Validation of accelerometer wear and nonwear time classification algorithm.
Choi, Leena; Liu, Zhouwen; Matthews, Charles E; Buchowski, Maciej S
2011-02-01
the use of movement monitors (accelerometers) for measuring physical activity (PA) in intervention and population-based studies is becoming a standard methodology for the objective measurement of sedentary and active behaviors and for the validation of subjective PA self-reports. A vital step in PA measurement is the classification of daily time into accelerometer wear and nonwear intervals using its recordings (counts) and an accelerometer-specific algorithm. the purpose of this study was to validate and improve a commonly used algorithm for classifying accelerometer wear and nonwear time intervals using objective movement data obtained in the whole-room indirect calorimeter. we conducted a validation study of a wear or nonwear automatic algorithm using data obtained from 49 adults and 76 youth wearing accelerometers during a strictly monitored 24-h stay in a room calorimeter. The accelerometer wear and nonwear time classified by the algorithm was compared with actual wearing time. Potential improvements to the algorithm were examined using the minimum classification error as an optimization target. the recommended elements in the new algorithm are as follows: 1) zero-count threshold during a nonwear time interval, 2) 90-min time window for consecutive zero or nonzero counts, and 3) allowance of 2-min interval of nonzero counts with the upstream or downstream 30-min consecutive zero-count window for detection of artifactual movements. Compared with the true wearing status, improvements to the algorithm decreased nonwear time misclassification during the waking and the 24-h periods (all P values < 0.001). the accelerometer wear or nonwear time algorithm improvements may lead to more accurate estimation of time spent in sedentary and active behaviors.
Zhou, Shang-Ming; Hill, Rebecca A; Morgan, Kelly; Stratton, Gareth; Gravenor, Mike B; Bijlsma, Gunnar; Brophy, Sinead
2015-01-01
Objective To classify wear and non-wear time of accelerometer data for accurately quantifying physical activity in public health or population level research. Design A bi-moving-window-based approach was used to combine acceleration and skin temperature data to identify wear and non-wear time events in triaxial accelerometer data that monitor physical activity. Setting Local residents in Swansea, Wales, UK. Participants 50 participants aged under 16 years (n=23) and over 17 years (n=27) were recruited in two phases: phase 1: design of the wear/non-wear algorithm (n=20) and phase 2: validation of the algorithm (n=30). Methods Participants wore a triaxial accelerometer (GeneActiv) against the skin surface on the wrist (adults) or ankle (children). Participants kept a diary to record the timings of wear and non-wear and were asked to ensure that events of wear/non-wear last for a minimum of 15 min. Results The overall sensitivity of the proposed method was 0.94 (95% CI 0.90 to 0.98) and specificity 0.91 (95% CI 0.88 to 0.94). It performed equally well for children compared with adults, and females compared with males. Using surface skin temperature data in combination with acceleration data significantly improved the classification of wear/non-wear time when compared with methods that used acceleration data only (p<0.01). Conclusions Using either accelerometer seismic information or temperature information alone is prone to considerable error. Combining both sources of data can give accurate estimates of non-wear periods thus giving better classification of sedentary behaviour. This method can be used in population studies of physical activity in free-living environments. PMID:25968000
Zhou, Shang-Ming; Hill, Rebecca A; Morgan, Kelly; Stratton, Gareth; Gravenor, Mike B; Bijlsma, Gunnar; Brophy, Sinead
2015-05-11
To classify wear and non-wear time of accelerometer data for accurately quantifying physical activity in public health or population level research. A bi-moving-window-based approach was used to combine acceleration and skin temperature data to identify wear and non-wear time events in triaxial accelerometer data that monitor physical activity. Local residents in Swansea, Wales, UK. 50 participants aged under 16 years (n=23) and over 17 years (n=27) were recruited in two phases: phase 1: design of the wear/non-wear algorithm (n=20) and phase 2: validation of the algorithm (n=30). Participants wore a triaxial accelerometer (GeneActiv) against the skin surface on the wrist (adults) or ankle (children). Participants kept a diary to record the timings of wear and non-wear and were asked to ensure that events of wear/non-wear last for a minimum of 15 min. The overall sensitivity of the proposed method was 0.94 (95% CI 0.90 to 0.98) and specificity 0.91 (95% CI 0.88 to 0.94). It performed equally well for children compared with adults, and females compared with males. Using surface skin temperature data in combination with acceleration data significantly improved the classification of wear/non-wear time when compared with methods that used acceleration data only (p<0.01). Using either accelerometer seismic information or temperature information alone is prone to considerable error. Combining both sources of data can give accurate estimates of non-wear periods thus giving better classification of sedentary behaviour. This method can be used in population studies of physical activity in free-living environments. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Zainol Abidin, Nurdiana; Brown, Wendy J; Clark, Bronwyn; Muhamed, Ahmad Munir Che; Singh, Rabindarjeet
2016-10-01
We evaluated feasibility of physical activity measurement by accelerometry among older Malay adults living in semi-rural areas in Malaysia. Results showed that 95% of 146 participants (aged [SD] 67.6 [6.4] years) were compliant in wearing the accelerometer for at least five days. Fifteen participants were asked for re-wear the accelerometer because they did not have enough valid days during the first assessment. Participants wore the accelerometer an average of 15.3 hr in a 24-hr day, with 6.5 (1.2) valid wear days. No significant difference in valid wear day and time was found between men and women. Participants who are single provide more valid wear days compared with married participants (p < .05), and participants with higher levels of education provide longer periods of accelerometer wearing hours (p < .01). Eighty-seven percent of participants reported 'no issues' with wearing the meter. This study suggests that accelerometry is a feasible method to assess the physical activity level among older Malay adults living in semi-rural areas.
Duncan, Scott; Stewart, Tom; Mackay, Lisa; Neville, Jono; Narayanan, Anantha; Walker, Caroline; Berry, Sarah; Morton, Susan
2018-06-21
To advance the field of time-use epidemiology, a tool capable of monitoring 24 h movement behaviours including sleep, physical activity, and sedentary behaviour is needed. This study explores compliance with a novel dual-accelerometer system for capturing 24 h movement patterns in two free-living samples of children and adults. A total of 103 children aged 8 years and 83 adults aged 20-60 years were recruited. Using a combination of medical dressing and purpose-built foam pouches, participants were fitted with two Axivity AX3 accelerometers—one to the thigh and the other to the lower back—for seven 24 h periods. AX3 accelerometers contain an inbuilt skin temperature sensor that facilitates wear time estimation. The median (IQR) wear time in children was 160 (67) h and 165 (79) h (out of a maximum of 168 h) for back and thigh placement, respectively. Wear time was significantly higher and less variable in adults, with a median (IQR) for back and thigh placement of 168 (1) and 168 (0) h. A greater proportion of adults (71.6%) achieved the maximum number of complete days when compared to children (41.7%). We conclude that a dual-accelerometer protocol using skin attachment methods holds considerable promise for monitoring 24-h movement behaviours in both children and adults.
Tanha, Tina; Tornberg, Åsa; Dencker, Magnus; Wollmer, Per
2013-10-31
Very few validation studies have been performed between different generations of the commonly used Actigraph accelerometers. We compared daily physical activity data generated from the old generation Actigraph model 7164 with the new generation Actigraph GT1M accelerometer in 15 young females for eight consecutive days. We also investigated if different wear time thresholds had any impact on the findings. Minutes per day of moderate and vigorous physical activity (MVPA), vigorous physical activity (VPA) and very vigorous physical activity (VVPA) were calculated. Moreover, minutes of sedentary pursuits per day were calculated. There were significant (P < 0.05) differences between the Actigraph 7164 and the GT1M concerning MVPA (61 ± 21vs. 56 ± 23 min/day), VPA (12 ± 8 vs. 9 ± 3 min/day) and VVPA (3.2 ± 3.0 vs. 0.3 ± 1.1 min/day). The different wear time thresholds had little impact on minutes per day in different intensities. Median minutes of sedentary pursuits per day ranged from 159 to 438 minutes depending on which wear time threshold was used (i.e. 10, 30 or 60 minutes), whereas very small differences were observed between the two different models. Data from the old generation Actigraph 7164 and the new generation Actigraph GT1M accelerometers differ, where the Actigraph GT1M generates lower minutes spent in free living physical activity. Median minutes of sedentary pursuits per day are highly dependent on which wear time threshold that is used, and not by accelerometer model.
Lee, Paul H
2015-02-01
Accelerometers are gaining popularity for measuring physical activity, but there are many different ways to process accelerometer data. A sensitivity analysis was conducted to study the effect of varying accelerometer data processing protocols on estimating the association between PA level and socio-demographic characteristics using the National Health and Nutrition Examination Survey (NHANES) accelerometer data. The NHANES waves 2003-2004 and 2005-2006 accelerometer data (n=14,072) were used to investigate the effect of changing the accelerometer non-wearing time and valid day definitions on the demographic composition of the filtered datasets and the association between physical activity (PA) and socio-demographic characteristics (sex, age, race, educational level, marital status). Under different filtering rules (minimum number of valid day and definition of non-wear time), the demographic characteristics of the final sample varied. The proportion of participants aged 20-29 decreased from 18.9% to 15.8% when the minimum number of valid days required increased from 1 to 4 (p for trend<0.001), whereas that for aged ≥70 years increased from 18.9% to 20.6% (p for trend<0.001). Furthermore, with different filters, the effect of these demographic variables and PA varied, with some variables being significant under certain filtering rules but becoming insignificant under some other rules. The sensitivity analysis showed that the significance of the association between socio-demographic variables and PA could be varied with the definition of non-wearing time and minimum number of valid days. Copyright © 2014 Elsevier B.V. All rights reserved.
Hesketh, Kathryn R; Evenson, Kelly R; Stroo, Marissa; Clancy, Shayna M; Østbye, Truls; Benjamin-Neelon, Sara E
2018-06-01
Physical activity in pregnancy and postpartum is beneficial to mothers and infants. To advance knowledge of objective physical activity measurement during these periods, this study compares hip to wrist accelerometer compliance; assesses convergent validity (correlation) between hip- and wrist-worn accelerometry; and assesses change in physical activity from pregnancy to postpartum. We recruited women during pregnancy ( n = 100; 2014-2015), asking them to wear hip and wrist accelerometers for 7 days during Trimester 2 (T2), Trimester 3 (T3), and 3-, 6-, 9- and 12-months postpartum. We assessed average wear-time and correlations (axis-specific counts/minute, vector magnitude counts/day and step counts/day) at T2, T3, and postpartum. Compliance was higher for wrist-worn accelerometers. Hip and wrist accelerometers showed moderate to high correlations (Pearson's r 0.59 to 0.84). Hip-measured sedentary and active time differed little between T2 and T3. Moderate-to-vigorous physical activity decreased at T3 and remained low postpartum. Light physical activity increased and sedentary time decreased throughout the postpartum period. Wrist accelerometers may be preferable during pregnancy and appear comparable to hip accelerometers. As physical activity declines during later pregnancy and may not rebound post birth, support for re-engaging in physical activity earlier in the postpartum period may benefit women.
Fraser, Sarah J; Chapman, Justin J; Brown, Wendy J; Whiteford, Harvey A; Burton, Nicola W
2016-05-01
The aim of this study was to assess the feasibility of using questionnaires and accelerometers to measure physical activity and sedentary behavior among inpatient adults with mental illness. Participants completed a physical activity and sitting time questionnaire and wore an accelerometer for 7 consecutive days. Feasibility was assessed in terms of participant engagement, self-reported ease/ difficulty of completing study components, extreme self-report data values and adherence to accelerometer wear time criteria. Ease/difficulty ratings were examined by level of distress. 177 inpatients were invited to the study, 101 completed the questionnaires and 36 provided valid accelerometry data. Participants found it more difficult to complete sitting time and physical activity questionnaires than to wear the accelerometer during waking hours (z = 3.787, P < .001; z = 2.824, P = .005 respectively). No significant differences were found in ease/ difficulty ratings by level of distress for any of the study components. Extreme values for self-reported sitting time were identified in 27% of participants. Inpatient adults with mental illness can engage with self-report and objective methods of measuring physical activity and sedentary behavior. They were initially less willing to participate in objective measurement, which may however be more feasible than self-report measures.
Skender, Stephanie; Schrotz-King, Petra; Böhm, Jürgen; Abbenhardt, Clare; Gigic, Biljana; Chang-Claude, Jenny; Siegel, Erin M; Steindorf, Karen; Ulrich, Cornelia M
2015-06-06
Physical activity plays an important role in colorectal cancer and accelerometry is more frequently used to measure physical activity. The aim of this study was to evaluate feasibility of physical activity measurement by accelerometry in colorectal cancer patients under free-living conditions at 6, 12 and 24 months after surgery, to evaluate the appropriate wear time and to compare results to pedometry. Colorectal cancer patients (stage 0/I-IV) from the ColoCare study were asked to optionally wear an accelerometer and a pedometer for ten consecutive days 6, 12 and 24 months post-surgery. Participants completed a feedback questionnaire about the accelerometer measurement. The course of moderate-to-vigorous physical activity over the 10 days was investigated. Additionally, daily step counts from accelerometers and pedometers were compared. In total, there were 317 individual time points, at which 198 participants were asked to wear an accelerometer. Fifty-nine% initially agreed to participate and of these, 83% (n = 156) completed the assessment with at least 4 days of data. Twenty-one% more consents were obtained when participants were asked on a face-to-face basis compared to recruitment by telephone (P = 0.0002). There were no significant differences in time spent in moderate-to-vigorous physical activity between different wear-time lengths of accelerometry. Both Spearman and intraclass correlation coefficients showed strong correlations (0.92-0.99 and 0.84-0.99, respectively) of moderate-to-vigorous physical activity across 3, 4, 7 and 10 days measurement. Step counts measured by accelerometry and pedometry were strongly correlated (ρ = 0.91, P < 0.0001). This study suggest that accelerometry is a feasible method to assess physical activity in free-living colorectal cancer patients and that three valid days of physical activity measurement are sufficient for an accurate assessment.
Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen
2016-02-23
An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies.
Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen
2016-01-01
An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297
Wang, Chao; Chen, Peijie; Zhuang, Jie
2013-12-01
The psychometric profiles of the widely used International Physical Activity Questionnaire-Short Form (IPAQ-SF) in Chinese youth have not been reported. The purpose of this study was to examine the validity and reliability of the IPAQ-SF using a sample of Chinese youth. One thousand and twenty-one youth (M(age) = 14.26 +/- 1.63 years, 52.8% boys) from 11 cities in China wore accelerometers for 7 consecutive days and completed the IPAQ-SF on the 8th day to recall their physical activity (PA) during accelerometer-wearing days. A subsample of 92 youth (M(age) = 15.90 +/- 1.35 years, 46.7% boys) completed the IPAQ-SF again a week later to recall their PA during accelerometer-wearing days. Differences in PA estimated by the IPAQ-SF and accelerometer were examined by paired-sample t test. Spearman correlation coefficients were used to examine the correlation between the IPAQ-SF and accelerometer. Test-retest reliability of the IPAQ-SF was determined by the intraclass correlation coefficient (ICC). Compared with accelerometer, the IPAQ-SF overestimated sedentary time, moderate PA (MPA), vigorous PA (VPA), and moderate-to-vigorous PA (MVPA). Correlations between PA (total PA, MPA, VPA, and MVPA) and sedentary time measured by 2 instruments ranged from "none" to "low" (p = .08-.31). Test-retest ICC of the IPAQ-SF ranged from "moderate" to "high" (ICC = .43-.83), except for sitting in boys (ICC = .06), sitting for the whole sample (ICC = .32), and VPA in girls (ICC = .35). The IPAQ-SF was not a valid instrument for measuring PA and sedentary behavior in Chinese youth.
Activity recognition using a single accelerometer placed at the wrist or ankle.
Mannini, Andrea; Intille, Stephen S; Rosenberger, Mary; Sabatini, Angelo M; Haskell, William
2013-11-01
Large physical activity surveillance projects such as the UK Biobank and NHANES are using wrist-worn accelerometer-based activity monitors that collect raw data. The goal is to increase wear time by asking subjects to wear the monitors on the wrist instead of the hip, and then to use information in the raw signal to improve activity type and intensity estimation. The purposes of this work was to obtain an algorithm to process wrist and ankle raw data and to classify behavior into four broad activity classes: ambulation, cycling, sedentary, and other activities. Participants (N = 33) wearing accelerometers on the wrist and ankle performed 26 daily activities. The accelerometer data were collected, cleaned, and preprocessed to extract features that characterize 2-, 4-, and 12.8-s data windows. Feature vectors encoding information about frequency and intensity of motion extracted from analysis of the raw signal were used with a support vector machine classifier to identify a subject's activity. Results were compared with categories classified by a human observer. Algorithms were validated using a leave-one-subject-out strategy. The computational complexity of each processing step was also evaluated. With 12.8-s windows, the proposed strategy showed high classification accuracies for ankle data (95.0%) that decreased to 84.7% for wrist data. Shorter (4 s) windows only minimally decreased performances of the algorithm on the wrist to 84.2%. A classification algorithm using 13 features shows good classification into the four classes given the complexity of the activities in the original data set. The algorithm is computationally efficient and could be implemented in real time on mobile devices with only 4-s latency.
Accuracy of piezoelectric pedometer and accelerometer step counts.
Cruz, Joana; Brooks, Dina; Marques, Alda
2017-04-01
This study aimed to assess step-count accuracy of a piezoeletric pedometer (Yamax PW/EX-510), when worn at different body parts, and a triaxial accelerometer (GT3X+), and to compare device accuracy; and identify the preferred location(s) to wear a pedometer. Sixty-three healthy adults (45.8±20.6 years old) wore 7 pedometers (neck, lateral right and left of the waist, front right and left of the waist, front pockets of the trousers) and 1 accelerometer (over the right hip), while walking 120 m at slow, self-preferred/normal and fast paces. Steps were recorded. Participants identified their preferred location(s) to wear the pedometer. Absolute percent error (APE) and Bland and Altman (BA) method were used to assess device accuracy (criterion measure: manual counts) and BA method for device comparisons. Pedometer APE was below 3% at normal and fast paces despite wearing location, but higher at slow pace (4.5-9.1%). Pedometers were more accurate at the front waist and inside the pockets. Accelerometer APE was higher than pedometer APE (P<0.05); nevertheless, limits of agreement between devices were relatively small. Preferred wearing locations were inside the front right (N.=25) and left (N.=20) pockets of the trousers. Yamax PW/EX-510 pedometers may be preferable than GT3X+ accelerometers to count steps, as they provide more accurate results. These pedometers should be worn at the front right or left positions of the waist or inside the front pockets of the trousers.
Comparability and feasibility of wrist- and hip-worn accelerometers in free-living adolescents.
Scott, Joseph J; Rowlands, Alex V; Cliff, Dylan P; Morgan, Philip J; Plotnikoff, Ronald C; Lubans, David R
2017-12-01
To determine the comparability and feasibility of wrist- and hip-worn accelerometers among free-living adolescents. 89 adolescents (age=13-14years old) from eight secondary schools in New South Wales (NSW), Australia wore wrist-worn GENEActiv and hip-worn ActiGraph (GT3X+) accelerometers simultaneously for seven days and completed an accelerometry behavior questionnaire. Bivariate correlations between the wrist- and hip-worn out-put were used to determine concurrent validity. Paired samples t-test were used to compare minutes per day in moderate-to-vigorous physical activity (MVPA). Group means and paired sample t-tests were used to analyze participants' perceptions of the wrist- and hip-worn monitoring protocols to assist with determining the feasibility. Wrist-worn accelerometry compared favorably with the hip-worn in average activity (r=0.88, p<0.001) and MVPA (r=0.84 p<0.001, mean difference=3.54min/day, SD=12.37). The wrist-worn accelerometer had 50% fewer non-valid days (75 days, 12%) than the hip-worn accelerometer (n=152, 24.4%). Participants reported they liked to wear the device on the wrist (p<0.01), and that it was less uncomfortable (p=0.02) and less embarrassing to wear on the wrist (p<0.01). Furthermore, that they would be more willing to wear the device again on the wrist over the hip (p<0.01). Our findings reveal there is a strong linear relationship between wrist- and hip-worn accelerometer out-put among adolescents in free-living conditions. Adolescent compliance was significantly higher with wrist placement, with participants reporting that it was more comfortable and less embarrassing to wear on the wrist. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Objectively Measured Physical Activity and Cognitive Function in Older Adults.
Zhu, Wenfei; Wadley, Virginia G; Howard, Virginia J; Hutto, Brent; Blair, Steven N; Hooker, Steven P
2017-01-01
Emerging evidence suggests physical activity (PA) is associated with cognitive function. To overcome limitations of self-report PA measures, this study investigated the association of accelerometer-measured PA with incident cognitive impairment and longitudinal cognition among older adults. Participants were recruited from the cohort study Reasons for Geographic and Racial Differences in Stroke in the United States. Accelerometers provided PA measures, including the percentage of total accelerometer wearing time spent in moderate-to-vigorous-intensity PA (MVPA%), light-intensity PA, and sedentary time for four to seven consecutive days at baseline. Cognitive impairment was defined by the Six-Item Screener. Letter fluency, animal fluency, word list learning, and Montreal Cognitive Assessment (orientation and recall) were conducted to assess executive function and memory. Participants (N = 6452, 69.7 ± 8.5 yr, 55.3% women, 30.5% Black) with usable accelerometer and cognition measures spent extremely limited time in MVPA (1.5% ± 1.9% of accelerometer wearing time). During an average of 3 yr of follow-up, 346 cases of incident cognitive impairment were observed. After adjustments, participants in higher MVPA% quartiles had a lower risk of cognitive impairment (i.e., quartile 2: odds ratio = 0.64, 95% confidence interval = 0.48-0.84) and better maintenance in executive function (≥0.03 z-score units) and memory (≥0.12 z-score units) compared with quartile 1 (P < 0.05). Stratified analyses showed the same association among White adults, but higher MVPA% was associated with better maintenance of only memory among Black adults. No significance was found for light-intensity PA or sedentary time. There was a dose-response relationship between MVPA% and cognitive function in older adults, with higher levels associated with a 36% or lower risk of cognitive impairment and better maintenance of memory and executive function over time, particularly in White adults.
Body-Worn Sensors in Parkinson's Disease: Evaluating Their Acceptability to Patients.
Fisher, James M; Hammerla, Nils Y; Rochester, Lynn; Andras, Peter; Walker, Richard W
2016-01-01
Remote monitoring of symptoms in Parkinson's disease (PD) using body-worn sensors would assist treatment decisions and evaluation of new treatments. To date, a rigorous, systematic evaluation of the acceptability of body-worn sensors in PD has not been undertaken. Thirty-four participants wore bilateral wrist-worn sensors for 4 h in a research facility and then for 1 week at home. Participants' experiences of wearing the sensors were evaluated using a Likert-style questionnaire after each phase. Qualitative data were collected through free-text responses. Differences in responses between phases were assessed by using the Wilcoxon rank-sum test. Content analysis of qualitative data was undertaken. "Non-wear time" was estimated via analysis of accelerometer data for periods when sensors were stationary. After prolonged wearing there was a negative shift in participants' views on the comfort of the sensor; problems with the sensor's strap were highlighted. However, accelerometer data demonstrated high patient concordance with wearing of the sensors. There was no evidence that participants were less likely to wear the sensors in public. Most participants preferred wearing the sensors to completing symptom diaries. The finding that participants were not less likely to wear the sensors in public provides reassurance regarding the ecological validity of the data captured. The validity of our findings was strengthened by "triangulation" of data sources, enabling patients to express their agenda and repeated assessment after prolonged wearing. Long-term monitoring with wrist-worn sensors is acceptable to this cohort of PD patients. Evaluation of the wearer's experience is critical to the development of remote monitoring technology.
Drivers Are More Physically Active Than Non-Drivers in Older Adults.
Amagasa, Shiho; Fukushima, Noritoshi; Kikuchi, Hiroyuki; Takamiya, Tomoko; Odagiri, Yuko; Oka, Koichiro; Inoue, Shigeru
2018-05-28
Car use has been identified as sedentary behavior, although it may enhance mobility, particularly in the older population. This cross-sectional study aimed to compare the time spent in objectively determined sedentary behavior (SB) and physical activity (PA) between older drivers and non-drivers. Four hundred and fifty Japanese older adults (74.3 ± 2.9 years) who had valid accelerometer data were included. They were asked to respond to a questionnaire and wear an accelerometer (HJA-350IT, Omron Healthcare) on their waist for 7 consecutive days in 2015. To compare activity time between drivers and non-drivers, we calculated estimated means using analysis of covariance, adjusting for sociodemographic, physical, and psychological factors and accelerometer wear time. Compared to non-drivers, drivers engaged in more light-intensity PA (LPA) (drivers: 325.0 vs. non-drivers: 289.0 min/day) and moderate-to-vigorous PA (drivers: 37.5 vs. non-drivers: 30.0 min/day) and less SB (drivers: 493.4 vs. non-drivers: 535.9 min/day) (all p < 0.05). After stratification by age, sex, and residential area, larger effect of driving on PA time was found in older-older adults, in men, and in rural residents. Older drivers were found to be more physically active than non-drivers, suggesting more access to outdoor activities or expanding social network.
Validity and Reliability of Accelerometers in Patients With COPD: A SYSTEMATIC REVIEW.
Gore, Shweta; Blackwood, Jennifer; Guyette, Mary; Alsalaheen, Bara
2018-05-01
Reduced physical activity is associated with poor prognosis in chronic obstructive pulmonary disease (COPD). Accelerometers have greatly improved quantification of physical activity by providing information on step counts, body positions, energy expenditure, and magnitude of force. The purpose of this systematic review was to compare the validity and reliability of accelerometers used in patients with COPD. An electronic database search of MEDLINE and CINAHL was performed. Study quality was assessed with the Strengthening the Reporting of Observational Studies in Epidemiology checklist while methodological quality was assessed using the modified Quality Appraisal Tool for Reliability Studies. The search yielded 5392 studies; 25 met inclusion criteria. The SenseWear Pro armband reported high criterion validity under controlled conditions (r = 0.75-0.93) and high reliability (ICC = 0.84-0.86) for step counts. The DynaPort MiniMod demonstrated highest concurrent validity for step count using both video and manual methods. Validity of the SenseWear Pro armband varied between studies especially in free-living conditions, slower walking speeds, and with addition of weights during gait. A high degree of variability was found in the outcomes used and statistical analyses performed between studies, indicating a need for further studies to measure reliability and validity of accelerometers in COPD. The SenseWear Pro armband is the most commonly used accelerometer in COPD, but measurement properties are limited by gait speed variability and assistive device use. DynaPort MiniMod and Stepwatch accelerometers demonstrated high validity in patients with COPD but lack reliability data.
Analysis of wear-debris from full-scale bearing fatigue tests using the ferrograph
NASA Technical Reports Server (NTRS)
Jones, W. R.; Loewenthal, S. H.
1980-01-01
The ferrograph was used to determine the types and quantities of wear particles generated during full-scale bearing fatigue tests. Deep-groove ball bearings made from AISI 52100 steel were used. A MIL-L-23699 tetraester lubricant was used in a recirculating lubrication system containing a 49 mm absolute filter. Test conditions included a maximum Hertz stress of 2.4 GPa, a shaft speed of 15,000 rpm, and a lubricant supply temperature of 74 C (165 F). Four fatigue failures were detected by accelerometers in this test set. In general, the ferrograph was more sensitive (up to 23 hr) in detecting spall initiation than either accelerometers or the normal spectrographic oil analysis. Four particle types were observed: normal rubbing wear particles, spheres, nonferrous particles, and severe wear (spall) fragments.
Accelerometer telemetry system
NASA Technical Reports Server (NTRS)
Konigsberg, E. (Inventor)
1976-01-01
An accelerometer telemetry system incorporated in a finger ring is used for monitoring the motor responses of a subject. The system includes an accelerometer, battery, and transmitter and provides information to a remote receiver regarding hand movements of a subject wearing the ring, without the constraints of wires. Possible applications include the detection of fatigue from the hand movements of the wearer.
Analysis of wear debris from full-scale bearing fatigue tests using the Ferrograph
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Loewenthal, S. H.
1980-01-01
The Ferrograph was used to determine the types of quantities of wear particles generated during full-scale bearing fatigue tests. Deep-groove ball bearings made from AISI 52100 steel were used. A MIL-L-23699 tetraester lubricant was used in a recirculating lubrication system containing a 49-micron absolute filter. Test conditions included a maximum Hertz stress of 2.4 GPa, a shaft speed of 15,000 rpm and a lubricant supply temperature of 74 C (165 F). Four fatigue failures were detected by accelerometers in this test set. In general, the Ferrograph was more sensitive (up to 23 h) in detecting spall initiation than either accelerometers or the normal spectrographic oil analysis (SOAP). Four particle types were observed: normal rubbing wear particles, spheres, nonferrous particles, and severe wear (spall) fragments.
NASA Astrophysics Data System (ADS)
Rodes, C. E.; Chillrud, S. N.; Haskell, W. L.; Intille, S. S.; Albinali, F.; Rosenberger, M. E.
2012-09-01
BackgroundMetabolic functions typically increase with human activity, but optimal methods to characterize activity levels for real-time predictions of ventilation volume (l min-1) during exposure assessments have not been available. Could tiny, triaxial accelerometers be incorporated into personal level monitors to define periods of acceptable wearing compliance, and allow the exposures (μg m-3) to be extended to potential doses in μg min-1 kg-1 of body weight? ObjectivesIn a pilot effort, we tested: 1) whether appropriately-processed accelerometer data could be utilized to predict compliance and in linear regressions to predict ventilation volumes in real-time as an on-board component of personal level exposure sensor systems, and 2) whether locating the exposure monitors on the chest in the breathing zone, provided comparable accelerometric data to other locations more typically utilized (waist, thigh, wrist, etc.). MethodsPrototype exposure monitors from RTI International and Columbia University were worn on the chest by a pilot cohort of adults while conducting an array of scripted activities (all <10 METS), spanning common recumbent, sedentary, and ambulatory activity categories. Referee Wocket accelerometers that were placed at various body locations allowed comparison with the chest-located exposure sensor accelerometers. An Oxycon Mobile mask was used to measure oral-nasal ventilation volumes in-situ. For the subset of participants with complete data (n = 22), linear regressions were constructed (processed accelerometric variable versus ventilation rate) for each participant and exposure monitor type, and Pearson correlations computed to compare across scenarios. ResultsTriaxial accelerometer data were demonstrated to be adequately sensitive indicators for predicting exposure monitor wearing compliance. Strong linear correlations (R values from 0.77 to 0.99) were observed for all participants for both exposure sensor accelerometer variables against ventilation volume for recumbent, sedentary, and ambulatory activities with MET values ˜<6. The RTI monitors mean R value of 0.91 was slightly higher than the Columbia monitors mean of 0.86 due to utilizing a 20 Hz data rate instead of a slower 1 Hz rate. A nominal mean regression slope was computed for the RTI system across participants and showed a modest RSD of +/-36.6%. Comparison of the correlation values of the exposure monitors with the Wocket accelerometers at various body locations showed statistically identical regressions for all sensors at alternate hip, ankle, upper arm, thigh, and pocket locations, but not for the Wocket accelerometer located at the dominant side wrist location (R = 0.57; p = 0.016). ConclusionsEven with a modest number of adult volunteers, the consistency and linearity of regression slopes for all subjects were very good with excellent within-person Pearson correlations for the accelerometer versus ventilation volume data. Computing accelerometric standard deviations allowed good sensitivity for compliance assessments even for sedentary activities. These pilot findings supported the hypothesis that a common linear regression is likely to be usable for a wider range of adults to predict ventilation volumes from accelerometry data over a range of low to moderate energy level activities. The predicted volumes would then allow real-time estimates of potential dose, enabling more robust panel studies. The poorer correlation in predicting ventilation rate for an accelerometer located on the wrist suggested that this location should not be considered for predictions of ventilation volume.
Layne, Charles S; Parker, Nathan H; Soltero, Erica G; Rosales Chavez, José; O'Connor, Daniel P; Gallagher, Martina R; Lee, Rebecca E
2015-09-18
Continuous monitoring technologies such as accelerometers and pedometers are the gold standard for physical activity (PA) measurement. However, inconsistencies in use, analysis, and reporting limit the understanding of dose-response relationships involving PA and the ability to make comparisons across studies and population subgroups. These issues are particularly detrimental to the study of PA across different ethnicities with different PA habits. This systematic review examined the inclusion of published guidelines involving data collection, processing, and reporting among articles using accelerometers or pedometers in Hispanic or Latino populations. English (PubMed; EbscoHost) and Spanish (SCIELO; Biblioteca Virtual en Salud) articles published between 2000 and 2013 using accelerometers or pedometers to measure PA among Hispanics or Latinos were identified through systematic literature searches. Of the 253 abstracts which were initially reviewed, 57 met eligibility criteria (44 accelerometer, 13 pedometer). Articles were coded and reviewed to evaluate compliance with recommended guidelines (N = 20), and the percentage of accelerometer and pedometer articles following each guideline were computed and reported. On average, 57.1 % of accelerometer and 62.2 % of pedometer articles reported each recommended guideline for data collection. Device manufacturer and model were reported most frequently, and provision of instructions for device wear in Spanish was reported least frequently. On average, 29.6 % of accelerometer articles reported each guideline for data processing. Definitions of an acceptable day for inclusion in analyses were reported most frequently, and definitions of an acceptable hour for inclusion in analyses were reported least frequently. On average, 18.8 % of accelerometer and 85.7 % of pedometer articles included each guideline for data reporting. Accelerometer articles most frequently included average number of valid days and least frequently included percentage of wear time. Inclusion of standard collection and reporting procedures in studies using continuous monitoring devices in Hispanic or Latino population is generally low. Lack of reporting consistency in continuous monitoring studies limits researchers' ability to compare studies or draw meaningful conclusions concerning amounts, quality, and benefits of PA among Hispanic or Latino populations. Reporting data collection, computation, and decision-making standards should be required. Improved interpretability would allow practitioners and researchers to apply scientific findings to promote PA.
Yıldırım, Mine; Verloigne, Maïté; de Bourdeaudhuij, Ilse; Androutsos, Odysseas; Manios, Yannis; Felso, Regina; Kovács, Éva; Doessegger, Alain; Bringolf-Isler, Bettina; te Velde, Saskia J; Brug, Johannes; Chinapaw, Mai J M
2011-03-25
Physical activity and sedentary behaviour among children should be measured accurately in order to investigate their relationship with health. Accelerometry provides objective and accurate measurement of body movement, which can be converted to meaningful behavioural outcomes. The aim of this study was to evaluate the best evidence for the decisions on data collection and data processing with accelerometers among children resulting in a standardized protocol for use in the participating countries. This cross-sectional accelerometer study was conducted as part of the European ENERGY-project that aimed to produce an obesity prevention intervention among schoolchildren. Five countries, namely Belgium, Greece, Hungary, Switzerland and the Netherlands participated in the accelerometer study. We used three different Actigraph models--Actitrainers (triaxial), GT3Xs and GT1Ms. Children wore the device for six consecutive days including two weekend days. We selected an epoch length of 15 seconds. Accelerometers were placed at children's waist at the right side of the body in an elastic belt. In total, 1082 children participated in the study (mean age = 11.7 ± 0.75 y, 51% girls). Non-wearing time was calculated as periods of more than 20 minutes of consecutive zero counts. The minimum daily wearing time was set to 10 hours for weekdays and 8 hours for weekend days. The inclusion criterion for further analysis was having at least three valid weekdays and one valid weekend day. We selected a cut-point (count per minute (cpm)) of <100 cpm for sedentary behaviour, <3000 cpm for light, <5200 cpm for moderate, and >5200 cpm for vigorous physical activity. We also created time filters for school-time during data cleaning in order to explore school-time physical activity and sedentary behaviour patterns in particular. This paper describes the decisions for data collection and processing. Use of standardized protocols would ease future use of accelerometry and the comparability of results between studies.
Bedard, Chloe; King-Dowling, Sara; McDonald, Madeline; Dunton, Genevieve; Cairney, John
2017-01-01
Background It is well established that drastic declines in physical activity (PA) occur during young adults’ transition into university; however, our understanding of contextual and environmental factors as it relates to young adults’ PA is limited. Objective The purpose of our study was to examine the feasibility of using wrist-worn accelerometers and the use of ecological momentary assessment (EMA) to assess the context and momentary correlates of PA on multiple occasions each day during first-year university. Methods First-year university students were asked to participate in the study. The participants completed a brief questionnaire and were subsequently asked to wear an ActiGraph GT9X-Link accelerometer and respond to a series of EMA prompts (7/day) via their phones for 5 consecutive days. Results A total of 96 first-year university students with smartphones agreed to participate in the study (mean age 18.3 [SD 0.51]; n=45 females). Overall, there was good compliance for wearing the accelerometers, with 91% (78/86) of the participants having ≥2 days of ≥10 hours of wear time (mean=3.53 valid days). Students were generally active, averaging 10,895 steps/day (SD 3413) or 1123.23 activity counts/min (SD 356.10). Compliance to EMA prompts was less desirable, with 64% (55/86) of the participants having usable EMA data (responding to a minimum of ≥3 days of 3 prompts/day or ≥4 days of 2 prompts/day), and only 47% (26/55) of these participants were considered to have excellent EMA compliance (responding to ≥5 days of 4 prompts/day or ≥ 4 days of 5 prompts/day). Conclusions This study represents one of the first studies to use an intensive real-time data capture strategy to examine time-varying correlates of PA among first-year university students. These data will aim to describe the physical and social contexts in which PA occurs and examine the relationships between momentary correlates of PA among the first-year university students. Overall, current results suggest that wrist-worn accelerometers and EMA are feasible methods for data collection among the young adult population; however, more work is needed to understand how to improve upon compliance to a real-time data capture method such as EMA. PMID:28566264
Della Mea, Vincenzo; Quattrin, Omar; Parpinel, Maria
2017-12-01
Obesity and physical inactivity are the most important risk factors for chronic diseases. The present study aimed at (i) developing and testing a method for classifying household activities based on a smartphone accelerometer; (ii) evaluating the influence of smartphone position; and (iii) evaluating the acceptability of wearing a smartphone for activity recognition. An Android application was developed to record accelerometer data and calculate descriptive features on 5-second time blocks, then classified with nine algorithms. Household activities were: sitting, working at the computer, walking, ironing, sweeping the floor, going down stairs with a shopping bag, walking while carrying a large box, and climbing stairs with a shopping bag. Ten volunteers carried out the activities for three times, each one with a smartphone in a different position (pocket, arm, and wrist). Users were then asked to answer a questionnaire. 1440 time blocks were collected. Three algorithms demonstrated an accuracy greater than 80% for all smartphone positions. While for some subjects the smartphone was uncomfortable, it seems that it did not really affect activity. Smartphones can be used to recognize household activities. A further development is to measure metabolic equivalent tasks starting from accelerometer data only.
Ferrographic analysis of wear debris from full-scale bearing fatigue tests
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Loewenthal, S. H.
1979-01-01
The Ferrograph was used to determine the types and quantities of wear particles generated during full scale bearing fatigue tests. Deep-groove ball bearings made from steel were used. A tetraester lubricant was used in a recirculating lubricant system containing a 49 micrometers absolute filter. Test conditions include a maximum Hertz stress of 2.4 GPa, a shaft speed of 15,000 rpm, and a lubricant supply temperature of 74 C (165 F). Four fatigue failures were detected by accelerometers in this test set. In general, the Ferrograph was more sensitive (up to 23 hr) in detecting spall initiation than either accelerometers or the normal spectrographic oil analysis. Four particle types were observed: normal rubbing weather particles, spheres, nonferrous particles, and severe wear (spall) fragments.
Rhudy, Matthew B; Mahoney, Joseph M
2018-04-01
The goal of this work is to compare the differences between various step counting algorithms using both accelerometer and gyroscope measurements from wrist and ankle-mounted sensors. Participants completed four different conditions on a treadmill while wearing an accelerometer and gyroscope on the wrist and the ankle. Three different step counting techniques were applied to the data from each sensor type and mounting location. It was determined that using gyroscope measurements allowed for better performance than the typically used accelerometers, and that ankle-mounted sensors provided better performance than those mounted on the wrist.
Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
Pavey, Toby G; Gilson, Nicholas D; Gomersall, Sjaan R; Clark, Bronwyn; Trost, Stewart G
2017-01-01
Wrist-worn accelerometers are convenient to wear and associated with greater wear-time compliance. Previous work has generally relied on choreographed activity trials to train and test classification models. However, validity in free-living contexts is starting to emerge. Study aims were: (1) train and test a random forest activity classifier for wrist accelerometer data; and (2) determine if models trained on laboratory data perform well under free-living conditions. Twenty-one participants (mean age=27.6±6.2) completed seven lab-based activity trials and a 24h free-living trial (N=16). Participants wore a GENEActiv monitor on the non-dominant wrist. Classification models recognising four activity classes (sedentary, stationary+, walking, and running) were trained using time and frequency domain features extracted from 10-s non-overlapping windows. Model performance was evaluated using leave-one-out-cross-validation. Models were implemented using the randomForest package within R. Classifier accuracy during the 24h free living trial was evaluated by calculating agreement with concurrently worn activPAL monitors. Overall classification accuracy for the random forest algorithm was 92.7%. Recognition accuracy for sedentary, stationary+, walking, and running was 80.1%, 95.7%, 91.7%, and 93.7%, respectively for the laboratory protocol. Agreement with the activPAL data (stepping vs. non-stepping) during the 24h free-living trial was excellent and, on average, exceeded 90%. The ICC for stepping time was 0.92 (95% CI=0.75-0.97). However, sensitivity and positive predictive values were modest. Mean bias was 10.3min/d (95% LOA=-46.0 to 25.4min/d). The random forest classifier for wrist accelerometer data yielded accurate group-level predictions under controlled conditions, but was less accurate at identifying stepping verse non-stepping behaviour in free living conditions Future studies should conduct more rigorous field-based evaluations using observation as a criterion measure. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Sarker, Hrishov; Anderson, Laura N; Borkhoff, Cornelia M; Abreo, Kathleen; Tremblay, Mark S; Lebovic, Gerald; Maguire, Jonathon L; Parkin, Patricia C; Birken, Catherine S
2015-11-30
It is unknown if young children's parent-reported physical activity and sedentary time are correlated with direct measures. The study objectives were to compare parent-reported physical and sedentary activity versus directly measured accelerometer data in early childhood. From 2013 to 2014, 117 healthy children less than 6 years of age were recruited to wear Actical accelerometers for 7 days. Accelerometer data and questionnaires were available on 87 children (74%). Average daily physical activity was defined as the sum of activity ≥100 counts per minute, and sedentary time as the sum of activity <100 counts per minute during waking hours. Parents reported daily physical activity (unstructured free play in and out of school, and organized activities) and selected sedentary behaviors (screen time, stroller time, time in motor vehicle). Spearman correlation coefficients and Bland-Altman plots were used to assess the validity of parent-reported measures compared to accelerometer data. Total physical activity was significantly greater when measured by accelerometer than parent-report; the median difference was 131 min/day (p < 0.001). Parent-reported child physical activity was weak to moderately correlated with directly measured total physical activity (r = 0.39, 95% CI 0.19, 0.56). The correlations between types of physical activity (unstructured free play in and outside of school/daycare, and organized structured activity) and accelerometer were r = 0.30 (95% CI 0.09, 0.49); r = 0.42 (95% CI 0.23, 0.58); r = 0.26 (95% CI 0.05, 0.46), respectively. There was no correlation between parent-reported and accelerometer-measured total sedentary time in children (r = 0.10, 95% CI -0.12, 0.33). When the results were stratified by age group (<18, 18-47, and 48-70 months of age) no statistically significant correlations were observed and some inverse associations were observed. The correlation between parent-report of young children's physical activity and accelerometer-measured activity was weak to moderate depending on type of activity and age group. Parent-report of children's sedentary time was not correlated with accelerometer-measured sedentary time. Additional validation studies are needed to determine if parent-reported measures of physical activity and sedentary time are valid among children less than 6 years of age and across these young age groups.
Kate, Rohit J.; Swartz, Ann M.; Welch, Whitney A.; Strath, Scott J.
2016-01-01
Wearable accelerometers can be used to objectively assess physical activity. However, the accuracy of this assessment depends on the underlying method used to process the time series data obtained from accelerometers. Several methods have been proposed that use this data to identify the type of physical activity and estimate its energy cost. Most of the newer methods employ some machine learning technique along with suitable features to represent the time series data. This paper experimentally compares several of these techniques and features on a large dataset of 146 subjects doing eight different physical activities wearing an accelerometer on the hip. Besides features based on statistics, distance based features and simple discrete features straight from the time series were also evaluated. On the physical activity type identification task, the results show that using more features significantly improve results. Choice of machine learning technique was also found to be important. However, on the energy cost estimation task, choice of features and machine learning technique were found to be less influential. On that task, separate energy cost estimation models trained specifically for each type of physical activity were found to be more accurate than a single model trained for all types of physical activities. PMID:26862679
Bedard, Chloe; King-Dowling, Sara; McDonald, Madeline; Dunton, Genevieve; Cairney, John; Kwan, Matthew
2017-05-31
It is well established that drastic declines in physical activity (PA) occur during young adults' transition into university; however, our understanding of contextual and environmental factors as it relates to young adults' PA is limited. The purpose of our study was to examine the feasibility of using wrist-worn accelerometers and the use of ecological momentary assessment (EMA) to assess the context and momentary correlates of PA on multiple occasions each day during first-year university. First-year university students were asked to participate in the study. The participants completed a brief questionnaire and were subsequently asked to wear an ActiGraph GT9X-Link accelerometer and respond to a series of EMA prompts (7/day) via their phones for 5 consecutive days. A total of 96 first-year university students with smartphones agreed to participate in the study (mean age 18.3 [SD 0.51]; n=45 females). Overall, there was good compliance for wearing the accelerometers, with 91% (78/86) of the participants having ≥2 days of ≥10 hours of wear time (mean=3.53 valid days). Students were generally active, averaging 10,895 steps/day (SD 3413) or 1123.23 activity counts/min (SD 356.10). Compliance to EMA prompts was less desirable, with 64% (55/86) of the participants having usable EMA data (responding to a minimum of ≥3 days of 3 prompts/day or ≥4 days of 2 prompts/day), and only 47% (26/55) of these participants were considered to have excellent EMA compliance (responding to ≥5 days of 4 prompts/day or ≥ 4 days of 5 prompts/day). This study represents one of the first studies to use an intensive real-time data capture strategy to examine time-varying correlates of PA among first-year university students. These data will aim to describe the physical and social contexts in which PA occurs and examine the relationships between momentary correlates of PA among the first-year university students. Overall, current results suggest that wrist-worn accelerometers and EMA are feasible methods for data collection among the young adult population; however, more work is needed to understand how to improve upon compliance to a real-time data capture method such as EMA. ©Chloe Bedard, Sara King-Dowling, Madeline McDonald, Genevieve Dunton, John Cairney, Matthew Kwan. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 31.05.2017.
Reproducibility of Accelerometer-Assessed Physical Activity and Sedentary Time.
Keadle, Sarah Kozey; Shiroma, Eric J; Kamada, Masamitsu; Matthews, Charles E; Harris, Tamara B; Lee, I-Min
2017-04-01
Accelerometers are used increasingly in large epidemiologic studies, but, given logistic and cost constraints, most studies are restricted to a single, 7-day accelerometer monitoring period. It is unknown how well a 7-day accelerometer monitoring period estimates longer-term patterns of behavior, which is critical for interpreting, and potentially improving, disease risk estimates in etiologic studies. A subset of participants from the Women's Health Study (N=209; mean age, 70.6 [SD=5.7] years) completed at least two 7-day accelerometer administrations (ActiGraph GT3X+) within a period of 2-3 years. Monitor output was translated into total counts, steps, and time spent in sedentary, light-intensity, and moderate to vigorous-intensity activity (MVPA) and bouted-MVPA (i.e., 10-minute bouts). For each metric, intraclass correlations (ICCs) and 95% CIs were calculated using linear-mixed models and adjusted for wear time, age, BMI, and season. The data were collected in 2011-2015 and analyzed in 2015-2016. The ICCs ranged from 0.67 (95% CI=0.60, 0.73) for bouted-MVPA to 0.82 (95% CI=0.77, 0.85) for total daily counts and were similar across age, BMI, and for less and more active women. For all metrics, classification accuracy within 1 quartile was >90%. These data provide reassurance that a 7-day accelerometer-assessment protocol provides a reproducible (and practical) measure of physical activity and sedentary time. However, ICCs varied by metric; therefore, future prospective studies of chronic diseases might benefit from existing methods to adjust risk estimates for within-person variability in activity to get a better estimate of the true strength of association. Copyright © 2016 American Journal of Preventive Medicine. All rights reserved.
Patterns of accelerometer-derived sedentary time across the lifespan.
Santos, Diana A; Júdice, Pedro B; Magalhães, João P; Correia, Inês R; Silva, Analiza M; Baptista, Fátima; Sardinha, Luís B
2018-05-10
We aimed to describe ST and its patterns on a national level. A hip-worn accelerometer (ActiGraph GT1M) was used to collect data during waking hours from 4575 Portuguese' participants from 2007-2009 (2683 females) aged 10-102 years old. Data was presented by sex, in 5-years age intervals, and by adolescents (n=2833), adults (n=1122), and older adults (n=620). Lambda-mu-sigma (LMS) smoothed percentile curves were estimated. Girls, women, and older women spent 61, 57, and 64% of wear time in ST, respectively. In males, ST represented 57, 60, and 62% of wear time respectively for boys, men, and older men. Comparing to other age groups, older adults spent a larger amount of ST in bouts ≥30-min (women: 33%, men: 39% of total ST). The number of breaks/ST hour were: 10.6 in girls, 11.7 in women, and 9.6 in older women. In males, the number of breaks/ST hour were: 11.2, 10.5, and 8.5 for boys, men, and older men. In conclusion, ST was not consistently higher at older ages. Instead, we found that the potential critical moments in which ST may be higher are during adolescence and in the transition from adulthood into older adulthood, which represents critical periods for interventions.
Buchheit, Martin; Gray, Andrew; Morin, Jean-Benoit
2015-01-01
The aim of the present study was to examine the ability of a GPS-imbedded accelerometer to assess stride variables and vertical stiffness (K), which are directly related to neuromuscular fatigue during field-based high-intensity runs. The ability to detect stride imbalances was also examined. A team sport player performed a series of 30-s runs on an instrumented treadmill (6 runs at 10, 17 and 24 km·h-1) with or without his right ankle taped (aimed at creating a stride imbalance), while wearing on his back a commercially-available GPS unit with an embedded 100-Hz tri-axial accelerometer. Contact (CT) and flying (FT) time, and K were computed from both treadmill and accelerometers (Athletic Data Innovations) data. The agreement between treadmill (criterion measure) and accelerometer-derived data was examined. We also compared the ability of the different systems to detect the stride imbalance. Biases were small (CT and K) and moderate (FT). The typical error of the estimate was trivial (CT), small (K) and moderate (FT), with nearly perfect (CT and K) and large (FT) correlations for treadmill vs. accelerometer. The tape induced very large increase in the right - left foot ∆ in CT, FT and K measured by the treadmill. The tape effect on CT and K ∆ measured with the accelerometers were also very large, but of lower magnitude than with the treadmill. The tape effect on accelerometer-derived ∆ FT was unclear. Present data highlight the potential of a GPS-embedded accelerometer to assess CT and K during ground running. Key points GPS-embedded tri-axial accelerometers may be used to assess contact time and vertical stiffness during ground running. These preliminary results open new perspective for the field monitoring of neuromuscular fatigue and performance in run-based sports PMID:26664264
FPGA-based fused smart-sensor for tool-wear area quantitative estimation in CNC machine inserts.
Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto
2010-01-01
Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used.
ERIC Educational Resources Information Center
Montoye, Alexander H. K.; Conger, Scott A.; Connolly, Christopher P.; Imboden, Mary T.; Nelson, M. Benjamin; Bock, Josh M.; Kaminsky, Leonard A.
2017-01-01
This study compared accuracy of energy expenditure (EE) prediction models from accelerometer data collected in structured and simulated free-living settings. Twenty-four adults (mean age 45.8 years, 50% female) performed two sessions of 11 to 21 activities, wearing four ActiGraph GT9X Link activity monitors (right hip, ankle, both wrists) and a…
Strath, Scott J; Kate, Rohit J; Keenan, Kevin G; Welch, Whitney A; Swartz, Ann M
2016-01-01
To develop and test time series single site and multi-site placement models, we used wrist, hip and ankle processed accelerometer data to estimate energy cost and type of physical activity in adults. Ninety-nine subjects in three age groups (18–39, 40–64, 65 + years) performed 11 activities while wearing three triaxial accelereometers: one each on the non-dominant wrist, hip, and ankle. During each activity net oxygen cost (METs) was assessed. The time series of accelerometer signals were represented in terms of uniformly discretized values called bins. Support Vector Machine was used for activity classification with bins and every pair of bins used as features. Bagged decision tree regression was used for net metabolic cost prediction. To evaluate model performance we employed the jackknife leave-one-out cross validation method. Single accelerometer and multi-accelerometer site model estimates across and within age group revealed similar accuracy, with a bias range of −0.03 to 0.01 METs, bias percent of −0.8 to 0.3%, and a rMSE range of 0.81–1.04 METs. Multi-site accelerometer location models improved activity type classification over single site location models from a low of 69.3% to a maximum of 92.8% accuracy. For each accelerometer site location model, or combined site location model, percent accuracy classification decreased as a function of age group, or when young age groups models were generalized to older age groups. Specific age group models on average performed better than when all age groups were combined. A time series computation show promising results for predicting energy cost and activity type. Differences in prediction across age group, a lack of generalizability across age groups, and that age group specific models perform better than when all ages are combined needs to be considered as analytic calibration procedures to detect energy cost and type are further developed. PMID:26449155
Cyclostationarity approach for monitoring chatter and tool wear in high speed milling
NASA Astrophysics Data System (ADS)
Lamraoui, M.; Thomas, M.; El Badaoui, M.
2014-02-01
Detection of chatter and tool wear is crucial in the machining process and their monitoring is a key issue, for: (1) insuring better surface quality, (2) increasing productivity and (3) protecting both machines and safe workpiece. This paper presents an investigation of chatter and tool wear using the cyclostationary method to process the vibrations signals acquired from high speed milling. Experimental cutting tests were achieved on slot milling operation of aluminum alloy. The experimental set-up is designed for acquisition of accelerometer signals and encoding information picked up from an encoder. The encoder signal is used for re-sampling accelerometers signals in angular domain using a specific algorithm that was developed in LASPI laboratory. The use of cyclostationary on accelerometer signals has been applied for monitoring chatter and tool wear in high speed milling. The cyclostationarity appears on average properties (first order) of signals, on the energetic properties (second order) and it generates spectral lines at cyclic frequencies in spectral correlation. Angular power and kurtosis are used to analyze chatter phenomena. The formation of chatter is characterized by unstable, chaotic motion of the tool and strong anomalous fluctuations of cutting forces. Results show that stable machining generates only very few cyclostationary components of second order while chatter is strongly correlated to cyclostationary components of second order. By machining in the unstable region, chatter results in flat angular kurtosis and flat angular power, such as a pseudo (white) random signal with flat spectrum. Results reveal that spectral correlation and Wigner Ville spectrum or integrated Wigner Ville issued from second-order cyclostationary are an efficient parameter for the early diagnosis of faults in high speed machining, such as chatter, tool wear and bearings, compared to traditional stationary methods. Wigner Ville representation of the residual signal shows that the energy corresponding to the tooth passing decreases when chatter phenomenon occurs. The effect of the tool wear and the number of broken teeth on the excitation of structure resonances appears in Wigner Ville presentation.
Employment and physical activity in the U.S.
Van Domelen, Dane R; Koster, Annemarie; Caserotti, Paolo; Brychta, Robert J; Chen, Kong Y; McClain, James J; Troiano, Richard P; Berrigan, David; Harris, Tamara B
2011-08-01
Physical inactivity is a risk factor for obesity, cardiovascular disease, hypertension, and other chronic diseases that are increasingly prevalent in the U.S. and worldwide. Time at work represents a major portion of the day for employed people. To determine how employment status (full-time, part-time, or not employed) and job type (active or sedentary) are related to daily physical activity levels in American adults. Cross-sectional data from the National Health and Nutrition Examination Survey (NHANES) were collected in 2003-2004 and analyzed in 2010. Physical activity was measured using Actigraph uniaxial accelerometers, and participants aged 20-60 years with ≥4 days of monitoring were included (N=1826). Accelerometer variables included mean counts/minute during wear time and proportion of wear time spent in various intensity levels. In men, full-time workers were more active than healthy nonworkers (p=0.004), and in weekday-only analyses, even workers with sedentary jobs were more active (p=0.03) and spent less time sedentary (p<0.001) than nonworkers. In contrast with men, women with full-time sedentary jobs spent more time sedentary (p=0.008) and had less light and lifestyle intensity activity than healthy nonworkers on weekdays. Within full-time workers, those with active jobs had greater weekday activity than those with sedentary jobs (22% greater in men, 30% greater in women). In men, full-time employment, even in sedentary occupations, is positively associated with physical activity compared to not working, and in both genders job type has a major bearing on daily activity levels. Copyright © 2011. Published by Elsevier Inc.
Banda, Jorge A; Haydel, K Farish; Davila, Tania; Desai, Manisha; Bryson, Susan; Haskell, William L; Matheson, Donna; Robinson, Thomas N
2016-01-01
To examine the effects of accelerometer epoch lengths, wear time (WT) algorithms, and activity cut-points on estimates of WT, sedentary behavior (SB), and physical activity (PA). 268 7-11 year-olds with BMI ≥ 85th percentile for age and sex wore accelerometers on their right hips for 4-7 days. Data were processed and analyzed at epoch lengths of 1-, 5-, 10-, 15-, 30-, and 60-seconds. For each epoch length, WT minutes/day was determined using three common WT algorithms, and minutes/day and percent time spent in SB, light (LPA), moderate (MPA), and vigorous (VPA) PA were determined using five common activity cut-points. ANOVA tested differences in WT, SB, LPA, MPA, VPA, and MVPA when using the different epoch lengths, WT algorithms, and activity cut-points. WT minutes/day varied significantly by epoch length when using the NHANES WT algorithm (p < .0001), but did not vary significantly by epoch length when using the ≥ 20 minute consecutive zero or Choi WT algorithms. Minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA varied significantly by epoch length for all sets of activity cut-points tested with all three WT algorithms (all p < .0001). Across all epoch lengths, minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA also varied significantly across all sets of activity cut-points with all three WT algorithms (all p < .0001). The common practice of converting WT algorithms and activity cut-point definitions to match different epoch lengths may introduce significant errors. Estimates of SB and PA from studies that process and analyze data using different epoch lengths, WT algorithms, and/or activity cut-points are not comparable, potentially leading to very different results, interpretations, and conclusions, misleading research and public policy.
Feehan, Lynne M; Goldsmith, Charles H; Leung, April Y F; Li, Linda C
Purpose: To compare the ability of SenseWear Mini (SWm) and Actigraph GT3X (AG 3 ) accelerometers to differentiate between healthy adults' observed sedentary and light activities in a laboratory setting. Methods: The 22 participants (15 women, 7 men), ages 19 to 72 years, wore SWm and AG 3 monitors and performed five sedentary and four light activities for 5 minutes each while observed in a laboratory setting. Performance was examined through comparisons of accuracy, sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios. Correct identification of both types of activities was examined using area under the receiver operating characteristic curve (AUC). Results: Both monitors demonstrated excellent ability to identify sedentary activities (sensitivity>0.89). The SWm monitor was better at identifying light activities (specificity 0.61-0.71) than the AG 3 monitor (specificity 0.27-0.47) and thus also showed a greater ability to correctly identify both sedentary and light activities (SWm AUC 0.84; AG 3 AUC 0.62-0.73). Conclusions: SWm may be a more suitable monitor for detecting time spent in sedentary and light-intensity activities. This finding has clinical and research relevance for evaluation of time spent in lower intensity physical activities by sedentary adults.
FPGA-Based Fused Smart-Sensor for Tool-Wear Area Quantitative Estimation in CNC Machine Inserts
Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto
2010-01-01
Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used. PMID:22319304
Fault detection of gearbox using time-frequency method
NASA Astrophysics Data System (ADS)
Widodo, A.; Satrijo, Dj.; Prahasto, T.; Haryanto, I.
2017-04-01
This research deals with fault detection and diagnosis of gearbox by using vibration signature. In this work, fault detection and diagnosis are approached by employing time-frequency method, and then the results are compared with cepstrum analysis. Experimental work has been conducted for data acquisition of vibration signal thru self-designed gearbox test rig. This test-rig is able to demonstrate normal and faulty gearbox i.e., wears and tooth breakage. Three accelerometers were used for vibration signal acquisition from gearbox, and optical tachometer was used for shaft rotation speed measurement. The results show that frequency domain analysis using fast-fourier transform was less sensitive to wears and tooth breakage condition. However, the method of short-time fourier transform was able to monitor the faults in gearbox. Wavelet Transform (WT) method also showed good performance in gearbox fault detection using vibration signal after employing time synchronous averaging (TSA).
Verloigne, Maïte; Bere, Elling; Van Lippevelde, Wendy; Maes, Lea; Lien, Nanna; Vik, Froydis N; Brug, Johannes; Cardon, Greet; De Bourdeaudhuij, Ilse
2012-09-18
BAKCKGROUND: The first aim was to examine the effect of the UP4FUN pilot intervention on children's total sedentary time. The second aim was to investigate if the intervention had an effect on children's physical activity (PA) level. Finally, we aimed to investigate demographic differences (i.e. age, gender, ethnicity, living status and having siblings) between children in the intervention group who improved in sedentary time and PA at post-test and children in the intervention group who worsened in sedentary time and PA at post-test. The six weeks UP4FUN intervention was tested in a randomized controlled trial with pre-test post-test design with five intervention and five control schools in Belgium and included children of the 5th and 6th grade. The children wore accelerometers for seven days at pre- and post-test. Analyses included children with valid accelerometer data for at least two weekdays with minimum 10h-wearing time and one weekend day with 8h-wearing time. Final analyses included 372 children (60% girls, mean age = 10.9 ± 0.7 years). There were no significant differences in the change in sedentary time or light PA between intervention and control schools for the total sample or for the subgroup analyses by gender. However, children (specifically girls) in the intervention group had a higher decrease in moderate-to-vigorous PA than children in the control group. In the intervention group, children who lived with both parents and children with one or more siblings were less likely to reduce sedentary time after exposure to the intervention. Older children, girls and children who lived with both parents were less likely to increase light PA after the intervention. The UP4FUN intervention did not result in an effect on children's sedentary time. Based on the high amounts of accelerometer-derived sedentary time in this age group, more efforts are needed to develop strategies to reduce children's sedentary time.
2012-01-01
Bakckground The first aim was to examine the effect of the UP4FUN pilot intervention on children’s total sedentary time. The second aim was to investigate if the intervention had an effect on children’s physical activity (PA) level. Finally, we aimed to investigate demographic differences (i.e. age, gender, ethnicity, living status and having siblings) between children in the intervention group who improved in sedentary time and PA at post-test and children in the intervention group who worsened in sedentary time and PA at post-test. Methods The six weeks UP4FUN intervention was tested in a randomized controlled trial with pre-test post-test design with five intervention and five control schools in Belgium and included children of the 5th and 6th grade. The children wore accelerometers for seven days at pre- and post-test. Analyses included children with valid accelerometer data for at least two weekdays with minimum 10h-wearing time and one weekend day with 8h-wearing time. Result Final analyses included 372 children (60% girls, mean age = 10.9 ± 0.7 years). There were no significant differences in the change in sedentary time or light PA between intervention and control schools for the total sample or for the subgroup analyses by gender. However, children (specifically girls) in the intervention group had a higher decrease in moderate-to-vigorous PA than children in the control group. In the intervention group, children who lived with both parents and children with one or more siblings were less likely to reduce sedentary time after exposure to the intervention. Older children, girls and children who lived with both parents were less likely to increase light PA after the intervention. Conclusion The UP4FUN intervention did not result in an effect on children’s sedentary time. Based on the high amounts of accelerometer-derived sedentary time in this age group, more efforts are needed to develop strategies to reduce children’s sedentary time. PMID:22989231
Physical Activity Measurements: Lessons Learned from the Pathways Study
Going, Scott B.
2015-01-01
High obesity rates in American Indian children led to Pathways, a randomized school and community-based childhood prevention study. Seven tribes, five universities, the NIH/NHLBI, and four elementary schools partnered. Increasing physical activity (PA) was an important intervention target. PA assessment was based on study objectives, feasibility, and tribal acceptance. A time-segmented analysis was also desired. Two methods were developed during pilot testing, a new PA questionnaire and accelerometry. Together, the methods provided qualitative and quantitative information and showed 3 of 4 sites were able to increase average daily PA, although overall the control versus intervention difference was not significant. The main limitation was inability to distinguish PA among individuals. Accelerometer size and some community concerns led to a protocol based on a single day of wearing time. Newer model triaxial accelerometers which are much smaller and allow sampling of multiple days of activity are recommended for future studies. PMID:20689391
Cooke, Alexandra B; Daskalopoulou, Stella S; Dasgupta, Kaberi
2018-04-01
Accelerometer placement at the wrist is convenient and increasingly adopted despite less accurate physical activity (PA) measurement than with waist placement. Capitalizing on a study that started with wrist placement and shifted to waist placement, we compared associations between PA measures derived from different accelerometer locations with a responsive arterial health indicator, carotid-femoral pulse wave velocity (cfPWV). Cross-sectional study. We previously demonstrated an inverse association between waist-worn pedometer-assessed step counts (Yamax SW-200, 7 days) and cfPWV (-0.20m/s, 95% CI -0.28, -0.12 per 1000 step/day increment) in 366 adults. Participants concurrently wore accelerometers (ActiGraph GT3X+), most at the waist but the first 46 at the wrist. We matched this subgroup with participants from the 'waist accelerometer' group (sex, age, and pedometer-assessed steps/day) and assessed associations with cfPWV (applanation tonometry, Sphygmocor) separately in each subgroup through linear regression models. Compared to the waist group, wrist group participants had higher step counts (mean difference 3980 steps/day; 95% CI 2517, 5443), energy expenditure (967kcal/day, 95% CI 755, 1179), and moderate-to-vigorous-PA (138min; 95% CI 114, 162). Accelerometer-assessed step counts (waist) suggested an association with cfPWV (-0.28m/s, 95% CI -0.58, 0.01); but no relationship was apparent with wrist-assessed steps (0.02m/s, 95% CI -0.24, 0.27). Waist but not wrist ActiGraph PA measures signal associations between PA and cfPWV. We urge researchers to consider the importance of wear location choice on relationships with health indicators. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Longitudinal levels and bouts of sedentary time among adolescent girls.
Carson, Valerie; Cliff, Dylan P; Janssen, Xanne; Okely, Anthony D
2013-10-21
Adolescent girls are one of the most sedentary demographic groups. A better understanding of their accumulation of sedentary time is needed to inform future interventions. The purpose of this study was to examine the longitudinal levels and bouts of objectively measured sedentary time accumulated during different days of the week and periods of the weekday among a large sample of adolescent girls. The results are based on 655 adolescent girls from the Girls in Sport Intervention and Research Project. Levels and bouts of sedentary time were derived from accelerometer data collected at baseline and 18-month follow-up. Total, weekday, weekend, school (i.e., morning bell to afternoon bell), after school (i.e., afternoon bell to 19:00), and evening (i.e. 19:01 to 23:59) sedentary time levels and bouts were calculated. Repeated-measures ANCOVAs were conducted to examine differences in sedentary time levels and bouts between days and time periods after adjusting for wear time, accelerometer model, and intervention group. Cross-sectional analyses revealed that levels and bouts of sedentary time were higher on weekdays compared to weekend days at baseline. Similar trends were observed at follow-up. In addition, percentage of wear time spent sedentary and bouts/hr of sedentary time were highest in the evening compared to the school and after school periods at both baseline and follow-up. Longitudinal analyses revealed that levels and bouts of sedentary time were higher at follow-up compared to baseline across the different days of the week and periods of the weekday examined, with the biggest increase (15%) occurring in the school period. Future interventions targeting sedentary time among adolescent girls should consider developing strategies to reduce and break up prolonged sedentary time during the school day and in the evening.
Verloigne, Maïté; Van Lippevelde, Wendy; Maes, Lea; Yıldırım, Mine; Chinapaw, Mai; Manios, Yannis; Androutsos, Odysseas; Kovács, Eva; Bringolf-Isler, Bettina; Brug, Johannes; De Bourdeaudhuij, Ilse
2012-03-31
The study aim was to objectively assess levels of sedentary time, light, moderate and vigorous physical activity (PA) among 10-12 year olds across five European countries and to examine differences in sedentary time and PA according to gender and country. 686 children (mean age = 11.6 ± 0.8 years, 53% girls, mean BMI = 19.0 ± 3.4 kg/m(2)) from Belgium, Greece, Hungary, the Netherlands and Switzerland wore Actigraph accelerometers and had at least 2 weekdays with minimum 10 h-wearing time and 1 weekend day with minimum 8 h-wearing time. Data were analyzed using multivariate analyses of covariance. Girls spent significantly more time sedentary (500 minutes/day) than boys (474 minutes/day) and significantly less time in light (267 minutes/day) and moderate-to-vigorous PA (32 minutes/day) than boys (284 minutes/day; 43 minutes/day respectively; p < 0.001). 4.6% of the girls and 16.8% of the boys met moderate-to-vigorous PA recommendations of at least 60 minutes/day. Greek boys were more sedentary (510 minutes/day; all at p < 0.05) than other boys. Dutch girls were less sedentary (457 minutes/day; all at p < 0.05) than other girls. Swiss girls displayed more moderate-to-vigorous PA (43 minutes/day; at p < 0.05) than other girls. Large proportions of children across different European countries did not meet PA recommendations and spent a lot of time sedentary. Mean time spent in moderate-to-vigorous PA was significantly lower than the recommended 60 minutes. Obesity prevention programmes focusing on both decreasing sedentary time and increasing light, moderate and vigorous PA are needed for European children, particularly girls.
Hubbard, Kristie; Economos, Christina D; Bakun, Peter; Boulos, Rebecca; Chui, Kenneth; Mueller, Megan P; Smith, Katie; Sacheck, Jennifer
2016-03-22
Increasing physical activity (PA) during the school day and out-of-school time are critical strategies for preventing childhood obesity and improving overall health. The purpose of the present investigation was to examine schoolchildren's volume and type of PA during school-time and out-of-school, compared to national recommendations and differences by sex and weight status. This cross-sectional analysis included 517 3(rd)-5(th) grade schoolchildren from 13 New England elementary schools (October 2013-January 2014). Demographics were collected by parent questionnaire. Measured height and weight were used to categorize child weight status. Accelerometer data were collected over 7 days. PA was coded as total activity counts and minutes of sedentary, light, and moderate-to-vigorous physical activity (SED, LPA, MVPA) during 1) school, 2) weekday out-of-school, 3) weekend, and 4) total daily time. Multivariable mixed models were used to examine associations between sex and weight status and total counts, SED, LPA, and MVPA, controlling for demographics, wear-time, and clustering within schools. 453 participants (60.5% girls; mean age 9.1 years; 30.5% overweight/obese) had valid accelerometer wear time (≥3 days, ≥ 10 h/day). Few children achieved 60 min total daily (15.0%) or school-time (8.0 %) MVPA recommendations. For all time-of-day categories, girls achieved fewer MVPA minutes than boys (p < .0001), and overweight/obese participants achieved fewer MVPA minutes than normal/underweight participants (p = 0.05). Minutes of LPA declined by grade-level (p < .05) and were lower in girls than boys during school-time only (p < .05). Disparities in MVPA by sex and weight status across school and out-of-school time highlight the need for programs with equitable reach.
Tool Condition Monitoring in Micro-End Milling using wavelets
NASA Astrophysics Data System (ADS)
Dubey, N. K.; Roushan, A.; Rao, U. S.; Sandeep, K.; Patra, K.
2018-04-01
In this work, Tool Condition Monitoring (TCM) strategy is developed for micro-end milling of titanium alloy and mild steel work-pieces. Full immersion slot milling experiments are conducted using a solid tungsten carbide end mill for more than 1900 s to have reasonable amount of tool wear. During the micro-end milling process, cutting force and vibration signals are acquired using Kistler piezo-electric 3-component force dynamometer (9256C2) and accelerometer (NI cDAQ-9188) respectively. The force components and the vibration signals are processed using Discrete Wavelet Transformation (DWT) in both time and frequency window. 5-level wavelet packet decomposition using Db-8 wavelet is carried out and the detailed coefficients D1 to D5 for each of the signals are obtained. The results of the wavelet transformation are correlated with the tool wear. In case of vibration signals, de-noising is done for higher frequency components (D1) and force signals were de-noised for lower frequency components (D5). Increasing value of MAD (Mean Absolute Deviation) of the detail coefficients for successive channels depicted tool wear. The predictions of the tool wear are confirmed from the actual wear observed in the SEM of the worn tool.
Tonge, Karen L; Jones, Rachel A; Hagenbuchner, Markus; Nguyen, Tuc V; Okely, Anthony D
2017-02-07
The benefits of regular physical activity for children are significant. Previous research has addressed the quantity and quality of children's physical activity while in early childhood education and care (ECEC) settings, yet little research has investigated the social and physical environmental influences on physical activity in these settings. The outcomes of this study will be to measure these social and physical environmental influences on children's physical activity using a combination of a real-time location system (RTLS) (a closed system that tracks the location of movement of participants via readers and tags), accelerometry and direct observation. This study is the first of its kind to combine RTLSs and accelerometer data in ECEC settings. It is a cross-sectional study involving ∼100 educators and 500 children from 11 ECEC settings in the Illawarra region of New South Wales, Australia. A RTLS and Actigraph GT3X+ accelerometers will be concurrently used to measure the level and location of the children's and educators' physical activity while in outside environments. Children and educators will wear accelerometers on their hip that record triaxial acceleration data at 100 Hz. Children and educators will also wear a tag watch on their wrist that transmits a signal to anchors of the RTLS and the triangulation of signals will identify their specific location. In addition to these, up to three random periods (10-25 min in length) will be used to collect observational data each day and assessed with the classroom assessment and scoring system to measure the quality of interactions. In conjunction with the real-time location system (RTLS) and accelerometers, these observations will measure the relationship between the quality of interactions and children's physical activity. The results of this study will be disseminated through peer-reviewed publications and presentations. Ethical approval was obtained through the University of Wollongong Human Research Ethics Committee (HE14/330). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Smith, H A; Storti, K L; Arena, V C; Kriska, A M; Gabriel, K K Pettee; Sutton-Tyrrell, K; Hames, K C; Conroy, M B
2013-06-01
Empirical evidence supports an inverse relationship between physical activity (PA) and adiposity, but studies using detailed measures of both are scarce. The relationship between regional adiposity and accelerometer-derived PA in men and women are described. Cross-sectional analysis included 253 participants from a weight loss study limited to ages 20-45 years and BMI 25-39.9 kg m(-2) . PA data were collected with accelerometers and expressed as total accelerometer counts and average amount of time per day accumulated in different intensity levels [sedentary, light-, and moderate-to-vigorous intensity PA (MVPA)]. Accumulation of time spent above 100 counts was expressed as total active time. Computed tomography (CT) was used to measure abdominal and adipose tissue (AT). Multivariate linear regression analyses were used to assess the relationship between regional adiposity (dependent variable) and the various PA levels (independent variable), and were executed separately for men and women, adjusting for wear time, age, race, education, and BMI. Among males, light activity was inversely associated with total AT (β = -0.19; P = 0.02) as well as visceral AT (VAT) (β = -0.30; P = 0.03). Among females sedentary time was positively associated with VAT (β = 0.11; P = 0.04) and total active time was inversely associated with VAT (β = -0.12; P = 0.04). Findings from this study suggest that PA intensity level may influence regional adiposity differently in men and women. Additional research is needed in larger samples to clarify the difference in these associations by sex, create recommendations for the frequency, duration and intensity of PA needed to target fat deposits, and determine if these recommendations should differ by sex. Copyright © 2013 The Obesity Society.
Rodríguez-Lelis, Jose Maria; Mata, Dagoberto Tolosa; Vargas-Treviño, Marciano; Navarro-Torres, Jose; Piña-Piña, Gilberto; Abundez-Pliego, Arturo
2010-08-01
In the present work, based on high frequency wavelet analysis of dynamic signals of mechanical systems, a multiple-resolution wavelet analysis is carried out, to the signal obtained from an accelerometer mounted on the structure of a hip prosthesis wearing test device. The prostheses employed had a femoral head made of aluminum oxide and the acetabular cup of ultra-high-molecular-weight polyethylene. The first two aluminum oxide femoral heads were coated with diamond-like carbon and a third one was tested without coating and used as a reference. The coating was carried out by triboadhesion. Tests results showed that maximum vibration amplitude reached after 32 hr for the coated prostheses was 0.2 g. The noncoated prosthesis amplitude presented was 0.75 g in the same time interval. These values were attributed to wear damage on the surface of the prostheses, indicating that thin film DLC coating caused an increase of stiffness on the surface and therefore an increase in wear resistance approximately of 314%.
Zhang, Cunji; Yao, Xifan; Zhang, Jianming; Jin, Hong
2016-05-31
Tool breakage causes losses of surface polishing and dimensional accuracy for machined part, or possible damage to a workpiece or machine. Tool Condition Monitoring (TCM) is considerably vital in the manufacturing industry. In this paper, an indirect TCM approach is introduced with a wireless triaxial accelerometer. The vibrations in the three vertical directions (x, y and z) are acquired during milling operations, and the raw signals are de-noised by wavelet analysis. These features of de-noised signals are extracted in the time, frequency and time-frequency domains. The key features are selected based on Pearson's Correlation Coefficient (PCC). The Neuro-Fuzzy Network (NFN) is adopted to predict the tool wear and Remaining Useful Life (RUL). In comparison with Back Propagation Neural Network (BPNN) and Radial Basis Function Network (RBFN), the results show that the NFN has the best performance in the prediction of tool wear and RUL.
Ehlers, Diane K; Huberty, Jennifer; Buman, Matthew; Hooker, Steven; Todd, Michael; de Vreede, Gert-Jan
2016-03-01
Commercially available mobile and Internet technologies present a promising opportunity to feasibly conduct ecological momentary assessment (EMA). The purpose of this study was to describe a novel EMA protocol administered on middle-aged women's smartphones via text messaging and mobile Internet. Women (N = 9; mean age = 46.2 ± 8.2 y) received 35 text message prompts to a mobile survey assessing activity, self-worth, and self-efficacy over 14 days. Prompts were scheduled and surveys were administered using commercial, Internet-based programs. Prompting was tailored to each woman's daily wake/sleep schedule. Women concurrently wore a wrist-worn accelerometer. Feasibility was assessed via survey completion, accelerometer wear, participant feedback, and researcher notes. Of 315 prompted surveys, 287 responses were valid (91.1%). Average completion time was 1.52 ± 1.03 minutes. One participant's activity data were excluded due to accelerometer malfunction, resulting in complete data from 8 participants (n = 252 [80.0%] valid observations). Women reported the survey was easily and quickly read/completed. However, most thought the accelerometer was inconvenient. High completion rates and perceived usability suggest capitalizing on widely available technology and tailoring prompting schedules may optimize EMA in middle-aged women. However, researchers may need to carefully select objective monitors to maintain data validity while limiting participant burden.
Garriguet, Didier; Colley, Rachel C
2014-07-01
Systematic reviews and results of Statistics Canada surveys have shown a discrepancy between self-reported and measured physical activity. This study compares these two methods and examines specific activities to explain the limitations of each method. Data are from cycle 1 (2007 to 2009) and cycle 2 (2009 to 2011) of the Canadian Health Measures Survey. The survey involved an interview in the respondent's home and a visit to a mobile examination centre (MEC) for physical measurements. In a questionnaire, respondents were asked about 21 leisure-time physical activities. They were requested to wear an Actical accelerometer for seven days after the MEC visit. The analysis pertains to respondents aged 12 to 79 who wore the accelerometer for 10 or more hours on at least four days (n = 7,158). Averages of self-reported leisure-time physical activity and moderate-to-vigorous physical activity measured by accelerometer were within a couple of minutes of each other. However, at the individual level, the difference between estimates could exceed 37.5 minutes per day in one direction or the other, and around 40% of the population met physical activity thresholds according to one measurement method, but not according to the other. The disagreement is supported by weak observed correlations. The lack of a systematic trend in the relationship between the two methods of measuring physical activity precludes the creation of correction factors or being confident in using one method instead of the other. Accelerometers and questionnaires measure different aspects of physical activity.
Meredith-Jones, Kim; Williams, Sheila; Galland, Barbara; Kennedy, Gavin; Taylor, Rachael
2016-01-01
Although accelerometers can assess sleep and activity over 24 h, sleep data must be removed before physical activity and sedentary time can be examined appropriately. We compared the effect of 6 different sleep-scoring rules on physical activity and sedentary time. Activity and sleep were obtained by accelerometry (ActiGraph GT3X) over 7 days in 291 children (51.3% overweight or obese) aged 4-8.9 years. Three methods removed sleep using individualised time filters and two methods applied standard time filters to remove sleep each day (9 pm-6 am, 12 am-6 am). The final method did not remove sleep but simply defined non-wear as at least 60 min of consecutive zeros over the 24-h period. Different methods of removing sleep from 24-h data markedly affect estimates of sedentary time, yielding values ranging from 556 to 1145 min/day. Estimates of non-wear time (33-193 min), wear time (736-1337 min) and counts per minute (384-658) also showed considerable variation. By contrast, estimates of moderate-to-vigorous activity (MVPA) were similar, varying by less than 1 min/day. Different scoring methods to remove sleep from 24-h accelerometry data do not affect measures of MVPA, whereas estimates of counts per minute and sedentary time depend considerably on which technique is used.
Physical Activity Assessment with the ActiGraph GT3X and Doubly Labeled Water.
Chomistek, Andrea K; Yuan, Changzheng; Matthews, Charles E; Troiano, Richard P; Bowles, Heather R; Rood, Jennifer; Barnett, Junaidah B; Willett, Walter C; Rimm, Eric B; Bassett, David R
2017-09-01
To compare the degree to which four accelerometer metrics-total activity counts per day (TAC per day), steps per day (steps per day), physical activity energy expenditure (PAEE) (kcal·kg·d), and moderate- to vigorous-intensity physical activity (MVPA) (min·d)-were correlated with PAEE measured by doubly labeled water (DLW). Additionally, accelerometer metrics based on vertical axis counts and triaxial counts were compared. This analysis included 684 women and 611 men age 43 to 83 yr. Participants wore the Actigraph GT3X on the hip for 7 d twice during the study and the average of the two measurements was used. Each participant also completed one DLW measurement, with a subset having a repeat. PAEE was estimated by subtracting resting metabolic rate and the thermic effect of food from total daily energy expenditure estimated by DLW. Partial Spearman correlations were used to estimate associations between PAEE and each accelerometer metric. Correlations between the accelerometer metrics and DLW-determined PAEE were higher for triaxial counts than vertical axis counts. After adjusting for weight, age, accelerometer wear time, and fat free mass, the correlation between TAC per day based on triaxial counts and DLW-determined PAEE was 0.44 in women and 0.41 in men. Correlations for steps per day and accelerometer-estimated PAEE with DLW-determined PAEE were similar. After adjustment for within-person variation in DLW-determined PAEE, the correlations for TAC per day increased to 0.61 and 0.49, respectively. Correlations between MVPA and DLW-determined PAEE were lower, particularly for modified bouts of ≥10 min. Accelerometer measures that represent total activity volume, including TAC per day, steps per day, and PAEE, were more highly correlated with DLW-determined PAEE than MVPA using traditional thresholds and should be considered by researchers seeking to reduce accelerometer data to a single metric.
Zhang, Yuting; Beenakker, Karel G M; Butala, Pankil M; Lin, Cheng-Chieh; Little, Thomas D C; Maier, Andrea B; Stijntjes, Marjon; Vartanian, Richard; Wagenaar, Robert C
2012-01-01
Changes in gait parameters have been shown to be an important indicator of several age-related cognitive and physical declines of older adults. In this paper we propose a method to monitor and analyze walking and cycling activities based on a triaxial accelerometer worn on one ankle. We use an algorithm that can (1) distinguish between static and dynamic functional activities, (2) detect walking and cycling events, (3) identify gait parameters, including step frequency, number of steps, number of walking periods, and total walking duration per day, and (4) evaluate cycling parameters, including cycling frequency, number of cycling periods, and total cycling duration. Our algorithm is evaluated against the triaxial accelerometer data obtained from a group of 297 middle-aged to older adults wearing an activity monitor on the right ankle for approximately one week while performing unconstrained daily activities in the home and community setting. The correlation coefficients between each of detected gait and cycling parameters on two weekdays are all statistically significant, ranging from 0.668 to 0.873. These results demonstrate good test-retest reliability of our method in monitoring walking and cycling activities and analyzing gait and cycling parameters. This algorithm is efficient and causal in time and thus implementable for real-time monitoring and feedback.
NASA Astrophysics Data System (ADS)
Soua, S.; Bridge, B.; Cebulski, L.; Gan, T.-H.
2012-03-01
The use of a shock accelerometer for the continuous in-service monitoring of wear of the slip ring on a wind turbine generator is proposed and supporting results are presented. Five wear defects in the form of out-of-round circumference acceleration data with average radial dimensions in the range 5.9-25 µm were studied. A theoretical model of the acceleration at a point on the circumference of a ring as a function of the defect profile is presented. Acceleration data as a continuous function of time have been obtained for ring rotation frequencies that span the range of frequencies arising with the variation of wind speeds experienced under all in-service conditions. As a result, the measured RMS acceleration is proven to follow an overall increasing trend with frequency for all defects at all brush pressures. A statistical analysis of the root mean square of the time acceleration data as a function of the defect profiles, rotation speeds and brush contact pressure has been performed. The detection performance is considered in terms of the achievement of a signal to noise ratio exceeding 3 (99.997% defect detection probability). Under all conditions of rotation speed and pressure, this performance was achieved for average defect sizes as small as 10 µm, which is only 0.004% of the ring diameter. These results form the basis of a very sensitive defect alarm system.
Calibration and comparison of accelerometer cut points in preschool children.
van Cauwenberghe, Eveline; Labarque, Valery; Trost, Stewart G; de Bourdeaudhuij, Ilse; Cardon, Greet
2011-06-01
The present study aimed to develop accelerometer cut points to classify physical activities (PA) by intensity in preschoolers and to investigate discrepancies in PA levels when applying various accelerometer cut points. To calibrate the accelerometer, 18 preschoolers (5.8 ± 0.4 years) performed eleven structured activities and one free play session while wearing a GT1M ActiGraph accelerometer using 15 s epochs. The structured activities were chosen based on the direct observation system Children's Activity Rating Scale (CARS) while the criterion measure of PA intensity during free play was provided using a second-by-second observation protocol (modified CARS). Receiver Operating Characteristic (ROC) curve analyses were used to determine the accelerometer cut points. To examine the classification differences, accelerometer data of four consecutive days from 114 preschoolers (5.5 ± 0.3 years) were classified by intensity according to previously published and the newly developed accelerometer cut points. Differences in predicted PA levels were evaluated using repeated measures ANOVA and Chi Square test. Cut points were identified at 373 counts/15 s for light (sensitivity: 86%; specificity: 91%; Area under ROC curve: 0.95), 585 counts/15 s for moderate (87%; 82%; 0.91) and 881 counts/15 s for vigorous PA (88%; 91%; 0.94). Further, applying various accelerometer cut points to the same data resulted in statistically and biologically significant differences in PA. Accelerometer cut points were developed with good discriminatory power for differentiating between PA levels in preschoolers and the choice of accelerometer cut points can result in large discrepancies.
Validity of the global physical activity questionnaire (GPAQ) in Bangladesh.
Mumu, Shirin Jahan; Ali, Liaquat; Barnett, Anthony; Merom, Dafna
2017-08-10
Feasible and cost-effective as well as population specific instruments for monitoring physical activity (PA) levels are needed for the management and prevention of non-communicable diseases. The WHO-endorsed Global Physical Activity Questionnaire (GPAQ) has been widely used in developing countries, but the evidence base for its validity, particularly for rural populations, is still limited. The aim of the study was to validate GPAQ among rural and urban residents in Bangladesh. A total of 162 healthy participants of both genders aged 18-60 years were recruited from Satia village (n = 97) and Dhaka City (n = 65). Participants were invited to take part in the study and were asked to wear an accelerometer (GT3X) for 7 days, after which they were invited to answer the GPAQ in a face to face interview. Valid accelerometer data (i.e., ≥10 h of wear times over ≥3 days) were received from 155 participants (rural = 94, urban = 61). The mean age was 35 (SD = ±9) years, 55% were females and 19% of the participants had no schooling, which was higher in the rural area (21% vs 17%). The mean ± SD steps/day was 9998 ± 3936 (8658 ± 2788 and 12,063 ± 4534 for rural and urban respectively, p = 0.0001) and the mean ± SD daily moderate-to-vigorous physical activity (MVPA) was 58 ± 30 min (51 ± 26 for rural and 69 ± 34 for the urban, p = 0.001) for accelerometer. In case of GPAQ, rural residents reported significantly higher moderate work related PA (MET-minutes/week: 600 vs. 360 p = 0.02). Spearman correlation coefficients between GPAQ total MVPA MET-min/day and accelerometer MVPA min/day, counts per minute (CPM) or steps counts/day were acceptable for urban residents (rho: 0.46, 0.55 and 0.63, respectively; p < 0.01) but poor for rural residents. The overall correlation between the GPAQ and accelerometer for sitting was low (rho: 0.23; p < 0.001). GPAQ-Accelerometer correlation for MVPA was higher for females (rho: 0.42), ≤35 age group (rho: 0.31) and those with higher education attainment (rho: 0.48). The Bland-Altman plots illustrated bias towards over estimation of GPAQ MVPA with increased activity levels for urban and rural residents. GPAQ is an acceptable measure for physical activity surveillance in Bangladesh particularly for urban residents, women and people with high education. Given waist worn accelerometers do not capture the typical PA in rural context, further study using a physical activity diary and a combination of multiple sensors (e.g., wrist, ankle and waist worn accelerometers) to capture all movement is warranted among rural population with purposive sampling of all education levels.
No Evidence of Reciprocal Associations between Daily Sleep and Physical Activity.
Mitchell, Jonathan A; Godbole, Suneeta; Moran, Kevin; Murray, Kate; James, Peter; Laden, Francine; Hipp, J Aaron; Kerr, Jacqueline; Glanz, Karen
2016-10-01
This study aimed to determine whether physical activity patterns are associated with sleep later at night and if nighttime sleep is associated with physical activity patterns the next day among adult women. Women (N = 353) living throughout the United States wore a wrist and a hip accelerometer for 7 d. Total sleep time (TST, hours per night) and sleep efficiency (SE, %) were estimated from the wrist accelerometer, and moderate to vigorous physical activity (MVPA, >1040 counts per minute, h·d) and sedentary behavior (SB, <100 counts per minute, h·d) were estimated from the hip accelerometer. Mixed-effects models adjusted for age, race, body mass index, education, employment, marital status, health status, and hip accelerometer wear time were used to analyze the data. Follow-up analyses using quantile regression were used to investigate associations among women with below average TST and MVPA and above average SB. The average age of our sample was 55.5 yr (SD = 10.2 yr). The majority of participants were White (79%) and married (72%), and half were employed full time (49%). The participants spent on average 8.9 and 1.1 h·d in SB and MVPA, respectively, and 6.8 h per night asleep. No associations were observed between MVPA and SB with nighttime TST or SE. There were no associations between nighttime TST and SE with MVPA or SB the next day. The findings were the same in the quantile regression analyses. In free-living adult women, accelerometry-estimated nighttime sleep and physical activity patterns were not associated with one another. On the basis of our observational study involving a sample of adult women, higher physical activity will not necessarily improve sleep at night on a day-to-day basis (and vice versa).
Mayorga-Vega, Daniel; Martínez-Baena, Alejandro; Viciana, Jesús
2018-09-01
Physical education has been highlighted as an important environment for physical activity promotion, however, to our knowledge there are no previous studies examining the contribution of physical education to daily accelerometer-measured physical activity and non sedentary behaviour. The purpose was to compare the accelerometer-measured physical activity and sedentary behaviour between physical education, non-physical education and weekend days in adolescents. Of the 394 students from a Spanish high school that were invited to participate, 158 students (83 boys and 75 girls) aged 13-16 years were analyzed (wear time ≥ 600 min). Participants' physical activity and sedentary behaviour were objectively-measured by GT3X+ accelerometers during physical education (one session), non-physical education and weekend days. Results indicated that overall adolescents had statistically significant greater physical activity levels and lower values of sedentary behaviour on physical education days than on non-physical education and weekend days (e.g., moderate-to-vigorous physical activity = 71, 54 and 57 min; sedentary = 710, 740 and 723 min) (p < 0.05). Physical education contributes significantly to reducing students' daily physical inactivity and sedentary behaviour. Increasing the number of physical education classes seems to be an effective strategy to reduce the high current prevalence of physical inactivity and sedentary behaviour in adolescence.
Arnardottir, Nanna Yr; Koster, Annemarie; Van Domelen, Dane R; Brychta, Robert J; Caserotti, Paolo; Eiriksdottir, Gudny; Sverrisdottir, Johanna Eyrun; Launer, Lenore J; Gudnason, Vilmundur; Johannsson, Erlingur; Harris, Tamara B; Chen, Kong Y; Sveinsson, Thorarinn
2013-03-01
objectively measured population physical activity (PA) data from older persons is lacking. The aim of this study was to describe free-living PA patterns and sedentary behaviours in Icelandic older men and women using accelerometer. from April 2009 to June 2010, 579 AGESII-study participants aged 73-98 years wore an accelerometer (Actigraph GT3X) at the right hip for one complete week in the free-living settings. in all subjects, sedentary time was the largest component of the total wear time, 75%, followed by low-light PA, 21%. Moderate-vigorous PA (MVPA) was <1%. Men had slightly higher average total PA (counts × day(-1)) than women. The women spent more time in low-light PA but less time in sedentary PA and MVPA compared with men (P < 0.001). In persons <75 years of age, 60% of men and 34% of women had at least one bout ≥10 min of MVPA, which decreased with age, with only 25% of men and 9% of women 85 years and older reaching this. sedentary time is high in this Icelandic cohort, which has high life-expectancy and is living north of 60° northern latitude.
Jeffery, Emily; Lee, Yc Gary; McVeigh, Joanne; Straker, Leon; Wooding, Troy; Newton, Robert U; Peddle-McIntyre, Carolyn
2017-10-01
Malignant pleural effusion (MPE) affects 1 million people worldwide annually and can significantly impair physical activity. Accelerometry is a validated method of objectively assessing physical activity. The purpose of this study was to determine the compliance in patients with MPE to accelerometry and describe their activity. Patients with MPE wore an Actigraph GT3X accelerometer over a 7-day continuous wear protocol. Compliance was measured as the percent of patients who had ≥4 valid days (i.e., 8-h/day of waking wear-time). Eastern Cooperative Oncology Group performance status was documented the day of actigraphy initialization. Forty-six patients with MPE received accelerometers; 44 (95.7%) returned their device. No complications were reported on their use. Forty subjects (90.9%) had ≥4 valid days of wear-time. Patients spent most of their waking hours sedentary [mean 11.0 h (SD 1.95)], with limited participation in moderate and vigorous physical activity [mean 9.5 min (SD 14.16)]. Compared to patients with better performance status (n = 32), patients with poorer performance status (n = 11) spent significantly more hours/day sedentary [mean difference 2.1 (CI 0.86-3.32); p = 0.001], as did those who survived <3 months (n = 5) compared to >12 months (n = 27) [mean difference 2.6 (CI 0.49-4.77); p = 0.013). Accelerometry was applied successfully in patients with MPE with high compliance and no adverse events. This is the first reported objectively measured physical activity in patients with MPE and revealed high sedentary behavior and low physical activity. The data reflected patient performance status and discriminated between survival groups. Accelerometry can provide a useful measure for future interventional studies in patients with MPE.
Qi, Qibin; Strizich, Garrett; Merchant, Gina; Sotres-Alvarez, Daniela; Buelna, Christina; Castañeda, Sheila F; Gallo, Linda C; Cai, Jianwen; Gellman, Marc D; Isasi, Carmen R; Moncrieft, Ashley E; Sanchez-Johnsen, Lisa; Schneiderman, Neil; Kaplan, Robert C
2015-10-20
Sedentary behavior is recognized as a distinct construct from lack of moderate-vigorous physical activity and is associated with deleterious health outcomes. Previous studies have primarily relied on self-reported data, whereas data on the relationship between objectively measured sedentary time and cardiometabolic biomarkers are sparse, especially among US Hispanics/Latinos. We examined associations of objectively measured sedentary time (via Actical accelerometers for 7 days) and multiple cardiometabolic biomarkers among 12 083 participants, aged 18 to 74 years, from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Hispanics/Latinos of diverse backgrounds (Central American, Cuban, Dominican, Mexican, Puerto Rican, and South American) were recruited from 4 US cities between 2008 and 2011. Sedentary time (<100 counts/min) was standardized to 16 hours/d of wear time. The mean sedentary time was 11.9 hours/d (74% of accelerometer wear time). After adjustment for moderate-vigorous physical activity and confounding variables, prolonged sedentary time was associated with decreased high-density lipoprotein cholesterol (P=0.04), and increased triglycerides, 2-hour glucose, fasting insulin, and homeostatic model assessment of insulin resistance (all P<0.0001). These associations were generally consistent across age, sex, Hispanic/Latino backgrounds, and physical activity levels. Even among individuals meeting physical activity guidelines, sedentary time was detrimentally associated with several cardiometabolic biomarkers (diastolic blood pressure, high-density lipoprotein cholesterol, fasting and 2-hour glucose, fasting insulin and homeostatic model assessment of insulin resistance; all P<0.05). Our large population-based, objectively derived data showed deleterious associations between sedentary time and cardiometabolic biomarkers, independent of physical activity, in US Hispanics/Latinos. Our findings emphasize the importance of reducing sedentary behavior for the prevention of cardiometabolic diseases, even in those who meet physical activity recommendations. © 2015 American Heart Association, Inc.
Kruisdijk, Frank; Deenik, Jeroen; Tenback, Diederik; Tak, Erwin; Beekman, Aart-Jan; van Harten, Peter; Hopman-Rock, Marijke; Hendriksen, Ingrid
2017-08-01
Sedentary behaviour and lack of physical activity threatens health. Research concerning these behaviours of inpatients with severe mental illness is limited but urgently needed to reveal prevalence and magnitude. In total, 184 inpatients (men n =108, women n =76, mean age 57,4, 20% first generation antipsychotics, 40% second generation antipsychotics, 43% antidepressants, mean years hospitalisation 13 years), with severe mental illness of a Dutch psychiatric hospital wore an accelerometer for five days to objectively measure total activity counts per hour and percentages in sedentary behaviour, light intensity physical activity and moderate to vigorous physical activity. Accelerometer data were compared with data of 54 healthy ward employees. Patients showed significantly less activity counts per hour compared to employees (p=0.02), although the differences were small (d=0.32). Patients were sedentary during 84% of the wear time (50min/h), spend 10% in light intensity physical activity and 6% in moderate to vigorous physical activity. Age was the only significant predictor, predicting less total activity counts/h in higher ages. Decreasing sedentary behaviour and improving physical activity in this population should be a high priority in clinical practice. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Nicotine Dependence, Physical Activity, and Sedentary Behavior among Adult Smokers.
Loprinzi, Paul D; Walker, Jerome F
2015-03-01
Research has previously demonstrated an inverse association between smoking status and physical activity; however, few studies have examined the association between nicotine dependence and physical activity or sedentary behavior. This study examined the association between nicotine dependence and accelerometer-determined physical activity and sedentary behavior. Data from the 2003-2006 National Health and Nutrition Examination Survey (NHANES) were used. A total of 851 adult (≥20 years) smokers wore an accelerometer for ≥4 days and completed the Fagerstrom Test for Nicotine Dependence scale. Regression models were used to examine the association between nicotine dependence and physical activity/sedentary behavior. After adjusting for age, gender, race-ethnicity, poverty level, hypertension, emphysema, bronchitis, body mass index (BMI), cotinine, and accelerometer wear time, smokers 50 + years of age with greater nicotine dependence engaged in more sedentary behavior (β = 11.4, P = 0.02) and less light-intensity physical activity (β = -9.6, P = 0.03) and moderate-to-vigorous physical activity (MVPA; β = -0.14, P = 0.003) than their less nicotine dependent counterparts. Older adults who are more nicotine dependent engage in less physical activity (both MVPA and light-intensity) and more sedentary behavior than their less nicotine dependent counterparts.
Bashford, Gregory R; Burnfield, Judith M; Perez, Lance C
2013-01-01
Automating documentation of physical activity data (e.g., duration and speed of walking or propelling a wheelchair) into the electronic medical record (EMR) offers promise for improving efficiency of documentation and understanding of best practices in the rehabilitation and home health settings. Commercially available devices which could be used to automate documentation of physical activities are either cumbersome to wear or lack the specificity required to differentiate activities. We have designed a novel system to differentiate and quantify physical activities, using inexpensive accelerometer-based biomechanical data technology and wireless sensor networks, a technology combination that has not been used in a rehabilitation setting to date. As a first step, a feasibility study was performed where 14 healthy young adults (mean age = 22.6 ± 2.5 years, mean height = 173 ± 10.0 cm, mean mass = 70.7 ± 11.3 kg) carried out eight different activities while wearing a biaxial accelerometer sensor. Activities were performed at each participants self-selected pace during a single testing session in a controlled environment. Linear discriminant analysis was performed by extracting spectral parameters from the subjects accelerometer patterns. It is shown that physical activity classification alone results in an average accuracy of 49.5%, but when combined with rule-based constraints using a wireless sensor network with localization capabilities in an in silico simulated room, accuracy improves to 99.3%. When fully implemented, our technology package is expected to improve goal setting, treatment interventions and patient outcomes by enhancing clinicians understanding of patients physical performance within a day and across the rehabilitation program.
Comparison of Physical Activity Adult Questionnaire results with accelerometer data.
Garriguet, Didier; Tremblay, Sylvain; Colley, Rachel C
2015-07-01
Discrepancies between self-reported and objectively measured physical activity are well-known. For the purpose of validation, this study compares a new self-reported physical activity questionnaire with an existing one and with accelerometer data. Data collected at one site of the Canadian Health Measures Survey in 2013 were used for this validation study. The International Physical Activity Questionnaire (IPAQ) was administered to respondents during the household interview, and the new Physical Activity for Adults Questionnaire (PAAQ) was administered during a subsequent visit to a mobile examination centre (MEC). At the MEC, respondents were given an accelerometer to wear for seven days. The analysis pertains to 112 respondents aged 18 to 79 who wore the accelerometer for 10 or more hours on at least four days. Moderate-to-vigorous physical activity (MVPA) measured by accelerometer had higher correlation with data from the PAAQ (r = 0.44) than with data from the IPAQ (r = 0.20). The differences between accelerometer and PAAQ data were greater based on accelerometer-measured physical activity accumulated in 10-minute bouts (30-minute difference in MVPA) than on all minutes (9-minute difference). The percentages of respondents meeting the Canadian Physical Activity Guidelines were 90% based on self-reported IPAQ minutes, 70% based on all accelerometer MVPA minutes, 29% based on accelerometer MVPA minutes accumulated in 10-minute bouts, and 61% based on self-reported PAAQ minutes. The PAAQ demonstrated reasonable validity against the accelerometer criterion. Based on correlations and absolute differences between daily minutes of MVPA and the percentages of respondents meeting the Canadian Physical Activity Guidelines, PAAQ results were closer to accelerometer data than were the IPAQ results for the study sample and previous Statistics Canada self-reported questionnaire findings.
Tudor-Locke, Catrine; Camhi, Sarah M; Troiano, Richard P
2012-01-01
The National Health and Nutrition Examination Survey (NHANES) included accelerometry in the 2003-2006 data collection cycles. Researchers have used these data since their release in 2007, but the data have not been consistently treated, examined, or reported. The objective of this study was to aggregate data from studies using NHANES accelerometry data and to catalogue study decision rules, derived variables, and cut point definitions to facilitate a more uniform approach to these data. We conducted a PubMed search of English-language articles published (or indicated as forthcoming) from January 2007 through December 2011. Our initial search yielded 74 articles, plus 1 article that was not indexed in PubMed. After excluding 21 articles, we extracted and tabulated details on 54 studies to permit comparison among studies. The 54 articles represented various descriptive, methodological, and inferential analyses. Although some decision rules for treating data (eg, criteria for minimal wear-time) were consistently applied, cut point definitions used for accelerometer-derived variables (eg, time spent in various intensities of physical activity) were especially diverse. Unique research questions may require equally unique analytical approaches; some inconsistency in approaches must be tolerated if scientific discovery is to be encouraged. This catalog provides a starting point for researchers to consider relevant and/or comparable accelerometer decision rules, derived variables, and cut point definitions for their own research questions.
Yang, Lin; Panter, Jenna; Griffin, Simon J.; Ogilvie, David
2012-01-01
Objective To quantify the association between time spent in active commuting and in moderate to vigorous physical activity (MVPA) in a sample of working adults living in both urban and rural locations. Methods In 2009, participants in the Commuting and Health in Cambridge study were sent questionnaires enquiring about sociodemographic characteristics and weekly time spent in active commuting. They were also invited to wear an accelerometer for seven days. Accelerometer data were used to compute the time spent in MVPA. Multiple regression models were used to examine the association between time spent in active commuting and MVPA. Results 475 participants (70% female) provided valid data. On average, participants recorded 55 (SD: 23.02) minutes of MVPA per day. For women, reporting 150 or more minutes of active commuting per week was associated with an estimated 8.50 (95% CI: 1.75 to 51.26, p = 0.01) additional minutes of daily MVPA compared to those who reported no time in active commuting. No overall associations were found in men. Conclusions Promoting active commuting might be an important way of increasing levels of physical activity, particularly in women. Further research should assess whether increases in time spent in active commuting are associated with increases in physical activity. PMID:22964003
Vásquez, Elizabeth; Strizich, Garrett; Isasi, Carmen R; Echeverria, Sandra E; Sotres-Alvarez, Daniela; Evenson, Kelly R.; Gellman, Marc D; Palta, Priya; Qi, Qibin; Lamar, Melissa; Tarraf, Wassim; González, Hector M; Kaplan, Robert
2018-01-01
Normative changes in cognitive function are expected with increasing age. Research on the relationship between normative cognitive decline and moderate-to-vigorous physical activity (MVPA) and sedentary behavior (SED) needs further investigation in Hispanic/Latinos adults. We assessed the cross-sectional association between accelerometer assessed MVPA and SED with cognitive function in 7,478 adults aged 45–74 years from the Hispanic Community Health Study/Study of Latinos. At baseline, cognitive tests included two executive function tests (Digit Symbol Substitution Test (DSST), a test of language (Word Fluency), and a test of memory (Spanish English Verbal Learning Test). Multiple regression models were used to examine associations of time spent in MVPA and SED with cognitive function by age groups, adjusted for age, education, sex, acculturation, and field center. Mean time spent in sedentary behaviors was 12.3 hours/day in females and 11.9 hours/day in males (75% and 77% of accelerometer wear time, respectively). Higher SED, but not MVPA, was associated with lower DSST raw scores (β −0.03 with each 10-min increment in SED; P < 0.05), indicating lower performance in executive function in all age groups. No associations were observed for MVPA and SED with tests of language or memory tests. Our findings suggest a distinct association of SED but not MVPA on executive functioning in middle-aged and older Latino adults. Longitudinal studies are needed to more conclusively determine causal links. PMID:28765082
Pulakka, A; Ashorn, U; Cheung, Y B; Dewey, K G; Maleta, K; Vosti, S A; Ashorn, P
2015-02-01
This study measured the effects of dietary supplementation with lipid-based nutrient supplements (LNSs) on 18-month-old children's physical activity. In a randomised, controlled, outcome-assessor blinded trial 1932 six-month-old children from Malawi received one of five interventions daily from 6-18 months of age: 10-g milk-LNS, 20-g milk-LNS, 20-g non-milk-LNS, 40-g milk-LNS or 40-g non-milk-LNS, or received no intervention in the same period (control). The control group received delayed intervention with corn-soy blend from 18-30 months. Physical activity was measured over 1 week by ActiGraph GT3X+ accelerometer at 18 months. Main outcome was mean vector magnitude accelerometer counts/15 s. Analyses were restricted to children with valid accelerometer data on at least 4 days with minimum 6 h of wearing time per day. Of the 1435 children recruited to this substudy, 1053 provided sufficient data for analysis. The mean (s.d.) vector magnitude accelerometer counts in the total sample were 307 (64). The difference (95% CI) in mean accelerometer counts, compared with the control group, was 8 (-6 to 21, P=0.258) in 10-g milk-LNS, 3 (-11 to 17, P=0.715) in 20-g milk-LNS, 5 (-8 to 19, P=0.445) in 20-g non-milk-LNS, 10 (-3 to 23, P=0.148) in 40-g milk-LNS and 2 (-12 to 16, P=0.760) in 40-g non-milk-LNS groups. Provision of 10-40 g doses of LNS daily for 12 months did not increase physical activity of Malawian toddlers.
How many days of monitoring predict physical activity and sedentary behaviour in older adults?
2011-01-01
Background The number of days of pedometer or accelerometer data needed to reliably assess physical activity (PA) is important for research that examines the relationship with health. While this important research has been completed in young to middle-aged adults, data is lacking in older adults. Further, data determining the number of days of self-reports PA data is also void. The purpose of this study was to examine the number of days needed to predict habitual PA and sedentary behaviour across pedometer, accelerometer, and physical activity log (PA log) data in older adults. Methods Participants (52 older men and women; age = 69.3 ± 7.4 years, range= 55-86 years) wore a Yamax Digiwalker SW-200 pedometer and an ActiGraph 7164 accelerometer while completing a PA log for 21 consecutive days. Mean differences each instrument and intensity between days of the week were examined using separate repeated measures analysis of variance for with pairwise comparisons. Spearman-Brown Prophecy Formulae based on Intraclass Correlations of .80, .85, .90 and .95 were used to predict the number of days of accelerometer or pedometer wear or PA log daily records needed to represent total PA, light PA, moderate-to-vigorous PA, and sedentary behaviour. Results Results of this study showed that three days of accelerometer data, four days of pedometer data, or four days of completing PA logs are needed to accurately predict PA levels in older adults. When examining time spent in specific intensities of PA, fewer days of data are needed for accurate prediction of time spent in that activity for ActiGraph but more for the PA log. To accurately predict average daily time spent in sedentary behaviour, five days of ActiGraph data are needed. Conclusions The number days of objective (pedometer and ActiGraph) and subjective (PA log) data needed to accurately estimate daily PA in older adults was relatively consistent. Despite no statistical differences between days for total PA by the pedometer and ActiGraph, the magnitude of differences between days suggests that day of the week cannot be completely ignored in the design and analysis of PA studies that involve < 7-day monitoring protocols for these instruments. More days of accelerometer data were needed to determine typical sedentary behaviour than PA level in this population of older adults. PMID:21679426
How many days of monitoring predict physical activity and sedentary behaviour in older adults?
Hart, Teresa L; Swartz, Ann M; Cashin, Susan E; Strath, Scott J
2011-06-16
The number of days of pedometer or accelerometer data needed to reliably assess physical activity (PA) is important for research that examines the relationship with health. While this important research has been completed in young to middle-aged adults, data is lacking in older adults. Further, data determining the number of days of self-reports PA data is also void. The purpose of this study was to examine the number of days needed to predict habitual PA and sedentary behaviour across pedometer, accelerometer, and physical activity log (PA log) data in older adults. Participants (52 older men and women; age = 69.3 ± 7.4 years, range= 55-86 years) wore a Yamax Digiwalker SW-200 pedometer and an ActiGraph 7164 accelerometer while completing a PA log for 21 consecutive days. Mean differences each instrument and intensity between days of the week were examined using separate repeated measures analysis of variance for with pairwise comparisons. Spearman-Brown Prophecy Formulae based on Intraclass Correlations of .80, .85, .90 and .95 were used to predict the number of days of accelerometer or pedometer wear or PA log daily records needed to represent total PA, light PA, moderate-to-vigorous PA, and sedentary behaviour. Results of this study showed that three days of accelerometer data, four days of pedometer data, or four days of completing PA logs are needed to accurately predict PA levels in older adults. When examining time spent in specific intensities of PA, fewer days of data are needed for accurate prediction of time spent in that activity for ActiGraph but more for the PA log. To accurately predict average daily time spent in sedentary behaviour, five days of ActiGraph data are needed. The number days of objective (pedometer and ActiGraph) and subjective (PA log) data needed to accurately estimate daily PA in older adults was relatively consistent. Despite no statistical differences between days for total PA by the pedometer and ActiGraph, the magnitude of differences between days suggests that day of the week cannot be completely ignored in the design and analysis of PA studies that involve < 7-day monitoring protocols for these instruments. More days of accelerometer data were needed to determine typical sedentary behaviour than PA level in this population of older adults.
Horner, Fleur; Bilzon, James L; Rayson, Mark; Blacker, Sam; Richmond, Victoria; Carter, James; Wright, Anthony; Nevill, Alan
2013-01-01
This study developed a multivariate model to predict free-living energy expenditure (EE) in independent military cohorts. Two hundred and eighty-eight individuals (20.6 ± 3.9 years, 67.9 ± 12.0 kg, 1.71 ± 0.10 m) from 10 cohorts wore accelerometers during observation periods of 7 or 10 days. Accelerometer counts (PAC) were recorded at 1-minute epochs. Total energy expenditure (TEE) and physical activity energy expenditure (PAEE) were derived using the doubly labelled water technique. Data were reduced to n = 155 based on wear-time. Associations between PAC and EE were assessed using allometric modelling. Models were derived using multiple log-linear regression analysis and gender differences assessed using analysis of covariance. In all models PAC, height and body mass were related to TEE (P < 0.01). For models predicting TEE (r (2) = 0.65, SE = 462 kcal · d(-1) (13.0%)), PAC explained 4% of the variance. For models predicting PAEE (r (2) = 0.41, SE = 490 kcal · d(-1) (32.0%)), PAC accounted for 6% of the variance. Accelerometry increases the accuracy of EE estimation in military populations. However, the unique nature of military life means accurate prediction of individual free-living EE is highly dependent on anthropometric measurements.
Nicotine Dependence, Physical Activity, and Sedentary Behavior among Adult Smokers
Loprinzi, Paul D.; Walker, Jerome F.
2015-01-01
Background: Research has previously demonstrated an inverse association between smoking status and physical activity; however, few studies have examined the association between nicotine dependence and physical activity or sedentary behavior. Aim: This study examined the association between nicotine dependence and accelerometer-determined physical activity and sedentary behavior. Materials and Methods: Data from the 2003-2006 National Health and Nutrition Examination Survey (NHANES) were used. A total of 851 adult (≥20 years) smokers wore an accelerometer for ≥4 days and completed the Fagerstrom Test for Nicotine Dependence scale. Regression models were used to examine the association between nicotine dependence and physical activity/sedentary behavior. Results: After adjusting for age, gender, race-ethnicity, poverty level, hypertension, emphysema, bronchitis, body mass index (BMI), cotinine, and accelerometer wear time, smokers 50 + years of age with greater nicotine dependence engaged in more sedentary behavior (β = 11.4, P = 0.02) and less light-intensity physical activity (β = −9.6, P = 0.03) and moderate-to-vigorous physical activity (MVPA; β = −0.14, P = 0.003) than their less nicotine dependent counterparts. Conclusion: Older adults who are more nicotine dependent engage in less physical activity (both MVPA and light-intensity) and more sedentary behavior than their less nicotine dependent counterparts. PMID:25839000
Jeran, S; Steinbrecher, A; Pischon, T
2016-08-01
Activity-related energy expenditure (AEE) might be an important factor in the etiology of chronic diseases. However, measurement of free-living AEE is usually not feasible in large-scale epidemiological studies but instead has traditionally been estimated based on self-reported physical activity. Recently, accelerometry has been proposed for objective assessment of physical activity, but it is unclear to what extent this methods explains the variance in AEE. We conducted a systematic review searching MEDLINE database (until 2014) on studies that estimated AEE based on accelerometry-assessed physical activity in adults under free-living conditions (using doubly labeled water method). Extracted study characteristics were sample size, accelerometer (type (uniaxial, triaxial), metrics (for example, activity counts, steps, acceleration), recording period, body position, wear time), explained variance of AEE (R(2)) and number of additional predictors. The relation of univariate and multivariate R(2) with study characteristics was analyzed using nonparametric tests. Nineteen articles were identified. Examination of various accelerometers or subpopulations in one article was treated separately, resulting in 28 studies. Sample sizes ranged from 10 to 149. In most studies the accelerometer was triaxial, worn at the trunk, during waking hours and reported activity counts as output metric. Recording periods ranged from 5 to 15 days. The variance of AEE explained by accelerometer-assessed physical activity ranged from 4 to 80% (median crude R(2)=26%). Sample size was inversely related to the explained variance. Inclusion of 1 to 3 other predictors in addition to accelerometer output significantly increased the explained variance to a range of 12.5-86% (median total R(2)=41%). The increase did not depend on the number of added predictors. We conclude that there is large heterogeneity across studies in the explained variance of AEE when estimated based on accelerometry. Thus, data on predicted AEE based on accelerometry-assessed physical activity need to be interpreted cautiously.
Keawutan, Piyapa; Bell, Kristie L; Oftedal, Stina; Davies, Peter S W; Ware, Robert S; Boyd, Roslyn N
2017-01-01
To compare ambulatory status in children with cerebral palsy aged 4 to 5 years with their habitual physical activity and time spent sedentary, and to compare their activity with physical activity guidelines. Sixty-seven participants-independently ambulant, marginally ambulant, and nonambulant-wore accelerometers for 3 days. Time spent sedentary as a percentage of wear time and activity counts were compared between groups. There were significant differences in time spent sedentary and activity counts between groups. Children who were independently ambulant were more likely to meet physical activity guidelines. Children with cerebral palsy spent more than half of their waking hours in sedentary time. Interventions to reduce sedentary behavior and increase habitual physical activity are needed in children with cerebral palsy at age 4 to 5 years.
Ziebart, Christina; Giangregorio, Lora M; Gibbs, Jenna C; Levine, Iris C; Tung, James; Laing, Andrew C
2017-06-14
A wide variety of accelerometer systems, with differing sensor characteristics, are used to detect impact loading during physical activities. The study examined the effects of system characteristics on measured peak impact loading during a variety of activities by comparing outputs from three separate accelerometer systems, and by assessing the influence of simulated reductions in operating range and sampling rate. Twelve healthy young adults performed seven tasks (vertical jump, box drop, heel drop, and bilateral single leg and lateral jumps) while simultaneously wearing three tri-axial accelerometers including a criterion standard laboratory-grade unit (Endevco 7267A) and two systems primarily used for activity-monitoring (ActiGraph GT3X+, GCDC X6-2mini). Peak acceleration (gmax) was compared across accelerometers, and errors resulting from down-sampling (from 640 to 100Hz) and range-limiting (to ±6g) the criterion standard output were characterized. The Actigraph activity-monitoring accelerometer underestimated gmax by an average of 30.2%; underestimation by the X6-2mini was not significant. Underestimation error was greater for tasks with greater impact magnitudes. gmax was underestimated when the criterion standard signal was down-sampled (by an average of 11%), range limited (by 11%), and by combined down-sampling and range-limiting (by 18%). These effects explained 89% of the variance in gmax error for the Actigraph system. This study illustrates that both the type and intensity of activity should be considered when selecting an accelerometer for characterizing impact events. In addition, caution may be warranted when comparing impact magnitudes from studies that use different accelerometers, and when comparing accelerometer outputs to osteogenic impact thresholds proposed in literature. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Oguma, Yuko; Osawa, Yusuke; Takayama, Michiyo; Abe, Yukiko; Tanaka, Shigeho; Lee, I-Min; Arai, Yasumichi
2017-04-01
To date, there is no physical activity (PA) questionnaire with convergent and construct validity for the oldest-old. The aim of the current study was to investigate the validity of questionnaire-assessed PA in comparison with objective measures determined by uniaxial and triaxial accelerometers and physical performance measures in the oldest-old. Participants were 155 elderly (mean age 90 years) who were examined at the university and agreed to wear an accelerometer for 7 days in the 3-year-follow-up survey of the Tokyo Oldest-Old Survey of Total Health. Fifty-nine participants wore a uniaxial and triaxial accelerometer simultaneously. Self-rated walking, exercise, and household PA were measured using a modified Zutphen PA Questionnaire (PAQ). Several physical performance tests were done, and the associations among PAQ, accelerometer-assessed PA, and physical performances were compared by Spearman's correlation coefficients. Significant, low to moderate correlations between PA measures were seen on questionnaire and accelerometer assessments (ρ = 0.19 to 0.34). Questionnaireassessed PA measure were correlated with a range of lower extremity performance (ρ = 0.21 to 0.29). This PAQ demonstrated convergent and construct validity. Our findings suggest that the PAQ can reasonably be used in this oldest-old population to rank their PA level.
Vibration arthrometry in the patients with failed total knee replacement.
Jiang, C C; Lee, J H; Yuan, T T
2000-02-01
This is a preliminary research on the vibration arthrometry of artificial knee joint in vivo. Analyzing the vibration signals measured from the accelerometer on patella, there are two speed protocols in knee kinematics: 1) 2 degrees/s, the signal is called "physiological patellofemoral crepitus (PPC)", and 2) 67 degrees/s, the signal is called "vibration signal in rapid knee motion". The study has collected 14 patients who had revision total knee arthroplasty due to prosthetic wear or malalignment represent the failed total knee replacement (FTKR), and 12 patients who had just undergone the primary total knee arthroplasty in the past two to six months and have currently no knee pain represent the normal total knee replacement (NTKR). FTKR is clinically divided into three categories: metal wear, polyethylene wear of the patellar component, and no wear but with prosthesis malalignment. In PPC, the value of root mean square (rms) is used as a parameter; in vibration signals in rapid knee motion, autoregressive modeling is used for adaptive segmentation and extracting the dominant pole of each signal segment to calculate the spectral power ratios in f < 100 Hz and f > 500 Hz. It was found that in the case of metal wear, the rms value of PPC signal is far greater than a knee joint with polyethylene wear and without wear, i.e., PPC signal appears only in metal wear. As for vibration signals in rapid knee motion, prominent time-domain vibration signals could be found in the FTKR patients with either polyethylene or metal wear of the patellar component. We also found that for normal knee joint, the spectral power ratio of dominant poles has nearly 80% distribution in f < 100 Hz, is between 50% and 70% for knee with polyethylene wear and below 30% for metal wear, whereas in f > 500 Hz, spectral power ratio of dominant poles has over 30% distribution in metal wear but only nonsignificant distribution in polyethylene wear, no wear, and normal knee. The results show that vibration signals in rapid knee motion can be used for effectively detecting polyethylene wear of the patellar component in the early stage, while PPC signals can only be used to detect prosthetic metal wear in the late stage.
Roscoe, Clare M P; James, Rob S; Duncan, Michael J
2017-08-01
This study sought to validate cut-points for use of wrist-worn GENEActiv accelerometer data, to analyse preschool children's (4 to 5 year olds) physical activity (PA) levels via calibration with oxygen consumption values (VO 2 ). This was a laboratory-based calibration study. Twenty-one preschool children, aged 4.7 ± 0.5 years old, completed six activities (ranging from lying supine to running) whilst wearing the GENEActiv accelerometers at two locations (left and right wrist), these being the participants' non-dominant and dominant wrist, and a Cortex face mask for gas analysis. VO 2 data was used for the assessment of criterion validity. Location specific activity intensity cut-points were established via receiver operator characteristic curve (ROC) analysis. The GENEActiv accelerometers, irrespective of their location, accurately discriminated between all PA intensities (sedentary, light, and moderate and above), with the dominant wrist monitor providing a slightly more precise discrimination at light PA and the non-dominant at the sedentary behaviour and moderate and above intensity levels (area under the curve (AUC) for non-dominant = 0.749-0.993, compared to AUC dominant = 0.760-0.988). This study establishes wrist-worn physical activity cut-points for the GENEActiv accelerometer in preschoolers. What is Known: • GENEActiv accelerometers have been validated as a PA measurement tool in adolescents and adults. • No study to date has validated the GENEActiv accelerometers in preschoolers. What is New: • Cut-points were determined for the wrist-worn GENEActiv accelerometer in preschoolers. • These cut-points can be used in future research to help classify and increase preschoolers' compliance rates with PA.
Solid-State Threshold Accelerometer Chip.
1987-03-28
adhered to another gold surface and *welded.’ Literature on surface wear and friction effects with various surface treatments often show that gold-on...LASTING 0.1 SECONDS.i i. -- S *.I CIC ~14. MATERIAL - ALUMINUM CROSSECTION - F/;%f 蕻 n, . t -. to1 77/ - CA6 /je /24 h,6qe 3/,/.o Z#0 1/c 0, &o
Zhang, Cunji; Yao, Xifan; Zhang, Jianming; Jin, Hong
2016-01-01
Tool breakage causes losses of surface polishing and dimensional accuracy for machined part, or possible damage to a workpiece or machine. Tool Condition Monitoring (TCM) is considerably vital in the manufacturing industry. In this paper, an indirect TCM approach is introduced with a wireless triaxial accelerometer. The vibrations in the three vertical directions (x, y and z) are acquired during milling operations, and the raw signals are de-noised by wavelet analysis. These features of de-noised signals are extracted in the time, frequency and time–frequency domains. The key features are selected based on Pearson’s Correlation Coefficient (PCC). The Neuro-Fuzzy Network (NFN) is adopted to predict the tool wear and Remaining Useful Life (RUL). In comparison with Back Propagation Neural Network (BPNN) and Radial Basis Function Network (RBFN), the results show that the NFN has the best performance in the prediction of tool wear and RUL. PMID:27258277
Gatti, Anthony A; Stratford, Paul W; Brenneman, Elora C; Maly, Monica R
2016-01-01
Accelerometers provide a measure of step-count. Reliability and validity of step-count and pedal-revolution count measurements by the GT3X+ accelerometer, placed at different anatomical locations, is absent in the literature. The purpose of this study was to investigate the reliability and validity of step and pedal-revolution counts produced by the GT3X+ placed at different anatomical locations during running and bicycling. Twenty-two healthy adults (14 men and 8 women) completed running and bicycling activity bouts (5 minutes each) while wearing 6 accelerometers: 2 each at the waist, thigh and shank. Accelerometer and video data were collected during activity. Excellent reliability and validity were found for measurements taken from accelerometers mounted at the waist and shank during running (Reliability: intraclass correlation (ICC) ≥ 0.99; standard error of measurement (SEM) ≤1.0 steps; Pearson ≥ 0.99) and at the thigh and shank during bicycling (Reliability: ICC ≥ 0.99; SEM ≤1.0 revolutions; Pearson ≥ 0.99). Excellent reliability was found between measurements taken at the waist and shank during running (ICC ≥ 0.98; SEM ≤1.6 steps) and between measurements taken at the thigh and shank during bicycling (ICC ≥ 0.99; SEM ≤1.0 revolutions). These data suggest that the GT3X+ can be used for measuring step-count during running and pedal-revolution count during bicycling. Only shank placement is recommended for both activities.
Accelerometer-Measured Physical Activity and Mortality in Women Aged 63 to 99.
LaMonte, Michael J; Buchner, David M; Rillamas-Sun, Eileen; Di, Chongzhi; Evenson, Kelley R; Bellettiere, John; Lewis, Cora E; Lee, I-Min; Tinker, Lesly F; Seguin, Rebecca; Zaslovsky, Oleg; Eaton, Charles B; Stefanick, Marcia L; LaCroix, Andrea Z
2018-05-01
To prospectively examine associations between accelerometer-measured physical activity (PA) and mortality in older women, with an emphasis on light-intensity PA. Prospective cohort study with baseline data collection between March 2012 and April 2014. Women's Health Initiative cohort in the United States. Community-dwelling women aged 63 to 99 (N = 6,382). Minutes per day of usual PA measured using hip-worn triaxial accelerometers, physical functioning measured using the Short Physical Performance Battery, mortality follow-up for a mean 3.1 years through September 2016 (450 deaths). When adjusted for accelerometer wear time, age, race-ethnicity, education, smoking, alcohol, self-rated health, and comorbidities, relative risks (95% confidence intervals) for all-cause mortality across PA tertiles were 1.00 (referent), 0.86 (0.69, 1.08), 0.80 (0.62, 1.03) trend P = .07, for low light; 1.00, 0.57 (0.45, 0.71), 0.47 (0.35, 0.61) trend P < .001, for high light; and, 1.00, 0.63 (0.50, 0.79), 0.42 (0.30, 0.57) trend P < .001, for moderate-to-vigorous PA (MVPA). Associations remained significant for high light-intensity PA and MVPA (P < .001) after further adjustment for physical function. Each 30-min/d increment in light-intensity (low and high combined) PA and MVPA was associated, on average, with multivariable relative risk reductions of 12% and 39%, respectively (P < .01). After further simultaneous adjusting for light intensity and MVPA, the inverse associations remained significant (light-intensity PA: RR = 0.93, 95% CI = 0.89-0.97; MVPA: RR = 0.67, 95% CI = 0.58-0.78). These relative risks did not differ between subgroups for age or race and ethnicity (interaction, P ≥ .14, all). When measured using accelerometers, light-intensity and MVPA are associated with lower mortality in older women. These findings suggest that replacing sedentary time with light-intensity PA is a public health strategy that could benefit an aging society and warrants further investigation. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.
Kwan, Matthew Y W; Bedard, Chloe; King-Dowling, Sara; Wellman, Sarah; Cairney, John
2016-08-05
Children and youth are often considered the most active segment of the population, however, research indicates that physical activity (PA) tends to peak during the adolescent years, declining thereafter with age. In particular, the acute transition out of high school is a period for which individuals appear to be at high-risk for becoming less active. Relatively few studies have investigated the factors influencing the changes in PA during this transition period. Therefore the purpose of the MovingU study is to gain a comprehensive understanding of the behavioural patterns and the socio-ecological factors related to the changes in PA during the transition out of high school. MovingU is comprised of two phases. Phase I is a prospective cohort design and aims to follow 120 students in their last year of high school through to their first year out of high school. Students will be asked to complete questionnaires measuring various psychosocial and socio-environmental variables (e.g., self-efficacy and distress) four times throughout this transition period. Students will also be given a wrist-worn accelerometer to wear for 7-days at each of the four assessments. Phase II is a cross-sectional study involving 100 first-year university students. Students will be asked to complete the same questionnaire from phase I, wear a wrist-worn accelerometer for 5-days, and complete ecological momentary assessments (EMA) using their smartphones at randomly selected times throughout the day for 5-days. EMA items will capture information regarding contextual and momentary correlates of PA. The MovingU study represents the first to evaluate the social and environmental influences of PA behaviour changes, including the use of intensive real-time data capture strategies during the transition out of high school. This information will be critical in the development of interventions aimed to prevent or attenuate such drastic declines in PA during emerging adulthood period.
Brief Report: Influence of Physical Activity on Sleep Quality in Children with Autism
ERIC Educational Resources Information Center
Wachob, David; Lorenzi, David G.
2015-01-01
Sleep-related problems are often documented in children with Autism Spectrum Disorders (ASD). This study examined physical activity as a variable that might influence sleep quality in children with ASD. Ten children, ages 9-16 years, were asked to wear accelerometer devices for 7 days in order to track objective measures of activity and sleep…
Socioeconomic position and childhood sedentary time: evidence from the PEACH project.
Pulsford, Richard M; Griew, Pippa; Page, Angie S; Cooper, Ashley R; Hillsdon, Melvyn M
2013-09-04
Associations between socioeconomic position (SEP) and sedentary behaviour in children are unclear. Existing studies have used aggregate measures of weekly sedentary time that could mask important differences in the relationship between SEP and sedentary time at different times of the day or between weekdays and weekend days. These studies have also employed a variety of measures of SEP which may be differentially associated with sedentary time. This paper examines associations of multiple indicators of SEP and accelerometer-measured, temporally specific, sedentary time in school children. Between 2006 and 2007 sedentary time data (minutes spent below 100 accelerometer counts per minute) for weekdays before-school (7.00-8.59AM), during school-time (9.00AM-2.59PM) and after-school (3.00PM-11.00PM), and weekend days were recorded for 629 10-11 year old children using accelerometers. Ordinary least squares regression was used to examine associations with 5 indicators of SEP (area deprivation, annual household income, car ownership, parental education and access to a private garden). Covariates were; gender, BMI, minutes of daylight, accelerometer wear time and school travel method. Analyses were conducted in 2012. Following adjustments for covariates, having a parent educated to university degree level was associated with more minutes of school (5.87 [95% CI 1.72, 10.04]) and after-school (6.04 [95% CI 0.08, 12.16]) sedentary time. Quartiles of area deprivation (most to least deprived) were positively associated with after-school (Q2: 4.30 [95% CI -6.09, 14.70]; Q3: 10.77 [95% CI 0.47, 21.06]; Q4: 12.74 [95% CI 2.65, 22.84]; P(trend) = 0.04) and weekend (Q2: 26.34 [95% CI 10.16, 42.53]; Q3: 33.28 [95% CI 16.92, 49.65]; Q4: 29.90 [95% CI 14.20, 45.60]; P(trend) = 0.002) sedentary time. Having a garden was associated with less sedentary time after-school (-14.39 [95% CI -25.14, -3.64]) and at weekends (-27.44 [95% CI -43.11, -11.78]). Associations between SEP and children's sedentary-time varied by SEP indicator and time of day. This highlights the importance of measuring multiple indicators of SEP and examining context specific sedentary time in children in order to fully understand how SEP influences this behaviour. Further research should combine self-report and objective data to examine associations with specific sedentary behaviours in the contexts within which they occur, as well as total sedentary time.
Socioeconomic position and childhood sedentary time: evidence from the PEACH project
2013-01-01
Background Associations between socioeconomic position (SEP) and sedentary behaviour in children are unclear. Existing studies have used aggregate measures of weekly sedentary time that could mask important differences in the relationship between SEP and sedentary time at different times of the day or between weekdays and weekend days. These studies have also employed a variety of measures of SEP which may be differentially associated with sedentary time. This paper examines associations of multiple indicators of SEP and accelerometer-measured, temporally specific, sedentary time in school children. Methods Between 2006 and 2007 sedentary time data (minutes spent below 100 accelerometer counts per minute) for weekdays before-school (7.00-8.59AM), during school-time (9.00AM-2.59PM) and after-school (3.00PM-11.00PM), and weekend days were recorded for 629 10–11 year old children using accelerometers. Ordinary least squares regression was used to examine associations with 5 indicators of SEP (area deprivation, annual household income, car ownership, parental education and access to a private garden). Covariates were; gender, BMI, minutes of daylight, accelerometer wear time and school travel method. Analyses were conducted in 2012. Results Following adjustments for covariates, having a parent educated to university degree level was associated with more minutes of school (5.87 [95% CI 1.72, 10.04]) and after-school (6.04 [95% CI 0.08, 12.16]) sedentary time. Quartiles of area deprivation (most to least deprived) were positively associated with after-school (Q2: 4.30 [95% CI −6.09, 14.70]; Q3: 10.77 [95% CI 0.47, 21.06]; Q4: 12.74 [95% CI 2.65, 22.84]; Ptrend = 0.04) and weekend (Q2: 26.34 [95% CI 10.16, 42.53]; Q3: 33.28 [95% CI 16.92, 49.65]; Q4: 29.90 [95% CI 14.20, 45.60]; Ptrend = 0.002) sedentary time. Having a garden was associated with less sedentary time after-school (−14.39 [95% CI −25.14, -3.64]) and at weekends (−27.44 [95% CI −43.11, -11.78]). Conclusions Associations between SEP and children’s sedentary-time varied by SEP indicator and time of day. This highlights the importance of measuring multiple indicators of SEP and examining context specific sedentary time in children in order to fully understand how SEP influences this behaviour. Further research should combine self-report and objective data to examine associations with specific sedentary behaviours in the contexts within which they occur, as well as total sedentary time. PMID:24007492
Performance of Activity Classification Algorithms in Free-living Older Adults
Sasaki, Jeffer Eidi; Hickey, Amanda; Staudenmayer, John; John, Dinesh; Kent, Jane A.; Freedson, Patty S.
2015-01-01
Purpose To compare activity type classification rates of machine learning algorithms trained on laboratory versus free-living accelerometer data in older adults. Methods Thirty-five older adults (21F and 14M ; 70.8 ± 4.9 y) performed selected activities in the laboratory while wearing three ActiGraph GT3X+ activity monitors (dominant hip, wrist, and ankle). Monitors were initialized to collect raw acceleration data at a sampling rate of 80 Hz. Fifteen of the participants also wore the GT3X+ in free-living settings and were directly observed for 2-3 hours. Time- and frequency- domain features from acceleration signals of each monitor were used to train Random Forest (RF) and Support Vector Machine (SVM) models to classify five activity types: sedentary, standing, household, locomotion, and recreational activities. All algorithms were trained on lab data (RFLab and SVMLab) and free-living data (RFFL and SVMFL) using 20 s signal sampling windows. Classification accuracy rates of both types of algorithms were tested on free-living data using a leave-one-out technique. Results Overall classification accuracy rates for the algorithms developed from lab data were between 49% (wrist) to 55% (ankle) for the SVMLab algorithms, and 49% (wrist) to 54% (ankle) for RFLab algorithms. The classification accuracy rates for SVMFL and RFFL algorithms ranged from 58% (wrist) to 69% (ankle) and from 61% (wrist) to 67% (ankle), respectively. Conclusion Our algorithms developed on free-living accelerometer data were more accurate in classifying activity type in free-living older adults than our algorithms developed on laboratory accelerometer data. Future studies should consider using free-living accelerometer data to train machine-learning algorithms in older adults. PMID:26673129
Performance of Activity Classification Algorithms in Free-Living Older Adults.
Sasaki, Jeffer Eidi; Hickey, Amanda M; Staudenmayer, John W; John, Dinesh; Kent, Jane A; Freedson, Patty S
2016-05-01
The objective of this study is to compare activity type classification rates of machine learning algorithms trained on laboratory versus free-living accelerometer data in older adults. Thirty-five older adults (21 females and 14 males, 70.8 ± 4.9 yr) performed selected activities in the laboratory while wearing three ActiGraph GT3X+ activity monitors (in the dominant hip, wrist, and ankle; ActiGraph, LLC, Pensacola, FL). Monitors were initialized to collect raw acceleration data at a sampling rate of 80 Hz. Fifteen of the participants also wore GT3X+ in free-living settings and were directly observed for 2-3 h. Time- and frequency-domain features from acceleration signals of each monitor were used to train random forest (RF) and support vector machine (SVM) models to classify five activity types: sedentary, standing, household, locomotion, and recreational activities. All algorithms were trained on laboratory data (RFLab and SVMLab) and free-living data (RFFL and SVMFL) using 20-s signal sampling windows. Classification accuracy rates of both types of algorithms were tested on free-living data using a leave-one-out technique. Overall classification accuracy rates for the algorithms developed from laboratory data were between 49% (wrist) and 55% (ankle) for the SVMLab algorithms and 49% (wrist) to 54% (ankle) for the RFLab algorithms. The classification accuracy rates for SVMFL and RFFL algorithms ranged from 58% (wrist) to 69% (ankle) and from 61% (wrist) to 67% (ankle), respectively. Our algorithms developed on free-living accelerometer data were more accurate in classifying the activity type in free-living older adults than those on our algorithms developed on laboratory accelerometer data. Future studies should consider using free-living accelerometer data to train machine learning algorithms in older adults.
Acceleration profile of an acrobatic act during training and shows using wearable technology.
Barker, Leland; Burnstein, Bryan; Mercer, John
2018-05-24
The purpose of this study was to describe the mechanical characteristics of a trampoline circus act and its individual tracks performed in training and shows using a tri-axial accelerometer. A track is an artist's specific role within a choreographed act. Seven male acrobats performed their trampoline act during training and shows while wearing a triaxial accelerometer and reported ratings of perceived exertion (RPE) after each trial. Average acceleration (AVG), root mean square (RMS), root mean to the fourth (RM4), time spent in specific acceleration ranges and RPE were measured/recorded from training and show acts. Paired t-tests compared dependent variables between training and show. Acceleration AVG, RMS and RM4 were significantly higher (p < 0.05) in training than show. RPE was significantly higher (p < 0.05) in show than training. No significant differences existed in time spent in any of the acceleration ranges between training and show. GPS devices have been used to manage workloads in field sports but are inoperable in theatres. But, inertial measurements may be an effective alternative to describe mechanical demands in theatre or arena environments. Wearable technology may be useful to coaches to improve understanding of track demands to manage artist workloads.
Classification of occupational activity categories using accelerometry: NHANES 2003-2004.
Steeves, Jeremy A; Tudor-Locke, Catrine; Murphy, Rachel A; King, George A; Fitzhugh, Eugene C; Harris, Tamara B
2015-06-30
An individual's occupational activity (OA) may contribute significantly to daily physical activity (PA) and sedentary behavior (SB). However, there is little consensus about which occupational categories involve high OA or low OA, and the majority of categories are unclassifiable with current methods. The purpose of this study was to present population estimates of accelerometer-derived PA and SB variables for adults (n = 1112, 20-60 years) working the 40 occupational categories collected during the 2003-2004 National Health and Nutrition Examination Survey (NHANES). ActiGraph accelerometer-derived total activity counts/day (TAC), activity counts/minute, and proportion of wear time spent in moderate-to-vigorous PA [MVPA], lifestyle, and light PA organized by occupational category were ranked in ascending order and SB was ranked in descending order. Summing the ranks of the six accelerometer-derived variables generated a summary score for each occupational category, which was re-ranked in ascending order. Higher rankings indicated higher levels of OA, lower rankings indicated lower levels of OA. Tertiles of the summary score were used to establish three mutually exclusive accelerometer-determined OA groupings: high OA, intermediate OA, and low OA. According to their summary score, 'farm and nursery workers' were classified as high OA and 'secretaries, stenographers, and typists' were classified as low OA. Consistent with previous research, some low OA occupational categories (e.g., 'engineers, architects, and scientists', 'technicians and related support occupations', 'management related occupations', 'executives, administrators, and managers', 'protective services', and 'writers, artists, entertainers, and athletes') associated with higher education and income had relatively greater amounts of MVPA compared to other low OA occupational categories, likely due to the greater percentage of men in those occupations and/or the influence of higher levels of leisure time PA. Men had more TAC, activity counts/minute and time in MVPA, but similar proportions of SB compared to women in all three OA groupings. Objectively measured PA allowed for a more precise estimate of the amount of PA and SB associated with different occupations and facilitated systematic classification of the 40 different occupational categories into three distinct OA groupings. This information provides new opportunities to explore the relationship between OA and health outcomes.
Chapman, Justin J; Fraser, Sarah J; Brown, Wendy J; Burton, Nicola W
2015-01-01
Adults with mental illness may have difficulties with data collection methods such as questionnaires and accelerometry. To assess the utility of questionnaires and accelerometry for assessing physical activity (PA) and sedentary behaviour (SB) in non-institutionalised adults with mental illness. Participants were recruited from outpatient clinics and community organisations. Participants completed PA and SB questionnaires, wore accelerometers for 7 d, and rated the ease/difficulty of completing study components. Recruitment numbers, adherence, and ease/difficulty ratings were examined. Ease/difficulty ratings were compared between study components, and between participants by distress level. One hundred forty-two participants completed the questionnaires; they found it easier to report PA than reclining time (p = 0.017), and reclining time than sitting time (p < 0.001). Participants with high distress found it more difficult to report sitting time and PA than participants with low distress (p < 0.017). Ninety-nine participants (70%) completed the accelerometry; the majority (88%) met the minimum wear-time criteria. They found it easier to wear the monitor during the day than while sleeping (p < 0.001), and easier to complete accelerometry than questionnaires (p < 0.001). Accelerometry was more feasible for assessing SB than questionnaires. Questionnaires were feasible for assessing PA, but less acceptable for people experiencing high distress.
Amagasa, Shiho; Fukushima, Noritoshi; Kikuchi, Hiroyuki; Takamiya, Tomoko; Oka, Koichiro; Inoue, Shigeru
2017-05-02
Men are generally believed to be more physically active than women when evaluated using current physical activity (PA) guidelines, which count only moderate-to-vigorous physical activity (MVPA) in bouts lasting at least 10 min. However, it remains unclear men are truly more physically active provided that all-intensity PA are evaluated. This population based cross-sectional study aimed to examine gender differences in patterns of objectively-assessed PA in older adults. One thousand two hundred ten community-dwelling Japanese older adults who were originally randomly selected from residential registry of three municipalities were asked to respond a questionnaire and wear an accelerometer (HJA-350IT, Omron Healthcare). The prevalence of achieving current PA guidelines, ≥150 min/week MVPA in bouts lasting at least 10 min, was calculated. Gender differences in volume of each-intensity activity (METs-hour) were assessed by analysis of covariance after adjustment for age and wear time. Data from 450 (255 men, mean 74 years) participants who had valid accelerometer data were analyzed. Women were less likely to meet the guidelines (men: 31.0, women: 21.5%; p < 0.05). However, women accumulated more light-intensity PA (LPA) and short-bout (1-9 min) MVPA, and thus established higher total volume of PA (men: 22.0 METs-hour/day, women: 23.9 METs-hour/day) (p < 0.05). Older women were less active when evaluated against current PA guidelines, but more active by total PA. Considering accumulated evidence on health benefits of LPA and short-bout MVPA, our findings highlight the potential for the limitation of assessing PA using current PA guidelines.
Tudor-Locke, Catrine; Brashear, Meghan M; Johnson, William D; Katzmarzyk, Peter T
2010-08-03
The 2005-2006 National Health and Nutrition Examination Survey (NHANES) is used to describe an accelerometer-derived physical activity/inactivity profile in normal weight (BMI < 25 kg/m2), overweight (25 = BMI < 30 kg/m2), and obese (BMI >/= 30 kg/m2) U.S. adults. We computed physical activity volume indicators (activity counts/day, uncensored and censored steps/day), rate indicators (e.g., steps/minute), time indicators (employing NHANES activity counts/minute cut points to infer time in non-wear, sedentary, low, light, moderate, and vigorous intensities), the number of breaks in sedentary time (occasions when activity counts rose from < 100 activity/counts in one minute to >/= 100 activity counts in the subsequent minute), achievement of public health guidelines, and classification by step-defined physical activity levels. Data were examined for evidence of consistent and significant gradients across BMI-defined categories. In 2005-2006, U.S adults averaged 6,564 +/- SE 107 censored steps/day, and after considering non-wear time, they spent approximately 56.8% of the rest of the waking day in sedentary time, 23.7% in low intensity, 16.7% in light intensity, 2.6% in moderate intensity, and 0.2% in vigorous intensity. Overall, approximately 3.2% of U.S. adults achieved public health guidelines. The normal weight category took 7,190 +/- SE 157 steps/day, and spent 25.7 +/- 0.9 minutes/day in moderate intensity and 7.3 +/- 0.4 minutes/day in vigorous intensity physical activity. The corresponding numbers for the overweight category were 6,879 +/- 140 steps/day, 25.3 +/- 0.9 minutes/day, and 5.3 +/- 0.5 minutes/day and for the obese category 5,784 +/- 124 steps/day, 17.3 +/- 0.7 minutes/day and 3.2 +/- 0.4 minutes/day. Across BMI categories, increasing gradients and significant trends were apparent in males for sedentary time and decreasing gradients and significant trends were evident in time spent in light intensity, moderate intensity, and vigorous intensity. For females, there were only consistent gradients and significant trends apparent for decreasing amounts of time spent in moderate and vigorous intensity. Simple indicators of physical activity volume (i.e., steps/day) and time in light, moderate or vigorous intensity physical activity differ across BMI categories for both sexes, suggesting that these should continue to be targets for surveillance.
Camhi, Sarah M; Crouter, Scott E; Hayman, Laura L; Must, Aviva; Lichtenstein, Alice H
2015-01-01
Few studies have examined dietary data or objective measures of physical activity (PA) and sedentary behavior among metabolically healthy overweight/obese (MHO) and metabolically unhealthy overweight/obese (MUO). Thus, the purpose is to determine whether PA, sedentary behavior and/or diet differ between MHO and MUO in a sample of young women. Forty-six overweight/obese (BMI ≥25 kg/m2) African American and Caucasian women 19-35 years were classified by cardiometabolic risk factors, including elevated blood pressure, triglyceride, glucose and C-reactive protein, low high density lipoprotein, and insulin resistance (MUO ≥2; MHO, <2). Time (mins/day) in light, moderate, vigorous PA, and sedentary behavior were estimated using an accelerometer (≥3 days; ≥8 hrs wear time). Questionnaires were used to quantify sitting time, TV/computer use and usual daily activity. The Block Food Frequency Questionnaire assessed dietary food intake. Differences between MHO and MUO for lifestyle behaviors were tested with linear regression (continuous data) or logistic regression (categorical data) after adjusting for age, race, BMI, smoking and accelerometer wear and/or total kilocalories, as appropriate. Women were 26.7±4.7 years, with a mean BMI of 31.1±3.7 kg/m2, and 61% were African American. Compared to MUO (n = 9), MHO (n = 37; 80%) spent less mins/day in sedentary behavior (difference: -58.1±25.5, p = 0.02), more mins/day in light PA (difference: 38.2±16.1, p = 0.02), and had higher daily METs (difference: 0.21±0.09, p = 0.03). MHO had higher fiber intakes (g/day of total fiber, soluble fiber, fruit/vegetable fiber, bean fiber) and daily servings of vegetables; but lower daily dairy servings, saturated fat, monounsaturated fat and trans fats (g/day) compared to MUO. Compared to MUO, MHO young women demonstrate healthier lifestyle habits with less sedentary behavior, more time in light PA, and healthier dietary quality for fat type and fiber. Future studies are needed to replicate findings with larger samples that include men and women of diverse race/ethnic groups.
WearSense: Detecting Autism Stereotypic Behaviors through Smartwatches
Amiri, Amir Mohammad; Peltier, Nicholas; Goldberg, Cody; Sun, Yan; Nathan, Anoo; Hiremath, Shivayogi V.; Mankodiya, Kunal
2017-01-01
Autism is a complex developmental disorder that affects approximately 1 in 68 children (according to the recent survey conducted by the Centers for Disease Control and Prevention—CDC) in the U.S., and has become the fastest growing category of special education. Each student with autism comes with her or his own unique needs and an array of behaviors and habits that can be severe and which interfere with everyday tasks. Autism is associated with intellectual disability, impairments in social skills, and physical health issues such as sleep and abdominal disturbances. We have designed an Internet-of-Things (IoT) framework named WearSense that leverages the sensing capabilities of modern smartwatches to detect stereotypic behaviors in children with autism. In this work, we present a study that used the inbuilt accelerometer of a smartwatch to detect three behaviors, including hand flapping, painting, and sibbing that are commonly observed in children with autism. In this feasibility study, we recruited 14 subjects to record the accelerometer data from the smartwatch worn on the wrist. The processing part extracts 34 different features in each dimension of the three-axis accelerometer, resulting in 102 features. Using and comparing various classification techniques revealed that an ensemble of 40 decision trees has the best accuracy of around 94.6%. This accuracy shows the quality of the data collected from the smartwatch and feature extraction methods used in this study. The recognition of these behaviors by using a smartwatch would be helpful in monitoring individuals with autistic behaviors, since the smartwatch can send the data to the cloud for comprehensive analysis and also to help parents, caregivers, and clinicians make informed decisions. PMID:28264474
Adolescent pedometer protocols: examining reactivity, tampering and participants' perceptions.
Scott, Joseph John; Morgan, Philip James; Plotnikoff, Ronald Cyril; Trost, Stewart Graeme; Lubans, David Revalds
2014-01-01
The aim of this study was to investigate adolescents' potential reactivity and tampering while wearing pedometers by comparing different monitoring protocols to accelerometer output. The sample included adolescents (N = 123, age range = 14-15 years) from three secondary schools in New South Wales, Australia. Schools were randomised to one of the three pedometer monitoring protocols: (i) daily sealed (DS) pedometer group, (ii) unsealed (US) pedometer group or (iii) weekly sealed (WS) pedometer group. Participants wore pedometers (Yamax Digi-Walker CW700, Yamax Corporation, Kumamoto City, Japan) and accelerometers (Actigraph GT3X+, Pensacola, USA) simultaneously for seven days. Repeated measures analysis of variance was used to examine potential reactivity. Bivariate correlations between step counts and accelerometer output were calculated to explore potential tampering. The correlation between accelerometer output and pedometer steps/day was strongest among participants in the WS group (r = 0.82, P ≤ 0.001), compared to the US (r = 0.63, P ≤ 0.001) and DS (r = 0.16, P = 0.324) groups. The DS (P ≤ 0.001) and US (P = 0.003), but not the WS (P = 0.891), groups showed evidence of reactivity. The results suggest that reactivity and tampering does occur in adolescents and contrary to existing research, pedometer monitoring protocols may influence participant behaviour.
Larouche, Richard; Garriguet, Didier; Tremblay, Mark S
2017-03-01
Previous studies have shown that children who spend more time outdoors are more active and spend less time sedentary, but these studies were limited by the use of small convenience samples. We examined the relationship between outdoor time and measures of physical activity (PA), screen time and sedentary time in a nationally-representative sample of young children. Parental reports of outdoor time were obtained for 594 children aged 3-6 years (47.8% girls) who participated in the 2012-2013 Canadian Health Measures Survey. Participants were asked to wear an Actical accelerometer for seven consecutive days. Outdoor time and screen time were assessed by parent reports. The relationships between outdoor time and measures of PA, screen time and sedentary time were examined with linear regression models. Adherence to PA guidelines was estimated based on a betabinomial distribution, and adherence with the screen time guidelines was assessed through logistic regression models. All analyses were stratified by age group (3-4 and 5-6 year olds) and adjusted for sex, parental education and household income. Among 5-6 year olds, each additional hour spent outdoors was associated with an additional 10 minutes of moderate-to-vigorous PA (95% CI: 6-14), 27,455 more accelerometer counts/day (95% CI: 11,929-42,980) and an increased likelihood of meeting the PA guidelines (OR = 2.53; 95% CI: 1.68-3.82). No significant relationships were observed among 3-4 year olds. Outdoor time has a large effect on PA among 5-6 year olds at a population level. Future studies should examine the correlates of outdoor time to inform novel PA promotion interventions.
Performance of Small Bore 60NiTi Hybrid Ball Bearings: Preliminary Life Test Results
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Howard, S. Adam
2016-01-01
Small bore (R8 size) hybrid ball bearings made with 60NiTi races and silicon nitride balls are under development for highly corrosive aerospace applications that are also exposed to heavy static (shock) loads. The target application is the vacuum pump used inside the wastewater recycling system on the International Space Station. To verify bearing longevity, life tests are run at 2000rpm for time periods up to 5000 hours. Accelerometers with data tracking are used to monitor operation and the bearings are disassembled and inspected at intervals to assess wear. Preliminary tests show that bearings made from 60NiTi are feasible for this aerospace and potentially other industrial applications that must endure similar operating environments.
Dunton, Genevieve Fridlund; Dzubur, Eldin; Kawabata, Keito; Yanez, Brenda; Bo, Bin; Intille, Stephen
2014-01-01
Despite the known advantages of objective physical activity monitors (e.g., accelerometers), these devices have high rates of non-wear, which leads to missing data. Objective activity monitors are also unable to capture valuable contextual information about behavior. Adolescents recruited into physical activity surveillance and intervention studies will increasingly have smartphones, which are miniature computers with built-in motion sensors. This paper describes the design and development of a smartphone application ("app") called Mobile Teen that combines objective and self-report assessment strategies through (1) sensor-informed context-sensitive ecological momentary assessment (CS-EMA) and (2) sensor-assisted end-of-day recall. The Mobile Teen app uses the mobile phone's built-in motion sensor to automatically detect likely bouts of phone non-wear, sedentary behavior, and physical activity. The app then uses transitions between these inferred states to trigger CS-EMA self-report surveys measuring the type, purpose, and context of activity in real-time. The end of the day recall component of the Mobile Teen app allows users to interactively review and label their own physical activity data each evening using visual cues from automatically detected major activity transitions from the phone's built-in motion sensors. Major activity transitions are identified by the app, which cues the user to label that "chunk," or period, of time using activity categories. Sensor-driven CS-EMA and end-of-day recall smartphone apps can be used to augment physical activity data collected by objective activity monitors, filling in gaps during non-wear bouts and providing additional real-time data on environmental, social, and emotional correlates of behavior. Smartphone apps such as these have potential for affordable deployment in large-scale epidemiological and intervention studies.
Dunton, Genevieve Fridlund; Dzubur, Eldin; Kawabata, Keito; Yanez, Brenda; Bo, Bin; Intille, Stephen
2013-01-01
Introduction: Despite the known advantages of objective physical activity monitors (e.g., accelerometers), these devices have high rates of non-wear, which leads to missing data. Objective activity monitors are also unable to capture valuable contextual information about behavior. Adolescents recruited into physical activity surveillance and intervention studies will increasingly have smartphones, which are miniature computers with built-in motion sensors. Methods: This paper describes the design and development of a smartphone application (“app”) called Mobile Teen that combines objective and self-report assessment strategies through (1) sensor-informed context-sensitive ecological momentary assessment (CS-EMA) and (2) sensor-assisted end-of-day recall. Results: The Mobile Teen app uses the mobile phone’s built-in motion sensor to automatically detect likely bouts of phone non-wear, sedentary behavior, and physical activity. The app then uses transitions between these inferred states to trigger CS-EMA self-report surveys measuring the type, purpose, and context of activity in real-time. The end of the day recall component of the Mobile Teen app allows users to interactively review and label their own physical activity data each evening using visual cues from automatically detected major activity transitions from the phone’s built-in motion sensors. Major activity transitions are identified by the app, which cues the user to label that “chunk,” or period, of time using activity categories. Conclusion: Sensor-driven CS-EMA and end-of-day recall smartphone apps can be used to augment physical activity data collected by objective activity monitors, filling in gaps during non-wear bouts and providing additional real-time data on environmental, social, and emotional correlates of behavior. Smartphone apps such as these have potential for affordable deployment in large-scale epidemiological and intervention studies. PMID:24616888
Spartano, Nicole L; Heffernan, Kevin S; Dumas, Amy K; Gump, Brooks B
2017-01-01
Cardiovascular reactivity has been associated with future hypertension and cardiovascular mortality. Higher physical activity (PA) has been associated with lower cardiovascular reactivity in adults, but little data is available in children. The purpose of this study was to examine the relationship between PA and cardiovascular reactivity to mental stress in children. Cross-sectional study. This study sample included children from the Oswego Lead Study (n=79, 46% female, 9-11 years old). Impedance cardiography was performed while children participated in a stress response protocol. Children were also asked to wear Actigraph accelerometers on their wrists for 3 days to measure intensity and duration of PA and sedentary time. In multivariable models, moderate to vigorous (MV) PA was associated with lower body mass index (BMI) percentile and lower total peripheral resistance (TPR) response to stress (beta=-0.025, p=0.02; beta=-0.009, p=0.05). After additional adjustment for BMI, MVPA was also associated with lower diastolic blood pressure response to stress (beta=-0.01, p=0.03). Total PA and sedentary time were not associated with BMI or cardiovascular responses to stress. A modest, inverse relation of PA to vascular reactivity to mental stress was observed in children. These data provide confirmatory evidence that the promotion of PA recommendations for children are important for cardiovascular health. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Accelerometer-determined physical activity level among government employees in Penang, Malaysia.
Hazizi, A S; Aina, Mardiah B; Mohd, Nasir M T; Zaitun, Y; Hamid, Jan J M; Tabata, I
2012-04-01
A cross-sectional study was carried out to investigate accelerometer-determined physical activity level of 233 Malay government employees (104 men, 129 women) working in the Federal Government Building Penang, Malaysia. Body weight, height, waist and hip circumference, body fat percentage and blood pressure were measured for each respondent. All the respondents were asked to wear an accelerometer for 3 days. Body mass index (BMI) and waist-hip ratio (WHR) were calculated using a standard formulas. Fasting blood sample was obtained to determine the lipid profile and glucose levels of the respondents. Based on the accelerometer-determined physical activity level, almost 65% of the respondents were categorised as sedentary. Approximately 50.2% of the respondents were overweight or obese. There were negative but significant relationships between body mass index (BMI) (r = -0.353, p < 0.05), body fat percentage (r = -0.394, p < 0.05), waist circumference (WC) (r = -0.198, p < 0.05) and physical activity level. Sedentary individuals had a higher risk than moderate to active individuals of having a BMI more than or equal to 25 kg/m2 (OR = 2.80, 95% CI 1.55-5.05), an-risk classified WC (OR = 1.79, 95% CI 1.01-3.20), and a body fat percentage classified as unhealthy (OR = 3.01, 95% CI 1.41-6.44). The results of this study suggest that accelerometer-determined physical activity level is a significant factor associated with obesity in this study. The high prevalence of physical inactivity and obesity found among respondents of this study indicate a need for implementing intervention programmes among this population.
Ando, Takafumi; Sakai, Hiroyuki; Uchiyama, Yuji
2017-04-26
Older people are at greater risk of traffic accidents, partially because of age-related declines in visual function, including reduced useful field of view (UFOV). However, lifestyle factors which cause age-related decline in UFOV remain poorly understood. We conducted a study to investigate whether physical activity and appetite status were related to UFOV test performance in healthy older adults. Thirty community-dwelling older people (age 68.6 ± 3.1 years, 15 females) were enrolled in this study. Each participant completed the Council on Nutrition appetite questionnaire (CNAQ) and a UFOV test. They then wore a tri-axial accelerometer (Active style Pro HJA-350IT) for 3-6 consecutive days to objectively measure their PA in free-living conditions. Longer time spent in vigorous physical activity was significantly associated with better UFOV test performance when adjusted for age and accelerometer wear time (non-locomotive: r = -0.435, locomotive: r = -0.449; n = 25). In addition, male, but not female, participants with a higher CNAQ score had significantly better UFOV test performance in both an unadjusted model (r = -0.560; n = 15) and a model adjusted for age (r = -0.635; n = 15). The results suggest that appetite status among males and time spent in high intensity PA are associated with visual function related to driving competence in older adults.
Assessment of Differing Definitions of Accelerometer Nonwear Time
ERIC Educational Resources Information Center
Evenson, Kelly R.; Terry, James W., Jr.
2009-01-01
Measuring physical activity with objective tools, such as accelerometers, is becoming more common. Accelerometers measure acceleration multiple times within a given frequency and summarize this as a count over a pre-specified time period or epoch. The resultant count represents acceleration over the epoch length. Accelerometers eliminate biases…
The effect of the home environment on physical activity and dietary intake in preschool children.
Østbye, T; Malhotra, R; Stroo, M; Lovelady, C; Brouwer, R; Zucker, N; Fuemmeler, B
2013-10-01
The effects of the home environment on child health behaviors related to obesity are unclear. To examine the role of the home physical activity (PA) and food environment on corresponding outcomes in young children, and assess maternal education/work status as a moderator. Overweight or obese mothers reported on the home PA and food environment (accessibility, role modeling and parental policies). Outcomes included child moderate-vigorous PA (MVPA) and sedentary time derived from accelerometer data and two dietary factors ('junk' and healthy food intake scores) based on factor analysis of mother-reported food intake. Linear regression models assessed the net effect (controlling for child demographics, study arm, supplemental time point, maternal education/work status, child body mass index and accelerometer wear time (for PA outcomes)) of the home environment on the outcomes and moderation by maternal education/work status. Data were collected in North Carolina from 2007 to 2011. Parental policies supporting PA increased MVPA time, and limiting access to unhealthy foods increased the healthy food intake score. Role modeling of healthy eating behaviors increased the healthy food intake score among children of mothers with no college education. Among children of mothers with no college education and not working, limiting access to unhealthy foods and role modeling reduced 'junk' food intake scores whereas parental policies supporting family meals increased 'junk' food intake scores. To promote MVPA, parental policies supporting child PA are warranted. Limited access to unhealthy foods and role modeling of healthy eating may improve the quality of the child's food intake.
Analysis of walking improvement with dynamic shoe insoles, using two accelerometers
NASA Astrophysics Data System (ADS)
Tsuruoka, Yuriko; Tamura, Yoshiyasu; Shibasaki, Ryosuke; Tsuruoka, Masako
2005-07-01
The orthopedics at the rehabilitation hospital found that disorders caused by sports injuries to the feet or caused by lower-back are improved by wearing dynamic shoe insoles, these improve walking balance and stability. However, the relationship of the lower-back and knees and the rate of increase in stability were not quantitatively analyzed. In this study, using two accelerometers, we quantitatively analyzed the reciprocal spatiotemporal contributions between the lower-back and knee of patients with left lower-back pain by means of Relative Power Contribution Analysis. When the insoles were worn, the contribution of the left and right knee relative to the left lower-back pain was up to 26% ( p<0.05) greater than without the insoles. Comparing patients with and without insoles, we found that the variance in the step response analysis of the left and right knee decreased by up to 67% ( p<0.05). This shows an increase in stability.
Measuring workplace travel behaviour: validity and reliability of survey questions.
Petrunoff, Nicholas A; Xu, Huilan; Rissel, Chris; Wen, Li Ming; van der Ploeg, Hidde P
2013-01-01
The purpose of this study was to assess the (previously untested) reliability and validity of survey questions commonly used to assess travel mode and travel time. Sixty-five respondents from a staff survey of travel behaviour conducted in a south-western Sydney hospital agreed to complete a travel diary for a week, wear an accelerometer over the same period, and twice complete an online travel survey an average of 21 days apart. The agreement in travel modes between the self-reported online survey and travel diary was examined with the kappa statistic. Spearman's correlation coefficient was used to examine agreement of travel time from home to workplace measured between the self-reported online survey and four-day travel diary. Moderate-to-vigorous physical activity (MVPA) time of active and nonactive travellers was compared by t-test. There was substantial agreement between travel modes (K = 0.62, P < 0.0001) and a moderate correlation for travel time (ρ = 0.75, P < 0.0001) reported in the travel diary and online survey. There was a high level of agreement for travel mode (K = 0.82, P < 0.0001) and travel time (ρ = 0.83, P < 0.0001) between the two travel surveys. Accelerometer data indicated that for active travellers, 16% of the journey-to-work time is MVPA, compared with 6% for car drivers. Active travellers were significantly more active across the whole workday. The survey question "How did you travel to work this week? If you used more than one transport mode specify the one you used for the longest (distance) portion of your journey" is reliable over 21 days and agrees well with a travel diary.
Gerage, Aline M.; Benedetti, Tania R. B.; Farah, Breno Q.; Santana, Fábio da S.; Ohara, David; Andersen, Lars B.; Ritti-Dias, Raphael M.
2015-01-01
Background Physical activity is recommended as a part of a comprehensive lifestyle approach in the treatment of hypertension, but there is a lack of data about the relationship between different intensities of physical activity and cardiovascular parameters in hypertensive patients. The purpose of this study was to investigate the association between the time spent in physical activities of different intensities and blood pressure levels, arterial stiffness and autonomic modulation in hypertensive patients. Methods In this cross-sectional study, 87 hypertensive patients (57.5 ± 9.9 years of age) had their physical activity assessed over a 7 day period using an accelerometer and the time spent in sedentary activities, light physical activities, moderate physical activities and moderate-to-vigorous physical activities was obtained. The primary outcomes were brachial and central blood pressure. Arterial stiffness parameters (augmentation index and pulse wave velocity) and cardiac autonomic modulation (sympathetic and parasympathetic modulation in the heart) were also obtained as secondary outcomes. Results Sedentary activities and light physical activities were positively and inversely associated, respectively, with brachial systolic (r = 0.56; P < 0.01), central systolic (r = 0.51; P < 0.05), brachial diastolic (r = 0.45; P < 0.01) and central diastolic (r = 0.42; P < 0.05) blood pressures, after adjustment for sex, age, trunk fat, number of antihypertensive drugs, accelerometer wear time and moderate-to-vigorous physical activities. Arterial stiffness parameters and cardiac autonomic modulation were not associated with the time spent in sedentary activities and in light physical activities (P > 0.05). Conclusion Lower time spent in sedentary activities and higher time spent in light physical activities are associated with lower blood pressure, without affecting arterial stiffness and cardiac autonomic modulation in hypertensive patients. PMID:26717310
Measuring Workplace Travel Behaviour: Validity and Reliability of Survey Questions
Petrunoff, Nicholas A.; Xu, Huilan; van der Ploeg, Hidde P.
2013-01-01
Background. The purpose of this study was to assess the (previously untested) reliability and validity of survey questions commonly used to assess travel mode and travel time. Methods. Sixty-five respondents from a staff survey of travel behaviour conducted in a south-western Sydney hospital agreed to complete a travel diary for a week, wear an accelerometer over the same period, and twice complete an online travel survey an average of 21 days apart. The agreement in travel modes between the self-reported online survey and travel diary was examined with the kappa statistic. Spearman's correlation coefficient was used to examine agreement of travel time from home to workplace measured between the self-reported online survey and four-day travel diary. Moderate-to-vigorous physical activity (MVPA) time of active and nonactive travellers was compared by t-test. Results. There was substantial agreement between travel modes (K = 0.62, P < 0.0001) and a moderate correlation for travel time (ρ = 0.75, P < 0.0001) reported in the travel diary and online survey. There was a high level of agreement for travel mode (K = 0.82, P < 0.0001) and travel time (ρ = 0.83, P < 0.0001) between the two travel surveys. Accelerometer data indicated that for active travellers, 16% of the journey-to-work time is MVPA, compared with 6% for car drivers. Active travellers were significantly more active across the whole workday. Conclusions. The survey question “How did you travel to work this week? If you used more than one transport mode specify the one you used for the longest (distance) portion of your journey” is reliable over 21 days and agrees well with a travel diary. PMID:23956757
Gupta, Nidhi; Christiansen, Caroline Stordal; Hanisch, Christiana; Bay, Hans; Burr, Hermann; Holtermann, Andreas
2017-01-01
Objectives To investigate the differences between a questionnaire-based and accelerometer-based sitting time, and develop a model for improving the accuracy of questionnaire-based sitting time for predicting accelerometer-based sitting time. Methods 183 workers in a cross-sectional study reported sitting time per day using a single question during the measurement period, and wore 2 Actigraph GT3X+ accelerometers on the thigh and trunk for 1–4 working days to determine their actual sitting time per day using the validated Acti4 software. Least squares regression models were fitted with questionnaire-based siting time and other self-reported predictors to predict accelerometer-based sitting time. Results Questionnaire-based and accelerometer-based average sitting times were ≈272 and ≈476 min/day, respectively. A low Pearson correlation (r=0.32), high mean bias (204.1 min) and wide limits of agreement (549.8 to −139.7 min) between questionnaire-based and accelerometer-based sitting time were found. The prediction model based on questionnaire-based sitting explained 10% of the variance in accelerometer-based sitting time. Inclusion of 9 self-reported predictors in the model increased the explained variance to 41%, with 10% optimism using a resampling bootstrap validation. Based on a split validation analysis, the developed prediction model on ≈75% of the workers (n=132) reduced the mean and the SD of the difference between questionnaire-based and accelerometer-based sitting time by 64% and 42%, respectively, in the remaining 25% of the workers. Conclusions This study indicates that questionnaire-based sitting time has low validity and that a prediction model can be one solution to materially improve the precision of questionnaire-based sitting time. PMID:28093433
Smith, Warren D; Bagley, Anita
2010-01-01
Children with cerebral palsy may have difficulty walking and may fall frequently, resulting in a decrease in their participation in school and community activities. It is desirable to assess the effectiveness of mobility therapies for these children on their functioning during everyday living. Over 50 hours of tri-axial accelerometer and digital video recordings from 35 children with cerebral palsy and 51 typically-developing children were analyzed to develop algorithms for automatic real-time processing of the accelerometer signals to monitor a child's level of activity and to detect falls. The present fall-detection algorithm has 100% specificity and a sensitivity of 100% for falls involving trunk rotation. Sensitivities for drops to the knees and to the bottom are 72% and 78%, respectively. The activity and fall-detection algorithms were implemented in a miniature, battery-powered microcontroller-based activity/fall monitor that the child wears in a small fanny pack during everyday living. The monitor continuously logs 1-min. activity levels and the occurrence and characteristics of each fall for two-week recording sessions. Pre-therapy and post-therapy recordings from these monitors will be used to assess the efficacies of alternative treatments for gait abnormalities.
Step-Count Accuracy of 3 Motion Sensors for Older and Frail Medical Inpatients.
McCullagh, Ruth; Dillon, Christina; O'Connell, Ann Marie; Horgan, N Frances; Timmons, Suzanne
2017-02-01
To measure the step-count accuracy of an ankle-worn accelerometer, a thigh-worn accelerometer, and a pedometer in older and frail inpatients. Cross-sectional design study. Research room within a hospital. Convenience sample of inpatients (N=32; age, ≥65 years) who were able to walk 20m independently with or without a walking aid. Patients completed a 40-minute program of predetermined tasks while wearing the 3 motion sensors simultaneously. Video recording of the procedure provided the criterion measurement of step count. Mean percentage errors were calculated for all tasks, for slow versus fast walkers, for independent walkers versus walking-aid users, and over shorter versus longer distances. The intraclass correlation was calculated, and accuracy was graphically displayed by Bland-Altman plots. Thirty-two patients (mean age, 78.1±7.8y) completed the study. Fifteen (47%) were women, and 17 (51%) used walking aids. Their median speed was .46m/s (interquartile range [IQR], .36-.66m/s). The ankle-worn accelerometer overestimated steps (median error, 1% [IQR, -3% to 13%]). The other motion sensors underestimated steps (median error, 40% [IQR, -51% to -35%] and 38% [IQR -93% to -27%], respectively). The ankle-worn accelerometer proved to be more accurate over longer distances (median error, 3% [IQR, 0%-9%]) than over shorter distances (median error, 10% [IQR, -23% to 9%]). The ankle-worn accelerometer gave the most accurate step-count measurement and was most accurate over longer distances. Neither of the other motion sensors had acceptable margins of error. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Measuring physical activity during pregnancy.
Harrison, Cheryce L; Thompson, Russell G; Teede, Helena J; Lombard, Catherine B
2011-03-21
Currently, little is known about physical activity patterns in pregnancy with prior estimates predominantly based on subjective assessment measures that are prone to error. Given the increasing obesity rates and the importance of physical activity in pregnancy, we evaluated the relationship and agreement between subjective and objective physical activity assessment tools to inform researchers and clinicians on optimal assessment of physical activity in pregnancy. 48 pregnant women between 26-28 weeks gestation were recruited. The Yamax pedometer and Actigraph accelerometer were worn for 5-7 days under free living conditions and thereafter the International Physical Activity Questionnaire (IPAQ) was completed. IPAQ and pedometer estimates of activity were compared to the more robust and accurate accelerometer data. Of 48 women recruited, 30 women completed the study (mean age: 33.6 ± 4.7 years; mean BMI: 31.2 ± 5.1 kg/m(2)) and 18 were excluded (failure to wear [n = 8] and incomplete data [n = 10]). The accelerometer and pedometer correlated significantly on estimation of daily steps (ρ = 0.69, p < 0.01) and had good absolute agreement with low systematic error (mean difference: 505 ± 1498 steps/day). Accelerometer and IPAQ estimates of total, light and moderate Metabolic Equivalent minutes/day (MET min(-1) day(-1)) were not significantly correlated and there was poor absolute agreement. Relative to the accelerometer, the IPAQ under predicted daily total METs (105.76 ± 259.13 min(-1) day(-1)) and light METs (255.55 ± 128.41 min(-1) day(-1)) and over predicted moderate METs (-112.25 ± 166.41 min(-1) day(-1)). Compared with the accelerometer, the pedometer appears to provide a reliable estimate of physical activity in pregnancy, whereas the subjective IPAQ measure performed less accurately in this setting. Future research measuring activity in pregnancy should optimally encompass objective measures of physical activity. Australian New Zealand Clinical Trial Registry Number: ACTRN12608000233325. Registered 7/5/2008.
Measuring physical activity during pregnancy
2011-01-01
Background Currently, little is known about physical activity patterns in pregnancy with prior estimates predominantly based on subjective assessment measures that are prone to error. Given the increasing obesity rates and the importance of physical activity in pregnancy, we evaluated the relationship and agreement between subjective and objective physical activity assessment tools to inform researchers and clinicians on optimal assessment of physical activity in pregnancy. Methods 48 pregnant women between 26-28 weeks gestation were recruited. The Yamax pedometer and Actigraph accelerometer were worn for 5-7 days under free living conditions and thereafter the International Physical Activity Questionnaire (IPAQ) was completed. IPAQ and pedometer estimates of activity were compared to the more robust and accurate accelerometer data. Results Of 48 women recruited, 30 women completed the study (mean age: 33.6 ± 4.7 years; mean BMI: 31.2 ± 5.1 kg/m2) and 18 were excluded (failure to wear [n = 8] and incomplete data [n = 10]). The accelerometer and pedometer correlated significantly on estimation of daily steps (ρ = 0.69, p < 0.01) and had good absolute agreement with low systematic error (mean difference: 505 ± 1498 steps/day). Accelerometer and IPAQ estimates of total, light and moderate Metabolic Equivalent minutes/day (MET min-1 day-1) were not significantly correlated and there was poor absolute agreement. Relative to the accelerometer, the IPAQ under predicted daily total METs (105.76 ± 259.13 min-1 day-1) and light METs (255.55 ± 128.41 min-1 day-1) and over predicted moderate METs (-112.25 ± 166.41 min-1 day-1). Conclusion Compared with the accelerometer, the pedometer appears to provide a reliable estimate of physical activity in pregnancy, whereas the subjective IPAQ measure performed less accurately in this setting. Future research measuring activity in pregnancy should optimally encompass objective measures of physical activity. Trial Registration Australian New Zealand Clinical Trial Registry Number: ACTRN12608000233325. Registered 7/5/2008. PMID:21418609
Ferguson, Ty; Rowlands, Alex V; Olds, Tim; Maher, Carol
2015-03-27
Technological advances have seen a burgeoning industry for accelerometer-based wearable activity monitors targeted at the consumer market. The purpose of this study was to determine the convergent validity of a selection of consumer-level accelerometer-based activity monitors. 21 healthy adults wore seven consumer-level activity monitors (Fitbit One, Fitbit Zip, Jawbone UP, Misfit Shine, Nike Fuelband, Striiv Smart Pedometer and Withings Pulse) and two research-grade accelerometers/multi-sensor devices (BodyMedia SenseWear, and ActiGraph GT3X+) for 48-hours. Participants went about their daily life in free-living conditions during data collection. The validity of the consumer-level activity monitors relative to the research devices for step count, moderate to vigorous physical activity (MVPA), sleep and total daily energy expenditure (TDEE) was quantified using Bland-Altman analysis, median absolute difference and Pearson's correlation. All consumer-level activity monitors correlated strongly (r > 0.8) with research-grade devices for step count and sleep time, but only moderately-to-strongly for TDEE (r = 0.74-0.81) and MVPA (r = 0.52-0.91). Median absolute differences were generally modest for sleep and steps (<10% of research device mean values for the majority of devices) moderate for TDEE (<30% of research device mean values), and large for MVPA (26-298%). Across the constructs examined, the Fitbit One, Fitbit Zip and Withings Pulse performed most strongly. In free-living conditions, the consumer-level activity monitors showed strong validity for the measurement of steps and sleep duration, and moderate valid for measurement of TDEE and MVPA. Validity for each construct ranged widely between devices, with the Fitbit One, Fitbit Zip and Withings Pulse being the strongest performers.
The Effect of the Home Environment on Physical Activity and Dietary Intake in Preschool Children
Østbye, Truls; Malhotra, Rahul; Stroo, Marissa; Lovelady, Cheryl; Brouwer, Rebecca; Zucker, Nancy; Fuemmeler, Bernard
2013-01-01
Background The effects of the home environment on child health behaviors related to obesity are unclear. Purpose To examine the role of the home physical activity (PA) and food environment on corresponding outcomes in young children, and assess maternal education/work status as a moderator. Methods Overweight or obese mothers reported on the home PA and food environment (accessibility, role modeling and parental policies). Outcomes included child moderate-vigorous PA (MVPA) and sedentary time derived from accelerometer data and two dietary factors (“junk” and healthy food intake scores) based on factor analysis of mother-reported food intake. Linear regression models assessed the net effect (controlling for child demographics, study arm, supplemental timepoint, maternal education/work status, child body mass index and accelerometer wear-time (for PA outcomes)) of the home environment on the outcomes and moderation by maternal education/work status. Data was collected in North Carolina from 2007–2011. Results Parental policies supporting PA increased MVPA time, and limiting access to unhealthy foods increased the healthy food intake score. Role modeling of healthy eating behaviors increased the healthy food intake score among children of mothers with no college education. Among children of mothers with no college education and not working, limiting access to unhealthy foods and role modeling reduced “junk” food intake scores while parental policies supporting family meals increased “junk” food intake scores. Conclusions To promote MVPA, parental policies supporting child PA are warranted. Limited access to unhealthy foods and role modeling of healthy eating may improve the quality of the child’s food intake. PMID:23736357
Gupta, Nidhi; Christiansen, Caroline Stordal; Hanisch, Christiana; Bay, Hans; Burr, Hermann; Holtermann, Andreas
2017-01-16
To investigate the differences between a questionnaire-based and accelerometer-based sitting time, and develop a model for improving the accuracy of questionnaire-based sitting time for predicting accelerometer-based sitting time. 183 workers in a cross-sectional study reported sitting time per day using a single question during the measurement period, and wore 2 Actigraph GT3X+ accelerometers on the thigh and trunk for 1-4 working days to determine their actual sitting time per day using the validated Acti4 software. Least squares regression models were fitted with questionnaire-based siting time and other self-reported predictors to predict accelerometer-based sitting time. Questionnaire-based and accelerometer-based average sitting times were ≈272 and ≈476 min/day, respectively. A low Pearson correlation (r=0.32), high mean bias (204.1 min) and wide limits of agreement (549.8 to -139.7 min) between questionnaire-based and accelerometer-based sitting time were found. The prediction model based on questionnaire-based sitting explained 10% of the variance in accelerometer-based sitting time. Inclusion of 9 self-reported predictors in the model increased the explained variance to 41%, with 10% optimism using a resampling bootstrap validation. Based on a split validation analysis, the developed prediction model on ≈75% of the workers (n=132) reduced the mean and the SD of the difference between questionnaire-based and accelerometer-based sitting time by 64% and 42%, respectively, in the remaining 25% of the workers. This study indicates that questionnaire-based sitting time has low validity and that a prediction model can be one solution to materially improve the precision of questionnaire-based sitting time. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Comparison of self-reported versus accelerometer-measured physical activity.
Dyrstad, Sindre M; Hansen, Bjørge H; Holme, Ingar M; Anderssen, Sigmund A
2014-01-01
The International Physical Activity Questionnaire (IPAQ) is one of the most widely used questionnaires to assess physical activity (PA). Validation studies for the IPAQ have been executed, but still there is a need for studies comparing absolute values between IPAQ and accelerometer in large population studies. To compare PA and sedentary time from the self-administered, short version of the IPAQ with data from ActiGraph accelerometer in a large national sample. A total of 1751 adults (19-84 yr) wore an accelerometer (ActiGraph GT1M) for seven consecutive days and completed the IPAQ-Short Form. Sedentary time, total PA, and time spent in moderate to vigorous activity were compared in relation to sex, age, and education. Men and women reported, on average, 131 min·d (SE = 4 min·d) less sedentary time compared with the accelerometer measurements. The difference between self-reported and measured sedentary time and vigorous-intensity PA was greatest among men with a lower education level and for men 65 yr and older. Although men reported 47% more moderate to vigorous physical activity (MVPA) compared with women, there were no differences between sexes in accelerometer-determined MVPA. Accelerometer-determined moderate PA was reduced from 110 to 42 min·d (62%) when analyzed in blocks of 10 min (P < 0.0001) compared with 1-min blocks. The main correlation coefficients between self-reported variables and accelerometer measures of physical activity were between 0.20 and 0.46. The participants report through IPAQ-Short Form more vigorous PA and less sedentary time compared with the accelerometer. The difference between self-reported and accelerometer-measured MVPA increased with higher activity and intensity levels. Associations between the methods were affected by sex, age, and education, but not body mass index.
The association between the activity profile and cardiovascular risk.
Maddison, Ralph; Jiang, Yannan; Foley, Louise; Scragg, Robert; Direito, Artur; Olds, Timothy
2016-08-01
This study sought to better understand the interrelationships between physical activity and sedentary behaviour and the relationship to risk of cardiovascular disease (CVDR) in adults aged 30-75 years. Cross-sectional. Data from two-year waves (2003-2004 and 2005-2006) of the National Health and Nutritional Examination survey were analysed in 2014. Accelerometer-derived time and proportion of time spent sedentary and on moderate-to-vigorous physical activity (MVPA) were calculated to generate four activity profiles based on cut-points to define low and high levels for the respective behaviours. Using health outcome data, CVDR was calculated for each person. Weighted multiple linear regression models were used to evaluate the predicted effects of sedentary and physical activity behaviours on the CVDR score, adjusting for participants' sex, age group, race, annual household income, and accelerometer wear time. The lowest CVDR was observed among Busy Exercisers (high MVPA and low sedentary; 8.5%), whereas Couch Potatoes (low MVPA and high sedentary) had the highest (18.6%). Compared with the reference group (Busy Exercisers), the activity profile associated with the highest CVDR was Couch Potatoes (adjusted mean difference 3.6, SE 0.38, p<0.0001). A smoothed three-dimensional response surface "risk landscape" was developed to better visualise the conjoint associations of MVPA and sedentary behaviour on CVDR for each activity profile. The association between MVPA was greater than that of sedentary behaviour; however, for people with low MVPA, shifts in sedentary behaviour may have the greatest impact on CVDR. Activity profiles that consider the interrelationships between physical activity and sedentary behaviour differ in terms of CVDR. Future interventions may need to be tailored to specific profiles and be dynamic enough to reflect change in the profile over time. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Day length is associated with physical activity and sedentary behavior among older women.
Schepps, Mitchell A; Shiroma, Eric J; Kamada, Masamitsu; Harris, Tamara B; Lee, I-Min
2018-04-26
Physical activity may be influenced by one's physical environment, including day length and weather. Studies of physical activity, day length, and weather have primarily used self-reported activity, broad meteorological categorization, and limited geographic regions. We aim to examine the association of day length and physical activity in a large cohort of older women, covering a wide geographic range. Participants (N = 16,741; mean (SD) age = 72.0 (SD = 5.7) years) were drawn from the Women's Health Study and lived throughout the United States. Physical activity was assessed by accelerometer (ActiGraph GT3X+) between 2011 and 2015. Day length and weather information were obtained by matching weather stations to the participants' location using National Oceanic and Atmospheric Administration databases. Women who experienced day lengths greater than 14 hours had 5.5% more steps, 9.4% more moderate-to-vigorous physical activity, and 1.6% less sedentary behavior, compared to women who experienced day lengths less than 10 hours, after adjusting for age, accelerometer wear, temperature, and precipitation. Day length is associated with physical activity and sedentary behavior in older women, and needs to be considered in programs promoting physical activity as well as in the analyses of accelerometer data covering wide geographic regions.
Optimal Sensor Placement for Measuring Physical Activity with a 3D Accelerometer
Boerema, Simone T.; van Velsen, Lex; Schaake, Leendert; Tönis, Thijs M.; Hermens, Hermie J.
2014-01-01
Accelerometer-based activity monitors are popular for monitoring physical activity. In this study, we investigated optimal sensor placement for increasing the quality of studies that utilize accelerometer data to assess physical activity. We performed a two-staged study, focused on sensor location and type of mounting. Ten subjects walked at various walking speeds on a treadmill, performed a deskwork protocol, and walked on level ground, while simultaneously wearing five ProMove2 sensors with a snug fit on an elastic waist belt. We found that sensor location, type of activity, and their interaction-effect affected sensor output. The most lateral positions on the waist belt were the least sensitive for interference. The effect of mounting was explored, by making two subjects repeat the experimental protocol with sensors more loosely fitted to the elastic belt. The loose fit resulted in lower sensor output, except for the deskwork protocol, where output was higher. In order to increase the reliability and to reduce the variability of sensor output, researchers should place activity sensors on the most lateral position of a participant's waist belt. If the sensor hampers free movement, it may be positioned slightly more forward on the belt. Finally, sensors should be fitted tightly to the body. PMID:24553085
Acceptability and Feasibility of Physical Activity Assessment Methods for an Appalachian Population
Tarasenko, Yelena N.; Howell, Britteny M.; Studts, Christina R.; Strath, Scott J.; Schoenberg, Nancy E.
2015-01-01
Nowhere is improving understanding and accurate assessment of physical activity more important for disease prevention and health promotion than among health disparities populations such as those residing in rural and Appalachian regions. To enhance accurate assessment of physical activity and potentially improve intervention capacity, we conducted a mixed-methods study examining the acceptability and feasibility of self-report physical activity questionnaires, pedometers, and accelerometers among rural Appalachian children, adolescents, and adults. Most participants reported positive experiences with all three physical activity assessment tools. Several acceptability ratings differed by age group and by sex within each age group. With very few exceptions, no significant differences in acceptability were found by race, education, employment status, health status, BMI categories, income levels, or insurance status within age groups or overall. Several factors may impact the choice of the physical activity assessment method, including target population age, equipment cost, researcher burden, and potential influence on physical activity levels. Children and adolescents appear to have more constraints on when they can wear pedometers and accelerometers. While pedometers are inexpensive and convenient, they may influence physical activity levels, rather than simply measure them. Accelerometers, while less influential on behavior, consume extensive resources, including high purchase costs and researcher burden. PMID:25608476
Active school transport and weekday physical activity in 9–11-year-old children from 12 countries
Denstel, K D; Broyles, S T; Larouche, R; Sarmiento, O L; Barreira, T V; Chaput, J-P; Church, T S; Fogelholm, M; Hu, G; Kuriyan, R; Kurpad, A; Lambert, E V; Maher, C; Maia, J; Matsudo, V; Olds, T; Onywera, V; Standage, M; Tremblay, M S; Tudor-Locke, C; Zhao, P; Katzmarzyk, P T
2015-01-01
OBJECTIVES: Active school transport (AST) may increase the time that children spend in physical activity (PA). This study examined relationships between AST and weekday moderate-to-vigorous physical activity (MVPA), light physical activity (LPA), sedentary time (SED) and total activity during naturally organized time periods (daily, before school, during school and after school) in a sample of children from 12 countries. METHODS: The sample included 6224 children aged 9–11 years. PA and sedentary time were objectively measured using Actigraph accelerometers. AST was self-reported by participants. Multilevel generalized linear and logistic regression statistical models were used to determine associations between PA, SED and AST across and within study sites. RESULTS: After adjustment for age, highest parental educational attainment, BMI z-score and accelerometer wear time, children who engaged in AST accumulated significantly more weekday MVPA during all studied time periods and significantly less time in LPA before school compared with children who used motorized transport to school. AST was unrelated to time spent in sedentary behaviors. Across all study sites, AST was associated with 6.0 min (95% confidence interval (CI): 4.7–7.3; P<0.0001) more of weekday MVPA; however, there was some evidence that this differed across study sites (P for interaction=0.06). Significant positive associations were identified within 7 of 12 study sites, with differences ranging from 4.6 min (95% CI: 0.3–8.9; P=0.04, in Canada) to 10.2 min (95% CI: 5.9–14.4; P<0.0001, in Brazil) more of daily MVPA among children who engaged in AST compared with motorized transport. CONCLUSIONS: The present study demonstrated that AST was associated with children spending more time engaged in MVPA throughout the day and less time in LPA before school. AST represents a good behavioral target to increase levels of PA in children. PMID:27152177
Hamer, Mark; Aggio, Daniel; Knock, Georgina; Kipps, Courtney; Shankar, Aparna; Smith, Lee
2017-06-07
The physical school environment is a promising setting to increase children's physical activity although robust evidence is sparse. We examined the effects of major playground reconstruction on physical activity and sedentary time in primary schools using a quasi-experimental design (comparison group pre-test/post-test design). Five experimental and two control schools from deprived areas of inner city London were recruited at baseline. Main outcome was physical activity and sedentary time measured from objective monitoring (Actigraph accelerometer) at one year follow up. Pupils' impressions of the new playground were qualitatively assessed post construction. A total of 347 pupils (mean age = 8 years, 55% boys; 36% Caucasian) were recruited into the study at baseline; 303 provided valid baseline Actigraph data. Of those, 231 (76%) completed follow-up (n = 169 intervention; n = 62 control) and 77.4% of the sample recorded at least 4 days of Actigraph wear. In mixed models adjusted for age, sex, ethnicity, ratio activity or sedentary/wear time at baseline, wear time at follow up, and school, no differences were observed in total moderate - vigorous activity (B = -1.4, 95% CI, -7.1, 4.2 min/d), light activity (B = 4.1, 95% CI, -17.9, 26.1), or sedentary time (B = -3.8, 95% CI, -29.2, 21.6 min/d) between groups. There were significant age interactions for sedentary (p = 0.002) and light intensity physical activity (p = 0.008). We observed significant reductions in total sedentary (-28.0, 95% CI, -1.9, -54.1 min/d, p = 0.037) and increases in total light intensity activity (24.6, 95% CI, 0.3, 48.9 min/d, p = 0.047) for children aged under 9 yrs. old in the intervention. Major playground reconstruction had limited effects on physical activity, but reduced sedentary time was observed in younger children. Qualitative data suggested that the children enjoyed the new playgrounds and experienced a perceived positive change in well-being and social interactions.
Hinkley, Trina; Timperio, Anna; Salmon, Jo; Hesketh, Kylie
2017-04-01
Little is known about the associations of preschoolers' health behaviors with their later psychosocial wellbeing. This study investigates the association of 3- to 5-year-old children's physical activity and electronic media use with their later social-emotional skills (6-8 years). Data were collected in 2008-2009 and 2011-2012 for the Healthy Active Preschool and Primary Years (HAPPY) Study in metropolitan Melbourne. Participants were a random subsample (n = 108) of the 567 children at follow-up. Physical activity was objectively measured using ActiGraph GT1M accelerometers; electronic media use (television viewing, sedentary electronic games and active electronic games) was parent proxy-reported. Social and emotional skills were child-reported using the Bar-On Emotional Quotient Inventory-Youth Version. Regression analyses controlled for sex, clustering by center of recruitment, and accelerometer wear time (for physical activity analyses). Sedentary electronic games were positively associated with intrapersonal and stress management skills and total emotional quotient. Computer/internet use was inversely associated with interpersonal, and positively associated with stress management, skills. Findings suggest that physical activity is not associated with children's psychosocial health while some types of electronic media use are. Future research should investigate the contexts in which preschoolers participate in these behaviors and potential causal mechanisms of associations.
Feature selection for elderly faller classification based on wearable sensors.
Howcroft, Jennifer; Kofman, Jonathan; Lemaire, Edward D
2017-05-30
Wearable sensors can be used to derive numerous gait pattern features for elderly fall risk and faller classification; however, an appropriate feature set is required to avoid high computational costs and the inclusion of irrelevant features. The objectives of this study were to identify and evaluate smaller feature sets for faller classification from large feature sets derived from wearable accelerometer and pressure-sensing insole gait data. A convenience sample of 100 older adults (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, left and right shanks. Feature selection was performed using correlation-based feature selection (CFS), fast correlation based filter (FCBF), and Relief-F algorithms. Faller classification was performed using multi-layer perceptron neural network, naïve Bayesian, and support vector machine classifiers, with 75:25 single stratified holdout and repeated random sampling. The best performing model was a support vector machine with 78% accuracy, 26% sensitivity, 95% specificity, 0.36 F1 score, and 0.31 MCC and one posterior pelvis accelerometer input feature (left acceleration standard deviation). The second best model achieved better sensitivity (44%) and used a support vector machine with 74% accuracy, 83% specificity, 0.44 F1 score, and 0.29 MCC. This model had ten input features: maximum, mean and standard deviation posterior acceleration; maximum, mean and standard deviation anterior acceleration; mean superior acceleration; and three impulse features. The best multi-sensor model sensitivity (56%) was achieved using posterior pelvis and both shank accelerometers and a naïve Bayesian classifier. The best single-sensor model sensitivity (41%) was achieved using the posterior pelvis accelerometer and a naïve Bayesian classifier. Feature selection provided models with smaller feature sets and improved faller classification compared to faller classification without feature selection. CFS and FCBF provided the best feature subset (one posterior pelvis accelerometer feature) for faller classification. However, better sensitivity was achieved by the second best model based on a Relief-F feature subset with three pressure-sensing insole features and seven head accelerometer features. Feature selection should be considered as an important step in faller classification using wearable sensors.
Milosevic, Matija; McConville, Kristiina M Valter
2012-01-01
Operation of handheld power tools results in exposure to hand-arm vibrations, which over time lead to numerous health complications. The objective of this study was to evaluate protective equipment and working techniques for the reduction of vibration exposure. Vibration transmissions were recorded during different work techniques: with one- and two-handed grip, while wearing protective gloves (standard, air and anti-vibration gloves) and while holding a foam-covered tool handle. The effect was examined by analyzing the reduction of transmitted vibrations at the wrist. The vibration transmission was recorded with a portable device using a triaxial accelerometer. The results suggest large and significant reductions of vibration with appropriate safety equipment. Reductions of 85.6% were achieved when anti-vibration gloves were used. Our results indicated that transmitted vibrations were affected by several factors and could be measured and significantly reduced.
Washington, Wendy Donlin; Banna, Kelly M; Gibson, Amanda L
2014-01-01
An estimated 30% of Americans meet the criteria for obesity. Effective, low-cost interventions to increase physical activity are needed to prevent and treat obesity. In this study, 11 healthy adults wore Fitbit accelerometers for 3 weeks. During the initial baseline, subjects earned prize draws for wearing the Fitbit. During intervention, percentile schedules were used to calculate individual prize-draw criteria. The final week was a return to baseline. Four subjects increased step counts as a result of the intervention. A bout analysis of interresponse times revealed that subjects increased overall step counts by increasing daily minutes active and within-bout response rates and decreasing pauses between bouts of activity. Strategies to improve effectiveness are suggested, such as modification of reinforcement probability and amount and identification of the function of periods of inactivity. © Society for the Experimental Analysis of Behavior.
Li, Meina; Kwak, Keun-Chang; Kim, Youn Tae
2016-01-01
Conventionally, indirect calorimetry has been used to estimate oxygen consumption in an effort to accurately measure human body energy expenditure. However, calorimetry requires the subject to wear a mask that is neither convenient nor comfortable. The purpose of our study is to develop a patch-type sensor module with an embedded incremental radial basis function neural network (RBFNN) for estimating the energy expenditure. The sensor module contains one ECG electrode and a three-axis accelerometer, and can perform real-time heart rate (HR) and movement index (MI) monitoring. The embedded incremental network includes linear regression (LR) and RBFNN based on context-based fuzzy c-means (CFCM) clustering. This incremental network is constructed by building a collection of information granules through CFCM clustering that is guided by the distribution of error of the linear part of the LR model. PMID:27669249
Determining Resident Sleep During and After Call With Commercial Sleep Monitoring Devices.
Morhardt, Duncan R; Luckenbaugh, Amy; Goldstein, Cathy; Faerber, Gary J
2017-08-01
To demonstrate that commercial activity monitoring devices (CAMDs) are practical for monitoring resident sleep while on call. Studies that have directly monitored resident sleep are limited, likely owing to both cost and difficulty in study interpretation. The advent of wearable CAMDs that estimate sleep presents the opportunity to more readily evaluate resident sleep in physically active settings and "home call," a coverage arrangement familiar to urology programs. Twelve urology residents were outfitted with Fitbit Flex devices during "home call" for a total of 57 (out of 64, or 89%) call or post-call night pairs. Residents were surveyed with the Stanford Sleepiness Scale (SSS), a single-question alertness survey. Time in bed (TIB) was "time to bed" to "rise for day." Fitbit accelerometers register activity as follows: (1) not moving; (2) minimal movement or restless; or (3) above threshold for accelerometer to register steps. Total sleep time (TST) was the number of minutes in level 1 activity during TIB. Sleep efficiency (SE) was defined as TST divided by TIB. While on call, 10 responding (of 12 available, 83%) residents on average reported TIB as 347 minutes, TST as 165 minutes, and had an SE of 47%. Interestingly, SSS responses did not correlate with sleep parameters. Post-call sleep demonstrated increases in TIB, SE, and TST (+23%, +15%, and +44%, respectively) while sleepiness was reduced by 22%. We demonstrate that urologic residents can consistently wear CAMDs while on home call. SSS did not correlate with Fitbit-estimated sleep duration. Further study with such devices may enhance sleep deprivation recognition to improve resident sleep. Copyright © 2017 Elsevier Inc. All rights reserved.
Deriving a GPS Monitoring Time Recommendation for Physical Activity Studies of Adults.
Holliday, Katelyn M; Howard, Annie Green; Emch, Michael; Rodríguez, Daniel A; Rosamond, Wayne D; Evenson, Kelly R
2017-05-01
Determining locations of physical activity (PA) is important for surveillance and intervention development, yet recommendations for using location recording tools like global positioning system (GPS) units are lacking. Specifically, no recommendation exists for the number of days study participants should wear a GPS to reliably estimate PA time spent in locations. This study used data from participants (N = 224, age = 18-85 yr) in five states who concurrently wore an ActiGraph GT1M accelerometer and a Qstarz BT-Q1000X GPS for three consecutive weeks to construct monitoring day recommendations through variance partitioning methods. PA bouts ≥10 min were constructed from accelerometer counts, and the location of GPS points was determined using a hand-coding protocol. Monitoring day recommendations varied by the type of location (e.g., participant homes vs parks) and the intensity of PA bouts considered (low and medium cut point moderate to vigorous PA [MVPA] bouts or high cut point vigorous PA [VPA] bouts). In general, minutes of all PA intensities spent in a given location could be measured with ≥80% reliability using 1-3 d of GPS monitoring for fitness facilities, schools, and footpaths. MVPA bout minutes in parks and roads required longer monitoring periods of 5-12 d. PA in homes and commercial areas required >19 d of monitoring. Twelve days of monitoring was found to reliably estimate minutes in both low and medium threshold MVPA as well as VPA bouts for many important built environment locations that can be targeted to increase PA at the population level. Minutes of PA in the home environment and commercial locations may be best assessed through other means given the lengthy estimated monitoring time required.
Estimating Energy Expenditure with ActiGraph GT9X Inertial Measurement Unit.
Hibbing, Paul R; Lamunion, Samuel R; Kaplan, Andrew S; Crouter, Scott E
2018-05-01
The purpose of this study was to explore whether gyroscope and magnetometer data from the ActiGraph GT9X improved accelerometer-based predictions of energy expenditure (EE). Thirty participants (mean ± SD: age, 23.0 ± 2.3 yr; body mass index, 25.2 ± 3.9 kg·m) volunteered to complete the study. Participants wore five GT9X monitors (right hip, both wrists, and both ankles) while performing 10 activities ranging from rest to running. A Cosmed K4b was worn during the trial, as a criterion measure of EE (30-s averages) expressed in METs. Triaxial accelerometer data (80 Hz) were converted to milli-G using Euclidean norm minus one (ENMO; 1-s epochs). Gyroscope data (100 Hz) were expressed as a vector magnitude (GVM) in degrees per second (1-s epochs) and magnetometer data (100 Hz) were expressed as direction changes per 5 s. Minutes 4-6 of each activity were used for analysis. Three two-regression algorithms were developed for each wear location: 1) ENMO, 2) ENMO and GVM, and 3) ENMO, GVM, and direction changes. Leave-one-participant-out cross-validation was used to evaluate the root mean square error (RMSE) and mean absolute percent error (MAPE) of each algorithm. Adding gyroscope to accelerometer-only algorithms resulted in RMSE reductions between 0.0 METs (right wrist) and 0.17 METs (right ankle), and MAPE reductions between 0.1% (right wrist) and 6.0% (hip). When direction changes were added, RMSE changed by ≤0.03 METs and MAPE by ≤0.21%. The combined use of gyroscope and accelerometer at the hip and ankles improved individual-level prediction of EE compared with accelerometer only. For the wrists, adding gyroscope produced negligible changes. The magnetometer did not meaningfully improve estimates for any algorithms.
Shadyab, Aladdin H.; Macera, Caroline A.; Shaffer, Richard A.; Jain, Sonia; Gallo, Linda C.; LaMonte, Michael J.; Reiner, Alexander P.; Kooperberg, Charles; Carty, Cara L.; Di, Chongzhi; Manini, Todd M.; Hou, Lifang; LaCroix, Andrea Z.
2017-01-01
Abstract Few studies have assessed the association of sedentary time with leukocyte telomere length (LTL). In a cross-sectional study conducted in 2012–2013, we examined associations of accelerometer-measured and self-reported sedentary time with LTL in a sample of 1,481 older white and African-American women from the Women's Health Initiative and determined whether associations varied by level of moderate- to vigorous-intensity physical activity (MVPA). The association between sedentary time and LTL was evaluated using multiple linear regression models. Women were aged 79.2 (standard deviation, 6.7) years, on average. Self-reported sedentary time was not associated with LTL. In a model adjusting for demographic characteristics, lifestyle behaviors, and health-related factors, among women at or below the median level of accelerometer-measured MVPA, those in the highest quartile of accelerometer-measured sedentary time had significantly shorter LTL than those in the lowest quartile, with an average difference of 170 base pairs (95% confidence interval: 4, 340). Accelerometer-measured sedentary time was not associated with LTL in women above the median level of MVPA. Findings suggest that, on the basis of accelerometer measurements, higher sedentary time may be associated with shorter LTL among less physically active women. PMID:28100466
Dong, Yun; Steins, Dax; Sun, Shanbin; Li, Fei; Amor, James D; James, Christopher J; Xia, Zhidao; Dawes, Helen; Izadi, Hooshang; Cao, Yi; Wade, Derick T
2018-03-09
Practicing activities improves recovery after stroke, but many people in hospital do little activity. Feedback on activity using an accelerometer is a potential method to increase activity in hospital inpatients. This study's goal is to investigate the effect of feedback, enabled by a Smart watch, on daily physical activity levels during inpatient stroke rehabilitation and the short-term effects on simple functional activities, primarily mobility. A randomized controlled trial will be undertaken within the stroke rehabilitation wards of the Second Affiliated hospital of Anhui University of Traditional Chinese Medicine, Hefei, China. The study participants will be stroke survivors who meet inclusion criteria for the study, primarily: able to participate, no more than 4 months after stroke and walking independently before stroke. Participants will all receive standard local rehabilitation and will be randomly assigned either to receive regular feedback about activity levels, relative to a daily goal tailored by the smart watch over five time periods throughout a working day, or to no feedback, but still wearing the Smart watch. The intervention will last up to 3 weeks, ending sooner if discharged. The data to be collected in all participants include measures of daily activity (Smart watch measure); mobility (Rivermead Mobility Index and 10-metre walking time); independence in personal care (Barthel Activities of Daily Living (ADL) Index); overall activities (the World Health Organization (WHO) Disability Assessment Scale, 12-item version); and quality of life (the Euro-Qol 5L5D). Data will be collected by assessors blinded to allocation of the intervention at baseline, 3 weeks or at discharge (whichever is the sooner); and a reduced data set will be collected at 12 weeks by telephone interview. The primary outcome will be change in daily accelerometer activity scores. Secondary outcomes are compliance and adherence to wearing the watch, and changes in mobility, independence in personal care activities, and health-related quality of life. This project is being implemented in a large city hospital with limited resources and limited research experience. There has been a pilot feasibility study using the Smart watch, which highlighted some areas needing change and these are incorporated in this protocol. ClinicalTrials.gov, NCT02587585 . Registered on 30 September 2015. Chinese Clinical Trial Registry, ChiCTR-IOR-15007179 . Registered on 8 August 2015.
Pfitzner, Rebecca; Gorzelniak, Lukas; Heinrich, Joachim; von Berg, Andrea; Klümper, Claudia; Bauer, Carl P.; Koletzko, Sibylle; Berdel, Dietrich; Horsch, Alexander; Schulz, Holger
2013-01-01
Introduction Surveillance of physical activity (PA) is increasingly based on accelerometry. However, data management guidelines are lacking. We propose an approach for combining accelerometry and diary based PA information for assessment of PA in adolescents and provide an example of this approach using data from German adolescents. Methods The 15-year-old participants comprised a subsample the GINIplus birth cohort (n = 328, 42.4% male). Data on PA was obtained from hip-worn accelerometers (ActiGraph GT3X) for seven consecutive days, combined with a prospective activity diary. Major aspects of data management were validity of wear time, handling of non-wear time and diary comments. After data cleaning, PA and percentage of adolescents meeting the recommendations for moderate-to-vigorous activity (MVPA) per day were determined. Results From the 2224 recorded days 493 days (25%) were invalid, mainly due to uncertainties relating to non-wear time (322 days). Ultimately, 269 of 328 subjects (82%) with valid data for at least three weekdays and one weekend day were included in the analysis. Mean MVPA per day was 39.1 minutes (SD ±25.0), with boys being more active than girls (41.8±21.5 minutes vs. 37.1±27.8 minutes, p<0.001). Accordingly, 24.7% of boys and 17.2% of girls (p<0.01) met the WHO recommendations for PA. School sport accounted for only 6% of weekly MVPA. In fact, most MVPA was performed during leisure time, with the majority of adolescents engaging in ball sports (25.4%) and endurance sports (19.7%). Girls also frequently reported dancing and gymnastics (23%). Conclusion For assessment of PA in adolescents, collecting both accelerometry and diary-based information is recommended. The diary is vital for the identification of invalid data and non-compliant participants. Preliminary results suggest that four out of five German adolescents do not meet WHO recommendations for PA and that school sport contributes only little to MVPA. PMID:23750243
Prediction of activity type in preschool children using machine learning techniques.
Hagenbuchner, Markus; Cliff, Dylan P; Trost, Stewart G; Van Tuc, Nguyen; Peoples, Gregory E
2015-07-01
Recent research has shown that machine learning techniques can accurately predict activity classes from accelerometer data in adolescents and adults. The purpose of this study is to develop and test machine learning models for predicting activity type in preschool-aged children. Participants completed 12 standardised activity trials (TV, reading, tablet game, quiet play, art, treasure hunt, cleaning up, active game, obstacle course, bicycle riding) over two laboratory visits. Eleven children aged 3-6 years (mean age=4.8±0.87; 55% girls) completed the activity trials while wearing an ActiGraph GT3X+ accelerometer on the right hip. Activities were categorised into five activity classes: sedentary activities, light activities, moderate to vigorous activities, walking, and running. A standard feed-forward Artificial Neural Network and a Deep Learning Ensemble Network were trained on features in the accelerometer data used in previous investigations (10th, 25th, 50th, 75th and 90th percentiles and the lag-one autocorrelation). Overall recognition accuracy for the standard feed forward Artificial Neural Network was 69.7%. Recognition accuracy for sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running was 82%, 79%, 64%, 36% and 46%, respectively. In comparison, overall recognition accuracy for the Deep Learning Ensemble Network was 82.6%. For sedentary activities, light activities and games, moderate-to-vigorous activities, walking, and running recognition accuracy was 84%, 91%, 79%, 73% and 73%, respectively. Ensemble machine learning approaches such as Deep Learning Ensemble Network can accurately predict activity type from accelerometer data in preschool children. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
2013-01-01
Background Regaining independent ambulation is the top priority for individuals recovering from stroke. Thus, physical rehabilitation post-stroke should focus on improving walking function and endurance. However, the amount of walking completed by individuals with stroke attending rehabilitation is far below that required for independent community ambulation. There has been increased interest in accelerometer-based monitoring of walking post-stroke. Walking monitoring could be integrated within the goal-setting process for those with ambulation goals in rehabilitation. The feedback from these devices can be downloaded to a computer to produce reports. The purpose of this study is to determine the effect of accelerometer-based feedback of daily walking activity during rehabilitation on the frequency and duration of walking post-stroke. Methods Participants will be randomly assigned to one of two groups: feedback or no feedback. Participants will wear accelerometers daily during in- and out-patient rehabilitation and, for participants in the feedback group, the participants’ treating physiotherapist will receive regular reports of walking activity. The primary outcome measures are the amount of daily walking completed, as measured using the accelerometers, and spatio-temporal characteristics of walking (e.g. walking speed). We will also examine goal attainment, satisfaction with progress towards goals, stroke self-efficacy, and community-integration. Discussion Increased walking activity during rehabilitation is expected to improve walking function and community re-integration following discharge. In addition, a focus on altering walking behaviour within the rehabilitation setting may lead to altered behaviour and increased activity patterns after discharge. Trial registration ClinicalTrials.gov NCT01521234 PMID:23865593
The use of MP3 recorders to log data from equine hoof mounted accelerometers.
Parsons, K J; Wilson, A M
2006-11-01
MP3 recorders are readily available, small, lightweight and low cost, providing the potential for logging analogue hoof mounted accelerometer signals for the characterisation of equine locomotion. These, however, require testing in practice. To test whether 1) multiple MP3 recorders can maintain synchronisation, giving the ability to synchronise independent recorders for the logging of multiple limbs simultaneously; and 2) features of a foot mounted accelerometer signal attributable to foot-on and foot-off can be accurately identified from horse foot mounted accelerometers logged directly into an MP3 recorder. Three experiments were performed: 1) Maintenance of synchronisation was assessed by counting the number of samples recorded by each of 4 MP3 recorders while mounted on a trotting horse and over 2 consecutive 30 min periods in 8 recorders on a bench. 2) Foot-on and foot-off times obtained from manual transcription of MP3 logged data and directly logged accelerometer signal were compared. 3) MP3/accelerometer acquisition units were used to log accelerometer signals from racehorses during extended training sessions. Mean absolute error of synchronisation between MP3 recorders was 10 samples per million (compared to mean number of samples, range 1-32 samples per million). Error accumulation showed a linear correlation with time. Features attributable to foot on and foot off were equally identifiable from the MP3 recorded signal over a range of equine gaits. Multiple MP3 recorders can be synchronised and used as a relatively cheap, robust, reliable and accurate logging system when combined with an accelerometer and external battery for the specific application of the measurement of stride timing variables across the range of equine gaits during field locomotion. Footfall timings can be used to identify intervals between the fore and hind contacts, the identification of diagonal advanced placement and to calculate stride timing variables (stance time, protraction time and stride time). These parameters are invaluable for the characterisation and assessment of equine locomotion.
Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System
NASA Technical Reports Server (NTRS)
Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.
2010-01-01
The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.
Healy, Genevieve N; Winkler, Elisabeth A H; Brakenridge, Charlotte L; Reeves, Marina M; Eakin, Elizabeth G
2015-01-01
To examine the associations of sedentary time and physical activity with biomarkers of cardiometabolic health, including the potential collective impact of shifting mean time use from less- to more-active behaviours (cross-sectionally, using isotemporal substitution), in adults with type 2 diabetes. Participants with overweight/obese body mass index (BMI; ≥25 kg/m2) (n = 279; 158 men, mean [SD] age = 58.2 [8.6] years) wore Actigraph GT1M accelerometers (waking hours; seven days) to assess moderate- to vigorous-intensity physical activity (MVPA), light-intensity activity, and sedentary time (segregated into non-prolonged [accumulated in bouts <30min] and prolonged [accumulated in bouts ≥30 min]). Cross-sectional associations with waist circumference, BMI, fasting blood (HbA1c, glucose, triacylglycerols, high-density lipoprotein cholesterol), and blood pressure of these activity variables (30 min/day increments) were examined adjusted for confounders and wear then, if significant, examined using isotemporal substitution modelling. Waist circumference and BMI were significantly (p<0.05) associated with more prolonged sedentary time and less light-intensity activity. Light intensity activity was also significantly associated with lower fasting plasma glucose (relative rate: 0.98, 95% CI: 0.97, 1.00; p<0.05). No biomarker was significantly associated with non-prolonged sedentary time or MVPA. Lower mean prolonged sedentary time (-30 min/day) with higher mean light intensity time (+30 min/day) was significantly associated with lower waist circumference (β = -0.77, 95% CI: -1.33, -0.22 cm). Lower mean prolonged sedentary time (-30 min/day) with either 30 min/day higher mean non-prolonged sedentary time (β = -0.35, 95%CI: -0.70, -0.01 kg/m2) or light-intensity time (β = -0.36, -0.61, -0.11 kg/m2) was associated with significantly lower average BMI. Significantly improved mean levels of waist circumference and BMI were observed when shifting time from prolonged sedentary to non-prolonged sedentary or light-intensity activity (cross-sectionally). Lifestyle interventions in overweight/obese adults with type 2 diabetes might consider targeting shifts in these non-MVPA activities to more rigorously evaluate their potential cardiometabolic benefit in this population.
Evolution of Friction, Wear, and Seismic Radiation Along Experimental Bi-material Faults
NASA Astrophysics Data System (ADS)
Carpenter, B. M.; Zu, X.; Shadoan, T.; Self, A.; Reches, Z.
2017-12-01
Faults are commonly composed by rocks of different lithologies and mechanical properties that are positioned against one another by fault slip; such faults are referred to as bimaterial-faults (BF). We investigate the mechanical behavior, wear production, and seismic radiation of BF via laboratory experiments on a rotary shear apparatus. In the experiments, two rock blocks of dissimilar or similar lithology are sheared against each other. We used contrasting rock pairs of a stiff, igneous block (diorite, granite, or gabbro) against a more compliant, sedimentary block (sandstone, limestone, or dolomite). The cylindrical blocks have a ring-shaped contact, and are loaded under conditions of constant normal stress and shear velocity. Fault behavior was monitored with stress, velocity and dilation sensors. Acoustic activity is monitored with four 3D accelerometers mounted at 2 cm distance from the experimental fault. These sensors can measure accelerations up to 500 g, and their full waveform output is recorded at 1MHz for periods up to 14 sec. Our preliminary results indicate that the bi-material nature of the fault has a strong affect on slip initiation, wear evolution, and acoustic emission activity. In terms of wear, we observe enhanced wear in experiments with a sandstone block sheared against a gabbro or limestone block. Experiments with a limestone or sandstone block produced distinct slickenline striations. Further, significant differences appeared in the number and amplitude of acoustic events depending on the bi-material setting and slip-distance. A gabbro-gabbro fault showed a decrease in both amplitude and number of acoustic events with increasing slip. Conversely, a gabbro-limestone fault showed a decrease in the number of events, but an increase in average event amplitude. Ongoing work focuses on advanced characterization of mechanical, dynamic weakening, and acoustic, frequency content, parameters.
Clustering of Health Behaviors and Cardiorespiratory Fitness Among U.S. Adolescents.
Hartz, Jacob; Yingling, Leah; Ayers, Colby; Adu-Brimpong, Joel; Rivers, Joshua; Ahuja, Chaarushi; Powell-Wiley, Tiffany M
2018-05-01
Decreased cardiorespiratory fitness (CRF) is associated with an increased risk of cardiovascular disease. However, little is known how the interaction of diet, physical activity (PA), and sedentary time (ST) affects CRF among adolescents. By using a nationally representative sample of U.S. adolescents, we used cluster analysis to investigate the interactions of these behaviors with CRF. We hypothesized that distinct clustering patterns exist and that less healthy clusters are associated with lower CRF. We used 2003-2004 National Health and Nutrition Examination Survey data for persons aged 12-19 years (N = 1,225). PA and ST were measured objectively by an accelerometer, and the American Heart Association Healthy Diet Score quantified diet quality. Maximal oxygen consumption (V˙O 2 max) was measured by submaximal treadmill exercise test. We performed cluster analysis to identify sex-specific clustering of diet, PA, and ST. Adjusting for accelerometer wear time, age, body mass index, race/ethnicity, and the poverty-to-income ratio, we performed sex-stratified linear regression analysis to evaluate the association of cluster with V˙O 2 max. Three clusters were identified for girls and boys. For girls, there was no difference across clusters for age (p = .1), weight (p = .3), and BMI (p = .5), and no relationship between clusters and V˙O 2 max. For boys, the youngest cluster (p < .01) had three healthy behaviors, weighed less, and was associated with a higher V˙O 2 max compared with the two older clusters. We observed clustering of diet, PA, and ST in U.S. adolescents. Specific patterns were associated with lower V˙O 2 max for boys, suggesting that our clusters may help identify adolescent boys most in need of interventions. Published by Elsevier Inc.
García-Hermoso, Antonio; Martínez-Vizcaíno, Vicente; Recio-Rodriguez, Jose I; Díez-Fernández, Ana; Gómez-Marcos, Manuel A; García-Ortiz, Luis
2016-01-01
The aim of the study was to analyze the relationship between moderate-to-vigorous physical activity (MVPA) and insulin resistance (IR) in Spanish adults and to examine whether this relationship is mediated by abdominal obesity (waist circumference - WC). The cross-sectional study included 1162 healthy subjects belonging to the EVIDENT study (mean age 55.0±13.3years; 61.8% women) from six different Spanish provinces. Moderate-to-vigorous physical activity (MVPA) was measured objectively over 7days using Actigraph accelerometers, collecting data in 60-second epochs, and retaining respondents with ≥4 valid days for the analysis. The homeostasis model of assessment (HOMA-IR) was used to determine IR, and its individual components - fasting glucose and insulin - were determined using standard protocols. Linear regression models were fitted according to Baron and Kenny's procedures for mediation analysis. Fasting insulin and HOMA-IR levels were significantly worse in adults who spent fewer minutes in MVPA (first quartile≤30.1 and 22.7min/day in men and women, respectively) after adjusting for age, sex, smoking habits, drinking habits, accelerometer wear time, sedentary time, and Mediterranean diet adherence. However, when WC was added to the ANCOVA models as a covariate, the effects disappeared. Mediation analysis reported that WC acts as a full mediator in the relationship between MVPA and IR (HOMA-IR and fasting insulin). These findings show that WC plays a pivotal role in the relationship between MVPA and IR, and therefore highlights that decreasing abdominal obesity might be considered as an intermediate outcome for evaluating interventions aimed at preventing diabetes mellitus. Copyright © 2015 Elsevier Inc. All rights reserved.
Marmeleira, José; Ferreira, Soraia; Raimundo, Armando
2017-12-15
Physical activity and physical fitness are important for health, functional mobility and performance of everyday activities. To date, little attention has been given to physical activity and physical fitness among nursing home residents with cognitive impairment. Therefore, the main aim of this study was to examine physical activity behavior and physical fitness of institutionalized older adults with cognitive impairment and to investigate their interrelations. Forty-eight older adults with cognitive impairment (83.9±7.7years; 72.9% women) and 22 without cognitive impairment (82.2±8.8years; 54.5% women) participated. Physical activity was objectively assessed with accelerometers and physical fitness components (muscular strength, flexibility, balance, body composition and reaction time) were evaluated with physical fitness field tests. Nursing home residents with cognitive impairment spent only ~1min per day in moderate physical activity and ~89min in light physical activity. In average they accumulated 863 (±599) steps per day and spent 87.2% of the accelerometer wear time in sedentary behavior. Participants' physical fitness components were markedly low and according to the cut-offs used for interpreting the results a great number of nursing home residents had an increased risk of associated health problems, functional impairment and of falling. The performance in some physical fitness tests was positively associated with physical activity. Participants without cognitive impairment had higher levels of physical activity and physical fitness than their counterparts with cognitive impairment. These results indicate that nursing home residents, especially those with cognitive impairment, have low levels of physical activity, spent a high proportion of daytime in sedentary behavior and have low physical fitness. Nursing homes should implement health promotion strategies targeting physical activity and physical fitness of their residents. Copyright © 2017 Elsevier Inc. All rights reserved.
Scholes, Shaun; Coombs, Ngaire; Pedisic, Zeljko; Mindell, Jennifer S; Bauman, Adrian; Rowlands, Alex V; Stamatakis, Emmanuel
2014-06-15
The criterion validity of the 2008 Physical Activity and Sedentary Behavior Assessment Questionnaire (PASBAQ) was examined in a nationally representative sample of 2,175 persons aged ≥16 years in England using accelerometry. Using accelerometer minutes/day greater than or equal to 200 counts as a criterion, Spearman's correlation coefficient (ρ) for PASBAQ-assessed total activity was 0.30 (95% confidence interval (CI): 0.25, 0.35) in women and 0.20 (95% CI: 0.15, 0.26) in men. Correlations between accelerometer counts/minute of wear time and questionnaire-assessed relative energy expenditure (metabolic equivalent-minutes/day) were higher in women (ρ = 0.41, 95% CI: 0.36, 0.46) than in men (ρ = 0.32, 95% CI: 0.26, 0.38). Similar correlations were observed for minutes/day spent in vigorous activity (women: ρ = 0.39, 95% CI: 0.33, 0.46; men: ρ = 0.31, 95% CI: 0.26, 0.36) and moderate-to-vigorous activity (women: ρ = 0.42, 95% CI: 0.36, 0.48; men: ρ = 0.38, 95% CI: 0.32, 0.45). Correlations for time spent being sedentary (<100 counts/minute) were 0.30 (95% CI: 0.24, 0.35) and 0.25 (95% CI: 0.19, 0.30) in women and men, respectively. Sedentary behavior correlations showed no sex difference. The validity of sedentary behavior and total physical activity was higher in older age groups, but validity was higher in younger persons for vigorous-intensity activity. The PASBAQ is a useful and valid instrument for ranking individuals according to levels of physical activity and sedentary behavior. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.
Scholes, Shaun; Coombs, Ngaire; Pedisic, Zeljko; Mindell, Jennifer S.; Bauman, Adrian; Rowlands, Alex V.; Stamatakis, Emmanuel
2014-01-01
The criterion validity of the 2008 Physical Activity and Sedentary Behavior Assessment Questionnaire (PASBAQ) was examined in a nationally representative sample of 2,175 persons aged ≥16 years in England using accelerometry. Using accelerometer minutes/day greater than or equal to 200 counts as a criterion, Spearman's correlation coefficient (ρ) for PASBAQ-assessed total activity was 0.30 (95% confidence interval (CI): 0.25, 0.35) in women and 0.20 (95% CI: 0.15, 0.26) in men. Correlations between accelerometer counts/minute of wear time and questionnaire-assessed relative energy expenditure (metabolic equivalent-minutes/day) were higher in women (ρ = 0.41, 95% CI: 0.36, 0.46) than in men (ρ = 0.32, 95% CI: 0.26, 0.38). Similar correlations were observed for minutes/day spent in vigorous activity (women: ρ = 0.39, 95% CI: 0.33, 0.46; men: ρ = 0.31, 95% CI: 0.26, 0.36) and moderate-to-vigorous activity (women: ρ = 0.42, 95% CI: 0.36, 0.48; men: ρ = 0.38, 95% CI: 0.32, 0.45). Correlations for time spent being sedentary (<100 counts/minute) were 0.30 (95% CI: 0.24, 0.35) and 0.25 (95% CI: 0.19, 0.30) in women and men, respectively. Sedentary behavior correlations showed no sex difference. The validity of sedentary behavior and total physical activity was higher in older age groups, but validity was higher in younger persons for vigorous-intensity activity. The PASBAQ is a useful and valid instrument for ranking individuals according to levels of physical activity and sedentary behavior. PMID:24863551
Phillips, Siobhan M; McAuley, Edward
2013-05-01
Physical activity is associated with reductions in fatigue in breast cancer survivors. However, mechanisms underlying this relationship are not well-understood. The purpose of this study was to longitudinally test a model examining the role of self-efficacy and depression as potential mediators of the relationship between physical activity and fatigue in a sample of breast cancer survivors using both self-report and objective measures of physical activity. All participants (N = 1,527) completed self-report measures of physical activity, self-efficacy, depression, and fatigue at baseline and 6 months. A subsample was randomly selected to wear an accelerometer at both time points. It was hypothesized that physical activity indirectly influences fatigue via self-efficacy and depression. Relationships among model constructs were examined over the 6-month period using panel analysis within a covariance modeling framework. The hypothesized model provided a good model-data fit (χ(2) = 599.66, df = 105, P ≤ 0.001; CFI = 0.96; SRMR = 0.02) in the full sample when controlling for covariates. At baseline, physical activity indirectly influenced fatigue via self-efficacy and depression. These relationships were also supported across time. In addition, the majority of the hypothesized relationships were supported in the subsample with accelerometer data (χ(2) = 387.48, df = 147, P ≤ 0.001, CFI = 0.94, SRMR = 0.04). This study provides evidence to suggest the relationship between physical activity and fatigue in breast cancer survivors may be mediated by more proximal, modifiable outcomes of physical activity participation. Recommendations are made relative to future applications and research concerning these relationships.
Phillips, Siobhan M; Lloyd, Gillian R; Awick, Elizabeth A; McAuley, Edward
2017-09-01
Many breast cancer survivors report cancer and cancer treatment-associated cognitive change. However, very little is known about the relationship between physical activity and subjective memory impairment (SMI) in this population. The purpose of this study is to examine the relationship between physical activity and SMI and longitudinally test a model examining the role of self-efficacy, fatigue and distress as potential mediators. Post-treatment breast cancer survivors (N = 1477) completed measures of physical activity, self-efficacy, distress (depression, concerns about recurrence, perceived stress, anxiety), fatigue and SMI at baseline and 6-month follow-up. A subsample (n = 362) was randomly selected to wear an accelerometer. It was hypothesized that physical activity indirectly influences SMI via exercise self-efficacy, distress and fatigue. Relationships were examined using panel analysis within a covariance modeling framework. The hypothesized model provided a good fit in the full sample (χ 2 = 1462.5, df = 469, p = <0.001; CFI = 0.96; SRMR = 0.04) and the accelerometer subsample (χ2 = 961.8, df = 535, p = <0.001, CFI = 0.94, SRMR = 0.05) indicating increased physical activity is indirectly associated with reduction in SMI across time, via increased exercise self-efficacy and reduced distress and fatigue. Higher levels of physical activity, lower levels of fatigue and distress and higher exercise self-efficacy may play an important role in understanding SMI in breast cancer survivors across time. Future research is warranted to replicate and explore these relationships further. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
School-day and overall physical activity among youth.
Long, Michael W; Sobol, Arthur M; Cradock, Angie L; Subramanian, S V; Blendon, Robert J; Gortmaker, Steven L
2013-08-01
Increasing school-day physical activity through policy and programs is commonly suggested to prevent obesity and improve overall child health. However, strategies that focus on school-day physical activity may not increase total physical activity if youth compensate by reducing physical activity outside of school. Objectively measured, nationally representative physical activity data were used to test the hypothesis that higher school-day physical activity is associated with higher overall daily physical activity in youth. Accelerometer data from 2003-2004/2005-2006 National Health and Nutrition Examination Surveys were analyzed in 2012 to estimate physical activity levels during the school day (8AM-3PM) among youth aged 6-19 years (n=2548). Fixed-effects regressions were used to estimate the impact of changes in school-day minutes of moderate-to-vigorous physical activity (MVPA) on changes in total daily MVPA. Each additional minute of school-day MVPA was associated with an additional 1.14 minutes (95% CI=1.04, 1.24; p<0.001) of total daily MVPA, or 0.14 additional minutes (95% CI=0.04, 0.24; p=0.008) outside the school day, controlling for total daily accelerometer wear time and age, gender, race/ethnicity, and other non-time varying covariates. There were no differences in the effect of school-day MVPA on total MVPA by age group, gender, race/ethnicity, poverty status, or degree of change in MVPA. Higher school-day MVPA was associated with higher daily MVPA among U.S. youth with no evidence for same-day "compensation." Increasing school-based physical activity is a promising approach that can improve total daily physical activity levels of youth. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
2011-03-01
b b are additive accelerometer and gyro noises and w b abias and wbbbias are accelerometer bias and gyro bias noises. These will described in further...order accelerometer bias time constant and w b abias is the additive accelerometer bias noise, and ḃb = − 1 τb bb +wbbbias (2.43) where τb is the first
Chu, Anne H. Y.; Ng, Sheryl H. X.; Koh, David; Müller-Riemenschneider, Falk
2015-01-01
Objective The Global Physical Activity Questionnaire (GPAQ) was originally designed to be interviewer-administered by the World Health Organization in assessing physical activity. The main aim of this study was to compare the psychometric properties of a self-administered GPAQ with the original interviewer-administered approach. Additionally, this study explored whether using different accelerometry-based physical activity bout definitions might affect the questionnaire’s validity. Methods A total of 110 participants were recruited and randomly allocated to an interviewer- (n = 56) or a self-administered (n = 54) group for test-retest reliability, of which 108 participants who met the wear time criteria were included in the validity study. Reliability was assessed by administration of questionnaires twice with a one-week interval. Criterion validity was assessed by comparing against seven-day accelerometer measures. Two definitions for accelerometry-data scoring were employed: (1) total-min of activity, and (2) 10-min bout. Results Participants had similar baseline characteristics in both administration groups and no significant difference was found between the two formats in terms of validity (correlations between the GPAQ and accelerometer). For validity, the GPAQ demonstrated fair-to-moderate correlations for moderate-to-vigorous physical activity (MVPA) for self-administration (r s = 0.30) and interviewer-administration (r s = 0.46). Findings were similar when considering 10-min activity bouts in the accelerometer analysis for MVPA (r s = 0.29 vs. 0.42 for self vs. interviewer). Within each mode of administration, the strongest correlations were observed for vigorous-intensity activity. However, Bland-Altman plots illustrated bias toward overestimation for higher levels of MVPA, vigorous- and moderate-intensity activities, and underestimation for lower levels of these measures. Reliability for MVPA revealed moderate correlations (r s = 0.61 vs. 0.63 for self vs. interviewer). Conclusions Our findings showed comparability between both self- and interviewer-administration modes of the GPAQ. The GPAQ in general but especially the self-administered version may offer a relatively inexpensive method for measuring physical activity of various types and at different domains. However, there may be bias in the GPAQ measurements depending on the overall physical activity. It is advisable to incorporate accelerometers in future studies, particularly when measuring different intensities of physical activity. PMID:26327457
Fukushima, Noritoshi; Kitabayashi, Makiko; Kikuchi, Hiroyuki; Sasai, Hiroyuki; Oka, Koichiro; Nakata, Yoshio; Tanaka, Shigeho; Inoue, Shigeru
2018-05-25
The times spent in sedentary behavior (SB) and moderate-to-vigorous physical activity (MVPA) are independently associated with health outcomes; however, objective data on physical activity levels including SB among different occupations is limited. We compared accelerometer-measured times spent in SB, light-intensity physical activity (LPA), and MVPA, and the patterns associated with prolonged bouts of SB between white- and blue-collar workers. The study population consisted of 102 full-time plant workers (54 white-collar and 48 blue-collar) who wore a triaxial accelerometer during waking hours for 5 working days. Accelerometer-measured activity levels were categorized as SB (≤1.5 metabolic equivalents (METs)), LPA (1.6-2.9 METs), and MVPA (≥3.0 METs). A sedentary bout was defined as consecutive minutes during which the accelerometer registered less than ≤1.5 METs. Accelerometer variables were compared between white- and blue-collar workers through analysis of covariance. During working hours, white-collar workers spent significantly more time in SB and less time in LPA than blue-collar workers (SB: 6.4 h vs. 4.8 h, 73% vs. 55% of total work time; LPA: 1.9 h vs. 3.5 h, 22% vs. 40% of total work time, p<.001), whereas the MVPA time was similar between the groups. White-collar workers spent significantly more SB time in prolonged sedentary bouts (≥30 min) compared to blue-collar workers. During leisure time, the SB, LPA, and MVPA times were similar between the groups. White-collar workers have significantly longer SB times than blue-collar workers during work hours, and do not compensate for their excess SB during work by reducing SB during leisure time.
Arnardottir, Nanna Yr; Oskarsdottir, Nina Dora; Brychta, Robert J; Koster, Annemarie; van Domelen, Dane R; Caserotti, Paolo; Eiriksdottir, Gudny; Sverrisdottir, Johanna E; Johannsson, Erlingur; Launer, Lenore J; Gudnason, Vilmundur; Harris, Tamara B; Chen, Kong Y; Sveinsson, Thorarinn
2017-10-21
In Iceland, there is a large variation in daylight between summer and winter. The aim of the study was to identify how this large variation influences physical activity (PA) and sedentary behavior (SB). Free living PA was measured by a waist-worn accelerometer for one week during waking hours in 138 community-dwelling older adults (61.1% women, 80.3 ± 4.9 years) during summer and winter months. In general, SB occupied about 75% of the registered wear-time and was highly correlated with age (β = 0.36). Although the differences were small, more time was spent during the summer in all PA categories, except for the moderate-to-vigorous PA (MVPA), and SB was reduced. More lifestyle PA (LSPA) was accumulated in ≥5-min bouts during summer than winter, especially among highly active participants. This information could be important for policy makers and health professionals working with older adults. Accounting for seasonal difference is necessary in analyzing SB and PA data.
Oreskovic, Nicolas M; Blossom, Jeff; Field, Alison E; Chiang, Sylvia R; Winickoff, Jonathan P; Kleinman, Ronald E
2012-05-01
National trends indicate that children and adolescents are not achieving sufficient levels of physical activity. Combining global positioning system (GPS) technology with accelerometers has the potential to provide an objective determination in locations where youth engage in physical activity. The aim of this study was to identify the optimal methods for collecting combined accelerometer and GPS data in youth, to best locate where children spend time and are physically active. A convenience sample of 24 mid-school children in Massachusetts was included. Accelerometers and GPS units were used to quantify and locate childhood physical activity over 5 weekdays and 2 weekend days. Accelerometer and GPS data were joined by time and mapped with a geographical information system (GIS) using ArcGIS software. Data were collected in winter, spring, summer in 2009-2010, collecting a total of 26,406 matched datapoints overall. Matched data yield was low (19.1% total), regardless of season (winter, 12.8%; spring, 30.1%; summer, 14.3%). Teacher-provided, pre-charged equipment yielded the most matched (30.1%; range: 10.1-52.3%) and greatest average days (6.1 days) of data. Across all seasons, children spent most of their time at home. Outdoor use patterns appeared to vary by season, with street use increasing in spring, and park and playground use increasing in summer. Children spent equal amounts of physical activity time at home and walking in the streets. Overall, the various methods for combining GPS and accelerometer data provided similarly low amounts of combined data. No combined GPS and accelerometer data collection method proved superior in every data return category, but use of GIS to map joined accelerometer and GPS data can demarcate childhood physical activity locations.
Song, Sangho; Kim, Hyun Chan; Kim, Jung Woong; Kim, Debora
2017-01-01
Miniaturized accelerometers are necessary for evaluating the performance of small devices, such as haptics, robotics and simulators. In this study, we fabricated miniaturized accelerometers using well-aligned ZnO nanowires. The layer of ZnO nanowires is used for active piezoelectric layer of the accelerometer, and copper was chosen as a head mass. Seedless and refresh hydrothermal synthesis methods were conducted to grow ZnO nanowires on the copper substrate and the effect of ZnO nanowire length on the accelerometer performance was investigated. The refresh hydrothermal synthesis exhibits longer ZnO nanowires, 12 µm, than the seedless hydrothermal synthesis, 6 µm. Performance of the fabricated accelerometers was verified by comparing with a commercial accelerometer. The sensitivity of the fabricated accelerometer by the refresh hydrothermal synthesis is shown to be 37.7 pA g−1, which is about 30 times larger than the previous result. PMID:28989760
Lee, Joey A; Williams, Skip M; Brown, Dale D; Laurson, Kelly R
2015-01-01
Activity monitors are frequently used to assess activity in many settings. But as technology advances, so do the mechanisms used to estimate activity causing a continuous need to validate newly developed monitors. The purpose of this study was to examine the step count validity of the Yamax Digiwalker SW-701 pedometer (YX), Omron HJ-720 T pedometer (OP), Polar Active accelerometer (PAC) and Actigraph gt3x+ accelerometer (AG) under controlled and free-living conditions. Participants completed five stages of treadmill walking (n = 43) and a subset of these completed a 3-day free-living wear period (n = 37). Manually counted (MC) steps provided a criterion measure for treadmill walking, whereas the comparative measure during free-living was the YX. During treadmill walking, the OP was the most accurate monitor across all speeds (±1.1% of MC steps), while the PAC underestimated steps by 6.7-16.0% per stage. During free-living, the OP and AG counted 97.5% and 98.5% of YX steps, respectively. The PAC overestimated steps by 44.0%, or 5,265 steps per day. The Omron pedometer seems to provide the most reliable and valid estimate of steps taken, as it was the best performer under lab-based conditions and provided comparable results to the YX in free-living. Future studies should consider these monitors in additional populations and settings.
Parent influences on preschoolers' objectively assessed physical activity.
Oliver, Melody; Schofield, Grant M; Schluter, Philip J
2010-07-01
The purposes of this study were to examine the relationship between accelerometer-derived physical activity (PA) in preschoolers and their parents, and to investigate other potential child and parental associates of child PA. Families of children aged 2-5 yrs were recruited in Auckland, New Zealand, from October 2006 to July 2007. Consenting children and parents had their height, weight, and waist circumference measured and were asked to wear accelerometers over 7 consecutive days, measuring PA in 15s epochs. Accelerometer data were gathered from 78 children, 62 mothers and 20 fathers over a median of 6.5-7 days, and converted to estimated daily PA rates for each individual using negative binomial generalised estimating equation (GEE) modelling. Potential associates of children's daily PA rates were then assessed using normal GEE models with exchangeable correlation structures. After taking account of all factors in the final multivariable model, parental PA rates (coefficient 0.09, 95% CI 0.03, 0.16, P=0.01) and child age (coefficient 0.11, 95% CI 0.01, 0.21, P=0.03) were the only factors significantly associated with child PA rates. Younger children may stand to benefit from PA intervention, and encouraging parental involvement in preschool PA interventions may be useful for increasing PA levels in young children. More work in this field is needed to corroborate these findings, improve generalisability, and determine causality. Copyright 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Verschueren, Sabine M. P.; Degens, Hans; Morse, Christopher I.; Onambélé, Gladys L.
2017-01-01
Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual’s physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry. PMID:29155839
Wullems, Jorgen A; Verschueren, Sabine M P; Degens, Hans; Morse, Christopher I; Onambélé, Gladys L
2017-01-01
Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual's physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry.
Yusuf, Feridun; Maeder, Anthony; Basilakis, Jim
2013-01-01
Physical activity recognition has emerged as an active area of research which has drawn increasing interest from researchers in a variety of fields. It can support many different applications such as safety surveillance, fraud detection, and clinical management. Accelerometers have emerged as the most useful and extensive tool to capture and assess human physical activities in a continuous, unobtrusive and reliable manner. The need for objective physical activity data arises strongly in health related research. With the shift to a sedentary lifestyle, where work and leisure tend to be less physically demanding, research on the health effects of low physical activity has become a necessity. The increased availability of small, inexpensive components has led to the development of mobile devices such as smartphones, providing platforms for new opportunities in healthcare applications. In this study 3 subjects performed directed activity routines wearing a smartphone with a built in tri-axial accelerometer, attached on a belt around the waist. The data was collected to classify 11 basic physical activities such as sitting, lying, standing, walking, and the transitions in between them. A hierarchical classifier approach was utilised with Artificial Neural Networks integrated in a rule-based system, to classify the activities. Based on our evaluation, recognition accuracy of over 89.6% between subjects and over 91.5% within subject was achieved. These results show that activities such as these can be recognised with a high accuracy rate; hence the approach is promising for use in future work.
Yates, Thomas; Davies, Melanie J; Henson, Joseph; Edwardson, Charlotte; Webb, David; Bodicoat, Danielle H; Webb, M'Balu; Howard, Philip; Cooper, Jackie A; Humphries, Steve E; Khunti, Kamlesh; Talmud, Philippa
2015-01-01
Peroxisome proliferator-activated receptor gamma (PPARγ) is an important regulator of metabolic health and a common polymorphism in the PPAR-γ2 gene (PPARG2) may modify associations between lifestyle behaviour and health. To investigate whether the PPARG2 Pro12Ala genotype modifies the associations of sedentary behaviour and moderate-to-vigorous intensity physical activity (MVPA) with common measures of insulin sensitivity. Participants with a high risk of impaired glucose regulation were recruited, United Kingdom, 2010-2011. Sedentary and MVPA time were objectively measured using accelerometers. Fasting and 2-hour post-challenge insulin and glucose were assessed; insulin sensitivity was calculated using Matsuda-ISI and HOMA-IS. DNA was extracted from whole blood. Linear regression examined associations of sedentary time and MVPA with insulin sensitivity and examined interactions by PPARG2 Pro12Ala genotype. 541 subjects were included (average age = 65 years, female = 33%); 18% carried the Ala12 allele. Both sedentary time and MVPA were strongly associated with HOMA-IS and Matsuda-ISI after adjustment for age, sex, ethnicity, medication, smoking status and accelerometer wear time. After further adjustment for each other and BMI, only associations with Matsuda-ISI were maintained. Every 30 minute difference in sedentary time was inversely associated with a 4% (0, 8%; p = 0.043) difference in Matsuda-ISI, whereas every 30 minutes in MVPA was positively associated with a 13% (0, 26%; p = 0.048) difference. The association of MVPA with Matsuda-ISI was modified by genotype (p = 0.005) and only maintained in Ala12 allele carriers. Conversely, sedentary time was not modified by genotype and remained inversely associated with insulin sensitivity in Pro12 allele homozygotes. The association of MVPA with Matsuda-ISI was modified by PPARG2 Pro12Ala genotype with significant associations only observed in the 18% of the population who carried the Ala12 allele, whereas associations with sedentary time were unaffected.
NASA Astrophysics Data System (ADS)
Olinde, L.; Johnson, J. P.
2013-12-01
By monitoring the transport timing and distances of tracer grains in a steep mountains stream, we collected data that can constrain numerical bedload transport models considered for these systems. We captured bedload activity during a weeks-spanning snowmelt period in Reynolds Creek, Idaho by deploying Radio Frequency Identification (RFID) and accelerometer embedded tracers with in-stream stationary RFID antennas. During transport events, RFID dataloggers recorded the times when tracers passed over stationary antennas. The accelerometer tracers also logged x, y, z-axis accelerations every 10 minutes to identify times of motion and rest. After snowmelt flows receded, we found tracers with mobile antennas and surveyed their positions. We know the timing and tracer locations when accelerometer tracers were initially entrained, passed stationary antennas, and were finally deposited at the surveyed locations. The fraction of moving accelerometers over time correlates well with discharge. Comparisons of the transported tracer fraction between rising and falling limbs over multiple flood peaks suggest that some degree of clockwise hysteresis persisted during the snowmelt period. Additionally, we apply accelerometer transport durations and displacement distances to calculate virtual velocities over full tracer path lengths and over lengths between initial locations to stationary antennas as well as between stationary antennas to final positions. The accelerometer-based virtual velocities are significantly faster than those estimated from traditional tracer methods that estimate bedload transport durations by assuming threshold flow conditions. We also subsample the motion data to calculate how virtual velocities change over the measurement intervals. Regressions of these relations are in turn used to extrapolate virtual velocities at smaller sampling timescales. Minimum hop lengths are also evaluated for each accelerometer tracer. Finally, flow conditions during the snowmelt hydrograph are modeled over the 11 kilometers of surveyed stream by utilizing 1m airborne LiDAR and HEC-GeoRAS. Cross-sectional HEC-RAS results are used to estimate the spatial distribution of longitudinal shear velocities over the observed discharges. At final accelerometer tracer positions, we analyze the HEC-RAS generated flow conditions for each disentrainment discharge magnitude. The techniques developed here have the potential to link individual grain characteristics during floods to a range of time and length scales.
Hybridizing matter-wave and classical accelerometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lautier, J.; Volodimer, L.; Hardin, T.
2014-10-06
We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomicmore » accelerometers, namely, the dead times between consecutive measurements.« less
Too hot to move? Objectively assessed seasonal changes in Australian children's physical activity.
Ridgers, Nicola D; Salmon, Jo; Timperio, Anna
2015-06-19
Seasonal variations may influence children's physical activity patterns. The aim of this study was to examine how children's objectively-measured physical activity differed across seasons, and whether different seasonal patterns were observed for boys and girls. Three hundred and twenty-six children aged 8-11 years from nine primary schools in Melbourne, Australia, participated in the study. Physical activity was measured every 15-s using hip-mounted GT3X+ ActiGraph accelerometers for seven consecutive days in the Winter (n = 249), Spring (n = 221), Summer (n = 174) and Autumn (n = 152) school terms. Time spent in moderate (MPA), vigorous (VPA) and moderate- to vigorous-intensity physical activity (MVPA) at each time point was derived using age-specific cut-points. Meteorological data (maximum temperature, precipitation, daylight hours) were obtained daily during each season. Longitudinal data were analysed using multilevel analyses, adjusted for age, sex, accelerometer wear time, number of valid days, and meteorological variables. Compared to Winter, children engaged in significantly less MPA (-5.0 min) and MVPA (-7.8 min) in Summer. Girls engaged in less MVPA in Spring (-18 min) and Summer (-9.2 min) and more MVPA in Autumn (9.9 min) compared to Winter. Significant changes in MPA and VPA bout frequency and duration were also observed. Significant decreases in VPA bout frequency (3.4 bouts) and duration (2.6 min) were observed for girls in Spring compared to Winter. No significant seasonal changes were observed for boys for all intensities and physical activity accumulation. Physical activity decreased in Summer compared to Winter, contrasting previous research that typically reports that children are most active in summer. Greater fluctuations were observed for girls' activity levels. In addition, girls' activity duration and bouts appeared to be more susceptible to seasonal changes compared to boys. The results suggest that strategies to promote physical activity may be needed in Australia during the hot summer months, particularly for girls.
Nukala, Bhargava Teja; Nakano, Taro; Rodriguez, Amanda; Tsay, Jerry; Lopez, Jerry; Nguyen, Tam Q; Zupancic, Steven; Lie, Donald Y C
2016-11-29
Gait analysis using wearable wireless sensors can be an economical, convenient and effective way to provide diagnostic and clinical information for various health-related issues. In this work, our custom designed low-cost wireless gait analysis sensor that contains a basic inertial measurement unit (IMU) was used to collect the gait data for four patients diagnosed with balance disorders and additionally three normal subjects, each performing the Dynamic Gait Index (DGI) tests while wearing the custom wireless gait analysis sensor (WGAS). The small WGAS includes a tri-axial accelerometer integrated circuit (IC), two gyroscopes ICs and a Texas Instruments (TI) MSP430 microcontroller and is worn by each subject at the T4 position during the DGI tests. The raw gait data are wirelessly transmitted from the WGAS to a near-by PC for real-time gait data collection and analysis. In order to perform successful classification of patients vs. normal subjects, we used several different classification algorithms, such as the back propagation artificial neural network (BP-ANN), support vector machine (SVM), k -nearest neighbors (KNN) and binary decision trees (BDT), based on features extracted from the raw gait data of the gyroscopes and accelerometers. When the range was used as the input feature, the overall classification accuracy obtained is 100% with BP-ANN, 98% with SVM, 96% with KNN and 94% using BDT. Similar high classification accuracy results were also achieved when the standard deviation or other values were used as input features to these classifiers. These results show that gait data collected from our very low-cost wearable wireless gait sensor can effectively differentiate patients with balance disorders from normal subjects in real time using various classifiers, the success of which may eventually lead to accurate and objective diagnosis of abnormal human gaits and their underlying etiologies in the future, as more patient data are being collected.
Determination of thermally induced effects and design guidelines of optomechanical accelerometers
NASA Astrophysics Data System (ADS)
Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Jiao, Xufen; Han, Dandan; Chen, Peiwen; Liu, Dong; Yang, Yongying; Yang, Guoguang
2017-11-01
Thermal effects, including thermally induced deformation and warm up time, are ubiquitous problems for sensors, especially for inertial measurement units such as accelerometers. Optomechanical accelerometers, which contain light sources that can be regarded as heat sources, involve a different thermal phenomenon in terms of their specific optical readout, and the phenomenon has not been investigated systematically. This paper proposes a model to evaluate the temperature difference, rise time and thermally induced deformation of optomechanical accelerometers, and then constructs design guidelines which can diminish these thermal effects without compromising other mechanical performances, based on the analysis of the interplay of thermal and mechanical performances. In the model, the irradiation of the micromachined structure of a laser source is considered a dominant factor. The experimental data obtained using a prototype of an optomechanical accelerometer approximately confirm the validity of the model for the rise time and response tendency. Moreover, design guidelines that adopt suspensions with a flat cross-section and a short length are demonstrated with reference to the analysis. The guidelines can reduce the thermally induced deformation and rise time or achieve higher mechanical performances with similar thermal effects, which paves the way for the design of temperature-tolerant and robust, high-performance devices.
Manios, Y; Androutsos, O; Moschonis, G; Birbilis, M; Maragkopoulou, K; Giannopoulou, A; Argyri, E; Kourlaba, G
2013-10-01
The aim of this paper was to evaluate the criterion validity of the Physical Activity Questionnaire for Schoolchildren (PAQ-S). The current study is a subcohort of the Healthy Growth Study, a large-scale cross-sectional study. 202 schoolchildren aged 9-13 years from Greece completed the PAQ-S and wore an accelerometer for 4 consecutive days. Time spent moderate (MPA), moderate to vigorous (MVPA) and vigorous (VPA) physical activity was calculated based on PAQ-S and accelerometer data. The average time spent on MPA and MVPA as derived from PAQ-S and from accelerometers were significantly moderately correlated (r=0.462, P<0.001 and r=0.483, P<0.001, respectively). No significant correlation was detected between PAQ-S and accelerometer-measured time spent performing VPA (rho=0.150, P=0.057). Intraclass Correlation Coefficient (ICC) indicated a moderate agreement between PAQ-S and accelerometer in estimating MPA (ICC=0.592, P<0.001) and MVPA (ICC=0.581, P<0.001). Bland-Altman analysis revealed a small mean difference (the "bias"), between the two methods, in estimating MPA, although this difference was found to be significantly higher than zero ("bias"=27.4% of the accelerometer-measured mean score, P=0.006). On the other hand, Bland-Altman analysis revealed a large mean difference in estimating MVPA and VPA ("bias"=84.2% and 357% of the accelerometer-measured mean score for MVPA and VPA, respectively and P<0.001). The high correlation coefficient between the average and difference values between all physical activity scores derived from accelerometers and PAQ-S, indicate a systematic overestimation of physical activity time with increasing physical activity for PAQ-S. The validity of PAQ-S for the estimation of MPA and MVPA was found to be slightly similar self-reported measures for schoolchildren. Therefore, this questionnaire could be used as a tool for physical activity assessment in large population studies.
Weikert, Madeline; Suh, Yoojin; Lane, Abbi; Sandroff, Brian; Dlugonski, Deirdre; Fernhall, Bo; Motl, Robert W
2012-06-01
Accelerometers are seemingly a criterion standard of real-life walking mobility and this is supported by assumptions and empirical data. This application would be strengthened by including objective measures of walking mobility along with a matched control sample for verifying specificity versus generality in accelerometer output. We compared associations among accelerometer output, walking mobility, and physical activity between persons with multiple sclerosis (MS) and controls without a neurological disorder. Sixty-six persons (33 MS, 33 matched controls) completed a battery of questionnaires, performed the six-minute walk (6MW) and timed-up-and-go (TUG), and wore an accelerometer for a 7-day period. After this period, participants completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ) and International Physical Activity Questionnaire (IPAQ). Accelerometer output was significantly correlated with only mobility measures (6MW, ρ=.78; TUG, ρ=-.68) in MS, whereas it correlated with both mobility (6MW, ρ=.58; TUG, ρ=-.49) and physical activity (GLTEQ, ρ=.56; IPAQ, ρ=.53) measures in controls. Regression analysis indicated that only 6MW explained variance in accelerometer output in MS (β=.65, R(2)=.43). These findings support the possibility that accelerometers primarily and specifically measure real-life walking mobility, not physical activity, in persons with MS. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Validity of physical activity monitors for assessing lower intensity activity in adults.
Calabró, M Andrés; Lee, Jung-Min; Saint-Maurice, Pedro F; Yoo, Hyelim; Welk, Gregory J
2014-09-28
Accelerometers can provide accurate estimates of moderate-to-vigorous physical activity (MVPA). However, one of the limitations of these instruments is the inability to capture light activity within an acceptable range of error. The purpose of the present study was to determine the validity of different activity monitors for estimating energy expenditure (EE) of light intensity, semi-structured activities. Forty healthy participants wore a SenseWear Pro3 Armband (SWA, v.6.1), the SenseWear Mini, the Actiheart, ActiGraph, and ActivPAL monitors, while being monitored with a portable indirect calorimetry (IC). Participants engaged in a variety of low intensity activities but no formalized scripts or protocols were used during these periods. The Mini and SWA overestimated total EE on average by 1.0% and 4.0%, respectively, while the AH, the GT3X, and the AP underestimated total EE on average by 7.8%, 25.5%, and 22.2%, respectively. The pattern-recognition monitors yielded non-significant differences in EE estimates during the semi-structured period (p = 0.66, p = 0.27, and p = 0.21 for the Mini, SWA, and AH, respectively). The SenseWear Mini provided more accurate estimates of EE during light to moderate intensity semi-structured activities compared to other activity monitors. This monitor should be considered when there is interest in tracking low intensity activities in groups of individuals.
Webber, Sandra C; Magill, Sheila M; Schafer, Jenessa L; Wilson, Kaylie C S
2014-07-01
The purpose was to compare step count accuracy of an accelerometer (ActiGraph GT3X+), a mechanical pedometer (Yamax SW200), and a piezoelectric pedometer (SC-StepMX). Older adults (n = 13 with walking aids, n = 22 without; M = 81.5 years old, SD = 5.0) walked 100 m wearing the devices. Device-detected steps were compared with manually counted steps. We found no significant differences among monitors for those who walked without aids (p = .063). However, individuals who used walking aids exhibited slower gait speeds (M = 0.83 m/s, SD = 0.2) than non-walking aid users (M = 1.21 m/s, SD = 0.2, p < .001), and for them the SC-StepMX demonstrated a significantly lower percentage of error (Mdn = 1.0, interquartile range [IQR] = 0.5-2.0) than the other devices (Yamax SW200, Mdn = 68.9, IQR = 35.9-89.3; left GT3X+, Mdn = 52.0, IQR = 37.1-58.9; right GT3X+, Mdn = 51.0, IQR = 32.3-66.5; p < .05). These results support using a piezoelectric pedometer for measuring steps in older adults who use walking aids and who walk slowly.
Lucas-Cuevas, Angel Gabriel; Encarnación-Martínez, Alberto; Camacho-García, Andrés; Llana-Belloch, Salvador; Pérez-Soriano, Pedro
2017-09-01
Tibial accelerations have been associated with a number of running injuries. However, studies attaching the tibial accelerometer on the proximal section are as numerous as those attaching the accelerometer on the distal section. This study aimed to investigate whether accelerometer location influences acceleration parameters commonly reported in running literature. To fulfil this purpose, 30 athletes ran at 2.22, 2.78 and 3.33 m · s -1 with three accelerometers attached with double-sided tape and tightened to the participants' tolerance on the forehead, the proximal section of the tibia and the distal section of the tibia. Time-domain (peak acceleration, shock attenuation) and frequency-domain parameters (peak frequency, peak power, signal magnitude and shock attenuation in both the low and high frequency ranges) were calculated for each of the tibial locations. The distal accelerometer registered greater tibial acceleration peak and shock attenuation compared to the proximal accelerometer. With respect to the frequency-domain analysis, the distal accelerometer provided greater values of all the low-frequency parameters, whereas no difference was observed for the high-frequency parameters. These findings suggest that the location of the tibial accelerometer does influence the acceleration signal parameters, and thus, researchers should carefully consider the location they choose to place the accelerometer so that equivalent comparisons across studies can be made.
Acceleration Recorder and Playback Module
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1996-01-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Acceleration recorder and playback module
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1994-11-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Acceleration recorder and playback module
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1992-09-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Acceleration recorder and playback module
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1994-01-01
The present invention is directed to methods and apparatus relating to an accelerometer electrical signal recorder and playback module. The recorder module may be manufactured in lightweight configuration and includes analog memory components to store data. Signal conditioning circuitry is incorporated into the module so that signals may be connected directly from the accelerometer to the recorder module. A battery pack may be included for powering both the module and the accelerometer. Timing circuitry is included to control the time duration within which data is recorded or played back so as to avoid overloading the analog memory components. Multiple accelerometer signal recordings may be taken simultaneously without analog to digital circuits, multiplexing circuitry or software to compensate for the effects of multiplexing the signals.
Verbestel, Vera; De Henauw, Stefaan; Bammann, Karin; Barba, Gianvincenzo; Hadjigeorgiou, Charalambos; Eiben, Gabriele; Konstabel, Kenn; Kovács, Eva; Pitsiladis, Yannis; Reisch, Lucia; Santaliestra-Pasías, Alba M; Maes, Lea; De Bourdeaudhuij, Ilse
2015-04-01
The aim of the present study was to investigate if context-specific measures of parental-reported physical activity and sedentary behaviour are associated with objectively measured physical activity and sedentary time in children. Cross-sectional study. Seven European countries taking part in the IDEFICS (Identification and Prevention of Dietary- and Lifestyle-induced Health Effects in Children and Infants) study. Data were analysed from 2-9-year-old children (n 5982) who provided both parental-reported and accelerometer-derived physical activity/sedentary behaviour measures. Parents reported their children's daily screen-time, weekly sports participation and daily outdoor playtime by means of the Outdoor Playtime Checklist (OPC) and Outdoor Playtime Recall Questions (OPRQ). Sports participation, OPC- and OPRQ-derived outdoor play were positively associated with accelerometer-derived physical activity. Television viewing and computer use were positively associated with accelerometer-derived sedentary time. All parental-reported measures that were significantly associated with accelerometer outcomes explained only a minor part of the variance in accelerometer-derived physical activity or sedentary time. Parental-reported measures of physical activity and sedentary behaviour are not useful as a proxy for 2-9-year-old children's physical activity and sedentary time. Findings do not preclude the use of context-specific measures but imply that conclusions should be limited to the context-specific behaviours that are actually measured. Depending on the aim of the study, future research should carefully consider the choice of measurements, including the use of subjective or objective measures of the behaviour of interest or a combination of both.
Real-time signal processing of accelerometer data for wearable medical patient monitoring devices.
Van Wieringen, Matt; Eklund, J
2008-01-01
Elderly and other people who live at home but required some physical assistance to do so are often more susceptible injury causing falls in and around their place of residence. In the event that a fall does occur, as a direct result of a previous medical condition or the fall itself, these people are typically less likely to be able to seek timely medical help without assistance. The goal of this research is to develop a wearable sensor device that uses an accelerometer for monitoring the movement of the person to detect falls after they have occurred in order to enable timely medical assistance. The data coming from the accelerometer is processed in real-time in the device and sent to a remote monitoring station where operators can attempt to make contact with the person and/or notify medical personnel of the situation. The ADXL330 accelerometer is contained within a Nintendo WiiMote controller, which forms the basis of the wearable medical sensor. The accelerometer data can then be sent via Bluetooth connection and processed by a local gateway processor. If a fall is detected, the gateway will then contact a remote monitoring station, on a cellular network, for example, via satellite, and/or through a hardwired phone or Internet connection. To detect the occurrence of ta fall, the accelerometer data is passed through a matched filter and the data is compared to benchmark analysis data that will define the conditions that represents the occurrence of a fall.
System Wide Joint Position Sensor Fault Tolerance in Robot Systems Using Cartesian Accelerometers
NASA Technical Reports Server (NTRS)
Aldridge, Hal A.; Juang, Jer-Nan
1997-01-01
Joint position sensors are necessary for most robot control systems. A single position sensor failure in a normal robot system can greatly degrade performance. This paper presents a method to obtain position information from Cartesian accelerometers without integration. Depending on the number and location of the accelerometers. the proposed system can tolerate the loss of multiple position sensors. A solution technique suitable for real-time implementation is presented. Simulations were conducted using 5 triaxial accelerometers to recover from the loss of up to 4 joint position sensors on a 7 degree of freedom robot moving in general three dimensional space. The simulations show good estimation performance using non-ideal accelerometer measurements.
Teacher response to ambulatory monitoring of voice.
Hunter, Eric J
2012-10-01
Voice accumulation and dosimetry devices are used for unobtrusive monitoring of voice use. While numerous studies have used these devices to examine how individuals use their voices, little attention has been paid to how subjects respond to them. Therefore, the purpose of this short communication is to begin to explore two questions: 1) How do voice monitoring devices affect daily communication? and 2) How do participants feel about the physical design and function of these types of voice monitoring devices? One key finding is that most of the subjects remain aware of the dosimeter while wearing it, which may impact the data collected. Further, most subjects have difficulty with the accelerometer and/or the data storage device.
Prediction of energy expenditure and physical activity in preschoolers.
Butte, Nancy F; Wong, William W; Lee, Jong Soo; Adolph, Anne L; Puyau, Maurice R; Zakeri, Issa F
2014-06-01
Accurate, nonintrusive, and feasible methods are needed to predict energy expenditure (EE) and physical activity (PA) levels in preschoolers. Herein, we validated cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on accelerometry and heart rate (HR) for the prediction of EE using room calorimetry and doubly labeled water (DLW) and established accelerometry cut points for PA levels. Fifty preschoolers, mean ± SD age of 4.5 ± 0.8 yr, participated in room calorimetry for minute-by-minute measurements of EE, accelerometer counts (AC) (Actiheart and ActiGraph GT3X+), and HR (Actiheart). Free-living 105 children, ages 4.6 ± 0.9 yr, completed the 7-d DLW procedure while wearing the devices. AC cut points for PA levels were established using smoothing splines and receiver operating characteristic curves. On the basis of calorimetry, mean percent errors for EE were -2.9% ± 10.8% and -1.1% ± 7.4% for CSTS models and -1.9% ± 9.6% and 1.3% ± 8.1% for MARS models using the Actiheart and ActiGraph+HR devices, respectively. On the basis of DLW, mean percent errors were -0.5% ± 9.7% and 4.1% ± 8.5% for CSTS models and 3.2% ± 10.1% and 7.5% ± 10.0% for MARS models using the Actiheart and ActiGraph+HR devices, respectively. Applying activity EE thresholds, final accelerometer cut points were determined: 41, 449, and 1297 cpm for Actiheart x-axis; 820, 3908, and 6112 cpm for ActiGraph vector magnitude; and 240, 2120, and 4450 cpm for ActiGraph x-axis for sedentary/light, light/moderate, and moderate/vigorous PA (MVPA), respectively. On the basis of confusion matrices, correctly classified rates were 81%-83% for sedentary PA, 58%-64% for light PA, and 62%-73% for MVPA. The lack of bias and acceptable limits of agreement affirms the validity of the CSTS and MARS models for the prediction of EE in preschool-aged children. Accelerometer cut points are satisfactory for the classification of sedentary, light, and moderate/vigorous levels of PA in preschoolers.
Aittasalo, Minna; Livson, Matleena; Lusa, Sirpa; Romo, Ahti; Vähä-Ypyä, Henri; Tokola, Kari; Sievänen, Harri; Mänttäri, Ari; Vasankari, Tommi
2017-04-17
Regular physical activity (PA) promotes and excessive sedentary behavior (SB) deteriorates health. Yet the Finnish working-aged population spends most of the day sitting. A 1-year Moving To Business (MTB) -intervention supported small and medium-size workplaces to combat sedentariness. This paper reports the changes in employees' PA and SB from before MTB (baseline) to 1 year after baseline (follow-up). Twelve workplaces with a total of 396 employees participated. Each workplace nominated a team to promote PA and reduce SB at organizational, working unit and employee level. The teams were mentored regionally through meetings, workshop and tools. Changes in PA and SB were assessed with a questionnaire and an accelerometer. Wald Confidence Interval (Cl) for a difference of proportions with matched pairs was used in the questionnaire data (%-points with 95% CI) and linear mixed model in the accelerometer data (minutes and % of wear-time with 95% CI). The mean age of the respondents to the questionnaire (N = 296; 75%) was 42.6 (SD 10.9), 64% were women, 95% had some education after high school, 74% worked in the day shift, 71% did sedentary work and 51% were overweight. The mean number of actions implemented in the workplaces was 6.8 and the multilevel approach was fully applied in 6 workplaces. Based on the questionnaire the time spent in SB decreased from baseline to follow-up 16% (95% CI -29 to -3) in total and 22% (-41 to -3) at work. The accelerometer showed daily increases of 33.7 min (15.3 to 52.1) and 6.8% (3.1 to 10.4) in total PA, 30.9 min (15.3 to 46.5) and 6.1% (2.9 to 9.2) in light PA and 673 (209 to 1139) more steps at work. Daily SB at work decreased 44.9 min (-68.0 to -21.8) and 7.6% (-11.9 to -3.2). Daily leisure PA declined 11.0 min (-24.9 to 2.9) and 3.2% (-6.2 to -0.2). Number of levels or actions had no effect on changes. Employees' PA increased and SB reduced at work during the intervention. At the same time leisure PA decreased slightly. Workplaces can achieve meaningful changes in employees' PA and SB if assisted systematically. Controlled studies are needed to confirm the present findings. NCT01999205 , registration date 11/01/2013.
How active are women who play bingo: a cross-sectional study from the Well!Bingo project.
Ryde, Gemma C; Gorely, Trish; Jepson, Ruth; Gray, Cindy; Shepherd, Ashley; Mackison, Dionne; Ireland, Aileen V; Williams, Brian; McMurdo, Marion E T; Evans, Josie M M
2017-07-28
The benefits of physical activity are well established, yet large numbers of people are not sufficiently active to gain health benefits. Certain population groups are less physically active than others, including older women from areas of high economic deprivation. The Well!Bingo project was established with the aim of engaging such women in the development of a health promotion intervention in a bingo club. This paper reports on the assessment of health status, physical activity and sedentary behaviour of women attending a bingo club in central Scotland, UK as part of the Well!Bingo project. Women attending the bingo club were invited to provide information on demographic characteristics, and self-reported physical activity and sedentary behaviour via a self-complete questionnaire as part of a cross-sectional study (n = 151). A sub-sample (n = 29) wore an accelerometer for an average of 5.7 ± 1.4 days. Differences between younger (under 60 years) and older adults (60 years and over) were assessed using a chi-square test for categorical data and the independent samples t-test was used to assess continuous data (p < 0.05). The mean age was 56.5 ± 17.7 years, with 57% living in areas of high deprivation (Scottish Index of Multiple Deprivation quintile one and two). Sixty-three percent of women (n = 87) reported they were meeting physical activity guidelines. However, objective accelerometer data showed that, on average, only 18.1 ± 17.3 min a day were spent in moderate to vigorous physical activity. Most accelerometer wear time was spent sedentary (9.6 ± 1.7 h). For both self-report and accelerometer data, older women were significantly less active and more sedentary than younger women. On average, older women spent 1.8 h more than younger women in sedentary activities per day, and took part in 21 min less moderate to vigorous physical activity (9.4 mins per day). The findings of this study suggest that bingo clubs are settings that attract women from areas of high deprivation and older women in bingo clubs in particular would benefit from interventions to target their physical activity and sedentary behaviour. Bingo clubs may therefore be potential intervention settings in which to influence these behaviours.
[Influence of multiple sintering on wear behavior of Cercon veneering ceramic].
Gao, Qing-ping; Chao, Yong-lie; Jian, Xin-chun; Guo, Feng
2010-04-01
To investigate the influence of multiple sintering on wear behavior of Cercon veneering ceramic. Samples were fabricated according to the manufacture's requirement for different sintering times (1, 3, 5, 7 times). The wear test was operated with a modified MM-200 friction and wear machine in vitro. The wear scars were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). With the sintering times increasing, the wear scar width became larger. The correlation was significant at the 0.01 level. Significant difference was observed in wear scar width among different samples (P < 0.05). SEM and AFM results showed that veneering ceramic wear facets demonstrated grooves characteristic of abrasive wear. Multiple sintering can decrease the wear ability of Cercon veneer, and the wear pattern has the tendency to severe wear.
ERIC Educational Resources Information Center
Cheung, Vivian H. Y.; Salih, Salih A.; Crouch, Alisa; Karunanithi, Mohanraj K.; Gray, Len
2012-01-01
The aim of this study is to determine whether clinicians' estimates of patients' walking time agree with those determined by accelerometer devices. The walking time was measured using a waist-mounted accelerometer device everyday during the patients' waking hours. At each weekly meeting, clinicians estimated the patients' average daily walking…
Physical Activity and Adiposity Markers at Older Ages: Accelerometer Vs Questionnaire Data
Sabia, Séverine; Cogranne, Pol; van Hees, Vincent T.; Bell, Joshua A.; Elbaz, Alexis; Kivimaki, Mika; Singh-Manoux, Archana
2015-01-01
Objective Physical activity is critically important for successful aging, but its effect on adiposity markers at older ages is unclear as much of the evidence comes from self-reported data on physical activity. We assessed the associations of questionnaire-assessed and accelerometer-assessed physical activity with adiposity markers in older adults. Design/Setting/Participants This was a cross-sectional study on 3940 participants (age range 60-83 years) of the Whitehall II study who completed a 20-item physical activity questionnaire and wore a wrist-mounted accelerometer for 9 days in 2012 and 2013. Measurements Total physical activity was estimated using metabolic equivalent hours/week for the questionnaire and mean acceleration for the accelerometer. Time spent in moderate-and-vigorous physical activity (MVPA) was also assessed by questionnaire and accelerometer. Adiposity assessment included body mass index, waist circumference, and fat mass index. Fat mass index was calculated as fat mass/height² (kg/m²), with fat mass estimated using bioimpedance. Results Greater total physical activity was associated with lower adiposity for all adiposity markers in a dose-response manner. In men, the strength of this association was 2.4 to 2.8 times stronger with the accelerometer than with questionnaire data. In women, it was 1.9 to 2.3 times stronger. For MVPA, questionnaire data in men suggested no further benefit for adiposity markers past 1 hour/week of activity. This was not the case for accelerometer-assessed MVPA where, for example, compared with men undertaking <1 hour/week of accelerometer-assessed MVPA, waist circumference was 3.06 (95% confidence interval 2.06–4.06) cm lower in those performing MVPA 1–2.5 hours/week, 4.69 (3.47–5.91) cm lower in those undertaking 2.5–4 hours/week, and 7.11 (5.93–8.29) cm lower in those performing ≥4 hours/week. Conclusions The association of physical activity with adiposity markers in older adults was stronger when physical activity was assessed by accelerometer compared with questionnaire, suggesting that physical activity might be more important for adiposity than previously estimated. PMID:25752539
Self Diagnostic Accelerometer Testing on the C-17 Aircraft
NASA Technical Reports Server (NTRS)
Tokars, Roger P.; Lekki, John D.
2013-01-01
The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. To demonstrate the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The SDA attachment conditions were varied from fully tight to loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first.
Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.
Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian
2015-09-01
Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to be extracted from single-axis accelerometer data.
Wu, Feitong; Wills, Karen; Laslett, Laura L; Oldenburg, Brian; Jones, Graeme; Winzenberg, Tania
2017-04-01
Associations between physical activity and time spent sedentary and musculoskeletal outcomes remain unclear in middle-aged adults. This study aimed to describe associations between objectively-measured physical activity and sedentary time and musculoskeletal health outcomes in middle-aged women. This cross-sectional study from a population-based sample of 309 women (age 36 to 57 years) examined associations of total physical activity (accelerometer counts/min of wear time), and time spent sedentary, in light physical activities and moderate-to-vigorous physical activities (MVPA) (by Actigraph GT1M accelerometer) with lumbar spine (LS) and femoral neck (FN) bone mineral density (BMD) (by dual-energy X-ray absorptiometry), lower limb muscle strength (LMS), and functional mobility and balance tests (timed up and go test [TUG], functional reach test [FRT], lateral reach test [LRT], and step test [ST]) using linear regression. Total physical activity was beneficially associated with FN BMD (values are β; 95% CI) (0.011 g/cm 2 ; 95% CI, 0.003 to 0.019 g/cm 2 ), LMS (2.13 kg; 95% CI, 0.21 to 4.06 kg), and TUG (-0.080 s; 95% CI, -0.129 to -0.030 s), after adjustment for confounders. MVPA was also beneficially associated with FN BMD (0.0050 g/cm 2 ; 95% CI, 0.0007 to 0.0094 g/cm 2 ), LMS (1.48 kg; 95% CI, 0.45 to 2.52 kg), ST (0.12 steps; 95% CI, 0.02 to 0.23 steps), and TUG (-0.043 s; 95% CI, -0.070 to -0.016 s). Associations between MVPA and LMS, TUG and ST persisted after further adjustment for sedentary time. Only TUG was associated with sedentary time, with a detrimental effect (0.075 s; 95% CI, 0.013 to 0.137 s) and this did not persist after further adjustment for MVPA. Light physical activity was not associated with any outcome. MVPA appears more important than light physical activity or sedentary time for many musculoskeletal outcomes in middle-aged women. This needs to be considered when developing interventions to improve habitual physical activity that aim to improve musculoskeletal health. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.
Schott, Timm C; Meyer-Gutknecht, Hannes; Mayer, Nicolai; Weber, Joachim; Weimer, Katja
2017-04-01
Patients do not always adhere to the wear times prescribed for removable orthodontic appliances. We evaluated the validity and usability of indirect wear-time assessment methods by comparing wear-time estimates with microelectronically measured wear times in patients with removable orthodontic appliances. Wear times of 33 expansion plates, 34 functional appliances, and 42 retention plates of patients aged 6-20 years (12.3±2.9 years, 50.5% female) were indirectly determined by practitioners using a questionnaire assessing five parameters on a 5-point Likert scale: appliance handling, appliance appearance, bite shift, tooth movement, and appliance fit. The perceived difficulty in assessing each parameter was rated. Actual wear times were evaluated with microelectronic sensors in the appliances. Regression analyses revealed that practitioners' decisions about wear times varied depending on the type of appliance and criteria used, with only one standard criterion best predicting estimated wear time for each appliance. Different standard criteria were better predictors of measured wear time: 22.3% of wear-time variability was explained by expansion plate appearance, 31.2% by functional appliance handling, and 18.8% by retainer fitting. However, practitioners rated the difficulty of assessment in most cases as 'easy'. The study was not double blinded for technical reasons, and practitioners may have considered the evaluation criteria more carefully than in normal daily practice. Practitioners' decisions about wear times based on standard criteria strongly vary depending on the type of appliance and criteria used. © The Author 2016. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com
Schäfer, Katharina; Ludwig, Björn; Meyer-Gutknecht, Hannes; Schott, Timm Cornelius
2015-02-01
The aim of this study was to quantify the wear times of removable appliances during active orthodontic treatment. The wear times of 141 orthodontic patients treated with active removable appliances in different locations were documented over a period of 3 months using an incorporated microsensor. Gender, age, treatment location, health insurance status, and type of device were evaluated with respect to wear time. Significant associations between wear times and patient factors were calculated using non-parametric tests. The median daily wear time was 9.7 hours/day for the entire cohort, far less than the 15 hours/day prescribed. Younger patients wore their appliances for longer than older patients (7-9 years 12.1 hours/day, 10-12 years 9.8 hours/day, and 13-15 years 8.5 hours/day; P < 0.0001). The median wear time for females (10.6 hours/day) was 1.4 hours/day longer than males (9.3 hours/day; P = 0.017). Patients treated at different locations wore their devices with a difference of up to 5.0 hours/day. Privately insured patients had significantly longer median wear times than statutorily insured patients. No significant difference in wear time was noted according to device type. The daily wear time of removable appliances during the active phase of orthodontic therapy can be routinely quantified using integrated microelectronic sensors. The relationship between orthodontist and patient seems to play a key role in patient adherence. Wear-time documentation provides the basis for more individualized wear-time recommendations for patients with removable appliances. This could result in a more efficient, shorter, and less painful orthodontic therapy. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Analysis of STS-3 Get Away Special (GAS) flight data and vibration specification for gas payloads
NASA Technical Reports Server (NTRS)
Talapatra, D. C.
1983-01-01
During the Space Transportation System (STS)-3 mission, a Get Away Special (GAS) canister was flown. In order to determine the flight environment for GAS payloads, triaxial accelerometers and a microphone were installed inside the GAS canister. Data from these accelerometers and the microphone were analyzed. The microphone data is presented as overall sound pressure level (SPL) and one-third octave band time history plots. And the accelerometer data is provided in the forms of instantaneous time history, RMS time history and power spectral density plots. Also based on this flight data, vibration test specification for GAS payloads was developed and the recommended specification is presented here.
Garde, Ainara; Umedaly, Aryannah; Abulnaga, S Mazdak; Robertson, Leah; Junker, Anne; Chanoine, Jean Pierre; Ansermino, J Mark; Dumont, Guy A
2015-04-01
The majority of children in North America are not meeting current physical activity guidelines. The purpose of this study was to evaluate the impact of a mobile phone game ("MobileKids Monster Manor") as a tool to promote voluntary physical activity among children. The game integrates data from an accelerometer-based activity monitor (Tractivity(®); Kineteks Corp., Vancouver, BC, Canada) wirelessly connected to a phone and was developed with the involvement of a team of young advisors (KidsCan Initiative: Involving Youth as Ambassadors for Research). Fifty-four children 8-13 years old completed a week of baseline data collection by wearing an accelerometer but receiving no feedback about their activity levels. The 54 children were then sequentially assigned to two groups: One group played "MobileKids Monster Manor," and the other received daily activity feedback (steps and active minutes) via an online program. The physical activity (baseline and intervention weeks) was measured using the activity monitor and compared using two-way repeated-measures analysis of variance (intervention×time). Forty-seven children with a body mass index (BMI) z-score of 0.35±1.18 successfully completed the study. Significant (P=0.01) increases in physical activity were observed during the intervention week in both the game and feedback groups (1191 and 796 steps/day, respectively). In the game group, greater physical activity was demonstrated in children with higher BMI z-score, showing 964 steps/day more per BMI z-score unit (P=0.03; 95 percent confidence interval of 98 to 1829). Further investigation is required to confirm that our game design promotes physical activity.
Slykerman, Sarah; Ridgers, Nicola D; Stevenson, Christopher; Barnett, Lisa M
2016-06-01
To determine the associations between young children's actual and perceived object control and locomotor skills and physical activity and whether associations differ by sex. Cross sectional study. A total of 136 children consented. Children had actual skill (Test of Gross Motor Development-2), perceived skill (Pictorial Scale of Perceived Movement Skill Competence for Young Children), and moderate- to vigorous-intensity physical activity (MVPA) (accelerometers) assessed. Independent t-tests assessed sex differences. A regression (with MVPA as the outcome) was performed with all predictor variables (i.e. Actual Object Control, Actual Locomotor, Perceived Object Control, and Perceived Locomotor). Model 2 also adjusted for age, sex, accelerometer wear time and whether the child was from an English speaking background. Interaction terms between the respective actual or perceived skill factor and sex were added to assess sex differences. Analyses were conducted on 109 children (59 boys, 50 girls; mean age=6.5 years, SD=1.0). Boys had higher actual and perceived object control skill and were more active by an average of 19min per day. There were no sex differences in locomotor skills. There were no associations between skill factors and MVPA, except for girls, where locomotor skill was a significant predictor of MVPA (B=3.66, p=0.016). Actual rather than perceived skill competence was more important to MVPA in this sample. Locomotor skill competence may be more important than object control skill competence for girls as they may engage in types of physical activity that do not require object control mastery. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Iliodromiti, Stamatina; Ghouri, Nazim; Celis-Morales, Carlos A; Sattar, Naveed; Lumsden, Mary Ann; Gill, Jason M R
2016-01-01
International public health guidelines recommend that adults undertake at least 150 min.week-1 of moderate-intensity physical activity. However, the underpinning evidence has largely been obtained from studies of populations of white European descent. It is unclear whether these recommendations are appropriate for other ethnic groups, particularly South Asians, who have greater cardio-metabolic risk than white Europeans. The objective of our study was to determine the level of moderate-intensity physical activity required in South Asians adults to confer a similar cardio-metabolic risk profile to that observed in Europeans of similar age and body mass index (BMI) undertaking the currently recommended levels of 150 min.week-1. 148 South Asians and 163 white Europeans aged 18 to 70 years were recruited. Physical activity was measured objectively via vertical axis accelerations from hip-worn accelerometers. Factor analysis was used to summarize the measured risk biomarkers into a single underlying latent "factor" describing overall cardio-metabolic risk. Sex did not modify the association between physical activity and the cardio-metabolic risk factor, so data for both sexes were combined and models adjusted for age, sex, BMI and accelerometer wear time. We estimated that South Asian adults needed to undertake 232 (95% Confidence interval: 200 to 268) min.week-1 in order to obtain the same cardio-metabolic risk factor score as a white European undertaking 150 minutes of moderate-equivalent physical activity per week. The present findings suggest that South Asian men and women need to undertake ~230 minutes of moderate intensity physical activity per week. This equates to South Asians undertaking an extra 10-15 minutes of moderate intensity physical activity per day on top of existing recommendations.
Structural health monitoring using a hybrid network of self-powered accelerometer and strain sensors
NASA Astrophysics Data System (ADS)
Alavi, Amir H.; Hasni, Hassene; Jiao, Pengcheng; Lajnef, Nizar
2017-04-01
This paper presents a structural damage identification approach based on the analysis of the data from a hybrid network of self-powered accelerometer and strain sensors. Numerical and experimental studies are conducted on a plate with bolted connections to verify the method. Piezoelectric ceramic Lead Zirconate Titanate (PZT)-5A ceramic discs and PZT-5H bimorph accelerometers are placed on the surface of the plate to measure the voltage changes due to damage progression. Damage is defined by loosening or removing one bolt at a time from the plate. The results show that the PZT accelerometers provide a fairly more consistent behavior than the PZT strain sensors. While some of the PZT strain sensors are not sensitive to the changes of the boundary condition, the bimorph accelerometers capture the mode changes from undamaged to missing bolt conditions. The results corresponding to the strain sensors are better indicator to the location of damage compared to the accelerometers. The characteristics of the overall structure can be monitored with even one accelerometer. On the other hand, several PZT strain sensors might be needed to localize the damage.
ERIC Educational Resources Information Center
Gao, Zan; Lee, Amelia M.; Solmon, Melinda A.; Kosma, Maria; Carson, Russell L.; Zhang, Tao; Domangue, Elizabeth; Moore, Delilah
2010-01-01
The purpose of this study was to validate physical activity time in middle school physical education as measured by pedometers in relation to a criterion measure, namely, students' accelerometer determined moderate to vigorous physical activity (MVPA). Participants were 155 sixth to eighth graders participating in regularly scheduled physical…
Adam J. Gaylord; Dana M. Sanchez
2014-01-01
Direct behavioral observations of multiple free-ranging animals over long periods of time and large geographic areas is prohibitively difficult. However, recent improvements in technology, such as Global Positioning System (GPS) collars equipped with motion-sensitive activity monitors, create the potential to remotely monitor animal behavior. Accelerometer-equipped...
Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine
NASA Technical Reports Server (NTRS)
Tokars, Roger P.; Lekki, John D.
2013-01-01
The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.
Self diagnostic accelerometer ground testing on a C-17 aircraft engine
NASA Astrophysics Data System (ADS)
Tokars, Roger P.; Lekki, John D.
The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDA's flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.
NASA Astrophysics Data System (ADS)
Pan, Shengshan; Zhao, Xuefeng; Zhao, Hailiang; Mao, Jian
2015-04-01
Based on the vibration testing principle, and taking the local vibration of steel tube at the interface separation area as the study object, a real-time monitoring and the damage detection method of the interface separation of concrete-filled steel tube by accelerometer array through quantitative transient self-excitation is proposed. The accelerometers are arranged on the steel tube area with or without void respectively, and the signals of accelerometers are collected at the same time and compared under different transient excitation points. The results show that compared with the signal of compact area, the peak value of accelerometer signal at void area increases and attenuation speed slows down obviously, and the spectrum peaks of the void area are much more and disordered and the amplitude increases obviously. whether the input point of transient excitation is on void area or not is irrelevant with qualitative identification results. So the qualitative identification of the interface separation of concrete-filled steel tube based on the signal of acceleration transducer is feasible and valid.
Falls classification using tri-axial accelerometers during the five-times-sit-to-stand test.
Doheny, Emer P; Walsh, Cathal; Foran, Timothy; Greene, Barry R; Fan, Chie Wei; Cunningham, Clodagh; Kenny, Rose Anne
2013-09-01
The five-times-sit-to-stand test (FTSS) is an established assessment of lower limb strength, balance dysfunction and falls risk. Clinically, the time taken to complete the task is recorded with longer times indicating increased falls risk. Quantifying the movement using tri-axial accelerometers may provide a more objective and potentially more accurate falls risk estimate. 39 older adults, 19 with a history of falls, performed four repetitions of the FTSS in their homes. A tri-axial accelerometer was attached to the lateral thigh and used to identify each sit-stand-sit phase and sit-stand and stand-sit transitions. A second tri-axial accelerometer, attached to the sternum, captured torso acceleration. The mean and variation of the root-mean-squared amplitude, jerk and spectral edge frequency of the acceleration during each section of the assessment were examined. The test-retest reliability of each feature was examined using intra-class correlation analysis, ICC(2,k). A model was developed to classify participants according to falls status. Only features with ICC>0.7 were considered during feature selection. Sequential forward feature selection within leave-one-out cross-validation resulted in a model including four reliable accelerometer-derived features, providing 74.4% classification accuracy, 80.0% specificity and 68.7% sensitivity. An alternative model using FTSS time alone resulted in significantly reduced classification performance. Results suggest that the described methodology could provide a robust and accurate falls risk assessment. Copyright © 2013 Elsevier B.V. All rights reserved.
Vähä-Ypyä, Henri; Vasankari, Tommi; Husu, Pauliina; Suni, Jaana; Sievänen, Harri
2015-01-01
Accelerometers are increasingly used for objective assessment of physical activity. However, because of lack of the proprietary analysis algorithms, direct comparisons between accelerometer brands are difficult. In this study, we propose and evaluate open source methods for commensurate assessment of raw accelerometer data irrespective of the brand. Twenty-one participants carried simultaneously three different tri-axial accelerometers on their waist during five different sedentary activities and five different intensity levels of bipedal movement from slow walking to running. Several time and frequency domain traits were calculated from the measured raw data, and their performance in classifying the activities was compared. Of the several traits, the mean amplitude deviation (MAD) provided consistently the best performance in separating the sedentary activities and different speeds of bipedal movement from each other. Most importantly, the universal cut-off limits based on MAD classified sedentary activities and different intensity levels of walking and running equally well for all three accelerometer brands and reached at least 97% sensitivity and specificity in each case. Irrespective of the accelerometer brand, a simply calculable MAD with universal cut-off limits provides a universal method to evaluate physical activity and sedentary behaviour using raw accelerometer data. A broader application of the present approach is expected to render different accelerometer studies directly comparable with each other. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Choquette, Stéphane; Hamel, Mathieu; Boissy, Patrick
2008-01-01
Background It has been suggested that there is a dose-response relationship between the amount of therapy and functional recovery in post-acute rehabilitation care. To this day, only the total time of therapy has been investigated as a potential determinant of this dose-response relationship because of methodological and measurement challenges. The primary objective of this study was to compare time and motion measures during real life physical therapy with estimates of active time (i.e. the time during which a patient is active physically) obtained with a wireless body area network (WBAN) of 3D accelerometer modules positioned at the hip, wrist and ankle. The secondary objective was to assess the differences in estimates of active time when using a single accelerometer module positioned at the hip. Methods Five patients (77.4 ± 5.2 y) with 4 different admission diagnoses (stroke, lower limb fracture, amputation and immobilization syndrome) were recruited in a post-acute rehabilitation center and observed during their physical therapy sessions throughout their stay. Active time was recorded by a trained observer using a continuous time and motion analysis program running on a Tablet-PC. Two WBAN configurations were used: 1) three accelerometer modules located at the hip, wrist and ankle (M3) and 2) one accelerometer located at the hip (M1). Acceleration signals from the WBANs were synchronized with the observations. Estimates of active time were computed based on the temporal density of the acceleration signals. Results A total of 62 physical therapy sessions were observed. Strong associations were found between WBANs estimates of active time and time and motion measures of active time. For the combined sessions, the intraclass correlation coefficient (ICC) was 0.93 (P ≤ 0.001) for M3 and 0.79 (P ≤ 0.001) for M1. The mean percentage of differences between observation measures and estimates from the WBAN of active time was -8.7% ± 2.0% using data from M3 and -16.4% ± 10.4% using data from M1. Conclusion WBANs estimates of active time compare favorably with results from observation-based time and motion measures. While the investigation on the association between active time and outcomes of rehabilitation needs to be studied in a larger scale study, the use of an accelerometer-based WBAN to measure active time is a promising approach that offers a better overall precision than methods relying on work sampling. Depending on the accuracy needed, the use of a single accelerometer module positioned on the hip may still be an interesting alternative to using multiple modules. PMID:18764954
Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations
2010-01-01
Background The aim of this study was to evaluate a method based on a single accelerometer for the assessment of gait symmetry and regularity in subjects wearing lower limb prostheses. Methods Ten transfemoral amputees and ten healthy control subjects were studied. For the purpose of this study, subjects wore a triaxial accelerometer on their thorax, and foot insoles. Subjects were asked to walk straight ahead for 70 m at their natural speed, and at a lower and faster speed. Indices of step and stride regularity (Ad1 and Ad2, respectively) were obtained by the autocorrelation coefficients computed from the three acceleration components. Step and stride durations were calculated from the plantar pressure data and were used to compute two reference indices (SI1 and SI2) for step and stride regularity. Results Regression analysis showed that both Ad1 well correlates with SI1 (R2 up to 0.74), and Ad2 well correlates with SI2 (R2 up to 0.52). A ROC analysis showed that Ad1 and Ad2 has generally a good sensitivity and specificity in classifying amputee's walking trial, as having a normal or a pathologic step or stride regularity as defined by means of the reference indices SI1 and SI2. In particular, the antero-posterior component of Ad1 and the vertical component of Ad2 had a sensitivity of 90.6% and 87.2%, and a specificity of 92.3% and 81.8%, respectively. Conclusions The use of a simple accelerometer, whose components can be analyzed by the autocorrelation function method, is adequate for the assessment of gait symmetry and regularity in transfemoral amputees. PMID:20085653
Igelström, Helena; Emtner, Margareta; Lindberg, Eva; Asenlöf, Pernilla
2013-01-01
There is ambiguity about what measures to use to best identify physical activity and sedentary behavior, and agreement between methods for measuring physical activity and sedentary behavior in people with obstructive sleep apnea syndrome (OSAS) and obesity has not been evaluated. The objective of this study was to examine the level of agreement between an accelerometer and a self-report questionnaire (International Physical Activity Questionnaire [IPAQ]) or a logbook for measuring time spent on moderate to vigorous physical activity and time spent sedentary in people with OSAS and obesity. This prospective study was a psychometric evaluation of agreement between measurement methods. Thirty-nine people who were obese (body mass index: X=36.1 kg/m², SD=4.35) and had moderate to severe OSAS (apnea-hypopnea index of ≥15) were consecutively recruited from a sleep clinic in Sweden. All were treated with continuous positive airway pressure and were waiting for a follow-up sleep evaluation. Agreement between the measurement methods was limited. For physical activity, the mean difference between the accelerometer and the IPAQ was 47 minutes, and the mean difference between the accelerometer and the logbook was 32 minutes. Agreement was limited for sedentary time as well; the mean difference between the accelerometer and the IPAQ was 114 minutes, and the mean difference between the accelerometer and the logbook was 86 minutes. The small sample size may affect the interpretation and generalizability of the results. The results imply that the methods cannot be used interchangeably. A combination of an accelerometer and a daily logbook seems to provide a detailed description of physical activity and sedentary behavior.
Permethrin exposure from fabric-treated military uniforms under different wear-time scenarios.
Proctor, Susan P; Maule, Alexis L; Heaton, Kristin J; Adam, Gina E
2014-11-01
The objective of the project was to ascertain whether urinary biomarkers of permethrin exposure are detected after wearing post-tailored, fabric-treated military uniforms under two different wear-time exposure scenarios. Study A occurred over 3.5 days and involved six participants wearing treated uniforms continuously for 30-32 h. Urine collection occurred at scheduled time points before, during, and after wearing the uniform. Study B, conducted over 19 days, included 11 participants wearing treated uniforms for 3 consecutive days, 8 h each day (with urine collection before, during, and after wear). Urinary biomarkers of permethrin (3-phenoxybenzoic acid (3PBA), cis- 2,2-(dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cDCCA), trans- 2,2-(dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (tDCCA)) were detected during and after wear. Biomarker detection generally occurred over the 10- to 12-h period after putting on the uniform and subsided 24 h following uniform removal (in both Study A and B scenarios). Those wearing permethrin-treated uniforms under the longer wear-time scenario (Study A) excreted significantly higher cumulative mean levels compared with those in Study B (3.29 times higher for 3PBA and 2.23 times higher for the sum of c/tDCCA (P≤0.001)). Findings suggest that wearing permethrin-treated clothing does increase absorbed, internal dose levels of permethrin above population levels and is significantly related to wear-time duration.
Ramulu, Pradeep Y; Chan, Emilie S; Loyd, Tara L; Ferrucci, Luigi; Friedman, David S
2012-08-01
Measuring physical at home and away from home is essential for assessing health and well-being, and could help design interventions to increase physical activity. Here, we describe how physical activity at home and away from home can be quantified by combining information from cellular network-based tracking devices and accelerometers. Thirty-five working adults wore a cellular network-based tracking device and an accelerometer for 6 consecutive days and logged their travel away from home. Performance of the tracking device was determined using the travel log for reference. Tracking device and accelerometer data were merged to compare physical activity at home and away from home. The tracking device detected 98.6% of all away-from-home excursions, accurately measured time away from home and demonstrated few prolonged signal drop-out periods. Most physical activity took place away from home on weekdays, but not on weekends. Subjects were more physically active per unit of time while away from home, particularly on weekends. Cellular network-based tracking devices represent an alternative to global positioning systems for tracking location, and provide information easily integrated with accelerometers to determine where physical activity takes place. Promoting greater time spent away from home may increase physical activity.
Balance and coordination after viewing stereoscopic 3D television
Read, Jenny C. A.; Simonotto, Jennifer; Bohr, Iwo; Godfrey, Alan; Galna, Brook; Rochester, Lynn; Smulders, Tom V.
2015-01-01
Manufacturers and the media have raised the possibility that viewing stereoscopic 3D television (S3D TV) may cause temporary disruption to balance and visuomotor coordination. We looked for evidence of such effects in a laboratory-based study. Four hundred and thirty-three people aged 4–82 years old carried out tests of balance and coordination before and after viewing an 80 min movie in either conventional 2D or stereoscopic 3D, while wearing two triaxial accelerometers. Accelerometry produced little evidence of any change in body motion associated with S3D TV. We found no evidence that viewing the movie in S3D causes a detectable impairment in balance or in visuomotor coordination. PMID:26587261
Accelerometer-based measures in physical activity surveillance: current practices and issues.
Pedišić, Željko; Bauman, Adrian
2015-02-01
Self-reports of physical activity (PA) have been the mainstay of measurement in most non-communicable disease (NCD) surveillance systems. To these, other measures are added to summate to a comprehensive PA surveillance system. Recently, some national NCD surveillance systems have started using accelerometers as a measure of PA. The purpose of this paper was specifically to appraise the suitability and role of accelerometers for population-level PA surveillance. A thorough literature search was conducted to examine aspects of the generalisability, reliability, validity, comprehensiveness and between-study comparability of accelerometer estimates, and to gauge the simplicity, cost-effectiveness, adaptability and sustainability of their use in NCD surveillance. Accelerometer data collected in PA surveillance systems may not provide estimates that are generalisable to the target population. Accelerometer-based estimates have adequate reliability for PA surveillance, but there are still several issues associated with their validity. Accelerometer-based prevalence estimates are largely dependent on the investigators' choice of intensity cut-off points. Maintaining standardised accelerometer data collections in long-term PA surveillance systems is difficult, which may cause discontinuity in time-trend data. The use of accelerometers does not necessarily produce useful between-study and international comparisons due to lack of standardisation of data collection and processing methods. To conclude, it appears that accelerometers still have limitations regarding generalisability, validity, comprehensiveness, simplicity, affordability, adaptability, between-study comparability and sustainability. Therefore, given the current evidence, it seems that the widespread adoption of accelerometers specifically for large-scale PA surveillance systems may be premature. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Bourke, Alan K; van de Ven, Pepijn W J; Chaya, Amy E; OLaighin, Gearóid M; Nelson, John
2008-01-01
A fall detection system and algorithm, incorporated into a custom designed garment has been developed. The developed fall detection system uses a tri-axial accelerometer, microcontroller, battery and Bluetooth module. This sensor is attached to a custom designed vest, designed to be worn by the elderly person under clothing. The fall detection algorithm was developed and incorporates both impact and posture detection capability. The vest and fall algorithm was tested on young healthy subjects performing normal activities of daily living (ADL) and falls onto crash mats, while wearing the best and sensor. Results show that falls can de distinguished from normal activities with a sensitivity >90% and a specificity of >99%, from a total data set of 264 falls and 165 normal ADL. By incorporating the fall-detection sensor into a custom designed garment it is anticipated that greater compliance when wearing a fall-detection system can be achieved and will help reduce the incidence of the long-lie, when falls occur in the elderly population. However further long-term testing using elderly subjects is required to validate the systems performance.
2013-01-01
Background Many children spend too much time screen-viewing (watching TV, surfing the internet and playing video games) and do not meet physical activity (PA) guidelines. Parents are important influences on children’s PA and screen-viewing (SV). There is a shortage of parent-focused interventions to change children’s PA and SV. Methods Teamplay was a two arm individualized randomized controlled feasibility trial. Participants were parents of 6–8 year old children. Intervention participants were invited to attend an eight week parenting program with each session lasting 2 hours. Children and parents wore an accelerometer for seven days and minutes of moderate-to-vigorous intensity PA (MVPA) were derived. Parents were also asked to report the average number of hours per day that both they and the target child spent watching TV. Measures were assessed at baseline (time 0) at the end of the intervention (week 8) and 2 months after the intervention had ended (week 16). Results There were 75 participants who provided consent and were randomized but 27 participants withdrew post-randomization. Children in the intervention group engaged in 2.6 fewer minutes of weekday MVPA at Time 1 but engaged in 11 more minutes of weekend MVPA. At Time 1 the intervention parents engaged in 9 more minutes of weekday MVPA and 13 more minutes of weekend MVPA. The proportion of children in the intervention group watching ≥ 2 hours per day of TV on weekend days decreased after the intervention (time 0 = 76%, time 1 = 39%, time 2 = 50%), while the control group proportion increased slightly (79%, 86% and 87%). Parental weekday TV watching decreased in both groups. In post-study interviews many mothers reported problems associated with wearing the accelerometers. In terms of a future full-scale trial, a sample of between 80 and 340 families would be needed to detect a mean difference of 10-minutes of weekend MVPA. Conclusions Teamplay is a promising parenting program in an under-researched area. The intervention was acceptable to parents, and all elements of the study protocol were successfully completed. Simple changes to the trial protocol could result in more complete data collection and study engagement. PMID:23510646
How Accurately Can Your Wrist Device Recognize Daily Activities and Detect Falls?
Gjoreski, Martin; Gjoreski, Hristijan; Luštrek, Mitja; Gams, Matjaž
2016-01-01
Although wearable accelerometers can successfully recognize activities and detect falls, their adoption in real life is low because users do not want to wear additional devices. A possible solution is an accelerometer inside a wrist device/smartwatch. However, wrist placement might perform poorly in terms of accuracy due to frequent random movements of the hand. In this paper we perform a thorough, large-scale evaluation of methods for activity recognition and fall detection on four datasets. On the first two we showed that the left wrist performs better compared to the dominant right one, and also better compared to the elbow and the chest, but worse compared to the ankle, knee and belt. On the third (Opportunity) dataset, our method outperformed the related work, indicating that our feature-preprocessing creates better input data. And finally, on a real-life unlabeled dataset the recognized activities captured the subject’s daily rhythm and activities. Our fall-detection method detected all of the fast falls and minimized the false positives, achieving 85% accuracy on the first dataset. Because the other datasets did not contain fall events, only false positives were evaluated, resulting in 9 for the second, 1 for the third and 15 for the real-life dataset (57 days data). PMID:27258282
Ishii, Kaori; Shibata, Ai; Adachi, Minoru; Mano, Yoshiyuki; Oka, Koichiro
2017-04-01
Sedentary behaviors (SB) are associated with health indicators; however, there are currently very few studies that have examined these associations, especially in conjunction with psychological factors, in children. The current study examined the independent relationship between objectively assessed SB, and indicators of obesity and psychological well-being, among Japanese children. A total of 967 elementary-school children completed a cross-sectional survey. SB was measured with accelerometers for 7 consecutive days. Psychological well-being data (eg, anxiety and behavior problems) were collected via a self-report questionnaire. To determine the relationship of SB with degree of obesity and psychological well-being, linear regression analyses were conducted to relate the indicators of obesity and psychological well-being on SB, adjusted by gender, grade, percentage of moderate-to-vigorous physical activity per day, duration spent wearing the accelerometer, and degree of obesity. SB was significantly related to behavioral/emotional problems (β = .280, P = .010, R 2 = .015). There was a statistically significant relationship between SB and anxiety (β = .206, P = .059, R 2 = .007). No significant association with degree of obesity was found. Excess SB relates higher levels of behavioral/emotional problems and anxiety. These results can inspire the development of interventions that promote well-being and enhance psychological health, by focusing on SB in Japanese children.
[Validity of the 24-h previous day physical activity recall (PDPAR-24) in Spanish adolescents].
Cancela, José María; Lago, Joaquín; Ouviña, Lara; Ayán, Carlos
2015-04-01
The monitoring of physical activity levels in adolescent population, its determinant factors and susceptibility to change is essential to intervene on the obesity epidemic affecting Spanish society. However, the number of validated questionnaires to assess physical activity in Spanish adolescents is scarce. To assess the validity of the 24h Previous Day Physical Activity Recall (PDPAR-24) questionnaire when it is administered to the Spanish adolescent population. The participants of the study were students, aged between 14 and 15 years, from two secondary schools in the north of Galicia. The measurement of physical activity by the accelerometer Actigraph GT3X was used as criterion. Participants were asked to wear the accelerometer during waking hours for one day and the questionnaire was administered the day after. A total of 79 students (15.16 ± 0.81 years, 36% women) completed the study. Statistically significant positive correlations of high and moderate nature(r=0.50-0.98) were observed for low and moderate intensity physical activity in both sexes. Correlation coefficients were higher as physical activity intensity increased. The PDPAR-24 can be deemed as a valid tool for the assessment of physical activity in Spanish adolescents. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
The use of an Energy Monitor in the management of diabetes: a pilot study.
Voon, Rudi; Celler, Branko G; Lovell, Nigel H
2009-02-01
This study evaluated the use of an accelerometer-based device in helping to manage blood glucose levels (BGLs) in people with diabetes mellitus. Five people with diabetes were given a triaxial accelerometer-based device (Energy Monitor) that measured energy levels associated with activities of daily living. For 3 months, they were required to wear the device and to continue with their usual diabetes therapy. The body mass index (BMI) and glycosylated hemoglobin (HbA(1c)) were recorded to assess any potential improvement in blood glucose control. The relationship between BGL and measured energy level was also investigated. Overall, there was a significant reduction of HbA(1c) from 7.48 +/- 1.21% to 6.98 +/- 1.44% (P < 0.05). There was no significant change in BMI. It was also found that higher energy levels resulted in much lower fluctuations in BGL change between meals compared to low energy levels. Moreover, the weekly mean activity score showed an increase in activity levels from the second week to the final week. This pilot study demonstrated that the Energy Monitor could improve the management of diabetes by allowing people with diabetes to view and manage daily physical activity in addition to their usual diabetes therapy.
Accelerometer Data Analysis and Presentation Techniques
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; Moskowitz, Milton E.; Reckart, Timothy
1997-01-01
The NASA Lewis Research Center's Principal Investigator Microgravity Services project analyzes Orbital Acceleration Research Experiment and Space Acceleration Measurement System data for principal investigators of microgravity experiments. Principal investigators need a thorough understanding of data analysis techniques so that they can request appropriate analyses to best interpret accelerometer data. Accelerometer data sampling and filtering is introduced along with the related topics of resolution and aliasing. Specific information about the Orbital Acceleration Research Experiment and Space Acceleration Measurement System data sampling and filtering is given. Time domain data analysis techniques are discussed and example environment interpretations are made using plots of acceleration versus time, interval average acceleration versus time, interval root-mean-square acceleration versus time, trimmean acceleration versus time, quasi-steady three dimensional histograms, and prediction of quasi-steady levels at different locations. An introduction to Fourier transform theory and windowing is provided along with specific analysis techniques and data interpretations. The frequency domain analyses discussed are power spectral density versus frequency, cumulative root-mean-square acceleration versus frequency, root-mean-square acceleration versus frequency, one-third octave band root-mean-square acceleration versus frequency, and power spectral density versus frequency versus time (spectrogram). Instructions for accessing NASA Lewis Research Center accelerometer data and related information using the internet are provided.
Lee, Youngbum; Kim, Jinkwon; Son, Muntak; Lee, Myoungho
2007-01-01
This research implements wireless accelerometer sensor module and algorithm to determine wearer's posture, activity and fall. Wireless accelerometer sensor module uses ADXL202, 2-axis accelerometer sensor (Analog Device). And using wireless RF module, this module measures accelerometer signal and shows the signal at ;Acceloger' viewer program in PC. ADL algorithm determines posture, activity and fall that activity is determined by AC component of accelerometer signal and posture is determined by DC component of accelerometer signal. Those activity and posture include standing, sitting, lying, walking, running, etc. By the experiment for 30 subjects, the performance of implemented algorithm was assessed, and detection rate for postures, motions and subjects was calculated. Lastly, using wireless sensor network in experimental space, subject's postures, motions and fall monitoring system was implemented. By the simulation experiment for 30 subjects, 4 kinds of activity, 3 times, fall detection rate was calculated. In conclusion, this system can be application to patients and elders for activity monitoring and fall detection and also sports athletes' exercise measurement and pattern analysis. And it can be expected to common person's exercise training and just plaything for entertainment.
Drift Mode Accelerometry for Spaceborne Gravity Measurements
NASA Astrophysics Data System (ADS)
Conklin, J. W.; Shelley, R.; Chilton, A.; Olatunde, T.; Ciani, G.; Mueller, G.
2014-12-01
A drift mode accelerometer is a precision instrument for spacecraft that overcomes much of the acceleration noise and readout dynamic range limitations of traditional electrostatic accelerometers. It has the potential of achieving acceleration noise performance similar to that of drag-free systems over a restricted frequency band without the need for external drag-free control or continuous spacecraft propulsion. Like traditional accelerometers, the drift mode accelerometer contains a high-density test mass surrounded by an electrode housing, which can control and sense all six degrees of freedom of the test mass. Unlike traditional accelerometers, the suspension system is operated with a low duty cycle so that the limiting suspension force noise only acts over brief, known time intervals, which can be accounted for in the data analysis. The readout is performed using a laser interferometer which is immune to the dynamic range limitations of even the best voltage references typically used to determine the inertial acceleration of electrostatic accelerometers. This presentation describes operation and performance modeling for such a device with respect to a low Earth orbiting satellite geodesy mission. Methods for testing the drift mode accelerometer with the University of Florida precision torsion pendulum will also be discussed.
Schott, Timm C; Menne, Dieter
2018-07-01
A broad spectrum of colors for removable appliances, intended to optimize acceptance of treatment and patient cooperation, have been available on the dental market for years. This is the first study to analyze how patient-selected colors are reflected in wear times and wear behavior of removable appliances. The study included 117 children (55 girls and 62 boys) who were treated with active removable plate or functional appliances. All patients were offered to choose from 11 different colors, which were pooled into six groups (black, blue, green, yellow, pink, red) for analysis, or to combine any two to four colors ("multicolored" group) for their appliances. All appliances featured a built-in microsensor (TheraMon; MC Technology, Hargelsberg, Austria) for objective wear-time tracking. Differences between wear times were analyzed using pairwise t tests and Tukey correction. The longest median wear times were recorded in the blue and green groups (≈11 h/d) and the shortest ones in the red and pink groups (≈9 h/d), but they were not significantly influenced by the patient-selected colors. The median wear times involved an age-related decrease by 0.56 h/y that was statistically significant ( P = .00005). No gender-specific patterns of wear behavior were observed. Patient-selected colors for removable appliances can presumably improve acceptance of treatment, but they are not associated with statistically significant improvements in wear time or wear behavior.
Godfrey, A; Culhane, K M; Lyons, G M
2007-10-01
The aim of this study was to assess the accuracy of the 'activPAL Professional' physical activity logger by comparing its output to that of a proven discrete accelerometer-based activity monitor during extended measurements on healthy subjects while performing activities of daily living (ADL). Ten healthy adults, with unrestricted mobility, wore both the activPAL and the discrete dual accelerometer (Analog Devices ADXL202)-based activity monitor that recorded in synchronization with each other. The accelerometer derived data were then compared to that generated by the activPAL and a complete statistical and error analysis was performed using a Matlab program. This program determined trunk and thigh inclination angles to distinguish between sitting/lying, standing and stepping for the discrete accelerometer device and amount of time spent on each activity. Analysis was performed on a second-by-second basis and then categorized at 15s intervals in direct comparison with the activPAL generated data. Of the total time monitored (approximately 60 h) the detection accuracies for static and dynamic activities were approximately 98%. In a population of healthy adults, the data obtained from the activPAL Professional physical activity logger for both static and dynamic activities showed a close match to a proven discrete accelerometer data with an offset of approximately 2% between the two systems.
NASA Technical Reports Server (NTRS)
Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.
2015-01-01
The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.
Self-Reported Versus Accelerometer-Assessed Daily Physical Activity in Childhood Obesity Treatment.
Schnurr, Theresia M; Bech, Bianca; Nielsen, Tenna R H; Andersen, Ida G; Hjorth, Mads F; Aadahl, Mette; Fonvig, Cilius E; Hansen, Torben; Holm, Jens-Christian
2017-08-01
We investigated the relationship between interview-based subjective ratings of physical activity (PA) engagement and accelerometer-assessed objectively measured PA in children and adolescents with overweight or obesity. A total of 92 children and adolescents (40 males, 52 females) with BMI ≥ 90th percentile for sex and age, aged 5-17 years had valid GT3X + accelerometer-assessed PA and interview-assessed self-reported information on PA engagement at the time of enrollment in a multidisciplinary outpatient tertiary treatment for childhood obesity. Accelerometer-derived mean overall PA and time spent in moderate to vigorous physical intensity were generated, applying cut-offs based on Vector Magnitude settings as defined by Romanzini et al. (2014), and a physical activity score (PAS) based on self-reported data. Overall, a higher self-reported PAS was correlated with higher accelerometer-assessed daily total PA levels ( r = 0.34, p < .01) and children who reported a high PAS were more physically active compared with children who reported a low PAS. There was a fair level of agreement between self-reported PAS and accelerometer-assessed PA (Kappa agreement = 0.23; 95% CI = [0.03, 0.43]; p = .01). PAS, derived from self-report, may be a useful instrument for evaluating PA at a group level among children and adolescents enrolled in multidisciplinary obesity treatment.
Application of Accelerometer Data to Mars Odyssey Aerobraking and Atmospheric Modeling
NASA Technical Reports Server (NTRS)
Tolson, R. H.; Keating, G. M.; George, B. E.; Escalera, P. E.; Werner, M. R.; Dwyer, A. M.; Hanna, J. L.
2002-01-01
Aerobraking was an enabling technology for the Mars Odyssey mission even though it involved risk due primarily to the variability of the Mars upper atmosphere. Consequently, numerous analyses based on various data types were performed during operations to reduce these risk and among these data were measurements from spacecraft accelerometers. This paper reports on the use of accelerometer data for determining atmospheric density during Odyssey aerobraking operations. Acceleration was measured along three orthogonal axes, although only data from the component along the axis nominally into the flow was used during operations. For a one second count time, the RMS noise level varied from 0.07 to 0.5 mm/s2 permitting density recovery to between 0.15 and 1.1 kg per cu km or about 2% of the mean density at periapsis during aerobraking. Accelerometer data were analyzed in near real time to provide estimates of density at periapsis, maximum density, density scale height, latitudinal gradient, longitudinal wave variations and location of the polar vortex. Summaries are given of the aerobraking phase of the mission, the accelerometer data analysis methods and operational procedures, some applications to determining thermospheric properties, and some remaining issues on interpretation of the data. Pre-flight estimates of natural variability based on Mars Global Surveyor accelerometer measurements proved reliable in the mid-latitudes, but overestimated the variability inside the polar vortex.
Physical activity classification with dynamic discriminative methods.
Ray, Evan L; Sasaki, Jeffer E; Freedson, Patty S; Staudenmayer, John
2018-06-19
A person's physical activity has important health implications, so it is important to be able to measure aspects of physical activity objectively. One approach to doing that is to use data from an accelerometer to classify physical activity according to activity type (e.g., lying down, sitting, standing, or walking) or intensity (e.g., sedentary, light, moderate, or vigorous). This can be formulated as a labeled classification problem, where the model relates a feature vector summarizing the accelerometer signal in a window of time to the activity type or intensity in that window. These data exhibit two key characteristics: (1) the activity classes in different time windows are not independent, and (2) the accelerometer features have moderately high dimension and follow complex distributions. Through a simulation study and applications to three datasets, we demonstrate that a model's classification performance is related to how it addresses these aspects of the data. Dynamic methods that account for temporal dependence achieve better performance than static methods that do not. Generative methods that explicitly model the distribution of the accelerometer signal features do not perform as well as methods that take a discriminative approach to establishing the relationship between the accelerometer signal and the activity class. Specifically, Conditional Random Fields consistently have better performance than commonly employed methods that ignore temporal dependence or attempt to model the accelerometer features. © 2018, The International Biometric Society.
Hager, Erin R; Gormley, Candice E; Latta, Laura W; Treuth, Margarita S; Caulfield, Laura E; Black, Maureen M
2016-09-06
Toddlerhood is an important age for physical activity (PA) promotion to prevent obesity and support a physically active lifestyle throughout childhood. Accurate assessment of PA is needed to determine trends/correlates of PA, time spent in sedentary, light, or moderate-vigorous PA (MVPA), and the effectiveness of PA promotion programs. Due to the limited availability of objective measures that have been validated and evaluated for feasibility in community studies, it is unclear which subgroups of toddlers are at the highest risk for inactivity. Using Actical ankle accelerometry, the objectives of this study are to develop valid thresholds, examine feasibility, and examine demographic/ anthropometric PA correlates of MVPA among toddlers from low-income families. Two studies were conducted with toddlers (12-36 months). Laboratory Study (n = 24)- Two Actical accelerometers were placed on the ankle. PA was observed using the Child Activity Rating Scale (CARS, prescribed activities). Analyses included device equivalence reliability (correlation: activity counts of two Acticals), criterion-related validity (correlation: activity counts and CARS ratings), and sensitivity/specificity for thresholds. Community Study (n = 277, low-income mother-toddler dyads recruited)- An Actical was worn on the ankle for > 7 days (goal >5, 24-h days). Height/weight was measured. Mothers reported demographics. Analyses included frequencies (feasibility) and stepwise multiple linear regression (sMLR). Laboratory Study- Acticals demonstrated reliability (r = 0.980) and validity (r = 0.75). Thresholds demonstrated sensitivity (86 %) and specificity (88 %). Community Study- 86 % wore accelerometer, 69 % had valid data (mean = 5.2 days). Primary reasons for missing/invalid data: refusal (14 %) and wear-time ≤2 days (11 %). The MVPA threshold (>2200 cpm) yielded 54 min/day. In sMLR, MVPA was associated with age (older > younger, β = 32.8, p < 0.001), gender (boys > girls, β = -11.21, p = 0.032), maternal MVPA (β = 0.44, p = 0.002) and recruitment location (suburban > urban, β = 19.6, p < 0.001), or race (non-Black > Black, β = 18.5, p = 0.001). No association with toddler weight status. Ankle accelerometry is a valid, reliable, and feasible method of assessing PA in community studies of toddlers from low-income families. Sub-populations of toddlers may be at increased risk for inactivity, including toddlers that are younger, female, Black, those with less active mothers, and those living in an urban location.
Micromachined low frequency rocking accelerometer with capacitive pickoff
Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.
2001-01-01
A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.
Tibiofemoral wear in standard and non-standard squat: implication for total knee arthroplasty.
Fekete, Gusztáv; Sun, Dong; Gu, Yaodong; Neis, Patric Daniel; Ferreira, Ney Francisco; Innocenti, Bernardo; Csizmadia, Béla M
2017-01-01
Due to the more resilient biomaterials, problems related to wear in total knee replacements (TKRs) have decreased but not disappeared. In the design-related factors, wear is still the second most important mechanical factor that limits the lifetime of TKRs and it is also highly influenced by the local kinematics of the knee. During wear experiments, constant load and slide-roll ratio is frequently applied in tribo-tests beside other important parameters. Nevertheless, numerous studies demonstrated that constant slide-roll ratio is not accurate approach if TKR wear is modelled, while instead of a constant load, a flexion-angle dependent tibiofemoral force should be involved into the wear model to obtain realistic results. A new analytical wear model, based upon Archard's law, is introduced, which can determine the effect of the tibiofemoral force and the varying slide-roll on wear between the tibiofemoral connection under standard and non-standard squat movement. The calculated total wear with constant slide-roll during standard squat was 5.5 times higher compared to the reference value, while if total wear includes varying slide-roll during standard squat, the calculated wear was approximately 6.25 times higher. With regard to non-standard squat, total wear with constant slide-roll during standard squat was 4.16 times higher than the reference value. If total wear included varying slide-roll, the calculated wear was approximately 4.75 times higher. It was demonstrated that the augmented force parameter solely caused 65% higher wear volume while the slide-roll ratio itself increased wear volume by 15% higher compared to the reference value. These results state that the force component has the major effect on wear propagation while non-standard squat should be proposed for TKR patients as rehabilitation exercise.
Tibiofemoral wear in standard and non-standard squat: implication for total knee arthroplasty
Sun, Dong; Gu, Yaodong; Neis, Patric Daniel; Ferreira, Ney Francisco; Innocenti, Bernardo; Csizmadia, Béla M.
2017-01-01
Summary Introduction Due to the more resilient biomaterials, problems related to wear in total knee replacements (TKRs) have decreased but not disappeared. In the design-related factors, wear is still the second most important mechanical factor that limits the lifetime of TKRs and it is also highly influenced by the local kinematics of the knee. During wear experiments, constant load and slide-roll ratio is frequently applied in tribo-tests beside other important parameters. Nevertheless, numerous studies demonstrated that constant slide-roll ratio is not accurate approach if TKR wear is modelled, while instead of a constant load, a flexion-angle dependent tibiofemoral force should be involved into the wear model to obtain realistic results. Methods A new analytical wear model, based upon Archard’s law, is introduced, which can determine the effect of the tibiofemoral force and the varying slide-roll on wear between the tibiofemoral connection under standard and non-standard squat movement. Results The calculated total wear with constant slide-roll during standard squat was 5.5 times higher compared to the reference value, while if total wear includes varying slide-roll during standard squat, the calculated wear was approximately 6.25 times higher. With regard to non-standard squat, total wear with constant slide-roll during standard squat was 4.16 times higher than the reference value. If total wear included varying slide-roll, the calculated wear was approximately 4.75 times higher. Conclusions It was demonstrated that the augmented force parameter solely caused 65% higher wear volume while the slide-roll ratio itself increased wear volume by 15% higher compared to the reference value. These results state that the force component has the major effect on wear propagation while non-standard squat should be proposed for TKR patients as rehabilitation exercise. PMID:29721453
System for estimating fatigue damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeMonds, Jeffrey; Guzzo, Judith Ann; Liu, Shaopeng
In one aspect, a system for estimating fatigue damage in a riser string is provided. The system includes a plurality of accelerometers which can be deployed along a riser string and a communications link to transmit accelerometer data from the plurality of accelerometers to one or more data processors in real time. With data from a limited number of accelerometers located at sensor locations, the system estimates an optimized current profile along the entire length of the riser including riser locations where no accelerometer is present. The optimized current profile is then used to estimate damage rates to individual risermore » components and to update a total accumulated damage to individual riser components. The number of sensor locations is small relative to the length of a deepwater riser string, and a riser string several miles long can be reliably monitored along its entire length by fewer than twenty sensor locations.« less
Arigo, Danielle; Rohde, Paul; Shaw, Heather; Stice, Eric
2017-07-01
Moderate-to-vigorous physical activity (MVPA) is critical for maintaining a healthy weight, although little is known about psychological barriers to maintaining MVPA in at-risk groups. Identifying characteristics associated with poor MVPA maintenance in obesity prevention programs could improve participant outcomes. Toward this end, we examined predictors of MVPA in an obesity prevention trial for college students at risk for weight gain (n = 333; 72% female, mean BMI = 23.4 kg/m 2 ). Participants engaged in 1 of 3 weight control interventions and in 4 assessments over 12-month follow-up (ie, measured height/weight, self-reports of psychosocial characteristics, 4 days of accelerometer wear). Multilevel modeling analyses showed that across conditions, participants decreased total MVPA minutes per week over 12 months (B = -5.48, P < .01). Baseline self-report scores for both impulsiveness and cognitive dissonance regarding engaging in unhealthy behaviors negatively predicted MVPA over time. Participants higher (vs. lower) in baseline impulsiveness (B = -6.89, P = .03) and dissonance (B = -4.10, P = .04) began the study with more MVPA minutes, but showed sharper declines over time. Targeted MVPA-focused intervention for students who show elevated impulsiveness and cognitive dissonance may improve both MVPA and weight control outcomes for these individuals.
MGRA: Motion Gesture Recognition via Accelerometer.
Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen
2016-04-13
Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods.
Rääsk, Triin; Mäestu, Jarek; Lätt, Evelin; Jürimäe, Jaak; Jürimäe, Toivo; Vainik, Uku; Konstabel, Kenn
2017-01-01
Self-report measures of physical activity (PA) are easy to use and popular but their reliability is often questioned. Therefore, the general aim of the present study was to investigate the association of PA questionnaires with accelerometer derived PA, in a sample of adolescent boys. In total, 191 pubertal boys (mean age 14.0 years) completed three self-report questionnaires and wore an accelerometer (ActiGraph GT1M) for 7 consecutive days. The PA questionnaires were: International Physical Activity Questionnaire-Short Form (IPAQ-SF), Tartu Physical Activity Questionnaire (TPAQ), and the Inactivity subscale from Domain-Specific Impulsivity (DSI) scale. All three questionnaires were significantly correlated with accelerometer derived MVPA: the correlations were 0.31 for the IPAQ-SF MVPA, 0.34 for the TPAQ MVPA and -0.29 for the DSI Inactivity scale. Nevertheless, none of the questionnaires can be used as a reliable individual-level estimate of MVPA in male adolescents. The boys underreported their MVPA in IPAQ-SF as compared to accelerometer-derived MVPA (respective averages 43 and 56 minutes); underreporting was more marked in active boys with average daily MVPA at least 60 minutes, and was not significant in less active boys. Conversely, MVPA index from TPAQ overestimated the MVPA in less active boys but underestimated it in more active boys. The sedentary time reported in IPAQ-SF was an underestimate as compared to accelerometer-derived sedentary time (averages 519 and 545 minutes, respectively).
Tibbitts, Byron; Porter, Alice; Sebire, Simon J; Metcalfe, Chris; Bird, Emma; Powell, Jane; Jago, Russell
2017-01-01
Approximately half of 7-year-old children do not meet physical activity (PA) recommendations. Interventions targeting primary school children's afterschool discretionary time could increase PA. Teaching assistants (TAs) are a school resource and could be trained to deliver after-school PA programmes. Building on earlier work, this paper describes the protocol for a cluster randomised feasibility study of a teaching assistant-led after-school intervention aimed at increasing PA levels of year 4 and 5 children (8-10 years old). Phase 1-pre-baseline: 12 schools will be recruited. In all schools, self-reported PA will be measured in all consenting year 3 and 4 children. In four schools, pupils will additionally wear a waist-worn Actigraph accelerometer for 7 days.Phase 2-baseline: schools will be randomised to one of two enhanced recruitment strategies being tested for children: (1) a club briefing and (2) the briefing plus a taster Action 3:30 session. Up to 30 children per school will be able to attend Action 3:30 sessions and will provide baseline data on height, weight, psychosocial variables and accelerometer-measured PA.Phase 3-intervention and follow-up: Schools randomised into intervention or control arm. Intervention schools ( n = 6) will receive a 15-week after-school programme when children are in years 4 and 5, run by TAs who have attended a 25-h Action 3:30 training programme. Control schools ( n = 6) will continue with normal practice. Follow-up measures will be a repeat of baseline measures at the end of the 15-week intervention.Phase 4-process evaluation: session attendance, perceived enjoyment and perceived exertion will be assessed during the intervention, as well as the economic impact on schools. Post-study qualitative assessments with TAs, school contacts and pupils will identify how the programme could be refined. Accelerometer-determined minutes of moderate-to-vigorous physical activity (MVPA) per day will be calculated as this is likely to be the primary outcome in a future definitive trial. The Action 3:30 cluster randomised feasibility trial will assess the public health potential of this intervention approach and provide the information necessary to progress to a definitive cluster randomised controlled trial. ISRCTN34001941. Registered 01/12/2016.
Agreement between self-reported sleep patterns and actigraphy in fibromyalgia and healthy women.
Segura-Jiménez, Víctor; Camiletti-Moirón, Daniel; Munguía-Izquierdo, Diego; Álvarez-Gallardo, Inmaculada C; Ruiz, Jonatan R; Ortega, Francisco B; Delgado-Fernández, Manuel
2015-01-01
To examine the agreement between objective (accelerometer) and subjective measures of sleep in fibromyalgia women (FW) and healthy women (HW). To identify explanatory variables of the discrepancies between the objective and subjective measures in FW and in HW. 127 diagnosed FW and 53 HW filled the Fibromyalgia Impact Questionnaire (FIQ) and wore the SenseWear Pro Armband (SWA) for 7 days in order to assess sleep over the last week. Participants completed the Pittsburgh Sleep Quality Index (PSQI) when the SWA was returned. The SWA showed greater total duration (74 vs. 88 min/day) and average duration (7 vs. 9 min) of wake after sleep onset in FW compared with HW. The PSQI showed poorer sleep quality in all the variables studied in FW than in HW (all, p<0.001), except time in bed. There was a lack of inter-method agreement for total sleep time, sleep time without naps and sleep latency in FW. Age and educational status explained the inter-method mean difference in sleep time in FW. High discrepancy in sleep time between the SWA and the PSQI was related to higher FIQ scores (p<0.05). The objective measure only showed higher frequency and average duration of wake after sleep onset in FW compared with HW. The agreement between the SWA and the PSQI measures of sleep were poor in the FW group. Age, educational level and the impact of fibromyalgia might be explanatory variables of the inter-method discrepancies in FW.
Zdravevski, Eftim; Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger
2017-01-01
Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from either accelerometer position. Machine learning techniques can be used for automatic activity recognition, as they provide very accurate activity recognition, significantly more accurate than when keeping a diary. Identification of jogging periods in adolescents can be performed using only one accelerometer. Performance-wise there is no significant benefit from using accelerometers on both locations.
Drift mode accelerometry for spaceborne gravity measurements
NASA Astrophysics Data System (ADS)
Conklin, John W.
2015-11-01
A drift mode accelerometer is a precision instrument for spacecraft that overcomes much of the acceleration noise and readout dynamic range limitations of traditional electrostatic accelerometers. It has the potential of achieving acceleration noise performance similar to that of drag-free systems over a restricted frequency band without the need for external drag-free control or continuous spacecraft propulsion. Like traditional accelerometers, the drift mode accelerometer contains a high-density test mass surrounded by an electrode housing, which can control and sense all six degrees of freedom of the test mass. Unlike traditional accelerometers, the suspension system is operated with a low duty cycle so that the limiting suspension force noise only acts over brief, known time intervals, which can be neglected in the data analysis. The readout is performed using a laser interferometer which is immune to the dynamic range limitations of even the best voltage references typically used to determine the inertial acceleration of electrostatic accelerometers. The drift mode accelerometer is a novel offshoot of the like-named operational mode of the LISA Pathfinder spacecraft, in which its test mass suspension system is cycled on and off to estimate the acceleration noise associated with the front-end electronics. This paper presents the concept of a drift mode accelerometer, describes the operation of such a device, develops models for its performance with respect to non-drag-free satellite geodesy and gravitational wave missions, and discusses plans for testing the performance of a prototype sensor in the laboratory using torsion pendula.
NASA Astrophysics Data System (ADS)
Jia, Jingqing; Feng, Shuo; Liu, Wei
2015-06-01
Optimal sensor placement (OSP) technique is a vital part of the field of structural health monitoring (SHM). Triaxial accelerometers have been widely used in the SHM of large-scale structures in recent years. Triaxial accelerometers must be placed in such a way that all of the important dynamic information is obtained. At the same time, the sensor configuration must be optimal, so that the test resources are conserved. The recommended practice is to select proper degrees of freedom (DOF) based upon several criteria and the triaxial accelerometers are placed at the nodes corresponding to these DOFs. This results in non-optimal placement of many accelerometers. A ‘triaxial accelerometer monkey algorithm’ (TAMA) is presented in this paper to solve OSP problems of triaxial accelerometers. The EFI3 measurement theory is modified and involved in the objective function to make it more adaptable in the OSP technique of triaxial accelerometers. A method of calculating the threshold value based on probability theory is proposed to improve the healthy rate of monkeys in a troop generation process. Meanwhile, the processes of harmony ladder climb and scanning watch jump are proposed and given in detail. Finally, Xinghai NO.1 Bridge in Dalian is implemented to demonstrate the effectiveness of TAMA. The final results obtained by TAMA are compared with those of the original monkey algorithm and EFI3 measurement, which show that TAMA can improve computational efficiency and get a better sensor configuration.
Hunter, Louis N; Sison-Williamson, Mitell; Mendoza, Melissa M; McDonald, Craig M; Molitor, Fred; Mulcahey, M J; Betz, Randal R; Vogel, Lawrence C; Bagley, Anita
2008-06-15
Prospective multicenter observation. To determine the validity of 3 commercially available at recording thoracic-lumbar-sacral orthosis (TLSO) wearing time of children with spinal cord injury (SCI) and to assess each monitor's function during daily activities. A major limitation to studies assessing the effectiveness of spinal prophylactic bracing is the patient's compliance with the prescribed wearing time. Although some studies have begun to use objective compliance monitors, there is little documentation of the validity of the monitors during activities of daily life and no comparisons of available monitors. Fifteen children with SCI who wore a TLSO for paralytic scoliosis were observed for 4 days during their rehabilitation stay. Three compliance monitors (2 temperature and 1 pressure sensitive) were mounted onto each TLSO. Time of brace wear from the monitors was compared with the wear time per day recorded in diaries. Observed versus monitored duration of brace wear found the HOBO (temperature sensitive) to be the most valid compliance monitor. The HOBO had the lowest average of difference and variance of difference scores. The correlation between the recorded daily entries and monitored brace wear time was also highest for the HOBO in analysis of dependent and independent scores. Bland-Altman plots showed that the pressure sensitive monitor underestimated wear time whereas the temperature monitors overestimated wear time. Compliance to prescribed wearing schedule has been a barrier to studying TLSO efficacy. All 3 monitors were found to measure TLSO compliance, but the 2 temperature monitors were more in agreement with the daily diaries. Based on its functional advantages compared with the HOBO, the StowAway TidbiT will be used to further investigate the long-term compliance of TLSO bracing in children with SCI.
Bartley, Katherine F.; Firestone, Melanie J.; Lee, Karen K.; Eisenhower, Donna L.
2015-01-01
Introduction Recent studies have demonstrated the negative health consequences associated with extended sitting time, including metabolic disturbances and decreased life expectancy. The objectives of this study were to characterize sitting time in an urban adult population and assess the validity of a 2-question method of self-reported sitting time. Methods The New York City Health Department conducted the 2010–2011 Physical Activity and Transit Survey (N = 3,597); a subset of participants wore accelerometers for 1 week (n = 667). Self-reported sitting time was assessed from 2 questions on time spent sitting (daytime and evening hours). Sedentary time was defined as accelerometer minutes with less than 100 counts on valid days. Descriptive statistics were used to estimate the prevalence of sitting time by demographic characteristics. Validity of sitting time with accelerometer-measured sedentary time was assessed using Spearman’s correlation and Bland-Altman techniques. All data were weighted to be representative of the New York City adult population based on the 2006–2008 American Community Survey. Results Mean daily self-reported sitting time was 423 minutes; mean accelerometer-measured sedentary time was 490 minutes per day (r = 0.32, P < .001). The mean difference was 49 minutes per day (limits of agreement: −441 to 343). Sitting time was higher in respondents at lower poverty and higher education levels and lower in Hispanics and people who were foreign-born. Conclusion Participants of higher socioeconomic status, who are not typically the focus of health disparities–related research, had the highest sitting times; Hispanics had the lowest levels. Sitting time may be accurately assessed by self-report with the 2-question method for population surveillance but may be limited in accurately characterizing individual-level behavior. PMID:26020549
Yi, Stella S; Bartley, Katherine F; Firestone, Melanie J; Lee, Karen K; Eisenhower, Donna L
2015-05-28
Recent studies have demonstrated the negative health consequences associated with extended sitting time, including metabolic disturbances and decreased life expectancy. The objectives of this study were to characterize sitting time in an urban adult population and assess the validity of a 2-question method of self-reported sitting time. The New York City Health Department conducted the 2010-2011 Physical Activity and Transit Survey (N = 3,597); a subset of participants wore accelerometers for 1 week (n = 667). Self-reported sitting time was assessed from 2 questions on time spent sitting (daytime and evening hours). Sedentary time was defined as accelerometer minutes with less than 100 counts on valid days. Descriptive statistics were used to estimate the prevalence of sitting time by demographic characteristics. Validity of sitting time with accelerometer-measured sedentary time was assessed using Spearman's correlation and Bland-Altman techniques. All data were weighted to be representative of the New York City adult population based on the 2006-2008 American Community Survey. Mean daily self-reported sitting time was 423 minutes; mean accelerometer-measured sedentary time was 490 minutes per day (r = 0.32, P < .001). The mean difference was 49 minutes per day (limits of agreement: -441 to 343). Sitting time was higher in respondents at lower poverty and higher education levels and lower in Hispanics and people who were foreign-born. Participants of higher socioeconomic status, who are not typically the focus of health disparities-related research, had the highest sitting times; Hispanics had the lowest levels. Sitting time may be accurately assessed by self-report with the 2-question method for population surveillance but may be limited in accurately characterizing individual-level behavior.
Sasaki, Shogo; Nagano, Yasuharu; Ichikawa, Hiroshi
2018-05-10
Anterior cruciate ligament (ACL) injuries in badminton commonly occur during single-leg landing after an overhead stroke in the backhand-side court. This study compared differences in trunk acceleration and kinematic variables during single-leg landing in the forehand- and backhand-side courts after an overhead stroke. Eighteen female junior badminton players performed two singles games while wearing a tri-axial accelerometer. The moment that over 4g of resultant acceleration was generated was determined using synchronised video cameras. Trunk lateral inclination and hip abduction angles at the point of landing with over 4g of resultant acceleration were analysed. Mediolateral acceleration in the backhand-side court was greater than that in the opposite-side court (p < 0.001, ES = 0.840). Both trunk lateral angles were larger than those previously reported in injured participants and the hip abduction angle in the backhand-side court was larger than that in the forehand-side court (p < 0.001, ES = 2.357). The lateral and vertical acceleration in the backhand-side court showed moderate-to-strong correlations with the trunk and hip angles. The mediolateral physical demand and high-risk posture in the backhand-side court may be associated with a higher incidence of knee injuries during badminton games.
Albert, Mark V; Azeze, Yohannes; Courtois, Michael; Jayaraman, Arun
2017-02-06
Although commercially available activity trackers can aid in tracking therapy and recovery of patients, most devices perform poorly for patients with irregular movement patterns. Standard machine learning techniques can be applied on recorded accelerometer signals in order to classify the activities of ambulatory subjects with incomplete spinal cord injury in a way that is specific to this population and the location of the recording-at home or in the clinic. Subjects were instructed to perform a standardized set of movements while wearing a waist-worn accelerometer in the clinic and at-home. Activities included lying, sitting, standing, walking, wheeling, and stair climbing. Multiple classifiers and validation methods were used to quantify the ability of the machine learning techniques to distinguish the activities recorded in-lab or at-home. In the lab, classifiers trained and tested using within-subject cross-validation provided an accuracy of 91.6%. When the classifier was trained on data collected in the lab but tested on at home data, the accuracy fell to 54.6% indicating distinct movement patterns between locations. However, the accuracy of the at-home classifications, when training the classifier with at-home data, improved to 85.9%. Individuals with unique movement patterns can benefit from using tailored activity recognition algorithms easily implemented using modern machine learning methods on collected movement data.
Actogram analysis of free-flying migratory birds: new perspectives based on acceleration logging.
Bäckman, Johan; Andersson, Arne; Pedersen, Lykke; Sjöberg, Sissel; Tøttrup, Anders P; Alerstam, Thomas
2017-07-01
The use of accelerometers has become an important part of biologging techniques for large-sized birds with accelerometer data providing information about flight mode, wing-beat pattern, behaviour and energy expenditure. Such data show that birds using much energy-saving soaring/gliding flight like frigatebirds and swifts can stay airborne without landing for several months. Successful accelerometer studies have recently been conducted also for free-flying small songbirds during their entire annual cycle. Here we review the principles and possibilities for accelerometer studies in bird migration. We use the first annual actograms (for red-backed shrike Lanius collurio) to explore new analyses and insights that become possible with accelerometer data. Actogram data allow precise estimates of numbers of flights, flight durations as well as departure/landing times during the annual cycle. Annual and diurnal rhythms of migratory flights, as well as prolonged nocturnal flights across desert barriers are illustrated. The shifting balance between flight, rest and different intensities of activity throughout the year as revealed by actogram data can be used to analyse exertion levels during different phases of the life cycle. Accelerometer recording of the annual activity patterns of individual birds will open up a new dimension in bird migration research.
Robroek, Suzan JW; Ling, Sui Wai; van Rosmalen, Joost; van Rossum, Elisabeth FC; Burdorf, Alex; Hunink, MG Myriam
2017-01-01
Background Addressing the obesity epidemic requires the development of effective interventions aimed at increasing physical activity (PA). eHealth interventions with the use of accelerometers and gaming elements, such as rewarding or social bonding, seem promising. These eHealth elements, blended with face-to-face contacts, have the potential to help people adopt and maintain a physically active lifestyle. Objective The aim of this study was to assess the influence and usage of a blended Web-based gaming intervention on PA, body mass index (BMI), and waist circumference among overweight and obese employees. Methods In an uncontrolled before-after study, we observed 52 health care employees with BMI more than 25 kg/m2, who were recruited via the company’s intranet and who voluntarily participated in a 23-week Web-based gaming intervention, supplemented (blended) with non-eHealth components. These non-eHealth components were an individual session with an occupational health physician involving motivational interviewing and 5 multidisciplinary group sessions. The game was played by teams in 5 time periods, aiming to gain points by being physically active, as measured by an accelerometer. Data were collected in 2014 and 2015. Primary outcome was PA, defined as length of time at MET (metabolic equivalent task) ≥3, as measured by the accelerometer during the game. Secondary outcomes were reductions in BMI and waist circumference, measured at baseline and 10 and 23 weeks after the start of the program. Gaming elements such as “compliance” with the game (ie, days of accelerometer wear), “engagement” with the game (ie, frequency of reaching a personal monthly target), and “eHealth teams” (ie, social influence of eHealth teams) were measured as potential determinants of the outcomes. Linear mixed models were used to evaluate the effects on all outcome measures. Results The mean age of participants was 48.1 years; most participants were female (42/51, 82%). The mean PA was 86 minutes per day, ranging from 6.5 to 223 minutes, which was on average 26.2 minutes per day more than self-reported PA at baseline and remained fairly constant during the game. Mean BMI was reduced by 1.87 kg/m2 (5.6%) and waist circumference by 5.6 cm (4.8%). The univariable model showed that compliance, engagement, and eHealth team were significantly associated with more PA, which remained significant for eHealth team in the multivariable model. Conclusions This blended Web-based gaming intervention was beneficial for overweight workers in becoming physically active above the recommended activity levels during the entire intervention period, and a favorable influence on BMI and waist circumference was observed. Promising components in the intervention, and thus targets for upscaling, are eHealth teams and engagement with the game. Broader implementation and long-term follow-up can provide insights into the sustainable effects on PA and weight loss and into who benefits the most from this approach. PMID:28373157
An Accelerometer as an Alternative to a Force Plate for the Step-Up-and-Over Test.
Bailey, Christopher A; Costigan, Patrick A
2015-12-01
The step-up-and-over test has been used successfully to examine knee function after knee injury. Knee function is quantified using the following variables extracted from force plate data: the maximal force exerted during the lift, the maximal impact force at landing, and the total time to complete the step. For various reasons, including space and cost, it is unlikely that all clinicians will have access to a force plate. The purpose of the study was to determine if the step-up-and-over test could be simplified by using an accelerometer. The step-up-and-over test was performed by 17 healthy young adults while being measured with both a force plate and a 3-axis accelerometer mounted at the low back. Results showed that the accelerometer and force plate measures were strongly correlated for all 3 variables (r = .90-.98, Ps < .001) and that the accelerometer values for the lift and impact indices were 6-7% higher (Ps < .01) and occurred 0.07-0.1 s later than the force plate (Ps < .05). The accelerometer returned values highly correlated to those from a force plate. Compared with a force plate, a wireless, 3-axis accelerometer is a less expensive and more portable system with which to measure the step-up-and-over test.
Correlates of Physical Activity in Latino Preschool Children Attending Head Start.
Dawson-Hahn, Elizabeth Erin; Fesinmeyer, Megan D; Mendoza, Jason A
2015-08-01
Physical activity is associated with long-term benefits for health and tracks from early childhood into later adolescence. Limited information exists about factors influencing physical activity among Latino preschoolers. We aimed to identify correlates of objectively measured light-to-vigorous-intensity physical activity as a proportion of wear time (% PA) in Latino 3-5 year olds. Latino preschoolers (n = 96) were recruited from Head Start centers in Houston, TX, USA, from 2009 to 2010. Sociodemographics, anthropometrics, acculturation, neighborhood disorder, and TV viewing were measured. Actigraph GT1M accelerometers measured physical activity. Block linear regression was used with % PA as the dependent variable. Children achieved 285.7 ± 58.0 min/day of PA. In the final adjusted-model, child age, parental education and neighborhood disorder were positively associated with % PA (beta = 0.33, p = .002; beta = 0.25, p = .038; beta = 0.22, p = .039, respectively). TV viewing was inversely associated with % PA (beta=-0.23, p = .027). The majority of Latino preschoolers in our study exceeded US national and international guidelines of physical activity duration. Future interventions to sustain physical activity should focus on the influence of age, socioeconomic status, neighborhood disorder, and TV viewing on Latino preschoolers' attainment of physical activity.
Vibration based condition monitoring of a multistage epicyclic gearbox in lifting cranes
NASA Astrophysics Data System (ADS)
Assaad, Bassel; Eltabach, Mario; Antoni, Jérôme
2014-01-01
This paper proposes a model-based technique for detecting wear in a multistage planetary gearbox used by lifting cranes. The proposed method establishes a vibration signal model which deals with cyclostationary and autoregressive models. First-order cyclostationarity is addressed by the analysis of the time synchronous average (TSA) of the angular resampled vibration signal. Then an autoregressive model (AR) is applied to the TSA part in order to extract a residual signal containing pertinent fault signatures. The paper also explores a number of methods commonly used in vibration monitoring of planetary gearboxes, in order to make comparisons. In the experimental part of this study, these techniques are applied to accelerated lifetime test bench data for the lifting winch. After processing raw signals recorded with an accelerometer mounted on the outside of the gearbox, a number of condition indicators (CIs) are derived from the TSA signal, the residual autoregressive signal and other signals derived using standard signal processing methods. The goal is to check the evolution of the CIs during the accelerated lifetime test (ALT). Clarity and fluctuation level of the historical trends are finally considered as a criteria for comparing between the extracted CIs.
Fall classification by machine learning using mobile phones.
Albert, Mark V; Kording, Konrad; Herrmann, Megan; Jayaraman, Arun
2012-01-01
Fall prevention is a critical component of health care; falls are a common source of injury in the elderly and are associated with significant levels of mortality and morbidity. Automatically detecting falls can allow rapid response to potential emergencies; in addition, knowing the cause or manner of a fall can be beneficial for prevention studies or a more tailored emergency response. The purpose of this study is to demonstrate techniques to not only reliably detect a fall but also to automatically classify the type. We asked 15 subjects to simulate four different types of falls-left and right lateral, forward trips, and backward slips-while wearing mobile phones and previously validated, dedicated accelerometers. Nine subjects also wore the devices for ten days, to provide data for comparison with the simulated falls. We applied five machine learning classifiers to a large time-series feature set to detect falls. Support vector machines and regularized logistic regression were able to identify a fall with 98% accuracy and classify the type of fall with 99% accuracy. This work demonstrates how current machine learning approaches can simplify data collection for prevention in fall-related research as well as improve rapid response to potential injuries due to falls.
Walsh, Adam D; Crawford, David; Cameron, Adrian J; Campbell, Karen J; Hesketh, Kylie D
2017-07-05
Early childhood (under five years of age) is a critical developmental period when children's physical activity behaviours are shaped and when physical activity patterns begin to emerge. Physical activity levels track from early childhood through to adolescence with low levels of physical activity associated with poorer health. The aims of this study were to examine cross-sectional and longitudinal associations between the physical activity levels of fathers and their children at the ages of 20 months, 3.5 and 5 years, and to investigate whether these associations differed based on paternal body mass index (BMI) and education. The Melbourne Infant Feeding Activity and Nutrition Trial (InFANT) Program was a cluster randomized-controlled trial delivered to pre-existing first-time parent groups. Physical activity levels of fathers and their first-born children were assessed using the Active Australia Survey and ActiGraph accelerometers respectively. Cross-sectional associations between father and child physical activity behaviours were assessed at each time point. Longitudinal associations between father and child physical activity were also investigated from child age 20 months to both 3.5 and 5 years. Additional stratified analyses were conducted based on paternal BMI and paternal education as a proxy for socioeconomic position (SEP). Data from the control and interventions groups were pooled and all analyses adjusted for intervention status, clustering by first-time parent group and accelerometer wear time. Physical activity levels of fathers and their children at child age 20 months were not associated cross-sectionally or longitudinally at child age 3.5 and 5 years. Positive associations were observed between light physical activity of healthy weight fathers and children at age 3.5 years. Inverse associations were observed for moderate/vigorous physical activity between fathers and children at age 5 years, including between overweight/obese fathers and their children at this age in stratified analyses. There were no clear associations between the physical activity of fathers and children. Future research should include the use of more robust measures of physical activity among fathers to allow in-depth assessment of their physical activity behaviours. Investigation of well-defined correlates of physical activity in young children is warranted to confirm these findings and further progress research in this field.
Experimental Study of Turning Temperature and Turning Vibration for the Tool of Different Wear State
NASA Astrophysics Data System (ADS)
Li, Shuncai; Yu, Qiu; Yuan, Guanlei; Liang, Li
2018-03-01
By a vibration test device and Vib’SYS analysis system, a three-dimensional piezoelectric acceleration sensor and an infrared thermometer and its collection system, the turning experiments under different spindle speeds were carried out on three cutting tools with different wear states, and the change law of cutting temperature at the tool tip and change law of three-dimensional vibration with turning time were obtained. The results indicate that: (1) The temperature of the initial wear tool and the middle wear tool under a small turning parameter increased slowly with turning time; while under a greater turning parameter, the temperature of the middle wear tool varies significantly with time; (2) The temperature of the severe wear tool increased sharply at the later feeding stage; (3) The change laws of the tools vibration acceleration maximum with the spindle speeds are similar for the initial wear tool and the middle wear tool, which shows a trend of increasing at first and then decreasing; (4) the average value of vibration acceleration self-power spectrum of severe wear tool constantly increase with the spindle speed; (5) the maximum impact is along the radial direction for the tools of different wear state.
Dynamic-scanning-electron-microscope study of friction and wear
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1974-01-01
A friction and wear apparatus was built into a real time scanning electron microscope (SEM). The apparatus and SEM comprise a system which provides the capability of performing dynamic friction and wear experiments in situ. When the system is used in conjunction with dispersive X-ray analysis, a wide range of information on the wearing process can be obtained. The type of wear and variation with speed, load, and time can be investigated. The source, size, and distribution of wear particles can be determined and metallic transferal observed. Some typical results obtained with aluminum, copper, and iron specimens are given.
Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger
2017-01-01
Background Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. Methods The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. Results The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from either accelerometer position. Conclusions Machine learning techniques can be used for automatic activity recognition, as they provide very accurate activity recognition, significantly more accurate than when keeping a diary. Identification of jogging periods in adolescents can be performed using only one accelerometer. Performance-wise there is no significant benefit from using accelerometers on both locations. PMID:28880923
Choi, Young-Chul; Park, Jin-Ho; Choi, Kyoung-Sik
2011-01-01
In a nuclear power plant, a loose part monitoring system (LPMS) provides information on the location and the mass of a loosened or detached metal impacted onto the inner surface of the primary pressure boundary. Typically, accelerometers are mounted on the surface of a reactor vessel to localize the impact location caused by the impact of metallic substances on the reactor system. However, in some cases, the number of accelerometers is not sufficient to estimate the impact location precisely. In such a case, one of useful methods is to utilize other types of sensor that can measure the vibration of the reactor structure. For example, acoustic emission (AE) sensors are installed on the reactor structure to detect leakage or cracks on the primary pressure boundary. However, accelerometers and AE sensors have a different frequency range. The frequency of interest of AE sensors is higher than that of accelerometers. In this paper, we propose a method of impact source localization by using both accelerometer signals and AE signals, simultaneously. The main concept of impact location estimation is based on the arrival time difference of the impact stress wave between different sensor locations. However, it is difficult to find the arrival time difference between sensors, because the primary frequency ranges of accelerometers and AE sensors are different. To overcome the problem, we used phase delays of an envelope of impact signals. This is because the impact signals from the accelerometer and the AE sensor are similar in the whole shape (envelope). To verify the proposed method, we have performed experiments for a reactor mock-up model and a real nuclear power plant. The experimental results demonstrate that we can enhance the reliability and precision of the impact source localization. Therefore, if the proposed method is applied to a nuclear power plant, we can obtain the effect of additional installed sensors. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Palm, Peter; Gupta, Nidhi; Forsman, Mikael; Skotte, Jørgen; Nordquist, Tobias; Holtermann, Andreas
2018-06-26
Regarding prevention of neck and shoulder pain (NSP), unsupported arm elevation is one factor that should be taken into account when performing work risk assessment. Triaxial accelerometers can be used to measure arm elevation over several days but it is not possible to differentiate between supported and unsupported arm elevation from accelerometers only. Supported arm elevation is more likely to exist during sitting than standing. The aim of the study was to evaluate the use of whole workday measurements of arm elevation with accelerometers to assess potentially harmful work exposure of arm elevation, by comparing arm elevation at work with arm elevation during leisure, in a population with diverse work tasks, and to assess how the exposure parameters were modified when upper arm elevation during sitting time was excluded. The participants, 197 workers belonging to 12 occupational groups with diverse work tasks, wore triaxial accelerometers on the dominant arm, hip, and back for 1-4 days to measure arm elevation and periods of sitting. None of the groups were found to have higher exposure to arm elevation during work compared to leisure. Even though some occupations where known to have work tasks that forced them to work with elevated arms to a large extent. A high proportion of arm elevation derived from sitting time, especially so during leisure. When arm elevation during sitting time was excluded from the analysis, arm elevation was significantly higher at work than during leisure among construction workers, garbage collectors, manufacturing workers, and domestic cleaners. Together this illustrates that it is not suitable to use whole workday measurments of arm elevation with accelerometer as a sole information source when assessing the risk for NSP due to arm elevation. Information on body posture can provide relevant contextual information in exposure assessments when it is known that the potential harmful exposure is performed in standing or walking.
Evaluation of a cell phone-based physical activity diary.
Sternfeld, Barbara; Jiang, Sheng-Fang; Picchi, Teresa; Chasan-Taber, Lisa; Ainsworth, Barbara; Quesenberry, Charles P
2012-03-01
Physical activity (PA) diaries reduce the recall error inherent in self-reported PA but are burdensome. The purpose of this study was to compare a cell phone-based diary with a paper diary and examine the reliability and validity of the cell phone diary. In a pilot study, 25 women and 23 men, age 45-65 yr, completed cell phone and paper PA diaries 4 d·wk(-1) for three consecutive weeks and a user satisfaction survey. In the subsequent validation study, 623 middle-age participants (52.5% women) were asked to complete the cell phone diary and wear an accelerometer for two 7-d periods, approximately 6 months apart. They also completed two PA questionnaires. Fitness, body mass index, and percent body fat were obtained as indirect validation criteria. Estimates of PA from the cell phone and paper diaries were similar (mean within person difference = -43.8 MET·min·d(-1) of total PA, SD = 360, P = 0.49, 7.4 min·d(-1) of moderate-vigorous PA, SD = 66, P = 0.53). Users preferred the cell phone diary over the paper diary (59.6% vs 35.4%). In the subsequent study, intraclass correlations for the cell phone diary ranged from 0.55 for light PA to 0.63 for vigorous PA. Although PA estimates from the cell phone diary were generally significantly higher than those from the accelerometer and the questionnaires, correlations for moderate and vigorous PA were moderate (ρ = 0.25-0.59 with the questionnaires and 0.27-0.35 with the accelerometer). The correlations between the cell phone diary and the indirect validation criteria were generally in the expected direction and of moderate magnitude. A cell phone-based PA diary is equivalent to a paper diary, acceptable to users, and a relatively reliable and valid approach to self-reported PA.
Slip, David J.; Hocking, David P.; Harcourt, Robert G.
2016-01-01
Constructing activity budgets for marine animals when they are at sea and cannot be directly observed is challenging, but recent advances in bio-logging technology offer solutions to this problem. Accelerometers can potentially identify a wide range of behaviours for animals based on unique patterns of acceleration. However, when analysing data derived from accelerometers, there are many statistical techniques available which when applied to different data sets produce different classification accuracies. We investigated a selection of supervised machine learning methods for interpreting behavioural data from captive otariids (fur seals and sea lions). We conducted controlled experiments with 12 seals, where their behaviours were filmed while they were wearing 3-axis accelerometers. From video we identified 26 behaviours that could be grouped into one of four categories (foraging, resting, travelling and grooming) representing key behaviour states for wild seals. We used data from 10 seals to train four predictive classification models: stochastic gradient boosting (GBM), random forests, support vector machine using four different kernels and a baseline model: penalised logistic regression. We then took the best parameters from each model and cross-validated the results on the two seals unseen so far. We also investigated the influence of feature statistics (describing some characteristic of the seal), testing the models both with and without these. Cross-validation accuracies were lower than training accuracy, but the SVM with a polynomial kernel was still able to classify seal behaviour with high accuracy (>70%). Adding feature statistics improved accuracies across all models tested. Most categories of behaviour -resting, grooming and feeding—were all predicted with reasonable accuracy (52–81%) by the SVM while travelling was poorly categorised (31–41%). These results show that model selection is important when classifying behaviour and that by using animal characteristics we can strengthen the overall accuracy. PMID:28002450
Costa, Silvia; Barber, Sally E; Cameron, Noël; Clemes, Stacy A
2015-11-11
The reported lower physical activity (PA) levels of British South Asians (SA) are suggested as a key influence in their increased risk of non-communicable diseases compared to their White British peers. Differences in objectively measured PA and sedentary behaviour (SB) between these ethnic groups have been observed during childhood (ages: 8-10 years). However, no information exists on objectively measured PA/SB in younger children, or how early in life differences in these behaviours emerge. Assessing PA/SB in the Born in Bradford (BIB) cohort study provides an opportunity to address such gaps in the literature, but previous studies have found recruiting and retaining SA participants challenging, and the feasibility of using accelerometers with SA children and parents is unknown. This study investigated the feasibility of recruiting and objectively measuring the habitual PA/SB of 2-3 year old SA and White British children and parents from the BIB study. Families were informed about the study during routine BIB assessments. Consenting families were visited at home for anthropometry measurements, interviews, material delivery and collection. Participants (child and parents) were instructed to wear the ActiGraph GT3X+ for 8 days. Descriptive statistics were computed, and ethnic differences tested (Chi-square) for recruitment uptake and compliance. 160 families (30 % SA) provided contact details, and 97 (22 % SA) agreed to enter the study. White British families showed lower refusal and higher intake into the study than SA (p = 0.006). Of 89 children issued with an accelerometer, 34 % complied with the 8-day protocol (significantly less SA; p = 0.015) and 75 % provided enough days (≥ 3) to assess habitual PA/SB (no ethnic differences). Parental rates of compliance with the protocol did not differ between ethnicities. Issues experienced with the protocol and accelerometer use, and successful implementation strategies/procedures are presented. Although greater efforts may be required to recruit SA, those consenting to participate were as likely as White British to provide enough data to assess habitual PA/SB. The issues and successful strategies reported in this feasibility study represent valuable information for planning future studies, and enhance recruitment and compliance with accelerometer protocols in SA and White British toddlers and parents.
Altenburg, T M; de Niet, M; Verloigne, M; De Bourdeaudhuij, I; Androutsos, O; Manios, Y; Kovacs, E; Bringolf-Isler, B; Brug, J; Chinapaw, M J M
2015-02-01
This study examined the occurrence and duration of sedentary bouts and explored the cross-sectional association with health indicators in children applying various operational definitions of sedentary bouts. Accelerometer data of 647 children (10-13 years old) were collected in five European countries. We analyzed sedentary time (<100 cpm) accumulated in bouts of at least 5, 10, 20 or 30 min based on four operational definitions, allowing 0, 30 or 60s ≥100 cpm within bouts. Health indicators included anthropometrics (i.e. waist circumference and body mass index (BMI)) and in a subsample from two European countries (n=112) fasting capillary blood levels of glucose, C-peptide, high-density- and low-density cholesterol, and triglycerides. Data collection took place from March to July 2010. Associations were adjusted for age, gender, moderate-to-vigorous physical activity, total wear time and country. Occurrence of sedentary bouts varied largely between the various definitions. Children spent most of their sedentary time in bouts of ≥5 min while bouts of ≥20 min were rare. Linear regression analysis revealed few significant associations of sedentary time accumulated in bouts of ≥5-30 min with health indicators. Moreover, we found that more associations became significant when allowing no tolerance time within sedentary bouts. Despite a few significant associations, we found no convincing evidence for an association between sedentary time accumulated in bouts and health indicators in 10-13 year old children. Copyright © 2015. Published by Elsevier Inc.
Loyen, Anne; Clarke-Cornwell, Alexandra M; Anderssen, Sigmund A; Hagströmer, Maria; Sardinha, Luís B; Sundquist, Kristina; Ekelund, Ulf; Steene-Johannessen, Jostein; Baptista, Fátima; Hansen, Bjørge H; Wijndaele, Katrien; Brage, Søren; Lakerveld, Jeroen; Brug, Johannes; van der Ploeg, Hidde P
2017-07-01
The objective of this study was to pool, harmonise and re-analyse national accelerometer data from adults in four European countries in order to describe population levels of sedentary time and physical inactivity. Five cross-sectional studies were included from England, Portugal, Norway and Sweden. ActiGraph accelerometer count data were centrally processed using the same algorithms. Multivariable logistic regression analyses were conducted to study the associations of sedentary time and physical inactivity with sex, age, weight status and educational level, in both the pooled sample and the separate study samples. Data from 9509 participants were used. On average, participants were sedentary for 530 min/day, and accumulated 36 min/day of moderate to vigorous intensity physical activity. Twenty-three percent accumulated more than 10 h of sedentary time/day, and 72% did not meet the physical activity recommendations. Nine percent of all participants were classified as high sedentary and low active. Participants from Norway showed the highest levels of sedentary time, while participants from England were the least physically active. Age and weight status were positively associated with sedentary time and not meeting the physical activity recommendations. Men and higher-educated people were more likely to be highly sedentary, while women and lower-educated people were more likely to be inactive. We found high levels of sedentary time and physical inactivity in four European countries. Older people and obese people were most likely to display these behaviours and thus deserve special attention in interventions and policy planning. In order to monitor these behaviours, accelerometer-based cross-European surveillance is recommended.
Accelerometer Method and Apparatus for Integral Display and Control Functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1996-01-01
Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. Art accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.
Accelerometer Method and Apparatus for Integral Display and Control Functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1998-01-01
Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto is discussed. An accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.
Simultaneous Monitoring of Ballistocardiogram and Photoplethysmogram Using Camera
Shao, Dangdang; Tsow, Francis; Liu, Chenbin; Yang, Yuting; Tao, Nongjian
2017-01-01
We present a noncontact method to measure Ballistocardiogram (BCG) and Photoplethysmogram (PPG) simultaneously using a single camera. The method tracks the motion of facial features to determine displacement BCG, and extracts the corresponding velocity and acceleration BCGs by taking first and second temporal derivatives from the displacement BCG, respectively. The measured BCG waveforms are consistent with those reported in literature and also with those recorded with an accelerometer-based reference method. The method also tracks PPG based on the reflected light from the same facial region, which makes it possible to track both BCG and PPG with the same optics. We verify the robustness and reproducibility of the noncontact method with a small pilot study with 23 subjects. The presented method is the first demonstration of simultaneous BCG and PPG monitoring without wearing any extra equipment or marker by the subject. PMID:27362754
Time series analysis of tool wear in sheet metal stamping using acoustic emission
NASA Astrophysics Data System (ADS)
Vignesh Shanbhag, V.; Pereira, P. Michael; Rolfe, F. Bernard; Arunachalam, N.
2017-09-01
Galling is an adhesive wear mode that often affects the lifespan of stamping tools. Since stamping tools represent significant economic cost, even a slight improvement in maintenance cost is of high importance for the stamping industry. In other manufacturing industries, online tool condition monitoring has been used to prevent tool wear-related failure. However, monitoring the acoustic emission signal from a stamping process is a non-trivial task since the acoustic emission signal is non-stationary and non-transient. There have been numerous studies examining acoustic emissions in sheet metal stamping. However, very few have focused in detail on how the signals change as wear on the tool surface progresses prior to failure. In this study, time domain analysis was applied to the acoustic emission signals to extract features related to tool wear. To understand the wear progression, accelerated stamping tests were performed using a semi-industrial stamping setup which can perform clamping, piercing, stamping in a single cycle. The time domain features related to stamping were computed for the acoustic emissions signal of each part. The sidewalls of the stamped parts were scanned using an optical profilometer to obtain profiles of the worn part, and they were qualitatively correlated to that of the acoustic emissions signal. Based on the wear behaviour, the wear data can be divided into three stages: - In the first stage, no wear is observed, in the second stage, adhesive wear is likely to occur, and in the third stage severe abrasive plus adhesive wear is likely to occur. Scanning electron microscopy showed the formation of lumps on the stamping tool, which represents galling behavior. Correlation between the time domain features of the acoustic emissions signal and the wear progression identified in this study lays the basis for tool diagnostics in stamping industry.
Celis-Morales, Carlos A; Perez-Bravo, Francisco; Ibañez, Luis; Salas, Carlos; Bailey, Mark E S; Gill, Jason M R
2012-01-01
Imprecise measurement of physical activity variables might attenuate estimates of the beneficial effects of activity on health-related outcomes. We aimed to compare the cardiometabolic risk factor dose-response relationships for physical activity and sedentary behaviour between accelerometer- and questionnaire-based activity measures. Physical activity and sedentary behaviour were assessed in 317 adults by 7-day accelerometry and International Physical Activity Questionnaire (IPAQ). Fasting blood was taken to determine insulin, glucose, triglyceride and total, LDL and HDL cholesterol concentrations and homeostasis model-estimated insulin resistance (HOMA(IR)). Waist circumference, BMI, body fat percentage and blood pressure were also measured. For both accelerometer-derived sedentary time (<100 counts.min(-1)) and IPAQ-reported sitting time significant positive (negative for HDL cholesterol) relationships were observed with all measured risk factors--i.e. increased sedentary behaviour was associated with increased risk (all p ≤ 0.01). However, for HOMA(IR) and insulin the regression coefficients were >50% lower for the IPAQ-reported compared to the accelerometer-derived measure (p<0.0001 for both interactions). The relationships for moderate-to-vigorous physical activity (MVPA) and risk factors were less strong than those observed for sedentary behaviours, but significant negative relationships were observed for both accelerometer and IPAQ MVPA measures with glucose, and insulin and HOMA(IR) values (all p<0.05). For accelerometer-derived MVPA only, additional negative relationships were seen with triglyceride, total cholesterol and LDL cholesterol concentrations, BMI, waist circumference and percentage body fat, and a positive relationship was evident with HDL cholesterol (p = 0.0002). Regression coefficients for HOMA(IR), insulin and triglyceride were 43-50% lower for the IPAQ-reported compared to the accelerometer-derived MVPA measure (all p≤0.01). Using the IPAQ to determine sitting time and MVPA reveals some, but not all, relationships between these activity measures and metabolic and vascular disease risk factors. Using this self-report method to quantify activity can therefore underestimate the strength of some relationships with risk factors.
Gohier, Francis; Dellimore, Kiran; Scheffer, Cornie
2013-01-01
The quality of cardiopulmonary resuscitation (CPR) is often inconsistent and frequently fails to meet recommended guidelines. One promising approach to address this problem is for clinicians to use an active feedback device during CPR. However, one major deficiency of existing feedback systems is that they fail to account for the displacement of the back support surface during chest compression (CC), which can be important when CPR is performed on a soft surface. In this study we present the development of a real-time CPR feedback system based on an algorithm which uses force and dual-accelerometer measurements to provide accurate estimation of the CC depth on a soft surface, without assuming full chest decompression. Based on adult CPR manikin tests it was found that the accuracy of the estimated CC depth for a dual accelerometer feedback system is significantly better (7.3% vs. 24.4%) than for a single accelerometer system on soft back support surfaces, in the absence or presence of a backboard. In conclusion, the algorithm used was found to be suitable for a real-time, dual accelerometer CPR feedback application since it yielded reasonable accuracy in terms of CC depth estimation, even when used on a soft back support surface.
Accelerometer-based step initiation control for gait-assist neuroprostheses.
Foglyano, Kevin M; Schnellenberger, John R; Kobetic, Rudi; Lombardo, Lisa; Pinault, Gilles; Selkirk, Stephen; Makowski, Nathaniel S; Triolo, Ronald J
2016-01-01
Electrical activation of paralyzed musculature can generate or augment joint movements required for walking after central nervous system trauma. Proper timing of stimulation relative to residual volitional control is critical to usefully affecting ambulation. This study evaluates three-dimensional accelerometers and customized algorithms to detect the intent to step from voluntary movements to trigger stimulation during walking in individuals with significantly different etiologies, mobility limitations, manual dexterities, and walking aids. Three individuals with poststroke hemiplegia or partial spinal cord injury exhibiting varying gait deficits were implanted with multichannel pulse generators to provide joint motions at the hip, knee, and ankle. An accelerometer integrated into the external control unit was used to detect heel strike or walker movement, and wireless accelerometers were used to detect crutch strike. Algorithms were developed for each sensor location to detect intent to step to progress through individualized stimulation patterns. Testing these algorithms produced detection accuracies of at least 90% on both level ground and uneven terrain. All participants use their accelerometer-triggered implanted gait systems in the community; the validation/system testing was completed in the hospital. The results demonstrated that safe, reliable, and convenient accelerometer-based step initiation can be achieved regardless of specific gait deficits, manual dexterities, and walking aids.
USDA-ARS?s Scientific Manuscript database
Prediction equations of energy expenditure (EE) using accelerometers and miniaturized heart rate (HR) monitors have been developed in older children and adults but not in preschool-aged children. Because the relationships between accelerometer counts (ACs), HR, and EE are confounded by growth and ma...
Gyroscope-reduced inertial navigation system for flight vehicle motion estimation
NASA Astrophysics Data System (ADS)
Wang, Xin; Xiao, Lu
2017-01-01
In this paper, a novel configuration of strategically distributed accelerometer sensors with the aid of one gyro to infer a flight vehicle's angular motion is presented. The MEMS accelerometer and gyro sensors are integrated to form a gyroscope-reduced inertial measurement unit (GR-IMU). The motivation for gyro aided accelerometers array is to have direct measurements of angular rates, which is an improvement to the traditional gyroscope-free inertial system that employs only direct measurements of specific force. Some technical issues regarding error calibration in accelerometers and gyro in GR-IMU are put forward. The GR-IMU based inertial navigation system can be used to find a complete attitude solution for flight vehicle motion estimation. Results of numerical simulation are given to illustrate the effectiveness of the proposed configuration. The gyroscope-reduced inertial navigation system based on distributed accelerometer sensors can be developed into a cost effective solution for a fast reaction, MEMS based motion capture system. Future work will include the aid from external navigation references (e.g. GPS) to improve long time mission performance.
Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Fan, Ji; Hu, Chenyuan; Tu, Liangcheng
2018-04-18
A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δ O and δ P respectively, called the misalignment angles. The angle δ O , coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δ P would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δ P component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δ P is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10 −7 g/√Hz (1 g ≈ 9.8 m/s²).
Sherar, Lauren B; Griffin, Tom P; Ekelund, Ulf; Cooper, Ashley R; Esliger, Dale W; van Sluijs, Esther M F; Bo Andersen, Lars; Cardon, Greet; Davey, Rachel; Froberg, Karsten; Hallal, Pedro C; Janz, Kathleen F; Kordas, Katarzyna; Kriemler, Susi; Pate, Russell R; Puder, Jardena J; Sardinha, Luis B; Timperio, Anna F; Page, Angie S
2016-01-01
Background Investigating socioeconomic variation in physical activity (PA) and sedentary time is important as it may represent a pathway by which socioeconomic position (SEP) leads to ill health. Findings on the association between children's SEP and objectively assessed PA and/or sedentary time are mixed, and few studies have included international samples. Objective Examine the associations between maternal education and adolescent's objectively assessed PA and sedentary time. Methods This is an observational study of 12 770 adolescents (10–18 years) pooled from 10 studies from Europe, Australia, Brazil and the USA. Original PA data were collected between 1997 and 2009. The associations between maternal education and accelerometer variables were examined using robust multivariable regression, adjusted for a priori confounders (ie, body mass index, monitor wear time, season, age and sex) and regression coefficients combined across studies using random effects meta-analyses. Analyses were conducted in March 2014. Results Adolescents of university educated mothers spent more time sedentary (9.5 min/day, p=0.005) and less time in light activity (10 min/day, p<0.001) compared with adolescents of high school educated mothers. Pooled analysis across two studies from Brazil and Portugal (analysed separately because of the different coding of maternal education) showed that children of higher educated mothers (tertiary vs primary/secondary) spent less time in moderate to vigorous PA (MVPA) (6.6 min/day, p=0.001) and in light PA (39.2 min/day: p<0.001), and more time sedentary (45.9 min/day, p<0.001). Conclusions Across a number of international samples, adolescents of mothers with lower education may not be at a disadvantage in terms of overall objectively measured PA. PMID:26802168
Compensation of Physical Activity and Sedentary Time in Primary School Children
RIDGERS, NICOLA D.; TIMPERIO, ANNA; CERIN, ESTER; SALMON, JO
2014-01-01
ABSTRACT Purpose There is considerable debate about the possibility of physical activity compensation. This study examined whether increased levels in physical activity and/or sedentary behavior on 1 d were predictive of lower levels in these behaviors on the following day (compensatory mechanisms) among children. Methods Two hundred and forty-eight children (121 boys and 127 girls) age 8–11 yr from nine primary schools in Melbourne, Australia, wore a GT3X+ ActiGraph for seven consecutive days. Time spent in light physical activity (LPA) and moderate- to vigorous-intensity physical activity (MVPA) was derived using age-specific cut points. Sedentary time was defined as 100 counts per minute. Meteorological data (temperature, precipitation, relative humidity, and daylight hours) were obtained daily and matched to accelerometer wear days. Multilevel analyses (day, child, and school) were conducted using generalized linear latent and mixed models. Results On any given day, every additional 10 min spent in MVPA was associated with approximately 25 min less LPA and 5 min less MVPA the following day. Similarly, additional time spent in LPA on any given day was associated with less time in LPA and MVPA the next day. Time spent sedentary was associated with less sedentary time the following day. Adjusting for meteorological variables did not change observed compensation effects. No significant moderating effect of sex was observed. Conclusion The results are consistent with the compensation hypothesis, whereby children appear to compensate their physical activity or sedentary time between days. Additional adjustment for meteorological variables did not change the observed associations. Further research is needed to examine what factors may explain apparent compensatory changes in children’s physical activity and sedentary time. PMID:24492632
Research on Oxidation Wear Behavior of a New Hot Forging Die Steel
NASA Astrophysics Data System (ADS)
Shi, Yuanji; Wu, Xiaochun
2018-01-01
Dry sliding tests for the hot forging die steel DM were performed in air under the test temperature at 400-700 °C and the time of 0.5-4 h by a UMT-3 high-temperature wear tester. The wear behavior and characteristics were studied systematically to explore the general characters in severe oxidation conditions. The results showed that a mild-to-severe oxidation wear transition occurred with an increase in the test temperature and duration. The reason was clarified as the unstable M6C carbides coarsening should be responsible for the severe delamination of tribo-oxide layer. More importantly, an intense oxidation wear with lower wear rates was found when the experimental temperature reaches 700 °C or after 4 h of test time at 600 °C, which was closely related to the degradation behavior during wear test. Furthermore, a new schematic diagram of oxidation wear of DM steel was proposed.
Machine learning methods for classifying human physical activity from on-body accelerometers.
Mannini, Andrea; Sabatini, Angelo Maria
2010-01-01
The use of on-body wearable sensors is widespread in several academic and industrial domains. Of great interest are their applications in ambulatory monitoring and pervasive computing systems; here, some quantitative analysis of human motion and its automatic classification are the main computational tasks to be pursued. In this paper, we discuss how human physical activity can be classified using on-body accelerometers, with a major emphasis devoted to the computational algorithms employed for this purpose. In particular, we motivate our current interest for classifiers based on Hidden Markov Models (HMMs). An example is illustrated and discussed by analysing a dataset of accelerometer time series.
Jasmine Ware,; Rode, Karyn D.; Pagano, Anthony M.; Bromaghin, Jeffrey F.; Robbins, Charles T.; Joy Erlenbach,; Shannon Jensen,; Amy Cutting,; Nicole Nicassio-Hiskey,; Amy Hash,; Owen, Megan A.; Heiko Jansen,
2015-01-01
Activity sensors are often included in wildlife transmitters and can provide information on the behavior and activity patterns of animals remotely. However, interpreting activity-sensor data relative to animal behavior can be difficult if animals cannot be continuously observed. In this study, we examined the performance of a mercury tip-switch and a tri-axial accelerometer housed in collars to determine whether sensor data can be accurately classified as resting and active behaviors and whether data are comparable for the 2 sensor types. Five captive bears (3 polar [Ursus maritimus] and 2 brown [U. arctos horribilis]) were fitted with a collar specially designed to internally house the sensors. The bears’ behaviors were recorded, classified, and then compared with sensor readings. A separate tri-axial accelerometer that sampled continuously at a higher frequency and provided raw acceleration values from 3 axes was also mounted on the collar to compare with the lower resolution sensors. Both accelerometers more accurately identified resting and active behaviors at time intervals ranging from 1 minute to 1 hour (≥91.1% accuracy) compared with the mercury tip-switch (range = 75.5–86.3%). However, mercury tip-switch accuracy improved when sampled at longer intervals (e.g., 30–60 min). Data from the lower resolution accelerometer, but not the mercury tip-switch, accurately predicted the percentage of time spent resting during an hour. Although the number of bears available for this study was small, our results suggest that these activity sensors can remotely identify resting versus active behaviors across most time intervals. We recommend that investigators consider both study objectives and the variation in accuracy of classifying resting and active behaviors reported here when determining sampling interval.
Implementation of a Smart Phone for Motion Analysis.
Yodpijit, Nantakrit; Songwongamarit, Chalida; Tavichaiyuth, Nicha
2015-01-01
In todays information-rich environment, one of the most popular devices is a smartphone. Research has shown significant growth in the use of smartphones and apps all over the world. Accelerometer within smartphone is a motion sensor that can be used to detect human movements. Compared to other major vital signs, gait characteristics represent general health status, and can be determined using smartphones. The objective of the current study is to design and develop the alternative technology that can potentially predict health status and reduce healthcare cost. This study uses a smartphone as a wireless accelerometer for quantifying human motion characteristics from four steps of the system design and development (data acquisition operation, feature extraction algorithm, classifier design, and decision making strategy). Findings indicate that it is possible to extract features from a smartphones accelerometer using a peak detection algorithm. Gait characteristics obtain from the peak detection algorithm include stride time, stance time, swing time and cadence. Applications and limitations of this study are also discussed.
Evenson, Kelly R; Wen, Fang; Hales, Derek; Herring, Amy H
2016-05-03
Applying latent class analysis (LCA) to accelerometry can help elucidated underlying patterns. This study described the patterns of accelerometer-determined sedentary behavior and physical activity among youth by applying LCA to a nationally representative United States (US) sample. Using 2003-2006 National Health and Nutrition Examination Survey data, 3998 youths 6-17 years wore an ActiGraph 7164 accelerometer for one week, providing > =3 days of wear for > =8 h/day from 6:00 am-midnight. Cutpoints defined sedentary behavior (<100 counts/minute), light activity (100-2295 counts/minute), moderate to vigorous physical activity (MVPA; > = 2296 counts/minute), and vigorous activity (> = 4012 counts/minute). To account for wear time differences, outcomes were expressed as percent of day in a given intensity. LCA was used to classify daily (Monday through Sunday) patterns of average counts/minute, sedentary behavior, light activity, MVPA, and vigorous activity separately. The latent classes were explored overall and by age (6-11, 12-14, 15-17 years), gender, and whether or not youth attended school during measurement. Estimates were weighted to account for the sampling frame. For average counts/minute/day, four classes emerged from least to most active: 40.9% of population (mean 323.5 counts/minute/day), 40.3% (559.6 counts/minute/day), 16.5% (810.0 counts/minute/day), and 2.3% (1132.9 counts/minute/day). For percent of sedentary behavior, four classes emerged: 13.5% of population (mean 544.6 min/day), 30.1% (455.1 min/day), 38.5% (357.7 min/day), and 18.0% (259.2 min/day). For percent of light activity, four classes emerged: 12.3% of population (mean 222.6 min/day), 29.3% (301.7 min/day), 41.8% (384.0 min/day), and 16.6% (455.5 min/day). For percent of MVPA, four classes emerged: 59.9% of population (mean 25.0 min/day), 33.3% (60.9 min/day), 3.1% (89.0 min/day), and 3.6% (109.3 min/day). For percent of vigorous activity, three classes emerged: 76.8% of population (mean 7.1 min/day), 18.5% (23.9 min/day), and 4.7% (47.4 min/day). Classes were developed by age, gender, and school attendance since some patterns differed when stratifying by these factors. The models supported patterns for average intensity, sedentary behavior, light activity, MVPA, and vigorous activity. These latent class derived patterns can be used in other youth studies to explore correlates or outcomes and to target sedentary behavior or physical activity interventions.
Joseph, Conran; Strömbäck, Björn; Hagströmer, Maria; Conradsson, David
2018-05-08
To investigate the feasibility of using accelerometers to monitor physical activity in persons with stroke admitted to inpatient rehabilitation. Longitudinal observational study. Persons with stroke admitted to a specialized rehabilitation centre for sub-acute rehabilitation were recruited between August and December 2016. Volume and intensity of physical activity were assessed with accelerometers throughout the rehabilitation period. Indicators of feasibility included processes (recruitment, protocol adherence and participants' experiences) and scientific feasibility, which assessed the accelerometers' ability to detect change in physical activity among stroke survivors who ambulate independently and those who are dependent on a mobility device. Twenty-seven out of 31 eligible individuals took part in this study, with 23 (85%) completing it. In total, 432 days of rehabilitation were monitored and valid physical activity data were obtained for 408 days (94%). There were no indications that the measurement interfered with participants' ability to participate in rehabilitation. Despite the subjects' ambulation status, the number of steps and time spent in moderate-to-vigorous physical activity increased significantly across the first 18 days of rehabilitation, whereas sedentary time was unchanged. This study supports the feasibility of using accelerometers to capture physical activity behaviour in survivors of stroke during inpatient rehabilitation.
Evaluation of a novel canine activity monitor for at-home physical activity analysis.
Yashari, Jonathan M; Duncan, Colleen G; Duerr, Felix M
2015-07-04
Accelerometers are motion-sensing devices that have been used to assess physical activity in dogs. However, the lack of a user-friendly, inexpensive accelerometer has hindered the widespread use of this objective outcome measure in veterinary research. Recently, a smartphone-based, affordable activity monitor (Whistle) has become available for measurement of at-home physical activity in dogs. The aim of this research was to evaluate this novel accelerometer. Eleven large breed, privately owned dogs wore a collar fitted with both the Whistle device and a previously validated accelerometer-based activity monitor (Actical) for a 24-h time period. Owners were asked to have their dogs resume normal daily activities. Total activity time obtained from the Whistle device in minutes was compared to the total activity count from the Actical device. Activity intensity from the Whistle device was calculated manually from screenshots of the activity bars displayed in the smartphone-application and compared to the activity count recorded by the Actical in the same 3-min time period. A total of 3740 time points were compared. There was a strong correlation between activity intensity of both devices for individual time points (Pearson's correlation coefficient 0.81, p < 0.0001). An even stronger correlation was observed between the total activity data between the two devices (Pearson's correlation coefficient 0.925, p < 0.0001). Activity data provided by the Whistle activity monitor may be used as an objective outcome measurement in dogs. The total activity time provided by the Whistle application offers an inexpensive method for obtaining at-home, canine, real-time physical activity data. Limitations of the Whistle device include the limited battery life, the need for manual derivation of activity intensity data and data transfer, and the requirement of Wi-Fi and Bluetooth availability for data transmission.
Simulation of wear in overhead current collection systems
NASA Astrophysics Data System (ADS)
Klapas, D.; Benson, F. A.; Hackam, R.
1985-09-01
Apparatus have been designed to simulate the wear from conductors in a railway current collection system. The main features of the wear machine include a continuous monitoring of the strip wear, strip traversing, and dwell-time test facilities for the investigation of oxidational wear on a copper disk, simulating the contact wire. Disk wear is measured in situ by the spherical indentations method. Typical results of the specific wear rate are also presented to demonstrate the capability of the apparatus.
Ayala-Guzmán, César Iván; Ramos-Ibáñez, Norma; Ortiz-Hernández, Luis
An accurate assessment of physical activity in schoolchildren is necessary to implement strategies that promote active lifestyles. The objective of this study was to validate a self-administered questionnaire to assess physical activity and sedentary behaviors and to analyze differences in the validity according to nutritional status in Mexican schoolchildren. Schoolchildren of 8-12 years of age answered a self-report physical activity and sedentary behaviors questionnaire to evaluate sedentary and light physical activity (SLPA) and moderate to vigorous physical activity (MVPA). The data of children who wore a triaxial accelerometer days was analyzed. Concordance between both methods to determine the time schoolchildren spend watching television was assessed using intraclass correlation coefficients and Bland-Altman method. The estimation of MVPA by questionnaires was higher than that of accelerometers by 117.6minutes per week, and the estimation of SLPA was lower by 1,924.7minutes per week. No correlation between the time assessed by accelerometers and the time reported in the questionnaires for SLPA and MVPA was detected. In normal-weighted children, a low correlation between the time dedicated to play videogames with sedentary activities (r ic =0.29, p=0.031) assessed by accelerometers was observed. Schoolchildren over-estimate MVPA and under-estimate SLPA. Body weight can be a factor influencing such bias. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.
Muscillo, Rossana; Conforto, Silvia; Schmid, Maurizio; Caselli, Paolo; D'Alessio, Tommaso
2007-01-01
In the context of tele-monitoring, great interest is presently devoted to physical activity, mainly of elderly or people with disabilities. In this context, many researchers studied the recognition of activities of daily living by using accelerometers. The present work proposes a novel algorithm for activity recognition that considers the variability in movement speed, by using dynamic programming. This objective is realized by means of a matching and recognition technique that determines the distance between the signal input and a set of previously defined templates. Two different approaches are here presented, one based on Dynamic Time Warping (DTW) and the other based on the Derivative Dynamic Time Warping (DDTW). The algorithm was applied to the recognition of gait, climbing and descending stairs, using a biaxial accelerometer placed on the shin. The results on DDTW, obtained by using only one sensor channel on the shin showed an average recognition score of 95%, higher than the values obtained with DTW (around 85%). Both DTW and DDTW consistently show higher classification rate than classical Linear Time Warping (LTW).
Tool Wear Monitoring Using Time Series Analysis
NASA Astrophysics Data System (ADS)
Song, Dong Yeul; Ohara, Yasuhiro; Tamaki, Haruo; Suga, Masanobu
A tool wear monitoring approach considering the nonlinear behavior of cutting mechanism caused by tool wear and/or localized chipping is proposed, and its effectiveness is verified through the cutting experiment and actual turning machining. Moreover, the variation in the surface roughness of the machined workpiece is also discussed using this approach. In this approach, the residual error between the actually measured vibration signal and the estimated signal obtained from the time series model corresponding to dynamic model of cutting is introduced as the feature of diagnosis. Consequently, it is found that the early tool wear state (i.e. flank wear under 40µm) can be monitored, and also the optimal tool exchange time and the tool wear state for actual turning machining can be judged by this change in the residual error. Moreover, the variation of surface roughness Pz in the range of 3 to 8µm can be estimated by the monitoring of the residual error.
Accuracy of the Yamax CW-701 Pedometer for measuring steps in controlled and free-living conditions
Coffman, Maren J; Reeve, Charlie L; Butler, Shannon; Keeling, Maiya; Talbot, Laura A
2016-01-01
Objective The Yamax Digi-Walker CW-701 (Yamax CW-701) is a low-cost pedometer that includes a 7-day memory, a 2-week cumulative memory, and automatically resets to zero at midnight. To date, the accuracy of the Yamax CW-701 has not been determined. The purpose of this study was to assess the accuracy of steps recorded by the Yamax CW-701 pedometer compared with actual steps and two other devices. Methods The study was conducted in a campus-based lab and in free-living settings with 22 students, faculty, and staff at a mid-sized university in the Southeastern US. While wearing a Yamax CW-701, Yamax Digi-Walker SW-200, and an ActiGraph GTX3 accelerometer, participants engaged in activities at variable speeds and conditions. To assess accuracy of each device, steps recorded were compared with actual step counts. Statistical tests included paired sample t-tests, percent accuracy, intraclass correlation coefficient, and Bland–Altman plots. Results The Yamax CW-701 demonstrated reliability and concurrent validity during walking at a fast pace and walking on a track, and in free-living conditions. Decreased accuracy was noted walking at a slow pace. Conclusions These findings are consistent with prior research. With most pedometers and accelerometers, adequate force and intensity must be present for a step to register. The Yamax CW-701 is accurate in recording steps taken while walking at a fast pace and in free-living settings. PMID:29942555
Accuracy of the Yamax CW-701 Pedometer for measuring steps in controlled and free-living conditions.
Coffman, Maren J; Reeve, Charlie L; Butler, Shannon; Keeling, Maiya; Talbot, Laura A
2016-01-01
The Yamax Digi-Walker CW-701 (Yamax CW-701) is a low-cost pedometer that includes a 7-day memory, a 2-week cumulative memory, and automatically resets to zero at midnight. To date, the accuracy of the Yamax CW-701 has not been determined. The purpose of this study was to assess the accuracy of steps recorded by the Yamax CW-701 pedometer compared with actual steps and two other devices. The study was conducted in a campus-based lab and in free-living settings with 22 students, faculty, and staff at a mid-sized university in the Southeastern US. While wearing a Yamax CW-701, Yamax Digi-Walker SW-200, and an ActiGraph GTX3 accelerometer, participants engaged in activities at variable speeds and conditions. To assess accuracy of each device, steps recorded were compared with actual step counts. Statistical tests included paired sample t -tests, percent accuracy, intraclass correlation coefficient, and Bland-Altman plots. The Yamax CW-701 demonstrated reliability and concurrent validity during walking at a fast pace and walking on a track, and in free-living conditions. Decreased accuracy was noted walking at a slow pace. These findings are consistent with prior research. With most pedometers and accelerometers, adequate force and intensity must be present for a step to register. The Yamax CW-701 is accurate in recording steps taken while walking at a fast pace and in free-living settings.
Nolan, Meaghan; Mitchell, J Ross; Doyle-Baker, Patricia K
2014-05-01
The popularity of smartphones has led researchers to ask if they can replace traditional tools for assessing free-living physical activity. Our purpose was to establish proof-of-concept that a smartphone could record acceleration during physical activity, and those data could be modeled to predict activity type (walking or running), speed (km·h-1), and energy expenditure (METs). An application to record and e-mail accelerations was developed for the Apple iPhone®/iPod Touch®. Twenty-five healthy adults performed treadmill walking (4.0 km·h-1 to 7.2 km·h-1) and running (8.1 km·h-1 to 11.3 km·h-1) wearing the device. Criterion energy expenditure measurements were collected via metabolic cart. Activity type was classified with 99% accuracy. Speed was predicted with a bias of 0.02 km·h-1 (SEE: 0.57 km·h-1) for walking, -0.03 km·h-1 (SEE: 1.02 km·h-1) for running. Energy expenditure was predicted with a bias of 0.35 METs (SEE: 0.75 METs) for walking, -0.43 METs (SEE: 1.24 METs) for running. Our results suggest that an iPhone/iPod Touch can predict aspects of locomotion with accuracy similar to other accelerometer-based tools. Future studies may leverage this and the additional features of smartphones to improve data collection and compliance.
Physical inactivity, neurological disability, and cardiorespiratory fitness in multiple sclerosis.
Motl, R W; Goldman, M
2011-02-01
We examined the associations among physical activity, neurological disability, and cardiorespiratory fitness in two studies of individuals with multiple sclerosis (MS). Study 1 included 25 women with relapsing-remitting MS (RRMS) who undertook an incremental exercise test for measuring peak oxygen (VO₂(peak) ) consumption, wore an accelerometer during a 7-day period, and completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ). Study 2 was a follow-up of Study 1 and included 24 women with RRMS who completed the self-reported Expanded Disability Status Scale (EDSS), undertook an incremental exercise test, wore an accelerometer during a 7-day period, and completed the GLTEQ. Study 1 indicated that VO₂(peak) was significantly correlated with accelerometer counts (pr = 0.69) and GLTEQ scores (pr = 0.63) even after controlling for age and MS duration. Study 2 indicated that VO₂(peak) was significantly correlated with accelerometer counts (pr = 0.50), GLTEQ scores (pr = 0.59), and EDSS scores (pr = -0.43) even after controlling for age and MS duration; there was a moderate partial correlation between accelerometer counts and EDSS scores (pr = -0.43). Multiple linear regression analysis indicated that both accelerometer counts (β = 0.32) and EDSS scores (β = -0.40) had statistically significant associations with VO₂(peak). The findings indicate that physical inactivity and neurological disability might represent independent risk factors for reduced levels of cardiorespiratory fitness in this population. © 2010 John Wiley & Sons A/S.
Evaluation of two-dimensional accelerometers to monitor behavior of beef calves after castration.
White, Brad J; Coetzee, Johann F; Renter, David G; Babcock, Abram H; Thomson, Daniel U; Andresen, Daniel
2008-08-01
To determine the accuracy of accelerometers for measuring behavior changes in calves and to determine differences in beef calf behavior from before to after castration. 3 healthy Holstein calves and 12 healthy beef calves. 2-dimensional accelerometers were placed on 3 calves, and data were logged simultaneous to video recording of animal behavior. Resulting data were used to generate and validate predictive models to classify posture (standing or lying) and type of activity (standing in place, walking, eating, getting up, lying awake, or lying sleeping). The algorithms developed were used to conduct a prospective trial to compare calf behavior in the first 24 hours after castration (n = 6) with behavior of noncastrated control calves (6) and with presurgical readings from the same castrated calves. On the basis of the analysis of the 2-dimensional accelerometer signal, posture was classified with a high degree of accuracy (98.3%) and the specific activity was estimated with a reasonably low misclassification rate (23.5%). Use of the system to compare behavior after castration revealed that castrated calves spent a significantly larger amount of time standing (82.2%), compared with presurgical readings (46.2%). 2-dimensional accelerometers provided accurate classification of posture and reasonable classification of activity. Applying the system in a castration trial illustrated the usefulness of accelerometers for measuring behavioral changes in individual calves.
A study on die wear model of warm and hot forgings
NASA Astrophysics Data System (ADS)
Kang, J. H.; Park, I. W.; Jae, J. S.; Kang, S. S.
1998-05-01
Factors influencing service lives of tools in warm and hot forging processes are wear, mechanical fatigue, plastic deformation and thermal fatigue, etc. Wear is the predominant factor for tool failure among these. To predict tool life by wear, Archard's model where hardness is considered as constant or function of temperature is generally applied. Usually hardness of die is a function of not only temperature but operating time of die. To consider softening of die by repeated operation it is necessary to express hardness of die by a function of temperature and time. In this study wear coefficients were measured for various temperatures and heat treatment for H13 tool steel. Also by experiment of reheating of die, die softening curves were obtained. From experimental results, relationships between tempering parameters and hardness were established to investigate effects of hardness decrease by the effect of temperatures and time. Finally modified Archard's wear model in which hardness is considered to be a function of main tempering curve was proposed. And finite element analyses were conducted by adopting suggested wear model. By comparisons of simulations and real profiles of worn die, proposed wear model was verified.
The SRS-Viewer: A Software Tool for Displaying and Evaluation of Pyroshock Data
NASA Astrophysics Data System (ADS)
Eberl, Stefan
2014-06-01
For the evaluation of the success of a pyroshock, the time domain and the corresponding Shock-Response- Spectra (SRS) have to be considered. The SRS-Viewer is an IABG developed software tool [1] to read data in Universal File format (*.unv) and either display or plot for each accelerometer the time domain, corresponding SRS and the specified Reference-SRS with tolerances in the background.The software calculates the "Average (AVG)", "Maximum (MAX)" and "Minimum (MIN)" SRS of any selection of accelerometers. A statistical analysis calculates the percentages of measured SRS above the specified Reference-SRS level and the percentage within the tolerance bands for comparison with the specified success criteria.Overlay plots of single accelerometers of different test runs enable to monitor the repeatability of the shock input and the integrity of the specimen. Furthermore the difference between the shock on a mass-dummy and the real test unit can be examined.
Artifact Noise Removal Techniques on Seismocardiogram Using Two Tri-Axial Accelerometers
Luu, Loc; Dinh, Anh
2018-01-01
The aim of this study is on the investigation of motion noise removal techniques using two-accelerometer sensor system and various placements of the sensors on gentle movement and walking of the patients. A Wi-Fi based data acquisition system and a framework on Matlab are developed to collect and process data while the subjects are in motion. The tests include eight volunteers who have no record of heart disease. The walking and running data on the subjects are analyzed to find the minimal-noise bandwidth of the SCG signal. This bandwidth is used to design filters in the motion noise removal techniques and peak signal detection. There are two main techniques of combining signals from the two sensors to mitigate the motion artifact: analog processing and digital processing. The analog processing comprises analog circuits performing adding or subtracting functions and bandpass filter to remove artifact noises before entering the data acquisition system. The digital processing processes all the data using combinations of total acceleration and z-axis only acceleration. The two techniques are tested on three placements of accelerometer sensors including horizontal, vertical, and diagonal on gentle motion and walking. In general, the total acceleration and z-axis acceleration are the best techniques to deal with gentle motion on all sensor placements which improve average systolic signal-noise-ratio (SNR) around 2 times and average diastolic SNR around 3 times comparing to traditional methods using only one accelerometer. With walking motion, ADDER and z-axis acceleration are the best techniques on all placements of the sensors on the body which enhance about 7 times of average systolic SNR and about 11 times of average diastolic SNR comparing to only one accelerometer method. Among the sensor placements, the performance of horizontal placement of the sensors is outstanding comparing with other positions on all motions. PMID:29614821
Scanning-electron-microscope used in real-time study of friction and wear
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1975-01-01
Small friction and wear apparatus built directly into scanning-electron-microscope provides both dynamic observation and microscopic view of wear process. Friction and wear tests conducted using this system have indicated that considerable information can readily be gained.
Sedentary behaviour patterns and carotid intima-media thickness in Spanish healthy adult population.
García-Hermoso, Antonio; Martínez-Vizcaíno, Vicente; Recio-Rodríguez, José Ignacio; Sánchez-López, Mairena; Gómez-Marcos, Manuel Ángel; García-Ortiz, Luis
2015-04-01
The aim of this study was to analyze the association between sedentary behaviour, as assessed by an accelerometer, and mean carotid intima-media thickness (IMT). The study included 263 healthy subjects belonging to the EVIDENT study (59.3% women). Carotid IMT was measured by carotid ultrasonography. Sedentary behaviour was measured objectively over 7 days using ActiGraph accelerometers. Thresholds of 10 consecutive minutes were used to establish sedentary bouts, and assess the number (n/day), and length ≥10 min (min/day). Total sedentary time and sedentary time in bouts ≥10 min was higher in participants with a larger mean carotid IMT (>P75). Otherwise, this sedentary time in bouts ≥10 min parameter was weakly associated with augmented carotid IMT injury in the logistic regression model. Total sedentary time and sedentary time in bouts ≥10 min, as assessed by accelerometer, was positively but weakly associated with carotid IMT. Equally, this sedentary time in bouts ≥10 min was associated with carotid injury, but disappears after adjusting for potential confounders. These findings support that reducing sedentary time and increasing breaks in bouts of sedentary time might represent a useful additional strategy in the cardiovascular disease prevention. Clinical Trials.gov Identifier: NCT01083082. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Dorsch, Andrew K.; Thomas, Seth; Xu, Xiaoyu; Kaiser, William; Dobkin, Bruce H.
2014-01-01
Background Walking-related disability is the most frequent reason for inpatient stroke rehabilitation. Task-related practice is a critical component for improving patient outcomes. Objective To test the feasibility of providing quantitative feedback about daily walking performance and motivating greater skills practice via remote sensing. Methods In this phase III randomized, single blind clinical trial, patients participated in conventional therapies while wearing wireless sensors (tri-axial accelerometers) at both ankles. Activity-recognition algorithms calculated the speed, distance, and duration of walking bouts. Three times a week, therapists provided either feedback about performance on a 10-meter walk (speed-only) or walking speed feedback plus a review of walking activity recorded by the sensors (augmented). Primary outcomes at discharge included total daily walking time, derived from the sensors, and a timed 15-meter walk. Results Sixteen rehabilitation centers in 11 countries enrolled 135 participants over 15 months. Sensors recorded more than 1800 days of therapy, 37,000 individual walking bouts, and 2.5 million steps. No significant differences were found between the two feedback groups in daily walking time (15.1±13.1min vs. 16.6±14.3min, p=0.54) or 15-meter walking speed (0.93±0.47m/s vs. 0.91±0.53m/s, p=0.96). Remarkably, 30% of participants decreased their total daily walking time over their rehabilitation stay. Conclusions In this first trial of remote monitoring of inpatient stroke rehabilitation, augmented feedback beyond speed alone did not increase the time spent practicing or improve walking outcomes. Remarkably modest time was spent walking. Wireless sensing, however, allowed clinicians to audit skills practice and provided ground truth regarding changes in clinically important, mobility-related activities. PMID:25261154
Prototype Earthquake Early Warning System for Areas of Highest Seismic Risk in the Western U.S.
NASA Astrophysics Data System (ADS)
Bock, Y.; Geng, J.; Goldberg, D.; Saunders, J. K.; Haase, J. S.; Squibb, M. B.; Melgar, D.; Crowell, B. W.; Clayton, R. W.; Yu, E.; Walls, C. P.; Mann, D.; Mencin, D.; Mattioli, G. S.
2015-12-01
We report on a prototype earthquake early warning system for the Western U.S. based on GNSS (GPS+GLONASS) observations, and where available collocated GNSS and accelerometer data (seismogeodesy). We estimate with latency of 2-3 seconds GNSS displacement waveforms from more than 120 stations, focusing on the southern segment of the San Andreas fault, the Hayward and Rodgers Creek faults and Cascadia. The displacements are estimated using precise point positioning with ambiguity resolution (PPP-AR), which provides for efficient processing of hundreds of "clients" within the region of interest with respect to a reference frame well outside the expected zone of deformation. The GNSS displacements are useful for alleviating magnitude saturation concerns, rapid earthquake magnitude estimation using peak ground displacements, CMT solutions and finite fault slip models. However, GNSS alone is insufficient for strict earthquake early warning (i.e., P wave detection). Therefore, we employ a self-contained seismogeodetic technique, where collocations of GNSS and accelerometer instruments are available, to estimate real-time displacement and velocity waveforms using PPP-AR with accelerometers (PPP-ARA). Using the velocity waveforms we can detect the P wave arrival for earthquakes of interest (>M 5.5), estimate a hypocenter, S wave propagation, and earthquake magnitude using Pd scaling relationships within seconds. Currently we are gearing up to receive observatory-grade accelerometer data from the CISN. We have deployed 25 inexpensive MEMS accelerometers at existing GNSS stations. The SIO Geodetic Modules that control the flow of the GNSS and accelerometer data are being upgraded with in situ PPP-ARA and P wave picking. In situ processing allows us to use the data at the highest sampling rate of the GNSS receiver (10 Hz or higher), in combination with the 100 Hz accelerometer data. Adding the GLONASS data allows for increased precision in the vertical, an important factor in P wave detection, and by reducing outliers, increasing the number of visible satellites and significantly reducing the time required for reinitialization of phase ambiguities. We plan to make our displacement and velocity waveforms available to the USGS ShakeAlert system and others in Earthworm format.
Promoting children's health through physically active math classes: a pilot study.
Erwin, Heather E; Abel, Mark G; Beighle, Aaron; Beets, Michael W
2011-03-01
School-based interventions are encouraged to support youth physical activity (PA). Classroom-based PA has been incorporated as one component of school wellness policies. The purpose of this pilot study is to examine the effects of integrating PA with mathematics content on math class and school day PA levels of elementary students. Participants include four teachers and 75 students. Five math classes are taught without PA integration (i.e., baseline) followed by 13 math classes that integrate PA. Students wear pedometers and accelerometers to track PA during math class and throughout the school day. Students perform significantly more PA on school days and in math classes during the intervention. In addition, students perform higher intensity (step min(-1)) PA during PA integration math classes compared with baseline math classes. Integrating PA into the classroom is an effective alternative approach to improving PA levels among youth and is an important component of school-based wellness policies.
Kouwenhoven-Pasmooij, Tessa A; Robroek, Suzan Jw; Ling, Sui Wai; van Rosmalen, Joost; van Rossum, Elisabeth Fc; Burdorf, Alex; Hunink, M G Myriam
2017-04-03
Addressing the obesity epidemic requires the development of effective interventions aimed at increasing physical activity (PA). eHealth interventions with the use of accelerometers and gaming elements, such as rewarding or social bonding, seem promising. These eHealth elements, blended with face-to-face contacts, have the potential to help people adopt and maintain a physically active lifestyle. The aim of this study was to assess the influence and usage of a blended Web-based gaming intervention on PA, body mass index (BMI), and waist circumference among overweight and obese employees. In an uncontrolled before-after study, we observed 52 health care employees with BMI more than 25 kg/m 2 , who were recruited via the company's intranet and who voluntarily participated in a 23-week Web-based gaming intervention, supplemented (blended) with non-eHealth components. These non-eHealth components were an individual session with an occupational health physician involving motivational interviewing and 5 multidisciplinary group sessions. The game was played by teams in 5 time periods, aiming to gain points by being physically active, as measured by an accelerometer. Data were collected in 2014 and 2015. Primary outcome was PA, defined as length of time at MET (metabolic equivalent task) ≥3, as measured by the accelerometer during the game. Secondary outcomes were reductions in BMI and waist circumference, measured at baseline and 10 and 23 weeks after the start of the program. Gaming elements such as "compliance" with the game (ie, days of accelerometer wear), "engagement" with the game (ie, frequency of reaching a personal monthly target), and "eHealth teams" (ie, social influence of eHealth teams) were measured as potential determinants of the outcomes. Linear mixed models were used to evaluate the effects on all outcome measures. The mean age of participants was 48.1 years; most participants were female (42/51, 82%). The mean PA was 86 minutes per day, ranging from 6.5 to 223 minutes, which was on average 26.2 minutes per day more than self-reported PA at baseline and remained fairly constant during the game. Mean BMI was reduced by 1.87 kg/m 2 (5.6%) and waist circumference by 5.6 cm (4.8%). The univariable model showed that compliance, engagement, and eHealth team were significantly associated with more PA, which remained significant for eHealth team in the multivariable model. This blended Web-based gaming intervention was beneficial for overweight workers in becoming physically active above the recommended activity levels during the entire intervention period, and a favorable influence on BMI and waist circumference was observed. Promising components in the intervention, and thus targets for upscaling, are eHealth teams and engagement with the game. Broader implementation and long-term follow-up can provide insights into the sustainable effects on PA and weight loss and into who benefits the most from this approach. ©Tessa A Kouwenhoven-Pasmooij, Suzan JW Robroek, Sui Wai Ling, Joost van Rosmalen, Elisabeth FC van Rossum, Alex Burdorf, MG Myriam Hunink. Originally published in JMIR Serious Games (http://games.jmir.org), 03.04.2017.
Physical Activity in Hemodialysis Patients Measured by Triaxial Accelerometer
Gomes, Edimar Pedrosa; Reboredo, Maycon Moura; Carvalho, Erich Vidal; Teixeira, Daniel Rodrigues; Carvalho, Laís Fernanda Caldi d'Ornellas; Filho, Gilberto Francisco Ferreira; de Oliveira, Julio César Abreu; Sanders-Pinheiro, Helady; Chebli, Júlio Maria Fonseca; de Paula, Rogério Baumgratz; Pinheiro, Bruno do Valle
2015-01-01
Different factors can contribute to a sedentary lifestyle among hemodialysis (HD) patients, including the period they spend on dialysis. The aim of this study was to evaluate characteristics of physical activities in daily life in this population by using an accurate triaxial accelerometer and to correlate these characteristics with physiological variables. Nineteen HD patients were evaluated using the DynaPort accelerometer and compared to nineteen control individuals, regarding the time spent in different activities and positions of daily life and the number of steps taken. HD patients were more sedentary than control individuals, spending less time walking or standing and spending more time lying down. The sedentary behavior was more pronounced on dialysis days. According to the number of steps taken per day, 47.4% of hemodialysis patients were classified as sedentary against 10.5% in control group. Hemoglobin level, lower extremity muscle strength, and physical functioning of SF-36 questionnaire correlated significantly with the walking time and active time. Looking accurately at the patterns of activity in daily life, HDs patients are more sedentary, especially on dialysis days. These patients should be motivated to enhance the physical activity. PMID:26090432
Smith, Lee; Ucci, Marcella; Marmot, Alexi; Spinney, Richard; Laskowski, Marek; Sawyer, Alexia; Konstantatou, Marina; Hamer, Mark; Ambler, Gareth; Wardle, Jane; Fisher, Abigail
2013-11-12
Health benefits of regular participation in physical activity are well documented but population levels are low. Office layout, and in particular the number and location of office building destinations (eg, print and meeting rooms), may influence both walking time and characteristics of sitting time. No research to date has focused on the role that the layout of the indoor office environment plays in facilitating or inhibiting step counts and characteristics of sitting time. The primary aim of this study was to investigate associations between office layout and physical activity, as well as sitting time using objective measures. Active buildings is a unique collaboration between public health, built environment and computer science researchers. The study involves objective monitoring complemented by a larger questionnaire arm. UK office buildings will be selected based on a variety of features, including office floor area and number of occupants. Questionnaires will include items on standard demographics, well-being, physical activity behaviour and putative socioecological correlates of workplace physical activity. Based on survey responses, approximately 30 participants will be recruited from each building into the objective monitoring arm. Participants will wear accelerometers (to monitor physical activity and sitting inside and outside the office) and a novel tracking device will be placed in the office (to record participant location) for five consecutive days. Data will be analysed using regression analyses, as well as novel agent-based modelling techniques. The results of this study will be disseminated through peer-reviewed publications and scientific presentations. Ethical approval was obtained through the University College London Research Ethics Committee (Reference number 4400/001).
A Multi-Stage Wear Model for Grid-to-Rod Fretting of Nuclear Fuel Rods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blau, Peter Julian
The wear of fuel rod cladding against the supporting structures in the cores of pressurized water nuclear reactors (PWRs) is an important and potentially costly tribological issue. Grid-to-rod fretting (GTRF), as it is known, involves not only time-varying contact conditions, but also elevated temperatures, flowing hot water, aqueous tribo-corrosion, and the embrittling effects of neutron fluences. The multi-stage, closed-form analytical model described in this paper relies on published out-of-reactor wear and corrosion data and a set of simplifying assumptions to portray the conversion of frictional work into wear depth. The cladding material of interest is a zirconium-based alloy called Zircaloy-4,more » and the grid support is made of a harder and more wear-resistant material. Focus is on the wear of the cladding. The model involves an incubation stage, a surface oxide wear stage, and a base alloy wear stage. The wear coefficient, which is a measure of the efficiency of conversion of frictional work into wear damage, can change to reflect the evolving metallurgical condition of the alloy. Wear coefficients for Zircaloy-4 and for a polyphase zirconia layer were back-calculated for a range of times required to wear to a critical depth. Inputs for the model, like the friction coefficient, are taken from the tribology literature in lieu of in-reactor tribological data. Concepts of classical fretting were used as a basis, but are modified to enable the model to accommodate the complexities of the PWR environment. Factors like grid spring relaxation, pre-oxidation of the cladding, multiple oxide phases, gap formation, impact, and hydrogen embrittlement are part of the problem definition but uncertainties in their relative roles limits the ability to validate the model. Sample calculations of wear depth versus time in the cladding illustrate how GTRF wear might occur in a discontinuous fashion during months-long reactor operating cycles. A means to account for grid/rod gaps and repetitive impact effects on GTRF wear is proposed« less
Impact of Advertising on Tampon Wear-time Practices.
Woeller, Kara E; Miller, Kenneth W; Robertson-Smith, Amy L; Bohman, Lisa C
2015-01-01
(1) To determine whether advertising nighttime tampon use for up to eight hours was understood to be consistent with label recommendations and (2) to determine whether television and print advertising with this message affected tampon wear times in adults and teens. (1) A comprehension study (online advertising and follow-up questionnaire) among women aged 14-49 years (300 per group) who viewed either the test or a control advertising message; (2) Diary-based surveys of tampon wear times performed prior to (n = 292 adults, 18-49 years, 74 teens, 12-17 years) and after (n = 287 adults, 104 teens) the launch of national advertising. Significantly more test message viewers than controls stated tampons should be worn less than or equal to eight hours (93.6% vs. 88.6%, respectively, P = 0.049). A directionally higher percentage of test message viewers said they would use a pad if sleeping longer than eight hours (52% vs. 42% of controls). Among the women who used tampons longer than eight hours when sleeping, 52% reported they would wake up and change compared with 45% of controls. No significant difference between baseline and follow-up diary surveys was found among teens or adults in various measures of tampon wear time (mean wear times; usage intervals from less than two hours to more than 10 hours; percentage of tampons used for more than or equal to eight hours; frequency of wearing at least one tampon more than eight hours). Advertising nighttime tampon wear for up to eight hours effectively communicated label recommendations but did not alter tampon wear times. The informational intervention had limited impact on established habits.
Impact of Advertising on Tampon Wear-time Practices
Woeller, Kara E.; Miller, Kenneth W.; Robertson-Smith, Amy L.; Bohman, Lisa C.
2015-01-01
OBJECTIVES (1) To determine whether advertising nighttime tampon use for up to eight hours was understood to be consistent with label recommendations and (2) to determine whether television and print advertising with this message affected tampon wear times in adults and teens. METHODS (1) A comprehension study (online advertising and follow-up questionnaire) among women aged 14–49 years (300 per group) who viewed either the test or a control advertising message; (2) Diary-based surveys of tampon wear times performed prior to (n = 292 adults, 18–49 years, 74 teens, 12–17 years) and after (n = 287 adults, 104 teens) the launch of national advertising. RESULTS Significantly more test message viewers than controls stated tampons should be worn less than or equal to eight hours (93.6% vs. 88.6%, respectively, P = 0.049). A directionally higher percentage of test message viewers said they would use a pad if sleeping longer than eight hours (52% vs. 42% of controls). Among the women who used tampons longer than eight hours when sleeping, 52% reported they would wake up and change compared with 45% of controls. No significant difference between baseline and follow-up diary surveys was found among teens or adults in various measures of tampon wear time (mean wear times; usage intervals from less than two hours to more than 10 hours; percentage of tampons used for more than or equal to eight hours; frequency of wearing at least one tampon more than eight hours). CONCLUSIONS Advertising nighttime tampon wear for up to eight hours effectively communicated label recommendations but did not alter tampon wear times. The informational intervention had limited impact on established habits. PMID:26688668
Microelectromechanical systems (MEMS) sensors based on lead zirconate titanate (PZT) films
NASA Astrophysics Data System (ADS)
Wang, Li-Peng
2001-12-01
In this thesis, modeling, fabrication and testing of microelectromechanical systems (MEMS) accelerometers based on piezoelectric lead zirconate titanate (PZT) films are investigated. Three different types of structures, cantilever beam, trampoline, and annular diaphragm, are studied. It demonstrates the high-performance, miniaturate, mass-production-compatible, and potentially circuitry-integratable piezoelectric-type PZT MEMS devices. Theoretical models of the cantilever-beam and trampoline accelerometers are derived via structural dynamics and the constitutive equations of piezoelectricity. The time-dependent transverse vibration equations, mode shapes, resonant frequencies, and sensitivities of the accelerometers are calculated through the models. Optimization of the silicon and PZT thickness is achieved with considering the effects of the structural dynamics, the material properties, and manufacturability for different accelerometer specifications. This work is the first demonstration of the fabrication of bulk-micromachined accelerometers combining a deep-trench reactive ion etching (DRIE) release strategy and thick piezoelectric PZT films deposited using a sol-gel method. Processing challenges which are overcome included materials compatibility, metallization, processing of thick layers, double-side processing, deep-trench silicon etching, post-etch cleaning and process integration. In addition, the processed PZT films are characterized by dielectric, ferroelectric (polarization electric-field hysteresis), and piezoelectric measurements and no adverse effects are found. Dynamic frequency response and impedance resonance measurements are performed to ascertain the performance of the MEMS accelerometers. The results show high sensitivities and broad frequency ranges of the piezoelectric-type PZT MEMS accelerometers; the sensitivities range from 0.1 to 7.6 pC/g for resonant frequencies ranging from 44.3 kHz to 3.7 kHz. The sensitivities were compared to theoretical values and a reasonable agreement (˜36% difference) is obtained.
Matthews, Charles E; Keadle, Sarah Kozey; Troiano, Richard P; Kahle, Lisa; Koster, Annemarie; Brychta, Robert; Van Domelen, Dane; Caserotti, Paolo; Chen, Kong Y; Harris, Tamara B; Berrigan, David
2016-11-01
Moderate-to-vigorous-intensity physical activity is recommended to maintain and improve health, but the mortality benefits of light activity and risk for sedentary time remain uncertain. Using accelerometer-based measures, we 1) described the mortality dose-response for sedentary time and light- and moderate-to-vigorous-intensity activity using restricted cubic splines, and 2) estimated the mortality benefits associated with replacing sedentary time with physical activity, accounting for total activity. US adults (n = 4840) from NHANES (2003-2006) wore an accelerometer for ≤7 d and were followed prospectively for mortality. Proportional hazards models were used to estimate adjusted HRs and 95% CIs for mortality associations with time spent sedentary and in light- and moderate-to-vigorous-intensity physical activity. Splines were used to graphically present behavior-mortality relation. Isotemporal models estimated replacement associations for sedentary time, and separate models were fit for low- (<5.8 h total activity/d) and high-active participants to account for nonlinear associations. Over a mean of 6.6 y, 700 deaths occurred. Compared with less-sedentary adults (6 sedentary h/d), those who spent 10 sedentary h/d had 29% greater risk (HR: 1.29; 95% CI: 1.1, 1.5). Compared with those who did less light activity (3 h/d), those who did 5 h of light activity/d had 23% lower risk (HR: 0.77; 95% CI: 0.6, 1.0). There was no association with mortality for sedentary time or light or moderate-to-vigorous activity in highly active adults. In less-active adults, replacing 1 h of sedentary time with either light- or moderate-to-vigorous-intensity activity was associated with 18% and 42% lower mortality, respectively. Health promotion efforts for physical activity have mostly focused on moderate-to-vigorous activity. However, our findings derived from accelerometer-based measurements suggest that increasing light-intensity activity and reducing sedentary time are also important, particularly for inactive adults. © 2016 American Society for Nutrition.
Ewalt, Lauren A; Danduran, Michael J; Strath, Scott J; Moerchen, Victoria; Swartz, Ann M
2012-02-01
To objectively evaluate and describe physical activity levels in children with a stable congenital heart defect and compare those levels with children who do not have a congenital heart defect. We matched 21 pairs of children for gender and grade in school and gave them an accelerometer-based motion sensor to wear for 7 consecutive days. Physical activity levels did not differ between children with and without a congenital heart defect. During the 7 days of monitoring, children in this study spent most of their time in sedentary behaviours, that is, 6.7 hours of the 13 monitored hours, 54 minutes in moderate-intensity physical activity, and 12 minutes in vigorous-intensity physical activity. Less than one-fifth of all participants, with or without a congenital heart defect, accumulated sufficient physical activity to meet current physical activity recommendations for children and adolescents. Children with a stable congenital heart defect have activity behaviours that are similar to children without a congenital heart defect. Habitual physical activity in children with a congenital heart defect should be encouraged early on in life to develop strong physical activity habits that will hopefully follow them across their lifespan.
Jago, Russell; Edwards, Mark J; Sebire, Simon J; Tomkinson, Keeley; Bird, Emma L; Banfield, Kathryn; May, Thomas; Kesten, Joanna M; Cooper, Ashley R; Powell, Jane E; Blair, Peter S
2015-10-06
The aim of this study was to examine the effectiveness and cost of an after-school dance intervention at increasing the physical activity levels of Year 7 girls (age 11-12). A cluster randomised controlled trial was conducted in 18 secondary schools. Participants were Year 7 girls attending a study school. The Bristol Girls Dance Project (BGDP) intervention consisted of up to forty, 75-minute dance sessions delivered in the period immediately after school by experienced dance instructors over 20-weeks. The pre-specified primary outcome was accelerometer assessed mean minutes of weekday moderate to vigorous physical activity (MVPA) at time 2 (52 weeks are T0 baseline assessments). Secondary outcomes included accelerometer assessed mean minutes of weekday MVPA at time 1 (while the intervention was still running) and psychosocial outcomes. Intervention costs were assessed. 571 girls participated. Valid accelerometer data were collected from 549 girls at baseline with 508 girls providing valid accelerometer data at baseline and time 2. There were no differences between the intervention and control group for accelerometer assessed physical activity at either time 1 or time 2. Only one third of the girls in the intervention arm met the pre-set adherence criteria of attending two thirds of the dance sessions that were available to them. Instrumental variable regression analyses using complier average causal effects provided no evidence of a difference between girls who attended the sessions and the control group. The average cost of the intervention was £73 per girl, which was reduced to £63 when dance instructor travel expenses were excluded. This trial showed no evidence that an after-school dance programme can increase the physical activity of Year 7 girls. The trial highlighted the difficulty encountered in maintaining attendance in physical activity programmes delivered in secondary schools. There is a need to find new ways to help adolescent girls to be physically active via identifying ways to support and encourage sustained engagement in physical activity over the life course. ISRCTN52882523.
Understanding wear in dentistry.
Mair, L H
1999-01-01
Tooth wear is an increasing problem in dentistry. Traditionally, it has been divided into three categories: abrasion, attrition, and erosion. However, most clinical cases of tooth wear involve more than one of these processes. It is often easier to make a diagnosis by looking for the signs of the fundamental wear processes rather than trying to categorize the individual case. Wear can be caused by direct surface-to-surface wear, an intervening slurry, or a corrosive environment. Wear occurs during mastication, but also at other times, often at night. Although it may be possible to institute a preventive regimen, this will not always help the patient if his or her prime concern is esthetics. The same processes that cause tooth wear will cause wear to restorative materials. To diagnose and prevent wear, its processes must be understood.
Wear behavior of AA 5083/SiC nano-particle metal matrix composite: Statistical analysis
NASA Astrophysics Data System (ADS)
Hussain Idrisi, Amir; Ismail Mourad, Abdel-Hamid; Thekkuden, Dinu Thomas; Christy, John Victor
2018-03-01
This paper reports study on statistical analysis of the wear characteristics of AA5083/SiC nanocomposite. The aluminum matrix composites with different wt % (0%, 1% and 2%) of SiC nanoparticles were fabricated by using stir casting route. The developed composites were used in the manufacturing of spur gears on which the study was conducted. A specially designed test rig was used in testing the wear performance of the gears. The wear was investigated under different conditions of applied load (10N, 20N, and 30N) and operation time (30 mins, 60 mins, 90 mins, and 120mins). The analysis carried out at room temperature under constant speed of 1450 rpm. The wear parameters were optimized by using Taguchi’s method. During this statistical approach, L27 Orthogonal array was selected for the analysis of output. Furthermore, analysis of variance (ANOVA) was used to investigate the influence of applied load, operation time and SiC wt. % on wear behaviour. The wear resistance was analyzed by selecting “smaller is better” characteristics as the objective of the model. From this research, it is observed that experiment time and SiC wt % have the most significant effect on the wear performance followed by the applied load.
Hekler, Eric B; Buman, Matthew P; Grieco, Lauren; Rosenberger, Mary; Winter, Sandra J; Haskell, William; King, Abby C
2015-04-15
There is increasing interest in using smartphones as stand-alone physical activity monitors via their built-in accelerometers, but there is presently limited data on the validity of this approach. The purpose of this work was to determine the validity and reliability of 3 Android smartphones for measuring physical activity among midlife and older adults. A laboratory (study 1) and a free-living (study 2) protocol were conducted. In study 1, individuals engaged in prescribed activities including sedentary (eg, sitting), light (sweeping), moderate (eg, walking 3 mph on a treadmill), and vigorous (eg, jogging 5 mph on a treadmill) activity over a 2-hour period wearing both an ActiGraph and 3 Android smartphones (ie, HTC MyTouch, Google Nexus One, and Motorola Cliq). In the free-living study, individuals engaged in usual daily activities over 7 days while wearing an Android smartphone (Google Nexus One) and an ActiGraph. Study 1 included 15 participants (age: mean 55.5, SD 6.6 years; women: 56%, 8/15). Correlations between the ActiGraph and the 3 phones were strong to very strong (ρ=.77-.82). Further, after excluding bicycling and standing, cut-point derived classifications of activities yielded a high percentage of activities classified correctly according to intensity level (eg, 78%-91% by phone) that were similar to the ActiGraph's percent correctly classified (ie, 91%). Study 2 included 23 participants (age: mean 57.0, SD 6.4 years; women: 74%, 17/23). Within the free-living context, results suggested a moderate correlation (ie, ρ=.59, P<.001) between the raw ActiGraph counts/minute and the phone's raw counts/minute and a strong correlation on minutes of moderate-to-vigorous physical activity (MVPA; ie, ρ=.67, P<.001). Results from Bland-Altman plots suggested close mean absolute estimates of sedentary (mean difference=-26 min/day of sedentary behavior) and MVPA (mean difference=-1.3 min/day of MVPA) although there was large variation. Overall, results suggest that an Android smartphone can provide comparable estimates of physical activity to an ActiGraph in both a laboratory-based and free-living context for estimating sedentary and MVPA and that different Android smartphones may reliably confer similar estimates.
Improving Hip-Worn Accelerometer Estimates of Sitting Using Machine Learning Methods.
Kerr, Jacqueline; Carlson, Jordan; Godbole, Suneeta; Cadmus-Bertram, Lisa; Bellettiere, John; Hartman, Sheri
2018-02-13
To improve estimates of sitting time from hip worn accelerometers used in large cohort studies by employing machine learning methods developed on free living activPAL data. Thirty breast cancer survivors concurrently wore a hip worn accelerometer and a thigh worn activPAL for 7 days. A random forest classifier, trained on the activPAL data, was employed to detect sitting, standing and sit-stand transitions in 5 second windows in the hip worn accelerometer. The classifier estimates were compared to the standard accelerometer cut point and significant differences across different bout lengths were investigated using mixed effect models. Overall, the algorithm predicted the postures with moderate accuracy (stepping 77%, standing 63%, sitting 67%, sit to stand 52% and stand to sit 51%). Daily level analyses indicated that errors in transition estimates were only occurring during sitting bouts of 2 minutes or less. The standard cut point was significantly different from the activPAL across all bout lengths, overestimating short bouts and underestimating long bouts. This is among the first algorithms for sitting and standing for hip worn accelerometer data to be trained from entirely free living activPAL data. The new algorithm detected prolonged sitting which has been shown to be most detrimental to health. Further validation and training in larger cohorts is warranted.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Investigation of wear land and rate of locally made HSS cutting tool
NASA Astrophysics Data System (ADS)
Afolalu, S. A.; Abioye, A. A.; Dirisu, J. O.; Okokpujie, I. P.; Ajayi, O. O.; Adetunji, O. R.
2018-04-01
Production technology and machining are inseparable with cutting operation playing important roles. Investigation of wear land and rate of cutting tool developed locally (C=0.56%) with an HSS cutting tool (C=0.65%) as a control was carried out. Wear rate test was carried out using Rotopol -V and Impact tester. The samples (12) of locally made cutting tools and one (1) sample of a control HSS cutting tool were weighed to get the initial weight and grit was fixed at a point for the sample to revolve at a specific time of 10 mins interval. Approach of macro transfer particles that involved mechanism of abrasion and adhesion which was termed as mechanical wear to handle abrasion adhesion processes was used in developing equation for growth wear at flank. It was observed from the wear test that best minimum wear rate of 1.09 × 10-8 and 2.053 × 10-8 for the tools developed and control were measured. MATLAB was used to simulate the wear land and rate under different conditions. Validated results of both the experimental and modeling showed that cutting speed has effect on wear rate while cutting time has predicted measure on wear land. Both experimental and modeling result showed best performances of tools developed over the control.
Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests
Kim, Hyun Chan; Song, Sangho; Kim, Jaehwan
2016-01-01
This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO) nanowire (NW) grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices. PMID:27649184
Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Jun; Cooley, Kevin M.; Shaw, Austin H.
In the cores of pressurized water nuclear reactors, water-flow induced vibration is known to cause claddings on the fuel rods to rub against their supporting grids. Such grid-to-rod-fretting (GTRF) may lead to fretting wear-through and the leakage of radioactive species. The surfaces of actual zirconium alloy claddings in a reactor are inevitably oxidized in the high-temperature pressurized water, and some claddings are even pre-oxidized. As a result, the wear process of the surface oxide film is expected to be quite different from the zirconium alloy substrate. In this paper, we attempt to measure the wear coefficients of zirconium claddings withoutmore » and with pre-oxidation rubbing against grid samples using a bench-scale fretting tribometer. Results suggest that the volumetric wear coefficient of the pre-oxidized cladding is 50 to 200 times lower than that of the untreated cladding. In terms of the linear rate of wear depth, the pre-oxidized alloy wears about 15 times more slowly than the untreated cladding. Finally, fitted with the experimentally-determined wear rates, a stage-wise GTRF engineering wear model demonstrates good agreement with in-reactor experience in predicting the trend of cladding lives.« less
Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation
Qu, Jun; Cooley, Kevin M.; Shaw, Austin H.; ...
2016-03-16
In the cores of pressurized water nuclear reactors, water-flow induced vibration is known to cause claddings on the fuel rods to rub against their supporting grids. Such grid-to-rod-fretting (GTRF) may lead to fretting wear-through and the leakage of radioactive species. The surfaces of actual zirconium alloy claddings in a reactor are inevitably oxidized in the high-temperature pressurized water, and some claddings are even pre-oxidized. As a result, the wear process of the surface oxide film is expected to be quite different from the zirconium alloy substrate. In this paper, we attempt to measure the wear coefficients of zirconium claddings withoutmore » and with pre-oxidation rubbing against grid samples using a bench-scale fretting tribometer. Results suggest that the volumetric wear coefficient of the pre-oxidized cladding is 50 to 200 times lower than that of the untreated cladding. In terms of the linear rate of wear depth, the pre-oxidized alloy wears about 15 times more slowly than the untreated cladding. Finally, fitted with the experimentally-determined wear rates, a stage-wise GTRF engineering wear model demonstrates good agreement with in-reactor experience in predicting the trend of cladding lives.« less
How to qualify and validate wear simulation devices and methods.
Heintze, S D
2006-08-01
The clinical significance of increased wear can mainly be attributed to impaired aesthetic appearance and/or functional restrictions. Little is known about the systemic effects of swallowed or inhaled worn particles that derive from restorations. As wear measurements in vivo are complicated and time-consuming, wear simulation devices and methods had been developed without, however, systematically looking at the factors that influence important wear parameters. Wear simulation devices shall simulate processes that occur in the oral cavity during mastication, namely force, force profile, contact time, sliding movement, clearance of worn material, etc. Different devices that use different force actuator principles are available. Those with the highest citation frequency in the literature are - in descending order - the Alabama, ACTA, OHSU, Zurich and MTS wear simulators. When following the FDA guidelines on good laboratory practice (GLP) only the expensive MTS wear simulator is a qualified machine to test wear in vitro; the force exerted by the hydraulic actuator is controlled and regulated during all movements of the stylus. All the other simulators lack control and regulation of force development during dynamic loading of the flat specimens. This may be an explanation for the high coefficient of variation of the results in some wear simulators (28-40%) and the poor reproducibility of wear results if dental databases are searched for wear results of specific dental materials (difference of 22-72% for the same material). As most of the machines are not qualifiable, wear methods applying the machine may have a sound concept but cannot be validated. Only with the MTS method have wear parameters and influencing factors been documented and verified. A good compromise with regard to costs, practicability and robustness is the Willytec chewing simulator, which uses weights as force actuator and step motors for vertical and lateral movements. The Ivoclar wear method run on the Willytec machine shows a mean coefficient of variation in vertical wear of 12%. Force measurements have revealed that in the beginning of the stylus/specimen contact phase the force impulse is 3-4 times higher during dynamic loading than during static loading. When correlating material properties to the wear results of 23 composite resins subjected to the Ivoclar method, some parameters could be identified and incorporated into a wear formula to predict wear with the Ivoclar method. A round robin test evaluating the wear of ten dental materials with five wear simulation methods showed that the results were not comparable, as all methods follow different wear testing concepts. All wear methods lack the evidence of their clinical relevance because prospective studies correlating in vitro with long-term in vivo results with identical materials are not available. For direct restorative materials, amalgam seems to be a realistic reference material. For indirect, namely crown and bridge materials, low strength ceramic is appropriate.
Using Smartphones to Detect Earthquakes
NASA Astrophysics Data System (ADS)
Kong, Q.; Allen, R. M.
2012-12-01
We are using the accelerometers in smartphones to record earthquakes. In the future, these smartphones may work as a supplement network to the current traditional network for scientific research and real-time applications. Given the potential number of smartphones, and small separation of sensors, this new type of seismic dataset has significant potential provides that the signal can be separated from the noise. We developed an application for android phones to record the acceleration in real time. These records can be saved on the local phone or transmitted back to a server in real time. The accelerometers in the phones were evaluated by comparing performance with a high quality accelerometer while located on controlled shake tables for a variety of tests. The results show that the accelerometer in the smartphone can reproduce the characteristic of the shaking very well, even the phone left freely on the shake table. The nature of these datasets is also quite different from traditional networks due to the fact that smartphones are moving around with their owners. Therefore, we must distinguish earthquake signals from other daily use. In addition to the shake table tests that accumulated earthquake records, we also recorded different human activities such as running, walking, driving etc. An artificial neural network based approach was developed to distinguish these different records. It shows a 99.7% successful rate of distinguishing earthquakes from the other typical human activities in our database. We are now at the stage ready to develop the basic infrastructure for a smartphone seismic network.
Steady-state wear and friction in boundary lubrication studies
NASA Technical Reports Server (NTRS)
Loomis, W. R.; Jones, W. R., Jr.
1980-01-01
A friction and wear study was made at 20 C to obtain improved reproducibility and reliability in boundary lubrication testing. Ester-base and C-ether-base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a friction and wear apparatus. Conditions included loads of 1/2 and 1 kg and sliding velocities of 3.6 to 18.2 m/min in a dry air atmosphere and stepwise time intervals from 1 to 250 min for wear measurements. The wear rate results were compared with those from previous studies where a single 25 min test period was used. Satisfactory test conditions for studying friction and wear in boundary lubrication for this apparatus were found to be 1 kg load; sliding velocities of 7.1 to 9.1 m/min (50 rpm disk speed); and use of a time stepwise test procedure. Highly reproducible steady-state wear rates and steady-state friction coefficients were determined under boundary conditions. Wear rates and coefficients of friction were constant following initially high values during run-in periods.
A high sensitivity wear debris sensor using ferrite cores for online oil condition monitoring
NASA Astrophysics Data System (ADS)
Zhu, Xiaoliang; Zhong, Chong; Zhe, Jiang
2017-07-01
Detecting wear debris and measuring the increasing number of wear debris in lubrication oil can indicate abnormal machine wear well ahead of machine failure, and thus are indispensable for online machine health monitoring. A portable wear debris sensor with ferrite cores for online monitoring is presented. The sensor detects wear debris by measuring the inductance change of two planar coils wound around a pair of ferrite cores that make the magnetic flux denser and more uniform in the sensing channel, thereby improving the sensitivity of the sensor. Static testing results showed this wear debris sensor is capable of detecting 11 µm and 50 µm ferrous debris in 1 mm and 7 mm diameter fluidic pipes, respectively; such a high sensitivity has not been achieved before. Furthermore, a synchronized sampling method was also applied to reduce the data size and realize real-time data processing. Dynamic testing results demonstrated that the sensor is capable of detecting wear debris in real time with a high throughput of 750 ml min-1 the measured debris concentration is in good agreement with the actual concentration.
Pagels, Peter; Boldemann, Cecilia; Raustorp, Anders
2011-01-01
To compare pedometer steps with accelerometer counts and to analyse minutes of engagement in light, moderate and vigorous physical activity in 3- to 5-year-old children during preschool time. Physical activity was recorded during preschool time for five consecutive days in 55 three- to five-year-old children. The children wore a Yamax SW200 pedometer and an Actigraph GTIM Monitor. The average time spent at preschool was 7.22 h/day with an average step of 7313 (±3042). Steps during preschool time increased with increasing age. The overall correlation between mean step counts and mean accelerometer counts (r = 0.67, p < 0.001), as well as time in light to vigorous activity (r = 0.76, p < 0.001), were moderately high. Step counts and moderate to vigorous physical activity minutes were poorly correlated in 3 years old (r = 0.19, p < 0.191) and moderately correlated (r = 0.50, p < 0.001) for children 4 to 5 years old. Correlation between the preschool children's pedometer-determined step counts and total engagement in physical activity during preschool time was moderately high. Children's step counts at preschool were low, and the time spent in moderate and vigorous physical activity at preschool was very short. © 2010 The Author(s)/Journal Compilation © 2010 Foundation Acta Paediatrica.
Kantomaa, Marko T.; Tikanmäki, Marjaana; Kankaanpää, Anna; Vääräsmäki, Marja; Sipola-Leppänen, Marika; Ekelund, Ulf; Hakonen, Harto; Järvelin, Marjo-Riitta; Kajantie, Eero; Tammelin, Tuija H.
2016-01-01
This study examined the association of education level with objectively measured physical activity and sedentary time in young adults. Data from the Finnish ESTER study (2009–2011) (n = 538) was used to examine the association between educational attainment and different subcomponents of physical activity and sedentary time measured using hip-worn accelerometers (ActiGraph GT1M) for seven consecutive days. Overall physical activity, moderate-to-vigorous physical activity (MVPA), light-intensity physical activity and sedentary time were calculated separately for weekdays and weekend days. A latent profile analysis was conducted to identify the different profiles of sedentary time and the subcomponents of physical activity. The educational differences in accelerometer-measured physical activity and sedentary time varied according to the subcomponents of physical activity, and between weekdays and weekend days. A high education level was associated with high MVPA during weekdays and weekend days in both sexes, high sedentary time during weekdays in both sexes, and a low amount of light-intensity physical activity during weekdays in males and during weekdays and weekend days in females. The results indicate different challenges related to unhealthy behaviours in young adults with low and high education: low education is associated with a lack of MVPA, whereas high education is associated with a lack of light-intensity physical activity and high sedentary time especially during weekdays. PMID:27403958
... It works by stopping nerves from sending pain signals. ... time and the length of time you may wear the patches. Never apply more than three patches at one time, and never wear patches for more than 12 hours per day. ...
Application of a tri-axial accelerometer to estimate jump frequency in volleyball.
Jarning, Jon M; Mok, Kam-Ming; Hansen, Bjørge H; Bahr, Roald
2015-03-01
Patellar tendinopathy is prevalent among athletes, and most likely associated with a high jumping load. If methods for estimating jump frequency were available, this could potentially assist in understanding and preventing this condition. The objective of this study was to explore the possibility of using peak vertical acceleration (PVA) or peak resultant acceleration (PRA) measured by an accelerometer to estimate jump frequency. Twelve male elite volleyball players (22.5 ± 1.6 yrs) performed a training protocol consisting of seven typical motion patterns, including jumping and non-jumping movements. Accelerometer data from the trial were obtained using a tri-axial accelerometer. In addition, we collected video data from the trial. Jump-float serving and spike jumping could not be distinguished from non-jumping movements using differences in PVA or PRA. Furthermore, there were substantial inter-participant differences in both the PVA and the PRA within and across movement types (p < 0.05). These findings suggest that neither PVA nor PRA measured by a tri-axial accelerometer is an applicable method for estimating jump frequency in volleyball. A method for acquiring real-time estimates of jump frequency remains to be verified. However, there are several alternative approaches, and further investigations are needed.
Weikert, Madeline; Motl, Robert W; Suh, Yoojin; McAuley, Edward; Wynn, Daniel
2010-03-15
Motion sensors such as accelerometers have been recognized as an ideal measure of physical activity in persons with MS. This study examined the hypothesis that accelerometer movement counts represent a measure of both physical activity and walking mobility in individuals with MS. The sample included 269 individuals with a definite diagnosis of relapsing-remitting MS who completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ), International Physical Activity Questionnaire (IPAQ), Multiple Sclerosis Walking Scale-12 (MSWS-12), Patient Determined Disease Steps (PDDS), and then wore an ActiGraph accelerometer for 7days. The data were analyzed using bivariate correlation and confirmatory factor analysis. The results indicated that (a) the GLTEQ and IPAQ scores were strongly correlated and loaded significantly on a physical activity latent variable, (b) the MSWS-12 and PDDS scores strongly correlated and loaded significantly on a walking mobility latent variable, and (c) the accelerometer movement counts correlated similarly with the scores from the four self-report questionnaires and cross-loaded on both physical activity and walking mobility latent variables. Our data suggest that accelerometers are measuring both physical activity and walking mobility in persons with MS, whereas self-report instruments are measuring either physical activity or walking mobility in this population.
[Wear behavior of enamel and veneering ceramics].
Gao, Qing-ping; Chao, Yong-lie; Jian, Xin-chun; Guo, Feng; Meng, Yu-kun
2007-10-01
To compare the wear between the enamel and two types of dental decoration porcelains for all-ceramic restorations (Vita-alpha, Vintage AL). Friction coefficients, wear scar width, element concentrations and wear surface evolution were considered relatively to the tribology of that in vivo situation. The wear scars of the samples were characterized by means of dynamic atomic force microscopy (DFM). The different element concentrations of the surface before/after the wear test were determined with energy dispersion spectrometry (EDS). The friction coefficient varied from time in each kind of material. The statistical differences between materials were observed in wear scar width and properties of materials (P<0.05). DFM results showed wear surface of natural tooth full of abrasive particles and denaturation of dental texture. Wear surface of veneering ceramics consisted mainly of abrasive particles, plough and microcracking. EDS results showed that the element concentration of Fe was obviously found on the samples after wear. The main underlying mechanisms of natural teeth wear are abrasive, and denaturation of dental texture. Abrasive wear, adhesion and fatigue of veneering ceramics characterize the wear patterns which plays different role in Vita-alpha and Vintage AL. The wear patterns of veneering ceramics can be described as mild wear.
Wearable Sensors in Huntington Disease: A Pilot Study.
Andrzejewski, Kelly L; Dowling, Ariel V; Stamler, David; Felong, Timothy J; Harris, Denzil A; Wong, Cynthia; Cai, Hang; Reilmann, Ralf; Little, Max A; Gwin, Joseph T; Biglan, Kevin M; Dorsey, E Ray
2016-06-18
The Unified Huntington's Disease Rating Scale (UHDRS) is the principal means of assessing motor impairment in Huntington disease but is subjective and generally limited to in-clinic assessments. To evaluate the feasibility and ability of wearable sensors to measure motor impairment in individuals with Huntington disease in the clinic and at home. Participants with Huntington disease and controls were asked to wear five accelerometer-based sensors attached to the chest and each limb for standardized, in-clinic assessments and for one day at home. A second chest sensor was worn for six additional days at home. Gait measures were compared between controls, participants with Huntington disease, and participants with Huntington disease grouped by UHDRS total motor score using Cohen's d values. Fifteen individuals with Huntington disease and five controls completed the study. Sensor data were successfully captured from 18 of the 20 participants at home. In the clinic, the standard deviation of step time (time between consecutive steps) was increased in Huntington disease (p < 0.0001; Cohen's d = 2.61) compared to controls. At home with additional observations, significant differences were observed in seven additional gait measures. The gait of individuals with higher total motor scores (50 or more) differed significantly from those with lower total motor scores (below 50) on multiple measures at home. In this pilot study, the use of wearable sensors in clinic and at home was feasible and demonstrated gait differences between controls, participants with Huntington disease, and participants with Huntington disease grouped by motor impairment.
Decelerations of Parachute Opening Shock in Skydivers.
Gladh, Kristofer; Lo Martire, Riccardo; Äng, Björn O; Lindholm, Peter; Nilsson, Jenny; Westman, Anton
2017-02-01
High prevalence of neck pain among skydivers is related to parachute opening shock (POS) exposure, but few investigations of POS deceleration have been made. Existing data incorporate equipment movements, limiting its representability of skydiver deceleration. This study aims to describe POS decelerations and compare human- with equipment-attached data. Wearing two triaxial accelerometers placed on the skydiver (neck-sensor) and equipment (rig-sensor), 20 participants made 2 skydives each. Due to technical issues, data from 35 skydives made by 19 participants were collected. Missing data were replaced using data substitution techniques. Acceleration axes were defined as posterior to anterior (+ax), lateral right (+ay), and caudal to cranial (+az). Deceleration magnitude [amax (G)] and jerks (G · s-1) during POS were analyzed. Two distinct phases related to skydiver positioning and acceleration direction were observed: 1) the x-phase (characterized by -ax, rotating the skydiver); and 2) the z-phase (characterized by +az, skydiver vertically oriented). Compared to the rig-sensor, the neck-sensor yielded lower amax (3.16 G vs. 6.96 G) and jerk (56.3 G · s-1 vs. 149.0 G · s-1) during the x-phase, and lower jerk (27.7 G · s-1 vs. 54.5 G · s-1) during the z-phase. The identified phases during POS should be considered in future neck pain preventive strategies. Accelerometer data differed, suggesting human-placed accelerometry to be more valid for measuring human acceleration.Gladh K, Lo Martire R, Äng BO, Lindholm P, Nilsson J, Westman A. Decelerations of parachute opening shock in skydivers. Aerosp Med Hum Perform. 2017; 88(2):121-127.
Ellingson, Laura D; Hibbing, Paul R; Kim, Youngwon; Frey-Law, Laura A; Saint-Maurice, Pedro F; Welk, Gregory J
2017-06-01
The wrist is increasingly being used as the preferred site for objectively assessing physical activity but the relative accuracy of processing methods for wrist data has not been determined. This study evaluates the validity of four processing methods for wrist-worn ActiGraph (AG) data against energy expenditure (EE) measured using a portable metabolic analyzer (OM; Oxycon mobile) and the Compendium of physical activity. Fifty-one adults (ages 18-40) completed 15 activities ranging from sedentary to vigorous in a laboratory setting while wearing an AG and the OM. Estimates of EE and categorization of activity intensity were obtained from the AG using a linear method based on Hildebrand cutpoints (HLM), a non-linear modification of this method (HNLM), and two methods developed by Staudenmayer based on a Linear Model (SLM) and using random forest (SRF). Estimated EE and classification accuracy were compared to the OM and Compendium using Bland-Altman plots, equivalence testing, mean absolute percent error (MAPE), and Kappa statistics. Overall, classification agreement with the Compendium was similar across methods ranging from a Kappa of 0.46 (HLM) to 0.54 (HNLM). However, specificity and sensitivity varied by method and intensity, ranging from a sensitivity of 0% (HLM for sedentary) to a specificity of ~99% for all methods for vigorous. None of the methods was significantly equivalent to the OM (p > 0.05). Across activities, none of the methods evaluated had a high level of agreement with criterion measures. Additional research is needed to further refine the accuracy of processing wrist-worn accelerometer data.
Wear Calculation Approach for Sliding - Friction Pairs
NASA Astrophysics Data System (ADS)
Springis, G.; Rudzitis, J.; Lungevics, J.; Berzins, K.
2017-05-01
One of the most important things how to predict the service life of different products is always connected with the choice of adequate method. With the development of production technologies and measuring devices and with ever increasing precision one can get the appropriate data to be used in analytic calculations. Historically one can find several theoretical wear calculation methods but still there are no exact wear calculation model that could be applied to all cases of wear processes because of difficulties connected with a variety of parameters that are involved in wear process of two or several surfaces. Analysing the wear prediction theories that could be classified into definite groups one can state that each of them has shortcomings that might impact the results thus making unnecessary theoretical calculations. The offered wear calculation method is based on the theories of different branches of science. It includes the description of 3D surface micro-topography using standardized roughness parameters, explains the regularities of particle separation from the material in the wear process using fatigue theory and takes into account material’s physical and mechanical characteristics and definite conditions of product’s working time. The proposed wear calculation model could be of value for prediction of the exploitation time for sliding friction pairs thus allowing the best technologies to be chosen for many mechanical details.
NASA Astrophysics Data System (ADS)
Bhaskar Kurapati, Vijaya; Kommineni, Ravindra
2017-09-01
In the present work AA 2024 alloy reinforced with mixtures of SiC and Fly Ash (FA) particles of 70 µm (5, 10 and 15 wt. %) are fabricated using the stir casting method. Both reinforcements are added in equal weight proportions. The wear test specimens are prepared from both the alloy and composite castings in the dimensions of Ф 4 mm and 30 mm lengths by the wire cut EDM process. The dry sliding wear properties of the prepared composites at room temperature are estimated by pin-on-disc wear testing equipment. The wear characteristics of the composites are studied by conducting the dry sliding wear test over loads of 0.5 Kgf, 1.0 Kgf, 1.5 Kgf, a track diameter of 60 mm and sliding times of 15 min, 30 min, 45min. The experimental results shows that the wear decreases with an increase in the weight percentage of FA and SiC particles in the matrix. Additionally wear increases with an increase in load and sliding time. Further, it is found that the wear resistance of the AA2024-Hybrid composites is higher than that of the AA2024 matrix.
Timing of dietary acid intake and erosive tooth wear: A case-control study.
O'Toole, Saoirse; Bernabé, Eduardo; Moazzez, Rebecca; Bartlett, David
2017-01-01
There is a lack of clinical data on the impact of timing of dietary acid intake and toothbrush abrasion when attempting to control erosive tooth wear progression. The aim of this study was to estimate the association of theoretical causative factors with erosive tooth wear to inform evidence-based guidelines. Using case-control study design, 300 participants with dietary erosive tooth wear and 300 age-matched controls were recruited from the restorative clinics of King's College London Dental Institute. A previously validated questionnaire was adapted to be interviewer-led and to assess frequency, timing and duration of dietary acid intake in addition to alternate drinking habits prior to swallowing. Timing of toothbrushing in relation to meals and dietary acid intake was investigated. Associations with erosive tooth wear were assessed in crude and adjusted logistic regression models. Fruit intake between meals (p<0.001), but not with meals (p=0.206), was associated with erosive tooth wear and contrasted with acidic drinks which maintained a strong association regardless of timing of intake (OR up to 11.84 [95% CI: 5.42-25.89], p<0.001). Prolonged fruit eating and alternate drinking habits prior to swallowing (OR 12.82 [95% CI: 5.85-28.08] and 10.34 [95% CI: 4.85-22.06] respectively) were as strongly associated with erosive tooth wear as three or greater daily acid intakes (OR 10.92 [95% CI: 4.40-27.10]). Toothbrushing within 10min of acid intake was not associated with erosive tooth wear following adjustments for dietary factors (OR 1.41 [95% CI: 0.82-2.42], p=0.215]). Significantly increased odds ratios were observed when acids were consumed between meals in this cohort of patients. Universal advice to delay brushing after meals may not be substantiated. Prevention should be focused on avoiding dietary acids between meals, eliminating habits which increase contact time with the acid and reducing daily intake of acidic drinks. Toothbrushing after meals was not associated with erosive wear. Toothbrushing immediately after an acid challenge requires further investigation. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Nang, Ei Ei Khaing; Gitau Ngunjiri, Susan Ayuko; Wu, Yi; Salim, Agus; Tai, E Shyong; Lee, Jeannette; Van Dam, Rob M
2011-10-13
Physical activity patterns of a population remain mostly assessed by the questionnaires. However, few physical activity questionnaires have been validated in Asian populations. We previously utilized a combination of different questionnaires to assess leisure time, transportation, occupational and household physical activity in the Singapore Prospective Study Program (SP2). The International Physical Activity Questionnaire (IPAQ) has been developed for a similar purpose. In this study, we compared estimates from these two questionnaires with an objective measure of physical activity in a multi-ethnic Asian population. Physical activity was measured in 152 Chinese, Malay and Asian Indian adults using an accelerometer over five consecutive days, including a weekend. Participants completed both the physical activity questionnaire in SP2 (SP2PAQ) and IPAQ long form. 43 subjects underwent a second set of measurements on average 6 months later to assess reproducibility of the questionnaires and the accelerometer measurements. Spearman correlations were used to evaluate validity and reproducibility and correlations for validity were corrected for within-person variation of accelerometer measurements. Agreement between the questionnaires and the accelerometer measurements was also evaluated using Bland Altman plots. The corrected correlation with accelerometer estimates of energy expenditure from physical activity was better for the SP2PAQ (vigorous activity: r = 0.73; moderate activity: r = 0.27) than for the IPAQ (vigorous activity: r = 0.31; moderate activity: r = 0.15). For moderate activity, the corrected correlation between SP2PAQ and the accelerometer was higher for Chinese (r = 0.38) and Malays (r = 0.57) than for Indians (r = -0.09). Both questionnaires overestimated energy expenditure from physical activity to a greater extent at higher levels of physical activity than at lower levels of physical activity. The reproducibility for moderate activity (accelerometer: r = 0.68; IPAQ: r = 0.58; SP2PAQ: r = 0.55) and vigorous activity (accelerometer: 0.52; IPAQ: r = 0.38; SP2PAQ: r = 0.75) was moderate to high for all instruments. The agreement between IPAQ and accelerometer measurements of energy expenditure from physical activity was poor in our Asian study population. The SP2PAQ showed good validity and reproducibility for vigorous activity, but performed less well for moderate activity particularly in Indians. Further effort is needed to develop questionnaires that better capture moderate activity in Asian populations.
Azevedo, Liane B; Burges Watson, Duika; Haighton, Catherine; Adams, Jean
2014-09-12
Exergaming has been proposed as an innovative method for physical activity promotion. However, large effectiveness studies are rare. In January 2011, dance mat systems were introduced in secondary schools in two districts in England with the aim of promoting an innovative opportunity for physical activity. The aim of this natural experiment was to examine the effect of introducing the dance mat exergaming systems on physical activity and health-related outcomes in 11-13 year old students using a non-randomised controlled design and mixed methods. Participants were recruited from five schools in intervention districts (n = 280) and two schools in neighbouring control districts (n = 217). Data on physical activity (accelerometer), anthropometrics (weight, BMI and percentage of body fat), aerobic fitness (20-m multistage shuttle run test), health-related quality of life (Kidscreen questionnaire), self-efficacy (children's physical activity self-efficacy survey), school attendance, focus groups with children and interviews with teachers were collected at baseline and approximately 12 months follow-up. There was a negative intervention effect on total physical activity (-65.4 cpm CI: -12.6 to -4.7), and light and sedentary physical activity when represented as a percentage of wear time (Light: -2.3% CI: -4.5 to 0.2; Sedentary: 3.3% CI: 0.7 to 5.9). However, compliance with accelerometers at follow-up was poor. There was a significant positive intervention effect on weight (-1.7 kg, 95% CI: -2.9 to -0.4), BMI (-0.9 kg/m2, 95% CI: -1.3 to -0.4) and percentage of body fat (-2.2%, 95% CI: -4.2 to -0.2). There was also evidence of improvement in some health-related quality of life parameters: psychological well-being (2.5, 95% CI: 0.1 to 4.8) and autonomy and parent relation (4.2, 95% CI: 1.4 to 7.0). The implementation of a dance mat exergaming scheme was associated with improvement in anthropometric measurements and parameters of health-related quality of life. However, the mechanisms of these benefits are unclear as there was insufficient data from physical activity to draw robust conclusions. Qualitative findings suggest that there was declining support for the initiative over time, meaning that potential benefits may not have been achieved.
Design and Evaluation of a Computer-Based 24-Hour Physical Activity Recall (cpar24) Instrument.
Kohler, Simone; Behrens, Gundula; Olden, Matthias; Baumeister, Sebastian E; Horsch, Alexander; Fischer, Beate; Leitzmann, Michael F
2017-05-30
Widespread access to the Internet and an increasing number of Internet users offers the opportunity of using Web-based recalls to collect detailed physical activity data in epidemiologic studies. The aim of this investigation was to evaluate the validity and reliability of a computer-based 24-hour physical activity recall (cpar24) instrument with respect to the recalled 24-h period. A random sample of 67 German residents aged 22 to 70 years was instructed to wear an ActiGraph GT3X+ accelerometer for 3 days. Accelerometer counts per min were used to classify activities as sedentary (<100 counts per min), light (100-1951 counts per min), and moderate to vigorous (≥1952 counts per min). On day 3, participants were also requested to specify the type, intensity, timing, and context of all activities performed during day 2 using the cpar24. Using metabolic equivalent of task (MET), the cpar24 activities were classified as sedentary (<1.5 MET), light (1.5-2.9 MET), and moderate to vigorous (≥3.0 MET). The cpar24 was administered twice at a 3-h interval. The Spearman correlation coefficient (r) was used as primary measure of concurrent validity and test-retest reliability. As compared with accelerometry, the cpar24 underestimated light activity by -123 min (median difference, P difference <.001) and overestimated moderate to vigorous activity by 89 min (P difference <.001). By comparison, time spent sedentary assessed by the 2 methods was similar (median difference=+7 min, P difference=.39). There was modest agreement between the cpar24 and accelerometry regarding sedentary (r=.54), light (r=.46), and moderate to vigorous (r=.50) activities. Reliability analyses revealed modest to high intraclass correlation coefficients for sedentary (r=.75), light (r=.65), and moderate to vigorous (r=.92) activities and no statistically significant differences between replicate cpar24 measurements (median difference for sedentary activities=+10 min, for light activities=-5 min, for moderate to vigorous activities=0 min, all P difference ≥.60). These data show that the cpar24 is a valid and reproducible Web-based measure of physical activity in adults. ©Simone Kohler, Gundula Behrens, Matthias Olden, Sebastian E Baumeister, Alexander Horsch, Beate Fischer, Michael F Leitzmann. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 30.05.2017.
Time Periods of Unusual Density Behavior Observed by GRACE and CHAMP
NASA Astrophysics Data System (ADS)
McLaughlin, C. A.; Fattig, E.; Mysore Krishna, D.; Locke, T.; Mehta, P. M.
2011-12-01
Time periods of low cross correlation between precision orbit ephemeris (POE) derived density and accelerometer density for CHAMP and GRACE are examined. In particular, the cross correlation for GRACE dropped from typical values near 0.9 to much lower values and then returned to typical over the time period of late October to late December of 2005. This time period includes a maneuver where GRACE-A and GRACE-B swapped positions. However, the drop in cross correlation begins and reaches its low point before the maneuvers begin. In addition, the densities were found using GRACE-A, but GRACE-B did most of the maneuvering. The time period is characterized by high frequency variations in accelerometer density of the same magnitude as the daylight to eclipse variations over the course of an orbit. However, the daylight to eclipse variations are particularly small during this time period because the orbit plane is near the terminator. Additionally, the difference between the accelerometer and POE derived densities are not unusually large during this time period. This implies the variations are not unusual, just more significant when the orbit plane is near terminator. Cyclical variations in correlation of the POE derived densities with accelerometer derived densities are seen for both GRACE and CHAMP, but the magnitude of the variations are much larger for GRACE, possibly because of the higher altitude of GRACE. The cycles seem to be phased so that low correlations occur with low beta angle when the orbit plane is near the terminator. The low correlation is possibly caused by the lower amplitude of the daylight to eclipse signal making higher frequency variations relatively more important. However, another possible explanation is terminator waves in density that propagate to the thermosphere from lower in the atmosphere. These waves have been observed in CHAMP accelerometer data and global circulation model simulations. Further investigation is needed to see if the variations correspond to terminator waves or if they represent typical high frequency signal from another source that is more apparent when the orbit plane is near the terminator. 1. C. A. McLaughlin, E. Fattig, D. Mysore Krishna, and P. M. Mehta, "Time Periods of Anomalous Density for GRACE and CHAMP," AAS/AIAA Astrodynamics Specialists Conference, AAS 11-613, Girdwood, AK, August 2011. 2. C. A. McLaughlin, A. Hiatt, and T. Lechtenberg, "Calibrating Precision Orbit Derived Total Density," Journal of Spacecraft and Rockets, Vol. 48, No. 1, January-February 2011, pp. 166-174.
Tool wear modeling using abductive networks
NASA Astrophysics Data System (ADS)
Masory, Oren
1992-09-01
A tool wear model based on Abductive Networks, which consists of a network of `polynomial' nodes, is described. The model relates the cutting parameters, components of the cutting force, and machining time to flank wear. Thus real time measurements of the cutting force can be used to monitor the machining process. The model is obtained by a training process in which the connectivity between the network's nodes and the polynomial coefficients of each node are determined by optimizing a performance criteria. Actual wear measurements of coated and uncoated carbide inserts were used for training and evaluating the established model.
Olivecrona, Henrik; Garellick, Göran
2014-01-01
Osteolysis is a silent disease leading to aseptic loosening. This has not been studied in a cohort of asymptomatic patients. The aim of this study was to detect factors that might be associated with the development of periacetabular osteolysis and wear around an uncemented cup. We assessed 206 patients with an uncemented cup, measuring wear and periacetabular osteolysis using computed tomography with a median follow-up of 10 years after surgery (range 7–14 years). EQ5D, pain from the hip, and satisfaction were assessed. The association between periacetabular osteolysis and wear, age, gender, activity, BMI, cup type, cup age, positioning of the cup, and surface coating was investigated with a proportional odds model. Wear and male gender were associated with an increased risk for periacetabular osteolysis. There was no association with periacetabular osteolysis for time from operation, patient age, UCLA Activity Score, liner thickness at time of operation, BMI, cup positioning, and type of implant. A thin liner at time of operation is correlated to increased wear. Linear wear rate was 0.18 mm/year and 46 of 206 patients had large periacetabular osteolysis. Asymptomatic patients with these implants should be followed up on a regular basis with a sensitive method such as CT in order to detect complications early. PMID:25478600
INSIGHT (interaction of low-orbiting satellites with the surrounding ionosphere and thermosphere)
NASA Astrophysics Data System (ADS)
Schlicht, Anja; Reussner, Elisabeth; Lühr, Hermann; Stolle, Claudia; Xiong, Chao; Schmidt, Michael; Blossfeld, Mathis; Erdogan, Eren; Pancetta, Francesca; Flury, Jakob
2016-04-01
In the framework of the DFG special program "Dynamic Earth" the project INSIGHT, started in September 2015, is studying the interactions between the ionosphere and thermosphere as well as the role of the satellites and their instruments in observing the space environment. Accelerometers on low-Earth orbiters (LEOs) are flown to separate non-gravitational forces acting on the satellite from influences of gravitational effects. Amongst others these instruments provide valuable information for improving our understanding of thermospheric properties like densities and winds. An unexpected result, for example, is the clear evidence of geomagnetic field control on the neutral upper atmosphere. The charged particles of the ionosphere act as mediators between the magnetic field and the thermosphere. In the framework of INSIGHT the climatology of the thermosphere will be established and the coupling between the ionosphere and thermosphere is studied. There are indications that the accelerometers are influenced by systematic errors not identified up to now. For GRACE it is one of the discussed reasons, why this mission so far did not reach the baseline accuracy. Beutler et al. 2010 discussed the limited use of the GRACE accelerometer measurements in comparison to stochastic pulses in gravity field recovery. Analysis of the accelerometer measurements show many structures in the high frequency region which can be traced back to switching processes of electric circuits in the spacecraft, like heater and magnetic torquer switching, or so called twangs, which can be associated with discharging of non-conducting surfaces of the satellite. As all observed signals have the same time dependency a common origin is very likely, namely the coupling of time variable electric currents into the accelerometer signal. In GOCE gravity field gradients non-gravitational signatures around the magnetic poles are found indicating that even at lower frequencies problems occur. INSIGHT will identify systematic errors in the accelerometer measurements and establish an algorithm to separate these errors from real accelerations with the analysis of satellite rotations on GOCE. A transfer to other accelerometer missions will be studied. Accelerometer missions are characterized by satellites of a complex geometry and surface structure making it necessary to take their shape and surface interactions into account. On the other hand accelerometers have to be calibrated in space as biases and bias drifts are inherent. These two facts make it difficult to scale thermospheric densities. To overcome this problem a high precision orbit determination of satellites of simpler structure is more suitable. In the framework of INSIGHT a multi-satellite solution of satellite laser ranging (SLR) measurements is aimed for absolute density determination of the thermosphere. Besides, due to the coupling processes between the ionosphere and thermosphere it shall be studied how ionospheric target quantities such as the electron density can be used to improve thermospheric density modeling. This presentation provides the overall structure of the project INSIGHT as well as first results.
NASA Astrophysics Data System (ADS)
Kim, Kyu-Tae
2013-02-01
In order to investigate whether or not the grid-to-rod fretting wear-induced fuel failure will occur for newly developed spacer grid spring designs for the fuel lifetime, out-of-pile fretting wear tests with one or two fuel assemblies are to be performed. In this study, the out-of-pile fretting wear tests were performed in order to compare the potential for wear-induced fuel failure in two newly-developed, Korean PWR spacer grid designs. Lasting 20 days, the tests simulated maximum grid-to-rod gap conditions and the worst flow induced vibration effects that might take place over the fuel life time. The fuel rod perforation times calculated from the out-of-pile tests are greater than 1933 days for 2 μm oxidized fuel rods with a 100 μm grid-to-rod gap, whereas those estimated from in-reactor fretting wear failure database may be about in the range of between 60 and 100 days. This large discrepancy in fuel rod perforation may occur due to irradiation-induced cladding oxide microstructure changes on the one hand and a temperature gradient-induced hydrogen content profile across the cladding metal region on the other hand, which may accelerate brittleness in the grid-contacting cladding oxide and metal regions during the reactor operation. A three-phase grid-to-rod fretting wear model is proposed to simulate in-reactor fretting wear progress into the cladding, considering the microstructure changes of the cladding oxide and the hydrogen content profile across the cladding metal region combined with the temperature gradient. The out-of-pile tests cannot be directly applicable to the prediction of in-reactor fretting wear-induced cladding perforations but they can be used only for evaluating a relative wear resistance of one grid design against the other grid design.
Measuring wearing times of glasses and ocular patches using a thermosensor device from orthodontics.
Januschowski, Kai; Bechtold, Till E; Schott, Timm C; Huelber-Januschowski, Maren S; Blumenstock, Gunnar; Bartz-Schmidt, Karl-Ulrich; Besch, Dorothea; Schramm, Charlotte
2013-12-01
Amblyopia is one of the most common visual disorders in children. The risk of severe visual impairment on the healthy eye is doubled in patients with amblyopia. If detected early enough, the chances of visual rehabilitation are good. Treatment consists of refractive correction and occlusion of the dominant eye. Patient compliance is an important factor and can be monitored using thermosensors. It was the goal of our study to give proof of the principle that the wearing times of glasses and patches can be measured using a comparatively small and commercially available microsensor. Agreement between wearing times protocols of ocular patching/refractive correction and temperature measurements of thermosensors attached to the patches or glasses of three individuals were analysed using the Bland-Altman method. It was also analysed whether blinded persons could distinguish between temperature curves of patches and glasses, or temperature curves of an incubator or while worn in a pocket. The temperatures picked up by the microsensors indicate the beginning and the end wearing times of either glasses or ocular patches through steep temperature difference and a distinct temperature curve during measurements. Although blinded test persons were able to cleary distinguish between temperature profiles from incubator/pocket measurements compared to glasses/patching, glasses and patching curves could be discriminated correctly in only 50%. Differences between wearing time protocols and temperature measurements were within the limits of agreement as stated by the Bland-Altman plots. The TheraMon(®) microsensor can reliably measure wearing times of glasses and ocular patches without making the wearer uncomfortable, although the data are not unquestionable, especially in higher surrounding temperatures. Further studies on a larger number of individuals with different wearing profiles are needed. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Validation of Freezing-of-Gait Monitoring Using Smartphone.
Kim, Han Byul; Lee, Hong Ji; Lee, Woong Woo; Kim, Sang Kyong; Jeon, Hyo Seon; Park, Hye Young; Shin, Chae Won; Yi, Won Jin; Jeon, Beomseok; Park, Kwang S
2018-04-30
Freezing of gait (FOG) is a commonly observed motor symptom for patients with Parkinson's disease (PD). The symptoms of FOG include reduced step lengths or motor blocks, even with an evident intention of walking. FOG should be monitored carefully because it not only lowers the patient's quality of life, but also significantly increases the risk of injury. In previous studies, patients had to wear several sensors on the body and another computing device was needed to run the FOG detection algorithm. Moreover, the features used in the algorithm were based on low-level and hand-crafted features. In this study, we propose a FOG detection system based on a smartphone, which can be placed in the patient's daily wear, with a novel convolutional neural network (CNN). The walking data of 32 PD patients were collected from the accelerometer and gyroscope embedded in the smartphone, located in the trouser pocket. The motion signals measured by the sensors were converted into the frequency domain and stacked into a 2D image for the CNN input. A specialized CNN model for FOG detection was determined through a validation process. We compared our performances with the results acquired by the previously reported settings. The proposed architecture discriminated the freezing events from the normal activities with an average sensitivity of 93.8% and a specificity of 90.1%. Using our methodology, the precise and continuous monitoring of freezing events with unconstrained sensing can assist patients in managing their chronic disease in daily life effectively.
An investigation on dry sliding wear behaviour of AA6061-AlNp composite
NASA Astrophysics Data System (ADS)
Mahesh Naidu, K.; Mohan Reddy, Chandra
2018-03-01
This paper studies the effect of load, sliding distance, reinforcement percentage and temperature on dry sliding wear behaviour of Al-AlNp composites by using pin on disc machine. The wear test was conducted at different loads (1,2,3 & 4 Kg), temperatures (30°C, 100°C, 170°C & 240°C) and sliding distances (500m,1000m,1500m and 2000m). Increase in wear rate has been observed by increasing the load and sliding distance, at the same time it has been decreased by increasing the reinforcement percentage and temperature. At the higher loads, temperatures and sliding distances adhesive wear, abrasive wear and oxidation wear are observed to be dominant modes of wear mechanisms in the composite.
Implantable biaxial piezoresistive accelerometer for sensorimotor control.
Zou, Qiang; Tan, Wei; Sok Kim, Eun; Singh, Jasspreet; Loeb, Gerald E
2004-01-01
This paper describes the design, fabrication and test results of a novel biaxial piezoresistive accelerometer and its incorporation into a miniature neuromuscular stimulator called a BION. Because of its highly symmetric twin mass structure, the X and Z axis acceleration can be measured at the same time and the cross axis sensitivity can be minimized by proper piezoresistor design. The X and Z axis sensitivities of the biaxial accelerometer are 0.10 mV/g/V and 1.40 mV/g/V, respectively, which are further increased to 0.65 mV/g/V and 2.40 mV/g/V, respectively, with extra silicon mass added to the proof mass. The cross-axis sensitivity is less than 3.3% among X, Y and Z-axis. An orientation tracking method for human segments by measuring every joint angle is also discussed in this paper. Joint angles can be obtained by processing the outputs of a pair of biaxial accelerometers (placed very close to the joint axis on the adjacent limb links), without having to integrate acceleration or velocity signals, thereby avoiding errors due to offsets and drift.
Compact friction and wear machine
NASA Astrophysics Data System (ADS)
Hannigan, James W.; Schwarz, Ricardo B.
1988-08-01
We have developed a compact ring-on-ring wear machine that measures the friction coefficient between large area surfaces as a function of time, normal stress, and sliding velocity. The machine measures the temperature of the sliding surfaces and collects the wear debris.
Wear and breakage monitoring of cutting tools by an optical method: theory
NASA Astrophysics Data System (ADS)
Li, Jianfeng; Zhang, Yongqing; Chen, Fangrong; Tian, Zhiren; Wang, Yao
1996-10-01
An essential part of a machining system in the unmanned flexible manufacturing system, is the ability to automatically change out tools that are worn or damaged. An optoelectronic method for in situ monitoring of the flank wear and breakage of cutting tools is presented. A flank wear estimation system is implemented in a laboratory environment, and its performance is evaluated through turning experiments. The flank wear model parameters that need to be known a priori are determined through several preliminary experiments, or from data available in the literature. The resulting cutting conditions are typical of those used in finishing cutting operations. Through time and amplitude domain analysis of the cutting tool wear states and breakage states, it is found that the original signal digital specificity (sigma) 2x and the self correlation coefficient (rho) (m) can reflect the change regularity of the cutting tool wear and break are determined, but which is not enough due to the complexity of the wear and break procedure of cutting tools. Time series analysis and frequency spectrum analysis will be carried out, which will be described in the later papers.
Liu, Tian; Wood, Weston; Zhong, Wei-Hong
2011-12-01
We examined the correlation of wear effects with dielectric properties of carbon nanofibers (CNFs; untreated and organosilane-treated)-reinforced high-density polyethylene (HDPE) composites. Wear testing for the nanocomposites over up to 120 h was carried out, and then, dielectric permittivity and dielectric loss factor of the polymer composites with the increased wear time were studied. Scanning electron microscope and optical microscope observations were made to analyze the microstructure features of the nanocomposites. The results reveal that there exist approximate linear relationships of permittivity with wear coefficient for the nanocomposites. Composites containing silanized CNFs with the sufficiently thick coating exhibited high wear resistance. The change in permittivity was more sensitive to the increased wear coefficient for the nanocomposites with lower wear resistance. This work provides potential for further research on the application of dielectric signals to detect the effects of wear process on lifetime of polymeric materials.
In-silico wear prediction for knee replacements--methodology and corroboration.
Strickland, M A; Taylor, M
2009-07-22
The capability to predict in-vivo wear of knee replacements is a valuable pre-clinical analysis tool for implant designers. Traditionally, time-consuming experimental tests provided the principal means of investigating wear. Today, computational models offer an alternative. However, the validity of these models has not been demonstrated across a range of designs and test conditions, and several different formulas are in contention for estimating wear rates, limiting confidence in the predictive power of these in-silico models. This study collates and retrospectively simulates a wide range of experimental wear tests using fast rigid-body computational models with extant wear prediction algorithms, to assess the performance of current in-silico wear prediction tools. The number of tests corroborated gives a broader, more general assessment of the performance of these wear-prediction tools, and provides better estimates of the wear 'constants' used in computational models. High-speed rigid-body modelling allows a range of alternative algorithms to be evaluated. Whilst most cross-shear (CS)-based models perform comparably, the 'A/A+B' wear model appears to offer the best predictive power amongst existing wear algorithms. However, the range and variability of experimental data leaves considerable uncertainty in the results. More experimental data with reduced variability and more detailed reporting of studies will be necessary to corroborate these models with greater confidence. With simulation times reduced to only a few minutes, these models are ideally suited to large-volume 'design of experiment' or probabilistic studies (which are essential if pre-clinical assessment tools are to begin addressing the degree of variation observed clinically and in explanted components).
Analysis of Accelerometer Data from a Woven Inflatable Creep Burst Test
NASA Technical Reports Server (NTRS)
James, George H.; Grygier, Michael; Selig, Molly M.
2015-01-01
Accelerometers were used to montor an inflatable test article during a creep test to failure. The test article experienced impulse events that were classified based on the response of the sensors and their time-dependent manifestation. These impulse events required specialized techniques to process the structural dynamics data. However, certain phenomena were defined as worthy of additional study. An assessment of one phenomena (a frequency near 1000Hz) showed a time dependent frequency and an amplitude that increased significantly near the end of the test. Hence, these observations are expected to drive future understanding of and utility in inflatable space structures.
Pagels, Peter; Raustorp, Anders; Guban, Peter; Fröberg, Andreas; Boldemann, Cecilia
2016-01-01
Regulated school days entail less free-living physical activity (PA) and outdoor stay, which may jeopardize the opportunities for cohesive moderate-to-vigorous physical activity (MVPA) and, by extension, children’s health. The role of outdoor stay during school time for pupils’ free-living PA vs. physical education (PE) and indoor stay was studied during one academic year in 196 pupils aged 7–14 years at four schools in mid-southern Sweden during five consecutive days each in September, March, and May. Actigraph GT3X+ Activity monitors were used. Predictors for PA during school stay were expressed as mean daily accelerometer counts and were measured per season, day, grade, gender, weather, and time outdoors. Overall, free-living PA outdoors generated the highest mean accelerometer counts for moderate and vigorous PA. Outdoor PA and PE, representing 23.7% of the total school time contributed to 50.4% of total mean accelerometer counts, and were the greatest contributors to moderate and vigorous PA. Age and weather impacted PA, with less PA in inclement weather and among older pupils. More time outdoors, at all seasons, would favorably increase school children’s chances of reaching recommended levels of PA. PMID:27420079
Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild
Broell, Franziska; Taggart, Christopher T.
2015-01-01
This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming ‘efficiently’, is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF) and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40), and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time) in the wild. PMID:26673777
Howie, Erin K; McVeigh, Joanne A; Straker, Leon M
2016-09-01
There are several practical issues when considering the use of hip-worn or wrist-worn accelerometers. This study compared compliance and outcomes between hip- and wrist-worn accelerometers worn simultaneously by children during an active video games intervention. As part of a larger randomized crossover trial, participants (n = 73, age 10 to 12 years) wore 2 Actical accelerometers simultaneously during waking hours for 7 days, on the hip and wrist. Measurements were repeated at 4 timepoints: 1) at baseline, 2) during traditional video games condition, 3) during active video games condition, 4) during no video games condition. Compliance and intervention effects were compared between hip and wrist. There were no statistically significant differences at any timepoint in percentage compliance between hip (77% to 87%) and wrist (79% to 89%). Wrist-measured counts (difference of 64.3 counts per minute, 95% CI 4.4-124.3) and moderate-to-vigorous physical activity (MVPA) (12 min/day, 95% CI 0.3-23.7) were higher during the no video games condition compared with the traditional video games condition. There were no differences in hip-measured counts per minute or MVPA between conditions or sedentary time for hip or wrist. There were no differences in compliance between hip- and wrist-worn accelerometers during an intervention trial, however, intervention findings differed between hip and wrist.
Angular motion estimation using dynamic models in a gyro-free inertial measurement unit.
Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar
2012-01-01
In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters.
Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit
Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar
2012-01-01
In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters. PMID:22778586
Processing of Swarm Accelerometer Data into Thermospheric Neutral Densities
NASA Astrophysics Data System (ADS)
Doornbos, E.; Siemes, C.; Encarnacao, J.; Peřestý, R.; Grunwaldt, L.; Kraus, J.; Holmdahl Olsen, P. E.; van den IJssel, J.; Flury, J.; Apelbaum, G.
2015-12-01
The Swarm satellites were launched on 22 November 2013 and carry accelerometers and GPS receivers as part of their scientific payload. The GPS receivers are not only used for locating the position and time of the magnetic measurements, but also for determining non-gravitational forces like drag and radiation pressure acting on the spacecraft. The accelerometers measure these forces directly, at much finer resolution than the GPS receivers, from which thermospheric neutral densities and potentially winds can be derived. Unfortunately, the acceleration measurements suffer from a variety of disturbances, the most prominent being slow temperature-induced bias variations and sudden bias changes. These disturbances have caused a significant delay of the accelerometer data release. In this presentation, we describe the new three-stage processing that is required for transforming the disturbed acceleration measurements into scientifically valuable thermospheric neutral densities. In the first stage, the sudden bias changes in the acceleration measurements are removed using a dedicated software tool. The second stage is the calibration of the accelerometer measurements against the non-gravitational accelerations derived from the GPS receiver, which includes the correction for the slow temperature-induced bias variations. The third stage consists of transforming the corrected and calibrated accelerations into thermospheric neutral densities. We describe the methods used in each stage, highlight the difficulties encountered, and comment on the quality of the thermospheric neutral density data set, which covers the geomagnetic storm on 17 March 2015.
Wear of Spur Gears Having a Dithering Motion and Lubricated with a Perfluorinated Polyether Grease
NASA Technical Reports Server (NTRS)
Krantz, Timothy; Oswald, Fred; Handschuh, Robert
2007-01-01
Gear contact surface wear is one of the important failure modes for gear systems. Dedicated experiments are required to enable precise evaluations of gear wear for a particular application. The application of interest for this study required evaluation of wear of gears lubricated with a grade 2 perfluorinated polyether grease and having a dithering (rotation reversal) motion. Experiments were conducted using spur gears made from AISI 9310 steel. Wear was measured using a profilometer at test intervals encompassing 10,000 to 80,000 cycles of dithering motion. The test load level was 1.1 GPa maximum Hertz contact stress at the pitch-line. The trend of total wear as a function of test cycles was linear, and the wear depth rate was approximately 1.2 nm maximum wear depth per gear dithering cycle. The observed wear rate was about 600 times greater than the wear rate for the same gears operated at high speed and lubricated with oil.
Miniaturized accelerometer made with ZnO nanowires
NASA Astrophysics Data System (ADS)
Song, Sangho; Kim, Jeong Woong; Kim, Hyun Chan; Yun, Youngmin; Kim, Jaehwan
2017-04-01
Miniaturized accelerometer is required in many applications, such as, robotics, haptic devices, gyroscopes, simulators and mobile devices. ZnO is an essential semiconductor material with wide direct band gap, thermal stability and piezoelectricity. Especially, well aligned ZnO nanowire is appropriate for piezoelectric applications since it can produce high electrical signal under mechanical load. To miniaturize accelerometer, an aligned ZnO nanowire is adopted to implement active piezoelectric layer of the accelerometer and copper is chosen for the head mass. To grow ZnO nanowire on the copper head mass, hydrothermal synthesis is conducted and the effect of ZnO nanowire length on the accelerometer performance is investigated. Refresh hydrothermal synthesis can increase the length of ZnO nanowire. The performance of the fabricated ZnO accelerometers is compared with a commercial accelerometer. Sensitivity and linearity of the fabricated accelerometers are investigated.
Liu, Yumei; Shi, Feng; Bo, Lin; Zhi, Wei; Weng, Jie; Qu, Shuxin
2017-10-01
The aim of this study was to develop a novel alginate-encapsulated system (Alg beads) to investigate the cell response to critical-sized wear particles of ultra-high molecular weight polyethylene loaded with alendronate sodium (UHMWPE-ALN), one of the most effective drugs to treat bone resorption in clinic. The extrusion method was used to prepare Alg beads encapsulating rat calvarial osteoblasts (RCOs) and critical-sized UHMWPE-ALN wear particles with spherical morphology and uniform size. The morphology, permeability and stability of Alg beads were characterized. The proliferation, ALP activity, cell apoptosis and distribution of live/dead RCOs co-cultured with wear particles in Alg beads were evaluated. RCOs and critical-sized UHMWPE-ALN wear particles distributed evenly and contacted efficiently in Alg beads. Alg beads were both permeable to trypsin and BSA, while the smaller the molecular was, the larger the diffuse was. The proliferation of RCOs in Alg beads increased with time, which indicated that Alg beads provided suitable conditions for cell culture. The long-term stability of Alg beads indicated the possibility for the longer time of co-cultured cells with wear particles. Critical-sized UHMWPE-ALN and UHMWPE wear particles both inhibited the proliferation and differentiation of RCOs, and induced the apoptosis of RCOs encapsulated in Alg beads. However, these effects could be significantly alleviated by the ALN released from the critical-sized UHMWPE-ALN wear particles. The present results suggested that this novel-developed co-culture system was feasible to evaluate the cell response to critical-sized UHMWPE-ALN wear particles for a longer time. Copyright © 2017 Elsevier B.V. All rights reserved.
32 CFR 644.448 - Limits on government obligation to restore.
Code of Federal Regulations, 2010 CFR
2010-07-01
... they were in at the time of entering into possession, reasonable and ordinary wear and tear, and... the condition that existed at time of entering into possession, reasonable and ordinary wear and tear...
Mobile-bearing knees reduce rotational asymmetric wear.
Ho, Fang-Yuan; Ma, Hon-Ming; Liau, Jiann-Jong; Yeh, Chuan-Ren; Huang, Chun-Hsiung
2007-09-01
Polyethylene wear of bearing components is the most common long-term complication in total knee arthroplasty. One would anticipate differing kinematics would generate different wear patterns (including wear type, degree, and symmetry) on the articulating surface of mobile-bearing and fixed-bearing inserts. Because mobile-bearing designs facilitate movement of the insert relative to the tray when the knee rotates, we hypothesized mobile-bearing designs would reduce the incidence of rotational asymmetric wear. We examined 51 worn tibial inserts, including 15 from mobile-bearing rotating-platform posterior-cruciate-sacrificing dished prostheses and 36 from fixed-bearing posterior-cruciate-retaining flat prostheses, which were retrieved at revision surgery with an average implantation time of 115 months. We divided wear types into low-grade wear (burnishing, abrasion, and cold flow) and high-grade wear (scratching, pitting, metal embedding, and delamination) to assess wear degree of polyethylene. To assess symmetry of wear, the insert surface was divided into medial and lateral sides and each side was further divided into three equal zones along the anteroposterior direction. Low-grade wear was more common in mobile-bearing knees, whereas high-grade wear was more common in fixed-bearing knees. We identified no internal/external rotational asymmetric wear or anteroposterior asymmetric wear in mobile-bearing knees.
Towards Integrated Marmara Strong Motion Network
NASA Astrophysics Data System (ADS)
Durukal, E.; Erdik, M.; Safak, E.; Ansal, A.; Ozel, O.; Alcik, H.; Mert, A.; Kafadar, N.; Korkmaz, A.; Kurtulus, A.
2009-04-01
Istanbul has a 65% chance of having a magnitude 7 or above earthquake within the next 30 years. As part of the preparations for the future earthquake, strong motion networks have been installed in and around Istanbul. The Marmara Strong Motion Network, operated by the Department of Earthquake Engineering of Kandilli Observatory and Earthquake Research Institute, encompasses permanent systems outlined below. It is envisaged that the networks will be run by a single entity responsible for technical management and maintanence, as well as for data management, archiving and dissemination through dedicated web-based interfaces. • Istanbul Earthquake Rapid Response and Early Warning System - IERREWS (one hundred 18-bit accelerometers for rapid response; ten 24-bit accelerometers for early warning) • IGDAŞ Gas Shutoff Network (100 accelerometers to be installed in 2010 and integrated with IERREWS) • Structural Monitoring Arrays - Fatih Sultan Mehmet Suspension Bridge (1200m-long suspension bridge across the Bosphorus, five 3-component accelerometers + GPS sensors) - Hagia Sophia Array (1500-year-old historical edifice, 9 accelerometers) - Süleymaniye Mosque Array (450-year-old historical edifice,9 accelerometers) - Fatih Mosque Array (237-year-old historical edifice, 9 accelerometers) - Kanyon Building Array (high-rise office building, 5 accelerometers) - Isbank Tower Array (high-rise office building, 5 accelerometers) - ENRON Array (power generation facility, 4 acelerometers) - Mihrimah Sultan Mosque Array (450-year-old historical edifice,9 accelerometers + tiltmeters, to be installed in 2009) - Sultanahmet Mosque Array, (390-year-old historical edifice, 9 accelerometers + tiltmeters, to be installed in 2009) • Special Arrays - Atakoy Vertical Array (four 3-component accelerometers at 25, 50, 75, and 150 m depths) - Marmara Tube Tunnel (1400 m long submerged tunnel, 128 ch. accelerometric data, 24 ch. strain data, to be installed in 2010) - Air-Force Academy Array (72 ch. dense accelerometric array to be installed in 2010) - Gemlik Array (a dense basin array of 8 stations, to be installed in 2010) The objectives of these systems and networks are: (1) to produce rapid earthquake intensity, damage and loss assessment information after an earthquake (in the case of IERREWS), (2) to monitor conditions of structural systems, (3) to develop real-time data processing, analysis, and damage detection and location tools (in the case of structural networks) after an extreme event, (4) to assess spatial properties of strong ground motion and ground strain, and to characterise basin response (in the case of special arrays), (5) to investigate site response and wave propagation (in the case of vertical array). Ground motion data obtained from these strong motion networks have and are being used for investigations of attenuation, spatial variation (coherence), simulation benchmarking, source modeling, site response, seismic microzonation, system identification and structural model verification and structural health control. In addition to the systems and networks outlined above there are two temporary networks: KIMNET - a dense urban noise and microtremor network consisting of 50 broadband stations expected to be operational in mid 2009, and SOSEWIN - a 20-station, self-organizing structural integrated array at Ataköy in Istanbul.
Evaluation of wearing surface materials for FRP bridge decks : final report.
DOT National Transportation Integrated Search
2005-07-01
The wearing surface on many fiber reinforced polymer (FRP) composite bridge decks have cracked or delaminated after only a short time in service. Consequently, a set of tests were conducted on four wearing surface products in order to select the mate...
Prediction of calving time in dairy cattle.
Mahmoud, Fadul; Christopher, Bogdahn; Maher, Alsaaod; Jürg, Hüsler; Alexander, Starke; Adrian, Steiner; Gaby, Hirsbrunner
2017-12-01
This prospective study was carried out to predict the calving time in primiparous (n=11) and multiparous (n=22) Holstein-Friesian cows using the combination of data obtained from the RumiWatch noseband-sensor and 3D-accelerometer. The animals included in the study were fitted with the RumiWatch noseband-sensor and 3D-accelerometer at least 10days before the expected calving day. The calving event was defined as the time of the first appearance of the calves' feet outside the vulva, and this moment was determined by farm staff and/or confirmed by video monitor. As primiparous and multiparous cows behaved differently, two models including data of noseband-sensors and 3D-accelerometers were used to predict the calving time in each group. Lying bouts (LB) increased and rumination chews (RC) decreased similarly in both groups; besides that, boluses (B) decreased and other activities (OA) increased significantly in multiparous and primiparous cows, respectively. The sensitivity (Se) and specificity (Sp) for prediction of the onset of calving within the next 3h were determined with the logistic regression and ROC analysis (Se=88.9%, 85% and Sp=93.3%, 74% for multiparous and primiparous cows, respectively). This pilot study revealed that the RumiWatch system is a useful tool to predict calving time under farm conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Warren, Christopher; Niezrecki, Christopher; Avitabile, Peter; Pingle, Pawan
2011-08-01
Today, accelerometers and laser Doppler vibrometers are widely accepted as valid measurement tools for structural dynamic measurements. However, limitations of these transducers prevent the accurate measurement of some phenomena. For example, accelerometers typically measure motion at a limited number of discrete points and can mass load a structure. Scanning laser vibrometers have a very wide frequency range and can measure many points without mass-loading, but are sensitive to large displacements and can have lengthy acquisition times due to sequential measurements. Image-based stereo-photogrammetry techniques provide additional measurement capabilities that compliment the current array of measurement systems by providing an alternative that favors high-displacement and low-frequency vibrations typically difficult to measure with accelerometers and laser vibrometers. Within this paper, digital image correlation, three-dimensional (3D) point-tracking, 3D laser vibrometry, and accelerometer measurements are all used to measure the dynamics of a structure to compare each of the techniques. Each approach has its benefits and drawbacks, so comparative measurements are made using these approaches to show some of the strengths and weaknesses of each technique. Additionally, the displacements determined using 3D point-tracking are used to calculate frequency response functions, from which mode shapes are extracted. The image-based frequency response functions (FRFs) are compared to those obtained by collocated accelerometers. Extracted mode shapes are then compared to those of a previously validated finite element model (FEM) of the test structure and are shown to have excellent agreement between the FEM and the conventional measurement approaches when compared using the Modal Assurance Criterion (MAC) and Pseudo-Orthogonality Check (POC).
The Impact of Accelerometers on Physical Activity and Weight Loss: A Systematic Review
Goode, Adam P.; Hall, Katherine S.; Batch, Bryan C.; Huffman, Kim M.; Hastings, S. Nicole; Allen, Kelli D.; Shaw, Ryan J.; Kanach, Frances A.; McDuffie, Jennifer R.; Kosinski, Andrzej S.; Williams, John W.; Gierisch, Jennifer M.
2016-01-01
Background Regular physical activity is important for improving and maintaining health, but sedentary behavior is difficult to change. Providing objective, real-time feedback on physical activity with wearable motion-sensing technologies (activity monitors) may be a promising, scalable strategy to increase physical activity or decrease weight. Purpose We synthesized the literature on the use of wearable activity monitors for improving physical activity and weight-related outcomes and evaluated moderating factors that may have an impact on effectiveness. Methods We searched five databases from January 2000 to January 2015 for peer-reviewed, English-language randomized controlled trials among adults. Random-effects models were used to produce standardized mean differences (SMDs) for physical activity outcomes and mean differences (MDs) for weight outcomes. Heterogeneity was measured with I2. Results Fourteen trials (2,972 total participants) met eligibility criteria; accelerometers were used in all trials. Twelve trials examined accelerometer interventions for increasing physical activity. A small significant effect was found for increasing physical activity (SMD 0.26; 95% CI 0.04 to 0.49; I2=64.7%). Intervention duration was the only moderator found to significantly explain high heterogeneity for physical activity. Eleven trials examined effects of accelerometer interventions on weight. Pooled estimates showed a small significant effect for weight loss (MD −1.65 kg; 95% CI −3.03 to −0.28; I2=81%), and no moderators were significant. Conclusions Accelerometers demonstrated small positive effects on physical activity and weight loss. The small sample sizes with moderate to high heterogeneity in the current studies limit the conclusions that may be drawn. Future studies should focus on how best to integrate accelerometers with other strategies to increase physical activity and weight loss. PMID:27565168
Sherar, Lauren B; Griffin, Tom P; Ekelund, Ulf; Cooper, Ashley R; Esliger, Dale W; van Sluijs, Esther M F; Bo Andersen, Lars; Cardon, Greet; Davey, Rachel; Froberg, Karsten; Hallal, Pedro C; Janz, Kathleen F; Kordas, Katarzyna; Kriemler, Susi; Pate, Russell R; Puder, Jardena J; Sardinha, Luis B; Timperio, Anna F; Page, Angie S
2016-06-01
Investigating socioeconomic variation in physical activity (PA) and sedentary time is important as it may represent a pathway by which socioeconomic position (SEP) leads to ill health. Findings on the association between children's SEP and objectively assessed PA and/or sedentary time are mixed, and few studies have included international samples. Examine the associations between maternal education and adolescent's objectively assessed PA and sedentary time. This is an observational study of 12 770 adolescents (10-18 years) pooled from 10 studies from Europe, Australia, Brazil and the USA. Original PA data were collected between 1997 and 2009. The associations between maternal education and accelerometer variables were examined using robust multivariable regression, adjusted for a priori confounders (ie, body mass index, monitor wear time, season, age and sex) and regression coefficients combined across studies using random effects meta-analyses. Analyses were conducted in March 2014. Adolescents of university educated mothers spent more time sedentary (9.5 min/day, p=0.005) and less time in light activity (10 min/day, p<0.001) compared with adolescents of high school educated mothers. Pooled analysis across two studies from Brazil and Portugal (analysed separately because of the different coding of maternal education) showed that children of higher educated mothers (tertiary vs primary/secondary) spent less time in moderate to vigorous PA (MVPA) (6.6 min/day, p=0.001) and in light PA (39.2 min/day: p<0.001), and more time sedentary (45.9 min/day, p<0.001). Across a number of international samples, adolescents of mothers with lower education may not be at a disadvantage in terms of overall objectively measured PA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Tie, Junbo; Cao, Juliang; Chang, Lubing; Cai, Shaokun; Wu, Meiping; Lian, Junxiang
2018-03-16
Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method.
Cao, Juliang; Cai, Shaokun; Wu, Meiping; Lian, Junxiang
2018-01-01
Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method. PMID:29547552
Seyed Moosavi, Seyed Mohsen; Moaveni, Bijan; Moshiri, Behzad; Arvan, Mohammad Reza
2018-02-27
The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.
Seyed Moosavi, Seyed Mohsen; Moshiri, Behzad; Arvan, Mohammad Reza
2018-01-01
The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors. PMID:29495434
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malau, Viktor, E-mail: malau@ugm.ac.id; Ilman, Mochammad Noer, E-mail: noer-ilman@yahoo.com; Iswanto, Priyo Tri, E-mail: priyatri@yahoo.com
Nitrogen ion implantation time on tungsten thin film deposited on surface of AISI 410 steel has been performed. Tungsten thin film produced by dc magnetron sputtering method was deposited on AISI 410 martensitic stainless steel substrates, and then the nitrogen ions were implanted on tungsten thin film. The objective of this research is to investigate the effects of implantation deposition time on surface roughness, microhardness, specific wear and corrosion rate of nitrogen implanted on tungsten film. Magnetron sputtering process was performed by using plasma gas of argon (Ar) to bombardier tungsten target (W) in a vacuum chamber with a pressuremore » of 7.6 x 10{sup −2} torr, a voltage of 300 V, a sputter current of 80 mA for sputtered time of 10 minutes. Nitrogen implantation on tungsten film was done with an initial pressure of 3x10{sup −6} mbar, a fluence of 2 x 10{sup 17} ions/cm{sup 2}, an energy of 100 keV and implantation deposition times of 0, 20, 30 and 40 minutes. The surface roughness, microhardness, specific wear and corrosion rate of the films were evaluated by surfcorder test, Vickers microhardness test, wear test and potentiostat (galvanostat) test respectively. The results show that the nitrogen ions implanted deposition time on tungsten film can modify the surface roughness, microhardness, specific wear and corrosion rate. The minimum surface roughness, specific wear and corrosion rate can be obtained for implantation time of 20 minutes and the maximum microhardness of the film is 329 VHN (Vickers Hardness Number) for implantation time of 30 minutes. The specific wear and corrosion rate of the film depend directly on the surface roughness.« less
Effect of Entropy Generation on Wear Mechanics and System Reliability
NASA Astrophysics Data System (ADS)
Gidwani, Akshay; James, Siddanth; Jagtap, Sagar; Karthikeyan, Ram; Vincent, S.
2018-04-01
Wear is an irreversible phenomenon. Processes such as mutual sliding and rolling between materials involve entropy generation. These processes are monotonic with respect to time. The concept of entropy generation is further quantified using Degradation Entropy Generation theorem formulated by Michael D. Bryant. The sliding-wear model can be extrapolated to different instances in order to further provide a potential analysis of machine prognostics as well as system and process reliability for various processes besides even mere mechanical processes. In other words, using the concept of ‘entropy generation’ and wear, one can quantify the reliability of a system with respect to time using a thermodynamic variable, which is the basis of this paper. Thus in the present investigation, a unique attempt has been made to establish correlation between entropy-wear-reliability which can be useful technique in preventive maintenance.
Hynes, Martin; Wang, Han; Kilmartin, Liam
2009-01-01
Over the last decade, there has been substantial research interest in the application of accelerometry data for many forms of automated gait and activity analysis algorithms. This paper introduces a summary of new "of-the-shelf" mobile phone handset platforms containing embedded accelerometers which support the development of custom software to implement real time analysis of the accelerometer data. An overview of the main software programming environments which support the development of such software, including Java ME based JSR 256 API, C++ based Motion Sensor API and the Python based "aXYZ" module, is provided. Finally, a sample application is introduced and its performance evaluated in order to illustrate how a standard mobile phone can be used to detect gait activity using such a non-intrusive and easily accepted sensing platform.
Wannomae, Keith K; Christensen, Steven D; Freiberg, Andrew A; Bhattacharyya, Shayan; Harris, William H; Muratoglu, Orhun Kamil
2006-03-01
Irradiation decreases the wear of ultra-high molecular weight polyethylene (UHMWPE) but generates residual free radicals, precursors to long-term oxidation. Melting or annealing is used in quenching free radicals. We hypothesized that irradiated and once-annealed UHMWPE would oxidize while irradiated and melted UHMWPE would not, and that the oxidation in the former would increase wear. Acetabular liners were real-time aged by immersion in an aqueous environment that closely mimicked the temperature and oxygen concentration of synovial fluid. After 95 weeks of real-time aging, once-annealed components were oxidized; the melted components were not. The wear rate of the real-time aged irradiated and once-annealed components was higher than the literature reported values of other contemporary highly cross-linked UHMWPEs. Single annealing after irradiation used with terminal gamma sterilization may adversely affect the long-term oxidative stability of UHMWPE components.
Sengupta, A; Whittaker, D K; Barber, G; Rogers, J; Musgrave, J H
1999-11-01
The abrasiveness of food is a key determinant in the rate of physiological attrition (dental wear) in humans. With increasing food processing through time, the rate of physiological dental wear in human teeth has decreased markedly. Many consider such wear to be beneficial to oral health and that insufficient wear may result in impaction of the third molars. If enhanced extraoral food processing provides an evolutionary advantage, then it is possible that agenesis of the redundant third molar may follow. One of the aims here was to examine impaction and agenesis of the third molars in four populations of varying antiquity and hence varying dental-wear rates. Paradoxically, whilst there is a decrease in the rate of dental wear with modernity, there is also an increasing prevalence of advanced dental wear due to prolongation of the lifespan of the human dentition. As the effect of dental wear on the curve of Spee was unknown, a second aim was to examine it in an archaeological population with a high rate of dental wear. The results showed an increase in non-eruption and impaction of the third molars with modernity, but did not demonstrate a significant increase in the rate of agenesis. The time period over which impaction and agenesis could be discerned was of the order of 600 years and this may not be sufficient to observe adaptive changes at the genetic level in humans. In molar teeth there was no clear indication of maintenance of the curve of Spee with dental wear. This has potential implications on the design of prostheses for the worn dentition.
A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments.
Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang; Tu, Liangcheng
2017-11-18
A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng / Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz . The accelerometer's designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng / Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer.
Rat silicone hydrogel contact lens model: effects of high- versus low-Dk lens wear.
Zhang, Yunfan; Gabriel, Manal M; Mowrey-McKee, Mary F; Barrett, Ronald P; McClellan, Sharon; Hazlett, Linda D
2008-11-01
This study used a rat contact lens (CL) model to test if high- versus low-Dk lens wear caused changes in (1) conjunctival Langerhans cell (LC) number or location; (2) Bcl-2 expression; and (3) infection risk. Female, Lewis rats wore a high- or low-Dk CL continuously for 2 weeks. Afterward, corneas were harvested and processed for ADPase activity to identify LCs, for immunostaining and for real time-polymerase chain reaction. Contact lens-wearing rats also were challenged with Pseudomonas aeruginosa by placing a bacterial-soaked CL on the eye followed by topical delivery of bacteria. After 48 hrs, slit lamp examination and real time-polymerase chain reaction were used to evaluate the corneal response. Conjunctival LC were significantly increased after low- versus high-Dk CL wear (P<0.0001). In contrast, conjunctival LC in non-lens wearing rats was not significantly different from the high-Dk lens wearing group. Bcl-2 mRNA levels were significantly decreased in low- versus high-Dk CL wearing rats, while Bax, FasL, caspase 3, and caspase 9 levels were unchanged. Immunostaining for Bcl-2 showed fewer positively stained epithelial cells in the low- versus high-Dk lens wearing group. After bacterial challenge, 30% of low- versus none of the high-Dk CL wearing corneas became infected and showed increased mRNA levels for several proinflammatory cytokines/chemokines, inducible nitric oxide synthase and matrix metalloproteinase-9. Low- versus high-Dk or non-CL wear led to an increased number of conjunctival LC, decreased Bcl-2 levels, and increased the risk of bacterial infection.
Design and implementation of a micromechanical silicon resonant accelerometer.
Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing
2013-11-19
The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C.
Impact of study design on development and evaluation of an activity-type classifier.
van Hees, Vincent T; Golubic, Rajna; Ekelund, Ulf; Brage, Søren
2013-04-01
Methods to classify activity types are often evaluated with an experimental protocol involving prescribed physical activities under confined (laboratory) conditions, which may not reflect real-life conditions. The present study aims to evaluate how study design may impact on classifier performance in real life. Twenty-eight healthy participants (21-53 yr) were asked to wear nine triaxial accelerometers while performing 58 activity types selected to simulate activities in real life. For each sensor location, logistic classifiers were trained in subsets of up to 8 activities to distinguish between walking and nonwalking activities and were then evaluated in all 58 activities. Different weighting factors were used to convert the resulting confusion matrices into an estimation of the confusion matrix as would apply in the real-life setting by creating four different real-life scenarios, as well as one traditional laboratory scenario. The sensitivity of a classifier estimated with a traditional laboratory protocol is within the range of estimates derived from real-life scenarios for any body location. The specificity, however, was systematically overestimated by the traditional laboratory scenario. Walking time was systematically overestimated, except for lower back sensor data (range: 7-757%). In conclusion, classifier performance under confined conditions may not accurately reflect classifier performance in real life. Future studies that aim to evaluate activity classification methods are warranted to pay special attention to the representativeness of experimental conditions for real-life conditions.
NASA Astrophysics Data System (ADS)
Zhang, H. X.; Yu, H. J.; Chen, C. Z.
2015-05-01
The composite coatings were fabricated by laser cladding Al/TiN pre-placed powders on Ti-6Al-4V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the coating and the substrate. The composite coatings were mainly composed of the matrix of β-Ti (Al) and the reinforcements of titanium nitride (TiN), Ti3Al, TiAl and Al3Ti. The hardness and wear resistance of the coatings on four samples were greatly improved, among which sample 4 exhibited the highest hardness and best wear resistance. The hardness of the coating on sample 4 was approximately 2.5 times of the Ti-6Al-4V substrate. And the wear resistance of sample 4 was four times of the substrate.
NASA Astrophysics Data System (ADS)
Teeter, Matthew G.; Seslija, Petar; Milner, Jaques S.; Nikolov, Hristo N.; Yuan, Xunhua; Naudie, Douglas D. R.; Holdsworth, David W.
2013-05-01
An in vivo method to measure wear in total knee replacements was developed using dynamic single-plane fluoroscopy. A dynamic, anthropomorphic total knee replacement phantom with interchangeable, custom-fabricated components of known wear volume was created, and dynamic imaging was performed. For each frame of the fluoroscopy data, the relative location of the femoral and tibial components were determined, and the apparent intersection of the femoral component with the tibial insert was used to calculate wear volume, wear depth, and frequency of intersection. No difference was found between the measured and true wear volumes. The precision of the measurements was ±39.7 mm3 for volume and ±0.126 mm for wear depth. The results suggest the system is capable of tracking wear volume changes across multiple time points in patients. As a dynamic technique, this method can provide both kinematic and wear measurements that may be useful for evaluating new implant designs for total knee replacements.
NASA Technical Reports Server (NTRS)
1997-01-01
HyComp(R), Inc. development a line of high temperature carbon fiber composite products to solve wear problems in the harsh environment of steel and aluminum mills. WearComp(R), self-lubricating composite wear liners and bushings, combines carbon graphite fibers with a polyimide binder. The binder, in conjunction with the fibers, provides the slippery surface, one that demands no lubrication, yet wears at a very slow rate. WearComp(R) typically lasts six to ten times longer than aluminum bronze. Unlike bronze, WearComp polishes the same surface and imparts a self-lube film for years of service. It is designed for continuous operation at temperatures of 550 degrees Fahrenheit and can operate under high compressive loads.
Nascimento-Ferreira, Marcus V; Collese, Tatiana S; de Moraes, Augusto César F; Rendo-Urteaga, Tara; Moreno, Luis A; Carvalho, Heráclito B
2016-12-01
Sleep duration has been associated with several health outcomes in children and adolescents. As an extensive number of questionnaires are currently used to investigate sleep schedule or sleep time, we performed a systematic review of criterion validation of sleep time questionnaires for children and adolescents, considering accelerometers as the reference method. We found a strong correlation between questionnaires and accelerometers for weeknights and a moderate correlation for weekend nights. When considering only studies performing a reliability assessment of the used questionnaires, a significant increase in the correlations for both weeknights and weekend nights was observed. In conclusion, moderate to strong criterion validity of sleep time questionnaires was observed; however, the reliability assessment of the questionnaires showed strong validation performance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schott, Timm Cornelius; Ludwig, Björn
2014-01-01
The relationship between unhealthy body mass index (BMI) and adherence to orthodontic treatment with removable appliances has not previously been evaluated. The aim of this study was to quantify the association between BMI and wear time of removable orthodontic appliances and to evaluate BMI changes during orthodontic treatment. Fifty-three normal-weight and 39 overweight/obese children and adolescents (7-15 years old) undergoing orthodontic treatment with removable appliances were enrolled into the study. BMI categories were determined using standardized age-specific and sex-specific BMI criteria, using data measured at the beginning of therapy and once during orthodontic treatment. Wear times of removable appliances were measured at 15-minute intervals over a period of 5 months using implanted microelectronic sensors. Median wear-time values were used in the analysis with the Mann-Whitney U-test used to test statistical differences between groups. The median wear time of removable orthodontic appliances was 9.3 hours for normal-weight patients and 9.2 hours for overweight/obese patients. No statistically significant (P>0.05) or clinically relevant differences in usage or adherence were detected between normal-weight and overweight/obese patients. BMI did not influence wear time or behavior of removable orthodontic appliances by young patients. The majority of patients showed qualitative decreases in BMI during therapy. The orthodontic treatment of young patients with removable devices does not require BMI-dependent changes in the treatment strategy. However, the use of removable appliances during meal times raises the possibility of reducing food intake, and in this way the orthodontist may have an active role to play in weight reduction.
Schott, Timm Cornelius; Ludwig, Björn
2014-01-01
Purpose The relationship between unhealthy body mass index (BMI) and adherence to orthodontic treatment with removable appliances has not previously been evaluated. Objective The aim of this study was to quantify the association between BMI and wear time of removable orthodontic appliances and to evaluate BMI changes during orthodontic treatment. Patients and methods Fifty-three normal-weight and 39 overweight/obese children and adolescents (7–15 years old) undergoing orthodontic treatment with removable appliances were enrolled into the study. BMI categories were determined using standardized age-specific and sex-specific BMI criteria, using data measured at the beginning of therapy and once during orthodontic treatment. Wear times of removable appliances were measured at 15-minute intervals over a period of 5 months using implanted microelectronic sensors. Median wear-time values were used in the analysis with the Mann–Whitney U-test used to test statistical differences between groups. Results The median wear time of removable orthodontic appliances was 9.3 hours for normal-weight patients and 9.2 hours for overweight/obese patients. No statistically significant (P>0.05) or clinically relevant differences in usage or adherence were detected between normal-weight and overweight/obese patients. BMI did not influence wear time or behavior of removable orthodontic appliances by young patients. The majority of patients showed qualitative decreases in BMI during therapy. Conclusion The orthodontic treatment of young patients with removable devices does not require BMI-dependent changes in the treatment strategy. However, the use of removable appliances during meal times raises the possibility of reducing food intake, and in this way the orthodontist may have an active role to play in weight reduction. PMID:25484576
Marko, Matthew David; Kyle, Jonathan P; Wang, Yuanyuan Sabrina; Terrell, Elon J
2017-01-01
An effort was made to study and characterize the evolution of transient tribological wear in the presence of sliding contact. Sliding contact is often characterized experimentally via the standard ASTM D4172 four-ball test, and these tests were conducted for varying times ranging from 10 seconds to 1 hour, as well as at varying temperatures and loads. A numerical model was developed to simulate the evolution of wear in the elastohydrodynamic regime. This model uses the results of a Monte Carlo study to develop novel empirical equations for wear rate as a function of asperity height and lubricant thickness; these equations closely represented the experimental data and successfully modeled the sliding contact.
Time Variation of the Distance Separating Bomb and Dive Bomber Subsequent to Bomb Release
NASA Technical Reports Server (NTRS)
Mathews, Charles W.
1952-01-01
A study has been made of the variation of the distance separating bomb and aircraft with time after release as applied to dive-bombing operations, Separation distances determined from this study are presented in terms of two variables only, dive angle and maximum airplane accelerometer reading; the values of separation distance include the effects of delay in initiation of the pull-out and lag in attainment of the maximum normal acceleration.Contains analysis and calculations of the separation distances between bomb and dive bomber following bomb release, Separation distances as determined by the dive angle and the maximum airplane accelerometer reading are presented in a single chart.
Montoye, Alexander H K; Pivarnik, James M; Mudd, Lanay M; Biswas, Subir; Pfeiffer, Karin A
2016-01-01
Recent evidence suggests that physical activity (PA) and sedentary behavior (SB) exert independent effects on health. Therefore, measurement methods that can accurately assess both constructs are needed. To compare the accuracy of accelerometers placed on the hip, thigh, and wrists, coupled with machine learning models, for measurement of PA intensity category (SB, light-intensity PA [LPA], and moderate- to vigorous-intensity PA [MVPA]) and breaks in SB. Forty young adults (21 female; age 22.0 ± 4.2 years) participated in a 90-minute semi-structured protocol, performing 13 activities (three sedentary, 10 non-sedentary) for 3-10 minutes each. Participants chose activity order, duration, and intensity. Direct observation (DO) was used as a criterion measure of PA intensity category, and transitions from SB to a non-sedentary activity were breaks in SB. Participants wore four accelerometers (right hip, right thigh, and both wrists), and a machine learning model was created for each accelerometer to predict PA intensity category. Sensitivity and specificity for PA intensity category classification were calculated and compared across accelerometers using repeated measures analysis of variance, and the number of breaks in SB was compared using repeated measures analysis of variance. Sensitivity and specificity values for the thigh-worn accelerometer were higher than for wrist- or hip-worn accelerometers, > 99% for all PA intensity categories. Sensitivity and specificity for the hip-worn accelerometer were 87-95% and 93-97%. The left wrist-worn accelerometer had sensitivities and specificities of > 97% for SB and LPA and 91-95% for MVPA, whereas the right wrist-worn accelerometer had sensitivities and specificities of 93-99% for SB and LPA but 67-84% for MVPA. The thigh-worn accelerometer had high accuracy for breaks in SB; all other accelerometers overestimated breaks in SB. Coupled with machine learning modeling, the thigh-worn accelerometer should be considered when objectively assessing PA and SB.
Monolithically integrated tri-axis shock accelerometers with MHz-level high resonant-frequency
NASA Astrophysics Data System (ADS)
Zou, Hongshuo; Wang, Jiachou; Chen, Fang; Bao, Haifei; Jiao, Ding; Zhang, Kun; Song, Zhaohui; Li, Xinxin
2017-07-01
This paper reports a novel monolithically integrated tri-axis high-shock accelerometer with high resonant-frequency for the detection of a broad frequency-band shock signal. For the first time, a resonant-frequency as high as about 1.4 MHz is designed for all the x-, y- and z-axis accelerometers of the integrated tri-axis sensor. In order to achieve a wide frequency-band detection performance, all the three sensing structures are designed into an axially compressed/stretched tiny-beam sensing scheme, where the p + -doped tiny-beams are connected into a Wheatstone bridge for piezoresistive output. By using ordinary (1 1 1) silicon wafer (i.e. non-SOI wafer), a single-wafer based fabrication technique is developed to monolithically integrate the three sensing structures for the tri-axis sensor. Testing results under high-shock acceleration show that each of the integrated three-axis accelerometers exhibit about 1.4 MHz resonant-frequency and 0.2-0.4 µV/V/g sensitivity. The achieved high frequencies for all the three sensing units make the tri-axis sensor promising in high fidelity 3D high-shock detection applications.
Ellis, Katherine; Godbole, Suneeta; Marshall, Simon; Lanckriet, Gert; Staudenmayer, John; Kerr, Jacqueline
2014-01-01
Active travel is an important area in physical activity research, but objective measurement of active travel is still difficult. Automated methods to measure travel behaviors will improve research in this area. In this paper, we present a supervised machine learning method for transportation mode prediction from global positioning system (GPS) and accelerometer data. We collected a dataset of about 150 h of GPS and accelerometer data from two research assistants following a protocol of prescribed trips consisting of five activities: bicycling, riding in a vehicle, walking, sitting, and standing. We extracted 49 features from 1-min windows of this data. We compared the performance of several machine learning algorithms and chose a random forest algorithm to classify the transportation mode. We used a moving average output filter to smooth the output predictions over time. The random forest algorithm achieved 89.8% cross-validated accuracy on this dataset. Adding the moving average filter to smooth output predictions increased the cross-validated accuracy to 91.9%. Machine learning methods are a viable approach for automating measurement of active travel, particularly for measuring travel activities that traditional accelerometer data processing methods misclassify, such as bicycling and vehicle travel.
Using accelerometers to determine the calling behavior of tagged baleen whales.
Goldbogen, J A; Stimpert, A K; DeRuiter, S L; Calambokidis, J; Friedlaender, A S; Schorr, G S; Moretti, D J; Tyack, P L; Southall, B L
2014-07-15
Low-frequency acoustic signals generated by baleen whales can propagate over vast distances, making the assignment of calls to specific individuals problematic. Here, we report the novel use of acoustic recording tags equipped with high-resolution accelerometers to detect vibrations from the surface of two tagged fin whales that directly match the timing of recorded acoustic signals. A tag deployed on a buoy in the vicinity of calling fin whales and a recording from a tag that had just fallen off a whale were able to detect calls acoustically but did not record corresponding accelerometer signals that were measured on calling individuals. Across the hundreds of calls measured on two tagged fin whales, the accelerometer response was generally anisotropic across all three axes, appeared to depend on tag placement and increased with the level of received sound. These data demonstrate that high-sample rate accelerometry can provide important insights into the acoustic behavior of baleen whales that communicate at low frequencies. This method helps identify vocalizing whales, which in turn enables the quantification of call rates, a fundamental component of models used to estimate baleen whale abundance and distribution from passive acoustic monitoring. © 2014. Published by The Company of Biologists Ltd.
Compact Circuit Preprocesses Accelerometer Output
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1993-01-01
Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.
Tool enables proper mating of accelerometer and cable connector
NASA Technical Reports Server (NTRS)
Steed, C. N.
1966-01-01
Tool supports accelerometer in axial alignment with an accelerometer cable connector and permits tightening of the accelerometer to the cable connector with a torque wrench. This is done without damaging the components or permitting them to work loose under sustained, high-level vibrations.
Self-noise models of five commercial strong-motion accelerometers
Ringler, Adam; Evans, John R.; Hutt, Charles R.
2015-01-01
To better characterize the noise of a number of commonly deployed accelerometers in a standardized way, we conducted noise measurements on five different models of strong‐motion accelerometers. Our study was limited to traditional accelerometers (Fig. 1) and is in no way exhaustive.
Clark, William John
2011-01-01
During the 20th century functional appliances evolved from night time wear to more flexible appliances for increased day time wear to full time wear with Twin Block appliances. The current trend is towards fixed functional appliances and this paper introduces the Fixed Twin Block, bonded to the teeth to eliminate problems of compliance in functional therapy. TransForce lingual appliances are pre-activated and may be used in first phase treatment for sagittal and transverse arch development. Alternatively they may be integrated with fixed appliances at any stage of treatment.
Quasi-Static Calibration Method of a High-g Accelerometer
Wang, Yan; Fan, Jinbiao; Zu, Jing; Xu, Peng
2017-01-01
To solve the problem of resonance during quasi-static calibration of high-g accelerometers, we deduce the relationship between the minimum excitation pulse width and the resonant frequency of the calibrated accelerometer according to the second-order mathematical model of the accelerometer, and improve the quasi-static calibration theory. We establish a quasi-static calibration testing system, which uses a gas gun to generate high-g acceleration signals, and apply a laser interferometer to reproduce the impact acceleration. These signals are used to drive the calibrated accelerometer. By comparing the excitation acceleration signal and the output responses of the calibrated accelerometer to the excitation signals, the impact sensitivity of the calibrated accelerometer is obtained. As indicated by the calibration test results, this calibration system produces excitation acceleration signals with a pulse width of less than 1000 μs, and realize the quasi-static calibration of high-g accelerometers with a resonant frequency above 20 kHz when the calibration error was 3%. PMID:28230743
Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping
2016-08-10
The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China's space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10(-12), which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10(-9) m/s²/Hz(1/2) at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer.
Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping
2016-01-01
The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China’s space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10−12, which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10−9 m/s2/Hz1/2 at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer. PMID:27517927
New Matching Method for Accelerometers in Gravity Gradiometer
Wei, Hongwei; Wu, Meiping; Cao, Juliang
2017-01-01
The gravity gradiometer is widely used in mineral prospecting, including in the exploration of mineral, oil and gas deposits. The mismatch of accelerometers adversely affects the measuring precision of rotating accelerometer-based gravity gradiometers. Several strategies have been investigated to address the imbalance of accelerometers in gradiometers. These strategies, however, complicate gradiometer structures because feedback loops and re-designed accelerometers are needed in these strategies. In this paper, we present a novel matching method, which is based on a new configuration of accelerometers in a gravity gradiometer. In the new configuration, an angle was introduced between the measurement direction of the accelerometer and the spin direction. With the introduced angle, accelerometers could measure the centrifugal acceleration generated by the rotating disc. Matching was realized by updating the scale factors of the accelerometers with the help of centrifugal acceleration. Further simulation computations showed that after adopting the new matching method, signal-to-noise ratio improved from −41 dB to 22 dB. Compared with other matching methods, our method is more flexible and costs less. The matching accuracy of this new method is similar to that of other methods. Our method provides a new idea for matching methods in gravity gradiometer measurement. PMID:28757584
Jiang, Danni; Han, Dong; Zhang, Jiahuan; Pei, Tianxu; Zhao, Qi
2018-05-01
The aim of this study was to evaluate the influence of the preoperative wearing time on the postoperative effect in children with partially accommodative esotropia.Sixty children with partially accommodative esotropia who visited our hospital were placed in full cycloplegic refraction by using 1% Atropine eye gel and then wore full hyperopic correction glasses. Children were divided into groups A and B according to the preoperative wearing time. The visual acuity, eye position, and results of the synoptophore and Titmus stereoacuity tests were recorded before and half a year after the surgery in each group, and appropriate statistical analyses were conducted.Half a year after the operation, 54 cases achieved orthotropia when wearing full hyperopic correction glasses. One case was overcorrected. Five cases were undercorrected. The results of the synoptophore and Titmus stereoacuity test showed that there was no significant difference between postoperative outcomes for patients who wore glasses for half a year and for 1 year before the operation.For children with partially accommodative esotropia, surgery should be used to correct the eye position after wearing full hyperopic correction glasses for half a year to improve the eye position and binocular vision as early as possible. If the operation cannot be completed after the patient wears full hyperopic correction glasses for half a year due to various subjective and objective factors, a good postoperative effect can be obtained if the patients receive surgery after wearing full hyperopic correction glasses for 1 year.
NASA Astrophysics Data System (ADS)
Geng, J.; Bock, Y.; Melgar, D.; Hasse, J.; Crowell, B. W.
2013-12-01
High-rate GPS can play an important role in earthquake early warning (EEW) systems for large (>M6) events by providing permanent displacements immediately as they are achieved, to be used in source inversions that can be repeatedly updated as more information becomes available. This is most valuable to implement at a site very near the potential source rupture, where broadband seismometers are likely to clip, and accelerometer data cannot be objectively integrated to produce reliable displacements in real time. At present, more than 525 real-time GPS stations have been established in western North America, which are being integrated into EEW systems. Our analysis technique relies on a tightly-coupled combination of GPS and accelerometer data, an extension of precise point positioning with ambiguity resolution (PPP-AR). We operate a PPP service based on North American stations available through the IGS and UNAVCO/PBO. The service provides real-time satellite clock and fractional-cycle bias products that allow us to position individual client stations in the zone of deformation. The service reference stations are chosen to be further than 200 km from the primary zones of tectonic deformation in the western U.S. to avoid contamination of the satellite products during a large seismic event. At client stations, accelerometer data are applied as tight constraints on the positions between epochs in PPP-AR, which improves cycle-slip repair and rapid ambiguity resolution after GPS outages. Furthermore, we estimate site displacements, seismic velocities, and coseismic ground tilts to facilitate the analysis of ground motion characteristics and the inversion for source mechanisms. The seismogeodetic displacement and velocity waveforms preserves the detection of P wave arrivals, and provides P-wave arrival displacement that is key new information for EEW. Our innovative solution method for coseismic tilts mitigates an error source that has continually plagued strong motion data analysis, and has a resolution of about 0.01 degrees. At present, there are few collocations of GPS and accelerometers in western North America (the exception being the BARD network in northern California) so we have developed a cost-effective way to upgrade existing real-time GPS stations with low-cost MEMS accelerometers; fifteen PBO and SCIGN stations in southern California have already been upgraded. We demonstrate our method of recovering broadband displacement and tilt waveforms using 13 experiments from the single-axis George E. Brown Jr. Network for Earthquake Engineering Simulation Large High-Performance Outdoor Shake Table at the University of California San Diego. Then we apply the method to data from the 2010 Mw 7.2 El Mayor-Cucapah earthquake and the 2011 Mw 9.0 Tohoku-oki earthquake to illustrate the improvement over standard base-line correction acceleration techniques and to demonstrate the order of magnitude of tilt errors present in typical observations.
Launcher Dynamic Data Acquisition
2012-07-31
K PR Pressure PR Pressure PR Accelerometer PR Accelerometer PR Accelerometer PR Pressure PR Pressure IEPE Microphone IEPE ...transducers, displacement potentiometers, or Integrated Electronics Piezoelectric ( IEPE ) microphones and accelerometers. The characteristics of these...Engineering Units HCl hydrogen chloride HVAC heating ventilation and cooling Hz hertz IEC International Electrotechnical Commission IEPE
Rand, Debbie; Givon, Noa; Weingarden, Harold; Nota, Ayala; Zeilig, Gabi
2014-10-01
Video games have become popular in stroke rehabilitation; however, the nature of this intervention is not fully understood. To compare the number of (a) purposeful and nonpurposeful repetitions of the weaker upper extremity (UE) and (b) movement accelerations as assessed by accelerometer activity counts of the weaker and stronger UEs of individuals with chronic stroke while playing video games or participating in traditional therapy. Twenty-nine individuals (mean age 59 years, 1-7 years poststroke) took part in a group intervention of video -games (n = 15) or traditional therapy (n = 14) as part of a randomized controlled trial. During 1-2 sessions, participants were video-taped while wearing wrist accelerometers. Assessors counted the number of repetitions and classified movements as purposeful or nonpurposeful using videotapes. The weaker UE motor impairments were correlated to movement accelerations, to determine if participants were using their potential during the sessions. Participants in the video game group performed a median of 271 purposeful movements and 37 970 activity counts compared to 48 purposeful movements and 14,872 activity counts in the traditional group (z = -3.0, P = .001 and z = -1.9, P = .05, respectively). Participants in the traditional group performed a median of 26 nonpurposeful (exercises) compared with 0 in the video game group (z = -4.2, P = .000). Strong significant correlations were found between the motor ability of the weak UE to repetitions of participants in both groups (r = .86, P < .01). Participants with higher motor ability performed more repetitions. Video games elicited more UE purposeful repetitions and higher acceleration of movement compared with traditional therapy in individuals with chronic stroke. © The Author(s) 2014.
Mendelson, M; Borowik, A; Michallet, A-S; Perrin, C; Monneret, D; Faure, P; Levy, P; Pépin, J-L; Wuyam, B; Flore, P
2016-02-01
Decreased sleep duration and altered sleep quality are risk factors for obesity in youth. Structured exercise training has been shown to increase sleep duration and improve sleep quality. This study aimed at evaluating the impact of exercise training for improving sleep duration, sleep quality and physical activity in obese adolescents (OB). Twenty OB (age: 14.5 ± 1.5 years; body mass index: 34.0 ± 4.7 kg m(-2) ) and 20 healthy-weight adolescents (HW) completed an overnight polysomnography and wore an accelerometer (SenseWear Bodymedia) for 7 days. OB participated in a 12-week supervised exercise-training programme consisting of 180 min of exercise weekly. Exercise training was a combination of aerobic exercise and resistance training. Sleep duration was greater in HW compared with OB (P < 0.05). OB presented higher apnoea-hypopnoea index than HW (P < 0.05). Physical activity (average daily metabolic equivalent of tasks [METs]) by accelerometer was lower in OB (P < 0.05). After exercise training, obese adolescents increased their sleep duration (+64.4 min; effect size: 0.88; P = 0.025) and sleep efficiency (+7.6%; effect size: 0.76; P = 0.028). Physical activity levels were increased in OB as evidenced by increased steps per day and average daily METs (P < 0.05). Improved sleep duration was associated with improved average daily METs (r = 0.48, P = 0.04). The present study confirms altered sleep duration and quality in OB. Exercise training improves sleep duration, sleep quality and physical activity. © 2015 World Obesity.
Hu, B; Dixon, P C; Jacobs, J V; Dennerlein, J T; Schiffman, J M
2018-04-11
The aim of this study was to investigate if a machine learning algorithm utilizing triaxial accelerometer, gyroscope, and magnetometer data from an inertial motion unit (IMU) could detect surface- and age-related differences in walking. Seventeen older (71.5 ± 4.2 years) and eighteen young (27.0 ± 4.7 years) healthy adults walked over flat and uneven brick surfaces wearing an inertial measurement unit (IMU) over the L5 vertebra. IMU data were binned into smaller data segments using 4-s sliding windows with 1-s step lengths. Ninety percent of the data were used as training inputs and the remaining ten percent were saved for testing. A deep learning network with long short-term memory units was used for training (fully supervised), prediction, and implementation. Four models were trained using the following inputs: all nine channels from every sensor in the IMU (fully trained model), accelerometer signals alone, gyroscope signals alone, and magnetometer signals alone. The fully trained models for surface and age outperformed all other models (area under the receiver operator curve, AUC = 0.97 and 0.96, respectively; p ≤ .045). The fully trained models for surface and age had high accuracy (96.3, 94.7%), precision (96.4, 95.2%), recall (96.3, 94.7%), and f1-score (96.3, 94.6%). These results demonstrate that processing the signals of a single IMU device with machine-learning algorithms enables the detection of surface conditions and age-group status from an individual's walking behavior which, with further learning, may be utilized to facilitate identifying and intervening on fall risk. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wearable-Sensor-Based Classification Models of Faller Status in Older Adults.
Howcroft, Jennifer; Lemaire, Edward D; Kofman, Jonathan
2016-01-01
Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment.
Tool Wear Feature Extraction Based on Hilbert Marginal Spectrum
NASA Astrophysics Data System (ADS)
Guan, Shan; Song, Weijie; Pang, Hongyang
2017-09-01
In the metal cutting process, the signal contains a wealth of tool wear state information. A tool wear signal’s analysis and feature extraction method based on Hilbert marginal spectrum is proposed. Firstly, the tool wear signal was decomposed by empirical mode decomposition algorithm and the intrinsic mode functions including the main information were screened out by the correlation coefficient and the variance contribution rate. Secondly, Hilbert transform was performed on the main intrinsic mode functions. Hilbert time-frequency spectrum and Hilbert marginal spectrum were obtained by Hilbert transform. Finally, Amplitude domain indexes were extracted on the basis of the Hilbert marginal spectrum and they structured recognition feature vector of tool wear state. The research results show that the extracted features can effectively characterize the different wear state of the tool, which provides a basis for monitoring tool wear condition.
Learmonth, Y C; Kinnett-Hopkins, D; Rice, I M; Dysterheft, J L; Motl, R W
2016-02-01
This is an experimental design. This study examined the association between rates of energy expenditure (that is, oxygen consumption (VO2)) and accelerometer counts (that is, vector magnitude (VM)) across a range of speeds during manual wheelchair propulsion on a motor-driven treadmill. Such an association allows for the generation of cutoff points for quantifying the time spent in moderate-to-vigorous physical activity (MVPA) during manual wheelchair propulsion. The study was conducted in the University Laboratory. Twenty-four manual wheelchair users completed a 6-min period of seated rest and three 6-min periods of manual wheelchair propulsion on a motor-driven wheelchair treadmill. The 6-min periods of wheelchair propulsion corresponded with three treadmill speeds (1.5, 3.0 and 4.5 mph) that elicited a range of physical activity intensities. Participants wore a portable metabolic unit and accelerometers on both wrists. Primary outcome measures included steady-state VO2 and VM, and the strength of association between VO2 and VM was based on the multiple correlation and squared multiple correlation coefficients from linear regression analyses. Strong linear associations were established between VO2 and VM for the left (R=0.93±0.44; R2=0.87±0.19), right (R=0.95±0.37; R2=0.90±0.14) and combined (R=0.94±0.38; R2=0.88±0.15) accelerometers. The linear relationship between VO2 and VM for the left, right and combined wrists yielded cutoff points for MVPA of 3659 ±1302, 3630±1403 and 3644±1339 counts min(-1), respectively. We provide cutoff points based on the linear association between energy expenditure and accelerometer counts for estimating time spent in MVPA during manual wheelchair propulsion using wrist-worn accelerometry. The similarity across wrist location permits flexibility in selecting a location for wrist accelerometry placement.
Design and Implementation of a Micromechanical Silicon Resonant Accelerometer
Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing
2013-01-01
The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C. PMID:24256978
Family and home influences on children's after-school and weekend physical activity.
McMinn, Alison M; Griffin, Simon J; Jones, Andrew P; van Sluijs, Esther M F
2013-10-01
Family- and home-related factors have been shown to be associated with children's physical activity (PA), but may be time-dependent. Here we investigate whether family- and home-related correlates of children's PA are different for the after-school period on weekdays than for the weekend. Data on 21 family- and home-related variables and objectively measured PA (Actigraph GT1M) were available from 1608 Year 5 children (9-10 years old) from 92 schools in Norfolk participating in the SPEEDY (Sport, Physical activity and Eating behaviour: Environmental Determinants in Young people) study. Multi-level multiple linear regression was used to quantify cross-sectional associations between the family/home variables and average min per day of moderate-to-vigorous PA (MVPA, ≥2000 counts/min) after school on weekdays and at the weekend. Models were additionally adjusted for age, sex, BMI z-score and registered accelerometer wear time. After-school MVPA was associated with parent education (ß: -1.1; 95% CI -2.0 to -0.2), being allowed to play out in the neighbourhood (ß: 1.3; 0.7-1.8), restrictions on walking/cycling to friends' houses (ß: -1.1; -1.6 to -0.7), restrictions on sedentary behaviour (ß: -0.3; -0.5 to -0.02) and family social support (ß: 1.0; 0.7-1.3). Weekend MVPA was associated with number of siblings (ß: 2.6; 0.5-4.8), family encouragement (ß: 1.1; 0.2-2.0) and family social support (ß: 1.5; 0.5-2.5). Family social support is positively associated with children's out-of-school PA both at weekdays and in weekends. However, rules and restrictions appear to be important only on weekdays. The results of this study merit consideration when identifying appropriate timing of PA-promotion strategies.
Li, Kin-Kit; Cheng, Sheung-Tak; Fung, Helene H
2014-02-01
This study compared message-framing effects on physical activity (PA) across age and gender groups. Participants included 111 younger and 100 older adults (68% were women), randomly assigned to read gain-framed or loss-framed PA messages in promotion pamphlets, and who wore accelerometers for the following 14 days. Using regression analyses controlling for demographic and health factors, we found significant age-by-gender-by-framing interactions predicting self-report (B = -4.39, p = .01) and accelerometer-assessed PA (B = -2.44, p = .02) during the follow-up period. Gain-framed messages were more effective than loss-framed messages in promoting PA behaviors only among older men. We speculated that the age-related positivity effect, as well as the age and gender differences in issue involvement, explained the group differences in framing. In addition, more time availability and higher self-efficacy among older men might have contributed to the results.
Temperature corrected-calibration of GRACE's accelerometer
NASA Astrophysics Data System (ADS)
Encarnacao, J.; Save, H.; Siemes, C.; Doornbos, E.; Tapley, B. D.
2017-12-01
Since April 2011, the thermal control of the accelerometers on board the GRACE satellites has been turned off. The time series of along-track bias clearly show a drastic change in the behaviour of this parameter, while the calibration model has remained unchanged throughout the entire mission lifetime. In an effort to improve the quality of the gravity field models produced at CSR in future mission-long re-processing of GRACE data, we quantify the added value of different calibration strategies. In one approach, the temperature effects that distort the raw accelerometer measurements collected without thermal control are corrected considering the housekeeping temperature readings. In this way, one single calibration strategy can be consistently applied during the whole mission lifetime, since it is valid to thermal the conditions before and after April 2011. Finally, we illustrate that the resulting calibrated accelerations are suitable for neutral thermospheric density studies.
The Relationship Between Time of Day of Physical Activity and Obesity in Older Women.
Chomistek, Andrea K; Shiroma, Eric J; Lee, I-Min
2016-04-01
Physical activity is important for maintaining healthy weight. The time of day when exercise is performed-a highly discretionary aspect of behavior-may impact weight control, but evidence is limited. Thus, we examined the association between the timing of physical activity and obesity risk in women. A cross-sectional analysis was conducted among 7157 Women's Health Study participants who participated in an ancillary study begun in 2011 that is measuring physical activity using accelerometers. The exposure was percentage of total accelerometer counts accumulated before 12:00 noon and the outcome was obesity. Mean (±SD) BMI among participants was 26.1 (±4.9) kg/m2 and 1322 women were obese. The mean activity counts per day was 203,870 (±95,811) of which a mean 47.1% (±11.5%) were recorded in the morning. In multivariable-adjusted models, women who recorded < 39% (lowest quartile) of accelerometer counts before 12:00 noon had a 26% higher odds of being obese, compared with those recording ≥ 54% (highest quartile) of counts before noon (Ptrend = 0.02). These study findings-that women who are less active during morning hours may be at higher risk of obesity-if confirmed can provide a novel strategy to help combat the important health problem of obesity.
NASA Astrophysics Data System (ADS)
Mia, Mozammel; Al Bashir, Mahmood; Dhar, Nikhil Ranjan
2016-10-01
Hard turning is increasingly employed in machining, lately, to replace time-consuming conventional turning followed by grinding process. An excessive amount of tool wear in hard turning is one of the main hurdles to be overcome. Many researchers have developed tool wear model, but most of them developed it for a particular work-tool-environment combination. No aggregate model is developed that can be used to predict the amount of principal flank wear for specific machining time. An empirical model of principal flank wear (VB) has been developed for the different hardness of workpiece (HRC40, HRC48 and HRC56) while turning by coated carbide insert with different configurations (SNMM and SNMG) under both dry and high pressure coolant conditions. Unlike other developed model, this model includes the use of dummy variables along with the base empirical equation to entail the effect of any changes in the input conditions on the response. The base empirical equation for principal flank wear is formulated adopting the Exponential Associate Function using the experimental results. The coefficient of dummy variable reflects the shifting of the response from one set of machining condition to another set of machining condition which is determined by simple linear regression. The independent cutting parameters (speed, rate, depth of cut) are kept constant while formulating and analyzing this model. The developed model is validated with different sets of machining responses in turning hardened medium carbon steel by coated carbide inserts. For any particular set, the model can be used to predict the amount of principal flank wear for specific machining time. Since the predicted results exhibit good resemblance with experimental data and the average percentage error is <10 %, this model can be used to predict the principal flank wear for stated conditions.
Testing of a Fiber Optic Wear, Erosion and Regression Sensor
NASA Technical Reports Server (NTRS)
Korman, Valentin; Polzin, Kurt A.
2011-01-01
The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.
Characterization of Ti and Co based biomaterials processed via laser based additive manufacturing
NASA Astrophysics Data System (ADS)
Sahasrabudhe, Himanshu
Titanium and Cobalt based metallic materials are currently the most ideal materials for load-bearing metallic bio medical applications. However, the long term tribological degradation of these materials still remains a problem that needs a solution. To improve the tribological performance of these two metallic systems, three different research approaches were adapted, stemming out four different research projects. First, the simplicity of laser gas nitriding was utilized with a modern LENS(TM) technology to form an in situ nitride rich later in titanium substrate material. This nitride rich composite coating improved the hardness by as much as fifteen times and reduced the wear rate by more than a magnitude. The leaching of metallic ions during wear was also reduced by four times. In the second research project, a mixture of titanium and silicon were processed on a titanium substrate in a nitrogen rich environment. The results of this reactive, in situ additive manufacturing process were Ti-Si-Nitride coatings that were harder than the titanium substrate by more than twenty times. These coatings also reduced the wear rate by more than two magnitudes. In the third research approach, composites of CoCrMo alloy and Calcium phosphate (CaP) bio ceramic were processed using LENS(TM) based additive manufacturing. These composites were effective in reducing the wear in the CoCrMo alloy by more than three times as well as reduce the leaching of cobalt and chromium ions during wear. The novel composite materials were found to develop a tribofilm during wear. In the final project, a combination of hard nitride coating and addition of CaP bioceramic was investigated by processing a mixture of Ti6Al4V alloy and CaP in a nitrogen rich environment using the LENS(TM) technology. The resultant Ti64-CaP-Nitride coatings significantly reduced the wear damage on the substrate. There was also a drastic reduction in the metal ions leached during wear. The results indicate that the three tested approaches for reducing the wear damage in Ti and Co based were successful. These approaches and the associated research investigations could pave the way for future work in alleviating wear and corrosion related damage, especially via the additive manufacturing route.
Corneal erosions, bacterial contamination of contact lenses, and microbial keratitis.
Willcox, Mark D P; Naduvilath, Thomas J; Vaddavalli, Pravin K; Holden, Brien A; Ozkan, Jerome; Zhu, Hua
2010-11-01
To estimate the rate of corneal erosion coupled with gram-negative bacterial contamination of contact lenses and compare this with the rate of microbial keratitis (MK) with contact lenses. The rate of corneal erosion and contact lens contamination by gram-negative bacteria were calculated from several prospective trials. These rates were used to calculate the theoretical rate of corneal erosion happening at the same time as wearing a contact lens contaminated with gram-negative bacteria. This theoretical rate was then compared with the rates of MK reported in various epidemiological and clinical trials. Corneal erosions were more frequent during extended wear (0.6-2.6% of visits) compared with daily wear (0.01-0.05% of visits). No corneal erosions were observed for lenses worn on a daily disposable basis. Contamination rates for lenses worn on a daily disposable basis were the lowest (2.4%), whereas they were the highest for low Dk lenses worn on an extended wear basis (7.1%). The estimated rate of corneal erosions occurring at the same time as wearing lenses contaminated with gram-negative bacteria was the lowest during daily wear of low Dk lenses (1.56/10,000 [95% CI: 0.23-10.57]) and the highest during extended wear of high Dk lenses (38.55/10,000 [95% CI: 24.77-60.04]). These rates were similar in magnitude to the rates reported for MK of different hydrogel lenses worn on differing wear schedules. The coincidence of corneal erosions during lens wear with gram-negative bacterial contamination of lenses may account for the relative incidence of MK during lens wear with different lens materials and modes of use.
Rat Silicone Hydrogel Contact Lens Model: Effects of High vs. Low Dk Lens Wear
Zhang, Yunfan; Gabriel, Manal M.; Mowrey-McKee, Mary F.; Barrett, Ronald P.; McClellan, Sharon; Hazlett, Linda D.
2012-01-01
Objectives This study used a rat contact lens (CL) model to test if high vs. low Dk lens wear caused changes in: 1) conjunctival Langerhans cell (LC) number or location; 2) Bcl-2 expression; and 3) infection risk. Methods Female, Lewis rats wore a high or low Dk CL continuously for 2 weeks. Afterward, corneas were harvested and processed for ADPase activity to identify Langerhans cells (LC), for immunostaining and for real time RT-PCR. CL wearing rats also were challenged with Pseudomonas aeruginosa by placing a bacterial-soaked CL on the eye followed by topical delivery of bacteria. After 48 hours, slit lamp examination and real time RT-PCR were used to evaluate the corneal response. Results Conjunctival LC were significantly increased after low vs. high Dk CL wear (p<0.0001). In contrast, conjunctival LC in non-lens wearing rats was not significantly different from the high Dk lens wearing group. Bcl-2 mRNA levels were significantly decreased in low vs. high Dk Cl wearing rats, while Bax, FasL, caspase 3 and caspase 9 levels were unchanged. Immunostaining for Bcl-2 showed fewer positively stained epithelial cells in the low vs. high Dk lens wearing group. After bacterial challenge, 30% of low vs. none of the high Dk CL wearing corneas became infected and showed increased mRNA levels for several pro-inflammatory cytokines/chemokines, inducible nitric oxide synthase (iNOS) and matrix metalloproteinase (MMP)-9. Conclusion Low vs. high Dk and/or no CL wear led to an increased number of conjunctival LC, decreased Bcl-2 levels, and increased the risk of bacterial infection. PMID:18997538
GRACE Accelerometer data transplant
NASA Astrophysics Data System (ADS)
Bandikova, T.; McCullough, C. M.; Kruizinga, G. L. H.
2017-12-01
The Gravity Recovery and Climate Experiment (GRACE) has recently celebrated its 15th anniversary. The aging of the satellites brings along new challenges for both mission operation and science data delivery. Since September 2016, the accelerometer (ACC) onboard GRACE-B has been permanently turned off in order to reduce the battery load. The absence of the information about the non-gravitational forces acting on the spacecraft dramatically decreases the accuracy of the monthly gravity field solutions. The missing GRACE-B accelerometer data, however, can be recovered from the GRACE-A accelerometer measurement with satisfactory accuracy. In the current GRACE data processing, simple ACC data transplant is used which includes only attitude and time correction. The full ACC data transplant, however, requires not only the attitude and time correction, but also modeling of the residual accelerations due to thruster firings, which is the most challenging part. The residual linear accelerations ("thruster spikes") are caused by thruster imperfections such as misalignment of thruster pair, force imbalance or differences in reaction time. The thruster spikes are one of the most dominant high-frequency signals in the ACC measurement. The shape and amplitude of the thruster spikes are unique for each thruster pair, for each firing duration (30 ms - 1000 ms), for each x,y,z component of the ACC linear acceleration, and for each spacecraft. In our approach, the thruster spike model is an analytical function obtained by inverse Laplace transform of the ACC transfer function. The model shape parameters (amplitude, width and time delay) are estimated using Least squares method. The ACC data transplant is validated for days when ACC data from both satellites were available. The fully transplanted data fits the original GRACE-B measurement very well. The full ACC data transplant results in significantly reduced high frequency noise compared to the simple ACC transplant (i.e. without thruster spike modeling). The full ACC data transplant is a promising solution, which will allow GRACE to deliver high quality science data despite the serious problems related to satellite aging.
A Self-Diagnostic System for the M6 Accelerometer
NASA Technical Reports Server (NTRS)
Flanagan, Patrick M.; Lekki, John
2001-01-01
The design of a Self-Diagnostic (SD) accelerometer system for the Space Shuttle Main Engine is presented. This retrofit system connects diagnostic electronic hardware and software to the current M6 accelerometer system. This paper discusses the general operation of the M6 accelerometer SD system and procedures for developing and evaluating the SD system. Signal processing techniques using M6 accelerometer diagnostic data are explained. Test results include diagnostic data responding to changing ambient temperature, mounting torque and base mounting impedance.
NASA Astrophysics Data System (ADS)
Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Löcher, Anno; Kusche, Jürgen; Börger, Klaus
2018-05-01
Ultra-sensitive space-borne accelerometers on board of low Earth orbit (LEO) satellites are used to measure non-gravitational forces acting on the surface of these satellites. These forces consist of the Earth radiation pressure, the solar radiation pressure and the atmospheric drag, where the first two are caused by the radiation emitted from the Earth and the Sun, respectively, and the latter is related to the thermospheric density. On-board accelerometer measurements contain systematic errors, which need to be mitigated by applying a calibration before their use in gravity recovery or thermospheric neutral density estimations. Therefore, we improve, apply and compare three calibration procedures: (1) a multi-step numerical estimation approach, which is based on the numerical differentiation of the kinematic orbits of LEO satellites; (2) a calibration of accelerometer observations within the dynamic precise orbit determination procedure and (3) a comparison of observed to modeled forces acting on the surface of LEO satellites. Here, accelerometer measurements obtained by the Gravity Recovery And Climate Experiment (GRACE) are used. Time series of bias and scale factor derived from the three calibration procedures are found to be different in timescales of a few days to months. Results are more similar (statistically significant) when considering longer timescales, from which the results of approach (1) and (2) show better agreement to those of approach (3) during medium and high solar activity. Calibrated accelerometer observations are then applied to estimate thermospheric neutral densities. Differences between accelerometer-based density estimations and those from empirical neutral density models, e.g., NRLMSISE-00, are observed to be significant during quiet periods, on average 22 % of the simulated densities (during low solar activity), and up to 28 % during high solar activity. Therefore, daily corrections are estimated for neutral densities derived from NRLMSISE-00. Our results indicate that these corrections improve model-based density simulations in order to provide density estimates at locations outside the vicinity of the GRACE satellites, in particular during the period of high solar/magnetic activity, e.g., during the St. Patrick's Day storm on 17 March 2015.
A general law of fault wear and its implication to gouge zone evolution
NASA Astrophysics Data System (ADS)
Boneh, Yuval; Reches, Ze'ev
2017-04-01
Fault wear and gouge production are universal components of frictional sliding. Wear models commonly consider fault roughness, normal stress and rock strength, but ignore the effects of gouge presence and slip-velocity. In contrast, our experimental observations indicate that wear continues while gouge layer is fully developed, and that wear-rates vary by orders-of-magnitude during slip along experimental faults made of carbonites, sandstones and granites (Boneh et al., 2013, 2014). We derive here a new universal law for fault wear by incorporating the gouge layer and slip-velocity. Slip between two rock-blocks undergoes a transition from a 'two-body' mode, during which the blocks interact at surface roughness contacts, to 'three-body' mode, during which a gouge layer separates the two blocks. Our wear model considers 'effective roughness' as the mechanism for failure at resisting, interacting sites that control the global wear. The effective roughness is comprised of a time dependent, dynamic asperities which are different in population and scale from original surfaces asperities. The model assumes that the intensity of this failure is proportional to the mechanical impulse, which is the integrated force over loading time at the interacting sites. We use this concept to calculate the wear-rate as function of the impulse-density, which is the ratio [shear-stress/slip-velocity], during fault slip. The compilation of experimental wear-rates in a large range of slip-velocities (10 μm/s - 1 m/s) and normal stresses (0.2 - 200 MPa) reveal very good agreement with the model predictions. The model provides the first explanation why fault slip at seismic velocity, e.g., 1 m/s, generates significantly less wear and gouge than fault slip at creeping velocity. Thus, the model provides a tool to use the gouge thickness of fault-zones for estimation of paleo-velocity. Boneh, Y., Sagy, A., Reches, Z., 2013. Frictional strength and wear-rate of carbonate faults during high-velocity, steady-state sliding. Earth and Planetary Science Letters 381, 127-137. Boneh, Y., Chang, J.C., Lockner, D.A., Reches, Z., 2014. Evolution of Wear and Friction Along Experimental Faults. Pure and Applied Geophysics, 1-17.
NASA Astrophysics Data System (ADS)
Korshunov, L. G.; Pushin, V. G.; Chernenko, N. L.; Makarov, V. V.
2010-07-01
Wear resistance and structural transformations upon abrasive and adhesive wear of titanium nickelide Ti49.4Ni50.6 in microcrystalline (MC) and submicrocrystalline (SMC) states have been investigated. It has been shown that the abrasive wear resistance of this alloy exceeds that of the steel 12Kh18N9 by a factor of about 2, that of the steel 110G13 (Hadfield steel), by a factor of 1.3, and is close to that of the steel 95Kh18. Upon adhesive wear in a testing-temperature range from -50 to +300°C, the Ti49.4Ni50.6 alloy, as compared to the steel 12Kh18N9, is characterized by the wear rate that is tens of times smaller and by a reduced (1.5-2.0 times) friction coefficient. The enhanced wear resistance of the Ti49.4Ni50.6 alloy is due to the development of intense strain hardening in it and to a high fracture toughness, which is a consequence of effective relaxation of high contact stresses arising in the surface layer of the alloy. The SMC state produced in the alloy with the help of equal-channel angular pressing (ECAP) has no effect on the abrasive wear resistance of the alloy. The favorable effect of ECAP on the wear resistance of the Ti49.4Ni50.6 alloy takes place under conditions of its adhesive wear at temperatures from -25 to +70°C. The electron-microscopic investigation showed that under conditions of wear at negative and room temperatures in the surface layer (1-5 μm thick) of titanium nickelide there arises a mixed structure consisting of an amorphous phase and nanocrystals of supposedly austenite and martensite. Upon friction at 200-300°C, a nanocrystalline structure of the B2 phase arises near the alloy surface, which, as is the case with the amorphous-nanocrystalline structure, is characterized by significant effective strength and wear resistance.
Chu, Christine M; Khanijow, Kavita D; Schmitz, Kathryn H; Newman, Diane K; Arya, Lily A; Harvie, Heidi S
2018-01-10
Objective physical activity data for women with urinary incontinence are lacking. We investigated the relationship between physical activity, sedentary behavior, and the severity of urinary symptoms in older community-dwelling women with urinary incontinence using accelerometers. This is a secondary analysis of a study that measured physical activity (step count, moderate-to-vigorous physical activity time) and sedentary behavior (percentage of sedentary time, number of sedentary bouts per day) using a triaxial accelerometer in older community-dwelling adult women not actively seeking treatment of their urinary symptoms. The relationship between urinary symptoms and physical activity variables was measured using linear regression. Our cohort of 35 community-dwelling women (median, age, 71 years) demonstrated low physical activity (median daily step count, 2168; range, 687-5205) and high sedentary behavior (median percentage of sedentary time, 74%; range, 54%-89%). Low step count was significantly associated with nocturia (P = 0.02). Shorter duration of moderate-to-vigorous physical activity time was significantly associated with nocturia (P = 0.001), nocturnal enuresis (P = 0.04), and greater use of incontinence products (P = 0.04). Greater percentage of time spent in sedentary behavior was also significantly associated with nocturia (P = 0.016). Low levels of physical activity are associated with greater nocturia and nocturnal enuresis. Sedentary behavior is a new construct that may be associated with lower urinary tract symptoms. Physical activity and sedentary behavior represent potential new targets for treating nocturnal urinary tract symptoms.
The use of titanium alloys for details of downhole hammers
NASA Astrophysics Data System (ADS)
Popelyukh, A. I.; Repin, A. A.; Alekseev, S. E.; Martyushev, N. V.; Drozdov, Yu Yu
2016-04-01
The influence of cementation technology of titanium alloy Ti-Al-Mn on its wear resistance is studied. It is established that after lubrication a friction pair with mineral oil the wear resistance of the cemented titanium alloy is comparable to wear resistance of the tempered steel 12HN3A, and in water medium surpasses it by 1.5 times. Decrease in the tendency to seizure with steel is the main reason for increase of wear resistance of titanium alloy. Industrial tests of the ASH43 hammer have shown that the use of titanium alloys for the manufacture of hammer strikers allows to increase impact capacity by 1.5 times and to increase drilling rate by 30 % compared to hammers with steel strikers.
Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Parker, R. J.
1977-01-01
The types and quantities of wear particles generated during accelerated ball rolling contact fatigue tests were determined. Ball specimens were made of AMS 5749, a corrosion resistant, high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.215 times 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed; normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.
Hwang, J Y; Kang, J M; Jang, Y W; Kim, H
2004-01-01
Novel algorithm and real-time ambulatory monitoring system for fall detection in elderly people is described. Our system is comprised of accelerometer, tilt sensor and gyroscope. For real-time monitoring, we used Bluetooth. Accelerometer measures kinetic force, tilt sensor and gyroscope estimates body posture. Also, we suggested algorithm using signals which obtained from the system attached to the chest for fall detection. To evaluate our system and algorithm, we experimented on three people aged over 26 years. The experiment of four cases such as forward fall, backward fall, side fall and sit-stand was repeated ten times and the experiment in daily life activity was performed one time to each subject. These experiments showed that our system and algorithm could distinguish between falling and daily life activity. Moreover, the accuracy of fall detection is 96.7%. Our system is especially adapted for long-time and real-time ambulatory monitoring of elderly people in emergency situation.
NASA Technical Reports Server (NTRS)
Sovey, J.
1997-01-01
Time-resolved, in situ measurements of the charge exchange ion erosion pattern on the downstream face of the accelerator grid have been made during an ongoin wear test of the NSTAR 30 cm ion thruster.
Ganapathy, Perumal; Manivasagam, Geetha; Rajamanickam, Asokamani; Natarajan, Alagumurthi
2015-01-01
This paper presents the wear characteristics of the composite ceramic coating made with Al2O3-40wt%8YSZ on the biomedical grade Ti-6Al-4V alloy (grade 5) used for total joint prosthetic components, with the aim of improving their tribological behavior. The coatings were deposited using a plasma spraying technique, and optimization of plasma parameters was performed using response surface methodology to obtain dense coating. The tribological behaviors of the coated and uncoated substrates were evaluated using a ball-on-plate sliding wear tester at 37°C in simulated body-fluid conditions. The microstructure of both the titanium alloy and coated specimen were examined using an optical microscope and scanning electron microscope. The hardness of the plasma-sprayed alumina–zirconia composite coatings was 2.5 times higher than that of the Ti-6Al-4V alloy, while the wear rate of Ti-6Al-4V alloy was 253 times higher than that of the composite-coated Ti-6Al-4V alloy. The superior wear resistance of the alumina–zirconia coated alloy is attributed to its enhanced hardness and intersplat bonding strength. Wear-track examination showed that the predominant wear mechanism of Ti-6Al-4V alloy was abrasive and adhesive wear, whereas, in the case of alumina–zirconia composite coated alloy, the wear was dominated by microchipping and microcracking. PMID:26491323
In vivo measurements of tooth wear over 12 months.
Rodriguez, J M; Austin, R S; Bartlett, D W
2012-01-01
The aim of this study was to measure the progression of tooth wear in a cohort of 63 patients, 43 males and 20 females with a mean age of 39.1 years. Recruitment followed referral from general practice to Guy's Hospital for advice/management of tooth wear. Addition silicone impressions were taken at 6-month intervals for a total of 12 months; impressions were subsequently poured in type IV gypsum. Casts were scanned using a non-contacting laser profilometer and then superimposed using Geomagic® Qualify 11. Wear was measured in μm by tooth per time interval. A questionnaire highlighting dietary, parafunctional and gastric risk factors was obtained from each participant. Clustered multiple regression analysis was used to determine the relationship between tooth wear progression and risk factors. Maximum follow-up times were 6 months for 63 participants and 12 months for 30 participants. The measurement error was 15 μm. At the tooth level, 72.2% of 1,078 teeth wore <15 μm over a 6-month period. At the subject level, 77.7% of 63 participants showed median wear <15 μm over a 6-month period. There was a statistical trend towards tooth wear progression being associated with gastric risk factors (p < 0.05). The lower molars and the upper anterior teeth were the most commonly affected teeth; the lower molars and the upper central incisors were the most severely affected teeth. Tooth wear progression was slow in this cohort, suggesting that tooth wear may be cyclical and inactive in the majority of participants. Copyright © 2011 S. Karger AG, Basel.
Shi, Yunbo; Yang, Zhicai; Ma, Zongmin; Cao, Huiliang; Kou, Zhiwei; Zhi, Dan; Chen, Yanxiang; Feng, Hengzhen; Liu, Jun
2016-01-01
Despite its extreme significance, dynamic linearity measurement for high-g accelerometers has not been discussed experimentally in previous research. In this study, we developed a novel method using a dual-warhead Hopkinson bar to measure the dynamic linearity of a high-g acceleration sensor with a laser interference impact experiment. First, we theoretically determined that dynamic linearity is a performance indicator that can be used to assess the quality merits of high-g accelerometers and is the basis of the frequency response. We also found that the dynamic linearity of the dual-warhead Hopkinson bar without an accelerometer is 2.5% experimentally. Further, we verify that dynamic linearity of the accelerometer is 3.88% after calibrating the Hopkinson bar with the accelerometer. The results confirm the reliability and feasibility of measuring dynamic linearity for high-g accelerometers using this method. PMID:27338383
A biomimetic accelerometer inspired by the cricket's clavate hair
Droogendijk, H.; de Boer, M. J.; Sanders, R. G. P.; Krijnen, G. J. M.
2014-01-01
Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model is presented for the design of the accelerometer, and guidelines are derived to reduce responsivity due to flow-induced contributions to the accelerometer's output. Measurements show that this microelectromechanical systems (MEMS) hair-based accelerometer has a resonance frequency of 320 Hz, a detection threshold of 0.10 ms−2 and a dynamic range of more than 35 dB. The accelerometer exhibits a clear directional response to external accelerations and a low responsivity to airflow. Further, the accelerometer's physical limits with respect to noise levels are addressed and the possibility for short-term adaptation of the sensor to the environment is discussed. PMID:24920115
Precision Orbit Derived Atmospheric Density: Development and Performance
NASA Astrophysics Data System (ADS)
McLaughlin, C.; Hiatt, A.; Lechtenberg, T.; Fattig, E.; Mehta, P.
2012-09-01
Precision orbit ephemerides (POE) are used to estimate atmospheric density along the orbits of CHAMP (Challenging Minisatellite Payload) and GRACE (Gravity Recovery and Climate Experiment). The densities are calibrated against accelerometer derived densities and considering ballistic coefficient estimation results. The 14-hour density solutions are stitched together using a linear weighted blending technique to obtain continuous solutions over the entire mission life of CHAMP and through 2011 for GRACE. POE derived densities outperform the High Accuracy Satellite Drag Model (HASDM), Jacchia 71 model, and NRLMSISE-2000 model densities when comparing cross correlation and RMS with accelerometer derived densities. Drag is the largest error source for estimating and predicting orbits for low Earth orbit satellites. This is one of the major areas that should be addressed to improve overall space surveillance capabilities; in particular, catalog maintenance. Generally, density is the largest error source in satellite drag calculations and current empirical density models such as Jacchia 71 and NRLMSISE-2000 have significant errors. Dynamic calibration of the atmosphere (DCA) has provided measurable improvements to the empirical density models and accelerometer derived densities of extremely high precision are available for a few satellites. However, DCA generally relies on observations of limited accuracy and accelerometer derived densities are extremely limited in terms of measurement coverage at any given time. The goal of this research is to provide an additional data source using satellites that have precision orbits available using Global Positioning System measurements and/or satellite laser ranging. These measurements strike a balance between the global coverage provided by DCA and the precise measurements of accelerometers. The temporal resolution of the POE derived density estimates is around 20-30 minutes, which is significantly worse than that of accelerometer derived density estimates. However, major variations in density are observed in the POE derived densities. These POE derived densities in combination with other data sources can be assimilated into physics based general circulation models of the thermosphere and ionosphere with the possibility of providing improved density forecasts for satellite drag analysis. POE derived density estimates were initially developed using CHAMP and GRACE data so comparisons could be made with accelerometer derived density estimates. This paper presents the results of the most extensive calibration of POE derived densities compared to accelerometer derived densities and provides the reasoning for selecting certain parameters in the estimation process. The factors taken into account for these selections are the cross correlation and RMS performance compared to the accelerometer derived densities and the output of the ballistic coefficient estimation that occurs simultaneously with the density estimation. This paper also presents the complete data set of CHAMP and GRACE results and shows that the POE derived densities match the accelerometer densities better than empirical models or DCA. This paves the way to expand the POE derived densities to include other satellites with quality GPS and/or satellite laser ranging observations.
Dual Accelerometer Usage Strategy for Onboard Space Navigation
NASA Technical Reports Server (NTRS)
Zanetti, Renato; D'Souza, Chris
2012-01-01
This work introduces a dual accelerometer usage strategy for onboard space navigation. In the proposed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it is used to estimate its errors otherwise. Numerical examples and comparison to other accelerometer usage schemes are presented to validate the proposed approach.
A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments
Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang
2017-01-01
A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng/Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz. The accelerometer’s designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng/Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer. PMID:29156587
Williams, Cylie M; Haines, Terry P
2014-01-23
Many women are warned against the dangers of wearing high heel footwear however there is limited empirical evidence demonstrating an association between wearing high heel with injury. Gait laboratory testing has found a higher heel height placed the foot in a position that increases the risk of ankle sprain. Women have also been surveyed about wearing high heels and approximately half of those reported inconvenience and pain after wearing a high heel shoe. This study aims to explore emergency department presentations of injuries and the estimated costs that have been directly attributed to wearing high heeled footwear within Victoria, Australia during 2006-2010. The Victorian Emergency Minimum Dataset (VEMD) was searched for all injuries attributed to wearing high heel footwear presenting to emergency departments in Victoria Australia, between the years of 2006-2010. The VEMD produced a report detailing sex, age at presentation, month of presentation, time of day of presentation, day of presentation, location that injury occurred and type of injury for presentation. Monash Health in Victoria Australia, provided emergency department estimates for injury types to calculate an estimated cost of an acute injury related to wearing high heel footwear. There were 240 injuries presenting to Victorian emergency departments directly attributed to wearing high heeled footwear. The majority of people injured were women (n = 236) and all were less than 55 years of age. More injuries presented on a Sunday (n = 83) and more in the 8 am-12 pm time bracket (n = 64). There were also more injuries presenting in the months of November, December and January (n = 80). The most commonly injured body part was the ankle (n = 123). The emergency department estimate of the cost of these injuries over this time-frame was almost $72,000 (mean of $316.72 per presentation). People who wear high heel footwear on weekends appear to be at higher risk for injury that leads to emergency department presentation. However, there was not a large cost associated with emergency department presentations attributable to wearing high heel footwear over a 5 year period.
2014-01-01
Background Many women are warned against the dangers of wearing high heel footwear however there is limited empirical evidence demonstrating an association between wearing high heel with injury. Gait laboratory testing has found a higher heel height placed the foot in a position that increases the risk of ankle sprain. Women have also been surveyed about wearing high heels and approximately half of those reported inconvenience and pain after wearing a high heel shoe. This study aims to explore emergency department presentations of injuries and the estimated costs that have been directly attributed to wearing high heeled footwear within Victoria, Australia during 2006–2010. Methods The Victorian Emergency Minimum Dataset (VEMD) was searched for all injuries attributed to wearing high heel footwear presenting to emergency departments in Victoria Australia, between the years of 2006–2010. The VEMD produced a report detailing sex, age at presentation, month of presentation, time of day of presentation, day of presentation, location that injury occurred and type of injury for presentation. Monash Health in Victoria Australia, provided emergency department estimates for injury types to calculate an estimated cost of an acute injury related to wearing high heel footwear. Results There were 240 injuries presenting to Victorian emergency departments directly attributed to wearing high heeled footwear. The majority of people injured were women (n = 236) and all were less than 55 years of age. More injuries presented on a Sunday (n = 83) and more in the 8 am-12 pm time bracket (n = 64). There were also more injuries presenting in the months of November, December and January (n = 80). The most commonly injured body part was the ankle (n = 123). The emergency department estimate of the cost of these injuries over this time-frame was almost $72,000 (mean of $316.72 per presentation). Conclusions People who wear high heel footwear on weekends appear to be at higher risk for injury that leads to emergency department presentation. However, there was not a large cost associated with emergency department presentations attributable to wearing high heel footwear over a 5 year period. PMID:24456691
NASA Astrophysics Data System (ADS)
Han, Dandan; Bai, Jian; Lu, Qianbo; Lou, Shuqi; Jiao, Xufen; Yang, Guoguang
2016-08-01
There is a temperature drift of an accelerometer attributed to the temperature variation, which would adversely influence the output performance. In this paper, a quantitative analysis of the temperature effect and the temperature compensation of a MOEMS accelerometer, which is composed of a grating interferometric cavity and a micromachined sensing chip, are proposed. A finite-element-method (FEM) approach is applied in this work to simulate the deformation of the sensing chip of the MOEMS accelerometer at different temperature from -20°C to 70°C. The deformation results in the variation of the distance between the grating and the sensing chip of the MOEMS accelerometer, modulating the output intensities finally. A static temperature model is set up to describe the temperature characteristics of the accelerometer through the simulation results and the temperature compensation is put forward based on the temperature model, which can improve the output performance of the accelerometer. This model is permitted to estimate the temperature effect of this type accelerometer, which contains a micromachined sensing chip. Comparison of the output intensities with and without temperature compensation indicates that the temperature compensation can improve the stability of the output intensities of the MOEMS accelerometer based on a grating interferometric cavity.
Numerical modelling of tool wear in turning with cemented carbide cutting tools
NASA Astrophysics Data System (ADS)
Franco, P.; Estrems, M.; Faura, F.
2007-04-01
A numerical model is proposed for analysing the flank and crater wear resulting from the loss of material on cutting tool surface in turning processes due to wear mechanisms of adhesion, abrasion and fracture. By means of this model, the material loss along cutting tool surface can be analysed, and the worn surface shape during the workpiece machining can be determined. The proposed model analyses the gradual degradation of cutting tool during turning operation, and tool wear can be estimated as a function of cutting time. Wear-land width (VB) and crater depth (KT) can be obtained for description of material loss on cutting tool surface, and the effects of the distinct wear mechanisms on surface shape can be studied. The parameters required for the tool wear model are obtained from bibliography and experimental observation for AISI 4340 steel turning with WC-Co cutting tools.
Using tri-axial accelerometers to identify wild polar bear behaviors
Pagano, Anthony M.; Rode, Karyn D.; Cutting, A.; Owen, M.A.; Jensen, S.; Ware, J.V.; Robbins, C.T.; Durner, George M.; Atwood, Todd C.; Obbard, M.E.; Middel, K.R.; Thiemann, G.W.; Williams, T.M.
2017-01-01
Tri-axial accelerometers have been used to remotely identify the behaviors of a wide range of taxa. Assigning behaviors to accelerometer data often involves the use of captive animals or surrogate species, as their accelerometer signatures are generally assumed to be similar to those of their wild counterparts. However, this has rarely been tested. Validated accelerometer data are needed for polar bears Ursus maritimus to understand how habitat conditions may influence behavior and energy demands. We used accelerometer and water conductivity data to remotely distinguish 10 polar bear behaviors. We calibrated accelerometer and conductivity data collected from collars with behaviors observed from video-recorded captive polar bears and brown bears U. arctos, and with video from camera collars deployed on free-ranging polar bears on sea ice and on land. We used random forest models to predict behaviors and found strong ability to discriminate the most common wild polar bear behaviors using a combination of accelerometer and conductivity sensor data from captive or wild polar bears. In contrast, models using data from captive brown bears failed to reliably distinguish most active behaviors in wild polar bears. Our ability to discriminate behavior was greatest when species- and habitat-specific data from wild individuals were used to train models. Data from captive individuals may be suitable for calibrating accelerometers, but may provide reduced ability to discriminate some behaviors. The accelerometer calibrations developed here provide a method to quantify polar bear behaviors to evaluate the impacts of declines in Arctic sea ice.
Optimal accelerometer placement on a robot arm for pose estimation
NASA Astrophysics Data System (ADS)
Wijayasinghe, Indika B.; Sanford, Joseph D.; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Das, Sumit K.; Popa, Dan O.
2017-05-01
The performance of robots to carry out tasks depends in part on the sensor information they can utilize. Usually, robots are fitted with angle joint encoders that are used to estimate the position and orientation (or the pose) of its end-effector. However, there are numerous situations, such as in legged locomotion, mobile manipulation, or prosthetics, where such joint sensors may not be present at every, or any joint. In this paper we study the use of inertial sensors, in particular accelerometers, placed on the robot that can be used to estimate the robot pose. Studying accelerometer placement on a robot involves many parameters that affect the performance of the intended positioning task. Parameters such as the number of accelerometers, their size, geometric placement and Signal-to-Noise Ratio (SNR) are included in our study of their effects for robot pose estimation. Due to the ubiquitous availability of inexpensive accelerometers, we investigated pose estimation gains resulting from using increasingly large numbers of sensors. Monte-Carlo simulations are performed with a two-link robot arm to obtain the expected value of an estimation error metric for different accelerometer configurations, which are then compared for optimization. Results show that, with a fixed SNR model, the pose estimation error decreases with increasing number of accelerometers, whereas for a SNR model that scales inversely to the accelerometer footprint, the pose estimation error increases with the number of accelerometers. It is also shown that the optimal placement of the accelerometers depends on the method used for pose estimation. The findings suggest that an integration-based method favors placement of accelerometers at the extremities of the robot links, whereas a kinematic-constraints-based method favors a more uniformly distributed placement along the robot links.
Abrasion of eroded and sound enamel by a dentifrice containing diamond abrasive particles
Wegehaupt, Florian J.; Hoegger, Vanessa G. M.; Attin, Thomas
2017-07-24
Eroded enamel is more susceptible to abrasive wear than sound enamel. New toothpastes utilizing diamond particles as abrasives have been developed. The present study investigated the abrasive wear of eroded enamel by three commercially available toothpastes (one containing diamond particles) and compared it to the respective wear of sound enamel caused by these toothpastes. Seventy-two bovine enamel samples were randomly allocated to six groups (S1–S3 and E1–E3; n=12). Samples were submitted to an abrasive (S1–S3) or erosion plus abrasion (E1–E3) cycling. Per cycle, all samples were brushed (abrasion; 20 brushing stokes) with the following toothpastes: S1/E1: Signal WHITE SYSTEM, S2/E2: elmex KARIESSCHUTZ and S3-E3: Candida WHITE DIAMOND (diamond particles). Groups E1–E3 were additionally eroded with HCl (pH 3.0) for 2 min before each brushing procedure. After 30, 60 and 90 cycles enamel wear was measured by surface profilometry. Within the same toothpaste and same number of cycles, enamel wear due to erosion plus abrasion was significantly higher than due to mere abrasion. After 30, 60 and 90 cycles, no significant difference in the wear in groups S1 and S2 was observed while the wear in group E1 was significantly (p<0.05, ANOVA, Scheffecyc) lower than that in group E2. After 90 cycles, wear in group S3 was about 5 times higher than that in group S2, while wear in group E3 was about 1.3 times higher than that in group E2. As compared to the other two investigated toothpastes, the dentifrice containing diamond particles caused slightly higher abrasive wear of eroded enamel and distinctly higher wear of sound enamel compared to the conventional toothpastes under investigation.
Effects of Load and Speed on Wear Rate of Abrasive Wear for 2014 Al Alloy
NASA Astrophysics Data System (ADS)
Odabas, D.
2018-01-01
In this paper, the effects of the normal load and sliding speed on wear rate of two-body abrasive wear for 2014 Al Alloy were investigated in detail. In order to understand the variation in wear behaviour with load and speed, wear tests were carried out at a sliding distance of 11 m, a speed of 0.36 m/s, a duration of 30 s and loads in the range 3-11 N using 220 grit abrasive paper, and at a speed range 0.09-0.90 m/s, a load of 5 N and an average sliding distance of 11 m using abrasive papers of 150 grit size under dry friction conditions. Before the wear tests, solution treatment of the 2014 Al alloy was carried out at temperatures of 505 and 520 °C for 1 h in a muffle furnace and then quenched in cold water at 15 °C. Later, the ageing treatment was carried out at 185 °C for 8 h in the furnace. Generally, wear rate due to time increased linearly and linear wear resistance decreased with increasing loads. However, the wear rate was directly proportional to the load up to a critical load of 7 N. After this load, the slope of the curves decreased because the excessive deformation of the worn surface and the instability of the abrasive grains began to increase. When the load on an abrasive grain reaches a critical value, the groove width is about 0.17 of the abrasive grain diameter, and the abrasive grains begin to fail. The wear rate due to time increased slightly as the sliding speed increased in the range 0.09-0.90 m/s. The reason for this is that changes arising from strain rate and friction heating are expected with increasing sliding speeds.
Longitudinal study of gastroesophageal reflux and erosive tooth wear.
Wilder-Smith, Clive H; Materna, Andrea; Martig, Lukas; Lussi, Adrian
2017-10-25
Approximately 60% of patients presenting to dentists with erosive tooth wear have significant gastroesophageal reflux (GERD), despite minor reflux symptoms. No longitudinal studies of reflux-associated erosive tooth wear and of reflux characteristics have been reported to date. The aim of this study was to characterize the longitudinal course of GERD and of associated erosive tooth wear, as well as factors predictive of its progression, in a large group of patients. Seventy-two patients presenting to dentists with clinically significant erosive tooth wear and increased esophageal acid exposure by 24-h multichannel intraluminal pH-impedance measurement (MII-pH) were re-assessed clinically and by MII-pH after 1 year treatment with esomeprazole 20 mg twice-daily. Predictive factors for erosive tooth wear were assessed by logistic regression. At follow-up, no further progression in erosive tooth wear was observed in 53 (74%) of patients. The percentage of time with a pH < 4, the number of acid reflux episodes and the percentage of proximal esophageal reflux off-PPI did not change significantly after one year, but the number of weakly acidic reflux episodes decreased significantly in the large subgroup without progression. None of the baseline demographic, clinical, endoscopic or esophageal acid exposure characteristics were significantly associated with progression of erosive tooth wear at follow-up. In this longitudinal study in patients with erosive tooth wear and oligosymptomatic GERD receiving esomeprazole for one year, erosive tooth wear did not progress further in the majority of patients. Background acidic esophageal reflux exposure appeared stable over time, whereas weakly acidic exposure decreased significantly in patients without erosion progression. MII-pH measurements on-PPI and with healthy controls will be useful in the further elucidation of the causal role of reflux in erosive tooth wear. ClinicalTrials.gov , retrospectively registered: NCT02087345 .
Vathsangam, Harshvardhan; Emken, Adar; Schroeder, E. Todd; Spruijt-Metz, Donna; Sukhatme, Gaurav S.
2011-01-01
This paper describes an experimental study in estimating energy expenditure from treadmill walking using a single hip-mounted triaxial inertial sensor comprised of a triaxial accelerometer and a triaxial gyroscope. Typical physical activity characterization using accelerometer generated counts suffers from two drawbacks - imprecison (due to proprietary counts) and incompleteness (due to incomplete movement description). We address these problems in the context of steady state walking by directly estimating energy expenditure with data from a hip-mounted inertial sensor. We represent the cyclic nature of walking with a Fourier transform of sensor streams and show how one can map this representation to energy expenditure (as measured by V O2 consumption, mL/min) using three regression techniques - Least Squares Regression (LSR), Bayesian Linear Regression (BLR) and Gaussian Process Regression (GPR). We perform a comparative analysis of the accuracy of sensor streams in predicting energy expenditure (measured by RMS prediction accuracy). Triaxial information is more accurate than uniaxial information. LSR based approaches are prone to outlier sensitivity and overfitting. Gyroscopic information showed equivalent if not better prediction accuracy as compared to accelerometers. Combining accelerometer and gyroscopic information provided better accuracy than using either sensor alone. We also analyze the best algorithmic approach among linear and nonlinear methods as measured by RMS prediction accuracy and run time. Nonlinear regression methods showed better prediction accuracy but required an order of magnitude of run time. This paper emphasizes the role of probabilistic techniques in conjunction with joint modeling of triaxial accelerations and rotational rates to improve energy expenditure prediction for steady-state treadmill walking. PMID:21690001
Menezes, Diogo; Laranjo, Luís; Marmeleira, José
2017-01-01
To implement appropriate programs for promoting physical activity (PA) in people who are Deaf, it is important to have valid instruments for assessing PA in this population. The main purpose of this study was to examine the criterion validity of the short form of the International Physical Activity Questionnaire (IPAQ-S) in Deaf adults. This study included 44 adults (18-65 years) of both genders (63.6% were females) who met the inclusion criteria. Objective measures of PA were collected using accelerometers, which were worn by each participant during one week. After using the accelerometer, the IPAQ-S was applied to assess participants' physical activity during the last 7 days. There was no significant correlation between the average time spent in moderate to vigorous physical activity (MVPA) as measured by the accelerometer (40.1 ± 24.5 min/day) and by the IPAQ-S (41.3 ± 57.5 min/day). The IPAQ-S significantly underestimated the time spent in sedentary behavior (7.6 ± 2.7 h/day vs. 10.1 ± 1.6 h/day). Sedentary behavior and MVPA as measured by the accelerometer and the IPAQ-S showed limited agreement. Our results show some limitations on the use of IPAQ-S for quantifying PA among adults who are Deaf. The IPAQ-S tends to overestimate the MVPA and to underestimate sedentary behavior in adults who are Deaf. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Meylan, B.; Ciani, D.; Zhang, B.; Cuche, E.; Wasmer, K.
2017-12-01
This contribution presents a new ball-on-disk vacuum tribometer with in situ measurement of the wear track by digital holographic microscopy. This new tribometer allows observation of the evolution of the wear track in situ and in real-time. The method combines a high vacuum high temperature ball-on-disk tribometer with a digital holographic microscope (DHM). The machine was tested and validated by taking DHM images during wear tests at room temperature and in vacuum at 2 · 10-6 of polished 100Cr6 steel disks. We demonstrated that the DHM system is well suited to monitor the evolution of the wear track during sliding. We found that, with an acquisition time of 0.1 ms for the DHM, the maximal linear speed is 10 cm s-1 to have reliable images. We proved, via scanning electron microscope (SEM) pictures, that the lines in the sliding direction in all DHM images exist. We also validated the new tribometer by having an excellent correlation between the images and profiles of the wear track taken by the DHM with the ones from a confocal microscope. Finally, the new tribometer combined with the DHM has four advantages. It can test under vacuum and various atmospheric conditions. The evolution of the wear track is measured in situ and in real-time. Hence, the problem of replacing the sample is avoided. Thanks to the DHM technology, the vertical accuracy of the topographical measurement is 4 nm.
Brouwers, Rutger W M; Kraal, Jos J; Traa, Simone C J; Spee, Ruud F; Oostveen, Laurence M L C; Kemps, Hareld M C
2017-01-31
Cardiac rehabilitation has beneficial effects on morbidity and mortality in patients with coronary artery disease, but is vastly underutilised and short-term improvements are often not sustained. Telerehabilitation has the potential to overcome these barriers, but its superiority has not been convincingly demonstrated yet. This may be due to insufficient focus on behavioural change and development of patients' self-management skills. Moreover, potentially beneficial communication methods, such as internet and video consultation, are rarely used. We hypothesise that, when compared to centre-based cardiac rehabilitation, cardiac telerehabilitation using evidence-based behavioural change strategies, modern communication methods and on-demand coaching will result in improved self-management skills and sustainable behavioural change, which translates to higher physical activity levels in a cost-effective way. This randomised controlled trial compares cardiac telerehabilitation with centre-based cardiac rehabilitation in patients with coronary artery disease. We randomise 300 patients entering cardiac rehabilitation to centre-based cardiac rehabilitation (control group) or cardiac telerehabilitation (intervention group). The core component of the intervention is a patient-centred web application, which enables patients to adjust rehabilitation goals, inspect training and physical activity data, share data with other caregivers and to use video consultation. After six supervised training sessions, the intervention group continues exercise training at home, wearing an accelerometer and heart rate monitor. In addition, physical activity levels are assessed by the accelerometer for four days per week. Patients upload training and physical activity data weekly and receive feedback through video consultation once a week. After completion of the rehabilitation programme, on-demand coaching is performed when training adherence or physical activity levels decline with 50% or more. The primary outcome measure is physical activity level, assessed at baseline, three months and twelve months, and is calculated from accelerometer and heart rate data. Secondary outcome measures include physical fitness, quality of life, anxiety and depression, patient empowerment, patient satisfaction and cost-effectiveness. This study is one of the first studies evaluating effects and costs of a cardiac telerehabilitation intervention comprising a combination of modern technology and evidence-based behavioural change strategies including relapse prevention. We hypothesise that this intervention has superior effects on exercise behaviour without exceeding the costs of a traditional centre-based intervention. Netherlands Trial Register NTR5156 . Registered 22 April 2015.
NASA Astrophysics Data System (ADS)
Velkavrh, Igor; Kafexhiu, Fevzi; Klien, Stefan; Diem, Alexander; Podgornik, Bojan
2017-01-01
Increasing amount of tribological applications is working under alternating high/low temperature conditions where the material is subjected to temperature fatigue mechanisms such as creep, softening due to annealing, and at the same time must withstand mechanical wear due to sliding contact with pairing bodies. Steam turbine valves, gate valves, valve heads, stems, seats and bushings, and contacting surfaces of the carrier elements are some examples of such applications. The purpose of the present study is to evaluate the potential of X20 and P91 steels as materials for applications operating under combined effect of mechanical wear and alternating high/low temperature conditions. It was focused on how the microstructural changes occurring in the weld zone affect the wear properties of the selected materials. Generally, with longer tempering time and higher tempering temperature, the number of carbide precipitates decreased, while their relative spacing increased. Before tempering, the morphology of the steel matrix (grain size, microstructure homogeneity) governed the wear resistance of both steels, while after tempering wear response was determined by the combination of the number and the size of carbide particles. After tempering, in X20 steel larger number of stable M23C6 carbides was observed as compared with P91 steel, resulting in lower wear rates. It was observed that for both steels, a similar combination of number density and size distribution of carbide particles provided the highest wear resistance.
Evaluation of electrolytic tilt sensors for measuring model angle of attack in wind tunnel tests
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
1992-01-01
The results of a laboratory evaluation of electrolytic tilt sensors as potential candidates for measuring model attitude or angle of attack in wind tunnel tests are presented. The performance of eight electrolytic tilt sensors was compared with that of typical servo accelerometers used for angle-of-attack measurements. The areas evaluated included linearity, hysteresis, repeatability, temperature characteristics, roll-on-pitch interaction, sensitivity to lead-wire resistance, step response time, and rectification. Among the sensors being evaluated, the Spectron model RG-37 electrolytic tilt sensors have the highest overall accuracy in terms of linearity, hysteresis, repeatability, temperature sensitivity, and roll sensitivity. A comparison of the sensors with the servo accelerometers revealed that the accuracy of the RG-37 sensors was on the average about one order of magnitude worse. Even though a comparison indicates that the cost of each tilt sensor is about one-third the cost of each servo accelerometer, the sensors are considered unsuitable for angle-of-attack measurements. However, the potential exists for other applications such as wind tunnel wall-attitude measurements where the errors resulting from roll interaction, vibration, and response time are less and sensor temperature can be controlled.
Spectral Regression Based Fault Feature Extraction for Bearing Accelerometer Sensor Signals
Xia, Zhanguo; Xia, Shixiong; Wan, Ling; Cai, Shiyu
2012-01-01
Bearings are not only the most important element but also a common source of failures in rotary machinery. Bearing fault prognosis technology has been receiving more and more attention recently, in particular because it plays an increasingly important role in avoiding the occurrence of accidents. Therein, fault feature extraction (FFE) of bearing accelerometer sensor signals is essential to highlight representative features of bearing conditions for machinery fault diagnosis and prognosis. This paper proposes a spectral regression (SR)-based approach for fault feature extraction from original features including time, frequency and time-frequency domain features of bearing accelerometer sensor signals. SR is a novel regression framework for efficient regularized subspace learning and feature extraction technology, and it uses the least squares method to obtain the best projection direction, rather than computing the density matrix of features, so it also has the advantage in dimensionality reduction. The effectiveness of the SR-based method is validated experimentally by applying the acquired vibration signals data to bearings. The experimental results indicate that SR can reduce the computation cost and preserve more structure information about different bearing faults and severities, and it is demonstrated that the proposed feature extraction scheme has an advantage over other similar approaches. PMID:23202017
Jones, G R; Brandon, C; Gill, D P
2017-07-01
Winter weather conditions may negatively influence participation of older adults in daily physical activity (PA). Assess the influence of winter meteorological variables, day-time peak ambient temperature, windchill, humidity, and snow accumulation on the ground to accelerometer measured PA values in older adults. 50 community-dwelling older adults (77.4±4.7yrs; range 71-89; 12 females) living in Southwestern Ontario (Latitude 42.9°N Longitude 81.2° W) Canada, wore a waist-borne accelerometer during active waking hours (12h) for 7 consecutive days between February and April 2007. Hourly temperature, windchill, humidity, and snowfall accumulation were obtained from meteorological records and time locked to hourly accelerometer PA values. Regression analysis revealed significant relationships between time of day, ambient daytime high temperature and a humidity for participation in PA. Windchill temperature added no additional influence over PA acclamation already influenced by ambient day-time temperature and the observed variability in PA patterns relative to snow accumulation over the study period was too great to warrant its inclusion in the model. Most PA was completed in the morning hours and increased as the winter month's transitioned to spring (February through April). An equation was developed to adjust for winter weather conditions using temperature, humidity and time of day. Accurate PA assessment during the winter months must account for the ambient daytime high temperatures, humidity, and time of day. These older adults were more physically active during the morning hours and became more active as the winter season transitioned to spring. Copyright © 2017 Elsevier B.V. All rights reserved.
High Sensitive Precise 3D Accelerometer for Solar System Exploration with Unmanned Spacecrafts
NASA Astrophysics Data System (ADS)
Savenko, Y. V.; Demyanenko, P. O.; Zinkovskiy, Y. F.
Solutions of several space and geophysical tasks require creating high sensitive precise accelerometers with sensitivity in order of 10 -13 g. These several tasks are following: inertial navigation of the Earth and Space; gravimetry nearby the Earth and into Space; geology; geophysics; seismology etc. Accelerometers (gravimeters and gradientmeters) with required sensitivity are not available now. The best accelerometers in the world have sensitivity worth on 4-5 orders. It has been developed a new class of fiber-optical sensors (FOS) with light pulse modulation. These sensors have super high threshold sensitivity and wide (up to 10 orders) dynamic range, and can be used as a base for creating of measurement units of physical values as 3D superhigh sensitive precise accelerometers of linear accelerations that is suitable for highest requirements. The principle of operation of the FOS is organically combined with a digital signal processing. It allows decreasing hardware of the accelerometer due to using a usual air-borne or space-borne computer; correcting the influence of natural, design, technological drawbacks of FOS on measured results; neutralising the influence of extraordinary situations available during using of FOS; decreasing the influence of internal and external destabilising factors (as for FOS), such as oscillation of environment temperature, instability of pendulum cycle frequency of sensitive element of the accelerometer etc. We were conducted a quantitative estimation of precise opportunities of analogue FOS in structure of fiber optical measuring devices (FOMD) for elementary FOMD with analogue FOS built on modern element basis of fiber optics (FO), at following assumptions: absolute parameter stability of devices of FOS measuring path; single transmission band of registration path; maximum possible inserted in optical fiber (OF) a radiated power. Even at such idealized assumptions, a calculated value in limit reached minimum inaccuracy of measuring, by analogue FOS, has been ˜ 10-4 %. Substantially accessible values are yet worse on 2-3 order. The reason of poor precise performances of measurers on the basis of analogue FOS is metrologically poor quality of a stream of optical radiation carrying out role of the carrier and receptor of the information. It is a high level of photon noise and a small blanket intensity level. First reason reflects the fact of discreteness of flow of high-energy photons, and it is consequence of second one - smallness, on absolute value, of inserted power into OF from available radiation sources (RS). Works on improvement of FO elements are carrying out. Certainly, it will be created RS allow to insert enough of power into standard OF. But simple increasing of optical flow power in measuring path of FOS will not be able to decide radically the problem of increasing of measuring prices: with raising of power in proportion of square root of its value there is raising a power of photon noises - 1000-times increase of power promises only 30-times increase of measuring precise; insertion into OF more large power (˜ 1 W for standard silicon OF) causes an appearance of non-linear effects in it, which destroying an operating principle of analogue FOS. Thus, it is needed to constatate impossibility of building, at that time, measurers of analogue FOS, concurated with traditional (electrical) measurers on measuring precise. At that all, advantages of FO, as basis of building of FO MD requires to find ways for decision of these problems. Analysis of problem of sensitivity of usual (analogue) FOS has brought us to conclusion about necessity of reviewing of principles of information signal forming in FOS and principles its next electronic processing. For radical increasing of accuracy of measurements with using FOS it is necessary to refuse analogue modulation of optical flow and to transfer to discreet its modulations, entering thus in optical flow new, non-optical, parameters, which will serve as recipients of the information. It allows to save up all advantages of FOS (carrier of information, as earlier, remains an optical flow), but problem of accuracy of measurements now will not be more connected with problem of measurement of low power intensity of optical flow - it is transferred from area of optical measurements in other, non-optical area, where there is no this problem, or it had been solved duly. It had been developed a new class of FOS with pulse modulation of radiation flow intensity at the Department of Design and Production of Redioelectronic Systems of National Technical University of Ukraine ``Kiev Polytechnic Institute''. PFOS have benefit differ from usual analogue FOS on high threshold sensitivity and wide dynamic range of measured values. As example there are described design and performances of proposed 3D accelerometer. High precision of accelerometer measurements on PFOS is provided by following: possibility of high precision measurements of time intervals, which serve as informative parameters in output pulse signal of PFOS; possibility of creating a high quality quartz oscillating system, which serves as sensitive element of PFOS; insensitiveness of metrological performances of the accelerometer to any parameter instabilities (time, temperature, etc.) of optical and electrical elements in measuring path of PFOS; digital processing of PFOS signal practically excludes processing errors; principle insensitiveness of PFOS to electromagnetic noises of any nature and any intensity; possibility of direct correction of measuring results, during their processing, for taking into account and excluding undesirable influences of any destabilizing factors are acting on PFOS. Quasi stationary approach The developed 3D accelerometer on PFOS of extra low accelerations has unique technical performances, that confirms our conclusions about potentially high metrological abilities of pulse FOS. It has the following performances (calculated): threshold sensitivity is (10 -9 ldots 10 -13) g (threshold is determine by customer with determination of sizes of sensor and electronic processing unit); dynamic range is 10 7 ldots 10 9 ; frequency range is 0 ldots 10 Hz; mass is 50 grams; size: length is 120 mm and diameter is 20 mm In addition, that it can be used as accelerometer properly, on its base it is possible to create the strapdown inertial systems (SIS) for spacecraft. Flight control is carried out in accordance to flight programe of spacecraft without support connection with external reference objects. These SIS allow: - direct control over changes of orbital parameter or flight track, caused by action of extra low but long time external force factors (braking action of planet atmosphere remains, sun wind pressure, etc.) on spacecraft; - checking correction of orbital parameters (spacecraft track) by including of low power spaceborne engine; The developed accelerometer can be also used as high sensitive gravimeter for geophysical investigations and geological explorations - anywhere, where it is required to measure extra low deviation of terrestrial gravity value. High sensitivity of described accelerometers allows to create, on its base, gradientometers of real system for investigation of Planet gravity field heterogeneity from spacecraft orbit. This opens possibilities of practical solution of number important tasks of Planet physics.
Physical activity outside of structured therapy during inpatient spinal cord injury rehabilitation.
Zbogar, Dominik; Eng, Janice J; Miller, William C; Krassioukov, Andrei V; Verrier, Mary C
2016-11-15
Little information exists on the content of inpatient rehabilitation stay when individuals with spinal cord injury (SCI) are not engaged in structured rehabilitation therapy sessions. Investigation of inpatient therapy content is incomplete without the context of activities outside of this time. We sought to quantify physical activity occurring outside of physical therapy (PT) and occupational therapy (OT) sessions during inpatient SCI rehabilitation and examine how this activity changes over time from admission to discharge. In this longitudinal observational study at two inpatient SCI rehabilitation centres, 95 participants were recruited through consecutive admissions. Physical activity at admission and discharge was recorded by 1) self-report (PARA-SCI questionnaire) and 2) real-time accelerometers worn on the dominant wrist, and hip if ambulatory. For analyses, we separated participants into those with paraplegia or tetraplegia, and a subgroup of those ambulatory at discharge. Wilcoxon signed rank tests (admission vs. discharge) were used for PARA-SCI minutes and accelerometry activity kilocounts. There was no change in self-report physical activity, where the majority of time was spent in leisure time sedentary activity (~4 h) and leisure time physical activity at a higher intensity had a median value of 0 min. In contrast, significant increases in physical activity outside PT and OT sessions from admission to discharge were found for wrist accelerometers for individuals with tetraplegia (i.e., upper limb activity) and hip accelerometers for ambulatory individuals (i.e., walking activity). Physical activity is low in the inpatient SCI rehabilitation setting outside of structured therapy with a substantial amount of time spent in leisure time sedentary activity. Individuals appear to have the capacity to increase their levels of physical activity over the inpatient stay.
Orrell, Alison; Doherty, Patrick; Miles, Jeremy; Lewin, Robert
2007-10-01
The aim of this study was to validate the Total Activity Measure, a brief questionnaire, to measure physical activity in an older adult population with heart disease. Two versions of the Total Activity Measure were administered twice, 7 days apart. The Total Activity Measure 1 asked respondents for the frequency and average duration of bouts of physical activity at three different intensity levels per week, whereas the Total Activity Measure 2 asked respondents for the total time spent in activity at each activity level per week. Questionnaire accuracy was studied in 62 men and 15 women aged 47-84 years, by repeatability and comparison of both administrations of the Total Activity Measure 1 and Total Activity Measure 2 with 7-day RT3 accelerometer data. Seventy-three adults (58 men, 15 women) were used for all statistical analyses. Intraclass correlation coefficients for the Total Activity Measure 1 and Total Activity Measure 2 total activity scores (metabolic equivalent per minute) were r=0.73 (95% confidence intervals, 0.56-0.83) and r=0.82 (95% confidence intervals, 0.71-0.88), respectively. Correlations between the Total Activity Measure 1 and RT3 accelerometer for total activity score (metabolic equivalent per minute) were significant, r=0.26 at time 1 and r=0.27 at time 2 for moderate intensity activities. Correlations between the Total Activity Measure 2 and RT3 accelerometer for total activity score (metabolic equivalent per minute) were also significant, r=0.38 at time 1 and r=0.36 at time 2, r=0.31 at time 2 for strenuous intensity activities and r=0.29 at time 1 and r=0.25 at time 2 for moderate intensity activities. Participants overestimated the amount of physical activity on both questionnaires as compared with the RT3 accelerometer. The Total Activity Measure 2 was reasonably accurate in assessing total and moderate intensity activity over a 7-day period and demonstrated good test-retest reliability. The Total Activity Measure 1 was less accurate. The Total Activity Measure 2 is a suitable measure of total or moderate intensity physical activity for surveys and audits in an adult cardiac population.
Accelerometer method and apparatus for integral display and control functions
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1992-06-01
Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily mountable on the machinery being monitored and having capabilities described will be appreciated by those working in the art.
Accelerometer method and apparatus for integral display and control functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1992-01-01
Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily mountable on the machinery being monitored and having capabilities described will be appreciated by those working in the art.
NASA Astrophysics Data System (ADS)
Weng, Fei; Yu, Huijun; Liu, Jianli; Chen, Chuanzhong; Dai, Jingjie; Zhao, Zhihuan
2017-07-01
Ti5Si3/TiC reinforced Co-based composite coatings were fabricated on Ti-6Al-4V titanium alloy by laser cladding with Co42 and SiC mixture. Microstructure and wear property of the cladding coatings with different content of SiC were investigated. During the cladding process, the original SiC dissolved and reacted with Ti forming Ti5Si3 and TiC. The complex in situ formed phases were found beneficial to the improvement of the coating property. Results indicated that the microhardness of the composite coatings was enhanced to over 3 times the substrate. The wear resistance of the coatings also showed distinct improvement (18.4-57.4 times). More SiC gave rise to better wear resistance within certain limits. However, too much SiC (20 wt%) was not good for the further improvement of the wear property.
NASA Astrophysics Data System (ADS)
Ettienne-Modeste, Geriel A.
Total joint replacement remains one of the most successful treatments for arthritis. The most common materials used for artificial joints are metals (e.g., cobalt-chrome alloys or titanium alloys), which articulate against ultra-high molecular weight polyethylene. Wear related failures of artificial joints may be reduced with the use of novel micro-textured carbide surfaces. The micro-textured carbide surfaces were deposited on a CoCrMo alloy using microwave plasma-assisted chemical vapor deposition. Wear tests were conducted to determine wear mechanisms and properties of the micro-textured surfaces. The research presented in this thesis addresses: (1) rheolgoical behavior of bovine calf serum with and without antibacterial agents to determine whether they can be used as appropriate models for synovial fluid, (2) the wear behavior of the micro-textured CoCrMo surface system, and (3) the mechanical and material properties of the micro-textured CoCrMo alloy surface relevant to wear performance. The rheological studies showed that the apparent viscosity of bovine calf serum increased with an increase in concentration before and after the serum was used for wear testing. The wear analysis showed that the processing conditions (2hr deposition vs. 4hr deposition times) affected the wear properties. The 2hr carbide-on-carbide lubricated in 50% BCS produced the lowest wear factor and rate for the five wear couple systems containing the carbide disk or plate material. Greater wear was produced in serum without penicillin/streptomycin (P/S) compared to the serum containing P/S. A greater carbide coating thickness 10 (micrometers) was produced during the 4hr deposition time than for the 2hr deposition (˜3mum). The nano-hardness value was higher than the micro-hardness for both the 4hr and 2hr carbide surfaces. The micro-hardness results of the worn carbide surfaces showed that an increase in BCS concentration from 0% to 100% increased the micro-hardness (HV) for carbide surfaces (from 873 to 1344 HV).
Online detecting system of roller wear based on laser-linear array CCD technology
NASA Astrophysics Data System (ADS)
Guo, Yuan
2010-10-01
Roller is an important metallurgy tool in the rolling mill. And the surface of a roller affects the quantity of the rolling product directly. After using a period of time, roller must be repaired or replaced. Examining the profile of a working roller between the intervals of rolling is called online detecting for roller wear. The study of online detecting roller wear is very important for selecting the grinding time in reason, reducing the exchanging times of rollers, improving the quality of the product and realizing online grinding rollers. By applying the laser-linear array CCD detective technology, a method for online non-touch detecting roller wear was brought forward. The principle, composition and the operation process of the linear array CCD detecting system were expatiated. And an error compensation algorithm is exactly calculated to offset the shift of the roller axis in this measurement system. So the stability and the accuracy were improved remarkably. The experiment proves that the accuracy of the detecting system reaches to the demand of practical production process. It can provide a new method of high speed and high accuracy online detecting for roller wear.
The Tribology of Explanted Hip Resurfacings Following Early Fracture of the Femur.
Lord, James K; Langton, David J; Nargol, Antoni V F; Meek, R M Dominic; Joyce, Thomas J
2015-10-15
A recognized issue related to metal-on-metal hip resurfacings is early fracture of the femur. Most theories regarding the cause of fracture relate to clinical factors but an engineering analysis of failed hip resurfacings has not previously been reported. The objective of this work was to determine the wear volumes and surface roughness values of a cohort of retrieved hip resurfacings which were removed due to early femoral fracture, infection and avascular necrosis (AVN). Nine resurfacing femoral heads were obtained following early fracture of the femur, a further five were retrieved due to infection and AVN. All fourteen were measured for volumetric wear using a co-ordinate measuring machine. Wear rates were then calculated and regions of the articulating surface were divided into "worn" and "unworn". Roughness values in these regions were measured using a non-contacting profilometer. The mean time to fracture was 3.7 months compared with 44.4 months for retrieval due to infection and AVN. Average wear rates in the early fracture heads were 64 times greater than those in the infection and AVN retrievals. Given the high wear rates of the early fracture components, such wear may be linked to an increased risk of femoral neck fracture.
A brief test of the Hewlett-Packard MEMS seismic accelerometer
Homeijer, Brian D.; Milligan, Donald J.; Hutt, Charles R.
2014-01-01
Testing was performed on a prototype of Hewlett-Packard (HP) Micro-Electro-Mechanical Systems (MEMS) seismic accelerometer at the U.S. Geological Survey’s Albuquerque Seismological Laboratory. This prototype was built using discrete electronic components. The self-noise level was measured during low seismic background conditions and found to be 9.8 ng/√Hz at periods below 0.2 s (frequencies above 5 Hz). The six-second microseism noise was also discernible. The HP MEMS accelerometer was compared to a Geotech Model GS-13 reference seismometer during seismic noise and signal levels well above the self-noise of the accelerometer. Matching power spectral densities (corrected for accelerometer and seismometer responses to represent true ground motion) indicated that the HP MEMS accelerometer has a flat (constant) response to acceleration from 0.0125 Hz to at least 62.5 Hz. Tilt calibrations of the HP MEMS accelerometer verified that the flat response to acceleration extends to 0 Hz. Future development of the HP MEMS accelerometer includes replacing the discreet electronic boards with a low power application-specific integrated circuit (ASIC) and increasing the dynamic range of the sensor to detect strong motion signals above one gravitational acceleration, while maintaining the self-noise observed during these tests.
Vibration sensing in smart machine rotors using internal MEMS accelerometers
NASA Astrophysics Data System (ADS)
Jiménez, Samuel; Cole, Matthew O. T.; Keogh, Patrick S.
2016-09-01
This paper presents a novel topology for enhanced vibration sensing in which wireless MEMS accelerometers embedded within a hollow rotor measure vibration in a synchronously rotating frame of reference. Theoretical relations between rotor-embedded accelerometer signals and the vibration of the rotor in an inertial reference frame are derived. It is thereby shown that functionality as a virtual stator-mounted displacement transducer can be achieved through appropriate signal processing. Experimental tests on a prototype rotor confirm that both magnitude and phase information of synchronous vibration can be measured directly without additional stator-mounted key-phasor sensors. Displacement amplitudes calculated from accelerometer signals will become erroneous at low rotational speeds due to accelerometer zero-g offsets, hence a corrective procedure is introduced. Impact tests are also undertaken to examine the ability of the internal accelerometers to measure transient vibration. A further capability is demonstrated, whereby the accelerometer signals are used to measure rotational speed of the rotor by analysing the signal component due to gravity. The study highlights the extended functionality afforded by internal accelerometers and demonstrates the feasibility of internal sensor topologies, which can provide improved observability of rotor vibration at externally inaccessible rotor locations.
Citizen sensors for SHM: use of accelerometer data from smartphones.
Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin
2015-01-29
Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications.
How many days of accelerometer monitoring predict weekly physical activity behaviour in obese youth?
Vanhelst, Jérémy; Fardy, Paul S; Duhamel, Alain; Béghin, Laurent
2014-09-01
The aim of this study was to determine the type and the number of accelerometer monitoring days needed to predict weekly sedentary behaviour and physical activity in obese youth. Fifty-three obese youth wore a triaxial accelerometer for 7 days to measure physical activity in free-living conditions. Analyses of variance for repeated measures, Intraclass coefficient (ICC) and regression linear analyses were used. Obese youth spent significantly less time in physical activity on weekends or free days compared with school days. ICC analyses indicated a minimum of 2 days is needed to estimate physical activity behaviour. ICC were 0·80 between weekly physical activity and weekdays and 0·92 between physical activity and weekend days. The model has to include a weekday and a weekend day. Using any combination of one weekday and one weekend day, the percentage of variance explained is >90%. Results indicate that 2 days of monitoring are needed to estimate the weekly physical activity behaviour in obese youth with an accelerometer. Our results also showed the importance of taking into consideration school day versus free day and weekday versus weekend day in assessing physical activity in obese youth. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Ellis, Katherine; Godbole, Suneeta; Marshall, Simon; Lanckriet, Gert; Staudenmayer, John; Kerr, Jacqueline
2014-01-01
Background: Active travel is an important area in physical activity research, but objective measurement of active travel is still difficult. Automated methods to measure travel behaviors will improve research in this area. In this paper, we present a supervised machine learning method for transportation mode prediction from global positioning system (GPS) and accelerometer data. Methods: We collected a dataset of about 150 h of GPS and accelerometer data from two research assistants following a protocol of prescribed trips consisting of five activities: bicycling, riding in a vehicle, walking, sitting, and standing. We extracted 49 features from 1-min windows of this data. We compared the performance of several machine learning algorithms and chose a random forest algorithm to classify the transportation mode. We used a moving average output filter to smooth the output predictions over time. Results: The random forest algorithm achieved 89.8% cross-validated accuracy on this dataset. Adding the moving average filter to smooth output predictions increased the cross-validated accuracy to 91.9%. Conclusion: Machine learning methods are a viable approach for automating measurement of active travel, particularly for measuring travel activities that traditional accelerometer data processing methods misclassify, such as bicycling and vehicle travel. PMID:24795875
Zheng, Panpan; Liu, Jinquan; Li, Zhu; Liu, Huafeng
2017-01-01
Encoder-like micro area-changed capacitive transducers are advantageous in terms of their better linearity and larger dynamic range compared to gap-changed capacitive transducers. Such transducers have been widely applied in rectilinear and rotational position sensors, lab-on-a-chip applications and bio-sensors. However, a complete model accounting for both the parasitic capacitance and fringe effect in area-changed capacitive transducers has not yet been developed. This paper presents a complete model for this type of transducer applied to a high-resolution micro accelerometer that was verified by both simulations and experiments. A novel optimization method involving the insertion of photosensitive polyimide was used to reduce the parasitic capacitance, and the capacitor spacing was decreased to overcome the fringe effect. The sensitivity of the optimized transducer was approximately 46 pF/mm, which was nearly 40 times higher than that of our previous transducer. The displacement detection resolution was measured as 50 pm/√Hz at 0.1 Hz using a precise capacitance detection circuit. Then, the transducer was applied to a sandwich in-plane micro accelerometer, and the measured level of the accelerometer was approximately 30 ng/√Hz at 1Hz. The earthquake that occurred in Taiwan was also detected during a continuous gravity measurement. PMID:28930176
Design, Simulation and Fabrication of Triaxial MEMS High Shock Accelerometer.
Zhang, Zhenhai; Shi, Zhiguo; Yang, Zhan; Xie, Zhihong; Zhang, Donghong; Cai, De; Li, Kejie; Shen, Yajing
2015-04-01
On the basis of analyzing the disadvantage of other structural accelerometer, three-axis high g MEMS piezoresistive accelerometer was put forward in order to apply to the high-shock test field. The accelerometer's structure and working principle were discussed in details. The simulation results show that three-axis high shock MEMS accelerometer can bear high shock. After bearing high shock impact in high-shock shooting test, three-axis high shock MEMS accelerometer can obtain the intact metrical information of the penetration process and still guarantee the accurate precision of measurement in high shock load range, so we can not only analyze the law of stress wave spreading and the penetration rule of the penetration process of the body of the missile, but also furnish the testing technology of the burst point controlling. The accelerometer has far-ranging application in recording the typical data that projectile penetrating hard target and furnish both technology guarantees for penetration rule and defend engineering.
Ilangkumaran, R; Srinivasan, J; Baburajan, K; Balaji, N
2014-12-01
Wear of complete denture teeth results in compromise in denture esthetics and functions. To counteract this problem, artificial teeth with increased wear resistance had been introduced in the market such as nanocomposite teeth. The purpose of this study was to compare the amount of wear between nanocomposite teeth and acrylic teeth. Fifteen specimens were chosen from each group namely the nanocomposite teeth (SR_-PHONARES) and the acrylic teeth (ACRY PLUS). Maxillary premolar was only chosen for testing and the samples were customized according to the specifications of the pin on disc machine. Pin on disc machine is a two body tribometer which quantifies the amount of wear under a specific load and time. Test samples were mounted on to the receptacle of the pin on disc machine and tested under a load of 0.3 kg for 1,000 cycles of rotation against a 600 grit emery paper. The amount of wear is displayed from the digital reading obtained from the pin on disc machine. After statistical analysis, it was found that, the amount of wear is more in four layered acrylic teeth. The p value obtained is 0.002 (<0.005) thus implies that the difference in wear between nanocomposite teeth and acrylic teeth is statistically significant. Though the nanocomposite teeth has less amount of wear than the four layered acrylic teeth, the difference is very less and adds only to a little clinical significance but the cost of the nanocomposite is four times that of the acrylic teeth. Further clinical studies must be performed to confirm our results.
Romero-Jiménez, Miguel; Santodomingo-Rubido, Jacinto; Flores-Rodríguez, Patricia; González-Méijome, Jose-Manuel
2015-01-01
To evaluate changes in anterior corneal topography and higher-order aberrations (HOA) after 14-days of rigid gas-permeable (RGP) contact lens (CL) wear in keratoconus subjects comparing two different fitting approaches. Thirty-one keratoconus subjects (50 eyes) without previous history of CL wear were recruited for the study. Subjects were randomly fitted to either an apical-touch or three-point-touch fitting approach. The lens' back optic zone radius (BOZR) was 0.4mm and 0.1mm flatter than the first definite apical clearance lens, respectively. Differences between the baseline and post-CL wear for steepest, flattest and average corneal power (ACP) readings, central corneal astigmatism (CCA), maximum tangential curvature (KTag), anterior corneal surface asphericity, anterior corneal surface HOA and thinnest corneal thickness measured with Pentacam were compared. A statistically significant flattening was found over time on the flattest and steepest simulated keratometry and ACP in apical-touch group (all p<0.01). A statistically significant reduction in KTag was found in both groups after contact lens wear (all p<0.05). Significant reduction was found over time in CCA (p=0.001) and anterior corneal asphericity in both groups (p<0.001). Thickness at the thinnest corneal point increased significantly after CL wear (p<0.0001). Coma-like and total HOA root mean square (RMS) error were significantly reduced following CL wearing in both fitting approaches (all p<0.05). Short-term rigid gas-permeable CL wear flattens the anterior cornea, increases the thinnest corneal thickness and reduces anterior surface HOA in keratoconus subjects. Apical-touch was associated with greater corneal flattening in comparison to three-point-touch lens wear. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
NASA Astrophysics Data System (ADS)
Pratap, A.; Sahoo, P.; Patra, K.; Dyakonov, A. A.
2017-09-01
This study focuses on the improvement in grinding performance of BK-7 glass using polycrystalline diamond micro-tool. Micro-tools are modified using wire EDM and performance of modified tools is compared with that of as received tool. Tool wear of different types of tools are observed. To quantify the tool wear, a method based on weight loss of tool is introduced in this study. Modified tools significantly reduce tool wear in comparison to the normal tool. Grinding forces increase with machining time due to tool wear. However, modified tools produce lesser forces thus can improve life of the PCD micro-grinding tool.
NASA Astrophysics Data System (ADS)
Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Qitao, Huang; Ivanova, L. R.
2016-11-01
Mechanical and tribotechnical properties of UHMWPE composites reinforced with basalt fibers and particles under dry sliding friction and abrasion were investigated. It is shown that adding of the basalt particles provides higher wear resistance under the dry sliding friction while at abrasion filling by the basalt fibers is more efficient since the wear resistance of the reinforced UHMWPE composites is by 3.7 times higher in contrast with the neat polymer. Wear mechanisms of the polymeric UHMWPE composites under various types of wear are discussed.
Wear behavior of AISI 1090 steel modified by pulse plasma technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayday, Aysun; Durman, Mehmet
2012-09-06
AISI 1090 steel was pulse plasma treated (PPT) using a Molybdenum electrode. Two different pulse numbers were chosen to obtain modified layers of 20{+-}5 {mu}m thickness. The dry sliding wear studies performed on this steel with and without PPT against an alumina ball counterpart showed that the PPT improved the wear resistance. The pulse number of the PPT modified layer was found to be highly influential in imparting the wear resistance to this steel, due to enhancement of surface hardness depending on treatment time.
Using the GOCE star trackers for validating the calibration of its accelerometers
NASA Astrophysics Data System (ADS)
Visser, P. N. A. M.
2017-12-01
A method for validating the calibration parameters of the six accelerometers on board the Gravity field and steady-state Ocean Circulation Explorer (GOCE) from star tracker observations that was originally tested by an end-to-end simulation, has been updated and applied to real data from GOCE. It is shown that the method provides estimates of scale factors for all three axes of the six GOCE accelerometers that are consistent at a level significantly better than 0.01 compared to the a priori calibrated value of 1. In addition, relative accelerometer biases and drift terms were estimated consistent with values obtained by precise orbit determination, where the first GOCE accelerometer served as reference. The calibration results clearly reveal the different behavior of the sensitive and less-sensitive accelerometer axes.
Puente Reyna, Ana Laura; Jäger, Marcus; Floerkemeier, Thilo; Frecher, Sven; Delank, Karl-Stefan; Schilling, Christoph; Grupp, Thomas M
2016-01-01
Backside wear due to micromotion and poor conformity between the liner and its titanium alloy shell may contribute to the high rates of retroacetabular osteolysis and consequent aseptic loosening. The purpose of our study was to understand the wear process on the backside of polyethylene liners from two acetabular cup systems, whose locking mechanism is based on a press-fit cone in combination with a rough titanium conical inner surface on the fixation area. A direct comparison between in vitro wear simulator tests (equivalent to 3 years of use) and retrieved liners (average 13.1 months in situ) was done in order to evaluate the backside wear characteristics and behavior of these systems. Similar wear scores between in vitro tested and retrieved liners were observed. The results showed that this locking mechanism did not significantly produce wear marks at the backside of the polyethylene liners due to micromotion. In all the analyzed liners, the most common wear modes observed were small scratches at the cranial fixation zone directly below the rough titanium inner surface of the shell. It was concluded that most of the wear marks were produced during the insertion and removal of the liner, rather than during its time in situ.
Type of motion and lubricant in wear simulation of polyethylene acetabular cup.
Saikko, V; Ahlroos, T
1999-01-01
The wear of ultra-high molecular weight polyethylene, the most commonly used bearing material in prosthetic joints, is often substantial, posing a significant clinical problem. For a long time, there has been a need for simple but still realistic wear test devices for prosthetic joint materials. The wear factors produced by earlier reciprocating and unidirectionally rotating wear test devices for polyethylene are typically two orders of magnitude too low, both in water and in serum lubrication. Wear is negligible even under multidirectional motion in water. A twelve-station, circularly translating pin-on-disc (CTPOD) device and a modification of the established biaxial rocking motion hip joint simulator were built. With these simple and inexpensive devices, and with the established three-axis hip joint simulator, realistic wear simulation was achieved. This was due to serum lubrication and to the fact that the direction of sliding constantly changed relative to the polyethylene specimen. The type and magnitude of load was found to be less important. The CTPOD tests showed that the subsurface brittle region, which results from gamma irradiation sterilization of polyethylene in air, has poor wear resistance. Phospholipid and soy protein lubrication resulted in unrealistic wear. The introduction of devices like CTPOD may boost wear studies, rendering them feasible without heavy investment.
Wear and microhardness of different resin composite materials.
Say, Esra Can; Civelek, Arzu; Nobecourt, Alain; Ersoy, Mustafa; Guleryuz, Canan
2003-01-01
This study determined the three-body abrasive wear resistance of two packable composites (P-60; Solitaire 2), an ion-releasing composite (Ariston AT), a hybrid composite (Tetric Ceram) and an ormocer (Admira). The study also looked at the correlation between wear resistance and hardness of the composites. Three-body wear testing was performed using an ACTA wear machine with 15 N contact force using millet seed as the third body. Wear depth (microm) was measured by profilometry after 200,000 cycles. The hardness test was performed using a digital microhardness tester (load: 500 g; dwell time: 15 seconds). The data were analyzed by using Kruskal Wallis (p < 0.05). There were statistically significant differences among the three body abrasive wear of the composites. The ranking from least to most were as follows: Filtek P-60 < Solitaire 2 < Ariston AT < Tetric Ceram < Admira. Filtek P-60 showed the highest microhardness value. No other significant differences in hardness were observed among the different resin composites (P-60 > AristonAT = Tetric Ceram = Solitaire 2 = Admira). The results of this study indicate that there are significant differences in the wear resistance of the resin composites. The correlation between hardness and wear was significant with a correlation coefficient of r:-0.91. A significant negative correlation exists between hardness and three-body wear of resin composites.
NASA interdisciplinary collaboration in tribology. A review of oxidational wear
NASA Technical Reports Server (NTRS)
Quinn, T. F. J.
1983-01-01
An in-depth review of oxidational wear of metals is presented. Special emphasis is given to a description of the concept of oxidational wear and the formulation of an Oxidational Wear Theory. The parallelism between the formation of an oxide film for dry contact conditions and the formation of other surface films for a lubricated contact is discussed. The description of oxidational wear is prefaced with a unification of wear modes into two major classes of mild and severe wear including both lubricated and dry contacts. Oxidational wear of metals is a class of mild wear where protective oxide films are formed at real areas of contact and during the time of contact at temperataure T sub c. When the oxide reaches a critical thickness, frequently in the range of 1 to 3 microns, the oxide breaks up and eventually appears as a wear particle. These oxides are preferentially formed on plateaux which alternately carry the load as they reach their critical thickness and are removed. If the system is operated at elevated temperatures, thick oxides can form both out of contact and between the plateaux. Temperature is important in determining the structure of the oxide film present. Spinel oxide (Fe3O4) which forms above 300 C is more protective than the lower temperature rhomobohedral (alpha-Fe2O3) oxide which is abrasive. An Oxidational Wear Theory is derived using a modified Archard wear law expressed in terms of activation energy (Qp) and Arrhenius constant (Ap).
Update on slip and wear in multi-layer azimuth track systems
NASA Astrophysics Data System (ADS)
Juneja, Gunjeet; Kan, Frank W.; Antebi, Joseph
2006-06-01
Many antennas, such as the 100-m Green Bank Telescope, use a wheel-on-track systems in which the track segments consist of wear plates mounted on base plates. The wear plates are typically 2 to 3 inches thick and are case hardened or through hardened. The base plates are usually 3 to 4 times thicker than the wear plates and are not hardened. The wear plates are typically connected to the base plates using bolts. The base plates are supported on grout and anchored to the underlying concrete foundation. For some antennas, slip has been observed between the wear plate and base plate, and between the base plate and the grout, with the migration in the wheel rolling direction. In addition, there has been wear at the wear plate/base plate interface. This paper is an update on the evaluation of GBT track retrofit. The paper describes the use of three-dimensional non-linear finite element analyses to understand and evaluate the behavior of (1) the existing GBT wheel-on-track system with mitered joints, and (2) the various proposed modifications. The modifications include welding of the base plate joints, staggering of the wear plate joints from the base plate joints, changing thickness of the wear plate, and increasing bolt diameter and length. Parameters included in the evaluation were contact pressure, relative slip, wear at the wear plate/base plate interface, and bolt shears and moments.
Real-time endoscopic image orientation correction system using an accelerometer and gyrosensor.
Lee, Hyung-Chul; Jung, Chul-Woo; Kim, Hee Chan
2017-01-01
The discrepancy between spatial orientations of an endoscopic image and a physician's working environment can make it difficult to interpret endoscopic images. In this study, we developed and evaluated a device that corrects the endoscopic image orientation using an accelerometer and gyrosensor. The acceleration of gravity and angular velocity were retrieved from the accelerometer and gyrosensor attached to the handle of the endoscope. The rotational angle of the endoscope handle was calculated using a Kalman filter with transmission delay compensation. Technical evaluation of the orientation correction system was performed using a camera by comparing the optical rotational angle from the captured image with the rotational angle calculated from the sensor outputs. For the clinical utility test, fifteen anesthesiology residents performed a video endoscopic examination of an airway model with and without using the orientation correction system. The participants reported numbers written on papers placed at the left main, right main, and right upper bronchi of the airway model. The correctness and the total time it took participants to report the numbers were recorded. During the technical evaluation, errors in the calculated rotational angle were less than 5 degrees. In the clinical utility test, there was a significant time reduction when using the orientation correction system compared with not using the system (median, 52 vs. 76 seconds; P = .012). In this study, we developed a real-time endoscopic image orientation correction system, which significantly improved physician performance during a video endoscopic exam.
Wear of dental tissues and materials.
Craig, R G; Powers, J M
1976-06-01
Wear may result from physiological or pathological conditions and may be desirable, as in the reduction of an overcontoured restoration, or undesirable as in the production of cervical abrasion cavities. A variety of methods, including clinical testing, the use of wear machines and the measurement of related properties such as hardness or coefficient of friction have been used to investigate wear of tooth tissue and of dental materials. Because these methods may not reveal the nature of the wear process recent work has been directed to the study of surface failure resulting from a single sliding contact. Many clinical studies have been conducted but they are time consuming and difficult to quantify, nor do they allow of evaluation of different parameters contributing to the wear. Laboratory simulation of wear has been shown to be valuable in comparing materials of the same group but between-group comparisons may give anomalous results. The most rewarding studies have been those using a single or small number of passes of a suitable abrading point over the material since these permit determination of the actual process by which wear is produced.
Approach to in-process tool wear monitoring in drilling: Application of Kalman filter theory
NASA Astrophysics Data System (ADS)
He, Ning; Zhang, Youzhen; Pan, Liangxian
1993-05-01
The two parameters often used in adaptive control, tool wear and wear rate, are the important factors affecting machinability. In this paper, it is attempted to use the modern cybernetics to solve the in-process tool wear monitoring problem by applying the Kalman filter theory to monitor drill wear quantitatively. Based on the experimental results, a dynamic model, a measuring model and a measurement conversion model suitable for Kalman filter are established. It is proved that the monitoring system possesses complete observability but does not possess complete controllability. A discriminant for selecting the characteristic parameters is put forward. The thrust force Fz is selected as the characteristic parameter in monitoring the tool wear by this discriminant. The in-process Kalman filter drill wear monitoring system composed of force sensor microphotography and microcomputer is well established. The results obtained by the Kalman filter, the common indirect measuring method and the real drill wear measured by the aid of microphotography are compared. The result shows that the Kalman filter has high precision of measurement and the real time requirement can be satisfied.
Friction and wear of nickel in sulfuric acid
NASA Technical Reports Server (NTRS)
Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.
1984-01-01
Experiments were conducted with elemental nickel sliding on aluminum oxide in aerated sulfuric acid in concentrations ranging from very dilute (10 -4 N, i.e., 5 ppm) to very concentrated (96 percent) acid. Load and reciprocating sliding speeds were kept constant. With the most dilute concentration (10 -4 N) no observable corrosion occurred in or outside the wear area. This was used as the base condition to determine the high contribution of corrosion to total wear loss at acid concentrations between 0.5 percent (0.1 N) and 75 percent. Corrosion reached a maximum rate of 100 millimeters per year at 30 percent acid. At the same time, general corrosion outside the wear area was very low, in agreement with published information. It is clear that friction and wear greatly accelerated corrosion in the wear area. At dilute concentrations of 0.001 and 0.01 N, corrosion in the wear area was low, and general corrosion outside was also low, but local outside regions in the direction of the wear motion experienced some enhanced corrosion, apparently due to fluid motion of the acid.
Joseph, Conran; Conradsson, David; Hagströmer, Maria; Lawal, Isa; Rhoda, Anthea
2017-06-18
To investigate objectively measured physical activity in stroke survivors living in low-income areas of Cape Town, South Africa, specifically to: (a) describe the volume of daily physical activity and time spent in different intensity levels and (b) investigate the association of factors covering the International Classification of Functioning, Disability and Health with sedentary behavior. A cross-sectional design was used, where forty-five ambulatory community-dwelling stroke survivors participated. Volume and intensity of physical activity were assessed with accelerometers for three to five consecutive days. Personal and environmental factors, along with body function and activity, were captured. Multiple linear regression was used to investigate factors associated with the percentage of days spent sedentary. The median number of steps per day was 2393, and of the average 703 minutes of wear time, 80% were spent in sedentary, 15% in light, and 5% in moderate-to-vigorous intensity physical activity. Age, stroke severity, and failing to receive outpatient rehabilitation were independently associated with sedentary, which, taken together, explained 52% of the variance. Low volumes of physical activity and high amount of sedentary time emphasize the need to develop strategies that will increase physical activity. Providing outpatient rehabilitation in a systematic manner post-stroke is a potential target of health care programs in order to reduce sedentary behavior. Implications for rehabilitation Objectively measured physical activity among community-dwelling survivors of stroke in Cape Town, South Africa was low in volume, and the majority did not meet the recommendations of 150 minutes of at least moderate intensity physical activity. The majority of stroke survivors in South Africa spent most of their time sedentary, which could further increase the risk of cardiovascular impairments. Outpatient rehabilitation should be provided to all patients after stroke since it appears to reduce sedentary time.
Ranjitkar, Sarbin; Kaidonis, John A; Townsend, Grant C; Vu, Anh M; Richards, Lindsay C
2008-11-01
Previous in vitro studies have described the wear characteristics of specimens in which enamel has been opposed to enamel and dentine opposed to dentine. The aim of this study was to assess the characteristics of wear between specimens in which enamel was opposed to dentine at loads simulating attrition and at pH values simulating different erosive environments. It was hypothesized that enamel would wear more slowly than dentine under all conditions. Opposing enamel and dentine specimens from 57 human third molar teeth were worn in electromechanical machines with various loads (32, 62 and 100 N) and lubricants (pH 1.2, 3.0 and 6.1). Tooth wear was quantified by measuring reduction in dentine volume over time using a 3D profilometer. Qualitative assessment was also carried out using scanning electron microscopy. Dentine wear increased with increasing load, and dentine wear was faster at pH 1.2 than at pH 3.0 or 6.1 for all loads tested. Interestingly, enamel wore more rapidly than dentine at pH 1.2 under all loads. At pH values of 3.0 and 6.1, enamel wear rates were not measurably different from zero and they were less than wear rates for opposing dentine specimens at all loads. Micrographic assessment showed extensive surface destruction of dentine wear facets due to erosion at pH 1.2. Dentine wear facets were smoother at pH 3.0 that at pH 6.1. When enamel wears against dentine in an acidic environment enamel will wear more rapidly at very low pH, while under less acid conditions dentine will wear faster than enamel.
Rao, Anand R; Engh, Gerard A; Collier, Matthew B; Lounici, Smain
2002-10-01
Wear occurring at the interface between the polyethylene insert and metal baseplate of a modular tibial component has become an increasingly common finding at the time of revision total knee arthroplasty. Although this so-called backside wear on retrieved polyethylene inserts has been evaluated in prior studies, wear on retrieved metal baseplates has not been described, to our knowledge. The purposes of the present study were to characterize backside wear on retrieved polyethylene inserts and on the mating surfaces of their corresponding baseplates and to investigate if there is a relationship between backside wear and relative motion of the modular elements. Twenty-nine retrieved modular tibial components of twelve fixed-bearing designs were analyzed in vitro with regard to backside wear and relative motion between the polyethylene insert and the metal baseplate. We graded the backside of each polyethylene insert and the mating surface of the metal baseplate for wear with use of a scoring system that consisted of three modes of wear and three levels of severity of wear. Relative motion between the insert and the baseplate was measured in the transverse plane with use of a mechanical testing machine. These measurements were used to compute the insert motion index, which served to quantify unrestricted motion of the insert with respect to the baseplate. The mean insert motion index for the tibial components was 416 micro m (range, 104 micro m to 760 micro m). On a wear-grading scale ranging from 0 to 54 (with 0 indicating no wear), the mean backside wear score was 30 (range, 12 to 48) for the inserts and 28 (range, 7 to 51) for the baseplates. Insert motion was positively correlated with backside polyethylene wear (p = 0.003) and baseplate wear (p < 0.001). Baseplate wear was strongly correlated with backside polyethylene wear (p < 0.001). Backside wear was correlated with the relative motion between the polyethylene insert and the metal baseplate. New locking mechanism designs directed toward better methods of securing the polyethylene insert to the tibial tray are needed to minimize the generation of particulate wear debris at the modular interface.
Innerd, Paul; Harrison, Rory; Coulson, Morc
2018-04-23
Physical activity and sedentary behaviour are difficult to assess in overweight and obese adults. However, the use of open-source, raw accelerometer data analysis could overcome this. This study compared raw accelerometer and questionnaire-assessed moderate-to-vigorous physical activity (MVPA), walking and sedentary behaviour in normal, overweight and obese adults, and determined the effect of using different methods to categorise overweight and obesity, namely body mass index (BMI), bioelectrical impedance analysis (BIA) and waist-to-hip ratio (WHR). One hundred twenty adults, aged 24-60 years, wore a raw, tri-axial accelerometer (Actigraph GT3X+), for 3 days and completed a physical activity questionnaire (IPAQ-S). We used open-source accelerometer analyses to estimate MVPA, walking and sedentary behaviour from a single raw accelerometer signal. Accelerometer and questionnaire-assessed measures were compared in normal, overweight and obese adults categorised using BMI, BIA and WHR. Relationships between accelerometer and questionnaire-assessed MVPA (Rs = 0.30 to 0.48) and walking (Rs = 0.43 to 0.58) were stronger in normal and overweight groups whilst sedentary behaviour were modest (Rs = 0.22 to 0.38) in normal, overweight and obese groups. The use of WHR resulted in stronger agreement between the questionnaire and accelerometer than BMI and BIA. Finally, accelerometer data showed stronger associations with BMI, BIA and WHR (Rs = 0.40 to 0.77) than questionnaire data (Rs = 0.24 to 0.37). Open-source, raw accelerometer data analysis can be used to estimate MVPA, walking and sedentary behaviour from a single acceleration signal in normal, overweight and obese adults. Our data supports the use of WHR to categorise overweight and obese adults. This evidence helps researchers obtain more accurate measures of physical activity and sedentary behaviour in overweight and obese populations.
Pourzal, Robin; Knowlton, Christopher B; Hall, Deborah J; Laurent, Michel P; Urban, Robert M; Wimmer, Markus A
2016-08-01
The longevity of total hip (THR) and knee replacements (TKR) that used historical bearing materials of gamma-in-air sterilized UHMWPE was affected more by osteolysis in THRs than in TKRs, although osteolysis remains a concern in TKRs. Therefore, the study of polyethylene wear is still of interest for the knee, particularly because few studies have investigated volumetric material loss in tibial knee inserts. For this study, a unique collection of autopsy-retrieved TKR and THR components that were well-functioning at the time of retrieval was used to compare volumetric wear differences between hip and knee polyethylene components made from identical material. The following questions were addressed: (1) How much did the hip liners wear and what wear patterns did they exhibit? (2) How much did the knee inserts wear and what wear patterns did they exhibit? (3) What is the ratio between TKR and THR wear after controlling for implantation time and patient age? We compared 23 THR components (Harris-Galante [HG] and HG II) and 20 TKR components (Miller-Galante [MG II]) that were retrieved postmortem. The components were made from the same polyethylene formulation and with similar manufacturing and sterilization (gamma-in-air) processes. Twenty-one patients (12 males, nine females) had THRs and 16 (four males, 12 females) had TKRs. Patients who had TKRs had an older (p = 0.001) average age than patients who had THRs (age, 75 years; SD, 10, versus 66 years; SD, 12, respectively). Only well-functioning components were included in this study. Therefore, implants retrieved postmortem from physically active patients and implanted for at least 2 years were considered. In addition, only normally wearing TKR components were considered, ie, those with fatigue wear (delamination) were excluded. The wear volume of each component was measured using metrology. For the tibial inserts an autonomous mathematic reconstruction method was used for quantification. The acetabular liners of the THR group had a wear rate of 38 mm(3) per year (95% CI, 29-47 mm(3)/year). Excluding patients with low-activity, the wear rate was 47 mm(3) per year (95% CI, 37-56 mm(3)/year). The wear rate of normally wearing tibial inserts was 17 mm(3) per year (95% CI, -6 to 40 mm(3)/year). After controlling for the relevant confounding variable of age, we found a TKR/THR wear rate ratio of 0.5 (95% CI, 0.29-0.77) at 70 years of age with a slightly increasing difference with increasing age. Excluding delamination, TKRs exhibited lower articular wear rates than THRs for historical polyethylene in these two unique cohorts of postmortem retrievals. The lower TKR wear rate is in line with the lower incidence of osteolysis in TKRs compared with THRs.
Perez, Lilian G; Chavez, Adrian; Marquez, David X; Soto, Sandra C; Haughton, Jessica; Arredondo, Elva M
2017-06-01
Less than 50% of Latinas meet physical activity (PA) recommendations. Acculturation is a complex cultural phenomenon that may influence health behaviors, but associations between acculturation and Latinas' activity and sedentary levels are unclear. To examine associations of acculturation with Latinas' domain-specific and total PA as well as sedentary time. We analyzed baseline data collected between 2011 and 2013 among 410 Latinas (18-65 years) from a PA promotion intervention in San Diego, CA ( Fe en Acción/ Faith in Action). Participants wore an accelerometer to assess moderate-to-vigorous PA (MVPA) and sedentary time and completed a survey assessing domain-specific PA, sociodemographics, and acculturation as measured by length of residence in the United States and the Bidimensional Acculturation Scale (BAS) for Hispanics. Higher acculturation was defined as longer residence in the United States or being either assimilated or bicultural as per scores on the Hispanic and Anglo domains of the BAS. Based on weekly averages from the accelerometer, Latinas spent 103 minutes in MVPA and 76% of total activity in sedentary time. Only 32% met MVPA recommendations via self-reported leisure-time and transportation PA. Longer residence in the United States was inversely associated with reporting any transportation or occupational PA and meeting MVPA recommendations. Assimilated/bicultural Latinas had significantly less accelerometer-based total MVPA and higher sedentary time than their lower acculturated counterparts. Overall, higher acculturation, based on either measure, was related to less activity. Our findings suggest interventions tailored to the acculturation levels of Latinas are needed to help reduce disparities in Latinas' PA and sedentary behaviors.
An Experimental Study of Cutting Performances of Worn Picks
NASA Astrophysics Data System (ADS)
Dogruoz, Cihan; Bolukbasi, Naci; Rostami, Jamal; Acar, Cemil
2016-01-01
The best means to assess rock cuttability and efficiency of cutting process for using mechanical excavation is specific energy (SE), measured in full-scale rock cutting test. This is especially true for the application of roadheaders, often fitted with drag-type cutting tools. Radial picks or drag bits are changed during the operation as they reach a certain amount of wear and become blunt. In this study, full-scale cutting tests in different sedimentary rock types with bits having various degree of wear were used to evaluate the influence of bit wear on cutting forces and specific energy. The relationship between the amount of wear as represented by the size of the wear flats at the tip of the bit, and cutting forces as well as specific energy was examined. The influence of various rock properties such as mineral content, uniaxial compressive strength, tensile strength, indentation index, shore hardness, Schmidt hammer hardness, and density with required SE of cutting using different levels of tool wear was also studied. The preliminary analysis of the data shows that the mean cutting forces increase 2-3 times and SE by 4-5 times when cutting with 4 mm wear flat as compared to cutting with new or sharp wedge shape bits. The grain size distribution of the muck for cutting different rock types and different level of bit wear was analyzed and discussed. The best fit prediction models for SE based on statistical analysis of laboratory test results are introduced. The model can be used for estimating the performance of mechanical excavators using radial tools, especially roadheaders, continuous miners and longwall drum shearers.
Friction and wear of iron and nickel in sodium hydroxide solutions
NASA Technical Reports Server (NTRS)
Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.
1982-01-01
A loaded spherical aluminum oxider rider was made to slide, while in various solutions, on a flat iron or nickel surface reciprocate a distance of 1 cm. Time of experiments was 1 hr during which the rider passed over the rider passed over the center section of the track 540 times. Coefficients of friction were measured throughout the experiments. Wear was measured by scanning the track with a profilometer. Analysis of some of the wear tracks included use of the SEM (scanning electron microscrope) and XPS (X-ray photoelectron spectroscopy). Investigated were the effect of various concentractions of NaOH and of water. On iron, increasing NaOH concentration above 0.01 N caused the friction and wear to decrease. This decrease is accompanied by a decrease in surface concentration of ferric oxide (Fe2O3) while more complex iron-oxygen compounds, not clearly identified, also form. At low concentrations of NaOH, such as 0.01 N, where the friction is high, the wear track is badely torn up and the surface is broken. At high concentration, such as 10 N, where the friction is low, the wear track is smooth. The general conclusion is that NaOH forms a protective, low friction film on iron which is destroyed by wear at low concentrations but remains intact at high concentrations of NaOH. Nickel behaves differently than iron in that only a little NaOH gives a low coefficient of friction and a surface which, although roughened in the wear track, remains intact.
Friction and wear of iron and nickel in sodium hydroxide solutions
NASA Technical Reports Server (NTRS)
Rengstorff, G. P.; Miyoshi, K.; Buckley, D. H.
1983-01-01
A loaded spherical aluminum oxider rider was made to slide, while in various solutions, on a flat iron or nickel surface reciprocate a distance of 1 cm. Time of experiments was 1 hr during which the rider passed over the center section of the track 540 times. Coeficients of friction were measured throughout the experiments. Wear was measured by scanning the track with a profilometer. Analysis of some of the wear tracks included use of the SEM (scanning electron microscope) and XPS (X-ray photoelectron spectroscopy). Investigated were the effect of various concentrations of NaOH and of water. On iron, increasing NaOH concentration above 0.01 N caused the friction and wear to decrease. This decrease is accompanied by a decrease in surface concentration of ferric oxide (Fe2O3) while more complex iron-oxygen compounds, not clearly identified, also form. At low concentrations of NaOH, such as 0.01 N, where the friction is high, the wear track is badly torn up and the surface is broken. At high concentration, such as 10 N, where the friction is low, the wear track is smooth. The general conclusion is that NaOH forms a protective, low friction film on iron which is destroyed by wear at low concentrations but remains intact at high conentrations of NaOH. Nickel behaves differently than iron in that only a little NaOH gives a low coefficient of friction and a surface which, although roughened in the wear track, remains intact. Previously announced in STAR as N83-10171