

    Laury, Marie L; Carlson, Matthew J; Wilson, Angela K

    2012-11-15

    Calculated harmonic vibrational frequencies systematically deviate from experimental vibrational frequencies. The observed deviation can be corrected by applying a scale factor. Scale factors for: (i) harmonic vibrational frequencies [categorized into low (<1000 cm(-1)) and high (>1000 cm(-1))], (ii) vibrational contributions to enthalpy and entropy, and (iii) zero-point vibrational energies (ZPVEs) have been determined for widely used density functionals in combination with polarization consistent basis sets (pc-n, n = 0,1,2,3,4). The density functionals include pure functionals (BP86, BPW91, BLYP, HCTH93, PBEPBE), hybrid functionals with Hartree-Fock exchange (B3LYP, B3P86, B3PW91, PBE1PBE, mPW1K, BH&HLYP), hybrid meta functionals with the kinetic energy density gradient (M05, M06, M05-2X, M06-2X), a double hybrid functional with Møller-Plesset correlation (B2GP-PLYP), and a dispersion corrected functional (B97-D). The experimental frequencies for calibration were from 41 organic molecules and the ZPVEs for comparison were from 24 small molecules (diatomics, triatomics). For this family of basis sets, the scale factors for each property are more dependent on the functional selection than on basis set level, and thus allow for a suggested scale factor for each density functional when employing polarization consistent basis sets (pc-n, n = 1,2,3,4). A separate scale factor is recommended when the un-polarized basis set, pc-0, is used in combination with the density functionals.

  16. Allometric scaling and prediction of concentration-time profiles of coagulation factors in humans from animals.

    PubMed

    Mahmood, Iftekhar

    2013-09-01

    Allometric scaling is a useful tool in early drug development and can be used for the prediction of human pharmacokinetic (PK) parameters from animal PK parameters. The main objective of this work was to predict concentration-time profiles of coagulation factors in humans in a multi-compartment system using animal PK parameters. The prediction of concentration-time profiles in humans in a multi-compartment system was based on the predicted values of clearance and volumes of distribution (V(c), V(ss) and V(β)) from animals. Five coagulation factors from the literature were chosen that were described by two-compartment model in both humans and animals. Clearance and volumes of distribution from animals were allometrically scaled to humans and then were used to predict concentration-time profiles in humans. The predicted concentration-time profile for a given coagulation factor was accurate for most of the time points. Percent prediction error range varied across coagulation factors. The prediction error >50% was observed either at 1 or a maximum of two time points for a given drug. The study indicated that the allometric scaling can be useful in the prediction of concentration-time profiles of coagulation factors in humans from animals and may be helpful in designing a first-in-human study.

  17. The Skin Picking Impact Scale: Factor structure, validity and development of a short version.

    PubMed

    Snorrason, Ivar; Olafsson, Ragnar P; Flessner, Christopher A; Keuthen, Nancy J; Franklin, Martin E; Woods, Douglas W

    2013-08-01

    In the present study, we examined the psychometric properties of the Skin Picking Impact Scale (SPIS; Keuthen, Deckersbach, Wilhelm et al., 2001), a 10 item self-report questionnaire designed to assess the psychosocial impact of skin picking disorder (SPD). Participants were 650 individuals who met criteria for SPD in an online survey. Exploratory and confirmatory factor analyses demonstrated a unitary factor structure with high internal consistency (α = 0.94). Consequently, we constructed an abbreviated 4-item version that retained good internal consistency (α = 0.87) and a robust factor structure. Both the short and the full versions demonstrated discriminant and convergent/concurrent validity. In conclusion, the findings indicate that both versions are psychometrically sound measures of SPD related psychosocial impact; however, some potential limitations of the full scale are discussed.

  18. Factor analysis of the Hospital Anxiety and Depression Scale from a large cancer population.

    PubMed

    Smith, Adam B; Selby, Peter J; Velikova, Galina; Stark, Dan; Wright, E Penny; Gould, Ann; Cull, Ann

    2002-06-01

    The Hospital Anxiety and Depression Scale (HADS) is widely used as a tool for assessing psychological distress in patients and non-clinical groups. Previous studies have demonstrated conflicting results regarding the factor structure of the questionnaire for different groups of patients, and the general population. This study investigated the factor structure of the HADS in a large heterogeneous cancer population of 1474 patients. It also sought to investigate emerging evidence that the HADS conforms to the tripartite model of anxiety and depression (Clark & Watson, 1993), and to test the proposal that detection rates for clinical cases of anxiety and depression could be enhanced by partialling out the effects of higher order factors from the HADS (Dunbar et al., 2000). The results demonstrated a two-factor structure corresponding to the Anxiety and Depression subscales of the questionnaire. The factor structure remained stable for different subgroups of the sample, for males and females, as well as for different age groups, and a subgroup of metastatic cancer patients. The two factors were highly correlated (r =.52) and subsequent secondary factor analyses demonstrated a single higher order factor corresponding to psychological distress or negative affectivity. We concluded that the HADS comprises two factors corresponding to anhedonia and autonomic anxiety, which share a common variance with a primary factor namely psychological distress, and that the subscales of the HADS, rather than the residual scores (e.g. Dunbar et al., 2000) were more effective at detecting clinical cases of anxiety and depression.

  19. Teacher Reporting Attitudes Scale (TRAS): confirmatory and exploratory factor analyses with a Malaysian sample.

    PubMed

    Choo, Wan Yuen; Walsh, Kerryann; Chinna, Karuthan; Tey, Nai Peng

    2013-01-01

    The Teacher Reporting Attitude Scale (TRAS) is a newly developed tool to assess teachers' attitudes toward reporting child abuse and neglect. This article reports on an investigation of the factor structure and psychometric properties of the short form Malay version of the TRAS. A self-report cross-sectional survey was conducted with 667 teachers in 14 randomly selected schools in Selangor state, Malaysia. Analyses were conducted in a 3-stage process using both confirmatory (stages 1 and 3) and exploratory factor analyses (stage 2) to test, modify, and confirm the underlying factor structure of the TRAS in a non-Western teacher sample. Confirmatory factor analysis did not support a 3-factor model previously reported in the original TRAS study. Exploratory factor analysis revealed an 8-item, 4-factor structure. Further confirmatory factor analysis demonstrated appropriateness of the 4-factor structure. Reliability estimates for the four factors-commitment, value, concern, and confidence-were moderate. The modified short form TRAS (Malay version) has potential to be used as a simple tool for relatively quick assessment of teachers' attitudes toward reporting child abuse and neglect. Cross-cultural differences in attitudes toward reporting may exist and the transferability of newly developed instruments to other populations should be evaluated.

  20. Pioneer Anomaly and Space Accelerometer for Gravity Test

    NASA Astrophysics Data System (ADS)

    Levy, Agnès; Christophe, Bruno; Reynaud, Serge

    2006-06-01

    The Pioneer 10 and 11 spacecraft are subject to an unexplained acceleration which has a constant value of (8.74 1.33) \\cdot 10-10 m\\cdot s-2 and seems to be directed toward the sun. The hypotheses to explain this anomaly are either technical artifacts or new physics. This presentation deals with the unfolding of two aspects of my thesis: Doppler and telemetry data analysis with the objective to investigate the nature of the anomaly, and adapation of an ONERA accelerometer for a future mission in which the anomaly will be confirmed and more precisely measured. The presence of an accelerometer is mandatory for the identification of the anomaly's origin.

  1. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates.

    PubMed

    Liu, Fufei; Dai, Yutang; Karanja, Joseph Muna; Yang, Minghong

    2017-01-22

    To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating) accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7-20 Hz range.

  2. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates

    PubMed Central

    Liu, Fufei; Dai, Yutang; Karanja, Joseph Muna; Yang, Minghong

    2017-01-01

    To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating) accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7–20 Hz range. PMID:28117740

  3. Guidelines for Standardized Testing of Broadband Seismometers and Accelerometers

    USGS Publications Warehouse

    Hutt, Charles R.; Evans, John R.; Followill, Fred; Nigbor, Robert L.; Wielandt, Erhard

    2010-01-01

    Testing and specification of seismic and earthquake-engineering sensors and recorders has been marked by significant variations in procedures and selected parameters. These variations cause difficulty in comparing such specifications and test results. In July 1989, and again in May 2005, the U.S. Geological Survey hosted international pub-lic/private workshops with the goal of defining widely accepted guidelines for the testing of seismological inertial sensors, seismometers, and accelerometers. The Proceedings of the 2005 workshop have been published and include as appendix 6 the report of the 1989 workshop. This document represents a collation and rationalization of a single set of formal guidelines for testing and specifying broadband seismometers and accelerometers.

  4. Champ Accelerometer: Evaluation and Contribution To The Gravity Mission

    NASA Astrophysics Data System (ADS)

    Perosanz, F.; Loyer, S.; Bruinsma, S.; Tamagnan, D.; Lemoine, J. M.; Biancale, R.; Fayard, T.; Vales, N.; Touboul, P.

    The STAR accelerometer on-board the German CHAMP satellite delivers non- gravitational accelerations with an unprecedented resolution. This study presents the global evaluation of the instrument in terms of continuous measurement and "House Keeping" parameters surveying, a posteriori calibration strategy and results and mis- function analysis and correction. In addition the contribution of the STAR accelerom- eter to dynamic orbit computation and gravity modelling is evaluated. Different orbit fit solutions and geoid models resulting from gravity field test models are compared.

  5. Measuring gravitation near Mercury: the contribution of ISA accelerometer

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Peron, Roberto; Lucchesi, David; Santoli, Francesco; Lefevre, Carlo; Fiorenza, Emiliano; Nozzoli, Sergio; Lucente, Marco; Magnafico, Carmelo

    2012-07-01

    The forthcoming BepiColombo mission for the exploration of the planet Mercury will include a comprehensive set of experiments --- the so--called Radio Science Experiments (RSE) --- in order to measure the gravitational field of the planet, its rotation, and to perform precise tests of Einstein's general theory of relativity. Fundamental piece of RSE is the high--sensitivity ISA (Italian Spring Accelerometer) accelerometer. It will directly measure the strong non--gravitational perturbations acting on Mercury Planetary Orbiter spacecraft, which are an important source of error in the RSE meaurements. Being the first time for an high--sensitivity accelerometer onboard an interplanetary mission, a number of choices had to be made and several issues had to be faced in the design phases. Following a general description of the instrument scientific objectives, its working and operations will be described. Emphasis will be given on the complex calibration procedures required in the various mission phases and on the integration of the measurements with the overall RSE operations and data analysis.

  6. Micromachined Accelerometers With Optical Interferometric Read-Out and Integrated Electrostatic Actuation

    PubMed Central

    Hall, Neal A.; Okandan, Murat; Littrell, Robert; Serkland, Darwin K.; Keeler, Gordon A.; Peterson, Ken; Bicen, Baris; Garcia, Caesar T.; Degertekin, F. Levent

    2008-01-01

    A micromachined accelerometer device structure with diffraction-based optical detection and integrated electrostatic actuation is introduced. The sensor consists of a bulk silicon proof mass electrode that moves vertically with respect to a rigid diffraction grating backplate electrode to provide interferometric detection resolution of the proof-mass displacement when illuminated with coherent light. The sensor architecture includes a monolithically integrated electrostatic actuation port that enables the application of precisely controlled broadband forces to the proof mass while the displacement is simultaneously and independently measured optically. This enables several useful features such as dynamic self-characterization and a variety of force-feedback modalities, including alteration of device dynamics in situ. These features are experimentally demonstrated with sensors that have been optoelectronically integrated into sub-cubic-millimeter volumes using an entirely surface-normal, rigid, and robust embodiment incorporating vertical cavity surface emitting lasers and integrated photodetector arrays. In addition to small form factor and high acceleration resolution, the ability to self-characterize and alter device dynamics in situ may be advantageous. This allows periodic calibration and in situ matching of sensor dynamics among an array of accelerometers or seismometers configured in a network. PMID:19079635

  7. A novel accelerometer based on the first kind of ferrofluid levitation principle

    NASA Astrophysics Data System (ADS)

    Yao, Jie; Chen, Yibiao; Li, Zhenkun; Zhang, Tianqi; Li, Decai

    2016-09-01

    In this paper, a novel accelerometer exploiting the first kind of ferrofluid levitation principle is presented. The device consists of a piston-shaped container filled with ferrofluid surrounding a nonmagnetic insulating rod, which has the same shape as the container and is regarded as an inertial mass. Two annular magnets outside the container are used to create a non-uniform magnetic field which generates a powerful restoring force acting on the nonmagnetic rod. Under the influence of the external acceleration, two coils can detect the change of the volume distribution of the ferrofluid and transmit the voltage signal, which is proportional to the displacement of the nonmagnetic rod. The determination of the working range, linearity and sensitivity depends on the restoring force, thus these factors affecting the restoring force are sufficiently investigated by calculation and experiment. Furthermore, the comparison between numerical calculations and experimental measurements shows a good agreement. The static characteristics of the accelerometer are obtained by using an optimized structure.

  8. Investigation of the Factor Structure of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV): Exploratory and Higher Order Factor Analyses

    ERIC Educational Resources Information Center

    Canivez, Gary L.; Watkins, Marley W.

    2010-01-01

    The present study examined the factor structure of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV; D. Wechsler, 2008a) standardization sample using exploratory factor analysis, multiple factor extraction criteria, and higher order exploratory factor analysis (J. Schmid & J. M. Leiman, 1957) not included in the WAIS-IV Technical…

  9. Factor structure of the Liebowitz Social Anxiety Scale for Children and Adolescents.

    PubMed

    Storch, Eric A; Masia-Warner, Carrie; Heidgerken, Amanda D; Fisher, Paige H; Pincus, Donna B; Liebowitz, Michael R

    2006-01-01

    The purpose of this study was to evaluate the factor structure of the Liebowitz Social Anxiety Scale for Children and Adolescents (LSAS-CA). The LSAS-CA was administered to 225 children and adolescents as a component of various clinical studies. In addition, other measures of psychopathology and impairment were administered to a subgroup of the sample. Confirmatory factor analyses of the social interaction and performance subscales for the anxiety and avoidance ratings yielded poor fit indices. Exploratory factor analysis supported a two-factor solution with a higher order factor for the LSAS-CA anxiety and avoidance ratings. Based on item content, factors were named Social and School Performance. The internal consistency of the factors was high and the convergent and divergent validity was supported vis-à-vis correlations with measures of depression and social anxiety, and clinician ratings of impairment and functioning. Findings suggest that the anxiety and avoidance ratings are best explained by a two-factor solution that measures social anxiety and avoidance in social and school performance interactions. This factor structure appears to be a reliable and valid framework for assessing childhood social phobia.

  10. Calibration and Validation of a Wrist- and Hip-Worn Actigraph Accelerometer in 4-Year-Old Children

    PubMed Central

    Johansson, Elin; Larisch, Lisa-Marie; Marcus, Claude; Hagströmer, Maria

    2016-01-01

    Introduction To determine time spent at different physical activity intensities, accelerometers need calibration. The aim of this study was to develop and cross-validate intensity thresholds for the Actigraph GT3X+ accelerometer for wrist and hip placement in four-year-old children. Methods In total 30 children (49 months, SD 3.7) were recruited from five preschools in Stockholm. Equipped with an accelerometer on the wrist and another on the hip, children performed three indoor activities and one free-play session while being video recorded. Subsequently, physical activity intensity levels were coded every 5th second according to the Children’s Activity Rating Scale. Receiver Operating Characteristic (ROC) curves was used to develop wrist and hip intensity thresholds, the upper threshold for sedentary, and lower threshold for moderate-to-vigorous physical activity (MVPA), for the vertical axis (VA) and for the vector magnitude (VM). A leave-one-out method was used to cross-validate the thresholds. Results Intensity thresholds for wrist placement were ≤ 178 (VA) and ≤ 328 (VM) for sedentary and ≥ 871 (VA) and ≥ 1393 (VM) counts/5 seconds for MVPA. The corresponding thresholds for hip placement were ≤ 43 (VA) and ≤ 105 (VM) for sedentary and ≥ 290 (VA) and ≥ 512 (VM) for MVPA. The quadratic weighted Kappa was 0.92 (95% CI 0.91–0.93) (VA) and 0.95 (95% CI 0.94–0.96) (VM) for the wrist-worn accelerometer and 0.76 (98% CI 0.74–0.77) and 0.86 (95% CI 0.85–0.87) for the hip-worn. Conclusion Using wrist placement and the VM when measuring physical activity with accelerometry in 4-year-old children is recommended. PMID:27617962

  11. Scales

    MedlinePlus

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Eczema , ringworm , and psoriasis ...

  12. Temporal scaling of bacterial taxa is influenced by both stochastic and deterministic ecological factors.

    PubMed

    van der Gast, Christopher J; Ager, Duane; Lilley, Andrew K

    2008-06-01

    Microorganisms operate at a range of spatial and temporal scales acting as key drivers of ecosystem properties. Therefore, many key questions in microbial ecology require the consideration of both spatial and temporal scales. Spatial scaling, in particular the species-area relationship (SAR), has a long history in ecology and has recently been addressed in microbial ecology. However, the temporal analogue of the SAR, the species-time relationship, has received far less attention even in the science of general ecology. Here we focus upon the role of temporal scaling in microbial ecological patterns by coupling molecular characterization of bacterial communities in discrete island (bioreactor) systems with a macroecological approach. Our findings showed that the temporal scaling exponent (slope), and therefore taxa turnover of the bacterial taxa-time relationship decreased as selective pressure (industrial wastewater concentration) increased. Also, as the concentration of industrial wastewater increased across the bioreactors, we observed a gradual switch from stochastic community assembly to more deterministic (niche)-based considerations. The identification of broad-scale statistical patterns is particularly relevant to microbial ecology, as it is frequently difficult to identify individual species or their functions. In this study, we identify wide-reaching statistical patterns of diversity and show that they are shaped by the prevalent underlying ecological factors.

  13. Characterizing coarse bedload transport during floods with RFID and accelerometer tracers, in-stream RFID antennas and HEC-RAS modeling

    NASA Astrophysics Data System (ADS)

    Olinde, L.; Johnson, J. P.

    2013-12-01

    snowmelt hydrograph are modeled over the 11 kilometers of surveyed stream by utilizing 1m airborne LiDAR and HEC-GeoRAS. Cross-sectional HEC-RAS results are used to estimate the spatial distribution of longitudinal shear velocities over the observed discharges. At final accelerometer tracer positions, we analyze the HEC-RAS generated flow conditions for each disentrainment discharge magnitude. The techniques developed here have the potential to link individual grain characteristics during floods to a range of time and length scales.

  14. Objective measurement of sedentary behaviour using accelerometers

    PubMed Central

    Byrom, B; Stratton, G; Mc Carthy, M; Muehlhausen, W

    2016-01-01

    Background: Sedentary behaviour (SB) is an important risk factor for a number of chronic diseases. Although gaps remain in our knowledge of the elements of SB most associated with reduced health outcomes, measuring SB is important, especially in less active patient populations where treatment-related changes may be seen first in changes in SB. Methods: We review current published work in the measurement of SB to make recommendations for SB measurement in clinical studies. Results: To help move our understanding of the area forward, we propose a set of derived measures of SB that can be easily understood and interpreted. Conclusion: Although there is more work required to determine and validate the most clinically relevant and sensitive measures of SB, there is enough understanding of how to measure SB to enable its inclusion in study protocols. PMID:27478922

  15. The factor structure of the Cornell Scale for Depression in Dementia among probable Alzheimer's disease patients.

    PubMed

    Harwood, D G; Ownby, R L; Barker, W W; Duara, R

    1998-01-01

    The authors rated 137 outpatients with probable Alzheimer's disease (AD) on the Cornell Scale for Depression in Dementia (CSDD) as part of routine evaluation. Principal-factors analysis with varimax rotation resulted in a four-factor solution that accounted for 43.1% of the common variance. The four factors included general depression (lack of reactivity to pleasant events, poor self-esteem, pessimism, loss of interest, physical complaints, psychomotor retardation, sadness); rhythm disturbances (difficulty falling asleep, multiple night awakenings, early morning awakenings, weight loss, diurnal variation of mood); agitation/psychosis (agitation, mood-congruent delusions, suicide); and negative symptoms (appetite loss, weight loss, lack of energy, loss of interest, lack of reactivity to pleasant events). The observed factor structure showed moderate concordance with the five symptom clusters proposed in the original presentation of the CSDD.

  16. Statistical Analysis of Instantaneous Frequency Scaling Factor as Derived From Optical Disdrometer Measurements At KQ Bands

    NASA Technical Reports Server (NTRS)

    Zemba, Michael; Nessel, James; Houts, Jacquelynne; Luini, Lorenzo; Riva, Carlo

    2016-01-01

    The rain rate data and statistics of a location are often used in conjunction with models to predict rain attenuation. However, the true attenuation is a function not only of rain rate, but also of the drop size distribution (DSD). Generally, models utilize an average drop size distribution (Laws and Parsons or Marshall and Palmer. However, individual rain events may deviate from these models significantly if their DSD is not well approximated by the average. Therefore, characterizing the relationship between the DSD and attenuation is valuable in improving modeled predictions of rain attenuation statistics. The DSD may also be used to derive the instantaneous frequency scaling factor and thus validate frequency scaling models. Since June of 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have jointly conducted a propagation study in Milan, Italy utilizing the 20 and 40 GHz beacon signals of the Alphasat TDP#5 Aldo Paraboni payload. The Ka- and Q-band beacon receivers provide a direct measurement of the signal attenuation while concurrent weather instrumentation provides measurements of the atmospheric conditions at the receiver. Among these instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which yields droplet size distributions (DSD); this DSD information can be used to derive a scaling factor that scales the measured 20 GHz data to expected 40 GHz attenuation. Given the capability to both predict and directly observe 40 GHz attenuation, this site is uniquely situated to assess and characterize such predictions. Previous work using this data has examined the relationship between the measured drop-size distribution and the measured attenuation of the link]. The focus of this paper now turns to a deeper analysis of the scaling factor, including the prediction error as a function of attenuation level, correlation between the scaling factor and the rain rate, and the temporal variability of the drop size

  17. Statistical Analysis of Instantaneous Frequency Scaling Factor as Derived From Optical Disdrometer Measurements At KQ Bands

    NASA Technical Reports Server (NTRS)

    Zemba, Michael; Nessel, James; Houts, Jacquelynne; Luini, Lorenzo; Riva, Carlo

    2016-01-01

    The rain rate data and statistics of a location are often used in conjunction with models to predict rain attenuation. However, the true attenuation is a function not only of rain rate, but also of the drop size distribution (DSD). Generally, models utilize an average drop size distribution (Laws and Parsons or Marshall and Palmer [1]). However, individual rain events may deviate from these models significantly if their DSD is not well approximated by the average. Therefore, characterizing the relationship between the DSD and attenuation is valuable in improving modeled predictions of rain attenuation statistics. The DSD may also be used to derive the instantaneous frequency scaling factor and thus validate frequency scaling models. Since June of 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have jointly conducted a propagation study in Milan, Italy utilizing the 20 and 40 GHz beacon signals of the Alphasat TDP#5 Aldo Paraboni payload. The Ka- and Q-band beacon receivers provide a direct measurement of the signal attenuation while concurrent weather instrumentation provides measurements of the atmospheric conditions at the receiver. Among these instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which yields droplet size distributions (DSD); this DSD information can be used to derive a scaling factor that scales the measured 20 GHz data to expected 40 GHz attenuation. Given the capability to both predict and directly observe 40 GHz attenuation, this site is uniquely situated to assess and characterize such predictions. Previous work using this data has examined the relationship between the measured drop-size distribution and the measured attenuation of the link [2]. The focus of this paper now turns to a deeper analysis of the scaling factor, including the prediction error as a function of attenuation level, correlation between the scaling factor and the rain rate, and the temporal variability of the drop

  18. The reasons for betel-quid chewing scale: assessment of factor structure, reliability, and validity

    PubMed Central

    2014-01-01

    Background Despite the fact that betel-quid is one of the most commonly used psychoactive substances worldwide and a major risk-factor for head-and-neck cancer incidence and mortality globally, currently no standardized instrument is available to assess the reasons why individuals chew betel-quid. A measure to assess reasons for chewing betel-quid could help researchers and clinicians develop prevention and treatment strategies. In the current study, we sought to develop and evaluate a self-report instrument for assessing the reasons for chewing betel quid which contributes toward the goal of developing effective interventions to reduce betel quid chewing in vulnerable populations. Methods The current study assessed the factor structure, reliability and convergent validity of the Reasons for Betel-quid Chewing Scale (RBCS), a newly developed 10 item measure adapted from several existing “reasons for smoking” scales. The measure was administered to 351 adult betel-quid chewers in Guam. Results Confirmatory factor analysis of this measure revealed a three factor structure: reinforcement, social/cultural, and stimulation. Further tests revealed strong support for the internal consistency and convergent validity of this three factor measure. Conclusion The goal of designing an intervention to reduce betel-quid chewing necessitates an understanding of why chewers chew; the current study makes considerable contributions towards that objective. PMID:24889863

  19. Impact of different economic factors on biological invasions on the global scale.

    PubMed

    Lin, Wen; Cheng, Xinyue; Xu, Rumei

    2011-04-13

    Social-economic factors are considered as the key to understand processes contributing to biological invasions. However, there has been few quantified, statistical evidence on the relationship between economic development and biological invasion on a worldwide scale. Herein, using principal factor analysis, we investigated the relationship between biological invasion and economic development together with biodiversity for 91 economies throughout the world. Our result indicates that the prevalence of invasive species in the economies can be well predicted by economic factors (R(2) = 0.733). The impact of economic factors on the occurrence of invasive species for low, lower-middle, upper-middle and high income economies are 0%, 34.3%, 46.3% and 80.8% respectively. Greenhouse gas emissions (CO(2), Nitrous oxide, Methane and Other greenhouse gases) and also biodiversity have positive relationships with the global occurrence of invasive species in the economies on the global scale. The major social-economic factors that are correlated to biological invasions are different for various economies, and therefore the strategies for biological invasion prevention and control should be different.

  20. An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process

    NASA Technical Reports Server (NTRS)

    Yazdi, N.; Najafi, K.

    2000-01-01

    This paper reports an all-silicon fully symmetrical z-axis micro-g accelerometer that is fabricated on a single-silicon wafer using a combined surface and bulk fabrication process. The microaccelerometer has high device sensitivity, low noise, and low/controllable damping that are the key factors for attaining micro g and sub-micro g resolution in capacitive accelerometers. The microfabrication process produces a large proof mass by using the whole wafer thickness and a large sense capacitance by utilizing a thin sacrificial layer. The sense/feedback electrodes are formed by a deposited 2-3 microns polysilicon film with embedded 25-35 microns-thick vertical stiffeners. These electrodes, while thin, are made very stiff by the thick embedded stiffeners so that force rebalancing of the proof mass becomes possible. The polysilicon electrodes are patterned to create damping holes. The microaccelerometers are batch-fabricated, packaged, and tested successfully. A device with a 2-mm x 1-mm proof mass and a full bridge support has a measured sensitivity of 2 pF/g. The measured sensitivity of a 4-mm x 1-mm accelerometer with a cantilever support is 19.4 pF/g. The calculated noise floor of these devices at atmosphere are 0.23 micro g/sqrt(Hz) and 0.16 micro g/sqrt(Hz), respectively.

  1. The Disgust Scale: Item Analysis, Factor Structure, and Suggestions for Refinement

    ERIC Educational Resources Information Center

    Olatunji, Bunmi O.; Williams, Nathan L.; Tolin, David F.; Abramowitz, Jonathan S.; Sawchuk, Craig N.; Lohr, Jeffrey M.; Elwood, Lisa S.

    2007-01-01

    In the 4 studies presented (N = 1,939), a converging set of analyses was conducted to evaluate the item adequacy, factor structure, reliability, and validity of the Disgust Scale (DS; J. Haidt, C. McCauley, & P. Rozin, 1994). The results suggest that 7 items (i.e., Items 2, 7, 8, 21, 23, 24, and 25) should be considered for removal from the DS.…

  2. Meta-analysis of the Brief Psychiatric Rating Scale Factor Structure

    ERIC Educational Resources Information Center

    Shafer, Alan

    2005-01-01

    A meta-analysis (N=17,620; k=26) of factor analyses of the Brief Psychiatric Rating Scale (BPRS) was conducted. Analysis of the 12 items from Overall et al.'s (J. E. Overall, L. E. Hollister, & P. Pichot, 1974) 4 subscales found support for his 4 subscales. Analysis of all 18 BPRS items found 4 components similar to those of Overall et al. In a…

  3. Enabling and challenging factors in institutional reform: The case of SCALE-UP

    NASA Astrophysics Data System (ADS)

    Foote, Kathleen; Knaub, Alexis; Henderson, Charles; Dancy, Melissa; Beichner, Robert J.

    2016-06-01

    While many innovative teaching strategies exist, integration into undergraduate science teaching has been frustratingly slow. This study aims to understand the low uptake of research-based instructional innovations by studying 21 successful implementations of the Student Centered Active Learning with Upside-down Pedagogies (SCALE-UP) instructional reform. SCALE-UP significantly restructures the classroom environment and pedagogy to promote highly active and interactive instruction. Although originally designed for university introductory physics courses, SCALE-UP has spread to many other disciplines at hundreds of departments around the world. This study reports findings from in-depth, open-ended interviews with 21 key contact people involved with successful secondary implementations of SCALE-UP throughout the United States. We defined successful implementations as those who restructured their pedagogy and classroom and sustained and/or spread the change. Interviews were coded to identify the most common enabling and challenging factors during reform implementation and compared to the theoretical framework of Kotter's 8-step Change Model. The most common enabling influences that emerged are documenting and leveraging evidence of local success, administrative support, interaction with outside SCALE-UP user(s), and funding. Many challenges are linked to the lack of these enabling factors including difficulty finding funding, space, and administrative and/or faculty support for reform. Our focus on successful secondary implementations meant that most interviewees were able to overcome challenges. Presentation of results is illuminated with case studies, quotes, and examples that can help secondary implementers with SCALE-UP reform efforts specifically. We also discuss the implications for policy makers, researchers, and the higher education community concerned with initiating structural change.

  4. Sign language recognition using intrinsic-mode sample entropy on sEMG and accelerometer data.

    PubMed

    Kosmidou, Vasiliki E; Hadjileontiadis, Leontios J

    2009-12-01

    Sign language forms a communication channel among the deaf; however, automated gesture recognition could further expand their communication with the hearers. In this work, data from five-channel surface electromyogram and 3-D accelerometer from the signer's dominant hand were analyzed using intrinsic-mode entropy (IMEn) for the automated recognition of Greek sign language (GSL) isolated signs. Discriminant analysis was used to identify the effective scales of the intrinsic-mode functions and the window length for the calculation of the IMEn that contributes to the efficient classification of the GSL signs. Experimental results from the IMEn analysis applied to GSL signs corresponding to 60-word lexicon repeated ten times by three native signers have shown more than 93% mean classification accuracy using IMEn as the only source of the classification feature set. This provides a promising bed-set toward the automated GSL gesture recognition.

  5. Factors controlling gully erosion at different spatial and temporal scales in rangelands of SW Spain

    NASA Astrophysics Data System (ADS)

    Gómez Gutiérrez, Á.; Schnabel, S.; Lavado Contador, J. F.; Pulido Fernández, M.

    2009-04-01

    Gully erosion has been recognized as an important soil degradation process in rangelands of SW Spain. However, little is known about gullying processes at different spatial and temporal scales in these areas. Three different approaches were used in this paper to analyze the factors determining gully erosion intensity and rates at different spatial and temporal scales in rangelands of SW Spain. The first approach was based on the monitoring of a permanent valley bottom gully and continuous measurement of rainfall and discharge during the period 2001-2007 in the Parapuños experimental basin. Parapuños is a small catchment (99.5 ha) representative of dehesa land use, with an undulated topography and Mediterranean climate. Gully erosion volume was obtained by means of 28 fixed cross sections measured with a frequency of 6 months. Discharge and rainfall were monitored using a water depth probe installed in a weir at the outlet of the catchment and 6 tipping bucket rain gauges, respectively. The second approach was based on analyzing the development of the same permanent gully located in Parapuños using six series of aerial ortophotographs for the period 1945-2006. This methodology allowed to relate gully evolution with land use and vegetation cover changes. Finally, a relatively new data mining technique, called Multivariate Adaptive Regression Splines (MARS), was applied to construct a model capable of predicting the location of gullies at the regional scale. A large database composed of 36 independent variables related to topography, lithology, soils, rainfall, land use and vegetation cover was used. This statistical technique allowed to determine the importance of the variables involved. This database was gathered in 46 farms representative of rangelands of SW Spain in Extremadura, covering a surface area of 35,459 ha. Farms were quite diverse although their main characteristics were undulating landforms, acid rocks (schists, greywackes and granites), and

  6. Development of a quartz digital accelerometer for environmental sensing and navigation applications

    SciTech Connect

    Kass, W.J.; Vianco, P.T.

    1993-03-01

    A quartz digital accelerometer has been developed which uses double ended tuning forks as the active sensing elements. The authors have demonstrated the ability of this accelerometer to be capable of acceleration measurements between {+-}150G with {+-}0.5G accuracy. They have further refined the original design and assembly processes to produce accelerometers with < 1mG stability in inertial measurement applications. This report covers the development, design, processing, assembly, and testing of these devices.

  7. The Temporal Focus Scale: Factor Structure and Association with Alcohol Use in a Sample of Northern Irish School Children

    ERIC Educational Resources Information Center

    McKay, Michael T.; Percy, Andrew; Goudie, Andrew J.; Sumnall, Harry R.; Cole, Jon C.

    2012-01-01

    The Temporal Focus Scale (TFS) is a 12-item self-report measure of cognitive engagement with the temporal domains of past, present and future. Developed in college student samples, a three-factor structure with adequate reliability and validity was documented in a series of independent studies. We tested the factor structure of the scale in a…

  8. The X-factor in Galaxies: I. Dependence on Environment and Scale

    SciTech Connect

    Feldmann, Robert; Gnedin, Nickolay Y.; Kravtsov, Andrey V.; /Chicago U., EFI /Chicago U.

    2011-12-01

    Characterizing the conversion factor between CO emission and column density of molecular hydrogen, X{sub CO}, is crucial in studying the gaseous content of galaxies, its evolution, and relation to star formation. In most cases the conversion factor is assumed to be close to that of giant molecular clouds (GMCs) in the Milky Way, except possibly for mergers and star-bursting galaxies. However, there are physical grounds to expect that it should also depend on the gas metallicity, surface density, and strength of the interstellar radiation field. The X{sub CO} factor may also depend on the scale on which CO emission is averaged due to effects of limited resolution. We study the dependence of X{sub CO} on gas properties and averaging scale using a model that is based on a combination of results of sub-pc scale magneto-hydrodynamic simulations and on the gas distribution from self-consistent cosmological simulations of galaxy formation. Our model predicts X{sub CO} {approx} 2 - 4 x 10{sup 20} K{sup -1} cm{sup -2} km{sup -1} s, consistent with the Galactic value, for interstellar medium conditions typical for the Milky Way. For such conditions the predicted X{sub CO} varies by only a factor of two for gas surfaced densities in the range {Sigma}{sub H{sub 2}} {approx} 50-500 M{sub {circle_dot}} pc{sup -2}. However, the model also predicts that more generally on the scale of GMCs, X{sub CO} is a strong function of metallicity, and depends on the column density and the interstellar UV flux. We show explicitly that neglecting these dependencies in observational estimates can strongly bias the inferred distribution of H2 column densities of molecular clouds to have a narrower and offset range compared to the true distribution. We find that when averaged on {approx} kpc scales the X-factor depends only weakly on radiation field and column density, but is still a strong function of metallicity. The predicted metallicity dependence can be approximated as X{sub CO} {proportional

  9. Work disability among workers with osteoarthritis of the knee: risks factors, assessment scales, and interventions.

    PubMed

    Gaudreault, Nathaly; Maillette, Pascale; Coutu, Marie-France; Durand, Marie-José; Hagemeister, Nicola; Hébert, Luc J

    2014-12-01

    The prevalence of knee osteoarthritis (OA) among individuals active in the workforce will increase considerably in the next generation and a significant percentage of these individuals are expected to experience work disability because of this disease. The aim of this review was to summarize the existing knowledge on the following: (a) work disability risk factors; (b) reliable and valid work disability assessment tools; and (c) efficient interventions to reduce work disability in individuals with knee OA. An electronic document search using key words and MeSH terms was performed with various databases. Two independent investigators were tasked with the screening of articles and quality assessment. A critical appraisal of what is known was performed and recommendations for clinical practice and future research were formulated. The database search yielded 61 references. One article on risk factors, three related to assessment tools, and two on interventions were retained. Age and previous work absence episodes were found to be risk factors of workplace disability. The Work Limitation Questionnaire, the Work Instability Scale for Rheumatoid Arthritis, and the Workplace Activity Limitations Scale were psychometrically sound for the population studied. Education-based interventions seem to be more effective than conventional interventions in helping individuals with knee OA return to work faster, reduce the number of days absent from work, and improve their overall well-being. This review is the first to summarize the evidence on work disability risk factors, assessment tools, and interventions for this growing population and to show a critical gap in the existing knowledge.

  10. The accuracy of climate models' simulated season lengths and the effectiveness of grid scale correction factors

    SciTech Connect

    Winterhalter, Wade E.

    2011-09-01

    Global climate change is expected to impact biological populations through a variety of mechanisms including increases in the length of their growing season. Climate models are useful tools for predicting how season length might change in the future. However, the accuracy of these models tends to be rather low at regional geographic scales. Here, I determined the ability of several atmosphere and ocean general circulating models (AOGCMs) to accurately simulate historical season lengths for a temperate ectotherm across the continental United States. I also evaluated the effectiveness of regional-scale correction factors to improve the accuracy of these models. I found that both the accuracy of simulated season lengths and the effectiveness of the correction factors to improve the model's accuracy varied geographically and across models. These results suggest that regional specific correction factors do not always adequately remove potential discrepancies between simulated and historically observed environmental parameters. As such, an explicit evaluation of the correction factors' effectiveness should be included in future studies of global climate change's impact on biological populations.

  11. The accuracy of climate models' simulated season lengths and the effectiveness of grid scale correction factors

    DOE PAGES

    Winterhalter, Wade E.

    2011-09-01

    Global climate change is expected to impact biological populations through a variety of mechanisms including increases in the length of their growing season. Climate models are useful tools for predicting how season length might change in the future. However, the accuracy of these models tends to be rather low at regional geographic scales. Here, I determined the ability of several atmosphere and ocean general circulating models (AOGCMs) to accurately simulate historical season lengths for a temperate ectotherm across the continental United States. I also evaluated the effectiveness of regional-scale correction factors to improve the accuracy of these models. I foundmore » that both the accuracy of simulated season lengths and the effectiveness of the correction factors to improve the model's accuracy varied geographically and across models. These results suggest that regional specific correction factors do not always adequately remove potential discrepancies between simulated and historically observed environmental parameters. As such, an explicit evaluation of the correction factors' effectiveness should be included in future studies of global climate change's impact on biological populations.« less

  12. Regional-scale calculation of the LS factor using parallel processing

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Tang, Guoan; Jiang, Ling; Zhu, A.-Xing; Yang, Jianyi; Song, Xiaodong

    2015-05-01

    With the increase of data resolution and the increasing application of USLE over large areas, the existing serial implementation of algorithms for computing the LS factor is becoming a bottleneck. In this paper, a parallel processing model based on message passing interface (MPI) is presented for the calculation of the LS factor, so that massive datasets at a regional scale can be processed efficiently. The parallel model contains algorithms for calculating flow direction, flow accumulation, drainage network, slope, slope length and the LS factor. According to the existence of data dependence, the algorithms are divided into local algorithms and global algorithms. Parallel strategy are designed according to the algorithm characters including the decomposition method for maintaining the integrity of the results, optimized workflow for reducing the time taken for exporting the unnecessary intermediate data and a buffer-communication-computation strategy for improving the communication efficiency. Experiments on a multi-node system show that the proposed parallel model allows efficient calculation of the LS factor at a regional scale with a massive dataset.

  13. System Wide Joint Position Sensor Fault Tolerance in Robot Systems Using Cartesian Accelerometers

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    Joint position sensors are necessary for most robot control systems. A single position sensor failure in a normal robot system can greatly degrade performance. This paper presents a method to obtain position information from Cartesian accelerometers without integration. Depending on the number and location of the accelerometers. the proposed system can tolerate the loss of multiple position sensors. A solution technique suitable for real-time implementation is presented. Simulations were conducted using 5 triaxial accelerometers to recover from the loss of up to 4 joint position sensors on a 7 degree of freedom robot moving in general three dimensional space. The simulations show good estimation performance using non-ideal accelerometer measurements.

  14. The location of the tibial accelerometer does influence impact acceleration parameters during running.

    PubMed

    Lucas-Cuevas, Angel Gabriel; Encarnación-Martínez, Alberto; Camacho-García, Andrés; Llana-Belloch, Salvador; Pérez-Soriano, Pedro

    2016-10-03

    Tibial accelerations have been associated with a number of running injuries. However, studies attaching the tibial accelerometer on the proximal section are as numerous as those attaching the accelerometer on the distal section. This study aimed to investigate whether accelerometer location influences acceleration parameters commonly reported in running literature. To fulfil this purpose, 30 athletes ran at 2.22, 2.78 and 3.33 m · s(-1) with three accelerometers attached with double-sided tape and tightened to the participants' tolerance on the forehead, the proximal section of the tibia and the distal section of the tibia. Time-domain (peak acceleration, shock attenuation) and frequency-domain parameters (peak frequency, peak power, signal magnitude and shock attenuation in both the low and high frequency ranges) were calculated for each of the tibial locations. The distal accelerometer registered greater tibial acceleration peak and shock attenuation compared to the proximal accelerometer. With respect to the frequency-domain analysis, the distal accelerometer provided greater values of all the low-frequency parameters, whereas no difference was observed for the high-frequency parameters. These findings suggest that the location of the tibial accelerometer does influence the acceleration signal parameters, and thus, researchers should carefully consider the location they choose to place the accelerometer so that equivalent comparisons across studies can be made.

  15. Self-calibration method of the bias of a space electrostatic accelerometer.

    PubMed

    Qu, Shao-Bo; Xia, Xiao-Mei; Bai, Yan-Zheng; Wu, Shu-Chao; Zhou, Ze-Bing

    2016-11-01

    The high precision space electrostatic accelerometer is an instrument to measure the non-gravitational forces acting on a spacecraft. It is one of the key payloads for satellite gravity measurements and space fundamental physics experiments. The measurement error of the accelerometer directly affects the precision of gravity field recovery for the earth. This paper analyzes the sources of the bias according to the operating principle and structural constitution of the space electrostatic accelerometer. Models of bias due to the asymmetry of the displacement sensing system, including the mechanical sensor head and the capacitance sensing circuit, and the asymmetry of the feedback control actuator circuit are described separately. According to the two models, a method of bias self-calibration by using only the accelerometer data is proposed, based on the feedback voltage data of the accelerometer before and after modulating the DC biasing voltage (Vb) applied on its test mass. Two types of accelerometer biases are evaluated separately using in-orbit measurement data of a space electrostatic accelerometer. Based on the preliminary analysis, the bias of the accelerometer onboard of an experiment satellite is evaluated to be around 10(-4) m/s(2), about 4 orders of magnitude greater than the noise limit. Finally, considering the two asymmetries, a comprehensive bias model is analyzed. A modified method to directly calibrate the accelerometer comprehensive bias is proposed.

  16. Self-calibration method of the bias of a space electrostatic accelerometer

    NASA Astrophysics Data System (ADS)

    Qu, Shao-Bo; Xia, Xiao-Mei; Bai, Yan-Zheng; Wu, Shu-Chao; Zhou, Ze-Bing

    2016-11-01

    The high precision space electrostatic accelerometer is an instrument to measure the non-gravitational forces acting on a spacecraft. It is one of the key payloads for satellite gravity measurements and space fundamental physics experiments. The measurement error of the accelerometer directly affects the precision of gravity field recovery for the earth. This paper analyzes the sources of the bias according to the operating principle and structural constitution of the space electrostatic accelerometer. Models of bias due to the asymmetry of the displacement sensing system, including the mechanical sensor head and the capacitance sensing circuit, and the asymmetry of the feedback control actuator circuit are described separately. According to the two models, a method of bias self-calibration by using only the accelerometer data is proposed, based on the feedback voltage data of the accelerometer before and after modulating the DC biasing voltage (Vb) applied on its test mass. Two types of accelerometer biases are evaluated separately using in-orbit measurement data of a space electrostatic accelerometer. Based on the preliminary analysis, the bias of the accelerometer onboard of an experiment satellite is evaluated to be around 10-4 m/s2, about 4 orders of magnitude greater than the noise limit. Finally, considering the two asymmetries, a comprehensive bias model is analyzed. A modified method to directly calibrate the accelerometer comprehensive bias is proposed.

  17. A comprehensive review of radiosurgery for cerebral arteriovenous malformations: outcomes, predictive factors, and grading scales.

    PubMed

    Starke, Robert M; Komotar, Ricardo J; Hwang, Brian Y; Fischer, Laura E; Otten, Marc L; Merkow, Maxwell B; Garrett, Matthew C; Isaacson, Steven R; Connolly, E Sander

    2008-01-01

    The management of cerebral arteriovenous malformations (AVMs) continues to present a challenge to neurosurgeons. The natural history of this condition, as well as the morbidity and mortality of therapeutic interventions, remains incompletely elucidated. Predictive factors and grading scales in AVM management allow risk-benefit analysis of treatment options and comparison of outcomes. Stereotactic radiosurgery is one of the established treatment modalities for AVMs and is generally used to treat lesions that are high risk for surgical resection. Radiosurgery aims to obliterate AVMs and thus prevent hemorrhage or seizure without any new or worsening of existing symptoms. Lesion characteristics and postsurgical complications differ markedly in patientstreated by radiosurgery versus microsurgery. Radiosurgery-based grading systems account for factors that have been associated with various aspects of radiosurgical outcomes including obliteration, hemorrhage, and postoperative complications, particularly those induced by radiation. The purpose of this paper is to describe the most current predictive factors and grading systems for radiosurgical treatment of cerebral AVMs.

  18. Modelling of the subgrid scale wrinkling factor for large eddy simulation of turbulent premixed combustion

    NASA Astrophysics Data System (ADS)

    Thiesset, Fabien; Maurice, Guillaume; Halter, Fabien; Mazellier, Nicolas; Chauveau, Christian; Gökalp, Iskender

    2016-05-01

    We propose a model for assessing the unresolved wrinkling factor in the large eddy simulation of turbulent premixed combustion. It relies essentially on a power-law dependence of the wrinkling factor on the filter size and an original expression for the 'active' corrugating strain rate. The latter is written as the turbulent strain multiplied by an efficiency function that accounts for viscous effects and the kinematic constraint of Peters. This yields functional expressions for the fractal dimension and the inner cut-off length scale, the latter being (i) filter-size independent and (ii) consistent with the Damköhler asymptotic behaviours at both large and small Karlovitz numbers. A new expression for the wrinkling factor that incorporates finite Reynolds number effects is further proposed. Finally, the model is successfully assessed on an experimental filtered database.

  19. The dimensional structure of the Wisconsin Schizotypy Scales: factor identification and construct validity.

    PubMed

    Kwapil, Thomas R; Barrantes-Vidal, Neus; Silvia, Paul J

    2008-05-01

    The present study examined the factor structure underlying the Wisconsin Schizotypy Scales and the validity of these dimensions. Confirmatory factor analysis with 6137 nonclinical young adults supported a 2-factor model with positive and negative schizotypy dimensions. As predicted, the schizotypy dimensions were differentially related to psychopathology, personality, and social impairment. Both dimensions were related to schizotypal and paranoid symptoms. Positive schizotypy was uniquely related to psychotic-like experiences, substance abuse, mood disorders, and mental health treatment, whereas negative schizotypy was associated with negative and schizoid symptoms. Both dimensions were associated with poorer overall and social functioning, but negative schizotypy was associated with decreased likelihood of intimate relationships. The findings support the construct validity of a multidimensional model of schizotypy and the use of psychometric inventories to assess these dimensions.

  20. Shorebird roost-site selection at two temporal scales: Is human disturbance a factor?

    USGS Publications Warehouse

    Peters, K.A.; Otis, D.L.

    2007-01-01

    1. Roost-site selection in shorebirds is governed by ambient factors, including environmental conditions and human disturbance. Determination of the extent to which these factors affect roost use and the associated implications for shorebird habitat protection is important for conservation strategies and informed management of human recreational use of these habitats. Shorebird conservation as a whole is a high priority world-wide because a large proportion of shorebird species is in decline. However, little is understood about the consistency of roost use by different species, what conditions affect species-specific roost-site selection, and at what spatial and temporal scales conditions influence selection. 2. We studied high-tide roost-site selection by eight species of non-breeding shorebirds on a critically important stopover and wintering refuge. We calculated spatial and temporal variability in roost use for each species based on counts and consistency of incidence. We then examined roost-site selection in relation to structural, environmental and human disturbance factors, and how this varied across spatial and temporal scales. 3. Most roosts were used less than 50% of the time, although larger roosts were used more consistently. This varied among species, with red knot Calidris canutus tending to concentrate at a few roosts and American oystercatcher Haematopus palliatus, dowitcher Limnodromus griseus and Limnodromus scolopaceus and ruddy turnstone Arenaria interpres more diffusely distributed among roosts. 4. At an annual scale, the principal factors affecting shorebird presence at roosts were roost length (size), local region, substrate and aspect. The extent and direction of these effects varied among species. Among years, red knots avoided roosts that had high average boat activity within 1000 m, but disturbance did not appear to be a factor for other species. 5. Daily roost use was influenced primarily by wind speed and the ability of roosts to

  1. Examining the factor structures of the five facet mindfulness questionnaire and the self-compassion scale.

    PubMed

    Williams, Matthew J; Dalgleish, Tim; Karl, Anke; Kuyken, Willem

    2014-06-01

    The five facet mindfulness questionnaire (FFMQ; Baer, Smith, Hopkins, Krietemeyer, & Toney, 2006) and the self-compassion scale (SCS; Neff, 2003) are widely used measures of mindfulness and self-compassion in mindfulness-based intervention research. The psychometric properties of the FFMQ and the SCS need to be independently replicated in community samples and relevant clinical samples to support their use. Our primary aim was to establish the factor structures of the FFMQ and SCS in individuals with recurrent depression in remission, since mindfulness-based cognitive therapy (MBCT) was developed as a treatment for preventing depressive relapse. In order to determine the consistency across populations, we examined the factor structures of the FFMQ and SCS in 3 samples: (1) a convenience sample of adults, (2) a sample of adults who practice meditation, and (3) a sample of adults who suffer from recurrent depression and were recruited to take part in a trial of MBCT. Confirmatory factor analyses (CFAs) showed that a 4-factor hierarchical model of the FFMQ best fits the community sample and the clinical sample but that a 5-factor hierarchical model of the FFMQ best fits the meditator sample. CFA did not endorse the SCS 6-factor hierarchical structure in any of the 3 samples. Clinicians and researchers should be aware of the psychometric properties of the FFMQ to measure mindfulness when comparing meditators and nonmeditators. Further research is needed to develop a more psychometrically robust measure of self-compassion.

  2. Equating accelerometer estimates among youth: the Rosetta Stone 2

    PubMed Central

    Brazendale, Keith; Beets, Michael W.; Bornstein, Daniel B.; Moore, Justin B.; Pate, Russell R.; Weaver, Robert G.; Falck, Ryan S.; Chandler, Jessica L.; Andersen, Lars B.; Anderssen, Sigmund A.; Cardon, Greet; Cooper, Ashley; Davey, Rachel; Froberg, Karsten; Hallal, Pedro C.; Janz, Kathleen F.; Kordas, Katarzyna; Kriemler, Susi; Puder, Jardena J.; Reilly, John J.; Salmon, Jo; Sardinha, Luis B.; Timperio, Anna; van Sluijs, Esther MF

    2017-01-01

    Objectives Different accelerometer cutpoints used by different researchers often yields vastly different estimates of moderate-to-vigorous intensity physical activity (MVPA). This is recognized as cutpoint non-equivalence (CNE), which reduces the ability to accurately compare youth MVPA across studies. The objective of this research is to develop a cutpoint conversion system that standardizes minutes of MVPA for six different sets of published cutpoints. Design Secondary data analysis Methods Data from the International Children’s Accelerometer Database (ICAD; Spring 2014) consisting of 43,112 Actigraph accelerometer data files from 21 worldwide studies (children 3-18 years, 61.5% female) were used to develop prediction equations for six sets of published cutpoints. Linear and non-linear modeling, using a leave one out cross-validation technique, was employed to develop equations to convert MVPA from one set of cutpoints into another. Bland Altman plots illustrate the agreement between actual MVPA and predicted MVPA values. Results Across the total sample, mean MVPA ranged from 29.7 MVPA min.d-1 (Puyau) to 126.1 MVPA min.d-1 (Freedson 3 METs). Across conversion equations, median absolute percent error was 12.6% (range: 1.3 to 30.1) and the proportion of variance explained ranged from 66.7% to 99.8%. Mean difference for the best performing prediction equation (VC from EV) was -0.110 min.d-1 (limits of agreement (LOA), -2.623 to 2.402). The mean difference for the worst performing prediction equation (FR3 from PY) was 34.76 min.d-1 (LOA, -60.392 to 129.910). Conclusions For six different sets of published cutpoints, the use of this equating system can assist individuals attempting to synthesize the growing body of literature on Actigraph, accelerometry-derived MVPA. PMID:25747468

  3. Interest of the MICROSTAR Accelerometer to improve the GRASP Mission.

    NASA Astrophysics Data System (ADS)

    Perrot, E.; Lebat, V.; Foulon, B.; Christophe, B.; Liorzou, F.; Huynh, P. A.

    2015-12-01

    The Geodetic Reference Antenna in Space (GRASP) is a micro satellite mission concept proposed by JPL to improve the definition of the Terrestrial Reference Frame (TRF). GRASP collocates GPS, SLR, VLBI, and DORIS sensors on a dedicated spacecraft in order to establish precise and stable ties between the key geodetic techniques used to define and disseminate the TRF. GRASP also offers a space-based reference antenna for the present and future Global Navigation Satellite Systems (GNSS). By taking advantage of the new testing possibilities offer by the catapult facility at the ZARM drop tower, the ONERA's space accelerometer team proposes an up-dated version, called MICROSTAR, of its ultra sensitive electrostatic accelerometers which have contributed to the success of the last Earth's gravity missions GRACE and GOCE. Built around a cubic proof-mass, it provides the 3 linear accelerations with a resolution better than 10-11 ms-2/Hz1/2 into a measurement bandwidth between 10-3 Hz and 0.1 Hz and the 3 angular accelerations about its 3 orthogonal axes with 5´10-10 rad.s-2/Hz1/2 resolution. Integrated at the centre of mass of the satellite, MICROSTAR improves the Precise Orbit Determination (POD) by accurate measurement of the non-gravitational force acting on the satellite. It offers also the possibility to calibrate the change in the position of the satellite center of mass with an accuracy better than 100 μm as demonstrated in the GRACE mission. Assuming a sufficiently rigid structure between the antennas and the accelerometer, its data can participate to reach the mission objective of 1 mm precision for the TRF position.

  4. Piezoelectric Shaker Development for High Frequency Calibration of Accelerometers

    SciTech Connect

    Payne, Bev; Harper, Kari K.; Vogl, Gregory W.

    2010-05-28

    Calibration of vibration transducers requires sinusoidal motion over a wide frequency range with low distortion and low cross-axial motion. Piezoelectric shakers are well suited to generate such motion and are suitable for use with laser interferometric methods at frequencies of 3 kHz and above. An advantage of piezoelectric shakers is the higher achievable accelerations and displacement amplitudes as compared to electro-dynamic (ED) shakers. Typical commercial ED calibration shakers produce maximum accelerations from 100 m/s{sup 2} to 500 m/s{sup 2}. Very large ED shakers may produce somewhat higher accelerations but require large amplifiers and expensive cooling systems to dissipate heat. Due to the limitations in maximum accelerations by ED shakers at frequencies above 5 kHz, the amplitudes of the generated sinusoidal displacement are frequently below the resolution of laser interferometers used in primary calibration methods. This limits the usefulness of ED shakers in interferometric based calibrations at higher frequencies.Small piezoelectric shakers provide much higher acceleration and displacement amplitudes for frequencies above 5 kHz, making these shakers very useful for accelerometer calibrations employing laser interferometric measurements, as will be shown in this paper. These piezoelectric shakers have been developed and used at NIST for many years for high frequency calibration of accelerometers. This paper documents the construction and performance of a new version of these shakers developed at NIST for the calibration of accelerometers over the range of 3 kHz to 30 kHz and possibly higher. Examples of typical calibration results are also given.

  5. ISA accelerometer onboard the Mercury Planetary Orbiter: error budget

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Lucchesi, David M.; Nozzoli, Sergio; Santoli, Francesco

    2007-03-01

    We have estimated a preliminary error budget for the Italian Spring Accelerometer (ISA) that will be allocated onboard the Mercury Planetary Orbiter (MPO) of the European Space Agency (ESA) space mission to Mercury named BepiColombo. The role of the accelerometer is to remove from the list of unknowns the non-gravitational accelerations that perturb the gravitational trajectory followed by the MPO in the strong radiation environment that characterises the orbit of Mercury around the Sun. Such a role is of fundamental importance in the context of the very ambitious goals of the Radio Science Experiments (RSE) of the BepiColombo mission. We have subdivided the errors on the accelerometer measurements into two main families: (i) the pseudo-sinusoidal errors and (ii) the random errors. The former are characterised by a periodic behaviour with the frequency of the satellite mean anomaly and its higher order harmonic components, i.e., they are deterministic errors. The latter are characterised by an unknown frequency distribution and we assumed for them a noise-like spectrum, i.e., they are stochastic errors. Among the pseudo-sinusoidal errors, the main contribution is due to the effects of the gravity gradients and the inertial forces, while among the random-like errors the main disturbing effect is due to the MPO centre-of-mass displacements produced by the onboard High Gain Antenna (HGA) movements and by the fuel consumption and sloshing. Very subtle to be considered are also the random errors produced by the MPO attitude corrections necessary to guarantee the nadir pointing of the spacecraft. We have therefore formulated the ISA error budget and the requirements for the satellite in order to guarantee an orbit reconstruction for the MPO spacecraft with an along-track accuracy of about 1 m over the orbital period of the satellite around Mercury in such a way to satisfy the RSE requirements.

  6. MEMS capacitive accelerometer-based middle ear microphone.

    PubMed

    Young, Darrin J; Zurcher, Mark A; Semaan, Maroun; Megerian, Cliff A; Ko, Wen H

    2012-12-01

    The design, implementation, and characterization of a microelectromechanical systems (MEMS) capacitive accelerometer-based middle ear microphone are presented in this paper. The microphone is intended for middle ear hearing aids as well as future fully implantable cochlear prosthesis. Human temporal bones acoustic response characterization results are used to derive the accelerometer design requirements. The prototype accelerometer is fabricated in a commercial silicon-on-insulator (SOI) MEMS process. The sensor occupies a sensing area of 1 mm × 1 mm with a chip area of 2 mm × 2.4 mm and is interfaced with a custom-designed low-noise electronic IC chip over a flexible substrate. The packaged sensor unit occupies an area of 2.5 mm × 6.2 mm with a weight of 25 mg. The sensor unit attached to umbo can detect a sound pressure level (SPL) of 60 dB at 500 Hz, 35 dB at 2 kHz, and 57 dB at 8 kHz. An improved sound detection limit of 34-dB SPL at 150 Hz and 24-dB SPL at 500 Hz can be expected by employing start-of-the-art MEMS fabrication technology, which results in an articulation index of approximately 0.76. Further micro/nanofabrication technology advancement is needed to enhance the microphone sensitivity for improved understanding of normal conversational speech.

  7. Development of scaling factors for the activated concrete of the KRR-2.

    PubMed

    Hong, Sang-Bum; Kang, Mun-Ja; Lee, Ki-Won; Chung, Un-Soo

    2009-01-01

    The biological shielding concrete of KRR-2 was activated by a thermal neutron reaction during the operation of the reactor, thus a variety of radionuclides were generated in the concrete. In order to verify the radioactivity for the final disposal of waste and to achieve a more efficient cutting of the concrete, the radioactivity inventories and distributions of the activated concrete were evaluated. The activity of gamma-emitting radionuclides was measured by using an HPGe detector. The beta-emitting radionuclides were measured by an oxidation/combustion method for (3)H and (14)C and a combined method of an extraction chromatography and a liquid scintillation for (55)Fe and (63)Ni. The dominant radioactive nuclides in the activated concrete were (3)H, (14)C, (55)Fe and (60)Co, and the maximum gamma activity was 105Bq/g at the surface around the thermal column. The specific activities of all the nuclides were found to decrease almost linearly on a logarithmic scale along the depth from the inner surface of the concrete. Equations for scaling factors were obtained by a linear regression of logarithms from the radioactivity data of (3)H/(60)Co, (14)C/(60)Co and (55)Fe/(60)Co nuclide pairs of the activated concrete. The scaling factors can be utilized for the estimation of beta radioactivity without the time consuming separation processes of the nuclides.

  8. Evaluation of the internal consistency, factor structure, and validity of the Depression Change Expectancy Scale.

    PubMed

    Eddington, Kari M; Dozois, David J A; Backs-Dermott, Barb J

    2014-10-01

    The psychometric properties and predictive validity of the Depression Change Expectancy Scale (DCES), a modification of an expectancy scale originally developed for patients with anxiety disorders, were examined in two studies. In Study 1, the 20-item scale was administered along with a battery of questionnaires to a sample of 416 dysphoric undergraduate students and demonstrated good internal consistency. A two-factor solution most parsimoniously accounted for the variance, with one factor containing all pessimistically worded items (DCES-P) and the second containing all optimistically worded items (DCES-O). The DCES-P showed patterns of correlations with other measures of related constructs consistent with hypothesized relationships; the DCES-O showed similar, but weaker, relationships with the other measures. Multilevel modeling was used to examine the predictive utility of the DCES in a clinical sample of 63 adults (Study 2). Improved depressive symptoms (over 6 weeks) were strongly associated with optimistic expectancies but were unrelated to pessimistic expectancies for change. The DCES appears to be a promising measure of expectancies for improvement among individuals with depressive symptoms.

  9. Area of hock hair loss in dairy cows: risk factors and correlation with a categorical scale.

    PubMed

    Lim, P Y; Huxley, J N; Green, M J; Othman, A R; Potterton, S L; Brignell, C J; Kaler, J

    2015-02-01

    Data from 3691 dairy cows from 76 farms were used to investigate the risk factors associated with the area of hair loss over the lateral aspect of the hock and the correlation between the area of hair loss (as calculated using a hock map) and hock lesion scores determined using a pre-existing categorical scale. Six factors were associated with a greater area of hair loss, including cows with locomotion score 3, a cleanliness score (10/28 to 18/28), high daily milk yield (25.1-58.1 kg), poor body condition score (1-1.5), duration of winter housing (≥41 days) and some combinations of cubicle base and bedding materials. Compared with cows housed in cubicles with a concrete base and whole straw or rape straw bedding, cows housed in cubicles with concrete bases with sand or chopped straw bedding had smaller areas of hair loss and cows housed on a mattress base with whole straw or rape straw bedding had larger areas of hair loss. Area of hair loss, as measured on hock maps, was not significantly different between cows with score 1 (median 23.6 cm(2)) and score 2 (median 20.3 cm(2)) on the categorical scale for hock lesions. This suggests that the categorical scale was not reflecting the extent of hair loss and that hock maps are a good alternative for studying the dynamics of hock lesions over time.

  10. Assessing the Spatial Scale Effect of Anthropogenic Factors on Species Distribution

    PubMed Central

    Mangiacotti, Marco; Scali, Stefano; Sacchi, Roberto; Bassu, Lara; Nulchis, Valeria; Corti, Claudia

    2013-01-01

    Patch context is a way to describe the effect that the surroundings exert on a landscape patch. Despite anthropogenic context alteration may affect species distributions by reducing the accessibility to suitable patches, species distribution modelling have rarely accounted for its effects explicitly. We propose a general framework to statistically detect the occurrence and the extent of such a factor, by combining presence-only data, spatial distribution models and information-theoretic model selection procedures. After having established the spatial resolution of the analysis on the basis of the species characteristics, a measure of anthropogenic alteration that can be quantified at increasing distance from each patch has to be defined. Then the distribution of the species is modelled under competing hypotheses: H0, assumes that the distribution is uninfluenced by the anthropogenic variables; H1, assumes the effect of alteration at the species scale (resolution); and H2, H3 … Hn add the effect of context alteration at increasing radii. Models are compared using the Akaike Information Criterion to establish the best hypothesis, and consequently the occurrence (if any) and the spatial scale of the anthropogenic effect. As a study case we analysed the distribution data of two insular lizards (one endemic and one naturalised) using four alternative hypotheses: no alteration (H0), alteration at the species scale (H1), alteration at two context scales (H2 and H3). H2 and H3 performed better than H0 and H1, highlighting the importance of context alteration. H2 performed better than H3, setting the spatial scale of the context at 1 km. The two species respond differently to context alteration, the introduced lizard being more tolerant than the endemic one. The proposed approach supplies reliably and interpretable results, uses easily available data on species distribution, and allows the assessing of the spatial scale at which human disturbance produces the heaviest

  11. Accelerometer Placement for the International Space Station Node Modal Test

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.

    1998-01-01

    Accelerometer location analysis for the modal survey test of the International Space Station Node is described. Three different approaches were utilized: (1) Guyan reduction; (2) Iterative Guyan reduction; and (3) The average driving point residue (ADPR) method. Both Guyan approaches worked well, but poor results were observed for the ADPR method. Although the iterative Guyan approach appears to provide the best set of sensor locations, it is intensive computationally, becoming impractical for large initial location sets. While this is computer dependent, it appears that initial sets larger than about 1500 degrees of freedom are impractical for the iterative technique.

  12. Self-powered In-plane Accelerometer Using Triboelectric Mechanism

    NASA Astrophysics Data System (ADS)

    Gupta, Rahul Kumar; Dhakar, Lokesh; Lee, Chengkuo

    2016-11-01

    This paper presents a self-powered triboelectric based accelerometer to detect wide range of in-plane acceleration utilizing the triboelectric mechanism. The freestanding sliding mode was utilized to realize the in-plane sensing. The fabricated device consists of soft polymer spring which displays wide detection range from ±1g to ±6g (g = 9.8m/s2) in x and y directions with sensitivity of 21mV/(g). The proposed device can be utilized for self-powered shock sensing in various future applications.

  13. An Abbreviated Impulsiveness Scale (ABIS) Constructed through Confirmatory Factor Analysis of the BIS-11

    PubMed Central

    Coutlee, Christopher G.; Politzer, Cary S.; Hoyle, Rick H.; Huettel, Scott A.

    2015-01-01

    Impulsiveness is a personality trait that reflects an urge to act spontaneously, without thinking or planning ahead for the consequences of your actions. High impulsiveness is characteristic of a variety of problematic behaviors including attention deficit disorder, hyperactivity, excessive gambling, risk-taking, drug use, and alcoholism. Researchers studying attention and self-control often assess impulsiveness using personality questionnaires, notably the common Barratt Impulsiveness Scale version 11 (BIS-11; last revised in 1995). Advances in techniques for producing personality questionnaires over the last 20 years prompted us to revise and improve the BIS-11. We sought to make the revised scale shorter – so that it would be quicker to administer – and better matched to current behaviors. We analyzed responses from 1549 adults who took the BIS-11 questionnaire. Using a statistical technique called factor analysis, we eliminated 17 questions that did a poor job of measuring the three major types of impulsiveness identified by the scale: inattention, spontaneous action, and lack of planning. We constructed our ABbreviated Impulsiveness Scale (ABIS) using the remaining 13 questions. We showed that the ABIS performed well when administered to additional groups of 657 and 285 adults. Finally, we showed expected relationships between the ABIS and other personality measurements related to impulsiveness, and showed that the ABIS can help predict alcohol consumption. We present the ABIS as a useful and efficient tool for researchers interested in measuring impulsive personality. PMID:26258000

  14. Psychometric properties and confirmatory factor analysis of the Jefferson Scale of Physician Empathy

    PubMed Central

    2011-01-01

    Background Empathy towards patients is considered to be associated with improved health outcomes. Many scales have been developed to measure empathy in health care professionals and students. The Jefferson Scale of Physician Empathy (JSPE) has been widely used. This study was designed to examine the psychometric properties and the theoretical structure of the JSPE. Methods A total of 853 medical students responded to the JSPE questionnaire. A hypothetical model was evaluated by structural equation modelling to determine the adequacy of goodness-of-fit to sample data. Results The model showed excellent goodness-of-fit. Further analysis showed that the hypothesised three-factor model of the JSPE structure fits well across the gender differences of medical students. Conclusions The results supported scale multi-dimensionality. The 20 item JSPE provides a valid and reliable scale to measure empathy among not only undergraduate and graduate medical education programmes, but also practising doctors. The limitations of the study are discussed and some recommendations are made for future practice. PMID:21810268

  15. Hospital Anxiety and Depression Scale: Factor Structure, Internal Consistency and Convergent Validity in Patients with Dizziness.

    PubMed

    Piker, Erin G; Kaylie, David M; Garrison, Douglas; Tucci, Debara L

    2015-01-01

    Psychiatric comorbidities, particularly anxiety-related pathologies, are often observed in dizzy patients. The Hospital Anxiety and Depression Scale (HADS) is a widely used self-report instrument used to screen for anxiety and depression in medical outpatient settings. The purpose of this study was to assess the factor structure, internal consistency and convergent validity of the HADS in an unselected group of patients with dizziness. The HADS and the Dizziness Handicap Inventory (DHI) were administered to 205 dizzy patients. An exploratory factor analysis was conducted and indicated a 3-factor structure, inconsistent with the 2-subscale structure (i.e. anxiety and depression) of the HADS. The total scale was found to be internally consistent, and convergent validity, as assessed using the DHI, was acceptable. Overall findings suggest that the HADS should not be used as a tool for psychiatric differential diagnosis, but rather as a helpful screener for general psychiatric distress in the two domains of psychiatric illness most germane in dizzy patients.

  16. The Rosenberg Self-Esteem Scale: a bifactor answer to a two-factor question?

    PubMed

    McKay, Michael T; Boduszek, Daniel; Harvey, Séamus A

    2014-01-01

    Despite its long-standing and widespread use, disagreement remains regarding the structure of the Rosenberg Self-Esteem Scale (RSES). In particular, concern remains regarding the degree to which the scale assesses self-esteem as a unidimensional or multidimensional (positive and negative self-esteem) construct. Using a sample of 3,862 high school students in the United Kingdom, 4 models were tested: (a) a unidimensional model, (b) a correlated 2-factor model in which the 2 latent variables are represented by positive and negative self-esteem, (c) a hierarchical model, and (d) a bifactor model. The totality of results including item loadings, goodness-of-fit indexes, reliability estimates, and correlations with self-efficacy measures all supported the bifactor model, suggesting that the 2 hypothesized factors are better understood as "grouping" factors rather than as representative of latent constructs. Accordingly, this study supports the unidimensionality of the RSES and the scoring of all 10 items to produce a global self-esteem score.

  17. Factors affecting the rate of hydrolysis of phenylboronic acid in lab-scale precipitate reactor studies

    SciTech Connect

    Bannochie, C.J.; Marek, J.C.; Eibling, R.E.; Baich, M.A.

    1992-01-01

    Removing aromatic carbon from an aqueous slurry of cesium-137 and other alkali tetraphenylborates by acid hydrolysis will be an important step in preparing high-level radioactive waste for vitrification at the Savannah River Site's Defense Waste Processing Facility (DWPF). Kinetic data obtained in bench-scale precipitate hydrolysis reactors suggest changes in operating parameters to improve product quality in the future plant-scale radioactive operation. The rate-determining step is the removal of the fourth phenyl group, i.e. hydrolysis of phenylboronic acid. Efforts to maximize this rate have established the importance of several factors in the system, including the ratio of copper(II) catalyst to formic acid, the presence of nitrite ion, reactions of diphenylmercury, and the purge gas employed in the system.

  18. Factors affecting the rate of hydrolysis of phenylboronic acid in lab-scale precipitate reactor studies

    SciTech Connect

    Bannochie, C.J.; Marek, J.C.; Eibling, R.E.; Baich, M.A.

    1992-10-01

    Removing aromatic carbon from an aqueous slurry of cesium-137 and other alkali tetraphenylborates by acid hydrolysis will be an important step in preparing high-level radioactive waste for vitrification at the Savannah River Site`s Defense Waste Processing Facility (DWPF). Kinetic data obtained in bench-scale precipitate hydrolysis reactors suggest changes in operating parameters to improve product quality in the future plant-scale radioactive operation. The rate-determining step is the removal of the fourth phenyl group, i.e. hydrolysis of phenylboronic acid. Efforts to maximize this rate have established the importance of several factors in the system, including the ratio of copper(II) catalyst to formic acid, the presence of nitrite ion, reactions of diphenylmercury, and the purge gas employed in the system.

  19. Scaling study of the pion electroproduction cross sections and the pion form factor

    SciTech Connect

    Tanja Horn; Xin Qian; John Arrington; Razmik Asaturyan; Fatiha Benmokthar; Werner Boeglin; Peter Bosted; Antje Bruell; Eric Christy; Eugene Chudakov; Ben Clasie; Mark Dalton; AJI Daniel; Donal Day; Dipangkar Dutta; Lamiaa El Fassi; Rolf Ent; Howard Fenker; J. Ferrer; Nadia Fomin; H. Gao; K Garrow; Dave Gaskell; C Gray; G. Huber; M. Jones; N Kalantarians; C. Keppel; K Kramer; Y Li; Y Liang; A. Lung; S Malace; P. Markowitz; A. Matsumura; D. Meekins; T Mertens; T Miyoshi; H. Mykrtchyan; R. Monson; T. Navasardyan; G. Niculescu; I. Niculescu; Y. Okayasu; A. Opper; C Perdrisat; V. Punjabi; A. Rauf; V. Rodriguez; D. Rohe; J Seely; E Segbefia; G. Smith; M. Sumihama; V. Tadevoyan; L Tang; V. Tvaskis; A. Villano; W. Vulcan; F. Wesselmann; S. Wood; L. Yuan; X. Zheng

    2007-07-12

    The $^{1}$H($e,e^\\prime \\pi^+$)n cross section was measured for a range of four-momentum transfer up to $Q^2$=3.91 GeV$^2$ at values of the invariant mass, $W$, above the resonance region. The $Q^2$-dependence of the longitudinal component is consistent with the $Q^2$-scaling prediction for hard exclusive processes. This suggests that perturbative QCD concepts are applicable at rather low values of $Q^2$. Pion form factor results, while consistent with the $Q^2$-scaling prediction, are inconsistent in magnitude with perturbative QCD calculations. The extraction of Generalized Parton Distributions from hard exclusive processes assumes the dominance of the longitudinal term. However, transverse contributions to the cross section are still significant at $Q^2$=3.91 GeV$^2$.

  20. Examination of the Factor Structure of the Adolescent Sleep-Wake Scale (ASWS).

    PubMed

    Essner, Bonnie; Noel, Melanie; Myrvik, Matthew; Palermo, Tonya

    2015-01-01

    This study examined the factor structure of the Adolescent Sleep-Wake Scale (ASWS) among 491 adolescents (12-18 years) with and without pediatric health conditions. Exploratory factor analyses were conducted using iterated principal axis factoring with varimax rotation. Highly cross-loading items were systematically removed and analyses were rerun until a clean solution was attained. The final solution explained 57.1% of the total model variance, including 10 items and three factors: Falling Asleep and Reinitiating Sleep-Revised, returning to Wakefulness-Revised, and Going to Bed-Revised. Internal consistency reliability scores were acceptable to good, with the exception of the Going to Bed-Revised subscale for the healthy sample. Adolescents with chronic pain reported significantly poorer overall sleep quality and more problems in falling asleep, reinitiating sleep, and returning to wakefulness as compared to healthy adolescents, providing preliminary evidence for construct validity of the new factors. The resulting ASWS version is a concise assessment tool with empirically derived, distinct behavioral sleep dimensions that can be used for clinical and research purposes.

  1. Factor Structure of Hospital Anxiety and Depression Scale in Malaysian patients with coronary artery disease.

    PubMed

    Kaur, Satpal; Zainal, Nor Zuraida; Low, Wah Yun; Ramasamy, Ravindran; Sidhu, Jaideep Singh

    2015-05-01

    The Hospital Anxiety and Depression Scale (HADS) is a common screening instrument used to determine the levels of anxiety and depression experienced by a patient and has been extensively used in patients with coronary artery disease (CAD). This study aimed to establish the factor structure of HADS in a Malaysian sample of 189 patients with CAD. Factor analysis of HADS using principal component analysis with varimax rotation yielded 3 factors. Confirmatory factor analysis supported the use of HADS in assessing 3 distinct dimensions of psychological distress--namely, anxiety, anhedonia, and psychomotor retardation. The HADS showed good internal consistency and was found to be a valid measure of psychological distress among Malaysian patients with CAD. However, low mean scores on the original 2 factors--that is, anxiety and depression--and also on the 2 depression subscales--anhedonia and psychomotor retardation--suggests that the recommended cutoff score to screen for psychological distress among CAD patients be reevaluated. Further research to determine the generalizability and consistency for the tridimensional structure of the HADS in Malaysia is recommended.

  2. Identification of Prey Captures in Australian Fur Seals (Arctocephalus pusillus doriferus) Using Head-Mounted Accelerometers: Field Validation with Animal-Borne Video Cameras

    PubMed Central

    Volpov, Beth L.; Hoskins, Andrew J.; Battaile, Brian C.; Viviant, Morgane; Wheatley, Kathryn E.; Marshall, Greg; Abernathy, Kyler; Arnould, John P. Y.

    2015-01-01

    This study investigated prey captures in free-ranging adult female Australian fur seals (Arctocephalus pusillus doriferus) using head-mounted 3-axis accelerometers and animal-borne video cameras. Acceleration data was used to identify individual attempted prey captures (APC), and video data were used to independently verify APC and prey types. Results demonstrated that head-mounted accelerometers could detect individual APC but were unable to distinguish among prey types (fish, cephalopod, stingray) or between successful captures and unsuccessful capture attempts. Mean detection rate (true positive rate) on individual animals in the testing subset ranged from 67-100%, and mean detection on the testing subset averaged across 4 animals ranged from 82-97%. Mean False positive (FP) rate ranged from 15-67% individually in the testing subset, and 26-59% averaged across 4 animals. Surge and sway had significantly greater detection rates, but also conversely greater FP rates compared to heave. Video data also indicated that some head movements recorded by the accelerometers were unrelated to APC and that a peak in acceleration variance did not always equate to an individual prey item. The results of the present study indicate that head-mounted accelerometers provide a complementary tool for investigating foraging behaviour in pinnipeds, but that detection and FP correction factors need to be applied for reliable field application. PMID:26107647

  3. Identification of Prey Captures in Australian Fur Seals (Arctocephalus pusillus doriferus) Using Head-Mounted Accelerometers: Field Validation with Animal-Borne Video Cameras.

    PubMed

    Volpov, Beth L; Hoskins, Andrew J; Battaile, Brian C; Viviant, Morgane; Wheatley, Kathryn E; Marshall, Greg; Abernathy, Kyler; Arnould, John P Y

    2015-01-01

    This study investigated prey captures in free-ranging adult female Australian fur seals (Arctocephalus pusillus doriferus) using head-mounted 3-axis accelerometers and animal-borne video cameras. Acceleration data was used to identify individual attempted prey captures (APC), and video data were used to independently verify APC and prey types. Results demonstrated that head-mounted accelerometers could detect individual APC but were unable to distinguish among prey types (fish, cephalopod, stingray) or between successful captures and unsuccessful capture attempts. Mean detection rate (true positive rate) on individual animals in the testing subset ranged from 67-100%, and mean detection on the testing subset averaged across 4 animals ranged from 82-97%. Mean False positive (FP) rate ranged from 15-67% individually in the testing subset, and 26-59% averaged across 4 animals. Surge and sway had significantly greater detection rates, but also conversely greater FP rates compared to heave. Video data also indicated that some head movements recorded by the accelerometers were unrelated to APC and that a peak in acceleration variance did not always equate to an individual prey item. The results of the present study indicate that head-mounted accelerometers provide a complementary tool for investigating foraging behaviour in pinnipeds, but that detection and FP correction factors need to be applied for reliable field application.

  4. Factor structure and construct validity of the Behavioral Dyscontrol Scale-II.

    PubMed

    Shura, Robert D; Rowland, Jared A; Yoash-Gantz, Ruth E

    2015-01-01

    The Behavioral Dyscontrol Scale-II (BDS-II) was developed as an improved scoring method to the original BDS, which was designed to evaluate the capacity for independent regulation of behavior and attention. The purpose of this study was to evaluate the factor structure and construct validity of the BDS-II, which had not been adequately re-examined since the development of the new scoring system. In a sample of 164 Veterans with a mean age of 35 years, exploratory factor analysis was used to evaluate BDS-II latent factor structure. Correlations and regressions were used to explore validity against 22 psychometrically sound neurocognitive measures across seven neurocognitive domains of sensation, motor output, processing speed, attention, visual-spatial reasoning, memory, and executive functions. Factor analysis found a two-factor solution for this sample which explained 41% of the variance in the model. Validity analyses found significant correlations among the BDS-II scores and all other cognitive domains except sensation and language (which was not evaluated). Hierarchical regressions revealed that PASAT performance was strongly associated with all three BDS-II scores; dominant hand Finger Tapping Test was also associated with the Total score and Factor 1, and CPT-II Commissions was also associated with Factor 2. These results suggest the BDS-II is both a general test of cerebral functioning, and a more specific test of working memory, motor output, and impulsivity. The BDS-II may therefore show utility with younger populations for measuring frontal lobe abilities and might be very sensitive to neurological injury.

  5. Factor Structure of the Foreign Language Classroom Anxiety Scale: Comment on Park (2014).

    PubMed

    Horwitz, Elaine K

    2016-08-01

    By employing both exploratory and confirmatory factor analysis, Park has provided an important contribution to understanding the underlying constructs of the Foreign Language Classroom Anxiety Scale. To Park's concerns about previous research on the components of the measure, this article adds the necessity of considering the specific learner populations and learning contexts where foreign language anxiety (FLA) is being examined since the components of FLA likely vary in different learner populations, especially with respect to cultural and proficiency differences. It is particularly important to consider that FLA has different triggers and manifestations in different cultures.

  6. Chip scale mechanical spectrum analyzers based on high quality factor overmoded bulk acouslic wave resonators

    SciTech Connect

    Olsson, R. H., III

    2012-03-01

    The goal of this project was to develop high frequency quality factor (fQ) product acoustic resonators matched to a standard RF impedance of 50 {Omega} using overmoded bulk acoustic wave (BAW) resonators. These resonators are intended to serve as filters in a chip scale mechanical RF spectrum analyzer. Under this program different BAW resonator designs and materials were studied theoretically and experimentally. The effort resulted in a 3 GHz, 50 {Omega}, sapphire overmoded BAW with a fQ product of 8 x 10{sup 13}, among the highest values ever reported for an acoustic resonator.

  7. Assessing Stress in Cancer Patients: A Second-Order Factor Analysis Model for the Perceived Stress Scale

    ERIC Educational Resources Information Center

    Golden-Kreutz, Deanna M.; Browne, Michael W.; Frierson, Georita M.; Andersen, Barbara L.

    2004-01-01

    Using the Perceived Stress Scale (PSS), perceptions of global stress were assessed in 111women following breast cancer surgery and at 12 and 24 months later. This is the first study to factor analyze the PSS. The PSS data were factor analyzed each time using exploratory factor analysis with oblique direct quartimin rotation. Goodness-of-fit…

  8. Orthogonal Higher Order Structure and Confirmatory Factor Analysis of the French Wechsler Adult Intelligence Scale (WAIS-III)

    ERIC Educational Resources Information Center

    Golay, Philippe; Lecerf, Thierry

    2011-01-01

    According to the most widely accepted Cattell-Horn-Carroll (CHC) model of intelligence measurement, each subtest score of the Wechsler Intelligence Scale for Adults (3rd ed.; WAIS-III) should reflect both 1st- and 2nd-order factors (i.e., 4 or 5 broad abilities and 1 general factor). To disentangle the contribution of each factor, we applied a…

  9. Factor Analysis of the Revised Children's Manifest Anxiety Scale for Blacks, Whites, Males, and Females with a National Normative Sample.

    ERIC Educational Resources Information Center

    Reynolds, Cecil R.; Paget, Kathleen D.

    1981-01-01

    Responses to the Revised Children's Manifest Anxiety Scale (RCMAS) were factor analyzed with children (N=4972) between 6 and 19 years. Three anxiety factors emerged that were consistent with earlier studies. Factor structure of the RCMAS is for the most part invariant with regard to race and sex. (Author)

  10. Dynamic Fluid in a Porous Transducer-Based Angular Accelerometer

    PubMed Central

    Cheng, Siyuan; Fu, Mengyin; Wang, Meiling; Ming, Li; Fu, Huijin; Wang, Tonglei

    2017-01-01

    This paper presents a theoretical model of the dynamics of liquid flow in an angular accelerometer comprising a porous transducer in a circular tube of liquid. Wave speed and dynamic permeability of the transducer are considered to describe the relation between angular acceleration and the differential pressure on the transducer. The permeability and streaming potential coupling coefficient of the transducer are determined in the experiments, and special prototypes are utilized to validate the theoretical model in both the frequency and time domains. The model is applied to analyze the influence of structural parameters on the frequency response and the transient response of the fluidic system. It is shown that the radius of the circular tube and the wave speed affect the low frequency gain, as well as the bandwidth of the sensor. The hydrodynamic resistance of the transducer and the cross-section radius of the circular tube can be used to control the transient performance. The proposed model provides the basic techniques to achieve the optimization of the angular accelerometer together with the methodology to control the wave speed and the hydrodynamic resistance of the transducer. PMID:28230793

  11. Microelectromechanical Resonant Accelerometer Designed with a High Sensitivity

    PubMed Central

    Zhang, Jing; Su, Yan; Shi, Qin; Qiu, An-Ping

    2015-01-01

    This paper describes the design and experimental evaluation of a silicon micro-machined resonant accelerometer (SMRA). This type of accelerometer works on the principle that a proof mass under acceleration applies force to two double-ended tuning fork (DETF) resonators, and the frequency output of two DETFs exhibits a differential shift. The dies of an SMRA are fabricated using silicon-on-insulator (SOI) processing and wafer-level vacuum packaging. This research aims to design a high-sensitivity SMRA because a high sensitivity allows for the acceleration signal to be easily demodulated by frequency counting techniques and decreases the noise level. This study applies the energy-consumed concept and the Nelder-Mead algorithm in the SMRA to address the design issues and further increase its sensitivity. Using this novel method, the sensitivity of the SMRA has been increased by 66.1%, which attributes to both the re-designed DETF and the reduced energy loss on the micro-lever. The results of both the closed-form and finite-element analyses are described and are in agreement with one another. A resonant frequency of approximately 22 kHz, a frequency sensitivity of over 250 Hz per g, a one-hour bias stability of 55 μg, a bias repeatability (1σ) of 48 μg and the bias-instability of 4.8 μg have been achieved. PMID:26633425

  12. ISA accelerometer: fundamental support for the exploration of planet Mercury

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Fiorenza, Emiliano; Lefevre, Carlo; Nozzoli, Sergio; Peron, Roberto; Reale, Andrea; Santoli, Francesco

    2010-05-01

    The development of BepiColombo mission is proceeding, in view of the launch, foreseen for 2014. This mission will perform a thorough study of the planet Mercury and its environment. An important set of scientific objectives is constituted by the so-called Radio Science Experiments (RSE), which will study the gravitational field and rotation of the planet, and will perform very precise tests of general relativity theory. In order to reach the required level of accuracy in recovering the relevant parameters, the data coming from the high-sensitivity ISA (Italian Spring Accelerometer) instrument onboard the Mercury Planetary Orbiter (MPO) will be used: this will be the first time for a deep-space probe. Following a brief description of the mission and RSE, the instrument and its wide capabilities will be reviewed. The focus will be in particular on the updated error budget, operational procedures and extended use of the instrument in the various parts of the RSE. It will be also described the procedure for on-ground calibration of the accelerometer.

  13. Free fall tests of the accelerometers of the MICROSCOPE mission

    NASA Astrophysics Data System (ADS)

    Liorzou, F.; Boulanger, D.; Rodrigues, M.; Touboul, P.; Selig, H.

    2014-09-01

    The MICROSCOPE mission is fully dedicated to the in-orbit test of the Universality of free fall, the so-called Weak Equivalence Principle (WEP), with an expected accuracy better than 10-15. The test principle consists in comparing the accelerations of two proof masses of different composition in the Earth gravitational field. The payload embarks two pairs of test-masses made of Platinum Rhodium and Titanium alloys at the core of two dedicated coaxial electrostatic accelerometers. These instruments are under qualification for a launch in 2016. Their operations are only possible in microgravity environment which makes its validation on ground a real issue. In Europe, only the drop tower of the ZARM Institute provides a facility for experiments under conditions of weightlessness and offers the experimental conditions to verify the correct functioning of the MICROSCOPE payload. The height of the tower limits the “free fall” experiment period to 4.72 s. Under this strong constraint, the demonstration of the capability to control the test masses of the two coaxial electrostatic accelerometers is challenging. This paper describes the complete experimental set up and in which condition the test has been performed, then an analysis of a drop result is given with its interpretations.

  14. Technique for Determining Bridge Displacement Response Using MEMS Accelerometers

    PubMed Central

    Sekiya, Hidehiko; Kimura, Kentaro; Miki, Chitoshi

    2016-01-01

    In bridge maintenance, particularly with regard to fatigue damage in steel bridges, it is important to determine the displacement response of the entire bridge under a live load as well as that of each member. Knowing the displacement response enables the identification of dynamic deformations that can cause stresses and ultimately lead to damage and thus also allows the undertaking of appropriate countermeasures. In theory, the displacement response can be calculated from the double integration of the measured acceleration. However, data measured by an accelerometer include measurement errors caused by the limitations of the analog-to-digital conversion process and sensor noise. These errors distort the double integration results. Furthermore, as bridges in service are constantly vibrating because of passing vehicles, estimating the boundary conditions for the numerical integration is difficult. To address these problems, this paper proposes a method for determining the displacement of a bridge in service from its acceleration based on its free vibration. To verify the effectiveness of the proposed method, field measurements were conducted using nine different accelerometers. Based on the results of these measurements, the proposed method was found to be highly accurate in comparison with the reference displacement obtained using a contact displacement gauge. PMID:26907287

  15. Surface Micromachined Silicon Carbide Accelerometers for Gas Turbine Applications

    NASA Technical Reports Server (NTRS)

    DeAnna, Russell G.

    1998-01-01

    A finite-element analysis of possible silicon carbide (SIC) folded-beam, lateral-resonating accelerometers is presented. Results include stiffness coefficients, acceleration sensitivities, resonant frequency versus temperature, and proof-mass displacements due to centripetal acceleration of a blade-mounted sensor. The surface micromachined devices, which are similar to the Analog Devices Inc., (Norwood, MA) air-bag crash detector, are etched from 2-pm thick, 3C-SiC films grown at 1600 K using atmospheric pressure chemical vapor deposition (APCVD). The substrate is a 500 gm-thick, (100) silicon wafer. Polysilicon or silicon dioxide is used as a sacrificial layer. The finite element analysis includes temperature-dependent properties, shape change due to volume expansion, and thermal stress caused by differential thermal expansion of the materials. The finite-element results are compared to experimental results for a SiC device of similar, but not identical, geometry. Along with changes in mechanical design, blade-mounted sensors would require on-chip circuitry to cancel displacements due to centripetal acceleration and improve sensitivity and bandwidth. These findings may result in better accelerometer designs for this application.

  16. Shock margin testing of a one-axis MEMS accelerometer.

    SciTech Connect

    Parson, Ted Blair; Tanner, Danelle Mary; Buchheit, Thomas Edward

    2008-07-01

    Shock testing was performed on a selected commercial-off-the-shelf - MicroElectroMechanical System (COTS-MEMS) accelerometer to determine the margin between the published absolute maximum rating for shock and the 'measured' level where failures are observed. The purpose of this testing is to provide baseline data for isolating failure mechanisms under shock and environmental loading in a representative device used or under consideration for use within systems and assemblies of the DOD/DOE weapons complex. The specific device chosen for this study was the AD22280 model of the ADXL78 MEMS Accelerometer manufactured by Analog Devices Inc. This study focuses only on the shock loading response of the device and provides the necessary data for adding influence of environmental exposure to the reliability of this class of devices. The published absolute maximum rating for acceleration in any axis was 4000 G for this device powered or unpowered. Results from this study showed first failures at 8000 G indicating a margin of error of two. Higher shock level testing indicated that an in-plane, but off-axis acceleration was more damaging than one in the sense direction.

  17. Airbag accelerometer with a simple switched-capacitor readout ASIC

    NASA Astrophysics Data System (ADS)

    Tsugai, Masahiro; Hirata, Yoshiaki; Tanimoto, Koji; Usami, Teruo; Araki, Toru; Otani, Hiroshi

    1997-09-01

    A bulk micromachined capacitive accelerometer for airbag applications based on (110) silicon anisotropic KOH etching is presented. The sensor is a two-chip accelerometer that consists of a glass-silicon-glass stacked sense element and an interface ASIC containing an impedance converter for capacitance detection, an EPROM and DACs for digital trimming, and a self-test feature for diagnosis. A simple switched-capacitor readout circuit with DC offset error cancellation scheme is proposed as the impedance converter. The dependence of narrow gap etching, surface roughness, and uniformity of the groove depth on the KOH concentration are also investigated for the fabrication of the device, and it is shown that the etch rate of the plane intrinsically controls the depth of the narrow gap with a KOH concentration of over 30 wt. percent, and smooth surface and uniformity of groove depth are obtained at 40 wt. percent KOH. The nonlinearity of the output is about 1.5 percent FS. The temperature coefficient of sensitivity and the off-axis sensitivity are 150 ppm/degree C and 2 percent respectively. The dimensions of the sensor are 10.3 X 10.3 X 3 mm.

  18. Engineering Implications of Rotational Sensitivity of Translational Accelerometers

    NASA Astrophysics Data System (ADS)

    Boroschek, R. L.

    2006-12-01

    Several studies have indicated that nominal linear translational accelerometers are strongly sensitive to rotation motions, especially around their horizontal axis. It has been theoretically and experimentally demonstrated that this situation affects the acceleration record and severely limits appropriate velocity and displacement determination. More importantly the common believe that filtering long periods signals could "clean" the acceleration record from this unwanted effect has been shown inadequate by the author this abstract and collaborators using experimental testing. Rotational effects are still present on filtered records unless the complete frequency bandwidth that composes the rotation motion is filtered out. In civil engineering structures rotations are nearly always present. Typical examples are foundation rocking, beam bending, floor slab deformation and overall rotation of structures due to relative large loads or damage. Two real cases were rotation of a relative flexible structure strongly influence the linear accelerometer responses are presented and later experimentally reproduce in a shake table controlled situation. The first one corresponds to a bridge with a contiguous 383 meter simple supported beam rested on rubber bearing that suffered the rotational related distortions due to the passing of a heavy truck at the end of a seismic event. The second event corresponds to the vibration recording of vertical motions on an industrial bridge that is exposed to forced vibration of a large motor. Both examples indicate that in certain conditions motion records from structural instruments are subjected to distortions effects that could make acceleration, velocity and displacement (temporarily or permanent) measurements not reliable.

  19. Applying macro design tools to the design of MEMS accelerometers

    SciTech Connect

    Davies, B.R.; Rodgers, M.S.; Montague, S.

    1998-02-01

    This paper describes the design of two different surface micromachined (MEMS) accelerometers and the use of design and analysis tools intended for macro sized devices. This work leverages a process for integrating both the micromechanical structures and microelectronics circuitry of a MEMS accelerometer on the same chip. In this process, the mechanical components of the sensor are first fabricated at the bottom of a trench etched into the wafer substrate. The trench is then filled with oxide and sealed to protect the mechanical components during subsequent microelectronics processing. The wafer surface is then planarized in preparation for CMOS processing. Next, the CMOS electronics are fabricated and the mechanical structures are released. The mechanical structure of each sensor consists of two polysilicon plate masses suspended by multiple springs (cantilevered beam structures) over corresponding polysilicon plates fixed to the substrate to form two parallel plate capacitors. One polysilicon plate mass is suspended using compliant springs forming a variable capacitor. The other polysilicon plate mass is suspended using very stiff springs acting as a fixed capacitor. Acceleration is measured by comparing the variable capacitance with the fixed capacitance during acceleration.

  20. Quantifying slope and grain size dependent transport thresholds using RFID and accelerometer tracers with on-bed RFID antennas in an upland channel

    NASA Astrophysics Data System (ADS)

    Olinde, L.; Johnson, J. P.

    2014-12-01

    Integrating accelerometer and radio frequency identification (RFID) embedded tracers with in-stream RFID antennas can provide unique field-based relations for grain size and slope dependent thresholds of motion. We recorded bedload activity at a reach and across individual particles paths during a weeks-spanning snowmelt period in Reynolds Creek, Idaho. Deployed accelerometer tracers logged unique clast mobility, while stationary antennas captured the times when RFID and accelerometer tracers passed through a given reach. We analyze the temporal motion dataset from the stationary antennas along with the reach's shear stress conditions over the season. The antenna records quantify a grain-size dependent lower envelope for the threshold of motion that is fit with a hiding function. The accelerometer tracers were transported downstream as little as 10 m to more than 2 km, and were deposited in reaches with slopes ranging from 0.5 to 7 percent. The integration of the antenna-based hiding function along with flow modeling, grain size distributions and the accelerometer tracers' mobility data constrain the dependence of critical shear stress on reach slope. Both the grain-size and slope dependent threshold results gleaned from these novel field methods are then utilized to evaluate how transport capacities fluctuate along the channel during a snowmelt flood. The hiding function results from the stationary antennas also demonstrate promising potential for bedload monitoring programs to include continuous threshold data by deploying multiple antenna stations across watershed scales. This multi-antenna watershed application could provide spatiotemporal comparisons of transport thresholds between reaches of interest. Such an effort could also be used to quantify changes in transport thresholds due to natural perturbations or restoration/management modifications within a watershed.

  1. Factor Structure and Psychometric Properties of the Work-Family Balance Scale in an Urban Chinese Sample.

    PubMed

    Zhang, Huiping; Yip, Paul S F; Chi, Peilian; Chan, Kinsun; Cheung, Yee Tak; Zhang, Xiulan

    2012-02-01

    The purpose of this study was to explore the factor structure of the Work-Family Balance Scale (WFBS) and examine its reliability and validity in use in the urban Chinese population. The scale was validated using a sample of 605 urban Chinese residents from 7 cities. Exploratory factor analysis identified two factors: work-family conflict and work-family enrichment. The WFBS showed adequate reliability and concurrent validity. The WFBS is a reliable and valid instrument to measure work-family balance for Chinese working parents. However, further examination of the scale is needed.

  2. Calibration and validation of individual GOCE accelerometers by precise orbit determination

    NASA Astrophysics Data System (ADS)

    Visser, P. N. A. M.; IJssel, J. A. A. van den

    2016-01-01

    The European Space Agency Gravity field and steady-state Ocean Circular Explorer (GOCE) carries a gradiometer consisting of three pairs of accelerometers in an orthogonal triad. Precise GOCE science orbit solutions (PSO), which are based on satellite-to-satellite tracking observations by the Global Positioning System and which are claimed to be at the few cm precision level, can be used to calibrate and validate the observations taken by the accelerometers. This has been done for each individual accelerometer by a dynamic orbit fit of the time series of position co-ordinates from the PSOs, where the accelerometer observations represent the non-gravitational accelerations. Since the accelerometers do not coincide with the center of mass of the GOCE satellite, the observations have to be corrected for rotational and gravity gradient terms. This is not required when using the so-called common-mode accelerometer observations, provided the center of the gradiometer coincides with the GOCE center of mass. Dynamic orbit fits based on these common-mode accelerations therefore served as reference. It is shown that for all individual accelerometers, similar dynamic orbit fits can be obtained provided the above-mentioned corrections are made. In addition, accelerometer bias estimates are obtained that are consistent with offsets in the gravity gradients that are derived from the GOCE gradiometer observations.

  3. Assessing Physical Activity in Children with Asthma: Convergent Validity between Accelerometer and Electronic Diary Data

    ERIC Educational Resources Information Center

    Floro, Josh N.; Dunton, Genevieve F.; Delfino, Ralph J.

    2009-01-01

    Convergent validity of accelerometer and electronic diary physical activity data was assessed in children with asthma. Sixty-two participants, ages 9-18 years, wore an accelerometer and reported their physical activity level in quarter-hour segments every 2 hr using the Ambulatory Diary Assessment (ADA). Moderate validity was found between…

  4. Attitude Toward Ambiguity: Empirically Robust Factors in Self-Report Personality Scales.

    PubMed

    Lauriola, Marco; Foschi, Renato; Mosca, Oriana; Weller, Joshua

    2016-06-01

    Two studies were conducted to examine the factor structure of attitude toward ambiguity, a broad personality construct that refers to personal reactions to perceived ambiguous stimuli in a variety of context and situations. Using samples from two countries, Study 1 mapped the hierarchical structure of 133 items from seven tolerance-intolerance of ambiguity scales (N = 360, Italy; N = 306, United States). Three major factors-Discomfort with Ambiguity, Moral Absolutism/Splitting, and Need for Complexity and Novelty-were recovered in each country with high replicability coefficients across samples. In Study 2 (N = 405, Italian community sample; N =366, English native speakers sample), we carried out a confirmatory analysis on selected factor markers. A bifactor model had an acceptable fit for each sample and reached the construct-level invariance for general and group factors. Convergent validity with related traits was assessed in both studies. We conclude that attitude toward ambiguity can be best represented a multidimensional construct involving affective (Discomfort with Ambiguity), cognitive (Moral Absolutism/Splitting), and epistemic (Need for Complexity and Novelty) components.

  5. Hurricane Katrina-induced forest damage in relation to ecological factors at landscape scale.

    PubMed

    Wang, Fugui; Xu, Y Jun

    2009-09-01

    Forest stand stability to strong winds such as hurricanes has been found to be associated with a number of forest, soil and topography factors. In this study, through applying geographic information system (GIS) and logit regression, we assessed effects of forest characteristics and site conditions on pattern, severity and probability of Hurricane Katrina disturbance to forests in the Lower Pearl River Valley, USA. The factors included forest type, forest coverage, stand density, soil great group, elevation, slope, aspect, and stream buffer zone. Results showed that Hurricane Katrina damaged 60% of the total forested land in the region. The distribution and intensity of the hurricane disturbance varied across the landscape, with the bottomland hardwood forests on river floodplains most severely affected. All these factors had a variety of effects on vulnerability of the forests to the hurricane disturbance and thereby spatial patterns of the disturbance. Soil groups and stand factors including forest types, forest coverage and stand density contributed to 85% of accuracy in modeling the probability of the hurricane disturbance to forests in this region. Besides assessment of Katrina's damage, this study elucidates the great usefulness of remote sensing and GIS techniques combined with statistics modeling in assessment of large-scale risks of hurricane damage to coastal forests.

  6. Validation of the Social Appearance Anxiety Scale: factor, convergent, and divergent validity.

    PubMed

    Levinson, Cheri A; Rodebaugh, Thomas L

    2011-09-01

    The Social Appearance Anxiety Scale (SAAS) was created to assess fear of overall appearance evaluation. Initial psychometric work indicated that the measure had a single-factor structure and exhibited excellent internal consistency, test-retest reliability, and convergent validity. In the current study, the authors further examined the factor, convergent, and divergent validity of the SAAS in two samples of undergraduates. In Study 1 (N = 323), the authors tested the factor structure, convergent, and divergent validity of the SAAS with measures of the Big Five personality traits, negative affect, fear of negative evaluation, and social interaction anxiety. In Study 2 (N = 118), participants completed a body evaluation that included measurements of height, weight, and body fat content. The SAAS exhibited excellent convergent and divergent validity with self-report measures (i.e., self-esteem, trait anxiety, ethnic identity, and sympathy), predicted state anxiety experienced during the body evaluation, and predicted body fat content. In both studies, results confirmed a single-factor structure as the best fit to the data. These results lend additional support for the use of the SAAS as a valid measure of social appearance anxiety.

  7. A Large-Scale Analysis of Impact Factor Biased Journal Self-Citations

    PubMed Central

    Waltman, Ludo

    2016-01-01

    Based on three decades of citation data from across scientific fields of science, we study trends in impact factor biased self-citations of scholarly journals, using a purpose-built and easy to use citation based measure. Our measure is given by the ratio between i) the relative share of journal self-citations to papers published in the last two years, and ii) the relative share of journal self-citations to papers published in preceding years. A ratio higher than one suggests that a journal’s impact factor is disproportionally affected (inflated) by self-citations. Using recently reported survey data, we show that there is a relation between high values of our proposed measure and coercive journal self-citation malpractices. We use our measure to perform a large-scale analysis of impact factor biased journal self-citations. Our main empirical result is, that the share of journals for which our measure has a (very) high value has remained stable between the 1980s and the early 2000s, but has since risen strongly in all fields of science. This time span corresponds well with the growing obsession with the impact factor as a journal evaluation measure over the last decade. Taken together, this suggests a trend of increasingly pervasive journal self-citation malpractices, with all due unwanted consequences such as inflated perceived importance of journals and biased journal rankings. PMID:27560807

  8. Determine the Galaxy Bias Factors on Large Scales Using the Bispectrum Method

    NASA Astrophysics Data System (ADS)

    Guo, H.; Jing, Y. P.

    2009-09-01

    We study whether the bias factors of galaxies can be unbiasedly recovered from their power spectra and bispectra. We use a set of numerical N-body simulations and construct large mock galaxy catalogs based upon the semi-analytical model of Croton et al. We measure the reduced bispectra for galaxies of different luminosity, and determine the linear and first nonlinear bias factors from their bispectra. We find that on large scales down to that of the wavenumber k = 0.1 h Mpc-1, the bias factors b 1 and b 2 are nearly constant, and b 1 obtained with the bispectrum method agrees very well with the expected value. The nonlinear bias factor b 2 is negative, except for the most luminous galaxies with Mr < -23 which have a positive b 2. The behavior of b 2 of galaxies is consistent with the b 2 mass dependence of their host halos. We show that it is essential to have an accurate estimation of the dark matter bispectrum in order to have an unbiased measurement of b 1 and b 2. We also test the analytical approach of incorporating halo occupation distribution to model the galaxy power spectrum and bispectrum. The halo model predictions do not fit the simulation results well on the precision requirement of current cosmological studies.

  9. A Large-Scale Analysis of Impact Factor Biased Journal Self-Citations.

    PubMed

    Chorus, Caspar; Waltman, Ludo

    2016-01-01

    Based on three decades of citation data from across scientific fields of science, we study trends in impact factor biased self-citations of scholarly journals, using a purpose-built and easy to use citation based measure. Our measure is given by the ratio between i) the relative share of journal self-citations to papers published in the last two years, and ii) the relative share of journal self-citations to papers published in preceding years. A ratio higher than one suggests that a journal's impact factor is disproportionally affected (inflated) by self-citations. Using recently reported survey data, we show that there is a relation between high values of our proposed measure and coercive journal self-citation malpractices. We use our measure to perform a large-scale analysis of impact factor biased journal self-citations. Our main empirical result is, that the share of journals for which our measure has a (very) high value has remained stable between the 1980s and the early 2000s, but has since risen strongly in all fields of science. This time span corresponds well with the growing obsession with the impact factor as a journal evaluation measure over the last decade. Taken together, this suggests a trend of increasingly pervasive journal self-citation malpractices, with all due unwanted consequences such as inflated perceived importance of journals and biased journal rankings.

  10. Validating the factor structure of the Self-Report Psychopathy scale in a community sample.

    PubMed

    Mahmut, Mehmet K; Menictas, Con; Stevenson, Richard J; Homewood, Judi

    2011-09-01

    Currently, there is no standard self-report measure of psychopathy in community-dwelling samples that parallels the most commonly used measure of psychopathy in forensic and clinical samples, the Psychopathy Checklist. A promising instrument is the Self-Report Psychopathy scale (SRP), which was derived from the original version the Psychopathy Checklist. The most recent version of the SRP (SRP-III; D. L. Paulhus, C. S. Neumann, & R. D. Hare, in press) has shown good convergent and discriminate validity and a factor structure similar to the current version of the Psychopathy Checklist (PCL-R; R. D. Hare, 1991, 2003). The analyses in the current study further investigated the viability of the SRP-III as a PCL-R-analogous measure of psychopathy in nonforensic and nonclinical samples by extending the validation process to a community sample. Using confirmatory factor analyses and logistic regressions, the results revealed that a four-factor oblique model for the SRP-III was most tenable, congruent with the PCL-R factor structure of psychopathy and previous research in which the SRP-III was administered to a student sample.

  11. a Diagnostic System Measuring Orthogonal Factors of Sound Fields in a Scale Model of Auditorium

    NASA Astrophysics Data System (ADS)

    SAKURAI, M.; AIZAWA, S.; SUZUMURA, Y.; ANDO, Y.

    2000-04-01

    Based on the model of auditory-brain system which consists of the autocorrelation mechanism, the interaural cross-correlation mechanism between both the auditory pathways, and the specialization of human cerebral hemispheres (Y. Ando 1998 Architectural Acoustics, Blending Sound Sources, Sound Fields, and Listeners New York: AIP Press/Springer-Verlag), a new diagnostic system was developed. After obtaining the binaural impulse response, four orthogonal factors including the SPL, the initial time-delay gap between the direct sound and the first reflection, the subsequent reverberation time and the IACC can be analyzed for the calculation of the scale values of both global and individual subjective preferences. In addition, two more factors extracted from the interaural cross-correlation functionτIACC and WIACC, can be figured out. Also, the sound energy,Φ (0), the effective duration, τe, and fine structures of autocorrelation function of sound signals including the magnitude of first maximum, φ1, and its delay time,τ1 , can be analyzed. As an example of the measurement, effects of reflectors' array above the stage in a 1/10 scale model of auditorium at each seat are discussed here.

  12. Scale Factor Measurements for a Gyroscope Based on an Expanding Cloud of Atoms

    NASA Astrophysics Data System (ADS)

    Hoth, Gregory; Pelle, Bruno; Riedl, Stefan; Kitching, John; Donley, Elizabeth

    2016-05-01

    We present an atom interferometer that can simultaneously measure two-axis rotations and one-axis accelerations with a single cloud of atoms in an active evacuated volume of about 1 cm3. This is accomplished by extending the point-source interferometry technique (Dickerson et al. PRL, 111, 083001, 2013) to a compact regime. In this technique, the cloud of atoms is imaged after the interferometer sequence. Rotations cause spatial fringes to appear across the cloud. To realize a gyroscope with this method, it is necessary to know how the wave-vector of the spatial fringes, k, is related to the rotation rate, Ω. If the cloud is initially infinitesimally small, it can be shown that k = FΩ with a scale factor F determined by the time between interferometer pulses, the total free expansion time, and the wavelength of the interrogating laser. However, the point-source approximation is not appropriate in our case because the final size of the cloud in our experiment is between 1.4 and 5 times its initial size. We show experimentally that in this finite expansion regime the phase gradient is still well described by k = FΩ , but the scale factor F depends on the initial distribution of the atoms. We also present modeling that explains this dependence.

  13. High quality factor mg-scale silicon mechanical resonators for 3-mode optoacoustic parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Torres, F. A.; Meng, P.; Ju, L.; Zhao, C.; Blair, D. G.; Liu, K.-Y.; Chao, S.; Martyniuk, M.; Roch-Jeune, I.; Flaminio, R.; Michel, C.

    2013-07-01

    Milligram-scale resonators have been shown to be suitable for the creation of 3-mode optoacoustic parametric amplifiers, based on a phenomena first predicted for advanced gravitational-wave detectors. To achieve practical optoacoustic parametric devices, high quality factor resonators are required. We present millimetre-scale silicon resonators designed to exhibit a torsional vibration mode with a frequency in the 105-106 Hz range, for observation of 3-mode optoacoustic interactions in a compact table-top system. Our design incorporates an isolation stage and minimizes the acoustic loss from optical coating. We observe a quality factor of 7.5 × 105 for a mode frequency of 401.5 kHz, at room temperature and pressure of 10-3 Pa. We confirmed the mode shape by mapping the amplitude response across the resonator and comparing to finite element modelling. This study contributes to the development of 3-mode optoacoustic parametric amplifiers for use in novel high-sensitivity signal transducers and quantum measurement experiments.

  14. Martian Atmospheric Modeling of Scale Factors for MarsGRAM 2005 and the MAVEN Project

    NASA Technical Reports Server (NTRS)

    McCullough, Chris

    2011-01-01

    For spacecraft missions to Mars, especially the navigation of Martian orbiters and landers, an extensive knowledge of the Martian atmosphere is extremely important. The generally-accepted NASA standard for modeling (MarsGRAM), which was developed at Marshall Space Flight Center. MarsGRAM is useful for task such as aerobraking, performance analysis and operations planning for aerobraking, entry descent and landing, and aerocapture. Unfortunately, the densities for the Martian atmosphere in MarsGRAM are based on table look-up and not on an analytical algorithm. Also, these values can vary drastically from the densities actually experienced by the spacecraft. This does not have much of an impact on simple integrations but drastically affects its usefulness in other applications, especially those in navigation. For example, the navigation team for the Mars Atmosphere Volatile Environment (MAVEN) Project uses MarsGRAM to target the desired atmospheric density for the orbiter's pariapse passage, its closet approach to the planet. After the satellite's passage through pariapsis the computed density is compared to the MarsGRAM model and a scale factor is assigned to the model to account for the difference. Therefore, large variations in the atmosphere from the model can cause unexpected deviations from the spacecraft's planned trajectory. In order to account for this, an analytic stochastic model of the scale factor's behavior is desired. The development of this model will allow for the MAVEN navigation team to determine the probability of various Martian atmospheric variations and their effects on the spacecraft.

  15. Financial factor influence on scaling and memory of trading volume in stock market.

    PubMed

    Li, Wei; Wang, Fengzhong; Havlin, Shlomo; Stanley, H Eugene

    2011-10-01

    We study the daily trading volume volatility of 17,197 stocks in the US stock markets during the period 1989-2008 and analyze the time return intervals τ between volume volatilities above a given threshold q. For different thresholds q, the probability density function P(q)(τ) scales with mean interval 〈τ〉 as P(q)(τ)=〈τ〉(-1)f(τ/〈τ〉), and the tails of the scaling function can be well approximated by a power law f(x)∼x(-γ). We also study the relation between the form of the distribution function P(q)(τ) and several financial factors: stock lifetime, market capitalization, volume, and trading value. We find a systematic tendency of P(q)(τ) associated with these factors, suggesting a multiscaling feature in the volume return intervals. We analyze the conditional probability P(q)(τ|τ(0)) for τ following a certain interval τ(0), and find that P(q)(τ|τ(0)) depends on τ(0) such that immediately following a short (long) return interval a second short (long) return interval tends to occur. We also find indications that there is a long-term correlation in the daily volume volatility. We compare our results to those found earlier for price volatility.

  16. Factors associated with small-scale agricultural machinery adoption in Bangladesh: Census findings.

    PubMed

    Mottaleb, Khondoker Abdul; Krupnik, Timothy J; Erenstein, Olaf

    2016-08-01

    There is strong advocacy for agricultural machinery appropriate for smallholder farmers in South Asia. Such 'scale-appropriate' machinery can increase returns to land and labour, although the still substantial capital investment required can preclude smallholder ownership. Increasing machinery demand has resulted in relatively well-developed markets for rental services for tillage, irrigation, and post-harvest operations. Many smallholders thereby access agricultural machinery that may have otherwise been cost prohibitive to purchase through fee-for-service arrangements, though opportunity for expansion remains. To more effectively facilitate the development and investment in scale-appropriate machinery, there is a need to better understand the factors associated with agricultural machinery purchases and service provision. This paper first reviews Bangladesh's historical policy environment that facilitated the development of agricultural machinery markets. It then uses recent Bangladesh census data from 814,058 farm households to identify variables associated with the adoption of the most common smallholder agricultural machinery - irrigation pumps, threshers, and power tillers (mainly driven by two-wheel tractors). Multinomial probit model results indicate that machinery ownership is positively associated with household assets, credit availability, electrification, and road density. These findings suggest that donors and policy makers should focus not only on short-term projects to boost machinery adoption. Rather, sustained emphasis on improving physical and civil infrastructure and services, as well as assuring credit availability, is also necessary to create an enabling environment in which the adoption of scale-appropriate farm machinery is most likely.

  17. Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh

    PubMed Central

    Bi, Qifang; Azman, Andrew S.; Satter, Syed Moinuddin; Khan, Azharul Islam; Ahmed, Dilruba; Riaj, Altaf Ahmed; Gurley, Emily S.; Lessler, Justin

    2016-01-01

    Close interpersonal contact likely drives spatial clustering of cases of cholera and diarrhea, but spatial clustering of risk factors may also drive this pattern. Few studies have focused specifically on how exposures for disease cluster at small spatial scales. Improving our understanding of the micro-scale clustering of risk factors for cholera may help to target interventions and power studies with cluster designs. We selected sets of spatially matched households (matched-sets) near cholera case households between April and October 2013 in a cholera endemic urban neighborhood of Tongi Township in Bangladesh. We collected data on exposures to suspected cholera risk factors at the household and individual level. We used intra-class correlation coefficients (ICCs) to characterize clustering of exposures within matched-sets and households, and assessed if clustering depended on the geographical extent of the matched-sets. Clustering over larger spatial scales was explored by assessing the relationship between matched-sets. We also explored whether different exposures tended to appear together in individuals, households, and matched-sets. Household level exposures, including: drinking municipal supplied water (ICC = 0.97, 95%CI = 0.96, 0.98), type of latrine (ICC = 0.88, 95%CI = 0.71, 1.00), and intermittent access to drinking water (ICC = 0.96, 95%CI = 0.87, 1.00) exhibited strong clustering within matched-sets. As the geographic extent of matched-sets increased, the concordance of exposures within matched-sets decreased. Concordance between matched-sets of exposures related to water supply was elevated at distances of up to approximately 400 meters. Household level hygiene practices were correlated with infrastructure shown to increase cholera risk. Co-occurrence of different individual level exposures appeared to mostly reflect the differing domestic roles of study participants. Strong spatial clustering of exposures at a small spatial scale in a cholera endemic

  18. Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh.

    PubMed

    Bi, Qifang; Azman, Andrew S; Satter, Syed Moinuddin; Khan, Azharul Islam; Ahmed, Dilruba; Riaj, Altaf Ahmed; Gurley, Emily S; Lessler, Justin

    2016-02-01

    Close interpersonal contact likely drives spatial clustering of cases of cholera and diarrhea, but spatial clustering of risk factors may also drive this pattern. Few studies have focused specifically on how exposures for disease cluster at small spatial scales. Improving our understanding of the micro-scale clustering of risk factors for cholera may help to target interventions and power studies with cluster designs. We selected sets of spatially matched households (matched-sets) near cholera case households between April and October 2013 in a cholera endemic urban neighborhood of Tongi Township in Bangladesh. We collected data on exposures to suspected cholera risk factors at the household and individual level. We used intra-class correlation coefficients (ICCs) to characterize clustering of exposures within matched-sets and households, and assessed if clustering depended on the geographical extent of the matched-sets. Clustering over larger spatial scales was explored by assessing the relationship between matched-sets. We also explored whether different exposures tended to appear together in individuals, households, and matched-sets. Household level exposures, including: drinking municipal supplied water (ICC = 0.97, 95%CI = 0.96, 0.98), type of latrine (ICC = 0.88, 95%CI = 0.71, 1.00), and intermittent access to drinking water (ICC = 0.96, 95%CI = 0.87, 1.00) exhibited strong clustering within matched-sets. As the geographic extent of matched-sets increased, the concordance of exposures within matched-sets decreased. Concordance between matched-sets of exposures related to water supply was elevated at distances of up to approximately 400 meters. Household level hygiene practices were correlated with infrastructure shown to increase cholera risk. Co-occurrence of different individual level exposures appeared to mostly reflect the differing domestic roles of study participants. Strong spatial clustering of exposures at a small spatial scale in a cholera endemic

  19. Coastal erosion risk assessment using natural and human factors in different scales.

    NASA Astrophysics Data System (ADS)

    Alexandrakis, George; Kampanis, Nikolaos

    2015-04-01

    Climate change, including sea-level rise and increasing storms, raise the threats of coastal erosion. Mitigating and adapting to coastal erosion risks in areas of human interest, like urban areas, culture heritage sites, and areas of economic interest, present a major challenge for society. In this context, decision making needs to be based in reliable risk assessment that includes environmental, social and economic factors. By integrating coastal hazard and risk assessments maps into coastal management plans, risks in areas of interest can be reduced. To address this, the vulnerability of the coast to sea level rise and associated erosion, in terms of expected land loss and socioeconomic importance need to be identified. A holistic risk assessment based in environmental, socioeconomic and economics approach can provide managers information how to mitigate the impact of coastal erosion and plan protection measures. Such an approach needs to consider social, economic and environmental factors, which interactions can be better assessed when distributed and analysed along the geographical space. In this work, estimations of climate change impact to coastline are based on a combination of environmental and economic data analysed in a GIS database. The risk assessment is implemented through the estimation of the vulnerability and exposure variables of the coast in two scales. The larger scale estimates the vulnerability in a regional level, with the use environmental factors with the use of CVI. The exposure variable is estimated by the use of socioeconomic factors. Subsequently, a smaller scale focuses on highly vulnerable beaches with high social and economic value. The vulnerability assessment of the natural processes to the environmental characteristics of the beach is estimated with the use of the Beach Vulnerability Index. As exposure variable, the value of beach width that is capitalized in revenues is implemented through a hedonic pricing model. In this

  20. Improved rapid magnitude estimation for a community-based, low-cost MEMS accelerometer network

    USGS Publications Warehouse

    Chung, Angela I.; Cochran, Elizabeth S.; Kaiser, Anna E.; Christensen, Carl M.; Yildirim, Battalgazi; Lawrence, Jesse F.

    2015-01-01

    Immediately following the Mw 7.2 Darfield, New Zealand, earthquake, over 180 Quake‐Catcher Network (QCN) low‐cost micro‐electro‐mechanical systems accelerometers were deployed in the Canterbury region. Using data recorded by this dense network from 2010 to 2013, we significantly improved the QCN rapid magnitude estimation relationship. The previous scaling relationship (Lawrence et al., 2014) did not accurately estimate the magnitudes of nearby (<35  km) events. The new scaling relationship estimates earthquake magnitudes within 1 magnitude unit of the GNS Science GeoNet earthquake catalog magnitudes for 99% of the events tested, within 0.5 magnitude units for 90% of the events, and within 0.25 magnitude units for 57% of the events. These magnitudes are reliably estimated within 3 s of the initial trigger recorded on at least seven stations. In this report, we present the methods used to calculate a new scaling relationship and demonstrate the accuracy of the revised magnitude estimates using a program that is able to retrospectively estimate event magnitudes using archived data.

  1. High shock, high frequency characteristics of a mechanical isolator for a piezoresistive accelerometer

    SciTech Connect

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1995-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories. An Extended Technical Assistance Program with the accelerometer manufacturer has resulted in a commercial isolator that will be available to the general public. This mechanical isolator has ten times the bandwidth of any other commercial isolator and has acceptable frequency domain performance from DC to 10 kHz ({plus_minus} 10%) over a temperature range of -65{degrees}F to +185{degrees}F as demonstrated in this paper.

  2. Validity, reliability and factor analysis of Persian version of schizophrenia quality of life scale

    PubMed Central

    Masaeli, Nasrin; Omranifard, Victoria; Maracy, Mohammad Reza; Kheirabadi, Gholam Reza; Khedri, Anahita

    2016-01-01

    Context: Exact measurement of quality of life (QOL) in schizophrenia patients for evaluation of the patient's deterioration and also to assess the efficacy of therapeutic Interventions has become a daily task, which requires accurate assessment tools. Aims: This study was aimed to assess the psychometric properties of a Persian version of schizophrenia QOL scale (SQLS) as a common transcultural instrument. Settings and Design: One hundred and fifty schizophrenia patients who referred to Psychiatric Clinic in Noor Hospital (Isfahan, Iran) have been selected using simple sampling method. Subjects and Methods: Aside with SQLS, short form-36 general health (SF-36) and World Health Organization QOL-brief-26 (WHOQOL-BREF-26). Questionnaires were completed by the cases for determination of correlation coefficients. Statistical Analysis Used: The data were analyzed using descriptive statistics, factor analysis, Cronbach's coefficient alpha, Pearson correlation coefficient by Statistical Package for Social Sciences software, version 18 (SPSS-18). Results: Total reliability of the questionnaire was reported by using Cronbach's coefficient alpha 0.84, reliability of individual relationships subscales was 0.91, signs 0/87, symptoms 0/72 and motivation/energy 0/61. Correlation coefficients of SF-36 with a total scale of SQLS and correlation coefficient of WHOQOL-BREF-26 with a total scale of SQLS were acceptable. Exploratory factor analysis using varimax rotation identified four principle components (interpersonal relationship, symptoms, signs, motivation, and energy), which will determine QOL at 52.7% variance. Conclusions: Persian version of the SQLS can be used as a simple, reliable and valid tool in Iranian population. PMID:27512702

  3. Forest Conversion, Agricultural Transitions and the Influence of Multi-scale Market Factors in Southwest Cameroon

    NASA Astrophysics Data System (ADS)

    Ordway, E.; Lambin, E.; Asner, G. P.

    2015-12-01

    The changing structure of demand for commodities associated with food security and energy has had a startling impact on land use change in tropical forests in recent decades. Yet, the composition of conversion in the Congo basin remains a major uncertainty, particularly with regards to the scale of drivers of change. Owing to rapid expansion of production globally and longstanding historical production locally in the Congo basin, oil palm offers a lens through which to evaluate local land use decisions across a spectrum of small- to large-scales of production as well as interactions with regional and global supply chains. We examined the effect of global commodity crop expansion on land use change in Southwest Cameroon using a mixed-methods approach to integrate remote sensing, field surveys and socioeconomic data. Southwest Cameroon (2.5 Mha) has a long history of large- and small-scale agriculture, ranging from mixed crop subsistence agriculture to large monocrop plantations of oil palm, cocoa, and rubber. Trends and spatial patterns of forest conversion and agricultural transitions were analyzed from 2000-2015 using satellite imagery. We used economic, demographic and field survey datasets to assess how regional and global market factors and local commodity crop decisions affect land use patterns. Our results show that oil palm is a major commodity crop expanding in this region, and that conversion is occurring primarily through expansion by medium-scale producers and local elites. Results also indicate that global and regional supply chain dynamics influence local land use decision making. This research contributes new information on land use patterns and dynamics in the Congo basin, an understudied region. More specifically, results from this research contribute information on recent trends of oil palm expansion in Cameroon that will be used in national land use planning strategies.

  4. Observation of Discrete Oscillations in the Plot of Cosmological Scale Factor vs. Lookback Time

    NASA Astrophysics Data System (ADS)

    Ringermacher, Harry I.; Mead, Lawrence R

    2014-06-01

    We have observed damped longitudinal cosmological-scale oscillations in a unique model-independent plot of scale factor against lookback time. We measured 2 full, constant frequency, oscillations with a period of 0.15 Hubble times. This period corresponds to a fundamental frequency of approximately 7 cycles over the age of the universe, which we term 7 “Hubble-Hertz” (HHz). Transition-z values quoted in the literature generally fall near these oscillation minima and may explain the reported spread and deviation from the predicted ΛCDM value of approximately z = 0.77. We also observe second and third harmonics of the fundamental consistent with the spectrum of a sawtooth waveform. We propose a cosmological scalar field damped simple harmonic oscillator model for the observation - which fits well. On this time scale, the scalar field particle mass is extraordinarily small at 10^ -32 ev. Particles on this scale have been suggested in the literature as being associated with massive gravitons, in which case we may be observing longitudinal mode gravitational waves. A multiverse 5-D brane collision scenario is one possible source for the scalar field and waves. This scenario enables an estimate of the compacted 5th dimension radius at approximately 1,000,000 ly - the size of a galaxy dark matter halo. Our scalar field density parameter precisely replaces the ΛCDM dark matter density parameter in the Friedmann equations, resulting in identical data fits, and its present value matches the Planck value. We therefore posit that this scalar field manifests itself as the dark matter.

  5. Integral emission factors for methane determined using urban flux measurements and local-scale inverse models

    NASA Astrophysics Data System (ADS)

    Christen, Andreas; Johnson, Mark; Molodovskaya, Marina; Ketler, Rick; Nesic, Zoran; Crawford, Ben; Giometto, Marco; van der Laan, Mike

    2013-04-01

    The most important long-lived greenhouse gas (LLGHG) emitted during combustion of fuels is carbon dioxide (CO2), however also traces of the LLGHGs methane (CH4) and nitrous oxide (N2O) are released, the quantities of which depend largely on the conditions of the combustion process. Emission factors determine the mass of LLGHGs emitted per energy used (or kilometre driven for cars) and are key inputs for bottom-up emission modelling. Emission factors for CH4 are typically determined in the laboratory or on a test stand for a given combustion system using a small number of samples (vehicles, furnaces), yet associated with larger uncertainties when scaled to entire fleets. We propose an alternative, different approach - Can integrated emission factors be independently determined using direct micrometeorological flux measurements over an urban surface? If so, do emission factors determined from flux measurements (top-down) agree with up-scaled emission factors of relevant combustion systems (heating, vehicles) in the source area of the flux measurement? Direct flux measurements of CH4 were carried out between February and May, 2012 over a relatively densely populated, urban surface in Vancouver, Canada by means of eddy covariance (EC). The EC-system consisted of an ultrasonic anemometer (CSAT-3, Campbell Scientific Inc.) and two open-path infrared gas analyzers (Li7500 and Li7700, Licor Inc.) on a tower at 30m above the surface. The source area of the EC system is characterised by a relative homogeneous morphometry (5.3m average building height), but spatially and temporally varying emission sources, including two major intersecting arterial roads (70.000 cars drive through the 50% source area per day) and seasonal heating in predominantly single-family houses (natural gas). An inverse dispersion model (turbulent source area model), validated against large eddy simulations (LES) of the urban roughness sublayer, allows the determination of the spatial area that

  6. Spectral damping scaling factors for shallow crustal earthquakes in active tectonic regions

    USGS Publications Warehouse

    Rezaeian, Sanaz; Bozorgnia, Yousef; Idriss, I.M.; Campbell, Kenneth; Abrahamson, Norman; Silva, Walter

    2012-01-01

    Ground motion prediction equations (GMPEs) for elastic response spectra, including the Next Generation Attenuation (NGA) models, are typically developed at a 5% viscous damping ratio. In reality, however, structural and non-structural systems can have damping ratios other than 5%, depending on various factors such as structural types, construction materials, level of ground motion excitations, among others. This report provides the findings of a comprehensive study to develop a new model for a Damping Scaling Factor (DSF) that can be used to adjust the 5% damped spectral ordinates predicted by a GMPE to spectral ordinates with damping ratios between 0.5 to 30%. Using the updated, 2011 version of the NGA database of ground motions recorded in worldwide shallow crustal earthquakes in active tectonic regions (i.e., the NGA-West2 database), dependencies of the DSF on variables including damping ratio, spectral period, moment magnitude, source-to-site distance, duration, and local site conditions are examined. The strong influence of duration is captured by inclusion of both magnitude and distance in the DSF model. Site conditions are found to have less significant influence on DSF and are not included in the model. The proposed model for DSF provides functional forms for the median value and the logarithmic standard deviation of DSF. This model is heteroscedastic, where the variance is a function of the damping ratio. Damping Scaling Factor models are developed for the “average” horizontal ground motion components, i.e., RotD50 and GMRotI50, as well as the vertical component of ground motion.

  7. Replication of the factor structure of the Wechsler Adult Intelligence Scale--Third Edition with a Canadian sample.

    PubMed

    Saklofske, D H; Hildebrand, D K; Gorsuch, R L

    2000-12-01

    Exploratory and confirmatory factor analyses of the subtests of the Wechsler Adult Intelligence Scale--Third Edition (WAIS-III; D. Wechsler, 1997b) were conducted on a stratified sample of Canadian adults (n = 718). As was previously demonstrated for the children's version of this scale, the factor model of the American standardization sample was replicated across this Canadian national sample. Results of the factor analyses confirmed the presence of the 4 WAIS-III factors: Verbal Comprehension, Perceptual Organization, Working Memory, and Processing Speed.

  8. Investigation of the factor structure of the Wechsler Adult Intelligence Scale--Fourth Edition (WAIS-IV): exploratory and higher order factor analyses.

    PubMed

    Canivez, Gary L; Watkins, Marley W

    2010-12-01

    The present study examined the factor structure of the Wechsler Adult Intelligence Scale--Fourth Edition (WAIS-IV; D. Wechsler, 2008a) standardization sample using exploratory factor analysis, multiple factor extraction criteria, and higher order exploratory factor analysis (J. Schmid & J. M. Leiman, 1957) not included in the WAIS-IV Technical and Interpretation Manual (D. Wechsler, 2008b). Results indicated that the WAIS-IV subtests were properly associated with the theoretically proposed first-order factors, but all but one factor-extraction criterion recommended extraction of one or two factors. Hierarchical exploratory analyses with the Schmid and Leiman procedure found that the second-order g factor accounted for large portions of total and common variance, whereas the four first-order factors accounted for small portions of total and common variance. It was concluded that the WAIS-IV provides strong measurement of general intelligence, and clinical interpretation should be primarily at that level.

  9. Revising the Child and Adolescent Perfectionism Scale: A Test of the Four-Factor Structure in a Chinese Sample

    ERIC Educational Resources Information Center

    Yang, Hongfei; Hong, Chaoqin; Tao, Xiaodan; Zhu, Lingyi

    2015-01-01

    This study examined the structure, reliability, and validity of the revised Chinese version of the Child and Adolescent Perfectionism Scale (N = 933). The results confirmed the four-factor structure of the Chinese version of the Child and Adolescent Perfectionism Scale. Implications, limitations, and suggestions for future research are provided.

  10. External Validation of the Personality Inventory for Children (PIC) Profile and Factor Scales: Parent, Teacher, and Clinician Ratings.

    ERIC Educational Resources Information Center

    Lachar, David; And Others

    1984-01-01

    Attempted to expand the construct validity of the profile and factor scales for the Personality Inventory for Children (PIC) by determining the relationship of these scales to empirically derived dimensions of problem behaviors in children and adolescents (N=691). Results provided substantial evidence of convergent and discriminant validity. (LLL)

  11. Upscaling from benchtop processing to industrial scale production: More factors to be considered for pulsed electric field food processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulsed electric field (PEF) processing has been intensively studied with benchtop scale experiments. However, there is still limited information regarding critical factors to be considered for PEF efficacy in microbial reduction with PEF processing at a pilot or commercial scale production of juice....

  12. [Influence on the spatial distribution of fish in Taizi River basin by environmental factors at multiple scales].

    PubMed

    Ding, Sen; Zhang, Yuan; Qu, Xiao-Dong; Kong, Wei-Jing; Liu, Si-Si; Meng, Wei

    2012-07-01

    The deterioration of fish is influenced by various types of environmental factors. To develop protection plans that are more suitable, non-metric multidimensional scaling analysis (NMS) was used to investigate the influence of environmental factors at multiple scales on the spatial distribution of fish. The results of cluster analysis showed that there were three types of spatial distribution of fish, i.e. upstream timber and tributary headstream area, midstream hilly area, and downstream plain area. Results of NMS analysis indicated the significant correlations between spatial distribution of fish and environmental factors at multiple scales. Altitude, stream order and land use were three important factors influencing the fish distribution at the watershed scale. Combination of velocity and depth, habitat inhomogeneity and electrical conductivity significantly affected fish distribution at the reach scale, whereas the quality of bottom material showed significant influence at the microhabitat scale. Therefore, the effect of specific environmental factors at multiple scales should be taken into consideration in the basin fish conversation management.

  13. Risks of ingestion of aflatoxin-contaminated groundnuts in Benin: scale measurements, beliefs, and socioeconomic factors.

    PubMed

    Jolly, C M; Bayard, B; Vodouhe, S

    2009-10-01

    This study evaluates farmers' beliefs and perceived risks of aflatoxin (AF) on the consumption, production, and marketing of groundnuts. A survey was conducted with 181 farmers in Benin to assess their beliefs of AF effects on the marketing of groundnuts, and finally human and animal health. Awareness and action factors were also evaluated. Relationships of the belief and action factors with socioeconomic variables were evaluated using multiple indicators and multiple causes (MIMIC) models within a socioeconomic framework using a health belief model (HBM). The results indicate that the scale of the various constructs is reliable and the validity conforms to expectations. The unifactorial models developed in this study provide a satisfactory fit with NFl, CFI, and GFI exceeding 0.90. The results reveal that gender, age, and years of experience in farming significantly impact farmers' action regarding the reduction of AF in groundnut production and marketing. Male farmers are more likely to be aware of AF problems in groundnuts and feel more susceptible to the problems than their female counterparts. Gender and education seem to be dominating factors in the perception of barriers to mitigating the effects of AF, and male and older farmers are more likely to perceive the benefits of producing and marketing good quality groundnuts.

  14. Factor structure and validity of the Depression, Anxiety and Stress Scale-21 in Swedish translation.

    PubMed

    Alfonsson, S; Wallin, E; Maathz, P

    2017-03-01

    WHAT IS KNOWN ON THE SUBJECT?: The Depression, Anxiety and Stress Scale-21 (DASS-21) is a widely used measurement for psychological symptoms and distress. Some previous studies have shown that the DASS-21 can accurately measure symptoms of anxiety, depression and stress, while other studies have indicated that the DASS-21 mainly measures overall distress. The factor structure of the DASS-21 is important and debated since if affects interpretations of findings. WHAT DOES THIS PAPER ADD TO EXISTING KNOWLEDGE?: In this study, the DASS-21 was translated into Swedish and evaluated in three diverse samples. The DASS-21 subscales of Depression and Anxiety correlated significantly with corresponding criteria instruments. The DASS-21 Stress subscale showed more diverse associations with psychological distress. The analyses supported a bifactor model of the DASS-21 with three specific factors of depression, anxiety and stress as well as a general distress factor. WHAT ARE THE IMPLICATIONS FOR PRACTICE?: The results show that the DASS-21 may be used to measure unique symptoms of depression, anxiety and, with some caveat, stress as well as overall psychological distress. This study confirms that the DASS-21 is theoretically sound instrument that is feasible for both research and clinical practice. The DASS-21 can be an accessible tool for screening and evaluation in first-line mental health services.

  15. Confirmatory factor analysis of the German Readiness for Interprofessional Learning Scale (RIPLS-D).

    PubMed

    Mahler, Cornelia; Giesler, Marianne; Stock, Christian; Krisam, Johannes; Karstens, Sven; Szecsenyi, Joachim; Krug, Katja

    2016-05-01

    Over the past five years, the development of interprofessional education programmes has been gaining momentum in Germany fostering the need to evaluate these with appropriate instruments. Instead of developing a new instrument for evaluation purposes, the Readiness for Interprofessional Learning Scale (RIPLS) was chosen, as it is a widespread instrument that has been used in a variety of different educational settings and countries. The German version of the RIPLS was administered in two sites to health professional students in Heidelberg and Freiburg, Germany. Cronbach's alpha was used to examine internal consistency. Confirmatory factor analysis (CFA) was performed for confirmation of the underlying factor structure of the RIPLS-D. In total, 531 questionnaires were analysed. The instrument showed overall reliability (0.81) and low reliability (< 0.7) in the subscales. The underlying factor structure could not be confirmed. These results contribute further evidence on deficits with the RIPLS. Despite known issues, the RIPLS continues to be translated and applied. This paper highlights the problematic issues in the RIPLS-D and does not recommend its use.

  16. [Factor structure analysis of the Preschool and Kindergarten Behavior Scale scores in Spanish population].

    PubMed

    Benítez Muñoz, Juan Luis; Pichardo Martínez, María del Carmen; García Berbén, Trinidad; Fernández Cabezas, María; Justicia Justicia, Fernando; Fernández de Haro, Eduardo

    2011-04-01

    Social competence and antisocial behavior in children are interesting variables for researchers and educators. Nonetheless, there are few assessment instruments capable of measuring the two constructs in small children. The aim of this study is to verify the structural validity of the Preschool and Kindergarten Behavior Scale for Teachers and Caregivers (PKBS-2), in order to determine the theoretical model that best fits the data from a Spanish sample. 1509 children from preschool education (741 males and 768 females) from 3 to 6 years old (M= 3.78; SD= 0.815) participated in the study. Data was analyzed using the Statistical Package for the Social Sciences (SPSS-15.0) and the Structural Equations Program (EQS 6.1). The resulting models of social skills and behavioral problems show adequate fit indexes, statistically significant loadings, and a high internal consistency index (Cronbach's alpha). Lastly, the structural model confirms a two-factor structure: a first factor of Social Skills, comprising three variables (social cooperation, social interaction, and social independence), and a second factor of Behavior Problems, comprising two variables (externalization and internalization of problems).

  17. Deriving Scaling Factors Using a Global Hydrological Model to Restore GRACE Total Water Storage Changes for China's Yangtze River Basin

    NASA Technical Reports Server (NTRS)

    Long, Di; Yang, Yuting; Yoshihide, Wada; Hong, Yang; Liang, Wei; Chen, Yaning; Yong, Bin; Hou, Aizhong; Wei, Jiangfeng; Chen, Lu

    2015-01-01

    This study used a global hydrological model (GHM), PCR-GLOBWB, which simulates surface water storage changes, natural and human induced groundwater storage changes, and the interactions between surface water and subsurface water, to generate scaling factors by mimicking low-pass filtering of GRACE signals. Signal losses in GRACE data were subsequently restored by the scaling factors from PCR-GLOBWB. Results indicate greater spatial heterogeneity in scaling factor from PCR-GLOBWB and CLM4.0 than that from GLDAS-1 Noah due to comprehensive simulation of surface and subsurface water storage changes for PCR-GLOBWB and CLM4.0. Filtered GRACE total water storage (TWS) changes applied with PCR-GLOBWB scaling factors show closer agreement with water budget estimates of TWS changes than those with scaling factors from other land surface models (LSMs) in China's Yangtze River basin. Results of this study develop a further understanding of the behavior of scaling factors from different LSMs or GHMs over hydrologically complex basins, and could be valuable in providing more accurate TWS changes for hydrological applications (e.g., monitoring drought and groundwater storage depletion) over regions where human-induced interactions between surface water and subsurface water are intensive.

  18. Slice&Dice: Recognizing Food Preparation Activities Using Embedded Accelerometers

    NASA Astrophysics Data System (ADS)

    Pham, Cuong; Olivier, Patrick

    Within the context of an endeavor to provide situated support for people with cognitive impairments in the kitchen, we developed and evaluated classifiers for recognizing 11 actions involved in food preparation. Data was collected from 20 lay subjects using four specially designed kitchen utensils incorporating embedded 3-axis accelerometers. Subjects were asked to prepare a mixed salad in our laboratory-based instrumented kitchen environment. Video of each subject's food preparation activities were independently annotated by three different coders. Several classifiers were trained and tested using these features. With an overall accuracy of 82.9% our investigation demonstrated that a broad set of food preparation actions can be reliably recognized using sensors embedded in kitchen utensils.

  19. Accelerometer-Based Event Detector for Low-Power Applications

    PubMed Central

    Smidla, József; Simon, Gyula

    2013-01-01

    In this paper, an adaptive, autocovariance-based event detection algorithm is proposed, which can be used with micro-electro-mechanical systems (MEMS) accelerometer sensors to build inexpensive and power efficient event detectors. The algorithm works well with low signal-to-noise ratio input signals, and its computational complexity is very low, allowing its utilization on inexpensive low-end embedded sensor devices. The proposed algorithm decreases its energy consumption by lowering its duty cycle, as much as the event to be detected allows it. The performance of the algorithm is tested and compared to the conventional filter-based approach. The comparison was performed in an application where illegal entering of vehicles into restricted areas was detected. PMID:24135991

  20. A silicon micromachined piezoresistive accelerometer for health and condition monitoring

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin M.; Henderson, H. Thurman

    1990-01-01

    Silicon micromachining etching techniques were utilized to batch-fabricate hundreds of general purpose microaccelerometers on a single silicon substrate. Piezoresistive sensing elements were aligned to the back-side patterns using an IR mask aligner and then diffused into the areas of maximum stress. Capping of the two-arm cantilever beam structure was achieved using a combination of electrostatic bonding and low temperature glass films. Overrange protection, critical damping, and overall protection from the outside environment are achieved by controlling the cavity depths of the top and bottom covers. Temperature compensation, amplification, and filtering are performed by a companion LSI chip that is interfaced to the accelerometer by conventional wire-bonding techniques.

  1. Vehicle Maneuver Detection with Accelerometer-Based Classification

    PubMed Central

    Cervantes-Villanueva, Javier; Carrillo-Zapata, Daniel; Terroso-Saenz, Fernando; Valdes-Vela, Mercedes; Skarmeta, Antonio F.

    2016-01-01

    In the mobile computing era, smartphones have become instrumental tools to develop innovative mobile context-aware systems. In that sense, their usage in the vehicular domain eases the development of novel and personal transportation solutions. In this frame, the present work introduces an innovative mechanism to perceive the current kinematic state of a vehicle on the basis of the accelerometer data from a smartphone mounted in the vehicle. Unlike previous proposals, the introduced architecture targets the computational limitations of such devices to carry out the detection process following an incremental approach. For its realization, we have evaluated different classification algorithms to act as agents within the architecture. Finally, our approach has been tested with a real-world dataset collected by means of the ad hoc mobile application developed. PMID:27690058

  2. Concept of an Opto-electronic Accelerometer System (OAS)

    NASA Technical Reports Server (NTRS)

    Kunkel, B.; Keller, K.; Lutz, R.

    1987-01-01

    An accelerometer based on a spring-suspended reference mass and its precise relative motion measurement by means of 3 two-dimensional position sensitive detectors (PSD) is described. A breadboard model achieves a resolution (longterm linearity) of 25 nm in one direction. Due to the physical principle of the PSD, the second layer is slightly less sensitive than the top layer; accordingly for gravity gradient detection the more sensitive layer is selected for the Z/X component detection. At 10 Hz sampling rate an acceleration gradient of under 10 to the minus 12th power g (i.e., 0.01 E or 0.001 Gal/km) is considered to be detectable.

  3. Concept of an Opto-electronic Accelerometer System (OAS)

    NASA Astrophysics Data System (ADS)

    Kunkel, B.; Keller, K.; Lutz, R.

    1987-10-01

    An accelerometer based on a spring-suspended reference mass and its precise relative motion measurement by means of 3 two-dimensional position sensitive detectors (PSD) is described. A breadboard model achieves a resolution (longterm linearity) of 25 nm in one direction. Due to the physical principle of the PSD, the second layer is slightly less sensitive than the top layer; accordingly for gravity gradient detection the more sensitive layer is selected for the Z/X component detection. At 10 Hz sampling rate an acceleration gradient of under 10 to the minus 12th power g (i.e., 0.01 E or 0.001 Gal/km) is considered to be detectable.

  4. Monolithic CMOS-MEMS integration for high-g accelerometers

    NASA Astrophysics Data System (ADS)

    Narasimhan, Vinayak; Li, Holden; Tan, Chuan Seng

    2014-10-01

    This paper highlights work-in-progress towards the conceptualization, simulation, fabrication and initial testing of a silicon-germanium (SiGe) integrated CMOS-MEMS high-g accelerometer for military, munition, fuze and shock measurement applications. Developed on IMEC's SiGe MEMS platform, the MEMS offers a dynamic range of 5,000 g and a bandwidth of 12 kHz. The low noise readout circuit adopts a chopper-stabilization technique implementing the CMOS through the TSMC 0.18 µm process. The device structure employs a fully differential split comb-drive set up with two sets of stators and a rotor all driven separately. Dummy structures acting as protective over-range stops were designed to protect the active components when under impacts well above the designed dynamic range.

  5. ISLES: Probing Extra Dimensions Using a Superconducting Accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung; Moody, M. Vol; Prieto-Gortcheva, Violeta A.

    2003-01-01

    In string theories, extra dimensions must be compactified. The possibility that gravity can have large radii of compactification leads to a violation of the inverse square law at submillimeter distances. The objective of ISLES is to perform a null test of Newton s law in space with a resolution of one part in 10(exp 5) or better at 100 microns. The experiment will be cooled to less than or equal to 2 K, which permits superconducting magnetic levitation of the test masses. To minimize Newtonian errors, ISLES employs a near null source, a circular disk of large diameter-to-thickness ratio. Two test masses, also disk-shaped, are suspended on the two sides of the source mass at a nominal distance of 100 microns. The signal is detected by a superconducting differential accelerometer. A ground test apparatus is under construction.

  6. Scales

    ScienceCinema

    Murray Gibson

    2016-07-12

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  7. Scales

    SciTech Connect

    Murray Gibson

    2007-04-27

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  8. Examining the Factor Structure of the Self-Compassion Scale in Four Distinct Populations: Is the Use of a Total Scale Score Justified?

    PubMed

    Neff, Kristin D; Whittaker, Tiffany A; Karl, Anke

    2017-01-31

    This study examined the factor structure of the Self-Compassion Scale (SCS) using a bifactor model, a higher order model, a 6-factor correlated model, a 2-factor correlated model, and a 1-factor model in 4 distinct populations: college undergraduates (N = 222), community adults (N = 1,394), individuals practicing Buddhist meditation (N = 215), and a clinical sample of individuals with a history of recurrent depression (N = 390). The 6-factor correlated model demonstrated the best fit across samples, whereas the 1- and 2-factor models had poor fit. The higher order model also showed relatively poor fit across samples, suggesting it is not representative of the relationship between subscale factors and a general self-compassion factor. The bifactor model, however, had acceptable fit in the student, community, and meditator samples. Although fit was suboptimal in the clinical sample, results suggested an overall self-compassion factor could still be interpreted with some confidence. Moreover, estimates suggested a general self-compassion factor accounted for at least 90% of the reliable variance in SCS scores across samples, and item factor loadings and intercepts were equivalent across samples. Results suggest that a total SCS score can be used as an overall mesure of self-compassion.

  9. Accelerometer Use in a Physical Activity Intervention Trial

    PubMed Central

    Borradaile, Kelley E.; Lewis, Beth A.; Whiteley, Jessica A.; Longval, Jaime L.; Parisi, Alfred F.; Albrecht, Anna E.; Sciamanna, Christopher N.; Jakicic, John M.; Papandonatos, George D.; Marcus, Bess H.

    2010-01-01

    This paper describes the application of best practice recommendations for using accelerometers in a physical activity (PA) intervention trial, and the concordance of different methods for measuring PA. A subsample (n=63; 26%) of the 239 healthy, sedentary adults participating in a PA trial (mean age=47.5; 82% women) wore the ActiGraph monitor at all 3 assessment time points. ActiGraph data were compared with self-report (i.e., PA weekly recall and monthly log) and fitness variables. Correlations between the PA recall and ActiGraph for moderate intensity activity ranged from 0.16–0.48 and from 0.28–0.42 for vigorous intensity activity. ActiGraph and fitness [estimated VO2(ml/kg/min)] had correlations of 0.15–0.45. The ActiGraph and weekly self-report were significantly correlated at all time points (correlations ranged from 0.23–0.44). In terms of detecting intervention effects, intervention groups recorded more minutes of at least moderate-intensity PA on the ActiGraph than the control group at 6 months (min=46.47, 95% CI=14.36–78.58), but not at 12 months. Limitations of the study include a small sample size and only 3 days of ActiGraph monitoring. To obtain optimal results with accelerometers in clinical trials, the authors recommend following best practice recommendations: detailed protocols for monitor use, calibration of monitors and validation of data quality, and use of validated equations for analysis. The ActiGraph has modest concordance with other assessment tools and is sensitive to change over time. However, until more information validating the use of accelerometry in clinical trials becomes available, properly administered self-report measures of PA should remain part of the assessment battery. PMID:20723619

  10. Accelerometer use in a physical activity intervention trial.

    PubMed

    Napolitano, Melissa A; Borradaile, Kelley E; Lewis, Beth A; Whiteley, Jessica A; Longval, Jaime L; Parisi, Alfred F; Albrecht, Anna E; Sciamanna, Christopher N; Jakicic, John M; Papandonatos, George D; Marcus, Bess H

    2010-11-01

    This paper describes the application of best practice recommendations for using accelerometers in a physical activity (PA) intervention trial, and the concordance of different methods for measuring PA. A subsample (n = 63; 26%) of the 239 healthy, sedentary adults participating in a PA trial (mean age = 47.5; 82% women) wore the ActiGraph monitor at all 3 assessment time points. ActiGraph data were compared with self-report (i.e., PA weekly recall and monthly log) and fitness variables. Correlations between the PA recall and ActiGraph for moderate intensity activity ranged from 0.16-0.48 and from 0.28-0.42 for vigorous intensity activity. ActiGraph and fitness [estimated VO(2)(ml/kg/min)] had correlations of 0.15-0.45. The ActiGraph and weekly self-report were significantly correlated at all time points (correlations ranged from 0.23 to 0.44). In terms of detecting intervention effects, intervention groups recorded more minutes of at least moderate-intensity PA on the ActiGraph than the control group at 6 months (min = 46.47, 95% CI = 14.36-78.58), but not at 12 months. Limitations of the study include a small sample size and only 3 days of ActiGraph monitoring. To obtain optimal results with accelerometers in clinical trials, the authors recommend following best practice recommendations: detailed protocols for monitor use, calibration of monitors and validation of data quality, and use of validated equations for analysis. The ActiGraph has modest concordance with other assessment tools and is sensitive to change over time. However, until more information validating the use of accelerometry in clinical trials becomes available, properly administered self-report measures of PA should remain part of the assessment battery.

  11. Distribution of {Omega}{sub k} from the scale-factor cutoff measure

    SciTech Connect

    De Simone, Andrea; Salem, Michael P.

    2010-04-15

    Our Universe may be contained in one among a diverging number of bubbles that nucleate within an eternally inflating multiverse. A promising measure to regulate the diverging spacetime volume of such a multiverse is the scale-factor cutoff, one feature of which is bubbles are not rewarded for having a longer duration of slow-roll inflation. Thus, depending on the landscape distribution of the number of e-folds of inflation among bubbles like ours, we might hope to measure spatial curvature. We study a recently proposed cartoon model of inflation in the landscape and find a reasonable chance (about 10%) that the curvature in our Universe is well above the value expected from cosmic variance. Anthropic selection does not strongly select for curvature as small as is observed (relative somewhat larger values), meaning the observational bound on curvature can be used to rule out landscape models that typically give too little inflation.

  12. The factor structure and screening utility of the Social Interaction Anxiety Scale.

    PubMed

    Rodebaugh, Thomas L; Woods, Carol M; Heimberg, Richard G; Liebowitz, Michael R; Schneier, Franklin R

    2006-06-01

    The widely used Social Interaction Anxiety Scale (SIAS; R. P. Mattick & J. C. Clarke, 1998) possesses favorable psychometric properties, but questions remain concerning its factor structure and item properties. Analyses included 445 people with social anxiety disorder and 1,689 undergraduates. Simple unifactorial models fit poorly, and models that accounted for differences due to item wording (i.e., reverse scoring) provided superior fit. It was further found that clients and undergraduates approached some items differently, and the SIAS may be somewhat overly conservative in selecting analogue participants from an undergraduate sample. Overall, this study provides support for the excellent properties of the SIAS's straightforwardly worded items, although questions remain regarding its reverse-scored items.

  13. Graviton creation by small scale factor oscillations in an expanding universe

    NASA Astrophysics Data System (ADS)

    Schiappacasse, Enrico D.; Ford, L. H.

    2016-10-01

    We treat quantum creation of gravitons by small scale factor oscillations around the average of an expanding universe. Such oscillations can arise in standard general relativity due to oscillations of a homogeneous, minimally coupled scalar field. They can also arise in modified gravity theories with a term proportional to the square of the Ricci scalar in the gravitational action. The graviton wave equation is different in the two cases, leading to somewhat different creation rates. Both cases are treated using a perturbative method due to Birrell and Davies, involving an expansion in a conformal coupling parameter to calculate the number density and energy density of the created gravitons. Cosmological constraints on the present graviton energy density and the dimensionless amplitude of the oscillations are discussed. We also discuss decoherence of quantum systems produced by the spacetime geometry fluctuations due to such a graviton bath.

  14. Factor structure of the body appreciation scale among Indonesian women and men: further evidence of a two-factor solution in a non-Western population.

    PubMed

    Swami, Viren; Jaafar, Jas Laile

    2012-09-01

    While the body appreciation scale (BAS) reduces to a single dimension among Western samples, a two-factor solution has been found among non-Western populations. The present study examined the factor structure of the BAS among Indonesian women and men, a previously neglected population. A total of 262 women and 278 men in Jakarta, Indonesia, completed an Indonesian version of the BAS. Factor analyses revealed the existence of two factors that were only moderately correlated: a dominant 10-item factor representing general body appreciation and a second 3-item factor representing adaptive body image investment. However, only general body appreciation met criteria for acceptable internal consistency; thus, additional analyses were conducted with this factor alone. There were no significant ethnic differences in general body appreciation, but men had significantly higher body appreciation than women. Suggestions for future research, particularly in terms of uncovering culture-specific factors that contribute to positive body image, are discussed.

  15. The leaf-level emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling

    NASA Astrophysics Data System (ADS)

    Niinemets, Ü.; Monson, R. K.; Arneth, A.; Ciccioli, P.; Kesselmeier, J.; Kuhn, U.; Noe, S. M.; Peñuelas, J.; Staudt, M.

    2010-06-01

    In models of plant volatile isoprenoid emissions, the instantaneous compound emission rate typically scales with the plant's emission potential under specified environmental conditions, also called as the emission factor, ES. In the most widely employed plant isoprenoid emission models, the algorithms developed by Guenther and colleagues (1991, 1993), instantaneous variation of the steady-state emission rate is described as the product of ES and light and temperature response functions. When these models are employed in the atmospheric chemistry modeling community, species-specific ES values and parameter values defining the instantaneous response curves are often taken as initially defined. In the current review, we argue that ES as a characteristic used in the models importantly depends on our understanding of which environmental factors affect isoprenoid emissions, and consequently need standardization during experimental ES determinations. In particular, there is now increasing consensus that in addition to variations in light and temperature, alterations in atmospheric and/or within-leaf CO2 concentrations may need to be included in the emission models. Furthermore, we demonstrate that for less volatile isoprenoids, mono- and sesquiterpenes, the emissions are often jointly controlled by the compound synthesis and volatility. Because of these combined biochemical and physico-chemical drivers, specification of ES as a constant value is incapable of describing instantaneous emissions within the sole assumptions of fluctuating light and temperature as used in the standard algorithms. The definition of ES also varies depending on the degree of aggregation of ES values in different parameterization schemes (leaf- vs. canopy- or region-scale, species vs. plant functional type levels) and various aggregated ES schemes are not compatible for different integration models. The summarized information collectively emphasizes the need to update model algorithms by including

  16. Dimensionality of the Hospital Anxiety and Depression Scale (HADS) in Cardiac Patients: Comparison of Mokken Scale Analysis and Factor Analysis

    ERIC Educational Resources Information Center

    Emons, Wilco H. M.; Sijtsma, Klaas; Pedersen, Susanne S.

    2012-01-01

    The Hospital Anxiety and Depression Scale (HADS) measures anxiety and depressive symptoms and is widely used in clinical and nonclinical populations. However, there is some debate about the number of dimensions represented by the HADS. In a sample of 534 Dutch cardiac patients, this study examined (a) the dimensionality of the HADS using Mokken…

  17. Dof-based submatrix scaling factors for damage detection in reinforced concrete bridges

    NASA Astrophysics Data System (ADS)

    Park, Kyeongtaek; Torbol, Marco

    2016-04-01

    This study focuses on the system identification and the damage detection of reinforced concrete bridges using neural network algorithm, eigenvalue analysis and parallel computing. First, autoregressive coefficients (ARCs) of both temporal output and forced input of the real structure are computed. The ARCs are used for the eigen-system realization algorithm (ERA) to obtain the modal parameters of the structure. Second, the ARCs are utilized as the input variable of the neural network algorithm while the outputs are the submatrix scaling factors that contain information about the degeneration of each element and each mode within the element. However, the neural network algorithm requires training to output reliable results. The training is the most challenging task of this study and finite element analysis is used to compute the modal parameters of the model built around the neural network outputs. The model is compared with the ERA results to update the neural network coefficients. Due to the scale of the neural network used parallel computing is necessary to reduce the computational time to a reasonable amount.

  18. Confirmatory factor analysis of the generalized self-efficacy scale in Brazil and Portugal.

    PubMed

    Leme, Vanessa B R; Coimbra, Susana; Gato, Jorge; Fontaine, Anne Marie; Del Prette, Zilda A P

    2013-01-01

    This study aims to evaluate the construct validity, internal consistency and cross-cultural invariance of the Generalized Self-Efficacy Scale-Portuguese version (GSE) in a Brazilian and Portuguese sample. The GSE is composed of 10 items, designed to parsimoniously and comprehensively assess self-efficacy beliefs to deal with a wide range of stress-inducing situations. The construct validity (factorial, convergent and discriminant) and internal consistency of the instrument were established within a sample of 304 Portuguese adolescents (study 1) and a sample of 477 Brazilian adolescents (study 2). Then, the invariance of the GSE was tested in a sample of Brazilian adolescents (study 3), using Multigroup Confirmatory Factor Analysis (MGCFA). In the first two studies, the construct validity of the GSE was demonstrated in its three components and the reliability of the scales was confirmed based on satisfactory levels of internal consistency. In the third study, the cross-cultural invariance of the instrument was established. This work adds to previous research on generalized self-efficacy instruments, with good psychometric qualities. Moreover, comparisons can now be made with confidence using this instrument among adolescent samples from Portugal and Brazil.

  19. Cost Factors in Scaling in SfM Collections and Processing Solutions

    NASA Astrophysics Data System (ADS)

    Cherry, J. E.

    2015-12-01

    In this talk I will discuss the economics of scaling Structure from Motion (SfM)-style collections from 1 km2 and below to 100's and 1000's of square kilometers. Considerations include the costs of the technical equipment: comparisons of small, medium, and large-format camera systems, as well as various GPS-INS systems and their impact on processing accuracy for various Ground Sampling Distances. Tradeoffs between camera formats and flight time are central. Weather conditions and planning high altitude versus low altitude flights are another economic factor, particularly in areas of persistently bad weather and in areas where ground logistics (i.e. hotel rooms and pilot incidentals) are expensive. Unique costs associated with UAS collections and experimental payloads will be discussed. Finally, the costs of equipment and labor differs in SfM processing than in conventional orthomosaic and LiDAR processing. There are opportunities for 'economies of scale' in SfM collections under certain circumstances but whether the accuracy specifications are firm/fixed or 'best effort' makes a difference.

  20. An adaptive scale factor based MPPT algorithm for changing solar irradiation levels in outer space

    NASA Astrophysics Data System (ADS)

    Kwan, Trevor Hocksun; Wu, Xiaofeng

    2017-03-01

    Maximum power point tracking (MPPT) techniques are popularly used for maximizing the output of solar panels by continuously tracking the maximum power point (MPP) of their P-V curves, which depend both on the panel temperature and the input insolation. Various MPPT algorithms have been studied in literature, including perturb and observe (P&O), hill climbing, incremental conductance, fuzzy logic control and neural networks. This paper presents an algorithm which improves the MPP tracking performance by adaptively scaling the DC-DC converter duty cycle. The principle of the proposed algorithm is to detect the oscillation by checking the sign (ie. direction) of the duty cycle perturbation between the current and previous time steps. If there is a difference in the signs then it is clear an oscillation is present and the DC-DC converter duty cycle perturbation is subsequently scaled down by a constant factor. By repeating this process, the steady state oscillations become negligibly small which subsequently allows for a smooth steady state MPP response. To verify the proposed MPPT algorithm, a simulation involving irradiances levels that are typically encountered in outer space is conducted. Simulation and experimental results prove that the proposed algorithm is fast and stable in comparison to not only the conventional fixed step counterparts, but also to previous variable step size algorithms.

  1. The Multidimensional Media Influence Scale: confirmatory factor structure and relationship with body dissatisfaction among African American and Anglo American children.

    PubMed

    Harrison, Kristen

    2009-06-01

    The Multidimensional Media Influence Scale (MMIS; Cusumano & Thompson, 2001). Media influence and body image in 8-11-year-old boys and girls: A preliminary report on the multidimensional media influence scale. International Journal of Eating Disorders, 29, 37-44) is a child-appropriate, 3-factor scale designed to assess perceived media influence on body image. It has been used in studies exploring the relationship between the entire scale as well as its subscales (awareness, internalization, and pressure) and variables related to body image. However, the 3-factor structure of the scale has never been confirmed via confirmatory factor analysis (CFA), nor has the scale been evaluated with a racially diverse sample of children. This paper reports the results of CFAs establishing the multidimensionality of the scale and the unidimensionality of its subscales among a sample of 661 girls and boys aged 7-12 years, primarily African American and Anglo American. The pressure factor of the MMIS predicted the idealization of a thinner current (child) and future (adult) body both cross-sectionally and one year later for girls and for Anglo American children.

  2. Quasi-Static Calibration Method of a High-g Accelerometer.

    PubMed

    Wang, Yan; Fan, Jinbiao; Zu, Jing; Xu, Peng

    2017-02-20

    To solve the problem of resonance during quasi-static calibration of high-g accelerometers, we deduce the relationship between the minimum excitation pulse width and the resonant frequency of the calibrated accelerometer according to the second-order mathematical model of the accelerometer, and improve the quasi-static calibration theory. We establish a quasi-static calibration testing system, which uses a gas gun to generate high-g acceleration signals, and apply a laser interferometer to reproduce the impact acceleration. These signals are used to drive the calibrated accelerometer. By comparing the excitation acceleration signal and the output responses of the calibrated accelerometer to the excitation signals, the impact sensitivity of the calibrated accelerometer is obtained. As indicated by the calibration test results, this calibration system produces excitation acceleration signals with a pulse width of less than 1000 μs, and realize the quasi-static calibration of high-g accelerometers with a resonant frequency above 20 kHz when the calibration error was 3%.

  3. A brief test of the Hewlett-Packard MEMS seismic accelerometer

    USGS Publications Warehouse

    Homeijer, Brian D.; Milligan, Donald J.; Hutt, Charles R.

    2014-01-01

    Testing was performed on a prototype of Hewlett-Packard (HP) Micro-Electro-Mechanical Systems (MEMS) seismic accelerometer at the U.S. Geological Survey’s Albuquerque Seismological Laboratory. This prototype was built using discrete electronic components. The self-noise level was measured during low seismic background conditions and found to be 9.8 ng/√Hz at periods below 0.2 s (frequencies above 5 Hz). The six-second microseism noise was also discernible. The HP MEMS accelerometer was compared to a Geotech Model GS-13 reference seismometer during seismic noise and signal levels well above the self-noise of the accelerometer. Matching power spectral densities (corrected for accelerometer and seismometer responses to represent true ground motion) indicated that the HP MEMS accelerometer has a flat (constant) response to acceleration from 0.0125 Hz to at least 62.5 Hz. Tilt calibrations of the HP MEMS accelerometer verified that the flat response to acceleration extends to 0 Hz. Future development of the HP MEMS accelerometer includes replacing the discreet electronic boards with a low power application-specific integrated circuit (ASIC) and increasing the dynamic range of the sensor to detect strong motion signals above one gravitational acceleration, while maintaining the self-noise observed during these tests.

  4. Quasi-Static Calibration Method of a High-g Accelerometer

    PubMed Central

    Wang, Yan; Fan, Jinbiao; Zu, Jing; Xu, Peng

    2017-01-01

    To solve the problem of resonance during quasi-static calibration of high-g accelerometers, we deduce the relationship between the minimum excitation pulse width and the resonant frequency of the calibrated accelerometer according to the second-order mathematical model of the accelerometer, and improve the quasi-static calibration theory. We establish a quasi-static calibration testing system, which uses a gas gun to generate high-g acceleration signals, and apply a laser interferometer to reproduce the impact acceleration. These signals are used to drive the calibrated accelerometer. By comparing the excitation acceleration signal and the output responses of the calibrated accelerometer to the excitation signals, the impact sensitivity of the calibrated accelerometer is obtained. As indicated by the calibration test results, this calibration system produces excitation acceleration signals with a pulse width of less than 1000 μs, and realize the quasi-static calibration of high-g accelerometers with a resonant frequency above 20 kHz when the calibration error was 3%. PMID:28230743

  5. Agreement rates for sleep/wake judgments obtained via accelerometer and sleep diary: a comparison.

    PubMed

    Kawada, Tomoyuki

    2008-11-01

    Agreement rates for waking and sleeping obtained via sleep diary and accelerometer were evaluated, to compare the two methods. Sleep/wake data for consecutive days and nights were surveyed in 119 healthy university students. Accelerometer sleep/wake judgments obeyed the standard algorithm. Agreement rates for waking and sleeping according to accelerometer versus sleep diary, respectively, were calculated. Sleep diary data were set as a baseline. Seventy-six subjects (63.9%), 22 to 32 years of age, presented perfect data for the analysis. The mean sleep times, in minutes, judged by sleep diary and by accelerometer, were 482.3 and 629.6, respectively. The mean percentages and standard deviations of agreement on wake and sleep were 77.5% (SD = 10.2) and 86.1% (SD = 6.2), respectively. There was a significant negative relationship between the agreement rates for wake and sleep (r = -.482, p < .01). The accelerometer showed some measurement failure during waking, presumably because of the decrease in body movement. Sleep diary data during daytime appear to be more valid for detecting a sleep/wake cycle than are accelerometer data. In contrast, nocturnal sleep diary data might be supplemented by the use of an accelerometer as long as participants do not have insomnia.

  6. A Confirmatory Approach to Examining the Factor Structure of the Strengths and Difficulties Questionnaire (SDQ): A Large Scale Cohort Study

    ERIC Educational Resources Information Center

    Niclasen, Janni; Skovgaard, Anne Mette; Andersen, Anne-Marie Nybo; Somhovd, Mikael Julius; Obel, Carsten

    2013-01-01

    The aim of this study was to examine the factor structure of the Strengths and Difficulties Questionnaire (SDQ) using a Structural Confirmatory Factor Analytic approach. The Danish translation of the SDQ was distributed to 71,840 parents and teachers of 5-7 and 10-12-year-old boys and girls from four large scale cohorts. Three theoretical models…

  7. A Confirmatory Test of the Factor Structure of the Short Form of the Career Decision Self-Efficacy Scale

    ERIC Educational Resources Information Center

    Miller, Matthew J.; Roy, Kerrin Sendrowitz; Brown, Steven D.; Thomas, James; McDaniel, Cyndi

    2009-01-01

    The present study tested a number of theoretically and empirically derived measurement models of the Career Decision Self-Efficacy Scale-Short Form (CDSES-SF) using confirmatory factor analysis. Betz's five-factor model of the CDSES-SF, along with a number of alternative models, demonstrated adequate model fit in two independent samples. Based on…

  8. Measurement Structure of the Trait Hope Scale in Persons with Spinal Cord Injury: A Confirmatory Factor Analysis

    ERIC Educational Resources Information Center

    Smedema, Susan Miller; Pfaller, Joseph; Moser, Erin; Tu, Wei-Mo; Chan, Fong

    2013-01-01

    Objective: To evaluate the measurement structure of the Trait Hope Scale (THS) among individuals with spinal cord injury. Design: Confirmatory factor analysis and reliability and validity analyses were performed. Participants: 242 individuals with spinal cord injury. Results: Results support the two-factor measurement model for the THS with agency…

  9. Orthogonal Higher Order Factor Structure of the Stanford-Binet Intelligence Scales--Fifth Edition for Children and Adolescents

    ERIC Educational Resources Information Center

    Canivez, Gary L.

    2008-01-01

    Orthogonal higher-order factor structure of the Stanford-Binet Intelligence Scales-Fifth Edition (SB-5; Roid, 2003a) for child and adolescent samples is reported. Multiple criteria for factor extraction unanimously supported extraction of only one dimension and a unidimensional model. However, following results from DiStefano and Dombrowski (2006)…

  10. A Confirmatory Factor Analysis of the Stanford-Binet Intelligence Scales, Fifth Edition, with a High-Achieving Sample

    ERIC Educational Resources Information Center

    Williams, Tasha H.; McIntosh, David E.; Dixon, Felicia; Newton, Jocelyn H.; Youman, Elizabeth

    2010-01-01

    The Stanford-Binet Intelligence Scale, Fifth Edition (SB5), is a recently published, multidimensional measure of intelligence based on Cattell-Horn-Carroll (CHC) theory. The author of the test provides results from confirmatory factor analyses in the technical manual supporting the five-factor structure of the instrument. Other authors have…

  11. [Factor structure validity of the social capital scale used at baseline in the ELSA-Brasil study].

    PubMed

    Souto, Ester Paiva; Vasconcelos, Ana Glória Godoi; Chor, Dora; Reichenheim, Michael E; Griep, Rosane Härter

    2016-07-21

    This study aims to analyze the factor structure of the Brazilian version of the Resource Generator (RG) scale, using baseline data from the Brazilian Longitudinal Health Study in Adults (ELSA-Brasil). Cross-validation was performed in three random subsamples. Exploratory factor analysis using exploratory structural equation models was conducted in the first two subsamples to diagnose the factor structure, and confirmatory factor analysis was used in the third to corroborate the model defined by the exploratory analyses. Based on the 31 initial items, the model with the best fit included 25 items distributed across three dimensions. They all presented satisfactory convergent validity (values greater than 0.50 for the extracted variance) and precision (values greater than 0.70 for compound reliability). All factor correlations were below 0.85, indicating full discriminative factor validity. The RG scale presents acceptable psychometric properties and can be used in populations with similar characteristics.

  12. Confirmatory and exploratory factor analysis of the distress tolerance scale (DTS) in a clinical sample of eating disorder patients.

    PubMed

    Raykos, Bronwyn C; Byrne, Susan M; Watson, Hunna

    2009-12-01

    A confirmatory factor analysis of the factor structure of the Distress Tolerance Scale (DTS) created by Corstorphine et al. [Corstorphine, E., Mountford, V., Tomlinson, S., Waller, G., & Meyer, C. (2007). Distress tolerance in the eating disorders. Eating Behaviors, 8, 91-97.] was conducted to assess whether the scale's purported three factors emerged in a clinical sample of patients with a DSM-IV diagnosed eating disorder. The original three-factor model was generally considered to be a poor fit for the data. Subsequent exploratory factor analysis indicated that a better fit emerged using a four-factor structure. Significant associations were observed between behavioral avoidance of positive affect and eating disorder psychopathology. Implications for use of the DTS with eating disorder patients are discussed.

  13. Recursive Factorization of the Inverse Overlap Matrix in Linear-Scaling Quantum Molecular Dynamics Simulations.

    PubMed

    Negre, Christian F A; Mniszewski, Susan M; Cawkwell, Marc J; Bock, Nicolas; Wall, Michael E; Niklasson, Anders M N

    2016-07-12

    We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive, iterative refinement of an initial guess of Z (inverse square root of the overlap matrix S). The initial guess of Z is obtained beforehand by using either an approximate divide-and-conquer technique or dynamical methods, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under the incomplete, approximate, iterative refinement of Z. Linear-scaling performance is obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables efficient shared-memory parallelization. As we show in this article using self-consistent density-functional-based tight-binding MD, our approach is faster than conventional methods based on the diagonalization of overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4158-atom water-solvated polyalanine system, we find an average speedup factor of 122 for the computation of Z in each MD step.

  14. Factor Structure Evaluation of the French Version of the Digital Natives Assessment Scale.

    PubMed

    Wagner, Vincent; Acier, Didier

    2017-03-01

    "Digital natives" concept defines young adults particularly familiar with emerging technologies such as computers, smartphones, or Internet. This notion is still controversial and so far, the primary identifying criterion was to consider their date of birth. However, literature highlighted the need to describe specific characteristics. The purpose of this research was to evaluate the factor structure of a French version of the Digital Natives Assessment Scale (DNAS). The sample of this study includes 590 participants from a 6-week massive open online course and from Web sites, electronic forums, and social networks. The DNAS was translated in French and then back-translated to English. A principal component analysis with orthogonal rotation followed by a confirmatory factorial analysis showed that a 15-item four-correlated component model provided the best fit for the data of our sample. Factor structure of this French-translated version of the DNAS was rather similar than those found in earlier studies. This study provides evidence of the DNAS robustness through cross-cultural and cross-generational validation. The French version of the DNAS appears to be appropriate as a quick and effective questionnaire to assess digital natives. More studies are needed to better define further features of this particular group.

  15. Recursive Factorization of the Inverse Overlap Matrix in Linear Scaling Quantum Molecular Dynamics Simulations

    SciTech Connect

    Negre, Christian F. A; Mniszewski, Susan M.; Cawkwell, Marc Jon; Bock, Nicolas; Wall, Michael E.; Niklasson, Anders Mauritz

    2016-06-06

    We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive iterative re nement of an initial guess Z of the inverse overlap matrix S. The initial guess of Z is obtained beforehand either by using an approximate divide and conquer technique or dynamically, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under incomplete approximate iterative re nement of Z. Linear scaling performance is obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables e cient shared memory parallelization. As we show in this article using selfconsistent density functional based tight-binding MD, our approach is faster than conventional methods based on the direct diagonalization of the overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4,158 atom water-solvated polyalanine system we nd an average speedup factor of 122 for the computation of Z in each MD step.

  16. Recursive Factorization of the Inverse Overlap Matrix in Linear Scaling Quantum Molecular Dynamics Simulations

    DOE PAGES

    Negre, Christian F. A; Mniszewski, Susan M.; Cawkwell, Marc Jon; ...

    2016-06-06

    We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive iterative re nement of an initial guess Z of the inverse overlap matrix S. The initial guess of Z is obtained beforehand either by using an approximate divide and conquer technique or dynamically, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under incomplete approximate iterative re nement of Z. Linear scaling performance ismore » obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables e cient shared memory parallelization. As we show in this article using selfconsistent density functional based tight-binding MD, our approach is faster than conventional methods based on the direct diagonalization of the overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4,158 atom water-solvated polyalanine system we nd an average speedup factor of 122 for the computation of Z in each MD step.« less

  17. Cancer risk factors for selecting cohorts for large-scale chemoprevention trials.

    PubMed

    Greenwald, P

    1996-01-01

    Many anticipate that application of findings in molecular genetics will help to achieve greater precision in defining high-risk populations that may benefit from chemopreventive interventions. We must recognize, however, that genetic susceptibility, environmental factors, and complex gene-environment interactions are all likely to be risk determinants for most cancers. Cohort studies of twins and cancer indicate that having "identical" genes is generally not a very accurate predictor of cancer incidence. Data from twin studies support the suggestion that environmental factors such as tobacco use significantly influence cancer risk. The complexities of the genetic contribution to disease risk are exemplified by the development of Duchenne muscular dystrophy in only one of monozygotic twin girls, hypothesized to be the result of X chromosome inactivation, with the distribution patterns of the X chromosome being skewed to the female X in the manifesting twin and to the male X in the normal twin. Evidence from transgenic and genetic-environmental studies in animals support the possibility of genetic-environmental interactions. Calorie restriction modifies tumor expression in p53 knockout mice; a high-fat, low-calcium, low-vitamin D diet increases prepolyp hyperplasia formation in Apc-mutated mice; and calorie restriction early in life influences development of obesity in the genetically obese Zucker rat (fafa). Such environmental modulation of gene expression suggests that chemoprevention has the potential to reduce risk for both environmentally and genetically determined cancers. In view of the growing research efforts in chemoprevention, the NCI has developed a Prevention Trials Decision Network (PTDN) to formalize the evaluation and approval process for large-scale chemoprevention trials. The PTDN addresses large trial prioritization and the associated issues of minority recruitment and retention; identification and validation of biomarkers as intermediate endpoints

  18. Is Valuing Happiness Associated With Lower Well-Being? A Factor-Level Analysis using the Valuing Happiness Scale

    PubMed Central

    Luhmann, Maike; Necka, Elizabeth A.; Schönbrodt, Felix D.; Hawkley, Louise C.

    2015-01-01

    Recent studies suggest that valuing happiness is negatively associated with well-being. Most of these studies used the Valuing Happiness Scale (Mauss, Tamir, et al., 2011). In the present paper, we examined the factor structure of this scale using data pooled from six independent samples (Ntotal = 938). Exploratory and confirmatory factor analysis showed that the Valuing Happiness Scale is not unidimensional and that only one of its three factors correlates negatively with various indicators of well-being, whereas non-significant or positive correlations were found for the other factors. These findings indicate that valuing happiness may not necessarily be bad for one’s well-being, and call for a better definition, theoretical foundation, and operationalization of this construct. PMID:26778865

  19. Self Diagnostic Accelerometer for Mission Critical Health Monitoring of Aircraft and Spacecraft Engines

    NASA Technical Reports Server (NTRS)

    Lekki, John; Tokars, Roger; Jaros, Dave; Riggs, M. Terrence; Evans, Kenneth P.; Gyekenyesi, Andrew

    2009-01-01

    A self diagnostic accelerometer system has been shown to be sensitive to multiple failure modes of charge mode accelerometers. These failures include sensor structural damage, an electrical open circuit and most importantly sensor detachment. In this paper, experimental work that was performed to determine the capabilities of a self diagnostic accelerometer system while operating in the presence of various levels of mechanical noise, emulating real world conditions, is presented. The results show that the system can successfully conduct a self diagnostic routine under these conditions.

  20. Use of a laser doppler vibrometer for high frequency accelerometer characterizations

    SciTech Connect

    Bateman, V.I.; Hansche, B.D.; Solomon, O.M.

    1995-12-31

    A laser doppler vibrometer (LDV) is being used for high frequency characterizations of accelerometers at Sandia National Laboratories (SNL). A LDV with high frequency (up to 1.5 MHz) and high velocity (10 M/s) capability was purchased from a commercial source and has been certified by the Primary Electrical Standards Department at SNL. The method used for this certification and the certification results are presented. Use of the LDV for characterization of accelerometers at high frequencies and of accelerometer sensitivity to cross-axis shocks on a Hopkinson bar apparatus is discussed.