Science.gov

Sample records for accelerometer wear time

  1. Influence of allowable interruption period on estimates of accelerometer wear time and sedentary time in older adults

    PubMed Central

    Mailey, Emily L.; Gothe, Neha P.; Wójcicki, Thomas R.; Szabo, Amanda N.; Olson, Erin A.; Mullen, Sean P.; Fanning, Jason T.; Motl, Robert W.; McAuley, Edward

    2013-01-01

    The criteria one uses to reduce accelerometer data can profoundly influence the interpretation of research outcomes. The purpose of this study was to examine the influence of three different interruption periods (i.e., 20, 30, and 60 minutes) on the amount of data retained for analyses and estimates of sedentary time among older adults. Older adults (N=311; Mage=71.1) wore an accelerometer for seven days and reported wear time on an accelerometer log. Accelerometer data were downloaded and scored using 20, 30, and 60-minute interruption periods. Estimates of wear time derived using each interruption period were compared to self-reported wear time, and descriptive statistics were used to compare estimates of sedentary time. Results showed a longer interruption period (i.e., 60 minutes) yields the largest sample size and the closest approximation of self-reported wear time. A short interruption period (i.e., 20 minutes) is likely to underestimate sedentary time among older adults. PMID:23752299

  2. Towards uniform accelerometry analysis: a standardization methodology to minimize measurement bias due to systematic accelerometer wear-time variation.

    PubMed

    Katapally, Tarun R; Muhajarine, Nazeem

    2014-05-01

    Accelerometers are predominantly used to objectively measure the entire range of activity intensities - sedentary behaviour (SED), light physical activity (LPA) and moderate to vigorous physical activity (MVPA). However, studies consistently report results without accounting for systematic accelerometer wear-time variation (within and between participants), jeopardizing the validity of these results. This study describes the development of a standardization methodology to understand and minimize measurement bias due to wear-time variation. Accelerometry is generally conducted over seven consecutive days, with participants' data being commonly considered 'valid' only if wear-time is at least 10 hours/day. However, even within 'valid' data, there could be systematic wear-time variation. To explore this variation, accelerometer data of Smart Cities, Healthy Kids study (www.smartcitieshealthykids.com) were analyzed descriptively and with repeated measures multivariate analysis of variance (MANOVA). Subsequently, a standardization method was developed, where case-specific observed wear-time is controlled to an analyst specified time period. Next, case-specific accelerometer data are interpolated to this controlled wear-time to produce standardized variables. To understand discrepancies owing to wear-time variation, all analyses were conducted pre- and post-standardization. Descriptive analyses revealed systematic wear-time variation, both between and within participants. Pre- and post-standardized descriptive analyses of SED, LPA and MVPA revealed a persistent and often significant trend of wear-time's influence on activity. SED was consistently higher on weekdays before standardization; however, this trend was reversed post-standardization. Even though MVPA was significantly higher on weekdays both pre- and post-standardization, the magnitude of this difference decreased post-standardization. Multivariable analyses with standardized SED, LPA and MVPA as outcome

  3. Effects of Varying Epoch Lengths, Wear Time Algorithms, and Activity Cut-Points on Estimates of Child Sedentary Behavior and Physical Activity from Accelerometer Data

    PubMed Central

    Banda, Jorge A.; Haydel, K. Farish; Davila, Tania; Desai, Manisha; Haskell, William L.; Matheson, Donna; Robinson, Thomas N.

    2016-01-01

    Objective To examine the effects of accelerometer epoch lengths, wear time (WT) algorithms, and activity cut-points on estimates of WT, sedentary behavior (SB), and physical activity (PA). Methods 268 7–11 year-olds with BMI ≥ 85th percentile for age and sex wore accelerometers on their right hips for 4–7 days. Data were processed and analyzed at epoch lengths of 1-, 5-, 10-, 15-, 30-, and 60-seconds. For each epoch length, WT minutes/day was determined using three common WT algorithms, and minutes/day and percent time spent in SB, light (LPA), moderate (MPA), and vigorous (VPA) PA were determined using five common activity cut-points. ANOVA tested differences in WT, SB, LPA, MPA, VPA, and MVPA when using the different epoch lengths, WT algorithms, and activity cut-points. Results WT minutes/day varied significantly by epoch length when using the NHANES WT algorithm (p < .0001), but did not vary significantly by epoch length when using the ≥ 20 minute consecutive zero or Choi WT algorithms. Minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA varied significantly by epoch length for all sets of activity cut-points tested with all three WT algorithms (all p < .0001). Across all epoch lengths, minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA also varied significantly across all sets of activity cut-points with all three WT algorithms (all p < .0001). Conclusions The common practice of converting WT algorithms and activity cut-point definitions to match different epoch lengths may introduce significant errors. Estimates of SB and PA from studies that process and analyze data using different epoch lengths, WT algorithms, and/or activity cut-points are not comparable, potentially leading to very different results, interpretations, and conclusions, misleading research and public policy. PMID:26938240

  4. Assessment of Differing Definitions of Accelerometer Nonwear Time

    ERIC Educational Resources Information Center

    Evenson, Kelly R.; Terry, James W., Jr.

    2009-01-01

    Measuring physical activity with objective tools, such as accelerometers, is becoming more common. Accelerometers measure acceleration multiple times within a given frequency and summarize this as a count over a pre-specified time period or epoch. The resultant count represents acceleration over the epoch length. Accelerometers eliminate biases…

  5. Identification of Accelerometer Nonwear Time and Sedentary Behavior

    ERIC Educational Resources Information Center

    Oliver, Melody; Badland, Hannah M.; Schofield, Grant M.; Shepherd, Janine

    2011-01-01

    The primary aim of the current study was to investigate the accuracy of various automated rules for determining accelerometer nonwear time in a sample of predominantly desk-based office workers (using their self-reported nonwear times as a criterion). Second, the authors examined the effect of applying these rules to accelerometer data retention…

  6. ACCELEROMETER

    DOEpatents

    Pope, K.E.

    1958-11-25

    A device, commonly known as an accelerometer, is described which may be utllized for measuring acceleratlon with high sensitivity and accuracy tbroughout a relatively wlde range of values. In general, the accelerometer consists of an assembly, including an electric motor stator and a mass element located away from the axis of rotation of the stator, rotatably mounted on a support, and an electric motor rotor positioned within the stator and rotatable thereln. An electrlcal switching circuit controlled by the movement of the stator lntermittently energizes the rotor winding and retards move ment of the stator, and a centrifugal switch is rotatable with the rotor to operate upon attainment of a predetermined rotor rotational velocity.

  7. A Pilot Study Using an Accelerometer to Evaluate a Caregiver's Interpretation of an Infant or Toddler's Activity Level as Recorded in a Time Activity Diary

    ERIC Educational Resources Information Center

    Tulve, Nicolle S.; Jones, Paul A.; McCurdy, Thomas; Croghan, Carry W.

    2007-01-01

    The objectives of this study were to: (a) determine if very young children will wear an accelerometer for relatively long periods of time and comply with the protocol for its use; (b) evaluate how well a caregiver can estimate the activity level of his/her infant or toddler when completing an exposure-oriented time activity diary; and (c) compare…

  8. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age

    PubMed Central

    Strath, Scott J; Kate, Rohit J; Keenan, Kevin G; Welch, Whitney A; Swartz, Ann M

    2016-01-01

    To develop and test time series single site and multi-site placement models, we used wrist, hip and ankle processed accelerometer data to estimate energy cost and type of physical activity in adults. Ninety-nine subjects in three age groups (18–39, 40–64, 65 + years) performed 11 activities while wearing three triaxial accelereometers: one each on the non-dominant wrist, hip, and ankle. During each activity net oxygen cost (METs) was assessed. The time series of accelerometer signals were represented in terms of uniformly discretized values called bins. Support Vector Machine was used for activity classification with bins and every pair of bins used as features. Bagged decision tree regression was used for net metabolic cost prediction. To evaluate model performance we employed the jackknife leave-one-out cross validation method. Single accelerometer and multi-accelerometer site model estimates across and within age group revealed similar accuracy, with a bias range of −0.03 to 0.01 METs, bias percent of −0.8 to 0.3%, and a rMSE range of 0.81–1.04 METs. Multi-site accelerometer location models improved activity type classification over single site location models from a low of 69.3% to a maximum of 92.8% accuracy. For each accelerometer site location model, or combined site location model, percent accuracy classification decreased as a function of age group, or when young age groups models were generalized to older age groups. Specific age group models on average performed better than when all age groups were combined. A time series computation show promising results for predicting energy cost and activity type. Differences in prediction across age group, a lack of generalizability across age groups, and that age group specific models perform better than when all ages are combined needs to be considered as analytic calibration procedures to detect energy cost and type are further developed. PMID:26449155

  9. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age.

    PubMed

    Strath, Scott J; Kate, Rohit J; Keenan, Kevin G; Welch, Whitney A; Swartz, Ann M

    2015-11-01

    To develop and test time series single site and multi-site placement models, we used wrist, hip and ankle processed accelerometer data to estimate energy cost and type of physical activity in adults. Ninety-nine subjects in three age groups (18-39, 40-64, 65 +  years) performed 11 activities while wearing three triaxial accelereometers: one each on the non-dominant wrist, hip, and ankle. During each activity net oxygen cost (METs) was assessed. The time series of accelerometer signals were represented in terms of uniformly discretized values called bins. Support Vector Machine was used for activity classification with bins and every pair of bins used as features. Bagged decision tree regression was used for net metabolic cost prediction. To evaluate model performance we employed the jackknife leave-one-out cross validation method. Single accelerometer and multi-accelerometer site model estimates across and within age group revealed similar accuracy, with a bias range of -0.03 to 0.01 METs, bias percent of -0.8 to 0.3%, and a rMSE range of 0.81-1.04 METs. Multi-site accelerometer location models improved activity type classification over single site location models from a low of 69.3% to a maximum of 92.8% accuracy. For each accelerometer site location model, or combined site location model, percent accuracy classification decreased as a function of age group, or when young age groups models were generalized to older age groups. Specific age group models on average performed better than when all age groups were combined. A time series computation show promising results for predicting energy cost and activity type. Differences in prediction across age group, a lack of generalizability across age groups, and that age group specific models perform better than when all ages are combined needs to be considered as analytic calibration procedures to detect energy cost and type are further developed. PMID:26449155

  10. Use of accelerometers for detecting foot-ground contact time during running

    NASA Astrophysics Data System (ADS)

    Purcell, Brendan; Channells, Justin; James, Daniel; Barrett, Rod

    2006-01-01

    A biomechanical variable of interest to sprint coaches is foot-ground contact time. Contact time can be easily measured in a laboratory environment using a force platform, but is difficult to measure in the field. The focus of this paper is on the development and validation of an accelerometer-based method for estimating contact time during sprinting that could be used in the field. Tri-axial accelerometers were mounted on the tibia of the right leg of 6 subjects who performed maximal running trials from a stationary start, and running trials at a range of steady state speeds (jog, run and sprint). Ground contact times were measured using a force platform, and estimated from 3D accelerometer data. The mean error between the force plate and accelerometer-based measures of contact time were 0 +/- 12 ms, 2 +/- 3 ms, and 1 +/- 1 ms for the jog, run and sprint. For steps 1, 3 and 5 of the acceleration phase of the maximal sprint the mean errors were 8 +/- 9 ms, 2 +/- 5 ms, and 0 +/- 1 ms respectively. Overall it was concluded from our analysis that close estimates of contact time during running can be obtained using body mounted accelerometers, with the best estimates obtained in conditions associated with the highest accelerations.

  11. The timing of scour and fill in a gravel-bedded river measured with buried accelerometers

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.; Konrad, Christopher P.

    2013-01-01

    A device that measures the timing of streambed scour and the duration of sediment mobilization at specific depths of a streambed was developed using data-logging accelerometers placed within the gravel substrate of the Cedar River, Washington, USA. Each accelerometer recorded its orientation every 20 min and remained stable until the surrounding gravel matrix mobilized as sediment was transported downstream and scour reached the level of the accelerometer. The accelerometer scour monitors were deployed at 26 locations in salmon-spawning habitat during the 2010–2011 flood season to record when the streambed was scoured to the depth of typical egg-pocket deposition. Scour was recorded at one location during a moderate high-flow event (65 m3/s; 1.25–1.5-year recurrence interval) and at 17 locations during a larger high-flow event (159 m3/s; 7-year recurrence interval). Accelerometer scour monitors recorded periods of intermittent sediment mobilization and stability within a high-flow event providing insight into the duration of scour. Most scour was recorded during the rising limb and at the peak of a flood hydrograph, though some scour occurred during sustained high flows following the peak of the flood hydrograph.

  12. Validating Pedometer-Based Physical Activity Time against Accelerometer in Middle School Physical Education

    ERIC Educational Resources Information Center

    Gao, Zan; Lee, Amelia M.; Solmon, Melinda A.; Kosma, Maria; Carson, Russell L.; Zhang, Tao; Domangue, Elizabeth; Moore, Delilah

    2010-01-01

    The purpose of this study was to validate physical activity time in middle school physical education as measured by pedometers in relation to a criterion measure, namely, students' accelerometer determined moderate to vigorous physical activity (MVPA). Participants were 155 sixth to eighth graders participating in regularly scheduled physical…

  13. A Real-Time Seismogeodetic Network Using MEMS Accelerometers and Its Performance in Kinematic Slip Inversions

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Haase, J. S.; Melgar, D.; Bock, Y.; Geng, J.; Saunders, J. K.

    2014-12-01

    The seismogeodetic combination of high-rate GPS observables and seismic acceleration captures the broadband on-scale recording of earthquake ground motions. The use of these data for determining rapid centroid moment tensor solutions ("fastCMT") has been demonstrated in the post-analysis of the 2010 Mw 7.2 El Mayor-Cucapah earthquake. This seismogeodetic combination will improve source inversions for future earthquakes, but large-scale accelerometer deployment at the many available permanent GPS stations is limited by the cost of traditional observatory-grade accelerometers. Instead, we improve feasibility by installing SIO Geodetic Modules and low-cost MEMS accelerometers at 17 GPS stations in southern California near the San Andreas, San Jacinto, and Elsinore faults, transmitting data in real time for analysis of seismic velocity and displacement waveforms. We examine the performance of our seismogeodetic subnetwork using the El Mayor-Cucapah earthquake as our focus. We calculate a kinematic slip inversion, using the small set of seismogeodetic waveforms available at the time of the event, and assess the reliability of the result in comparison to the fastCMT solution. We evaluate reliability by using our model to predict ground motion at independent stations, and using recorded data as verification at a range of frequencies. Next we supplement the dataset by including realistic simulated waveforms for the additional 17 seismogeodetic stations, adding realistic seismogeodetic noise, and demonstrate the improved reliability of our result in terms of reducing the space of possible solutions due to better geometric constraints. The MEMS accelerometer has higher noise than the observatory-grade accelerometer, which we quantify using strong motion recordings from a series of UCSD NEES outdoor shaketable experiments conducted in December 2013 and January 2014. Results will provide confidence in the use of the MEMS accelerometer for large-scale deployment as an

  14. Impact of Advertising on Tampon Wear-time Practices

    PubMed Central

    Woeller, Kara E.; Miller, Kenneth W.; Robertson-Smith, Amy L.; Bohman, Lisa C.

    2015-01-01

    OBJECTIVES (1) To determine whether advertising nighttime tampon use for up to eight hours was understood to be consistent with label recommendations and (2) to determine whether television and print advertising with this message affected tampon wear times in adults and teens. METHODS (1) A comprehension study (online advertising and follow-up questionnaire) among women aged 14–49 years (300 per group) who viewed either the test or a control advertising message; (2) Diary-based surveys of tampon wear times performed prior to (n = 292 adults, 18–49 years, 74 teens, 12–17 years) and after (n = 287 adults, 104 teens) the launch of national advertising. RESULTS Significantly more test message viewers than controls stated tampons should be worn less than or equal to eight hours (93.6% vs. 88.6%, respectively, P = 0.049). A directionally higher percentage of test message viewers said they would use a pad if sleeping longer than eight hours (52% vs. 42% of controls). Among the women who used tampons longer than eight hours when sleeping, 52% reported they would wake up and change compared with 45% of controls. No significant difference between baseline and follow-up diary surveys was found among teens or adults in various measures of tampon wear time (mean wear times; usage intervals from less than two hours to more than 10 hours; percentage of tampons used for more than or equal to eight hours; frequency of wearing at least one tampon more than eight hours). CONCLUSIONS Advertising nighttime tampon wear for up to eight hours effectively communicated label recommendations but did not alter tampon wear times. The informational intervention had limited impact on established habits. PMID:26688668

  15. Accelerometer Adherence and Performance in a Cohort Study of US Hispanic Adults

    PubMed Central

    Evenson, Kelly R.; Sotres-Alvarez, Daniela; Deng, Yu; Marshall, Simon J.; Isasi, Carmen R.; Esliger, Dale W.; Davis, Sonia

    2014-01-01

    Purpose This study described participant adherence to wearing the accelerometer and accelerometer performance in a cohort study of adults. Methods From 2008-2011, 16,415 United States (US) Hispanic/Latino adults age 18-74 years enrolled in the Hispanic Community Health Study/Study of Latinos. Immediately following the baseline visit, participants wore an Actical accelerometer for one week. This study explored correlates of accelerometer participation and adherence, defined as wearing it for at least 3 of a possible days for >=10 hours/day. Accelerometer performance was assessed by exploring the number of different values of accelerometer counts/minute for each participant. Results Overall, 92.3% (n=15,153) had at least one day with accelerometer data and 77.7% (n=12,750) were adherent. Both accelerometer participation and adherence were higher among participants who were married or partnered, reported a higher household income, were first generation immigrants, or reported lower sitting time. Participation was also higher among those with no stair limitations. Adherence was higher among participants who were male, older, employed or retired, not US born, preferred Spanish over English, reported higher work activity or lower recreational activity, and those with a lower body mass index. Among the sample that met the adherence definition, the maximum recorded count/minute was 12,000, and there were a total of 5,846 different counts/minute. On average, participants had 112.5 different counts/minute over 6 days (median 106, interquartile range 91-122). The number of different counts/minute were higher among men, younger ages, normal weight, and those with higher accelerometer assessed physical activity. Conclusion Several correlates differed between accelerometer participation and adherence. These characteristics could be targeted in future studies to improve accelerometer wear. The performance of the accelerometer provided insight into creating a more accurate non-wear

  16. Accelerometer data requirements for reliable estimation of habitual physical activity and sedentary time of children during the early years - a worked example following a stepped approach.

    PubMed

    Bingham, Daniel D; Costa, Silvia; Clemes, Stacy A; Routen, Ash C; Moore, Helen J; Barber, Sally E

    2016-10-01

    This study presents a worked example of a stepped process to reliably estimate the habitual physical activity and sedentary time of a sample of young children. A total of 299 children (2.9 ± 0.6 years) were recruited. Outcome variables were daily minutes of total physical activity, sedentary time, moderate to vigorous physical activity and proportional values of each variable. In total, 282 (94%) provided 3 h of accelerometer data on ≥1 day and were included in a 6-step process: Step-1: determine minimum wear-time; Step-2: process 7-day-data; Step-3: determine the inclusion of a weekend day; Step-4: examine day-to-day variability; Step-5: calculate single day intraclass correlation (ICC) (2,1); Step-6: calculate number of days required to reach reliability. Following the process the results were, Step-1: 6 h was estimated as minimum wear-time of a standard day. Step-2: 98 (32%) children had ≥6 h wear on 7 days. Step-3: no differences were found between weekdays and weekend days (P ≥ 0.05). Step-4: no differences were found between day-to-day variability (P ≥ 0.05). Step-5: single day ICC's (2,1) ranged from 0.48 (total physical activity and sedentary time) to 0.53 (proportion of moderate to vigorous physical activity). Step-6: to reach reliability (ICC = 0.7), 3 days were required for all outcomes. In conclusion following a 7 day wear protocol, ≥6 h on any 3 days was found to have acceptable reliability. The stepped-process offers researchers a method to derive sample-specific wear-time criterion. PMID:26920123

  17. Time- and Computation-Efficient Calibration of MEMS 3D Accelerometers and Gyroscopes

    PubMed Central

    Stančin, Sara; Tomažič, Sašo

    2014-01-01

    We propose calibration methods for microelectromechanical system (MEMS) 3D accelerometers and gyroscopes that are efficient in terms of time and computational complexity. The calibration process for both sensors is simple, does not require additional expensive equipment, and can be performed in the field before or between motion measurements. The methods rely on a small number of defined calibration measurements that are used to obtain the values of 12 calibration parameters. This process enables the static compensation of sensor inaccuracies. The values detected by the 3D sensor are interpreted using a generalized 3D sensor model. The model assumes that the values detected by the sensor are equal to the projections of the measured value on the sensor sensitivity axes. Although this finding is trivial for 3D accelerometers, its validity for 3D gyroscopes is not immediately apparent; thus, this paper elaborates on this latter topic. For an example sensor device, calibration parameters were established using calibration measurements of approximately 1.5 min in duration for the 3D accelerometer and 2.5 min in duration for the 3D gyroscope. Correction of each detected 3D value using the established calibration parameters in further measurements requires only nine addition and nine multiplication operations. PMID:25123469

  18. Factors associated with participant compliance in studies using accelerometers.

    PubMed

    Lee, Paul H; Macfarlane, Duncan J; Lam, T H

    2013-09-01

    Participant compliance is an important issue in studies using accelerometers. Some participants wear the accelerometer for the duration specified by the researchers but many do not. We investigated a range of demographic factors associated with participant compliance in obtaining analyzable accelerometer data. A total of 3601 participants (aged 47.6±13.1 years, 44.6% male) were included. They were asked to wear an accelerometer (ActiGraph) for four consecutive days after completing a household survey during March 2009-January 2011 in Hong Kong. Participants wore the accelerometer on average for 13.9h in a 24-h day. No significant difference was found between males and females (p=0.38). Using log-linear regression, it was found that older participants (0.5% more wearing hours for each year of age, p<0.001), those with full-time job (p<0.01), with tertiary education (p<0.01), non-smokers (p<0.01) and with high self-reported health (p<0.05) wore the accelerometer for more hours. These results provide details for estimating compliance rates for samples with different characteristics and thus sample size calculation to account for participant compliance. PMID:23688408

  19. Accelerometer-Measured Physical Activity and Sedentary Time Differ According to Education Level in Young Adults

    PubMed Central

    Kantomaa, Marko T.; Tikanmäki, Marjaana; Kankaanpää, Anna; Vääräsmäki, Marja; Sipola-Leppänen, Marika; Ekelund, Ulf; Hakonen, Harto; Järvelin, Marjo-Riitta; Kajantie, Eero; Tammelin, Tuija H.

    2016-01-01

    This study examined the association of education level with objectively measured physical activity and sedentary time in young adults. Data from the Finnish ESTER study (2009–2011) (n = 538) was used to examine the association between educational attainment and different subcomponents of physical activity and sedentary time measured using hip-worn accelerometers (ActiGraph GT1M) for seven consecutive days. Overall physical activity, moderate-to-vigorous physical activity (MVPA), light-intensity physical activity and sedentary time were calculated separately for weekdays and weekend days. A latent profile analysis was conducted to identify the different profiles of sedentary time and the subcomponents of physical activity. The educational differences in accelerometer-measured physical activity and sedentary time varied according to the subcomponents of physical activity, and between weekdays and weekend days. A high education level was associated with high MVPA during weekdays and weekend days in both sexes, high sedentary time during weekdays in both sexes, and a low amount of light-intensity physical activity during weekdays in males and during weekdays and weekend days in females. The results indicate different challenges related to unhealthy behaviours in young adults with low and high education: low education is associated with a lack of MVPA, whereas high education is associated with a lack of light-intensity physical activity and high sedentary time especially during weekdays. PMID:27403958

  20. Young People's Views on Accelerometer Use in Physical Activity Research: Findings from a User Involvement Investigation.

    PubMed

    Kirby, Joanna; Tibbins, Carly; Callens, Claire; Lang, Beckie; Thorogood, Margaret; Tigbe, William; Robertson, Wendy

    2012-01-01

    The use of accelerometers to objectively measure physical activity is important in understanding young people's behaviours, as physical activity plays a key part in obesity prevention and treatment. A user-involvement qualitative study with young people aged 7-18 years (n = 35) was carried out to investigate views on accelerometer use to inform an obesity treatment research study. First impressions were often negative, with issues related to size and comfort reported. Unwanted attention from wearing an accelerometer and bullying risk were also noted. Other disadvantages included feeling embarrassed and not being able to wear the device for certain activities. Positive aspects included feeling "special" and having increased attention from friends. Views on the best time to wear accelerometers were mixed. Advice was offered on how to make accelerometers more appealing, including presenting them in a positive way, using a clip rather than elastic belt to attach, personalising the device, and having feedback on activity levels. Judgements over the way in which accelerometers are used should be made at the study development stage and based on the individual population. In particular, introducing accelerometers in a clear and positive way is important. Including a trial wearing period, considering practical issues, and providing incentives may help increase compliance. PMID:24533214

  1. Validation of a Torso-Mounted Accelerometer for Measures of Vertical Oscillation and Ground Contact Time During Treadmill Running.

    PubMed

    Watari, Ricky; Hettinga, Blayne; Osis, Sean; Ferber, Reed

    2016-06-01

    The purpose of this study was to validate measures of vertical oscillation (VO) and ground contact time (GCT) derived from a commercially-available, torso-mounted accelerometer compared with single marker kinematics and kinetic ground reaction force (GRF) data. Twenty-two semi-elite runners ran on an instrumented treadmill while GRF data (1000 Hz) and three-dimensional kinematics (200 Hz) were collected for 60 s across 5 different running speeds ranging from 2.7 to 3.9 m/s. Measurement agreement was assessed by Bland-Altman plots with 95% limits of agreement and by concordance correlation coefficient (CCC). The accelerometer had excellent CCC agreement (> 0.97) with marker kinematics, but only moderate agreement, and overestimated measures between 16.27 mm to 17.56 mm compared with GRF VO measures. The GCT measures from the accelerometer had very good CCC agreement with GRF data, with less than 6 ms of mean bias at higher speeds. These results indicate a torso-mounted accelerometer provides valid and accurate measures of torso-segment VO, but both a marker placed on the torso and the accelerometer yield systematic overestimations of center of mass VO. Measures of GCT from the accelerometer are valid when compared with GRF data, particularly at faster running speeds. PMID:26695636

  2. An energy dissipation and cross shear time dependent computational wear model for the analysis of polyethylene wear in total knee replacements.

    PubMed

    O'Brien, Sean T; Bohm, Eric R; Petrak, Martin J; Wyss, Urs P; Brandt, Jan-M

    2014-03-21

    The cost and time efficiency of computational polyethylene wear simulations may enable the optimization of total knee replacements for the reduction of polyethylene wear. The present study proposes an energy dissipation wear model for polyethylene which considers the time dependent molecular behavior of polyethylene, aspects of tractive rolling and contact pressure. This time dependent - energy dissipation wear model was evaluated, along with several other wear models, by comparison to pin-on-disk results, knee simulator wear test results under various kinematic conditions and knee simulator wear test results that were performed following the ISO 14243-3 standard. The proposed time dependent - energy dissipation wear model resulted in improved accuracy for the prediction of pin-on-disk and knee simulator wear test results compared with several previously published wear models. PMID:24480701

  3. A MEMS accelerometer-based real-time motion-sensing module for urological diagnosis and treatment.

    PubMed

    Sun, Hongzhi; Fu, Guoqing; Xie, Huikai

    2013-02-01

    This paper reports a real-time motion-sensing module, which is realized by incorporating multiple MEMS accelerometers into a standard Foley catheter, for assisting diagnosis and treatment of stressed urinary incontinence. The accelerometers measure the orientations of the catheter at multiple points, so the shape of the urethra and movement of the bladder neck can be tracked in real time. An algorithm for extracting tilting, position and shape information from 3-axis MEMS accelerometers has been developed. The model of measurement errors for both static and dynamic testing is also established. The experimental results indicate that the module tracks the movement of the Foley catheter successfully in a real-time environment and the absolute error for static measurement is no more than 1.1° within the operation range. PMID:23360195

  4. Accelerometer-measured sedentary time among Hispanic adults: Results from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL)

    PubMed Central

    Merchant, Gina; Buelna, Christina; Castañeda, Sheila F.; Arredondo, Elva M.; Marshall, Simon J.; Strizich, Garrett; Sotres-Alvarez, Daniela; Chambers, Earle C.; McMurray, Robert G.; Evenson, Kelly R.; Stoutenberg, Mark; Hankinson, Arlene L.; Talavera, Gregory A.

    2015-01-01

    Excessive sedentary behavior is associated with negative health outcomes independent of physical activity. Objective estimates of time spent in sedentary behaviors are lacking among adults from diverse Hispanic/Latino backgrounds. The objective of this study was to describe accelerometer-assessed sedentary time in a large, representative sample of Hispanic/Latino adults living in the United States, and compare sedentary estimates by Hispanic/Latino background, sociodemographic characteristics and weight categories. This study utilized baseline data from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) that included adults aged 18–74 years from four metropolitan areas (N = 16,415). Measured with the Actical accelerometer over 6 days, 76.9% (n = 12,631) of participants had > 10 h/day and > 3 days of data. Participants spent 11.9 h/day (SD 3.0), or 74% of their monitored time in sedentary behaviors. Adjusting for differences in wear time, adults of Mexican background were the least (11.6 h/day), whereas adults of Dominican background were the most (12.3 h/day), sedentary. Women were more sedentary than men, and older adults were more sedentary than younger adults. Household income was positively associated, whereas employment was negatively associated, with sedentary time. There were no differences in sedentary time by weight categories, marital status, or proxies of acculturation. To reduce sedentariness among these populations, future research should examine how the accumulation of various sedentary behaviors differs by background and region, and which sedentary behaviors are amenable to intervention. PMID:26844159

  5. Quasi-Real Time Estimation of Angular Kinematics Using Single-Axis Accelerometers

    PubMed Central

    Caroselli, Alessio; Bagalà, Fabio; Cappello, Angelo

    2013-01-01

    In human movement modeling, the problem of multi-link kinematics estimation by means of inertial measurement units has been investigated by several authors through efficient sensor fusion algorithms. In this perspective a single inertial measurement unit per link is required. This set-up is not cost-effective compared with a solution in which a single-axis accelerometer per link is used. In this paper, a novel fast technique is presented for the estimation of the sway angle in a multi-link chain by using a single-axis accelerometer per segment and by setting the boundary conditions through an ad hoc algorithm. The technique, based on the windowing of the accelerometer output, was firstly tested on a mechanical arm equipped with a single-axis accelerometer and a reference encoder. The technique is then tested on a subject performing a squat task for the knee flexion-extension angle evaluation by using two single-axis accelerometers placed on the thigh and shank segments, respectively. A stereo-photogrammetric system was used for validation. RMSEs (mean ± std) are 0.40 ± 0.02° (mean peak-to-peak range of 147.2 ± 4.9°) for the mechanical inverted pendulum and 1.01 ± 0.11° (mean peak-to-peak range of 59.29 ± 2.02°) for the knee flexion-extension angle. Results obtained in terms of RMSE were successfully compared with an Extended Kalman Filter applied to an inertial measurement unit. These results suggest the usability of the proposed algorithm in several fields, from automatic control to biomechanics, and open new opportunities to increase the accuracy of the existing tools for orientation evaluation. PMID:23322097

  6. Passive Accelerometer

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.; Baugher, Charles; Alexander, Iwan

    1992-01-01

    Motion of ball in liquid indicates acceleration. Passive accelerometer measures small accelerations along cylindrical axis. Principle of operation based on Stokes' law. Provides accurate measurements of small quasi-steady accelerations. Additional advantage, automatically integrates out unwanted higher-frequency components of acceleration.

  7. Association between accelerometer-measured physical activity intensities and sedentary time in 8- to 10-year-old children.

    PubMed

    Herman, Katya M; Paradis, Gilles; Mathieu, Marie-Eve; O'Loughlin, Jennifer; Tremblay, Angelo; Lambert, Marie

    2014-02-01

    This study examines the association between objectively-measured physical activity (PA) intensities and sedentary behavior (SED) in a cohort of 532 children aged 8-10 y. PA and SED were assessed by accelerometer over 7-days. Television and computer/video-game use were self-reported. Associations between PA intensities and SED variables were assessed by Spearman correlations and adjusted multiple linear regression. Higher mean daily moderate-to-vigorous and vigorous PA (MVPA, VPA) were negatively associated with mean daily SED (r = -0.47 and -0.37; p < .001), and positively associated with mean daily total PA (r = .58 and 0.46; p < .001). MVPA was also positively associated with light PA (LPA; r = .26, p < .001). MVPA and VPA were not significantly associated with TV, computer/video or total screen time; accelerometer SED was only weakly associated with specific SED behaviors. On average, for each additional 10 min daily MVPA, children accumulated >14 min less SED, and for each additional 5 min VPA, 11 min less SED. Thus, over the course of a week, higher mean daily MVPA may displace SED time and is associated with higher total PA over and above the additional MVPA, due to concomitant higher levels of LPA. Public health strategies should target both MVPA and SED to improve overall PA and health in children. PMID:24018974

  8. Accelerometer design

    NASA Technical Reports Server (NTRS)

    Norton, F H; Warner, Edward P

    1921-01-01

    In connection with the development of an accelerometer for measuring the loads on airplanes in free flight a study of the theory of such instruments has been made, and the results of this study are summarized in this report. A portion of the analysis deals particularly with the sources of error and with the limitations placed on the location of the instrument in the airplane. The discussion of the dynamics of the accelerometer includes a study of its theoretical motions and of the way in which they are affected by the natural period of vibration and by the damping, together with a report of some experiments on the effect of forced vibrations on the record.

  9. Quantification of Trunk Postural Stability Using Convex Polyhedron of the Time-Series Accelerometer Data.

    PubMed

    Melecky, Roman; Socha, Vladimir; Kutilek, Patrik; Hanakova, Lenka; Takac, Peter; Schlenker, Jakub; Svoboda, Zdenek

    2016-01-01

    Techniques to quantify postural stability usually rely on the evaluation of only two variables, that is, two coordinates of COP. However, by using three variables, that is, three components of acceleration vector, it is possible to describe human movement more precisely. For this purpose, a single three-axis accelerometer was used, making it possible to evaluate 3D movement by use of a novel method, convex polyhedron (CP), together with a traditional method, based on area of the confidence ellipse (ACE). Ten patients (Pts) with cerebellar ataxia and eleven healthy individuals of control group (CG) participated in the study. The results show a significant increase of volume of the CP (CPV) in Pts or CG standing on foam surface with eyes open (EO) and eyes closed (EC) after the EC phase. Significant difference between Pts and CG was found in all cases as well. Correlation coefficient indicates strong correlation between the CPV and ACE in most cases of patient examinations, thus confirming the possibility of quantification of postural instability by the introduced method of CPV. PMID:27195465

  10. Wear-time recording during early Class III facemask treatment using TheraMon chip technology.

    PubMed

    Stocker, Bruce; Willmann, Jan H; Wilmes, Benedict; Vasudavan, Sivabalan; Drescher, Dieter

    2016-09-01

    Successful intervention in a developing Class III malocclusion with facemask protraction therapy depends on a patient's ability to adhere to the recommendations for duration of appliance wear. In this article, we report the introduction of a novel approach for tracking of the duration of application of a protraction facemask, with the incorporation of a "FaceMon" sensor (TheraMon, microelectronic system; MC Technology GmbH, Hargelsberg, Austria) to track wear time. A 9-year-old boy with a Class III malocclusion was successfully treated with a modified alternate rapid maxillary expansion and constriction protocol and intermittent application of a hybrid hyrax-protraction facemask combination. The average duration of wear of the facemask was measured at 10.8 hours per day. The use of an objective measuring device may have implications for the development of treatment strategies, since patient responses may be able to calibrated in relation to compliance. PMID:27585783

  11. Varying the Wear Time of the Methylphenidate Transdermal System in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Wilens, Timothy E.; Boellner, Samuel W.; Lopez, Frank A.; Turnbow, John M.; Wigal, Sharon B.; Childress, Ann C.; Abikoff, Howard B.; Manos, Michael J.

    2008-01-01

    A study investigated the impact of variable wear times of the methylphenidate transdermal system in children with attention-deficit/hyperactivity disorder (ADHD). It was concluded that duration of medication effect was directly related to the wear time of the methylphenidate transdermal system patch.

  12. Towards Real-Time Detection of Freezing of Gait Using Wavelet Transform on Wireless Accelerometer Data.

    PubMed

    Rezvanian, Saba; Lockhart, Thurmon E

    2016-01-01

    Injuries associated with fall incidences continue to pose a significant burden to persons with Parkinson's disease (PD) both in terms of human suffering and economic loss. Freezing of gait (FOG), which is one of the symptoms of PD, is a common cause of falls in this population. Although a significant amount of work has been performed to characterize/detect FOG using both qualitative and quantitative methods, there remains paucity of data regarding real-time detection of FOG, such as the requirements for minimum sensor nodes, sensor placement locations, and appropriate sampling period and update time. Here, the continuous wavelet transform (CWT) is employed to define an index for correctly identifying FOG. Since the CWT method uses both time and frequency components of a waveform in comparison to other methods utilizing only the frequency component, we hypothesized that using this method could lead to a significant improvement in the accuracy of FOG detection. We tested the proposed index on the data of 10 PD patients who experience FOG. Two hundred and thirty seven (237) FOG events were identified by the physiotherapists. The results show that the index could discriminate FOG in the anterior-posterior axis better than other two axes, and is robust to the update time variability. These results suggest that real time detection of FOG may be realized by using CWT of a single shank sensor with window size of 2 s and update time of 1 s (82.1% and 77.1% for the sensitivity and specificity, respectively). Although implicated, future studies should examine the utility of this method in real-time detection of FOG. PMID:27049389

  13. Towards Real-Time Detection of Freezing of Gait Using Wavelet Transform on Wireless Accelerometer Data

    PubMed Central

    Rezvanian, Saba; Lockhart, Thurmon E.

    2016-01-01

    Injuries associated with fall incidences continue to pose a significant burden to persons with Parkinson’s disease (PD) both in terms of human suffering and economic loss. Freezing of gait (FOG), which is one of the symptoms of PD, is a common cause of falls in this population. Although a significant amount of work has been performed to characterize/detect FOG using both qualitative and quantitative methods, there remains paucity of data regarding real-time detection of FOG, such as the requirements for minimum sensor nodes, sensor placement locations, and appropriate sampling period and update time. Here, the continuous wavelet transform (CWT) is employed to define an index for correctly identifying FOG. Since the CWT method uses both time and frequency components of a waveform in comparison to other methods utilizing only the frequency component, we hypothesized that using this method could lead to a significant improvement in the accuracy of FOG detection. We tested the proposed index on the data of 10 PD patients who experience FOG. Two hundred and thirty seven (237) FOG events were identified by the physiotherapists. The results show that the index could discriminate FOG in the anterior–posterior axis better than other two axes, and is robust to the update time variability. These results suggest that real time detection of FOG may be realized by using CWT of a single shank sensor with window size of 2 s and update time of 1 s (82.1% and 77.1% for the sensitivity and specificity, respectively). Although implicated, future studies should examine the utility of this method in real-time detection of FOG. PMID:27049389

  14. Laser accelerometer

    SciTech Connect

    Vescial, F.; Aronowitz, F.; Niguel, L.

    1990-04-24

    This patent describes a laser accelerometer. It comprises: an optical cavity characterizing a frame having an input axis (x), a cross axis (y) orthogonal to and co-planar with the input axis and a (z) axis passing through the intersection of the (x) and (y) axes, the (z) axis being orthogonal to the plane of the (x) and (y) axes; and (x) axis proof mass having a predetermined blanking surface; a flexible beam having a first end coupled to the (x) axis proof mass and a second end coupled to the frame, deflection of the flexible beams permitting a predetermined range of movement of the (x) proof mass on the input axis in a direction opposite to sensed acceleration of the frame; a laser light source having a mirror means within the cavity for providing a light ray coaxially aligned with the (z) axis; detector means having at least a first detector on a sensitive plane, the plane being normal to the (z) axis; bias and amplifier means coupled to the detector means for providing a bias current to the first detector and for amplifying the intensity signal; the (x) axis proof mass blanking surface being centrally positioned within and normal to the light ray null intensity region to provide increased blanking of the light ray in response to transverse movement of the mass on the input axis; control means responsive to the intensity signal for applying an (x) axis restoring force to restore the (x) axis proof mass to the central position and for providing an (x) axis output signal proportional to the restoring force.

  15. Dressing wear time after breast reconstruction: study protocol for a randomized controlled trial

    PubMed Central

    2013-01-01

    Background One of the major risk variables for surgical site infection is wound management. Understanding infection risk factors for breast operations is essential in order to develop infection-prevention strategies and improve surgical outcomes. The aim of this trial is to assess the influence of dressing wear time on surgical site infection rates and skin colonization. Patients’ perception at self-assessment will also be analyzed. Methods/Design This is a two-arm randomized controlled trial. Two hundred breast cancer patients undergoing immediate or delayed breast reconstruction will be prospectively enrolled. Patients will be randomly allocated to group I (dressing removed on postoperative day one) or group II (dressing removed on postoperative day six). Surgical site infections will be defined by standard criteria from the Centers for Disease Control and Prevention (CDC). Skin colonization will be assessed by culture of samples collected at predefined time points. Patients will score dressing wear time with regard to safety, comfort and convenience. Discussion The evidence to support dressing standards for breast surgery wounds is empiric and scarce. CDC recommends protecting, with a sterile dressing for 24 to 48 hours postoperatively, a primarily closed incision, but there is no recommendation to cover this kind of incision beyond 48 hours, or on the appropriate time to shower or bathe with an uncovered incision. The results of the ongoing trial may support standard recommendations regarding dressing wear time after breast reconstruction. Trial registration ClinicalTrials.gov identifier: http://NCT01148823. PMID:23432779

  16. Does Wearing Textured Insoles during Non-class Time Improve Proprioception in Professional Dancers?

    PubMed

    Steinberg, N; Tirosh, O; Adams, R; Karin, J; Waddington, G

    2015-11-01

    This study sought to determine whether textured insoles inserted in the sports shoes of young dancers improved their inversion and eversion ankle movement discrimination. 26 ballet dancers (14 female, 12 male) from the Australian Ballet School, ages 14-19 years, were divided into 2 groups according to sex and class levels. During the first 4 weeks, the first intervention group (GRP1) was asked to wear textured insoles in their sports shoes during non-class periods, and the second intervention group (GRP2) followed standard practice. In the next 4 weeks, GRP2 was asked to wear the textured insoles and GRP1 did not wear the textured insoles. Participants were tested pre-intervention, after 4 weeks, and at 8 weeks for both inversion and eversion ankle discrimination. In both inversion and eversion testing positions, interaction was found between the 2 groups and the 3 testing times (p<0.001), with significant differences between the first testing and the second testing (p=0.038 and p=0.019, respectively), and between the third testing and the second testing (p=0.003 and p=0.029, respectively). In conclusion, the stimulation to the proprioceptive system arising from textured insoles worn for 4 weeks was sufficient to improve the ankle proprioception of ballet dancers, in both inversion and eversion movements. PMID:26332901

  17. Physiological Tolerance Times while Wearing Explosive Ordnance Disposal Protective Clothing in Simulated Environmental Extremes

    PubMed Central

    Stewart, Ian B.; Stewart, Kelly L.; Worringham, Charles J.; Costello, Joseph T.

    2014-01-01

    Explosive ordnance disposal (EOD) technicians are required to wear protective clothing to protect themselves from the threat of overpressure, fragmentation, impact and heat. The engineering requirements to minimise these threats results in an extremely heavy and cumbersome clothing ensemble that increases the internal heat generation of the wearer, while the clothing’s thermal properties reduce heat dissipation. This study aimed to evaluate the heat strain encountered wearing EOD protective clothing in simulated environmental extremes across a range of differing work intensities. Eight healthy males [age 25±6 years (mean ± sd), height 180±7 cm, body mass 79±9 kg, V˙O2max 57±6 ml.kg−1.min−1] undertook nine trials while wearing an EOD9 suit (weighing 33.4 kg). The trials involved walking on a treadmill at 2.5, 4 and 5.5 km⋅h−1 at each of the following environmental conditions, 21, 30 and 37°C wet bulb globe temperature (WBGT) in a randomised controlled crossover design. The trials were ceased if the participants’ core temperature reached 39°C, if heart rate exceeded 90% of maximum, if walking time reached 60 minutes or due to fatigue/nausea. Tolerance times ranged from 10–60 minutes and were significantly reduced in the higher walking speeds and environmental conditions. In a total of 15 trials (21%) participants completed 60 minutes of walking; however, this was predominantly at the slower walking speeds in the 21°C WBGT environment. Of the remaining 57 trials, 50 were ceased, due to attainment of 90% maximal heart rate. These near maximal heart rates resulted in moderate-high levels of physiological strain in all trials, despite core temperature only reaching 39°C in one of the 72 trials. PMID:24586228

  18. Physiological tolerance times while wearing explosive ordnance disposal protective clothing in simulated environmental extremes.

    PubMed

    Stewart, Ian B; Stewart, Kelly L; Worringham, Charles J; Costello, Joseph T

    2014-01-01

    Explosive ordnance disposal (EOD) technicians are required to wear protective clothing to protect themselves from the threat of overpressure, fragmentation, impact and heat. The engineering requirements to minimise these threats results in an extremely heavy and cumbersome clothing ensemble that increases the internal heat generation of the wearer, while the clothing's thermal properties reduce heat dissipation. This study aimed to evaluate the heat strain encountered wearing EOD protective clothing in simulated environmental extremes across a range of differing work intensities. Eight healthy males [age 25 ± 6 years (mean ± sd), height 180 ± 7 cm, body mass 79 ± 9 kg, VO2max 57 ± 6 ml(.) kg(-1.)min(-1)] undertook nine trials while wearing an EOD9 suit (weighing 33.4 kg). The trials involved walking on a treadmill at 2.5, 4 and 5.5 km ⋅ h(-1) at each of the following environmental conditions, 21, 30 and 37 °C wet bulb globe temperature (WBGT) in a randomised controlled crossover design. The trials were ceased if the participants' core temperature reached 39 °C, if heart rate exceeded 90% of maximum, if walking time reached 60 minutes or due to fatigue/nausea. Tolerance times ranged from 10-60 minutes and were significantly reduced in the higher walking speeds and environmental conditions. In a total of 15 trials (21%) participants completed 60 minutes of walking; however, this was predominantly at the slower walking speeds in the 21 °C WBGT environment. Of the remaining 57 trials, 50 were ceased, due to attainment of 90% maximal heart rate. These near maximal heart rates resulted in moderate-high levels of physiological strain in all trials, despite core temperature only reaching 39 °C in one of the 72 trials. PMID:24586228

  19. Radiological Outcomes and Operative Time following Total Knee Arthroplasty using Accelerometer-based, Portable Navigation versus Conventional Inter-Medullary Alignment Guides

    PubMed Central

    MacDessi, Samuel; Solayar, GN; Thatcher, N; Chen, Darren B

    2016-01-01

    Objectives: Accelerometer-based, portable navigation instrumentation is a new method of achieving desired resection alignments in total knee arthroplasty (TKA). Methods: After randomisation and the application of exclusion criteria, 79 knees were analysed. 42 patients which underwent TKA using conventional intra-medullary (IM) alignment guides were compared to 37 patients with the use of accelerometer-based, portable navigation device (KneeAlign; OrthoAlign Inc, Aliso Viejo, California). Radiographic results were obtained from post-operative computer-tomography following the CT Perth Protocol. Results: In the IM cohort, 81.0% of patients had a coronal alignment within 3° of a neutral mechanical axis (vs 83.8% with KneeAlign, p=0.74), 81.0% had a femoral coronal alignment within 2° of perpendicular to the femoral mechanical axis (vs 89.2% with KneeAlign, p=0.31), and 92.9% had a tibial coronal alignment within 2° of perpendicular to the tibial mechanical axis (vs 81.1% with KneeAlign, p=0.12). Regarding sagittal alignment, the IM cohort had 90.5% of patients with femoral component alignment within 2° of optimum (vs 91.9% with KneeAlign, p=0.83) and 92.9% had a tibial component alignment within 2° of the optimal tibial slope (vs 89.2% with KneeAlign, p=0.57). The mean tourniquet time (from incision to completion of coronal bone resections) in the IM cohort was 16.5± 8.9 minutes vs 22.2 ± 7.6 minutes in the KneeAlign cohort (p<0.003). Conclusion: Accelerometer-based, portable navigation has a statistically similar outcome in alignment following TKA as IM guides. It is noted that using the portable navigation device does prolong surgical time compared to conventional IM surgery and this may be due to the learning curve.

  20. Reporting the Reliability of Accelerometer Data with and without Missing Values

    PubMed Central

    Wickel, Eric E.

    2014-01-01

    Objectives Participants with complete accelerometer data often represent a low proportion of the total sample and, in some cases, may be distinguishable from participants with incomplete data. Because traditional reliability methods characterize the consistency of complete data, little is known about reliability properties for an entire sample. This study employed Generalizability theory to report an index of reliability characterizing complete (7 days) and observable (1 to 7 days) accelerometer data. Design Cross-sectional. Methods Accelerometer data from the Study of Early Child Care and Youth Development were analyzed in this study. Missing value analyses were conducted to describe the pattern and mechanism of missing data. Generalizability coefficients were derived from variance components to report reliability parameters for complete data and also for the entire observable sample. Analyses were conducted separately by age (9, 11, 12, and 15 yrs) and daily wear time criteria (6, 8, 10, and 12 hrs). Results Participants with complete data were limited (<34%) and, most often, data were not considered to be missing completely at random. Across conditions, reliability coefficients for complete data were between 0.74 and 0.87. Relatively lower reliability properties were found across all observable data, ranging from 0.52 to 0.67. Sample variability increased with longer wear time criteria, but decreased with advanced age. Conclusions A reliability coefficient that includes all participants, not just those with complete data, provides a global perspective of reliability that could be used to further understand group level associations between activity and health outcomes. PMID:25478692

  1. Assessing Stride Variables and Vertical Stiffness with GPS-Embedded Accelerometers: Preliminary Insights for the Monitoring of Neuromuscular Fatigue on the Field.

    PubMed

    Buchheit, Martin; Gray, Andrew; Morin, Jean-Benoit

    2015-12-01

    The aim of the present study was to examine the ability of a GPS-imbedded accelerometer to assess stride variables and vertical stiffness (K), which are directly related to neuromuscular fatigue during field-based high-intensity runs. The ability to detect stride imbalances was also examined. A team sport player performed a series of 30-s runs on an instrumented treadmill (6 runs at 10, 17 and 24 km·h(-1)) with or without his right ankle taped (aimed at creating a stride imbalance), while wearing on his back a commercially-available GPS unit with an embedded 100-Hz tri-axial accelerometer. Contact (CT) and flying (FT) time, and K were computed from both treadmill and accelerometers (Athletic Data Innovations) data. The agreement between treadmill (criterion measure) and accelerometer-derived data was examined. We also compared the ability of the different systems to detect the stride imbalance. Biases were small (CT and K) and moderate (FT). The typical error of the estimate was trivial (CT), small (K) and moderate (FT), with nearly perfect (CT and K) and large (FT) correlations for treadmill vs. accelerometer. The tape induced very large increase in the right - left foot ∆ in CT, FT and K measured by the treadmill. The tape effect on CT and K ∆ measured with the accelerometers were also very large, but of lower magnitude than with the treadmill. The tape effect on accelerometer-derived ∆ FT was unclear. Present data highlight the potential of a GPS-embedded accelerometer to assess CT and K during ground running. Key pointsGPS-embedded tri-axial accelerometers may be used to assess contact time and vertical stiffness during ground running.These preliminary results open new perspective for the field monitoring of neuromuscular fatigue and performance in run-based sports. PMID:26664264

  2. Assessing Stride Variables and Vertical Stiffness with GPS-Embedded Accelerometers: Preliminary Insights for the Monitoring of Neuromuscular Fatigue on the Field

    PubMed Central

    Buchheit, Martin; Gray, Andrew; Morin, Jean-Benoit

    2015-01-01

    The aim of the present study was to examine the ability of a GPS-imbedded accelerometer to assess stride variables and vertical stiffness (K), which are directly related to neuromuscular fatigue during field-based high-intensity runs. The ability to detect stride imbalances was also examined. A team sport player performed a series of 30-s runs on an instrumented treadmill (6 runs at 10, 17 and 24 km·h-1) with or without his right ankle taped (aimed at creating a stride imbalance), while wearing on his back a commercially-available GPS unit with an embedded 100-Hz tri-axial accelerometer. Contact (CT) and flying (FT) time, and K were computed from both treadmill and accelerometers (Athletic Data Innovations) data. The agreement between treadmill (criterion measure) and accelerometer-derived data was examined. We also compared the ability of the different systems to detect the stride imbalance. Biases were small (CT and K) and moderate (FT). The typical error of the estimate was trivial (CT), small (K) and moderate (FT), with nearly perfect (CT and K) and large (FT) correlations for treadmill vs. accelerometer. The tape induced very large increase in the right - left foot ∆ in CT, FT and K measured by the treadmill. The tape effect on CT and K ∆ measured with the accelerometers were also very large, but of lower magnitude than with the treadmill. The tape effect on accelerometer-derived ∆ FT was unclear. Present data highlight the potential of a GPS-embedded accelerometer to assess CT and K during ground running. Key points GPS-embedded tri-axial accelerometers may be used to assess contact time and vertical stiffness during ground running. These preliminary results open new perspective for the field monitoring of neuromuscular fatigue and performance in run-based sports PMID:26664264

  3. New accelerometers under development

    NASA Technical Reports Server (NTRS)

    Wald, Jerry; Tehrani, M.

    1990-01-01

    The commercial viability of the Space Station requires that it provide a micro-g, or submicro-g environment to users. This represents significant improvement over existing systems. Attainment of the lowest micro-g levels requires isolation systems. Passive and active systems have been evaluated. Best performance is achieved using active approaches where accelerometer sensors close feedback loops. Two emerging accelerometer technologies are presented that have promise for meeting performance goals while achieving reductions of package size, weight, and power. The technologies addressed are Honeywell's design concept for an optical cavity locking accelerometer and the recent development of an integrated silicon accelerometer for government applications.

  4. A real-time and self-calibrating algorithm based on triaxial accelerometer signals for the detection of human posture and activity.

    PubMed

    Curone, Davide; Bertolotti, Gian Mario; Cristiani, Andrea; Secco, Emanuele Lindo; Magenes, Giovanni

    2010-07-01

    Assessment of human activity and posture with triaxial accelerometers provides insightful information about the functional ability: classification of human activities in rehabilitation and elderly surveillance contexts has been already proposed in the literature. In the meanwhile, recent technological advances allow developing miniaturized wearable devices, integrated within garments, which may extend this assessment to novel tasks, such as real-time remote surveillance of workers and emergency operators intervening in harsh environments. We present an algorithm for human posture and activity-level detection, based on the real-time processing of the signals produced by one wearable triaxial accelerometer. The algorithm is independent of the sensor orientation with respect to the body. Furthermore, it associates to its outputs a "reliability" value, representing the classification quality, in order to launch reliable alarms only when effective dangerous conditions are detected. The system was tested on a customized device to estimate the computational resources needed for real-time functioning. Results exhibit an overall 96.2% accuracy when classifying both static and dynamic activities. PMID:20483689

  5. Detection of brake wear aerosols by aerosol time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Beddows, D. C. S.; Dall'Osto, M.; Olatunbosun, O. A.; Harrison, Roy M.

    2016-03-01

    Brake dust particles were characterised using an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) operated using two inlet configurations, namely the aerodynamic lens (AFL) inlet and countersunk nozzle inlet. Laboratory studies show that dust particles are characterised by mass spectra containing ions deriving from Fe and Ba and although highly correlated to each other, the Fe and Ba signals were mostly detected using the nozzle inlet with relatively high laser desorption energies. When using the AFL, only [56Fe] and [-88FeO2] ions were observed in brake dust spectra generated using lower laser desorption pulse energies, and only above 0.75 mJ was the [138Ba] ion detected. When used with the preferred nozzle inlet configuration, the [-88FeO2] peak was considered to be the more reliable tracer peak, because it is not present in other types of dust (mineral, tyre, Saharan etc). As shown by the comparison with ambient data from a number of locations, the aerodynamic lens is not as efficient in detecting brake wear particles, with less than 1% of sampled particles attributed to brake wear. Five field campaigns within Birmingham (background, roadside (3) and road tunnel) used the nozzle inlet and showed that dust particles (crustal and road) accounted for between 3.1 and 65.9% of the particles detected, with the remaining particles being made up from varying percentages of other constituents.

  6. Using RFID and accelerometer-embedded tracers to measure probabilities of bed load transport, step lengths, and rest times in a mountain stream

    NASA Astrophysics Data System (ADS)

    Olinde, Lindsay; Johnson, Joel P. L.

    2015-09-01

    We present new measurements of bed load tracer transport in a mountain stream over several snowmelt seasons. Cumulative displacements were measured using passive tracers, which consisted of gravel and cobbles embedded with radio frequency identification tags. The timing of bed load motion during 11 transporting events was quantified with active tracers, i.e., accelerometer-embedded cobbles. Probabilities of cobble transport increased with discharge above a threshold, and exhibited slight to moderate hysteresis during snowmelt hydrographs. Dividing cumulative displacements by the number of movements recorded by each active tracer constrained average step lengths. Average step lengths increased with discharge, and distributions of average step lengths and cumulative displacements were thin tailed. Distributions of rest times followed heavy-tailed power law scaling. Rest time scaling varied somewhat with discharge and with the degree to which tracers were incorporated into the streambed. The combination of thin-tailed displacement distributions and heavy-tailed rest time distributions predict superdiffusive dispersion.

  7. Tightly-coupled real-time analysis of GPS and accelerometer data for translational and rotational ground motions and application to earthquake and tsunami early warning

    NASA Astrophysics Data System (ADS)

    Geng, J.; Bock, Y.; Melgar, D.; Hasse, J.; Crowell, B. W.

    2013-12-01

    High-rate GPS can play an important role in earthquake early warning (EEW) systems for large (>M6) events by providing permanent displacements immediately as they are achieved, to be used in source inversions that can be repeatedly updated as more information becomes available. This is most valuable to implement at a site very near the potential source rupture, where broadband seismometers are likely to clip, and accelerometer data cannot be objectively integrated to produce reliable displacements in real time. At present, more than 525 real-time GPS stations have been established in western North America, which are being integrated into EEW systems. Our analysis technique relies on a tightly-coupled combination of GPS and accelerometer data, an extension of precise point positioning with ambiguity resolution (PPP-AR). We operate a PPP service based on North American stations available through the IGS and UNAVCO/PBO. The service provides real-time satellite clock and fractional-cycle bias products that allow us to position individual client stations in the zone of deformation. The service reference stations are chosen to be further than 200 km from the primary zones of tectonic deformation in the western U.S. to avoid contamination of the satellite products during a large seismic event. At client stations, accelerometer data are applied as tight constraints on the positions between epochs in PPP-AR, which improves cycle-slip repair and rapid ambiguity resolution after GPS outages. Furthermore, we estimate site displacements, seismic velocities, and coseismic ground tilts to facilitate the analysis of ground motion characteristics and the inversion for source mechanisms. The seismogeodetic displacement and velocity waveforms preserves the detection of P wave arrivals, and provides P-wave arrival displacement that is key new information for EEW. Our innovative solution method for coseismic tilts mitigates an error source that has continually plagued strong motion

  8. Hybridizing matter-wave and classical accelerometers

    SciTech Connect

    Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A.

    2014-10-06

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.

  9. Fiber optic accelerometer

    NASA Technical Reports Server (NTRS)

    August, Rudolf R. (Inventor); Strahan, Virgil H. (Inventor); James, Kenneth A. (Inventor); Nichols, Donald K. (Inventor)

    1980-01-01

    An inexpensive, light weight fiber optic accelerometer to convert input mechanical motion (e.g. acceleration) into digitized optical output signals. The output of the accelerometer may be connected directly to data processing apparatus without the necessity of space consuming analog to digital interface means.

  10. Fiber optic accelerometer

    NASA Technical Reports Server (NTRS)

    Strahan, Virgil H. (Inventor); James, Kenneth A. (Inventor); Quick, William H. (Inventor)

    1983-01-01

    An inexpensive, light weight fiber optic accelerometer to convert input mechanical motion (e.g. acceleration) into digitized optical output signals. The output of the accelerometer may be connected directly to data processing apparatus without the necessity of space consuming analog to digital interface means.

  11. Ultracold-Atom Accelerometers

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1995-01-01

    Proposed class of accelerometers and related motion sensors based on use of ultracold atoms as inertial components of motion transducers. Ultracold atoms supplant spring-and-mass components of older accelerometers. As used here, "ultracold atoms" means atoms with kinetic energies equivalent to temperatures equal to or less than 20 mK. Acclerometers essentially frictionless. Primary advantage high sensitivity.

  12. The John Charnley Award. Wear is a function of use, not time.

    PubMed

    Schmalzried, T P; Shepherd, E F; Dorey, F J; Jackson, W O; dela Rosa, M; Fa'vae, F; McKellop, H A; McClung, C D; Martell, J; Moreland, J R; Amstutz, H C

    2000-12-01

    Polyethylene wear (linear penetration) in 37 hip replacements was assessed from digital images using a validated two-dimensional, edge detection-based computer algorithm. Patient activity was assessed with a pedometer, a step activity monitor and a simple visual analog scale. Joint use was related to wear at the 90% confidence level. Without three recognized outliers, wear was highly correlated to use. The visual analog scale activity rating was significantly related to wear for the 24 hip replacements with standard polyethylene. Univariate regression analysis indicated that male gender, height, weight (which were both highly correlated to male gender) and hip center of rotation were significantly correlated to wear. Multivariate regression analysis indicated that male gender, femoral off-set, and Hylamer were significantly correlated to wear. Based on the wear and activity data from the 24 hip replacements with standard polyethylene, the average volumetric wear rate per million cycles with a 70 kg patient weight was 30 mm3. This unique in vivo result can be considered a target wear rate for standard polyethylene in hip simulator studies. PMID:11127668

  13. Validity and Usability of Low-Cost Accelerometers for Internet-Based Self-Monitoring of Physical Activity in Patients With Chronic Obstructive Pulmonary Disease

    PubMed Central

    Alpay, Laurence L; Snoeck-Stroband, Jiska B; Beerthuizen, Thijs; Siemonsma, Petra C; Abbink, Jannie J; Sont, Jacob K; Rövekamp, Ton A

    2014-01-01

    Background The importance of regular physical activity for patients with chronic obstructive pulmonary disease (COPD) is well-established. However, many patients do not meet the recommended daily amount. Accelerometers might provide patients with the information needed to increase physical activity in daily life. Objective Our objective was to assess the validity and usability of low-cost Internet-connected accelerometers. Furthermore we explored patients’ preferences with regards to the presentation of and feedback on monitored physical activity. Methods To assess concurrent validity we conducted a field validation study with patients who wore two low-cost accelerometers, Fitbit and Physical Activity Monitor (PAM), at the same time along with a sophisticated multisensor accelerometer (SenseWear Armband) for 48 hours. Data on energy expenditure assessed from registrations from the two low-cost accelerometers were compared to the well validated SenseWear Armband which served as a reference criterion. Usability was examined in a cross-over study with patients who, in succession, wore the Fitbit and the PAM for 7 consecutive days and filled out a 16 item questionnaire with regards to the use of the corresponding device Results The agreement between energy expenditure (METs) from the SenseWear Armband with METs estimated by the Fitbit and PAM was good (r=.77) and moderate (r=.41), respectively. The regression model that was developed for the Fitbit explained 92% whereas the PAM-model could explain 89% of total variance in METs measured by the SenseWear. With regards to the usability, both the Fitbit and PAM were well rated on all items. There were no significant differences between the two devices. Conclusions The low-cost Fitbit and PAM are valid and usable devices to measure physical activity in patients with COPD. These devices may be useful in long-term interventions aiming at increasing physical activity levels in these patients. PMID:25347989

  14. Obtaining Accelerometer Data in a National Cohort of Black and White Adults

    PubMed Central

    Howard, Virginia J.; Rhodes, J. David; Mosher, Aleena; Hutto, Brent; Stewart, Margaret S.; Colabianchi, Natalie; Vena, John E.; Blair, Steven N.; Hooker, Steven P.

    2014-01-01

    Purpose To report methodological details and feasibility of conducting an accelerometer ancillary study in a large U.S. cohort being followed for stroke and cognitive decline. Methods REGARDS is a national, population-based study of 30,239 blacks and whites, aged ≥ 45 years, enrolled January 2003–October 2007. Baseline evaluations were conducted through computer-assisted telephone interview (CATI) and an in-home visit. Participants are followed by CATI every 6 months. Starting with May 2009 follow-up, contingent on accelerometer availability, participants were invited to wear an accelerometer for 7 days. Device inventory was 1,150. Accelerometer, instructions, log sheet and stamped addressed return envelope were mailed to consenting participants. Postcard acknowledgement and reminders, and ≤ two calls were made to encourage compliance. Results Between May 2009 and January 2013, 20,076 were invited to participate; 12,146 (60.5%) consented. Participation rates by race-sex groups were similar: black women 58.6%, black men 59.6%, white women 62.3% and white men 60.5%. Mean age of the 12,146 participants to whom devices were shipped was 63.5 ± 8.7 years. Return rate was 92%. Of 11,174 returned, 1,187 were not worn, 14 had device malfunction, and of 9,973 with data, 8,096 (81.2%) provided usable data, defined as ≥ 4 days of 10+ hours of wear time, ranging from 74.4% among black women to 85.2% among white men. Conclusions Using mail and telephone methods, it is feasible to obtain objective measures of physical activity from a sizeable proportion of a national cohort of adults, with similar participation rates among blacks and whites. Linked with the clinical health information collected through follow-up, these data will allow future analyses on the association between objectively-measured sedentary time, physical activity and health outcomes. PMID:25333247

  15. Activity recognition using a single accelerometer placed at the wrist or ankle

    PubMed Central

    Mannini, Andrea; Intille, Stephen S.; Rosenberger, Mary; Sabatini, Angelo M.; Haskell, William

    2013-01-01

    PURPOSE Large physical activity surveillance projects such as the UK Biobank and NHANES are using wrist-worn accelerometer-based activity monitors that collect raw data. The goal is to increase wear time by asking subjects to wear the monitors on the wrist instead of the hip, and then to use information in the raw signal to improve activity type and intensity estimation. The purpose of this work is obtaining an algorithm to process wrist and ankle raw data and classify behavior into four broad activity classes: ambulation, cycling, sedentary and other. METHODS Participants (N = 33) wearing accelerometers on the wrist and ankle performed 26 daily activities. The accelerometer data were collected, cleaned, and preprocessed to extract features that characterize 2 s, 4 s, and 12.8 s data windows. Feature vectors encoding information about frequency and intensity of motion extracted from analysis of the raw signal were used with a support vector machine classifier to identify a subject’s activity. Results were compared with categories classified by a human observer. Algorithms were validated using a leave-one-subject-out strategy. The computational complexity of each processing step was also evaluated. RESULTS With 12.8 s windows, the proposed strategy showed high classification accuracies for ankle data (95.0%) that decreased to 84.7% for wrist data. Shorter (4 s) windows only minimally decreased performances of the algorithm on the wrist to 84.2%. CONCLUSIONS A classification algorithm using 13 features shows good classification into the four classes given the complexity of the activities in the original dataset. The algorithm is computationally-efficient and could be implemented in real-time on mobile devices with only 4 s latency. PMID:23604069

  16. The Impact of Gait Disability on the Calibration of Accelerometer Output in Adults with Multiple Sclerosis

    PubMed Central

    Weikert, Madeline; Dlugonski, Deirdre; Suh, Yoojin; Fernhall, Bo

    2011-01-01

    Accelerometer activity counts have been correlated with energy expenditure during treadmill walking among ambulatory adults with multiple sclerosis (MS). This study examined the effects of gait disability on 1) the association between rates of energy expenditure and accelerometer output in overground walking and 2) the calibration of accelerometer output for quantifying time spent in moderate-to-vigorous physical activity (MVPA) in people with MS. The sample consisted of 24 individuals with MS, of whom 10 reported gait disability based on Patient-Determined Disease Steps (PDDS) scores. The participants undertook three 6-minute periods of overground walking while wearing an accelerometer and a portable metabolic unit (K4b2, Cosmed, Rome, Italy). In the first period of walking, the participants walked at a self-selected, comfortable speed. In the two subsequent walking periods, participants walked at speeds above and below (±0.5 mph) the comfortable walking speed, respectively. Strong linear relationships were observed between rates of accelerometer activity counts and energy expenditure during walking in the overall sample (R2 = 0.90) and subsamples with (R2 = 0.88) and without gait disability (R2 = 0.91). The slope of the relationship was significantly steeper in the subsample with gait disability (β= 0.0049) than in the subsample without gait disability (β= 0.0026). The difference in slopes resulted in a significantly lower cut-point for MVPA (1886 vs. 2717 counts/min) in those with gait disability. These findings provide a metabolic cut-point for quantifying time spent in MVPA in people with MS, both with and without gait disability. PMID:24453722

  17. Analysis of dual-task elderly gait using wearable plantar-pressure insoles and accelerometer.

    PubMed

    Howcroft, Jennifer D; Lemaire, Edward D; Kofman, Jonathan; McIlroy, William E

    2014-01-01

    Dual-task gait allows assessment of impaired executive function and mobility control in older individuals, which are risk factors of falls. This study investigated gait changes in older individuals due to the addition of a cognitive load, using wearable pressure-sensing insole and tri-axial accelerometer measures. These wearable sensors can be applied at the point-of-care. Eleven elderly (65 years or older) individuals walked 7.62 m with and without a verbal fluency cognitive load task while wearing FScan 3000E pressure-sensing insoles in both shoes and a Gulf Coast X16-1C tri-axial accelerometer at the pelvis. Plantar-pressure derived parameters included center of force (CoF) path and temporal measures. Acceleration derived measures were descriptive statistics, Fast Fourier Transform quartile, ratio of even-to-odd harmonics, and maximum Lyapunov exponent. Stride time, stance time, and swing time all significantly increased during dual-task compared to single-task walking. Minimum, mean, and median CoF stance velocity; cadence; and vertical, anterior-posterior, and medial-lateral harmonic ratio all significantly decreased during dual-task walking. Wearable plantar pressure-sensing insole and lower back accelerometer derived-measures can identify gait differences between single-task and dual-task walking in older individuals and could be used in point-of-care environments to assess for deficits in executive function and mobility impairments. PMID:25571116

  18. Fiber optic interferometric accelerometers

    SciTech Connect

    Vohra, S.T.; Danver, B.; Tveten, A.; Dandridge, A.

    1996-04-01

    Recent progress on the development of flexural disk based fiber optic acceleration sensors is reported. Appropriate geometric considerations have resulted in fiber optic accelerometers with many desirable features including (i) high sensitivity ({approx_gt}20 dB rerad/g), (ii) flat frequency response (200 Hz to {approx_gt}10 kHz), and (iii) low pressure ({lt}{minus}180 dB rerad/{mu}Pa) and transverse sensitivity ({lt}{minus}30 dB). Alternate transducer designs are discussed and preliminary results reported. Various optical multiplexing schemes for accelerometer arrays are discussed. {copyright} {ital 1996 American Institute of Physics.}

  19. Compact Circuit Preprocesses Accelerometer Output

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1993-01-01

    Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.

  20. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, Dale R.

    1984-01-01

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  1. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, D.R.

    1982-09-23

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  2. Superconducting Rebalance Accelerometer

    NASA Technical Reports Server (NTRS)

    Torti, R. P.; Gerver, M.; Leary, K. J.; Jagannathan, S.; Dozer, D. M.

    1996-01-01

    A multi-axis accelerometer which utilizes a magnetically-suspended, high-TC proof mass is under development. The design and performance of a single axis device which is stabilized actively in the axial direction but which utilizes ring magnets for passive radial stabilization is discussed. The design of a full six degree-of-freedom device version is also described.

  3. CHAMP Tracking and Accelerometer Data Analysis Results

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Luthcke, S. B.; Rowlands, D. D.; Pavlis, D. E.; Colombo, O. L.; Ray, Richard D.; Thompson, B.; Nerem, R. S.; Williams, Teresa A.; Smith, David E. (Technical Monitor)

    2002-01-01

    The CHAMP (Challenging Minisatellite Payload) mission's unique combination of sensors and orbit configuration will enable unprecedented improvements in modeling and understanding the Earth's static gravity field and its temporal variations. CHAMP is the first of two missions (GRACE (Gravity Recovery and Climate Experiment) to be launched in the later part of '01) that combine a new generation of GPS (Global Positioning System) receivers, a high precision three axis accelerometer, and star cameras for the precision attitude determination. In order to isolate the gravity signal for science investigations, it is necessary to perform a detailed reduction and analysis of the GPS and SLR tracking data in conjunction with the accelerometer and attitude data. Precision orbit determination based on the GPS and SLR (Satellite Laser Ranging) tracking data will isolate the orbit perturbations, while the accelerometer data will be used to distinguish the surface forces from those due to the geopotential (static, and time varying). In preparation for the CHAMP and GRACE missions, extensive modifications have been made to NASA/GSFC's GEODYN orbit determination software to enable the simultaneous reduction of spacecraft tracking (e.g. GPS and SLR), three axis accelerometer and precise attitude data. Several weeks of CHAMP tracking and accelerometer data have been analyzed and the results will be presented. Precision orbit determination analysis based on tracking data alone in addition to results based on the simultaneous reduction of tracking and accelerometer data will be discussed. Results from a calibration of the accelerometer will be presented along with the results from various orbit determination strategies. Gravity field modeling status and plans will be discussed.

  4. The effect of feeding time on dispersal of Virola seeds by toucans determined from GPS tracking and accelerometers

    NASA Astrophysics Data System (ADS)

    Kays, Roland; Jansen, Patrick A.; Knecht, Elise M. H.; Vohwinkel, Reinhard; Wikelski, Martin

    2011-11-01

    Seed dispersal is critical to understanding forest dynamics but is hard to study because tracking seeds is difficult. Even for the best-studied dispersal system of the Neotropics, Virola nobilis, the dispersal kernel remains unknown. We combined high-resolution GPS/3D-acceleration bird tracking, seed-retention experiments, and field observations to quantify dispersal of V. nobilis by their principal dispersers, Ramphastos toucans. We inferred feeding events from movement data, and then estimated spatio-temporally explicit seed-dispersal kernels. Wild toucans moved an average of 1.8 km d -1 with two distinct activity peaks. Seed retention time in captive toucans averaged 25.5 min (range 4-98 min). Estimated seed dispersal distance averaged 144 ± 147 m, with a 56% likelihood of dispersal >100 m, two times further than the behaviour-naive estimate from the same data. Dispersal was furthest for seeds ingested in the morning, and increased with seed retention time, but only up to 60 min after feeding. Our study supports the long-standing hypothesis that toucans are excellent dispersers of Virola seeds. To maximize seed dispersal distances trees should ripen fruit in the morning when birds move the most, and produce fruits with gut-processing times around 60 min. Our study demonstrates how new tracking technology can yield nuanced seed dispersal kernels for animals that cannot be directly observed.

  5. Low G accelerometer testing

    NASA Technical Reports Server (NTRS)

    Vaughan, M. S.

    1972-01-01

    Eight different types of low-g accelerometer tests are covered on the Bell miniature electrostatically suspended accelerometer (MESA) which is known to be sensitive to less than 10 to the minus 7th power earth's gravity. These tests include a mass attracting scheme, Leitz dividing head, Wild theodolite, precision gage blocks, precision tiltmeters, Hilger Watts autocollimator, Razdow Mark 2 autocollimator, and laser interferometer measuring system. Each test is described and a comparison of the results is presented. The output of the MESA was as linear and consistent as any of the available devices were capable of measuring. Although the extent of agreement varied with the test equipment used, it can only be concluded that the indicated errors were attributable to the test equipment coupled with the environmental conditions.

  6. The perfectly ideal accelerometer

    NASA Technical Reports Server (NTRS)

    Stuhlinger, Ernst

    1990-01-01

    Given here is a condensed version of the results and conclusions that developed during the Workshop. Upper limits of residual accelerations that can be tolerated during materials processes, presented as acceptable and as desirable limits, are shown. Designs and capabilities of various accelerometers, and their inherent problems, are compared. Results of acceleration measurements on Spacelab flights are summarized, and expected acceleration levels on the Space Station under various conditions are estimated.

  7. Fiber optic micro accelerometer

    DOEpatents

    Swierkowski, Steve P.

    2005-07-26

    An accelerometer includes a wafer, a proof mass integrated into the wafer, at least one spring member connected to the proof mass, and an optical fiber. A Fabry-Perot cavity is formed by a partially reflective surface on the proof mass and a partially reflective surface on the end of the optical fiber. The two partially reflective surfaces are used to detect movement of the proof mass through the optical fiber, using an optical detection system.

  8. ATS-6 - Flight accelerometers

    NASA Technical Reports Server (NTRS)

    Mattson, R.; Honeycutt, G.; Lindner, F.

    1975-01-01

    The Applications Technology Satellite-6 (ATS-6) flight accelerometers were designed to provide data for verifying the basic spacecraft vibration modes during launch, to update the analytical model of the ATA structure, and to provide a capability for detection and diagnosis of inflight and anomalies. The experiment showed accelerations less than 2.5 g during liftoff and 1.1 g or less during staging with frequencies below 80 Hz. Measured values were generally within 1 g of predicted.

  9. Piezoelectric accelerometers for ultrahigh temperature application

    SciTech Connect

    Zhang Shujun; Moses, Paul; Shrout, Thomas R.; Jiang Xiaoning; Lapsley, Michael

    2010-01-04

    High temperature sensors are of major importance to aerospace and energy related industries. In this letter, a high temperature monolithic compression-mode piezoelectric accelerometer was fabricated using YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) single crystals. The performance of the sensor was tested as function of temperature up to 1000 deg. C and over a frequency range of 100-600 Hz. The accelerometer prototype was found to possess sensitivity of 2.4+-0.4 pC/g, across the measured temperature and frequency range, indicating a low temperature coefficient. Furthermore, the sensor exhibited good stability over an extended dwell time at 900 deg. C, demonstrating that YCOB piezoelectric accelerometers are promising candidates for high temperature sensing applications.

  10. Levitated micro-accelerometer.

    SciTech Connect

    Warne, Larry Kevin; Schmidt, Carrie Frances; Peterson, Kenneth Allen; Kravitz, Stanley H.; Renn, Rosemarie A.; Peter, Frank J.; Kinney, Ragon D.; Gilkey, Jeffrey C.

    2004-06-01

    The objective is a significant advancement in the state-of-the-art of accelerometer design for tactical grade (or better) applications. The design goals are <1 milli-G bias stability across environments and $200 cost. This quantum leap in performance improvement and cost reduction can only be achieved by a radical new approach, not incremental improvements to existing concepts. This novel levitated closed-loop accelerometer is implemented as a hybrid micromachine. The hybrid approach frees the designer from the limitations of any given monolithic process and dramatically expands the available design space. The design can be tailored to the dynamic range, resolution, bandwidth, and environmental requirements of the application while still preserving all of the benefits of monolithic MEMS fabrication - extreme precision, small size, low cost, and low power. An accelerometer was designed and prototype hardware was built, driving the successful development and refinement of several 'never been done before' fabrication processes. Many of these process developments are commercially valuable and are key enablers for the realization of a wide variety of useful micro-devices. While controlled levitation of a proof mass has yet to be realized, the overall design concept remains sound. This was clearly demonstrated by the stable and reliable closed-loop control of a proof mass at the test structure level. Furthermore, the hybrid MEMS implementation is the most promising approach for achieving the ambitious cost and performance targets. It is strongly recommended that Sandia remain committed to the original goal.

  11. Passive Accelerometer System Measurements on MIR

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1997-01-01

    The Passive Accelerometer System (PAS) is a simple moving ball accelerometer capable of measuring the small magnitude steady relative acceleration that occurs in a low earth orbit spacecraft due to atmospheric drag and the earth's gravity gradient. The acceleration is measured by recording the average velocity of the spherical ball over a suitable time increment. A modified form of Stokes law is used to convert the average velocity into an acceleration. PAS was used to measure acceleration on the MIR space station and on the first United States Microgravity Laboratory (USML-1). The PAS measurement on MIR revealed remarkably low acceleration levels in the SPEKTR module.

  12. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring

    PubMed Central

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-01-01

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297

  13. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.

    PubMed

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-01-01

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297

  14. Combination of High Rate, Real-time GNSS and Accelerometer Observations - Preliminary Results Using a Shake Table and Historic Earthquake Events.

    NASA Astrophysics Data System (ADS)

    Jackson, Michael; Passmore, Paul; Zimakov, Leonid; Raczka, Jared

    2014-05-01

    One of the fundamental requirements of an Earthquake Early Warning (EEW) system (and other mission critical applications) is to quickly detect and process the information from the strong motion event, i.e. event detection and location, magnitude estimation, and the peak ground motion estimation at the defined targeted site, thus allowing the civil protection authorities to provide pre-programmed emergency response actions: Slow down or stop rapid transit trains and high-speed trains; shutoff of gas pipelines and chemical facilities; stop elevators at the nearest floor; send alarms to hospitals, schools and other civil institutions. An important question associated with the EEW system is: can we measure displacements in real time with sufficient accuracy? Scientific GNSS networks are moving towards a model of real-time data acquisition, storage integrity, and real-time position and displacement calculations. This new paradigm allows the integration of real-time, high-rate GNSS displacement information with acceleration and velocity data to create very high-rate displacement records. The mating of these two instruments allows the creation of a new, very high-rate (200 Hz) displacement observable that has the full-scale displacement characteristics of GNSS and high-precision dynamic motions of seismic technologies. It is envisioned that these new observables can be used for earthquake early warning studies and other mission critical applications, such as volcano monitoring, building, bridge and dam monitoring systems. REF TEK a Division of Trimble has developed the integrated GNSS/Accelerograph system, model 160-09SG, which consists of REF TEK's fourth generation electronics, a 147-01 high-resolution ANSS Class A accelerometer, and Trimble GNSS receiver and antenna capable of real time, on board Precise Point Positioning (PPP) techniques with satellite clock and orbit corrections delivered to the receiver directly via L-band satellite communications. The test we

  15. Designing Electrostatic Accelerometers for Next Gravity Missions

    NASA Astrophysics Data System (ADS)

    Huynh, Phuong-Anh; Foulon, Bernard; Christophe, Bruno; Liorzou, Françoise; Boulanger, Damien; Lebat, Vincent

    2016-04-01

    Square cuboid electrostatic accelerometers sensor core have been used in various combinations in recent and still flying missions (CHAMP, GRACE, GOCE). ONERA is now in the process of delivering such accelerometers for the GRACE Follow-On mission. The goal is to demonstrate the performance benefits of an interferometry laser ranging method for future low-low satellite to satellite missions. The electrostatic accelerometer becoming thus the system main performance limiter, we propose for future missions a new symmetry which will allow for three ultrasensitive axes instead of two. This implies no performance ground testing, as the now cubic proof-mass will be too heavy, but only free fall tests in catapult mode, taking advantage of the additional microgravity testing time offered by the updated ZARM tower. The updated mission will be in better adequacy with the requirements of a next generation of smaller and drag compensated micro-satellites. In addition to the measurement of the surface forces exerted on the spacecraft by the atmospheric drag and by radiation pressures, the accelerometer will become a major part of the attitude and orbit control system by acting as drag free sensor and by accurately measuring the angular accelerations. ONERA also works on a hybridization of the electrostatic accelerometer with an atomic interferometer to take advantage of the absolute nature of the atomic interferometer acceleration measurement and its great accuracy in the [5-100] mHz bandwidth. After a description of the improvement of the GRACE-FO accelerometer with respect to the still in-orbit previous models and a status of its development, the presentation will describe the new cubic configuration and how its operations and performances can be verified in the Bremen drop tower.

  16. Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.

    2010-01-01

    The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.

  17. Capacitive Position Sensor For Accelerometer

    NASA Technical Reports Server (NTRS)

    Vanzandt, Thomas R.; Kaiser, William J.; Kenny, Thomas W.

    1995-01-01

    Capacitive position sensor measures displacement of proof mass in prototype accelerometer described in "Single-Crystal Springs for Accelerometers" (NPO-18795). Sensor is ultrasensitive, miniature device operating at ultra-high frequency and described in more detail in "Ultra-High-Frequency Capacitive Displacement Sensor," (NPO-18675). Advances in design and fabrication of prototype accelerometer also applicable to magnetometers and other sensors in which sensed quantities measured in terms of deflections of small springs.

  18. Intermonitor variability of GT3X accelerometer.

    PubMed

    Santos-Lozano, A; Torres-Luque, G; Marín, P J; Ruiz, J R; Lucia, A; Garatachea, N

    2012-12-01

    The main purpose of this study was to assess the inter-monitor reliability of the tri-axial GT3X Actigraph accelerometer over a range of physical activities (PA). This device collects motion data on each of the vertical (Y), horizontal right-left (X), and horizontal front-back (Z) axes and also calculates the vector summed value √X(2)+Y(2)+Z(2) known as 'vector magnitude' (VM). 8 GT3X accelerometers were worn at the same time by the same participant. Accelerometers were placed back-to-front, all facing forward and in sets of 4 securely taped together, attached to a belt and allocating each block above either left or right hip at waist level. Inter-monitor reliability was assessed during 6 conditions: rest, walking (4 and 6 km·h(-1)), running (8 and 10 km·h(-1)) and repeated sit-to-stand (40 times·min(-1)). The intra-class correlation coefficients were high for X, Y and Z axes (i.e., all ≥ 0.925) and for VM (≥ 0.946). In conclusion, we found good inter-instrument reliability of the GT3X accelerometer across all planes, yet our results also suggest that the X and Z axes do not provide further benefits over the 'traditional' Y-axis to assess the movement in typical PA. PMID:22791617

  19. Uniaxial angular accelerometers

    NASA Astrophysics Data System (ADS)

    Seleznev, A. V.; Shvab, I. A.

    1985-05-01

    The basic mechanical components of an angular accelerometer are the sensor, the damper, and the transducer. Penumatic dampers are simplest in construction, but the viscosity of air is very low and, therefore, dampers with special purpose oils having a high temperature stability (synthetic silicon or organosilicon oils) are most widely used. The most common types of viscous dampers are lamellar with meshed opposed arrays of fixed and movable vanes in the dashpot, piston dampers regulated by an adjustable-length capillary tube, and dampers with paddle wheel in closed tank. Another type of damper is an impact-inertial one with large masses absorbing the rotational energy upon collision with the sensor. Conventional measuring elements are resistive, capacitive, electromagnetic, photoelectric, and penumatic or hydraulic. Novel types of angular accelerometers are based on inertia of gas jets, electron beams, and ion beams, the piezoelectric effect in p-n junctions of diode and transistors, the electrokinetic effect in fluids, and cryogenic suspension of the sensor.

  20. Dual-Cantilever-Beam Accelerometer

    NASA Technical Reports Server (NTRS)

    Reynolds, Emmitt A.; Speckhart, Frank H.

    1988-01-01

    Sensitivity to velocity changes along beam axis reduced. Weighted-end cantilever beams of accelerometer deflected equally by acceleration in y direction. When acceleration to right as well as up or down, right beam deflected more, while left beam deflected less. Bridge circuit averages outputs of strain gauges measuring deflections, so cross-axis sensitivity of accelerometer reduced. New device simple and inexpensive.

  1. Wearing gloves in the hospital

    MedlinePlus

    Infection control - wearing gloves; Patient safety - wearing gloves; Personal protective equipment - wearing gloves; PPE - wearing gloves; Nosocomial infection - wearing gloves; Hospital acquired infection - wearing gloves

  2. MGRA: Motion Gesture Recognition via Accelerometer

    PubMed Central

    Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen

    2016-01-01

    Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods. PMID:27089336

  3. MGRA: Motion Gesture Recognition via Accelerometer.

    PubMed

    Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen

    2016-01-01

    Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods. PMID:27089336

  4. Monitoring recovery of gait balance control following concussion using an accelerometer.

    PubMed

    Howell, David; Osternig, Louis; Chou, Li-Shan

    2015-09-18

    Despite medical best-practice recommendations, no consistent standard exists to systematically monitor recovery from concussion. Studies utilizing camera-based systems have reported center-of-mass (COM) motion control deficits persisting in individuals with concussion up to two months post-injury. The use of an accelerometer may provide an efficient and sensitive method to monitor COM alterations following concussion that can be employed in clinical settings. This study examined: (1) frontal/sagittal plane acceleration characteristics during dual-task walking for individuals with concussion and healthy controls; and (2) the effectiveness of utilizing acceleration characteristics to classify concussed and healthy individuals via receiver operating characteristic (ROC) curve analyses. Individuals with concussion completed testing within 72 h as well as 1 week, 2 weeks, 1 month, and 2 months post-injury. Control subjects completed the same protocol in similar time increments. Participants walked and simultaneously completed a cognitive task while wearing an accelerometer attached to L5. Participants with concussion walked with significantly less peak medial-lateral acceleration during 55-75% gait cycle (p=0.04) throughout the testing period compared with controls. Moderate levels of sensitivity and specificity were found at the 72 h and 1 week testing times (sensitivity=0.70, specificity=0.71). ROC analysis revealed significant AUC values at the 72 h (AUC=0.889) and two week (AUC=0.810) time points. Accelerometer-derived measurements may assist in detecting frontal plane control deficits during dual-task walking post-concussion, consistent with camera-based studies. These initial findings demonstrate potential for using accelerometry as a tool for clinicians to monitor gait balance control following concussion. PMID:26152463

  5. Movement prediction using accelerometers in a human population.

    PubMed

    Xiao, Luo; He, Bing; Koster, Annemarie; Caserotti, Paolo; Lange-Maia, Brittney; Glynn, Nancy W; Harris, Tamara B; Crainiceanu, Ciprian M

    2016-06-01

    We introduce statistical methods for predicting the types of human activity at sub-second resolution using triaxial accelerometry data. The major innovation is that we use labeled activity data from some subjects to predict the activity labels of other subjects. To achieve this, we normalize the data across subjects by matching the standing up and lying down portions of triaxial accelerometry data. This is necessary to account for differences between the variability in the position of the device relative to gravity, which are induced by body shape and size as well as by the ambiguous definition of device placement. We also normalize the data at the device level to ensure that the magnitude of the signal at rest is similar across devices. After normalization we use overlapping movelets (segments of triaxial accelerometry time series) extracted from some of the subjects to predict the movement type of the other subjects. The problem was motivated by and is applied to a laboratory study of 20 older participants who performed different activities while wearing accelerometers at the hip. Prediction results based on other people's labeled dictionaries of activity performed almost as well as those obtained using their own labeled dictionaries. These findings indicate that prediction of activity types for data collected during natural activities of daily living may actually be possible. PMID:26288278

  6. Recent Results from CHAMP Tracking and Accelerometer Data Analysis

    NASA Technical Reports Server (NTRS)

    Luthcke, S. B.; Rowlands, D. D.; Lemoine, F. G.; Nerem, R. S.; Thompson, B.; Pavlis, E.; Williams, T. A.; Colombo, O. L.; Chao, Benjamin F. (Technical Monitor)

    2002-01-01

    The CHAMP mission's unique combination of sensors and orbit configuration will enable unprecedented improvements in modeling and understanding the Earth's static gravity field and its temporal variations. CHAMP is the first of two missions (GRACE to be launched in the early part of 02') that combine a new generation of Global Positioning System (GPS) receivers, a high precision three-axis accelerometer, and star cameras for the precision attitude determination. In order to isolate the gravity signal for science investigations, it is necessary to perform a detailed reduction and analysis of the GPS and Satellite Laser Ranging (SLR) tracking data in conjunction with the accelerometer and attitude data. Precision orbit determination based on the GPS and SLR tracking data will isolate the orbit perturbations, while the accelerometer data will be used to distinguish the non-gravitational forces from those due to the geopotential (static, and time varying). In preparation for the CHAMP and GRACE missions, extensive modifications have been made to NASA/GSFC's GEODYN orbit determination software to enable the simultaneous reduction of spacecraft tracking (e.g. GPS and SLR), three-axis accelerometer and precise attitude data. Several weeks of CHAMP tracking and accelerometer data have been analyzed and the results will be presented. Precision orbit determination analysis based on tracking data alone in addition to results based on the simultaneous reduction of tracking and accelerometer data will be discussed. Results from a calibration of the accelerometer will be presented along with the results from various orbit determination strategies.

  7. Validation of individual GOCE accelerometers by precise orbit determination

    NASA Astrophysics Data System (ADS)

    Visser, Pieter N. A. M.

    2012-07-01

    The European Space Agency (ESA) Gravity field and steady-state Ocean Circular Explorer (GOCE) carries a gradiometer consisting of three pairs of accelerometers in an orthogonal triad. Precise GOCE science orbit solutions (PSO), which are based on Satellite-to-Satellite Tracking (SST) observations by the Global Positioning System (GPS) and which are claimed to be at the few cm precision level, can be used to validate the observations taken by the accelerometers. This has been done for each individual accelerometer by a dynamic orbit fit of the time series of position coordinates from the PSOs, where the accelerometer observations represent the non-gravitational accelerations. Since the accelerometers do not coincide with the center of mass of the GOCE satellite, the observations have to be corrected for rotational and gravity gradient terms. This is opposed to using the so-called common-mode accelerations, provided the center of the gradiometer coincides with the center of mass. Dynamic orbit fits based on these common-mode accelerations therefore served as reference. It will be shown that for all individual accelerometers similar dynamic orbit fits can be obtained, provided the above mentioned corrections are made. When using the common-mode accelerations, similar fits are obtained. In addition, attention will be paid to the possibility of estimating accelerometer calibration parameters, such as biases and scale factors.

  8. Self Diagnostic Accelerometer Testing on the C-17 Aircraft

    NASA Technical Reports Server (NTRS)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. To demonstrate the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The SDA attachment conditions were varied from fully tight to loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first.

  9. Accelerometer Data Analysis and Presentation Techniques

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; Moskowitz, Milton E.; Reckart, Timothy

    1997-01-01

    The NASA Lewis Research Center's Principal Investigator Microgravity Services project analyzes Orbital Acceleration Research Experiment and Space Acceleration Measurement System data for principal investigators of microgravity experiments. Principal investigators need a thorough understanding of data analysis techniques so that they can request appropriate analyses to best interpret accelerometer data. Accelerometer data sampling and filtering is introduced along with the related topics of resolution and aliasing. Specific information about the Orbital Acceleration Research Experiment and Space Acceleration Measurement System data sampling and filtering is given. Time domain data analysis techniques are discussed and example environment interpretations are made using plots of acceleration versus time, interval average acceleration versus time, interval root-mean-square acceleration versus time, trimmean acceleration versus time, quasi-steady three dimensional histograms, and prediction of quasi-steady levels at different locations. An introduction to Fourier transform theory and windowing is provided along with specific analysis techniques and data interpretations. The frequency domain analyses discussed are power spectral density versus frequency, cumulative root-mean-square acceleration versus frequency, root-mean-square acceleration versus frequency, one-third octave band root-mean-square acceleration versus frequency, and power spectral density versus frequency versus time (spectrogram). Instructions for accessing NASA Lewis Research Center accelerometer data and related information using the internet are provided.

  10. Photoelastic Fiber-Optic Accelerometers.

    NASA Astrophysics Data System (ADS)

    Su, Wei

    This dissertation introduces a completely new class of fiber-optic accelerometers based on the principles of photoelasticity. Two different types of accelerometers are designed and developed. The first is a general purpose accelerometer which employs a sensing element made from an optically sensitive photoelastic plastic; the unit is designed with a relatively low natural frequency and a high sensitivity. The second is a shock accelerometer which employs a glass GRIN lens as its sensing element; the unit is designed with a relatively high frequency and a wide measurement range. In both cases, a low-cost LED is employed as an incoherent light source; multimode optical fibers having a hard plastic cladding are used to transmit signals between the acceleration transducer and the conditioning electronics. The dissertation includes a brief introduction to accelerometer measurement in which current applications and associated problems are presented; detailed descriptions of the operating principles and design criteria considered when building an accelerometer; prior related research; discussions involving photoelastic fiber-optic transducers; a comprehensive analysis of sensing elements; the designs for the overall measurement systems; and, the results obtained by testing prototypes produced from the final designs. The qualitative and quantitative analyses contained herein represent a unique blend of mechanics, physics and electro-optics. A number of new discoveries are reported especially in conjunction with the analysis of the GRIN lens. Several new definitions are introduced, some of which make it possible to compare the performance of the photoelastic fiber-optic accelerometers to that of their more conventional counterparts. The test results show that both accelerometers meet their design requirements and their performance is comparable to some of the best accelerometers commercially available.

  11. Cutting force-based real-time estimation of tool wear in face milling using a combination of signal processing techniques

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, P.; Sengupta, D.; Mukhopadhyay, S.

    2007-08-01

    In this paper, combinations of signal processing techniques for real-time estimation of tool wear in face milling using cutting force signals are presented. Three different strategies based on linear filtering, time-domain averaging and wavelet transformation techniques are adopted for extracting relevant features from the measured signals. Sensor fusion at feature level is used in search of an improved and robust tool wear model. Isotonic regression and exponential smoothing techniques are introduced to enforce monotonicity and smoothness of the extracted features. At the first stage, multiple linear regression models are developed for specific cutting conditions using the extracted features. The best features are identified on the basis of a statistical model selection criterion. At the second stage, the first-stage models are combined, in accordance with proven theory, into a single tool wear model, including the effect of cutting parameters. The three chosen strategies show improvements over those reported in the literature, in the case of training data as well as test data used for validation—for both laboratory and industrial experiments. A method for calculating the probabilistic worst-case prediction of tool wear is also developed for the final tool wear model.

  12. Eye Wear

    MedlinePlus

    Eye wear protects or corrects your vision. Examples are Sunglasses Safety goggles Glasses (also called eyeglasses) Contact ... jobs and some sports carry a risk of eye injury. Thousands of children and adults get eye ...

  13. Dark matter direct detection with accelerometers

    NASA Astrophysics Data System (ADS)

    Graham, Peter W.; Kaplan, David E.; Mardon, Jeremy; Rajendran, Surjeet; Terrano, William A.

    2016-04-01

    The mass of the dark matter particle is unknown, and may be as low as ˜1 0-22 eV . The lighter part of this range, below ˜eV , is relatively unexplored both theoretically and experimentally but contains an array of natural dark matter candidates. An example is the relaxion, a light boson predicted by cosmological solutions to the hierarchy problem. One of the few generic signals such light dark matter can produce is a time-oscillating, equivalence-principle-violating force. We propose searches for this using accelerometers, and consider in detail the examples of torsion balances, atom interferometry, and pulsar timing. These approaches have the potential to probe large parts of unexplored parameter space in the next several years. Thus such accelerometers provide radically new avenues for the direct detection of dark matter.

  14. Multi-Axis Accelerometer Calibration System

    NASA Technical Reports Server (NTRS)

    Finley, Tom; Parker, Peter

    2010-01-01

    A low-cost, portable, and simplified system has been developed that is suitable for in-situ calibration and/or evaluation of multi-axis inertial measurement instruments. This system overcomes facility restrictions and maintains or improves the calibration quality for users of accelerometer-based instruments with applications in avionics, experimental wind tunnel research, and force balance calibration applications. The apparatus quickly and easily positions a multi-axis accelerometer system into a precisely known orientation suitable for in-situ quality checks and calibration. In addition, the system incorporates powerful and sophisticated statistical methods, known as response surface methodology and statistical quality control. These methods improve calibration quality, reduce calibration time, and allow for increased calibration frequency, which enables the monitoring of instrument stability over time.

  15. Wear resistance properties of austempered ductile iron

    SciTech Connect

    Lerner, Y.S.; Kingsbury, G.R.

    1998-02-01

    A detailed review of wear resistance properties of austempered ductile iron (ADI) was undertaken to examine the potential applications of this material for wear parts, as an alternative to steels, alloyed and white irons, bronzes, and other competitive materials. Two modes of wear were studied: adhesive (frictional) dry sliding and abrasive wear. In the rotating dry sliding tests, wear behavior of the base material (a stationary block) was considered in relationship to countersurface (steel shaft) wear. In this wear mode, the wear rate of ADI was only one-fourth that of pearlitic ductile iron (DI) grade 100-70-03; the wear rates of aluminum bronze and leaded-tin bronze, respectively, were 3.7 and 3.3 times greater than that of ADI. Only quenched DI with a fully martensitic matrix slightly outperformed ADI. No significant difference was observed in the wear of steel shafts running against ADI and quenched DI. The excellent wear performance of ADI and its countersurface, combined with their relatively low friction coefficient, indicate potential for dry sliding wear applications. In the abrasive wear mode, the wear rate of ADI was comparable to that of alloyed hardened AISI 4340 steel, and approximately one-half that of hardened medium-carbon AISI 1050 steel and of white and alloyed cast irons. The excellent wear resistance of ADI may be attributed to the strain-affected transformation of high-carbon austenite to martensite that takes place in the surface layer during the wear tests.

  16. Wearing weighted backpack dilates subjective visual duration: the role of functional linkage between weight experience and visual timing.

    PubMed

    Jia, Lina; Shi, Zhuanghua; Feng, Wenfeng

    2015-01-01

    Bodily state plays a critical role in our perception. In the present study, we asked the question whether and how bodily experience of weights influences time perception. Participants judged durations of a picture (a backpack or a trolley bag) presented on the screen, while wearing different weight backpacks or without backpack. The results showed that the subjective duration of the backpack picture was dilated when participants wore a medium weighted backpack relative to an empty backpack or without backpack, regardless of identity (e.g., color) of the visual backpack. However, the duration dilation was not manifested for the picture of trolley bag. These findings suggest that weight experience modulates visual duration estimation through the linkage between the wore backpack and to-be-estimated visual target. The congruent action affordance between the wore backpack and visual inputs plays a critical role in the functional linkage between inner experience and time perception. We interpreted our findings within the framework of embodied time perception. PMID:26441748

  17. Wearing weighted backpack dilates subjective visual duration: the role of functional linkage between weight experience and visual timing

    PubMed Central

    Jia, Lina; Shi, Zhuanghua; Feng, Wenfeng

    2015-01-01

    Bodily state plays a critical role in our perception. In the present study, we asked the question whether and how bodily experience of weights influences time perception. Participants judged durations of a picture (a backpack or a trolley bag) presented on the screen, while wearing different weight backpacks or without backpack. The results showed that the subjective duration of the backpack picture was dilated when participants wore a medium weighted backpack relative to an empty backpack or without backpack, regardless of identity (e.g., color) of the visual backpack. However, the duration dilation was not manifested for the picture of trolley bag. These findings suggest that weight experience modulates visual duration estimation through the linkage between the wore backpack and to-be-estimated visual target. The congruent action affordance between the wore backpack and visual inputs plays a critical role in the functional linkage between inner experience and time perception. We interpreted our findings within the framework of embodied time perception. PMID:26441748

  18. Validity of method to quantify transtibial amputees' free-living prosthetic wearing times and physical activity levels when using suction suspension sockets.

    PubMed

    Tang, Kit Tzu; Spence, William D; Maxwell, Douglas; Stansfield, Benedict William

    2012-01-01

    Prostheses are prescribed to restore the mobility of people with amputated lower limbs. Monitoring the prosthesis wearing times and physical activity of prosthesis users would provide invaluable information regarding rehabilitation progress and suitability of the prosthesis. The validation of a method to determine wearing times and physical activity state, as well as strides taken, of amputees wearing suction suspension sockets is reported. Eight participants with transtibial amputation were fitted with custom-made suction sockets. Analysis algorithms were used to automatically characterize physical activity based on the pressure at the socket's relief valve. The algorithms were validated in a laboratory-based protocol that included walking, stair climbing, standing, sitting, donning, and doffing. Intraclass correlation coefficient (2,1) values of >0.98 were achieved with mean differences of - 2.0%, 0.3%, 1.3%, and 0.7% for agreement between "off," "static," and "dynamic" times and stride count, respectively, as determined by the analysis algorithms and a concurrent video analysis. This study demonstrates that an interpretation of the pressure at the pressure-relief valve of suction suspension sockets can be used to determine wearing times and activity state. PMID:22773201

  19. Accurate Telescope Mount Positioning with MEMS Accelerometers

    NASA Astrophysics Data System (ADS)

    Mészáros, L.; Jaskó, A.; Pál, A.; Csépány, G.

    2014-08-01

    This paper describes the advantages and challenges of applying microelectromechanical accelerometer systems (MEMS accelerometers) in order to attain precise, accurate, and stateless positioning of telescope mounts. This provides a completely independent method from other forms of electronic, optical, mechanical or magnetic feedback or real-time astrometry. Our goal is to reach the subarcminute range which is considerably smaller than the field-of-view of conventional imaging telescope systems. Here we present how this subarcminute accuracy can be achieved with very cheap MEMS sensors and we also detail how our procedures can be extended in order to attain even finer measurements. In addition, our paper discusses how can a complete system design be implemented in order to be a part of a telescope control system.

  20. Micromachined accelerometer design, modeling and validation

    SciTech Connect

    Davies, B.R.; Bateman, V.I.; Brown, F.A.; Montague, S.; Murray, J.R.; Rey, D.; Smith, J.H.

    1998-04-01

    Micromachining technologies enable the development of low-cost devices capable of sensing motion in a reliable and accurate manner. The development of various surface micromachined accelerometers and gyroscopes to sense motion is an ongoing activity at Sandia National Laboratories. In addition, Sandia has developed a fabrication process for integrating both the micromechanical structures and microelectronics circuitry of Micro-Electro-Mechanical Systems (MEMS) on the same chip. This integrated surface micromachining process provides substantial performance and reliability advantages in the development of MEMS accelerometers and gyros. A Sandia MEMS team developed a single-axis, micromachined silicon accelerometer capable of surviving and measuring very high accelerations, up to 50,000 times the acceleration due to gravity or 50 k-G (actually measured to 46,000 G). The Sandia integrated surface micromachining process was selected for fabrication of the sensor due to the extreme measurement sensitivity potential associated with integrated microelectronics. Measurement electronics capable of measuring at to Farad (10{sup {minus}18} Farad) changes in capacitance were required due to the very small accelerometer proof mass (< 200 {times} 10{sup {minus}9} gram) used in this surface micromachining process. The small proof mass corresponded to small sensor deflections which in turn required very sensitive electronics to enable accurate acceleration measurement over a range of 1 to 50 k-G. A prototype sensor, based on a suspended plate mass configuration, was developed and the details of the design, modeling, and validation of the device will be presented in this paper. The device was analyzed using both conventional lumped parameter modeling techniques and finite element analysis tools. The device was tested and performed well over its design range.

  1. Does a waist-worn accelerometer capture intra- and inter-person variation in walking behavior among persons with multiple sclerosis?

    PubMed Central

    Motl, Robert W.; Sosnoff, Jacob J.; Dlugonski, Deirdre; Suh, Yoojin; Goldman, Myla

    2011-01-01

    The valid application of accelerometry and interpretation of its output (i.e., counts per unit time) for the measurement of walking behavior in persons with multiple sclerosis (MS) rests upon multiple untested assumptions. This study tested the assumption that a waist-worn accelerometer should capture the intra- and inter-person variation in walking behavior. Twenty-four participants with a neurologist-confirmed diagnosis of MS and who were ambulatory with minimal assistance undertook three 6-min periods of over-ground walking that involved comfortable (CWS) and then slower (SWS) and faster (FWS) walking speeds while wearing ActiGraph, model 7164, accelerometers around the waist and ankle. The experimental manipulation of walking was successful such that the CWS was 76.7 ± 13.0 m/min (range = 55.6–105.14), whereas the SWS and FWS were 64.3 ± 12.3 m/min (range = 44.5–90.1) and 89.1 ± 13.8 m/min (range = 60.9–116.4), respectively. Movement counts from the waist and ankle-worn accelerometer were strongly associated with the manipulation of speed, but the association was stronger for the waist than ankle based on both eta-squared estimates (η2 values = .78 and .46) and the average squared multiple correlations from individual regression analyses (R2 values = .97 ± .04 and .88 ± .21). The bivariate correlation between movement counts from the waist-worn accelerometer and speed of walking (r = .823, p = .001) was large in magnitude and significantly different (z = 3.22, p = .001) from that between movement counts from the ankle-worn unit and walking speed (r = .549, p = .001). This study provides novel evidence that an accelerometer worn around the waist captures intra- and inter-person variation in over-ground walking behavior in those with MS. PMID:20875952

  2. MEMS accelerometers in accurate mount positioning systems

    NASA Astrophysics Data System (ADS)

    Mészáros, László; Pál, András.; Jaskó, Attila

    2014-07-01

    In order to attain precise, accurate and stateless positioning of telescope mounts we apply microelectromechanical accelerometer systems (also known as MEMS accelerometers). In common practice, feedback from the mount position is provided by electronic, optical or magneto-mechanical systems or via real-time astrometric solution based on the acquired images. Hence, MEMS-based systems are completely independent from these mechanisms. Our goal is to investigate the advantages and challenges of applying such devices and to reach the sub-arcminute range { that is well smaller than the field-of-view of conventional imaging telescope systems. We present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors. Basically, these sensors yield raw output within an accuracy of a few degrees. We show what kind of calibration procedures could exploit spherical and cylindrical constraints between accelerometer output channels in order to achieve the previously mentioned accuracy level. We also demonstrate how can our implementation be inserted in a telescope control system. Although this attainable precision is less than both the resolution of telescope mount drive mechanics and the accuracy of astrometric solutions, the independent nature of attitude determination could significantly increase the reliability of autonomous or remotely operated astronomical observations.

  3. Implantable biaxial piezoresistive accelerometer for sensorimotor control.

    PubMed

    Zou, Qiang; Tan, Wei; Sok Kim, Eun; Singh, Jasspreet; Loeb, Gerald E

    2004-01-01

    This paper describes the design, fabrication and test results of a novel biaxial piezoresistive accelerometer and its incorporation into a miniature neuromuscular stimulator called a BION. Because of its highly symmetric twin mass structure, the X and Z axis acceleration can be measured at the same time and the cross axis sensitivity can be minimized by proper piezoresistor design. The X and Z axis sensitivities of the biaxial accelerometer are 0.10 mV/g/V and 1.40 mV/g/V, respectively, which are further increased to 0.65 mV/g/V and 2.40 mV/g/V, respectively, with extra silicon mass added to the proof mass. The cross-axis sensitivity is less than 3.3% among X, Y and Z-axis. An orientation tracking method for human segments by measuring every joint angle is also discussed in this paper. Joint angles can be obtained by processing the outputs of a pair of biaxial accelerometers (placed very close to the joint axis on the adjacent limb links), without having to integrate acceleration or velocity signals, thereby avoiding errors due to offsets and drift. PMID:17271250

  4. Isolation of a piezoresistive accelerometer used in high acceleration tests

    NASA Astrophysics Data System (ADS)

    Bateman, V. I.; Brown, F. A.; Davie, N. T.

    Both uniaxial and triaxial shock isolation techniques for a piezoresistive accelerometer have been developed for pyroshock and impact tests. The uniaxial shock isolation technique has demonstrated acceptable characteristics for a temperature range of -50 to +186 F and a frequency bandwidth of DC to 10 kHz. The triaxial shock isolation technique has demonstrated acceptable results for a temperature range of -50 to 70 F and a frequency bandwidth of DC to 10 kHz. These temperature ranges, that are beyond the accelerometer manufacturer's operational limits of -30 and +150 F, required the calibration of accelerometers at high shock levels and at the temperature extremes of -50 and +160 F. The purposes of these calibrations were to insure that the accelerometers operated at the field test temperatures and to provide an accelerometer sensitivity at each test temperature. Since there is no NIST-traceable (National Institute of Standards and Technology traceable) calibration capability at shock levels of 5,000 - 15,000 g for the temperature extremes of -50 and +160 F, a method for calibrating and certifying the Hopkinson bar with a transfer standard was developed. Time domain and frequency domain results are given that characterize the Hopkinson bar. The NIST-traceable accuracy for the standard accelerometer in shock is +\\-5%. The Hopkinson bar has been certified by the Sandia Secondary Standards Division with an uncertainty of 6%.

  5. Measurement of Impact Acceleration: Mouthpiece Accelerometer Versus Helmet Accelerometer

    PubMed Central

    Higgins, Michael; Halstead, P. David; Snyder-Mackler, Lynn; Barlow, David

    2007-01-01

    Context: Instrumented helmets have been used to estimate impact acceleration imparted to the head during helmet impacts. These instrumented helmets may not accurately measure the actual amount of acceleration experienced by the head due to factors such as helmet-to-head fit. Objective: To determine if an accelerometer attached to a mouthpiece (MP) provides a more accurate representation of headform center of gravity (HFCOG) acceleration during impact than does an accelerometer attached to a helmet fitted on the headform. Design: Single-factor research design in which the independent variable was accelerometer position (HFCOG, helmet, MP) and the dependent variables were g and Severity Index (SI). Setting: Independent impact research laboratory. Intervention(s): The helmeted headform was dropped (n = 168) using a National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop system from the standard heights and impact sites according to NOCSAE test standards. Peak g and SI were measured for each accelerometer position during impact. Main Outcome Measures: Upon impact, the peak g and SI were recorded for each accelerometer location. Results: Strong relationships were noted for HFCOG and MP measures, and significant differences were seen between HFCOG and helmet g measures and HFCOG and helmet SI measures. No statistically significant differences were noted between HFCOG and MP g and SI measures. Regression analyses showed a significant relationship between HFCOG and MP measures but not between HFCOG and helmet measures. Conclusions: Upon impact, MP acceleration (g) and SI measurements were closely related to and more accurate in measuring HFCOG g and SI than helmet measurements. The MP accelerometer is a valid method for measuring head acceleration. PMID:17597937

  6. Changes to the ocular biota with time in extended- and daily-wear disposable contact lens use.

    PubMed

    Stapleton, F; Willcox, M D; Fleming, C M; Hickson, S; Sweeney, D F; Holden, B A

    1995-11-01

    Gram-negative bacteria may play a role in the etiology of certain soft contact lens (SCL)-related diseases. Contact lens (CL) wear may modify the normal ocular biota, providing a more favorable environment for potential pathogens. This study reports temporal changes in ocular biota in daily-wear (DW) and extended-wear (EW) disposable SCL use in experienced and neophyte wearers. Lid margin and bulbar conjunctival biota were sampled prior to CL fitting in 26 previous DW SCL users, 18 previous EW SCL users, and 26 neophytes. Wearers were fitted with an etafilcon A CL in one eye and a polymacon CL in the fellow eye. Lenses were worn on a daily basis by the 26 previous DW SCL wearers and on an EW basis by the remaining 44 subjects. The ocular biota was further sampled after 1, 3, 6, 9, and 12 months of wear. The ocular biota consisted of coagulase-negative staphylococci, Corynebacterium spp., Micrococcus spp., and Propionibacterium spp. Potential pathogens were rarely isolated at baseline. No significant trend of increasing ocular colonization was shown for extended CL wear. Lid and conjunctival colonization increased with DW SCL use (P < 0.001), although this increase occurred for nonpathogenic species only. Fewer potential pathogens were isolated from DW SCL than from EW SCL users (P < 0.05). The lid margin consistently showed greater colonization than the conjunctiva and may be a source of potential pathogens during CL wear. Hydrogel CL wear appears to modify the ocular biota. An increased number of commensal organisms were present in DW SCL use. EW SCL use altered the spectrum of organisms isolated. These alterations may suppress the normal ocular defense mechanisms and may be relevant in the pathogenesis of CL-related disease. PMID:7591092

  7. Effects of liquid cooling garments on recovery and performance time in individuals performing strenuous work wearing a firefighter ensemble.

    PubMed

    Kim, Jung-Hyun; Coca, Aitor; Williams, W Jon; Roberge, Raymond J

    2011-07-01

    This study investigated the effects of body cooling using liquid cooling garments (LCG) on performance time (PT) and recovery in individuals wearing a fully equipped prototype firefighter ensemble (PFE) incorporating a self-contained breathing apparatus (SCBA). Six healthy male participants (three firefighters and three non-firefighters) completed six experimental sessions in an environmental chamber (35°C, 50% relative humidity), consisting of three stages of 15 min exercise at 75% VO2max, and 10 min rest following each exercise stage. During each session, one of the following six conditions was administered in a randomized order: control (no cooling, CON); air ventilation of exhaust SCBA gases rerouted into the PFE (AV); top cooling garment (TCG); TCG combined with AV (TCG+AV); a shortened whole body cooling garment (SCG), and SCG combined with AV (SCG+AV). Results showed that total PT completed was longer under SCG and SCG+AV compared with CON, AV, TCG, and TCG+AV (p<0.01). Magnitude of core temperature (Tc) elevation was significantly decreased when SCG was utilized (p<0.01), and heart rate recovery rate (10 min) was enhanced under SCG, SCG+AV, TCG, and TCG+AV compared with CON (p<0.05). Estimated Esw rate (kg·h(-1)) was the greatest in CON, 1.62 (0.37), and the least in SCG+AV 0.98 (0.44): (descending order: CON>AV>TCG=TCG+AV>SCG>SCG+AV) without a statistical difference between the conditions (p<0.05). Results of the present study suggest that the application of LCG underneath the PFE significantly improves the recovery during a short period of rest and prolongs performance time in subsequent bouts of exercise. LCG also appears to be an effective method for body cooling that promotes heat dissipation during uncompensable heat stress. PMID:21660834

  8. Dual-Element Tunneling Accelerometer

    NASA Technical Reports Server (NTRS)

    Kaiser, William J.; Kenny, Thomas W.; Rockstad, Howard K.; Reynolds, Joseph K.

    1994-01-01

    Improved micromachined tunneling accelerometer contains two deflecting transducer elements: One an elastically supported proof mass having relatively low resonant frequency; other cantilever tunneling transducer that tracks displacement of proof mass and has relatively high resonant frequency ({sup a} 10 kHz). Deflection voltage generated by circuit like described in "Wideband Feedback Circuit for Tunneling Sensor" (NPO-18866). Accelerometers of this type suited for underwater acoustic measurements, detecting vibrations associated with malfunctions in vehicles, detecting seismic signals, monitoring and controlling vibrations in structures, and other applications.

  9. The NACA Three Component Accelerometer

    NASA Technical Reports Server (NTRS)

    Reid, H J E

    1922-01-01

    A new instrument known as the NACA three component accelerometer is described in this note. This instrument was designed by the technical staff of the NACA for recording accelerations along three mutually perpendicular axes, and is of the same type as the NACA single component accelerometer with the addition of two springs and a few minor improvements such as a pump for filling the dash-pots and a convenient method for aligning the springs. This note includes a few records as well as photographs of the instrument itself.

  10. System Wide Joint Position Sensor Fault Tolerance in Robot Systems Using Cartesian Accelerometers

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    Joint position sensors are necessary for most robot control systems. A single position sensor failure in a normal robot system can greatly degrade performance. This paper presents a method to obtain position information from Cartesian accelerometers without integration. Depending on the number and location of the accelerometers. the proposed system can tolerate the loss of multiple position sensors. A solution technique suitable for real-time implementation is presented. Simulations were conducted using 5 triaxial accelerometers to recover from the loss of up to 4 joint position sensors on a 7 degree of freedom robot moving in general three dimensional space. The simulations show good estimation performance using non-ideal accelerometer measurements.

  11. FPGA-based fused smart-sensor for tool-wear area quantitative estimation in CNC machine inserts.

    PubMed

    Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto

    2010-01-01

    Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used. PMID:22319304

  12. FPGA-Based Fused Smart-Sensor for Tool-Wear Area Quantitative Estimation in CNC Machine Inserts

    PubMed Central

    Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto

    2010-01-01

    Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used. PMID:22319304

  13. Accelerometer having integral fault null

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1995-01-01

    An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.

  14. Wear resistant valve

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1980-01-01

    A valve which is resistant to wear caused by particles trapped between the valve seat and the valve member or poppet when the valve closes, including an outlet for directing washing fluid at the valve seat and/or sealing face of the poppet and means for supplying pressured fluid to the outlet at the time when the valve is closing.

  15. ISA accelerometer and Lunar science

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Peron, Roberto; Lucchesi, David; Santoli, Francesco; Lefevre, Carlo; Fiorenza, Emiliano; Nozzoli, Sergio; Lucente, Marco; Magnafico, Carmelo; Milyukov, Vadim

    In recent years the Moon has become again a target for exploration activities, as shown by many missions, performed, ongoing or foreseen. The reasons for this new wave are manifold. The knowledge of formation and evolution of the Moon to its current state is important in order to trace the overall history of the Solar System. An effective driving factor is the possibility of building a human settlement on its surface, with all the related issues of environment characterization, safety, resources, communication and navigation. Our natural satellite is also an important laboratory for fundamental physics: Lunar Laser Ranging is continuing to provide important data for testing gravitation theories. All these topics are providing stimulus and inspirations for new experiments: in fact a wide variety of them has been proposed to be conducted on the lunar surface. ISA (Italian Spring Accelerometer) can provide an important tool for lunar studies. Thanks to its design it works on-ground with the same configuration developed for in-orbit applications. It can therefore be used onboard a spacecraft, as a support to a radio science mission, and on the surface of the Moon, as a seismometer. This second option in particular has been the subject of preliminary studies and has been proposed as a candidate to be hosted on NASA ILN (International Lunar Network) and ESA First Lunar Lander. ISA-S (ISA-Seismometer) has a very high sensitivity, which has already been demonstrated with long time periods of usage on Earth. It features also a wide bandwidth, extended towards the low frequencies. After a description of the instrument, its use in the context of landing missions will be described and discussed, giving emphasis on its integration with the other components of the systems.

  16. Predicting adult pulmonary ventilation volume and wearing complianceby on-board accelerometry during personal level exposure assessments

    NASA Astrophysics Data System (ADS)

    Rodes, C. E.; Chillrud, S. N.; Haskell, W. L.; Intille, S. S.; Albinali, F.; Rosenberger, M. E.

    2012-09-01

    BackgroundMetabolic functions typically increase with human activity, but optimal methods to characterize activity levels for real-time predictions of ventilation volume (l min-1) during exposure assessments have not been available. Could tiny, triaxial accelerometers be incorporated into personal level monitors to define periods of acceptable wearing compliance, and allow the exposures (μg m-3) to be extended to potential doses in μg min-1 kg-1 of body weight? ObjectivesIn a pilot effort, we tested: 1) whether appropriately-processed accelerometer data could be utilized to predict compliance and in linear regressions to predict ventilation volumes in real-time as an on-board component of personal level exposure sensor systems, and 2) whether locating the exposure monitors on the chest in the breathing zone, provided comparable accelerometric data to other locations more typically utilized (waist, thigh, wrist, etc.). MethodsPrototype exposure monitors from RTI International and Columbia University were worn on the chest by a pilot cohort of adults while conducting an array of scripted activities (all <10 METS), spanning common recumbent, sedentary, and ambulatory activity categories. Referee Wocket accelerometers that were placed at various body locations allowed comparison with the chest-located exposure sensor accelerometers. An Oxycon Mobile mask was used to measure oral-nasal ventilation volumes in-situ. For the subset of participants with complete data (n = 22), linear regressions were constructed (processed accelerometric variable versus ventilation rate) for each participant and exposure monitor type, and Pearson correlations computed to compare across scenarios. ResultsTriaxial accelerometer data were demonstrated to be adequately sensitive indicators for predicting exposure monitor wearing compliance. Strong linear correlations (R values from 0.77 to 0.99) were observed for all participants for both exposure sensor accelerometer variables against

  17. Evaluation of infrared thermography body temperature and collar-mounted accelerometer and acoustic technology for predicting time of ovulation of cows in a pasture-based system.

    PubMed

    Talukder, S; Thomson, P C; Kerrisk, K L; Clark, C E F; Celi, P

    2015-03-01

    This study was conducted to test the hypothesis that the specificity of infrared thermography (IRT) in detecting cows about to ovulate could be improved using different body parts that are less likely to be contaminated by fecal matter. In addition, the combined activity and rumination data captured by accelerometers were evaluated to provide a more accurate indication of ovulation than the activity and rumination data alone. Thermal images of 30 cows were captured for different body areas (eye, ear, muzzle, and vulva) twice daily after AM and PM milking sessions during the entire experimental period. Milk progesterone data and insemination records were used to determine the date of ovulation. Cows were fitted with SCR heat and rumination long-distance tags (SCR HR LD) for 1 month. Activity- and rumination-based estrus alerts were initially identified using default threshold values set by the manufacturer; however, a range of thresholds was also created and tested for both activity and rumination to determine the potential for higher levels of accuracy of ovulation detection. Visual assessment of mounting indicators resulted in 75% sensitivity (Se), 100% specificity (Sp), and 100% positive predictive value (PPV). Overall, IRT showed poor performance for detecting cows about to ovulate. Vulval temperature resulted in the greatest (80%) Sp but the poorest (21%) Se compared with the IRT temperatures of other body areas. The SCR HR LD tags default threshold value resulted in 78% Se, 57% Sp, and 70% PPV. Lowering the activity threshold from the default value improved the sensitivity but created a large number of false positives, which resulted in a decrease in specificity. Lowering the activity threshold to 20 resulted in a detection performance of 80% Se, 94% Sp, and 67% PPV, whereas the rumination levels achieved 35% Se, 69% Sp, and 14% PPV. The area under the curve for the activity level, rumination level, and the combined measures of activity and rumination levels

  18. Multiple-stage integrating accelerometer

    DOEpatents

    Devaney, H.F.

    1984-06-27

    An accelerometer assembly is provided for use in activating a switch in response to multiple acceleration pulses in series. The accelerometer includes a housing forming a chamber. An inertial mass or piston is slidably disposed in the chamber and spring biased toward a first or reset position. A damping system is also provided to damp piston movement in response to first and subsequent acceleration pulses. Additionally, a cam, including a Z-shaped slot, and cooperating follower pin slidably received therein are mounted to the piston and the housing. The middle or cross-over leg of the Z-shaped slot cooperates with the follower pin to block or limit piston movement and prevent switch activation in response to a lone acceleration pulse. The switch of the assembly is only activated after two or more separate acceleration pulses are sensed and the piston reaches the end of the chamber opposite the reset position.

  19. Multiple-stage integrating accelerometer

    DOEpatents

    Devaney, Howard F.

    1986-01-01

    An accelerometer assembly is provided for use in activating a switch in response to multiple acceleration pulses in series. The accelerometer includes a housing forming a chamber. An inertial mass or piston is slidably disposed in the chamber and spring biased toward a first or reset position. A damping system is also provided to damp piston movement in response to first and subsequent acceleration pulses. Additionally, a cam, including a Z-shaped slot, and cooperating follower pin slidably received therein are mounted to the piston and the housing. The middle or cross-over leg of the Z-shaped slot cooperates with the follower pin to block or limit piston movement and prevent switch activation in response to a lone acceleration pulse. The switch of the assembly is only activated after two or more separate acceleration pulses are sensed and the piston reaches the end of the chamber opposite the reset position.

  20. Fiber optic accelerometers and seismometers

    SciTech Connect

    Brown, D.A. |

    1996-04-01

    This paper presents performance and figures-of-merit of fiber optic interferometric accelerometers and seismometers using flexural disk, mandrel, and fluid filled transducers. Flexural disk devices having sensitivities of 50 radians/g and operating bandwidths to 2 kHz have been reported. This sensitivity corresponds to a minimum detectable signal of 20 nano-g/{radical}Hz for a system demodulation noise floor of 1 micro-radian/{radical}Hz. {copyright} {ital 1996 American Institute of Physics.}

  1. Accelerometer Method and Apparatus for Integral Display and Control Functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1998-01-01

    Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto is discussed. An accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.

  2. Accelerometer Method and Apparatus for Integral Display and Control Functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1996-01-01

    Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. Art accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.

  3. Optimal GPS/accelerometer integration algorithm for monitoring the vertical structural dynamics

    NASA Astrophysics Data System (ADS)

    Meng, Xiaolin; Wang, Jian; Han, Houzeng

    2014-11-01

    The vertical structural dynamics is a crucial factor for structural health monitoring (SHM) of civil structures such as high-rise buildings, suspension bridges and towers. This paper presents an optimal GPS/accelerometer integration algorithm for an automated multi-sensor monitoring system. The closed loop feedback algorithm for integrating the vertical GPS and accelerometer measurements is proposed based on a 5 state extended KALMAN filter (EKF) and then the narrow moving window Fast Fourier Transform (FFT) analysis is applied to extract structural dynamics. A civil structural vibration is simulated and the analysed result shows the proposed algorithm can effectively integrate the online vertical measurements produced by GPS and accelerometer. Furthermore, the accelerometer bias and scale factor can also be estimated which is impossible with traditional integration algorithms. Further analysis shows the vibration frequencies detected in GPS or accelerometer are all included in the integrated vertical defection time series and the accelerometer can effectively compensate the short-term GPS outages with high quality. Finally, the data set collected with a time synchronised and integrated GPS/accelerometer monitoring system installed on the Nottingham Wilford Bridge when excited by 15 people jumping together at its mid-span are utilised to verify the effectiveness of this proposed algorithm. Its implementations are satisfactory and the detected vibration frequencies are 1.720 Hz, 1.870 Hz, 2.104 Hz, 2.905 Hz and also 10.050 Hz, which is not found in GPS or accelerometer only measurements.

  4. Isolation of a piezoresistive accelerometer used in high acceleration tests

    SciTech Connect

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1992-12-31

    Both uniaxial and triaxial shock isolation techniques for a piezoresistive accelerometer have been developed for pyroshock and impact tests. The uniaxial shock isolation technique has demonstrated acceptable characteristics for a temperature range of {minus}50{degree}F to +186{degree}F and a frequency bandwidth of DC to 10 kHz. The triaxial shock isolation technique has demonstrated acceptable results for a temperature range of {minus}50{degree}F to 70{degree}F and a frequency bandwidth of DC to 10 kHz. These temperature ranges, that are beyond the accelerometer manufacturer`s operational limits of {minus}30{degree}F and +150{degree}F, required the calibration of accelerometers at high shock levels and at the temperature extremes of {minus}50{degree}F and +160{degree}F. The purposes of these calibrations were to insure that the accelerometers operated at the field test temperatures and to provide an accelerometer sensitivity at each test temperature. Since there is no NIST-traceable (National Institute of Standards and Technology traceable) calibration capability at shock levels of 5,000 g - 15,000 g for the temperature extremes of {minus}50{degree}F and +160{degree}F, a method for calibrating and certifying the Hopkinson bar with a transfer standard was developed. Time domain and frequency domain results are given that characterize the Hopkinson bar. The NIST-traceable accuracy for the standard accelerometer in shock is {plus_minus}5%. The Hopkinson bar has been certified by the Sandia Secondary Standards Division with an uncertainty of 6%.

  5. Emotion recognition based on customized smart bracelet with built-in accelerometer

    PubMed Central

    Zhang, Zhan; Song, Yufei; Cui, Liqing

    2016-01-01

    Background: Recently, emotion recognition has become a hot topic in human-computer interaction. If computers could understand human emotions, they could interact better with their users. This paper proposes a novel method to recognize human emotions (neutral, happy, and angry) using a smart bracelet with built-in accelerometer. Methods: In this study, a total of 123 participants were instructed to wear a customized smart bracelet with built-in accelerometer that can track and record their movements. Firstly, participants walked two minutes as normal, which served as walking behaviors in a neutral emotion condition. Participants then watched emotional film clips to elicit emotions (happy and angry). The time interval between watching two clips was more than four hours. After watching film clips, they walked for one minute, which served as walking behaviors in a happy or angry emotion condition. We collected raw data from the bracelet and extracted a few features from raw data. Based on these features, we built classification models for classifying three types of emotions (neutral, happy, and angry). Results and Discussion: For two-category classification, the classification accuracy can reach 91.3% (neutral vs. angry), 88.5% (neutral vs. happy), and 88.5% (happy vs. angry), respectively; while, for the differentiation among three types of emotions (neutral, happy, and angry), the accuracy can reach 81.2%. Conclusions: Using wearable devices, we found it is possible to recognize human emotions (neutral, happy, and angry) with fair accuracy. Results of this study may be useful to improve the performance of human-computer interaction. PMID:27547564

  6. The Effects of Metabolic Work Rate and Ambient Environment on Physiological Tolerance Times While Wearing Explosive and Chemical Personal Protective Equipment

    PubMed Central

    Costello, Joseph T.; Stewart, Kelly L.; Stewart, Ian B.

    2015-01-01

    This study evaluated the physiological tolerance times when wearing explosive and chemical (>35 kg) personal protective equipment (PPE) in simulated environmental extremes across a range of differing work intensities. Twelve healthy males undertook nine trials which involved walking on a treadmill at 2.5, 4, and 5.5 km·h−1 in the following environmental conditions, 21, 30, and 37°C wet bulb globe temperature (WBGT). Participants exercised for 60 min or until volitional fatigue, core temperature reached 39°C, or heart rate exceeded 90% of maximum. Tolerance time, core temperature, skin temperature, mean body temperature, heart rate, and body mass loss were measured. Exercise time was reduced in the higher WBGT environments (WBGT37 < WBGT30 < WBGT21; P < 0.05) and work intensities (5.5 < 4 < 2.5 km·h−1; P < 0.001). The majority of trials (85/108; 78.7%) were terminated due to participant's heart rate exceeding 90% of their maximum. A total of eight trials (7.4%) lasted the full duration. Only nine (8.3%) trials were terminated due to volitional fatigue and six (5.6%) due to core temperatures in excess of 39°C. These results demonstrate that physiological tolerance times are influenced by the external environment and workload and that cardiovascular strain is the limiting factor to work tolerance when wearing this heavy multilayered PPE. PMID:25866818

  7. Calibration and validation of individual GOCE accelerometers by precise orbit determination

    NASA Astrophysics Data System (ADS)

    Visser, P. N. A. M.; IJssel, J. A. A. van den

    2016-01-01

    The European Space Agency Gravity field and steady-state Ocean Circular Explorer (GOCE) carries a gradiometer consisting of three pairs of accelerometers in an orthogonal triad. Precise GOCE science orbit solutions (PSO), which are based on satellite-to-satellite tracking observations by the Global Positioning System and which are claimed to be at the few cm precision level, can be used to calibrate and validate the observations taken by the accelerometers. This has been done for each individual accelerometer by a dynamic orbit fit of the time series of position co-ordinates from the PSOs, where the accelerometer observations represent the non-gravitational accelerations. Since the accelerometers do not coincide with the center of mass of the GOCE satellite, the observations have to be corrected for rotational and gravity gradient terms. This is not required when using the so-called common-mode accelerometer observations, provided the center of the gradiometer coincides with the GOCE center of mass. Dynamic orbit fits based on these common-mode accelerations therefore served as reference. It is shown that for all individual accelerometers, similar dynamic orbit fits can be obtained provided the above-mentioned corrections are made. In addition, accelerometer bias estimates are obtained that are consistent with offsets in the gravity gradients that are derived from the GOCE gradiometer observations.

  8. High shock, high frequency characteristics of a mechanical isolator for a piezoresistive accelerometer

    SciTech Connect

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1995-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories. An Extended Technical Assistance Program with the accelerometer manufacturer has resulted in a commercial isolator that will be available to the general public. This mechanical isolator has ten times the bandwidth of any other commercial isolator and has acceptable frequency domain performance from DC to 10 kHz ({plus_minus} 10%) over a temperature range of -65{degrees}F to +185{degrees}F as demonstrated in this paper.

  9. Friction and Wear

    NASA Technical Reports Server (NTRS)

    Pomey, Jacques

    1952-01-01

    From the practical point of view, this analysis shows that each problem of friction or wear requires its particular solution. There is no universal solution; one or other of the factors predominates and defines the choice of the solution. In certain cases, copper alloys of great thermal conductivity are preferred; in others, plastics abundantly supplied with water. Sometimes, soft antifriction metals are desirable to distribute the load; at other times, hard metals with high resistance to abrasion or heat.

  10. Accelerometer and strain gage evaluation

    SciTech Connect

    Ammerman, D.J.; Madsen, M.M.; Uncapher, W.L.; Stenberg, D.R.; Bronowski, D.R.

    1991-06-19

    This document describes the method developed by Sandia National Laboratories (SNL) to evaluate transducer used in the design certification testing of nuclear material shipping packages. This testing project was performed by SNL for the Office of Civilian Radioactive Waste Management (OCRWM). This evaluation is based on the results of tests conducted to measure ruggedness, failure frequency, repeatability, and manufacturers' calibration data under both field and laboratory conditions. The results of these tests are provided and discussed. The transducer were selected for testing by surveying cask contractors and testing facilities. Important insights relating to operational characteristics of accelerometer types were gained during field testing. 11 refs., 105 figs., 16 tabs.

  11. Validation study of Polar V800 accelerometer

    PubMed Central

    Hernández-Vicente, Adrián; De Cocker, Katrien; Garatachea, Nuria

    2016-01-01

    Background The correct quantification of physical activity (PA) and energy expenditure (EE) in daily life is an important target for researchers and professionals. The objective of this paper is to study the validity of the Polar V800 for the quantification of PA and the estimation of EE against the ActiGraph (ActiTrainer) in healthy young adults. Methods Eighteen Caucasian active people (50% women) aged between 19–23 years wore an ActiTrainer on the right hip and a Polar V800 on the preferred wrist during 7 days. Paired samples t-tests were used to analyze differences in outcomes between devices, and Pearson’s correlation coefficients to examine the correlation between outcomes. The agreement was studied using the Bland-Altman method. Also, the association between the difference and the magnitude of the measurement (heteroscedasticity) was examined. Sensitivity, specificity and area under the receiver operating characteristic curve (ROC-AUC value) were calculated to evaluate the ability of the devices to accurately define a person who fulfills the recommendation of 10,000 daily steps. Results The devices significantly differed from each other on all outcomes (P<0.05), except for Polar V800’s alerts vs. ActiTrainer’s 1 hour sedentary bouts (P=0.595) and Polar V800’s walking time vs. ActiTrainer’s lifestyle time (P=0.484). Heteroscedasticity analyses were significant for all outcomes, except for Kcal and sitting time. The ROC-AUC value was fair (0.781±0.048) and the sensitivity and specificity was 98% and 58%, respectively. Conclusions The Polar V800 accelerometer has a comparable validity to the accelerometer in free-living conditions, regarding “1 hour sedentary bouts” and “V800’s walking time vs. ActiTrainer’s lifestyle time” in young adults. PMID:27570772

  12. Micromachined low frequency rocking accelerometer with capacitive pickoff

    DOEpatents

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  13. SeismoGeodesy: Combination of High Rate, Real-time GNSS and Accelerometer Observations and Rapid Seismic Event Notification for Earth Quake Early Warning and Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Jackson, Michael; Zimakov, Leonid; Moessmer, Matthias

    2015-04-01

    Scientific GNSS networks are moving towards a model of real-time data acquisition, epoch-by-epoch storage integrity, and on-board real-time position and displacement calculations. This new paradigm allows the integration of real-time, high-rate GNSS displacement information with acceleration and velocity data to create very high-rate displacement records. The mating of these two instruments allows the creation of a new, very high-rate (200 Hz) displacement observable that has the full-scale displacement characteristics of GNSS and high-precision dynamic motions of seismic technologies. It is envisioned that these new observables can be used for earthquake early warning studies, volcano monitoring, and critical infrastructure monitoring applications. Our presentation will focus on the characteristics of GNSS, seismic, and strong motion sensors in high dynamic environments, including historic earthquakes replicated on a shake table over a range of displacements and frequencies. We will explore the optimum integration of these sensors from a filtering perspective including simple harmonic impulses over varying frequencies and amplitudes and under the dynamic conditions of various earthquake scenarios. We will also explore the tradeoffs between various GNSS processing schemes including real-time precise point positioning (PPP) and real-time kinematic (RTK) as applied to seismogeodesy. In addition we will discuss implementation of a Rapid Seismic Event Notification System that provides quick delivery of digital data from seismic stations to the acquisition and processing center and a full data integrity model for real-time earthquake notification that provides warning prior to significant ground shaking.

  14. Integrated SeismoGeodetic Systsem with High-Resolution, Real-Time GNSS and Accelerometer Observation For Earthquake Early Warning Application.

    NASA Astrophysics Data System (ADS)

    Passmore, P. R.; Jackson, M.; Zimakov, L. G.; Raczka, J.; Davidson, P.

    2014-12-01

    The key requirements for Earthquake Early Warning and other Rapid Event Notification Systems are: Quick delivery of digital data from a field station to the acquisition and processing center; Data integrity for real-time earthquake notification in order to provide warning prior to significant ground shaking in the given target area. These two requirements are met in the recently developed Trimble SG160-09 SeismoGeodetic System, which integrates both GNSS and acceleration measurements using the Kalman filter algorithm to create a new high-rate (200 sps), real-time displacement with sufficient accuracy and very low latency for rapid delivery of the acquired data to a processing center. The data acquisition algorithm in the SG160-09 System provides output of both acceleration and displacement digital data with 0.2 sec delay. This is a significant reduction in the time interval required for real-time transmission compared to data delivery algorithms available in digitizers currently used in other Earthquake Early Warning networks. Both acceleration and displacement data are recorded and transmitted to the processing site in a specially developed Multiplexed Recording Format (MRF) that minimizes the bandwidth required for real-time data transmission. In addition, a built in algorithm calculates the τc and Pd once the event is declared. The SG160-09 System keeps track of what data has not been acknowledged and re-transmits the data giving priority to current data. Modified REF TEK Protocol Daemon (RTPD) receives the digital data and acknowledges data received without error. It forwards this "good" data to processing clients of various real-time data processing software including Earthworm and SeisComP3. The processing clients cache packets when a data gap occurs due to a dropped packet or network outage. The cache packet time is settable, but should not exceed 0.5 sec in the Earthquake Early Warning network configuration. The rapid data transmission algorithm was tested

  15. Wear of short carbon-fiber-reinforced PAI and PPS

    SciTech Connect

    Behrens, W.W.; Jerina, K.L.; Hahn, H.T.

    1988-07-01

    Wear of short carbon-fiber-reinforced polyamide-imide and polyphenylene sulfide is described. Comparative data from thrust washer wear tests for both polymers are presented. Fiber orientation is shown to have a significant effect on wear rates. The wear mechanisms in both polymers are illustrated with optical and scanning electron micrographs. Wear is shown to be a nonlinear function of time and stress for both PPS and PAI. 15 references, 14 figures.

  16. Superconducting six-axis accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  17. Assessment of Gait Kinetics Using Tri-Axial Accelerometers

    PubMed Central

    Fortune, Emma; Morrow, Melissa M. B.; Kaufman, Kenton R.

    2015-01-01

    Repeated durations of dynamic activity with high ground reaction forces (GRFs) and loading rates (LRs) can be beneficial to bone health. To fully characterize dynamic activity in relation to bone health, field-based measurements of gait kinetics are desirable to assess free-living lower-extremity loading. The study aims were to determine correlations of peak vertical GRF and peak vertical LR with ankle peak vertical accelerations, and of peak resultant GRF and peak resultant LR with ankle peak resultant accelerations and to compare them to correlations with tibia, thigh, and waist accelerations. GRF data were collected as ten healthy subjects (26 (19–34) years) performed 8–10 walking trials at velocities ranging from 0.19–3.05 m/s, wearing ankle, tibia, thigh, and waist accelerometers. While peak vertical accelerations of all locations were positively correlated with peak vertical GRF and LR (r2>0.53, P<0.001), ankle peak vertical accelerations were the most correlated (r2>0.75, P<0.001). All peak resultant accelerations were positively correlated with peak resultant GRF and LR (r2>0.57, P<0.001) with waist peak resultant acceleration being the most correlated (r2>0.70, P<0.001). The results suggest that ankle or waist accelerometers give the most accurate peak GRF and LR estimates and could be useful tools in relating physical activity to bone health. PMID:25010675

  18. Interinstrument Reliability of the RT3 Accelerometer

    ERIC Educational Resources Information Center

    Reneman, Michiel

    2010-01-01

    The objective of this study was to assess the interinstrument reliability of six RT3 accelerometers for measuring physical activities. Each of the six healthy participants, mean age 36.1 years (SD 9.4), carried six RT3 accelerometers (same type and same producer) simultaneously placed ventrally at the waist belt. The participants performed three…

  19. Display-And-Alarm Circuit For Accelerometer

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Compact accelerometer assembly consists of commercial accelerometer retrofit with display-and-alarm circuit. Provides simple means for technician attending machine to monitor vibrations. Also simpifies automatic safety shutdown by providing local alarm or shutdown signal when vibration exceeds preset level.

  20. Micromachined high-g accelerometers: a review

    NASA Astrophysics Data System (ADS)

    Narasimhan, V.; Li, H.; Jianmin, M.

    2015-03-01

    This Topical Review reviews research and commercial development of high-g micromachined accelerometers. Emphasis is placed on different high-g sensing schemes and popular design templates used to achieve high-g sensing. Additionally, trends in high-g micromachined accelerometer development both in research and in the market are discussed.

  1. Duration and breaks in sedentary behaviour: accelerometer data from 1566 community-dwelling older men (British Regional Heart Study)

    PubMed Central

    Jefferis, Barbara J; Sartini, Claudio; Shiroma, Eric; Whincup, Peter H; Wannamethee, S Goya; Lee, I-Min

    2015-01-01

    Background Sedentary behaviours are increasingly recognised as raising the risk of cardiovascular disease events, diabetes and mortality, independently of physical activity levels. However, little is known about patterns of sedentary behaviour in older adults. Methods Cross-sectional study of 1566/3137 (50% response) men aged 71–91 years from a UK population-based cohort study. Men wore a GT3x accelerometer over the hip for 1 week in 2010–2011. Mean daily minutes of sedentary behaviours, percentage of day in sedentary behaviours, sedentary bouts and breaks were calculated and summarised by health and demographic characteristics. Results 1403 ambulatory men aged 78.4 years (SD=4.6 years) with ≥600 min of accelerometer wear on ≥3 days had complete data on covariables. Men spent on average 618 min (SD=83), or 72% of their day in sedentary behaviours (<100 counts/min). On average, men accumulated 72 spells of sedentary behaviours per day, with 7 breaks in each sedentary hour. Men had on average 5.1 sedentary bouts of ≥30 min, which accounted for 43% of sedentary time, and 1.4 bouts of ≥60 min, which accounted for 19% of daily sedentary time. Men who were over 80 years old, obese, depressed and had multiple chronic conditions accumulated more sedentary time and spent more time in longer sedentary bouts. Conclusions Older men spend nearly three quarters of their day in sedentary behaviours, mostly accumulated in short bouts, although bouts lasting ≥30 min accounted for nearly half of the sedentary time each day. Men with medical risk factors were more likely to also display sedentary behaviour. PMID:25232029

  2. Surface-micromachined resonant accelerometer

    SciTech Connect

    Roessig, T.A.; Howe, R.T.; Pisano, A.P.; Smith, J.H.

    1997-04-02

    This paper discusses the design and testing results of a resonant accelerometer developed for integrated surface-micromachining processes.First- and second-generation designs are presented. The sensors use leverage mechanisms to transfer force from a proof mass to double-ended tuning fork (DETF) resonators, used as force transducers. Each fork forms the basis of an integrated oscillator to provide the output waveforms. The DETF`s on the first-generation device have a nominal frequency of 175 kHz, and the sensor has a measured scale factor of 2.4 Hz/g. The oscillators on this device exhibit a root Allan variance floor of 38 mHz (220 ppb). The second-generation, higher-sensitivity sensor uses DETF`s with a nominal frequency of 68 kHz and has measured a scale factor of 45 Hz/g.

  3. MSL-2 accelerometer data results

    NASA Technical Reports Server (NTRS)

    Henderson, Fred

    1990-01-01

    The Materials Science Laboratory-2 (MSL-2) mission flew the Marshall Space Flight Center-developed Linear Triaxial Accelerometer (LTA) on the Space Transportation System (STS) 61-C Shuttle mission launched January 21, 1986. Flight data were analyzed to verify the quietness of the MSL carrier and to characterize the acceleration environment for future MSL users. The MSL was found to introduce no significant experiment acceleration; and the effects of crew treadmill exercise, Orbiter vernier engine firings, and other routine flight occurrences were established. The LTA was found to be well suited for measuring nominal to very quiet STS acceleration levels at frequencies below 50 Hz. Special processing was used to examine the low-frequency spectrum and to establish the effective rms amplitude associated with dominant frequencies.

  4. An electrostatically rebalanced micromechanical accelerometer

    NASA Astrophysics Data System (ADS)

    Boxenhorn, Burton; Greiff, Paul

    The design and test performance of a low-cost micromechanical accelerometer (MA) with integral electrodes, developed for use with the vibratory micromechanical gyro described by Boxenhorn and Greiff (1988), are reported. The MA is a monolithic Si device of size 300 x 600 microns and comprises a torsional pendulum with capacitive readout and an electrostatic torquer. Data from 360-deg sweep tests performed in a g-field are presented in tables and graphs and discussed in detail. Results include bandwidth about 1 Hz, scale-factor error 480 ppm, stable bias of 260 microg over 203 min, and temperature effect 2100 microg/C on bias and -123 ppm/C on scale factor.

  5. Accelerometer method and apparatus for integral display and control functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1992-01-01

    Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily

  6. The effect of accelerometer location on the classification of single-site forearm mechanomyograms

    PubMed Central

    2010-01-01

    Background Recently, pattern recognition methods have been deployed in the classification of multiple activation states from mechanomyogram (MMG) signals for the purpose of controlling switching interfaces. Given the propagative properties of MMG signals, it has been suggested that MMG classification should be robust to changes in sensor placement. Nonetheless, this purported robustness remains speculative to date. This study sought to quantify the change in classification accuracy, if any, when a classifier trained with MMG signals from the muscle belly, is subsequently tested with MMG signals from a nearby location. Methods An arrangement of 5 accelerometers was attached to the flexor carpi radialis muscle of 12 able-bodied participants; a reference accelerometer was located over the muscle belly, two peripheral accelerometers were positioned along the muscle's transverse axis and two more were aligned to the muscle's longitudinal axis. Participants performed three classes of muscle activity: wrist flexion, wrist extension and semi-pronation. A collection of time, frequency and time-frequency features were considered and reduced by genetic feature selection. The classifier, trained using features from the reference accelerometer, was tested with signals from the longitudinally and transversally displaced accelerometers. Results Classification degradation due to accelerometer displacement was significant for all participants, and showed no consistent trend with the direction of displacement. Further, the displaced accelerometer signals showed task-dependent de-correlations with respect to the reference accelerometer. Conclusions These results indicate that MMG signal features vary with spatial location and that accelerometer displacements of only 1-2 cm cause sufficient feature drift to significantly diminish classification accuracy. This finding emphasizes the importance of consistent sensor placement between MMG classifier training and deployment for accurate

  7. Wear and Tear - Mechanical

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore

    2008-01-01

    The focus of this chapter is on the long term wear and tear, or aging, of the mechanical subsystem of a spacecraft. The mechanical subsystem is herein considered to be the primary support structure (as in a skeleton or exoskeleton) upon which all other spacecraft systems rest, and the associated mechanisms. Mechanisms are devices which have some component that moves at least once, in response to some type of passive or active control system. For the structure, aging may proceed as a gradual degradation of mechanical properties and/or function, possibly leading to complete structural failure over an extended period of time. However, over the 50 years of the Space Age such failures appear to be unusual. In contrast, failures for mechanisms are much more frequent and may have a very serious effect on mission performance. Just as on Earth, all moving devices are subject to normal (and possibly accelerated) degradation from mechanical wear due to loss or breakdown of lubricant, misalignment, temperature cycling effects, improper design/selection of materials, fatigue, and a variety of other effects. In space, such environmental factors as severe temperature swings (possibly 100's of degrees C while going in and out of direct solar exposure), hard vacuum, micrometeoroids, wear from operation in a dusty or contaminated environment, and materials degradation from radiation can be much worse. In addition, there are some ground handling issues such as humidity, long term storage, and ground transport which may be of concern. This chapter addresses the elements of the mechanical subsystem subject to wear, and identifies possible causes. The potential impact of such degradation is addressed, albeit with the recognition that the impact of such wear often depends on when it occurs and on what specific components. Most structural elements of the mechanical system typically are conservatively designed (often to a safety factor of greater than approximately 1.25 on yield for

  8. A triaxial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Jia, Jingqing; Feng, Shuo; Liu, Wei

    2015-06-01

    Optimal sensor placement (OSP) technique is a vital part of the field of structural health monitoring (SHM). Triaxial accelerometers have been widely used in the SHM of large-scale structures in recent years. Triaxial accelerometers must be placed in such a way that all of the important dynamic information is obtained. At the same time, the sensor configuration must be optimal, so that the test resources are conserved. The recommended practice is to select proper degrees of freedom (DOF) based upon several criteria and the triaxial accelerometers are placed at the nodes corresponding to these DOFs. This results in non-optimal placement of many accelerometers. A ‘triaxial accelerometer monkey algorithm’ (TAMA) is presented in this paper to solve OSP problems of triaxial accelerometers. The EFI3 measurement theory is modified and involved in the objective function to make it more adaptable in the OSP technique of triaxial accelerometers. A method of calculating the threshold value based on probability theory is proposed to improve the healthy rate of monkeys in a troop generation process. Meanwhile, the processes of harmony ladder climb and scanning watch jump are proposed and given in detail. Finally, Xinghai NO.1 Bridge in Dalian is implemented to demonstrate the effectiveness of TAMA. The final results obtained by TAMA are compared with those of the original monkey algorithm and EFI3 measurement, which show that TAMA can improve computational efficiency and get a better sensor configuration.

  9. Characteristics and performance of MEMS accelerometers

    SciTech Connect

    Kant, R.A.; Nagel, D.J.

    1996-04-01

    Until recently, accelerometer manufacturing appeared to be a reasonably mature field. But, this situation changed rapidly when researchers began to build miniature accelerometers using micron scale lithographic techniques developed for producing integrated circuits. Several micro- electro-mechanical systems (MEMS) accelerometers are now available commercially. The MEMS devices are attractive because they are relatively inexpensive to produce and they include electronic circuits to perform a variety control and signal processing functions on the same chip. How does the performance of these new devices compare to their older and larger competitors? The physics of the scaling laws suggests that performance should decrease with size. The MEMS technology may be well positioned to take advantage of new, small-scale sensing and actuating methods and, in the process, MEMS fabricated accelerometers may avoid or overcome the engineering limitations of older generation devices by using high precision micro-machining, arrays of sensors, on-chip temperature control circuitry, etc. This study compares the performance and physical characteristics of micro-machined and conventional accelerometers. We review the physical operating principles and describe the basic scaling laws and other factors that ultimately limit accelerometer performance. Then we tabulate and discuss the current performance and characteristics of diverse types of commercial accelerometers. {copyright} {ital 1996 American Institute of Physics.}

  10. What Is the Effect on Obesity Indicators from Replacing Prolonged Sedentary Time with Brief Sedentary Bouts, Standing and Different Types of Physical Activity during Working Days? A Cross-Sectional Accelerometer-Based Study among Blue-Collar Workers

    PubMed Central

    Gupta, Nidhi; Heiden, Marina; Aadahl, Mette; Korshøj, Mette; Jørgensen, Marie Birk; Holtermann, Andreas

    2016-01-01

    Introduction The aim of the study was to investigate if (a) substituting total sedentary time or long sedentary bouts with standing or various types of physical activity and (b) substituting long sedentary bouts with brief sedentary bouts; is associated with obesity indicators using a cross sectional isotemporal substitution approach among blue-collar workers. Methods A total of 692 workers from transportation, manufacturing and cleaning sectors wore an Actigraph GT3X+ accelerometer on the thigh for 1–4 working days. The sedentary (sit and lie), standing, walking, and moderate to vigorous physical activity (MVPA) time on working days was computed using validated Acti4 software. The total sedentary time and uninterrupted sedentary time spent in brief (≤5 mins), moderate (>5 and ≤30 mins), and long (>30mins) bouts, were determined for the whole day and during work and non-work time separately. The obesity indicators, BMI (kg/m2), waist circumference (cm) and fat percentage were objectively measured. Isotemporal substitution modelling was utilized to determine the linear association with obesity indicators of replacing 30 min of total sedentary time or long sedentary bouts with standing, walking or MVPA and separately replacing 30 min of long sedentary bouts with brief sedentary bouts. Results Workers [mean (standard deviation, SD); age = 45.1 (9.9) years, BMI = 27.5 (4.9) kg/m2, %BF = 29.6 (9.5), waist circumference = 94.4 (13.0) cm] sat for 2.4 hours (~32% of the measured time, SD = 1.8 hours) across the day during work period and 5.5 hours (~62% of the measured time, SD = 1.5 hours) during non-work period. Most of the sedentary time was accrued in moderate bouts [work = 1.40 (SD = 1.09) hours] during work and in long bouts during non-work [2.7 (SD = 1.4) hours], while least in long sedentary bouts during work [work = 0.5 (SD = 0.9)] and in brief sedentary bouts [0.5 hours (SD = 0.3)] during non-work. Significant associations with all obesity indicators were

  11. GRADIO three-axis electrostatic accelerometers

    NASA Technical Reports Server (NTRS)

    Bernard, A.

    1987-01-01

    Dedicated accelerometers for satellite gravity gradiometry (GRADIO project) are described. The design profits from experience acquired with the CACTUS accelerometer payload of the satellite CASTOR-D5B and studies of highly accurate accelerometers for inertial navigation. The principle of operation, based on a three-axis electrostatic suspension of a cubic proof mass, is well suited for the measurements of accelerations less than 0.0001 m/sec/sec. A resolution better than 10 to the minus 11th power m/sec/sec/sq root Hz is expected.

  12. Single-Crystal Springs For Accelerometers

    NASA Technical Reports Server (NTRS)

    Vanzandt, Thomas R.; Kaiser, William J.; Kenny, Thomas W.

    1995-01-01

    Thermal noise reduced, enabling use of smaller proof masses. Spring-and-mass accelerometers in which springs made of single-crystal material being developed. In spring-and-mass accelerometer, proof mass attached to one end of spring, and acceleration of object at other end of spring measured in terms of deflection of spring, provided frequency spectrum of acceleration lies well below resonant frequency of spring-and-proof-mass system. Use of single-crystal spring materials instead of such polycrystalline spring materials as ordinary metals makes possible to construct highly sensitive accelerometers (including seismometers) with small proof masses.

  13. Spectroscopic wear detector

    NASA Technical Reports Server (NTRS)

    Madzsar, George C. (Inventor)

    1993-01-01

    The elemental composition of a material exposed to hot gases and subjected to wear is determined. Atoms of an elemental species not appearing in this material are implanted in a surface at a depth based on the maximum allowable wear. The exhaust gases are spectroscopically monitored to determine the exposure of these atoms when the maximum allowable wear is reached.

  14. High sensitivity cymbal-based accelerometer

    SciTech Connect

    Sun Chengliang; Lam, K.H.; Choy, S.H.; Chan, H.L. W.; Zhao, X.-Z.; Choy, C.L.

    2006-03-15

    A high sensitivity piezoelectric accelerometer has been developed by replacing the conventional piezoelectric rings with a cymbal transducer. The sensitivity of the cymbal-based accelerometers containing cymbal transducers with different endcap thicknesses and different seismic masses has been measured as a function of driving frequency. Due to the high d{sub 33}{sup '} coefficient of the cymbal transducers, the cymbal-based accelerometers have a high sensitivity of {approx}97 pC/ms{sup -2} with the amplitude rise of 2.85% (<1 dB) at one-third of the mounted resonance frequency (3.38 kHz). The effect of the seismic mass, the resonance frequency, and d{sub 33}{sup '} coefficient of the cymbal transducers on the sensitivity and the frequency range of the cymbal-based accelerometers are reported.

  15. Random vibrations measurements with isolated accelerometers

    SciTech Connect

    Paez, T.L.; Gibson, B.W.

    1992-04-01

    Isolated accelerometer measurement systems are used to measure environments composed of a wide spectrum of frequencies including the natural frequency of the isolated accelerometer. Because the isolated accelerometer measurement system is a nonlinear system, it is subject to the potential for chaotic vibrations. it is clear that this potential if realized, affects the response of the measurement system to vibration input and perhaps to shock input also. This paper explores the effects that the potential for chaotic vibrations and nonlinear response, in general, has on the random vibration response of the isolated accelerometer measurement system. Specifically, the system response to white noise is investigated and assessed in terms of response histogram and response spectral density. 6 refs.

  16. Random vibrations measurements with isolated accelerometers

    SciTech Connect

    Paez, T.L. ); Gibson, B.W. )

    1992-01-01

    Isolated accelerometer measurement systems are used to measure environments composed of a wide spectrum of frequencies including the natural frequency of the isolated accelerometer. Because the isolated accelerometer measurement system is a nonlinear system, it is subject to the potential for chaotic vibrations. it is clear that this potential if realized, affects the response of the measurement system to vibration input and perhaps to shock input also. This paper explores the effects that the potential for chaotic vibrations and nonlinear response, in general, has on the random vibration response of the isolated accelerometer measurement system. Specifically, the system response to white noise is investigated and assessed in terms of response histogram and response spectral density. 6 refs.

  17. Effectiveness of ice-vest cooling in prolonging work tolerance time during heavy exercise in the heat for personnel wearing Canadian forces chemical defense ensembles

    SciTech Connect

    Bain, B.

    1991-01-01

    Effectiveness of a portable, ice-pack cooling vest (Steelevest) in prolonging work tolerance time in chemical defense clothing in the heat (33 C dry bulb, 33% relative humidity or 25 C WBGT) was evaluated while subjects exercised at a metabolic rate of approx. 700 watts. Subjects were six male volunteers. The protocol consisted of a 20 minute treadmill walk at 1.33 m/s. and 7.5% grade, followed by 15 minutes of a lifting task, 5 minutes rest, then another 20 minutes of lifting task for a total of one hour. The lifting task consisted of lifting of 20 kg box, carrying it 3 meters and setting it down. This was followed by a 6 m walk (3m back to the start point and 3 m back to the box) 15 sec after which the lifting cycle began again. The work was classified as heavy as previously defined. This protocol was repeated until the subjects were unable to continue or they reached a physiological endpoint. Time to voluntary cessation or physiological endpoint was called the work tolerance time. Physiological endpoints were rectal temperature of 39 C, heart rate exceeding 95% of maximum for two consecutive minutes or visible loss of motor control or nausea. The cooling vest had no effect on work tolerance time, rate of rise of rectal temperature or sweat loss. It was concluded that the Steelvest ice-vest is ineffective in prolonging work tolerance time and preventing increases in rectal temperature while wearing chemical protective clothing.

  18. Simulated oral wear of packable composites.

    PubMed

    Clelland, Nancy L; Villarroel, Soraya C; Knobloch, Lisa A; Seghi, Robert R

    2003-01-01

    Wear resistance has been a problem for the posterior application of resin composites. This study evaluated and compared the wear characteristics of two conventional and two packable composites. Opposing enamel wear was also measured. One traditional hybrid composite-Herculite XR (HXR), one micro-filled composite-Heliomolar (HM) and two packable composites-Filtek P60 (P60) and Surefil (SF) were formed into disks (n = 10) and used as substrates for the wear test. Enamel was harvested from extracted human third molars and machined into cusps with a 5-mm spherical radius (n = 40). The Oregon Health Sciences University oral wear simulator was used to evaluate abrasive wear and attrition of the composite materials and wear of the opposing enamel. The resulting enamel wear facets were measured and recorded in mm2 using optical scanning methods and a computer graphics program. Abrasion and attrition of the composite substrates were measured using a profilometer. Both sets of data were subjected to ANOVA and multiple comparison tests to determine significant differences. After wear testing, scanning electron micrographs were made using representative composite samples from each group. The packable composites showed significantly less attrition and abrasive wear (p < 0.001) than the conventional controls. The microfilled composite HM resulted in significantly lower enamel wear (p < 0.001) than the materials HXR and P60 but was not significantly different from the packable composite SF at the alpha = 0.05 level. The results of this in-vitro study suggest that packable composites may have improved wear resistance over some conventional composites. Clinical studies are needed to evaluate packable composites over time. PMID:14653301

  19. Accelerometers for Precise GNSS Orbit Determination

    NASA Astrophysics Data System (ADS)

    Hugentobler, Urs; Schlicht, Anja

    2016-07-01

    The solar radiation pressure is the largest non-gravitational acceleration on GNSS satellites limiting the accuracy of precise orbit models. Other non-gravitational accelerations may be thrusts for station keeping maneuvers. Accelerometers measure the motion of a test mass that is shielded against satellite surface forces with respect to a cage that is rigidly connected to the satellite. They can thus be used to measure these difficult-to-model non-gravitational accelerations. Accelerometers however typically show correlated noise as well as a drift of the scaling factors converting measured voltages to accelerations. The scaling thus needs to be regularly calibrated. The presented study is based on several simulated scenarios including orbit determination of accelerometer-equipped Galileo satellites. It shall evaluate different options on how to accommodate accelerometer measurements in the orbit integrator, indicate to what extent currently available accelerometers can be used to improve the modeling of non-gravitational accelerations on GNSS satellites for precise orbit determination, and assess the necessary requirements for an accelerometer that can serve this purpose.

  20. High G MEMS integrated accelerometer

    SciTech Connect

    Davies, B.R.; Barron, C.C.; Montague, S.; Smith, J.H.; Murray, J.R.; Christenson, T.R.; Bateman, V.I.

    1996-12-31

    This paper describes the design and implementation of a surface micromachined accelerometer for measuring very high levels of acceleration (up to 50,000 G). Both the mechanical and electronic portions of the sensor were integrated on a single substrate using a process developed at Sandia National Laboratories. In this process, the mechanical components of the sensor were first fabricated at the bottom of a trench etched into the water substrate. The trench was then filled with oxide and sealed to protect the mechanical components during subsequent microelectronics processing. The wafer surface was then planarized in preparation for CMOS processing using Chemical Mechanical Polishing (CMP). Next, the CMOS electronics were fabricated on areas of the wafer adjacent to the embedded structures. Finally, the mechanical structures were released and the sensor tested. The mechanical structure of the sensor consisted of two polysilicon plate masses suspended by multiple springs (cantilevered beam structures) over corresponding polysilicon plates fixed to the substrate to form two parallel plate capacitors. The first polysilicon plate mass was suspended using compliant springs (cantilever beams) and acted as a variable capacitor during sensor acceleration. The second polysilicon plate mass was suspended using very stiff springs and acted as a fixed capacitor during acceleration. Acceleration was measured by comparing the capacitance of the variable capacitor (compliant suspension) with the fixed capacitance (stiff suspension).

  1. ISA accelerometer and Lunar science

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Carmisciano, C.; Fiorenza, E.; Lefevre, C.; Magnafico, C.; Peron, R.; Santoli, F.; Nozzoli, S.; Ungaro, D.; Argada, S.

    2012-04-01

    In recent years the Moon has become again a target for exploration activities, as shown by many missions, performed, ongoing or foreseen. The reasons for this new wave are manifold. The knowledge of formation and evolution of the Moon to its current state is important in order to trace the overall history of Solar System. An effective driving factor is the possibility of building a human settlement on its surface, with all the related issues of environment characterization, safety, resources, communication and navigation. Our natural satellite is also an important laboratory for fundamental physics: Lunar Laser Ranging is continuing to provide important data for testing gravitation theories. All these topics are providing stimulus and inspirations for new experiments. ISA (Italian Spring Accelerometer) can provide an important tool for lunar studies. Thanks to its structure (three one--dimensional sensors assembled in a composite structure) it works both in--orbit and on--ground, with the same configuration. It can therefore be used onboard a spacecraft, as a support to a radio science mission, and on the surface of the Moon, as a seismometer. This second option in particular has been proposed as a candidate to be hosted on NASA ILN (International Lunar Network) and ESA First Lunar Lander. After a description of the instrument, its use in the context of the missions will be described and discussed, giving emphasis on its integration with the other components of the respective experiments.

  2. Optomechanical accelerometers and gravity gradiometers

    NASA Astrophysics Data System (ADS)

    Guzman, Felipe

    2016-04-01

    Compact optical cavities can be combined with highly stable mechanical oscillators to yield accelerometers and gravity gradiometers of exquisite sensitivity, which are also traceable to the SI. We have incorporated Fabry-Pérot fiber-optic micro-cavities onto low-loss monolithic fused-silica mechanical oscillators for gradiometry, acceleration, and force sensing. These devices consist solely of a glass oscillator and fiber optics to inject and read out the coherent optical signal, making them very simple and compatible with space applications. We have demonstrated displacement sensitivities better than 200 am/√Hz with these fiber-optic micro-sensors. This translates into broadband acceleration noise floors below 100 nano-g/√Hz over a 10kHz, when combined with compact high frequency mechanical oscillators. Similarly, we have developed monolithic oscillators with resonance frequencies near and below 10 Hz, yielding measurement sensitivities better than 10‑9 m/s2. We will introduce our sensor concepts and present results on our fiber-optic displacement sensors and novel optomechanical devices.

  3. Variometric Tests for Accelerometer Sensors

    NASA Astrophysics Data System (ADS)

    D'Urso, M. G.; Barbati, N.

    2012-08-01

    We present a comprehensive review of several variometric tests recently carried out on a home-made measurement system composed of a tern of low-cost accelerometer sensors of MEMS (Micro-Electro-Mechanical Systems) type equipped with autonomous electric supply and wireless transmission. The most important parameters characterizing the systematic errors, i.e. bias, scale factor and thermal correction factor, have been evaluated by calibration tests based upon the so-called "six -positions" static test proposed by the IEEE 517 Standard. In this way the system optimal configuration has been defined in terms of data acquisition frequency and of scale factor. In addition to such tests, partly documented elsewhere, the results of some sensitivity tests on the influence of external environmental factors are also presented. With the aim of employing the proposed MEMS-based system as a device for monitoring the onset of slope landslides, some further tests have been carried out in order to measure the inclination of rigid objects which the sensors have been fixed to. The most significant results of the tests are illustrated and discussed.

  4. Detecting Gunshots Using Wearable Accelerometers

    PubMed Central

    Loeffler, Charles E.

    2014-01-01

    Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm discharges. PMID:25184416

  5. Magnetic torquer induced disturbing signals within GRACE accelerometer data

    NASA Astrophysics Data System (ADS)

    Peterseim, Nadja; Flury, Jakob; Schlicht, Anja

    2012-05-01

    The GRACE (Gravity Recovery And Climate Experiment) gravity field satellite mission was launched in 2002. Although many investigations have been carried out, not all disturbances and perturbations upon satellite instruments and sensors are resolved yet. In this work the issue of acceleration disturbances onboard of GRACE due to magnetic torquers is investigated and discussed. Each of the GRACE satellites is equipped with a three-axes capacitive accelerometer to measure non-gravitational forces acting on the spacecraft. We used 10 Hz Level 1a raw accelerometer data in order to determine the impact of electric current changes on the accelerometer. After reducing signals which are induced by highly dominating processes in the low frequency range, such as thermospheric drag and solar radiation pressure, which can easily be done by applying a high-pass filter, disturbing signals from onboard instruments such as thruster firing events or heater switch events need to be removed from the previously filtered data. Afterwards the spikes which are induced by the torquers can be very well observed. Spikes vary in amplitude with respect to an increasing or decreasing current used for magnetic torquers, and can be as large as 20 nm/s2. Furthermore, we were able to set up a model for the spikes of each scenario with which we were able to compute model spike time series. With these time series the spikes can successfully be removed from the 10 Hz raw accelerometer data. Spectral analysis of the time series reveal that an influence onto gravity field determination due to these effects is very unlikely, but can theoretically not be excluded.

  6. A Novel Digital Closed Loop MEMS Accelerometer Utilizing a Charge Pump.

    PubMed

    Chu, Yixing; Dong, Jingxin; Chi, Baoyong; Liu, Yunfeng

    2016-01-01

    This paper presents a novel digital closed loop microelectromechanical system (MEMS) accelerometer with the architecture and experimental evaluation. The complicated timing diagram or complex power supply in published articles are circumvented by using a charge pump system of adjustable output voltage fabricated in a 2P4M 0.35 µm complementary metal-oxide semiconductor (CMOS) process, therefore making it possible for interface circuits of MEMS accelerometers to be integrated on a single die on a large scale. The output bitstream of the sigma delta modulator is boosted by the charge pump system and then applied on the feedback comb fingers to form electrostatic forces so that the MEMS accelerometer can operate in a closed loop state. Test results agree with the theoretical formula nicely. The nonlinearity of the accelerometer within ±1 g is 0.222% and the long-term stability is about 774 µg. PMID:26999157

  7. A Novel Digital Closed Loop MEMS Accelerometer Utilizing a Charge Pump

    PubMed Central

    Chu, Yixing; Dong, Jingxin; Chi, Baoyong; Liu, Yunfeng

    2016-01-01

    This paper presents a novel digital closed loop microelectromechanical system (MEMS) accelerometer with the architecture and experimental evaluation. The complicated timing diagram or complex power supply in published articles are circumvented by using a charge pump system of adjustable output voltage fabricated in a 2P4M 0.35 µm complementary metal-oxide semiconductor (CMOS) process, therefore making it possible for interface circuits of MEMS accelerometers to be integrated on a single die on a large scale. The output bitstream of the sigma delta modulator is boosted by the charge pump system and then applied on the feedback comb fingers to form electrostatic forces so that the MEMS accelerometer can operate in a closed loop state. Test results agree with the theoretical formula nicely. The nonlinearity of the accelerometer within ±1 g is 0.222% and the long-term stability is about 774 µg. PMID:26999157

  8. Using accelerometers to remotely and automatically characterize behavior in small animals.

    PubMed

    Hammond, Talisin T; Springthorpe, Dwight; Walsh, Rachel E; Berg-Kirkpatrick, Taylor

    2016-06-01

    Activity budgets in wild animals are challenging to measure via direct observation because data collection is time consuming and observer effects are potentially confounding. Although tri-axial accelerometers are increasingly employed for this purpose, their application in small-bodied animals has been limited by weight restrictions. Additionally, accelerometers engender novel complications, as a system is needed to reliably map acceleration to behaviors. In this study, we describe newly developed, tiny acceleration-logging devices (1.5-2.5 g) and use them to characterize behavior in two chipmunk species. We collected paired accelerometer readings and behavioral observations from captive individuals. We then employed techniques from machine learning to develop an automatic system for coding accelerometer readings into behavioral categories. Finally, we deployed and recovered accelerometers from free-living, wild chipmunks. This is the first time to our knowledge that accelerometers have been used to generate behavioral data for small-bodied (<100 g), free-living mammals. PMID:26994177

  9. Analysis of wear debris from full-scale bearing fatigue tests using the Ferrograph

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Loewenthal, S. H.

    1980-01-01

    The Ferrograph was used to determine the types of quantities of wear particles generated during full-scale bearing fatigue tests. Deep-groove ball bearings made from AISI 52100 steel were used. A MIL-L-23699 tetraester lubricant was used in a recirculating lubrication system containing a 49-micron absolute filter. Test conditions included a maximum Hertz stress of 2.4 GPa, a shaft speed of 15,000 rpm and a lubricant supply temperature of 74 C (165 F). Four fatigue failures were detected by accelerometers in this test set. In general, the Ferrograph was more sensitive (up to 23 h) in detecting spall initiation than either accelerometers or the normal spectrographic oil analysis (SOAP). Four particle types were observed: normal rubbing wear particles, spheres, nonferrous particles, and severe wear (spall) fragments.

  10. Analysis of wear-debris from full-scale bearing fatigue tests using the ferrograph

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Loewenthal, S. H.

    1980-01-01

    The ferrograph was used to determine the types and quantities of wear particles generated during full-scale bearing fatigue tests. Deep-groove ball bearings made from AISI 52100 steel were used. A MIL-L-23699 tetraester lubricant was used in a recirculating lubrication system containing a 49 mm absolute filter. Test conditions included a maximum Hertz stress of 2.4 GPa, a shaft speed of 15,000 rpm, and a lubricant supply temperature of 74 C (165 F). Four fatigue failures were detected by accelerometers in this test set. In general, the ferrograph was more sensitive (up to 23 hr) in detecting spall initiation than either accelerometers or the normal spectrographic oil analysis. Four particle types were observed: normal rubbing wear particles, spheres, nonferrous particles, and severe wear (spall) fragments.

  11. ISA accelerometer and Moon science

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Peron, Roberto; Santoli, Francesco; Fiorenza, Emiliano; Lefevre, Carlo; Nozzoli, Sergio; Reale, Andrea

    2010-05-01

    In recent years the Moon has become again a target for exploration activities, as shown by many performed, ongoing or foreseen missions. The reason for this new wave are manifold. The knowledge of formation and evolution of the Moon to current state is important in order to trace the overall history of Solar System. An effective driving factor is the possibility of building a human settlement on its surface, with all the related issues of environment characterization, safety, resources, communication and navigation. Our natural satellite is also an important laboratory for fundamental physics: Lunar Laser Ranging is continuing to provide important data that constrain possible theories of gravitation. All these topics are providing stimulus and inspirations for new experiments. ISA (Italian Spring Accelerometer) can provide an important tool for lunar studies. Thanks to its structure (three one-dimensional sensors assembled in a composite structure) it works both in-orbit and on-ground, with the same configuration. It therefore can be used onboard a spacecraft, as a support to a radio science mission, and on the surface of the Moon, as a seismometer. The first option has been explorated in the context of MAGIA (Missione Altimetrica Gravimetrica geochImica lunAre), a proposal for an exploration mission with a noteworthy part dedicated to gravimetry and fundamental physics. The second option is candidate to be hosted on NASA ILN (International Lunar Network) and ESA First Lunar Lander. After a description of the instrument, both of them will be described and discussed, giving emphasis on the integration of the instrument with the other components of the respective experiments.

  12. Portable, real-time alloy identification of metallic wear debris from machinery lubrication systems: laser-induced breakdown spectroscopy versus x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Suresh, Pooja

    2014-05-01

    Alloy identification of oil-borne wear debris captured on chip detectors, filters and magnetic plugs allows the machinery maintainer to assess the health of the engine or gearbox and identify specific component damage. Today, such identification can be achieved in real time using portable, at-line laser-induced breakdown spectroscopy (LIBS) and Xray fluorescence (XRF) instruments. Both techniques can be utilized in various industries including aviation, marine, railways, heavy diesel and other industrial machinery with, however, some substantial differences in application and instrument performance. In this work, the performances of a LIBS and an XRF instrument are compared based on measurements of a wide range of typical aerospace alloys including steels, titanium, aluminum and nickel alloys. Measurement results were analyzed with a staged correlation technique specifically developed for the purposes of this study - identifying the particle alloy composition using a pre-recorded library of spectral signatures. The analysis is performed in two stages: first, the base element of the alloy is determined by correlation with the stored elemental spectra and then, the alloy is identified by matching the particle's spectral signature using parametric correlation against the stored spectra of all alloys that have the same base element. The correlation analysis has achieved highly repeatable discrimination between alloys of similar composition. Portable LIBS demonstrates higher detection accuracy and better identification of alloys comprising lighter elements as compared to that of the portable XRF system, and reveals a significant reduction in the analysis time over XRF.

  13. Citizen sensors for SHM: use of accelerometer data from smartphones.

    PubMed

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-01

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications. PMID:25643056

  14. Development of a 3-DOF Micro Accelerometer with Wireless Readout

    NASA Astrophysics Data System (ADS)

    Tung, Bui Thanh; Dao, Dzung Viet; Amarasinghe, Ranjith; Wada, Naoki; Tokunaga, Hiroshi; Sugiyama, Susumu

    This paper describes the design, simulation and fabrication of a 3-DOF (degree of freedom) micro accelerometer with wireless readout system. The fabricated accelerometer has dimensions of 1000μm×1000μm×500μm (Length×Width×Thickness) and can detect three components of linear acceleration simultaneously. The sensitivities to X-axis, Y-axis and Z-axis are 30μV/g, 30μV/g and 23μV/g, respectively. A three input-channels wireless transceiver system has been developed and integrated with the sensing element to form a sensor node. The antenna has been designed to transmit the signal from sensor node to a server at a communication frequency of 2.4GHz over a distance of 20m. Three output signals, i.e. X-axis, Y-axis and Z-axis, from the accelerometer are transmitted to the server by time division multiplexing protocol. This allows our wireless sensor system to detect three components of acceleration independently.

  15. Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones

    PubMed Central

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-01

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications. PMID:25643056

  16. Free Fall tests for the qualification of Ultra sensitive accelerometers for space missions

    NASA Astrophysics Data System (ADS)

    Françoise, Liorzou; Pierre, Marque Jean; Santos Rodrigues, Manuel

    ONERA is developing since a long time accelerometers for space applications in the field of Earth Observations and Fundamental Physics. The more recent examples are the accelerom-eters embarked on the ESA GOCE mission launched in March 2009, dedicated to the Earth precise gravity field mapping, and the accelerometers of the CNES MICROSCOPE mission dedicated to the in orbit test of the Equivalence Principle. Those Ultra sensitive accelerome-ters are optimised for the space environment and operate over an acceleration range less than 10-6 ms-2 with an outstanding accuracy around 10-12 ms-2Hz1/2. Their testability on ground requires creating a low gravity environment in order to verify their functionalities and partially their performances before their delivery before launch. Free fall tests are the only way to ob-tain such a microgravity environment in representating space conditions. The presentation will show in a first part the results of the free fall test campaigns performed in the 120-meter high ZARM drop tower that have led to the qualification of the GOCE accelerometers. In a second part, it will describe the test plan being conducted to assess the best free-fall environment for the MICROSCOPE accelerometers. In particular, some efforts have been paid by ZARM and ONERA to develop a dedicated "free-flyer"capsule, in order to reduce the residual drag acceleration along the fall. Some results from the preliminary tests performed in preparation to the MICROSCOPE qualification campaign will be also presented.

  17. Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes.

    PubMed

    Williamson, R; Andrews, B J

    2001-05-01

    Knee joint angle and angular velocity were calculated in real time during standing up and sitting down. Two small modules comprising rate gyroscopes and accelerometers were attached to the thigh and shank of two able-bodied volunteers and one T5 ASIA(A) paraplegic assisted by functional electrical stimulation (FES). The offset and drift of the rate gyroscopes was compensated for by auto-resetting and auto-nulling algorithms. The tilt of the limb segments was calculated by combining the signals of the accelerometer and the rate gyroscope. The joint angle was calculated as the difference in tilt of the segments. The modules were also tested on a two-dimensional model. The mean differences between the rate gyroscope-accelerometer system and the reference goniometer for the model, able-bodied and paraplegic standing trials were 2.1 degrees, 2.4 degrees and 2.3 degrees respectively for knee angle and 2.3 degrees s(-1), 5.0 degrees s(-1) and 11.8 degrees s(-1) respectively for knee velocity. The rate gyroscope-accelerometer system was more accurate than using the accelerometer as a tilt meter, possibly due to the greater bandwidth of the rate gyroscope-accelerometer system. PMID:11465883

  18. Fault Wear and Friction Evolution: Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Boneh, Y.; Chang, J. C.; Lockner, D. A.; Reches, Z.

    2011-12-01

    Wear is an inevitable product of frictional sliding of brittle rocks as evidenced by the ubiquitous occurrence of fault gouge and slickenside striations. We present here experimental observations designed to demonstrate the relationship between wear and friction and their governing mechanisms. The experiments were conducted with a rotary shear apparatus on solid, ring-shaped rock samples that slipped for displacements up to tens of meters. Stresses, wear and temperature were continuously monitored. We analyzed 86 experiments of Kasota dolomite, Sierra White granite, Pennsylvania quartzite, Karoo gabbro, and Tennessee sandstone at slip velocities ranging from 0.002 to 0.97 m/s, and normal stress from 0.25 to 6.9 MPa. We conducted two types of runs: short slip experiments (slip distance < 25 mm) primarily on fresh, surface-ground samples, designed to analyze initial wear mechanisms; and long slip experiments (slip distance > 3 m) designed to achieve mature wear conditions and to observe the evolution of wear and friction as the fault surfaces evolved. The experiments reveal three wear stages: initial, running-in, and steady-state. The initial stage is characterized by (1) discrete damage striations, the length of which is comparable to total slip , and local pits or plow features; (2) timing and magnitude of fault-normal dilation corresponds to transient changes of normal and shear stresses; and (3) surface roughness increasing with the applied normal stress. We interpret these observations as wear mechanisms of (a) plowing into the fresh rock surfaces; (b) asperity breakage; and (c) asperity climb. The running-in stage is characterized by (1) intense wear-rate over a critical wear distance of Rd = 0.3-2 m; (2) drop of friction coefficient over a weakening distance of Dc = 0.2-4 m; (3) Rd and Dc display positive, quasi-linear relation with each other. We interpret these observations as indicating the organizing of newly-created wear particles into a 'three

  19. Characterizing performance of ultra-sensitive accelerometers

    NASA Technical Reports Server (NTRS)

    Sebesta, Henry

    1990-01-01

    An overview is given of methodology and test results pertaining to the characterization of ultra sensitive accelerometers. Two issues are of primary concern. The terminology ultra sensitive accelerometer is used to imply instruments whose noise floors and resolution are at the state of the art. Hence, the typical approach of verifying an instrument's performance by measuring it with a yet higher quality instrument (or standard) is not practical. Secondly, it is difficult to find or create an environment with sufficiently low background acceleration. The typical laboratory acceleration levels will be at several orders of magnitude above the noise floor of the most sensitive accelerometers. Furthermore, this background must be treated as unknown since the best instrument available is the one to be tested. A test methodology was developed in which two or more like instruments are subjected to the same but unknown background acceleration. Appropriately selected spectral analysis techniques were used to separate the sensors' output spectra into coherent components and incoherent components. The coherent part corresponds to the background acceleration being measured by the sensors being tested. The incoherent part is attributed to sensor noise and data acquisition and processing noise. The method works well for estimating noise floors that are 40 to 50 dB below the motion applied to the test accelerometers. The accelerometers being tested are intended for use as feedback sensors in a system to actively stabilize an inertial guidance component test platform.

  20. Mobile-bearing knees reduce rotational asymmetric wear.

    PubMed

    Ho, Fang-Yuan; Ma, Hon-Ming; Liau, Jiann-Jong; Yeh, Chuan-Ren; Huang, Chun-Hsiung

    2007-09-01

    Polyethylene wear of bearing components is the most common long-term complication in total knee arthroplasty. One would anticipate differing kinematics would generate different wear patterns (including wear type, degree, and symmetry) on the articulating surface of mobile-bearing and fixed-bearing inserts. Because mobile-bearing designs facilitate movement of the insert relative to the tray when the knee rotates, we hypothesized mobile-bearing designs would reduce the incidence of rotational asymmetric wear. We examined 51 worn tibial inserts, including 15 from mobile-bearing rotating-platform posterior-cruciate-sacrificing dished prostheses and 36 from fixed-bearing posterior-cruciate-retaining flat prostheses, which were retrieved at revision surgery with an average implantation time of 115 months. We divided wear types into low-grade wear (burnishing, abrasion, and cold flow) and high-grade wear (scratching, pitting, metal embedding, and delamination) to assess wear degree of polyethylene. To assess symmetry of wear, the insert surface was divided into medial and lateral sides and each side was further divided into three equal zones along the anteroposterior direction. Low-grade wear was more common in mobile-bearing knees, whereas high-grade wear was more common in fixed-bearing knees. We identified no internal/external rotational asymmetric wear or anteroposterior asymmetric wear in mobile-bearing knees. PMID:17483732

  1. Tooth Wear Prevalence and Sample Size Determination : A Pilot Study

    PubMed Central

    Abd. Karim, Nama Bibi Saerah; Ismail, Noorliza Mastura; Naing, Lin; Ismail, Abdul Rashid

    2008-01-01

    Tooth wear is the non-carious loss of tooth tissue, which results from three processes namely attrition, erosion and abrasion. These can occur in isolation or simultaneously. Very mild tooth wear is a physiological effect of aging. This study aims to estimate the prevalence of tooth wear among 16-year old Malay school children and determine a feasible sample size for further study. Fifty-five subjects were examined clinically, followed by the completion of self-administered questionnaires. Questionnaires consisted of socio-demographic and associated variables for tooth wear obtained from the literature. The Smith and Knight tooth wear index was used to chart tooth wear. Other oral findings were recorded using the WHO criteria. A software programme was used to determine pathological tooth wear. About equal ratio of male to female were involved. It was found that 18.2% of subjects have no tooth wear, 63.6% had very mild tooth wear, 10.9% mild tooth wear, 5.5% moderate tooth wear and 1.8 % severe tooth wear. In conclusion 18.2% of subjects were deemed to have pathological tooth wear (mild, moderate & severe). Exploration with all associated variables gave a sample size ranging from 560 – 1715. The final sample size for further study greatly depends on available time and resources. PMID:22589636

  2. Number of accelerometer monitoring days needed for stable group-level estimates of activity.

    PubMed

    Wolff-Hughes, Dana L; McClain, James J; Dodd, Kevin W; Berrigan, David; Troiano, Richard P

    2016-09-01

    To determine the number and distribution of days required to produce stable group-level estimates of a 7 d mean for common accelerometer-derived activity measures. Data from the 2003-2006 NHANES were used in this analysis. The sample included 986 youth (6-19 year) and 2532 adults (⩾20 year) with 7 d of  ⩾10 h of wear. Accelerometer measures included minutes of inactive, light physical activity, moderate-to-vigorous physical activity (MVPA); and total activity counts/d. Twenty-five alternative protocols were bootstrapped with 50 000 samples drawn for each protocol. Alternative protocols included: 1-6 random days, Saturday plus 1-5 random weekdays (WD), Sunday plus 1-5 random WD, 1 random weekend day (WE) plus 1-5 WD, and both WE plus 1-4 random WD. Relative difference was calculated between the 7 d mean and alternative protocol mean (((alternative protocol mean - 7 d mean)/7 d mean) (*) 100). Adult MVPA is used as an example; however, similar trends were observed across age groups and variables except adult inactive time, which was stable across protocols. The 7 d mean for adult MVPA was 44.1(0.9) min d(-1). The mean bias for any 1-6 random days ranged from  -0.0(0.3) to 0.0(0.2) min d(-1) with a relative difference of  -0.1 to 0.0%. For protocols with non-random components, bias ranged from  -1.4(0.2) to 0.6(0.1) min d(-1) with relative difference ranging from  -7.2 to 3.1%. Simulation data suggest that stable estimates of group-level means can be obtained from as few as one randomly selected monitoring day from a sampled week. On the other hand, estimates using non-random selection of weekend days may be significantly biased. Purposeful sampling that disproportionally forces inclusion of weekend data in analyses should be discouraged. PMID:27510765

  3. An accelerometer-based system for elite athlete swimming performance analysis

    NASA Astrophysics Data System (ADS)

    Davey, Neil P.; Anderson, Megan E.; James, Daniel A.

    2005-02-01

    The measurement of sport specific performance characteristics is an important part of an athletes training and preparation for competition. Thus automated measurement, extraction and analysis of performance measures is desired and addressed in this paper. A tri-axial accelerometer based system was located on the lower back or swimmers to record acceleration profiles. The accelerometer system contained two ADXL202 bi-axial accelerometers positioned perpendicular to one another, and can store over 6 hours of data at 150Hz per channel using internal flash memory. The simultaneous collection of video and electronics touch pad timing was used to validate the algorithm results. Using the tri-axial accelerometer data, algorithms have been developed to derive lap times and stroke count. Comparison against electronic touch pad timing against accelerometer lap times has produced results with a typical error of better than +/-0.5 seconds. Video comparison of the stroke count algorithm for freestyle also produced results with an average error of +/-1 stroke. The developed algorithms have a higher level of reliability compared to hand timed and counted date that is commonly used during training.

  4. Wear Measurement System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Lewis Research Center developed a tribometer for in-house wear tests. Implant Sciences Corporation (ISC), working on a NASA contract to develop coatings to enhance the wear capabilities of materials, adapted the tribometer for its own use and developed a commercial line of user-friendly systems. The ISC-200 is a pin-on-disk type of tribometer, functioning like a record player and creating a wear groove on the disk, with variables of speed and load. The system can measure the coefficient of friction, the wear behavior between materials, and the integrity of thin films or coatings. Applications include measuring wear on contact lenses and engine parts and testing disk drives.

  5. A Self-Diagnostic System for the M6 Accelerometer

    NASA Technical Reports Server (NTRS)

    Flanagan, Patrick M.; Lekki, John

    2001-01-01

    The design of a Self-Diagnostic (SD) accelerometer system for the Space Shuttle Main Engine is presented. This retrofit system connects diagnostic electronic hardware and software to the current M6 accelerometer system. This paper discusses the general operation of the M6 accelerometer SD system and procedures for developing and evaluating the SD system. Signal processing techniques using M6 accelerometer diagnostic data are explained. Test results include diagnostic data responding to changing ambient temperature, mounting torque and base mounting impedance.

  6. Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  7. Self diagnostic accelerometer ground testing on a C-17 aircraft engine

    NASA Astrophysics Data System (ADS)

    Tokars, Roger P.; Lekki, John D.

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDA's flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  8. Dual Accelerometer Usage Strategy for Onboard Space Navigation

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; D'Souza, Chris

    2012-01-01

    This work introduces a dual accelerometer usage strategy for onboard space navigation. In the proposed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it is used to estimate its errors otherwise. Numerical examples and comparison to other accelerometer usage schemes are presented to validate the proposed approach.

  9. Three-axis MEMS Accelerometer for Structural Inspection

    NASA Astrophysics Data System (ADS)

    Barbin, E.; Koleda, A.; Nesterenko, T.; Vtorushin, S.

    2016-01-01

    Microelectromechanical system accelerometers are widely used for metrological measurements of acceleration, tilt, vibration, and shock in moving objects. The paper presents the analysis of MEMS accelerometer that can be used for the structural inspection. ANSYS Multiphysics platform is used to simulate the behavior of MEMS accelerometer by employing a finite element model and MATLAB/Simulink tools for modeling nonlinear dynamic systems.

  10. Micro-Accelerometers Monitor Equipment Health

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Glenn Research Center awarded SBIR funding to Ann Arbor, Michigan-based Evigia Systems to develop a miniaturized accelerometer to account for gravitational effects in space experiments. The company has gone on to implement the technology in its suite of prognostic sensors, which are used to monitor the integrity of industrial machinery. As a result, five employees have been hired.

  11. Miniature piezoelectric triaxial accelerometer measures cranial accelerations

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.; Rogallo, V. L.

    1966-01-01

    Tiny triaxial accelerometer whose sensing elements are piezoelectric ceramic beams measures human cranial accelerations when a subject is exposed to a centrifuge or other simulators of g environments. This device could be considered for application in dental, medical, and automotive safety research.

  12. Low-Cost Accelerometers for Physics Experiments

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Straulino, Samuele

    2007-01-01

    The implementation of a modern game-console controller as a data acquisition interface for physics experiments is discussed. The investigated controller is equipped with three perpendicular accelerometers and a built-in infrared camera to evaluate its own relative position. A pendulum experiment is realized as a demonstration of the proposed…

  13. Smartphone MEMS accelerometers and earthquake early warning

    NASA Astrophysics Data System (ADS)

    Kong, Q.; Allen, R. M.; Schreier, L.; Kwon, Y. W.

    2015-12-01

    The low cost MEMS accelerometers in the smartphones are attracting more and more attentions from the science community due to the vast number and potential applications in various areas. We are using the accelerometers inside the smartphones to detect the earthquakes. We did shake table tests to show these accelerometers are also suitable to record large shakings caused by earthquakes. We developed an android app - MyShake, which can even distinguish earthquake movements from daily human activities from the recordings recorded by the accelerometers in personal smartphones and upload trigger information/waveform to our server for further analysis. The data from these smartphones forms a unique datasets for seismological applications, such as earthquake early warning. In this talk I will layout the method we used to recognize earthquake-like movement from single smartphone, and the overview of the whole system that harness the information from a network of smartphones for rapid earthquake detection. This type of system can be easily deployed and scaled up around the global and provides additional insights of the earthquake hazards.

  14. A capacitive accelerometer suitable for telemetry

    NASA Technical Reports Server (NTRS)

    Coon, G. W.

    1972-01-01

    The design and development of a miniature 0.635 cm (0.25 in.) diameter capacitive accelerometer for use in free flight wind tunnel telemetry are presented. Instruments with full scale ranges from + or - 1 to + or - 200 g were constructed, calibrated, and used in several wind tunnel telemetry projects. Flat, high frequency response from 0 to 1000 Hz or more was obtained by employing the inherent damping and stiffness in the air film surrounding the diaphragm-type spring that supports the inertial mass of the accelerometer. Design features to achieve minimum off-axis sensitivity and temperature stability are discussed, and the design requirements for use of the transducer with telemetry systems are derived. A transducer capacitance change of 0.16 pF full scale gave excellent resolution and provided a frequency deviation of 0.75 MHz for a 100 MHz FM oscillator. Although the present design of the capacitive accelerometer was optimized by using units of 0.635 cm diameter, construction of experimental accelerometers as small as 0.36 cm (0.14 in.) diameter has demonstrated the feasibility of further miniaturization.

  15. Strong Motion Seismograph Based On MEMS Accelerometer

    NASA Astrophysics Data System (ADS)

    Teng, Y.; Hu, X.

    2013-12-01

    The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The

  16. Research on the effect of wear-ring clearances to the axial and radial force of a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhao, W. G.; Y He, M.; Qi, C. X.; Li, Y. B.

    2013-12-01

    Varying of the wear-ring clearance not only has a distinct effect on the volumetric loss of the centrifugal pump, but also on the performance of the centrifugal pump including the axial and radial forces. Comparing with the experimental studies, numerical simulation methods have some special advantages, such as the low cost, fast and high efficiency, and convenient to get the detailed structure of the internal flow characteristics, so it has been widely used in the fluid machinery study in recent years. In order to study the effect of wear-ring clearance on the force performance of the centrifugal pump, based on the Reynolds Time-Averaged N-S equations and RNG k-ε turbulence model, a centrifugal pump with three variable styles of the wear-rings was simulated: Only the clearance of the front wear-ring was changed, only the clearance of the back wear-ring was changed and both were changed. Comparing with the experiment, numerical results show a good agreement. In the three changing styles of the clearance, the variable of the clearance of front wear-ring has the most influence on the axial force of the centrifugal pump, while has tiny effect on the radial force for all the conditions.

  17. The ISA accelerometer and Lunar science

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Fiorenza, Emiliano; Lefevre, Carlo; Massimo Lucchesi, David; Lucente, Marco; Magnafico, Carmelo; Milyukov, Vadim; Nozzoli, Sergio; Peron, Roberto; Santoli, Francesco

    2014-05-01

    In recent years the Moon has become again a target for exploration activities, as shown by many missions, performed, ongoing or foreseen. The reasons for this new wave are manifold. The knowledge of formation and evolution of the Moon to its current state is important in order to trace the overall history of Solar System. An effective driving factor is the possibility of building a human settlement on its surface, with all the related issues of environment characterization, safety, resources, communication and navigation. Our natural satellite is also an important laboratory for fundamental physics: Lunar Laser Ranging is continuing to provide important data for testing gravitation theories. All these topics are providing stimulus and inspirations for new experiments: in fact a wide variety of them has been proposed to be conducted on the lunar surface. ISA (Italian Spring Accelerometer) can provide an important tool for lunar studies. Thanks to its structure (three one-dimensional sensors assembled in a composite structure) it works both in-orbit and on-ground, with the same configuration. It can therefore be used onboard a spacecraft, as a support to a radio science mission, and on the surface of the Moon, as a seismometer. This second option in particular has been the subject of preliminary studies and has been proposed as a candidate to be hosted on NASA ILN (International Lunar Network) and ESA First Lunar Lander. ISA-S (ISA-Seismometer) has a very high sensitivity, which has already been demonstrated with long time periods of usage on Earth. After a description of the instrument, its use in the context of landing missions will be described and discussed, giving emphasis on its integration with the other components of the systems.

  18. Physical Activity in Hemodialysis Patients Measured by Triaxial Accelerometer

    PubMed Central

    Gomes, Edimar Pedrosa; Reboredo, Maycon Moura; Carvalho, Erich Vidal; Teixeira, Daniel Rodrigues; Carvalho, Laís Fernanda Caldi d'Ornellas; Filho, Gilberto Francisco Ferreira; de Oliveira, Julio César Abreu; Sanders-Pinheiro, Helady; Chebli, Júlio Maria Fonseca; de Paula, Rogério Baumgratz; Pinheiro, Bruno do Valle

    2015-01-01

    Different factors can contribute to a sedentary lifestyle among hemodialysis (HD) patients, including the period they spend on dialysis. The aim of this study was to evaluate characteristics of physical activities in daily life in this population by using an accurate triaxial accelerometer and to correlate these characteristics with physiological variables. Nineteen HD patients were evaluated using the DynaPort accelerometer and compared to nineteen control individuals, regarding the time spent in different activities and positions of daily life and the number of steps taken. HD patients were more sedentary than control individuals, spending less time walking or standing and spending more time lying down. The sedentary behavior was more pronounced on dialysis days. According to the number of steps taken per day, 47.4% of hemodialysis patients were classified as sedentary against 10.5% in control group. Hemoglobin level, lower extremity muscle strength, and physical functioning of SF-36 questionnaire correlated significantly with the walking time and active time. Looking accurately at the patterns of activity in daily life, HDs patients are more sedentary, especially on dialysis days. These patients should be motivated to enhance the physical activity. PMID:26090432

  19. Physical Activity in Hemodialysis Patients Measured by Triaxial Accelerometer.

    PubMed

    Gomes, Edimar Pedrosa; Reboredo, Maycon Moura; Carvalho, Erich Vidal; Teixeira, Daniel Rodrigues; Carvalho, Laís Fernanda Caldi d'Ornellas; Filho, Gilberto Francisco Ferreira; de Oliveira, Julio César Abreu; Sanders-Pinheiro, Helady; Chebli, Júlio Maria Fonseca; de Paula, Rogério Baumgratz; Pinheiro, Bruno do Valle

    2015-01-01

    Different factors can contribute to a sedentary lifestyle among hemodialysis (HD) patients, including the period they spend on dialysis. The aim of this study was to evaluate characteristics of physical activities in daily life in this population by using an accurate triaxial accelerometer and to correlate these characteristics with physiological variables. Nineteen HD patients were evaluated using the DynaPort accelerometer and compared to nineteen control individuals, regarding the time spent in different activities and positions of daily life and the number of steps taken. HD patients were more sedentary than control individuals, spending less time walking or standing and spending more time lying down. The sedentary behavior was more pronounced on dialysis days. According to the number of steps taken per day, 47.4% of hemodialysis patients were classified as sedentary against 10.5% in control group. Hemoglobin level, lower extremity muscle strength, and physical functioning of SF-36 questionnaire correlated significantly with the walking time and active time. Looking accurately at the patterns of activity in daily life, HDs patients are more sedentary, especially on dialysis days. These patients should be motivated to enhance the physical activity. PMID:26090432

  20. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  1. Application of Accelerometer Data to Mars Odyssey Aerobraking and Atmospheric Modeling

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.; Keating, G. M.; George, B. E.; Escalera, P. E.; Werner, M. R.; Dwyer, A. M.; Hanna, J. L.

    2002-01-01

    Aerobraking was an enabling technology for the Mars Odyssey mission even though it involved risk due primarily to the variability of the Mars upper atmosphere. Consequently, numerous analyses based on various data types were performed during operations to reduce these risk and among these data were measurements from spacecraft accelerometers. This paper reports on the use of accelerometer data for determining atmospheric density during Odyssey aerobraking operations. Acceleration was measured along three orthogonal axes, although only data from the component along the axis nominally into the flow was used during operations. For a one second count time, the RMS noise level varied from 0.07 to 0.5 mm/s2 permitting density recovery to between 0.15 and 1.1 kg per cu km or about 2% of the mean density at periapsis during aerobraking. Accelerometer data were analyzed in near real time to provide estimates of density at periapsis, maximum density, density scale height, latitudinal gradient, longitudinal wave variations and location of the polar vortex. Summaries are given of the aerobraking phase of the mission, the accelerometer data analysis methods and operational procedures, some applications to determining thermospheric properties, and some remaining issues on interpretation of the data. Pre-flight estimates of natural variability based on Mars Global Surveyor accelerometer measurements proved reliable in the mid-latitudes, but overestimated the variability inside the polar vortex.

  2. High Shock, High Frequency Characteristics of a Mechanical Isolator for a Piezoresistive Accelerometer, the ENDEVCO 7270AM6*

    SciTech Connect

    BATEMAN,VESTA I.; BROWN,FREDERICK A.; NUSSER,MICHAEL A.

    2000-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories (SNL). An Extended Technical Assistance Program (ETAP) with the accelerometer manufacturer has resulted in a commercial mechanically isolated accelerometer that is available to the general public, the ENDEVCO 7270AM6*, for three shock acceleration ranges of 6,000 g, 20,000 g, and 60,000 g. The in-axis response shown in this report has acceptable frequency domain performance from DC to 10 kHz and 10(XO)over a temperature range of {minus}65 F to +185 F. Comparisons with other isolated accelerometers show that the ENDEVCO 7270AM6 has ten times the bandwidth of any other commercial isolator. ENDEVCO 7270AM6 cross-axis response is shown in this report.

  3. Microgravity accelerometer characterization on Columbia STS-32 mission

    NASA Technical Reports Server (NTRS)

    Schoess, Jeff; Thomas, Don; Dunbar, Bonnie

    1992-01-01

    The Honeywell In-Space Accelerometer (HISA) is a three-axis microgravity accelerometer instrument package recently developed by Honeywell Systems and Research Center (SRC) to monitor oscillatory and transient accelerations onboard spacecraft and spaceborne structures. The HISA was designed to be co-located with materials and life sciences experiments to record real-time accelerometer event data, sampling time, and temperature. The HISA was originally developed to monitor the microgravity disturbances associated with a polymer morphology experiment developed by 3M Company in Minneapolis, Minnesota. The HISA was first flight tested with the 3M experiment on the Space Shuttle Atlantis STS-34 in October 1989. The HISA was successfully flown on a second shuttle mission (Columbia STS-32 in January 1990) in support of the NASA JSC-sponsored Microgravity Disturbances Experiment (MDE), which focused on the effects of microgravity disturbances on the growth of high-quality Indium crystals. The primary objective of the STS-32 MDE experiment was to investigate the effects of crew-induced gravity disturbances on the microstructure (crystal defects and uniformity of impurity distribution) of float-zone-grown crystals. The float-zone technique involves establishing a suspended molten zone between two cylindrical samples a pure, single-crystal sample and an impure, polycrystalline sample. Microgravity disturbances due to crew treadmill activity and orbiter maneuvering system thruster firings were sensed and recorded by the HISA to understand their effects on the stability of the float zone. The principle of operation of the HISA, the flight configuration of the HISA supporting the MDE experiment, and the characterization of STS-32 treadmill disturbance data are summarized.

  4. Accelerometer Cut Points for Physical Activity Assessment of Older Adults with Parkinson’s Disease

    PubMed Central

    Nero, Håkan; Benka Wallén, Martin; Franzén, Erika; Ståhle, Agneta; Hagströmer, Maria

    2015-01-01

    Objective To define accelerometer cut points for different walking speeds in older adults with mild to moderate Parkinson’s disease. Method A volunteer sample of 30 older adults (mean age 73; SD 5.4 years) with mild to moderate Parkinson’s disease walked at self-defined brisk, normal, and slow speeds for three minutes in a circular indoor hallway, each wearing an accelerometer around the waist. Walking speed was calculated and used as a reference measure. Through ROC analysis, accelerometer cut points for different levels of walking speed in counts per 15 seconds were generated, and a leave-one-out cross-validation was performed followed by a quadratic weighted Cohen’s Kappa, to test the level of agreement between true and cut point–predicted walking speeds. Results Optimal cut points for walking speeds ≤ 1.0 m/s were ≤ 328 and ≤ 470 counts/15 sec; for speeds > 1.3 m/s, they were ≥ 730 and ≥ 851 counts/15 sec for the vertical axis and vector magnitude, respectively. Sensitivity and specificity were 61%–100% for the developed cut points. The quadratic weighted Kappa showed substantial agreement: κ = 0.79 (95% CI 0.70–0.89) and κ = 0.69 (95% CI 0.56–0.82) for the vertical axis and the vector magnitude, respectively. Conclusions This study provides accelerometer cut points based on walking speed for physical-activity measurement in older adults with Parkinson’s disease for evaluation of interventions and for investigating links between physical activity and health. PMID:26332765

  5. Robust Optimization of a MEMS Accelerometer Considering Temperature Variations

    PubMed Central

    Liu, Guangjun; Yang, Feng; Bao, Xiaofan; Jiang, Tao

    2015-01-01

    A robust optimization approach for a MEMS accelerometer to minimize the effects of temperature variations is presented. The mathematical model of the accelerometer is built. The effects of temperature variations on the output performance of the accelerometer are determined, and thermal deformation of the accelerometer is analyzed. The deviations of the output capacitance and resonance frequency due to temperature fluctuations are calculated and discussed. The sensitivity analysis method is employed to determine the design variables for robust optimization and find out the key structural parameters that have most significant influence on the output capacitance and resonance frequency of the accelerometer. The mathematical model and procedure for the robust optimization of the accelerometer are proposed. The robust optimization problem is solved and discussed. The robust optimization results show that an optimized accelerometer with high sensitivity, high temperature robustness and decoupling structure is finally obtained. PMID:25785308

  6. Wear of artificial denture teeth by use of toothbrushes. Part 1: Abrasive wear of anterior teeth.

    PubMed

    Satoh, Y; Ohtani, K; Maejima, K; Morikawa, M; Matsuzu, M; Nagai, E; Toyoma, H; Ohwa, M; Ohki, K; Kaketani, M

    1990-12-01

    High-strength denture teeth (HS teeth) were developed in order to improve the hardness and wear resistance of conventional plastic denture teeth (PL teeth), while retaining their feature of easy occlusal adjustment. The objective of this study was to evaluate the abrasive wear resistance of HS teeth. We conducted wear tests and measured surface roughness using six types of anterior artificial teeth, i.e., three types of HS teeth and three types of PL teeth, the latter serving as the control. The results of the toothbrush abrasion test revealed that the HS teeth had about 5 times greater wear resistance than the PL teeth. It was also found that the type of artificial teeth and the number of abrasive wear-testing strokes had a significant (P less than 0.05) influence on the surface roughness of artificial teeth. PMID:2074493

  7. Validation of the Actical Accelerometer in Multiethnic Preschoolers: The Children's Healthy Living (CHL) Program

    PubMed Central

    Ettienne, Reynolette; Li, Fenfang; Su, Yuhua; McGlone, Katalina; Luick, Bret; Tachibana, Alvin; Carran, Christina; Mercado, Jobel; Novotny, Rachel

    2016-01-01

    This study aimed to determine the validity and reliability of the Actical accelerometer for measuring physical activity (PA) in preschool children of mixed ethnicity, compared with direct observation via a modified System for Observing Fitness Instruction Time (SOFIT) protocol and proxy parental reports (PA Logs). Fifty children in Hawai‘i wore wrist-mounted accelerometers for two 7-day periods with a washout period between each week. Thirty children were concurrently observed using SOFIT. Parents completed PA Logs for three days. Reliability and validity were measured by intra-class correlation coefficient and proportions of agreement concurrently. There was slight agreement (proportion of agreement: 82%; weighted Kappa=.17, P <.001) between the accelerometer and SOFIT as well as between the accelerometer and the PA Logs (proportions of agreement: 40%; weighted Kappa=0.15, P <.001). PA logs underestimated the PA levels of the children, while the Actical was found to be valid and reliable for estimating PA levels of multiethnic, mixed ethnicity preschoolers. These findings suggest that accelerometers can be objective, valid, and accurate physical activity assessment tools compared to conventional PA logs and subjective reports of activity for preschool children of mixed ethnicity. PMID:27099804

  8. Validation of the Actical Accelerometer in Multiethnic Preschoolers: The Children's Healthy Living (CHL) Program.

    PubMed

    Ettienne, Reynolette; Nigg, Claudio R; Li, Fenfang; Su, Yuhua; McGlone, Katalina; Luick, Bret; Tachibana, Alvin; Carran, Christina; Mercado, Jobel; Novotny, Rachel

    2016-04-01

    This study aimed to determine the validity and reliability of the Actical accelerometer for measuring physical activity (PA) in preschool children of mixed ethnicity, compared with direct observation via a modified System for Observing Fitness Instruction Time (SOFIT) protocol and proxy parental reports (PA Logs). Fifty children in Hawai'i wore wrist-mounted accelerometers for two 7-day periods with a washout period between each week. Thirty children were concurrently observed using SOFIT. Parents completed PA Logs for three days. Reliability and validity were measured by intra-class correlation coefficient and proportions of agreement concurrently. There was slight agreement (proportion of agreement: 82%; weighted Kappa=.17, P <.001) between the accelerometer and SOFIT as well as between the accelerometer and the PA Logs (proportions of agreement: 40%; weighted Kappa=0.15, P <.001). PA logs underestimated the PA levels of the children, while the Actical was found to be valid and reliable for estimating PA levels of multiethnic, mixed ethnicity preschoolers. These findings suggest that accelerometers can be objective, valid, and accurate physical activity assessment tools compared to conventional PA logs and subjective reports of activity for preschool children of mixed ethnicity. PMID:27099804

  9. GRACE KBR and Accelerometer Data Reduction and Calibration

    NASA Technical Reports Server (NTRS)

    Rowlands, David D.; Lutheke, Scott B.; Klosko, Steven M.; Lemoine, Frank G.; Williams, Terry A.

    2004-01-01

    The Gravity Recovery and Climate Experiment (GRACE), launched on March 17, 2002, represents the state-of-the-art in geodetic observations of the static and time varying components of the Earth's geopotential field. The fundamental measurement used to observe gravity is the inter-satellite range and range rate between two coplanar, low altitude satellites obtained from a K-band ranging (KBR) system. In addition to the K-band ranging system, each satellite possess a Super-STAR Accelerometer, a GPS receiver/antenna package, Star Cameras and a Laser Retro Reflector (LRR) to complete the compliment of science instruments. The GRACE project has now released two years of Level 1B data derived from the science instruments and sensors. An integral component of our time variable gravity research is the reduction, calibration and analyses of these Level 1B data. In particular we have analyzed several months of K-band ranging (KBR1B), accelerometry (ACC1B) and GPS navigation (GNAV1B) data. Accelerometer calibration and KBR data reduction methodology and results will be presented. We discuss the impact of these analyses on the recovery of time variable gravity.

  10. NASA interdisciplinary collaboration in tribology. A review of oxidational wear

    NASA Technical Reports Server (NTRS)

    Quinn, T. F. J.

    1983-01-01

    An in-depth review of oxidational wear of metals is presented. Special emphasis is given to a description of the concept of oxidational wear and the formulation of an Oxidational Wear Theory. The parallelism between the formation of an oxide film for dry contact conditions and the formation of other surface films for a lubricated contact is discussed. The description of oxidational wear is prefaced with a unification of wear modes into two major classes of mild and severe wear including both lubricated and dry contacts. Oxidational wear of metals is a class of mild wear where protective oxide films are formed at real areas of contact and during the time of contact at temperataure T sub c. When the oxide reaches a critical thickness, frequently in the range of 1 to 3 microns, the oxide breaks up and eventually appears as a wear particle. These oxides are preferentially formed on plateaux which alternately carry the load as they reach their critical thickness and are removed. If the system is operated at elevated temperatures, thick oxides can form both out of contact and between the plateaux. Temperature is important in determining the structure of the oxide film present. Spinel oxide (Fe3O4) which forms above 300 C is more protective than the lower temperature rhomobohedral (alpha-Fe2O3) oxide which is abrasive. An Oxidational Wear Theory is derived using a modified Archard wear law expressed in terms of activation energy (Qp) and Arrhenius constant (Ap).

  11. Micro-G silicon accelerometers with high performance CMOS interface circuitry

    NASA Astrophysics Data System (ADS)

    Yazdi, Navid

    High precision micro-g accelerometers are widely used in applications such as inertial navigation, microgravity measurements and seismology. The objective of this dissertation is to design and develop a z-axis micro-g accelerometer with high sensitivity, low noise, low temperature sensitivity, and good long-term stability. In order to achieve this goal, two novel all-silicon device structures, two single-wafer fabrication processes, and a novel interface CMOS circuit are introduced. The accelerometers are fabricated on a single silicon wafer using a combined bulk and surface micromachining technology. The first accelerometer is a fully-symmetrical capacitive device, which has a low cross-axis sensitivity in addition to the aforementioned performance targets. The accelerometer with a 4 x 1mm 2 proof mass shows a measured sensitivity of 19.4pF/g using turn-over tests, that yields a differential top and bottom sensitivity of 38.8pF/g. The calculated noise floor of this device at atmosphere is 0. 16 mug/√Hz. The second accelerometer is a high sensitivity capacitive device with a new folded-electrode structure. The structure provides closed-loop operation and differential capacitance measurement with a single-sided structure. The measured sensitivity for a device with 2.6 x 1mm2 proof mass is about 100pF/g. The calculated mechanical noise floor for the same device is 0.18mug/√Hz at atmosphere. Thorough analytical modeling and simulation of the accelerometer with finite electrode stiffness operated closed-loop are presented with an oversampled sigma-delta modulator chip. The simulations are performed in the time domain with inclusion of all non-idealities and non-linearities. The simulation results show a resolution of less than 10mug direct digital output and better than 1% linearity. Finally, a high performance interface circuit for the micro-g accelerometers is presented. This chip implements an oversampled sigma-delta modulator and can be both used for open

  12. A Study on Tactile Friction and Wear

    NASA Astrophysics Data System (ADS)

    Sugishita, Junji; Usami, Hatsuhiko; Hattori, Tomokazu

    The tactile wear (“tezure” in Japanese) is an abrasion phenomenon of material surfaces caused by the contact of human hand over a long period of time. Though this phenomenon has been the focus of various articles, an extensive study with regard to the wear characteristics is of a profound importance. To date, we have several remarkable examples such as the statue of Pindola Bharadvaja (Buddhist) and the St. Peter statue (Christian). Followers of the respective religions who are deeply attached and rooted have been touching the statues as part of their rituals for many generations over centuries. In this study, an attempt is done to verify the friction and wear characteristics of various soft metals with contact of human finger. The results of our experiments show that the friction coefficient upon the contact of the human finger and pure copper are very high and thus proving tactile wear of soft metals can be generated easily.

  13. Theory of powdery rubber wear

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.

    2009-12-01

    Rubber wear typically involves the removal of small rubber particles from the rubber surface. On surfaces with not too sharp roughness, e.g. most road surfaces, this involves (slow) crack propagation. In this paper I shall present a theory of mild rubber wear. I shall derive the distribution of wear particle sizes Φ(D), which is in excellent agreement with experiment. I shall also show that the calculated wear rate is consistent with experimental data for tire tread block wear.

  14. Quantitative Accelerated Life Testing of MEMS Accelerometers

    PubMed Central

    Bâzu, Marius; Gălăţeanu, Lucian; Ilian, Virgil Emil; Loicq, Jerome; Habraken, Serge; Collette, Jean-Paul

    2007-01-01

    Quantitative Accelerated Life Testing (QALT) is a solution for assessing the reliability of Micro Electro Mechanical Systems (MEMS). A procedure for QALT is shown in this paper and an attempt to assess the reliability level for a batch of MEMS accelerometers is reported. The testing plan is application-driven and contains combined tests: thermal (high temperature) and mechanical stress. Two variants of mechanical stress are used: vibration (at a fixed frequency) and tilting. Original equipment for testing at tilting and high temperature is used. Tilting is appropriate as application-driven stress, because the tilt movement is a natural environment for devices used for automotive and aerospace applications. Also, tilting is used by MEMS accelerometers for anti-theft systems. The test results demonstrated the excellent reliability of the studied devices, the failure rate in the “worst case” being smaller than 10-7h-1.

  15. Ferrographic analysis of wear debris from full-scale bearing fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Loewenthal, S. H.

    1979-01-01

    The Ferrograph was used to determine the types and quantities of wear particles generated during full scale bearing fatigue tests. Deep-groove ball bearings made from steel were used. A tetraester lubricant was used in a recirculating lubricant system containing a 49 micrometers absolute filter. Test conditions include a maximum Hertz stress of 2.4 GPa, a shaft speed of 15,000 rpm, and a lubricant supply temperature of 74 C (165 F). Four fatigue failures were detected by accelerometers in this test set. In general, the Ferrograph was more sensitive (up to 23 hr) in detecting spall initiation than either accelerometers or the normal spectrographic oil analysis. Four particle types were observed: normal rubbing weather particles, spheres, nonferrous particles, and severe wear (spall) fragments.

  16. Reliability of accelerometer-determined physical activity and sedentary behavior in school-aged children: a 12-country study

    PubMed Central

    Barreira, T V; Schuna, J M; Tudor-Locke, C; Chaput, J-P; Church, T S; Fogelholm, M; Hu, G; Kuriyan, R; Kurpad, A; Lambert, E V; Maher, C; Maia, J; Matsudo, V; Olds, T; Onywera, V; Sarmiento, O L; Standage, M; Tremblay, M S; Zhao, P; Katzmarzyk, P T

    2015-01-01

    Objectives: Focused on the accelerometer-determined physical activity and sedentary time metrics in 9–11-year-old children, we sought to determine the following: (i) number of days that are necessary to achieve reliable estimates (G⩾0.8); (ii) proportion of variance attributed to different facets (participants and days) of reliability estimates; and (iii) actual reliability of data as collected in The International Study of Childhood Obesity, Lifestyle and Environment (ISCOLE). Methods: The analytical sample consisted of 6025 children (55% girls) from sites in 12 countries. Physical activity and sedentary time metrics measures were assessed for up to 7 consecutive days for 24 h per day with a waist-worn ActiGraph GT3X+. Generalizability theory using R software was used to investigate the objectives i and ii. Intra-class correlation coefficients (ICC) were computed using SAS PROC GLM to inform objective iii. Results: The estimated minimum number of days required to achieve a reliability estimate of G⩾0.8 ranged from 5 to 9 for boys and 3 to 11 for girls for light physical activity (LPA); 5 to 9 and 3 to 10, for moderate-to-vigorous physical activity (MVPA); 5 to 10 and 4 to 10 for total activity counts; and 7 to 11 and 6 to 11 for sedentary time, respectively. For all variables investigated, the ‘participant' facet accounted for 30–50% of the variability, whereas the ‘days' facet accounted for ⩽5%, and the interaction (P × D) accounted for 50–70% of the variability. The actual reliability for boys in ISCOLE ranged from ICCs of 0.78 to 0.86, 0.73 to 0.85 and 0.72 to 0.86 for LPA, MVPA and total activity counts, respectively, and 0.67 to 0.79 for sedentary time. The corresponding values for girls were 0.80–0.88, 0.70–0.89, 0.74–0.86 and 0.64–0.80. Conclusions: It was rare that only 4 days from all participants would be enough to achieve desirable reliability estimates. However, asking participants to wear the device for 7 days and requiring

  17. The MESA accelerometer for space application

    NASA Astrophysics Data System (ADS)

    Lange, William G.; Dietrich, Robert W.

    1990-08-01

    An electrostatically suspended proof mass in the Miniature Electrostatic Accelerometer (MESA) is used to measure acceleration in the submicro-g range. Since no fixed mechanical suspension (such as springs or strings) is used, the constrainment scaling can be changed electrically after being placed in orbit. A single proof mass can sense accelerations in three axes simultaneously. It can survive high-g pyrotechnic-generated shocks and launch environments while unpowered.

  18. The MESA accelerometer for space application

    NASA Technical Reports Server (NTRS)

    Lange, William G.; Dietrich, Robert W.

    1990-01-01

    An electrostatically suspended proof mass in the Miniature Electrostatic Accelerometer (MESA) is used to measure acceleration in the submicro-g range. Since no fixed mechanical suspension (such as springs or strings) is used, the constrainment scaling can be changed electrically after being placed in orbit. A single proof mass can sense accelerations in three axes simultaneously. It can survive high-g pyrotechnic-generated shocks and launch environments while unpowered.

  19. Dynamic testing of the Kearfott 2401 accelerometer

    NASA Technical Reports Server (NTRS)

    Katz, B.

    1975-01-01

    A Kearfott pendulous accelerometer was integrated with a United Aircraft pulse torque servo assembly (PTSA) forced binary loop. The test objective was to measure dynamic errors due to anisoinertia and OA coupling effects. The instrument and its torque loop are described, and the technique for isolating the anisoinertia error from centripetal acceleration effects is discussed in detail. The measured anisoinertia error coefficient was 3.0 cm, and the testing confirmed that no rectified OA coupling error was present.

  20. High performance MEMS accelerometers for concrete SHM applications and comparison with COTS accelerometers

    NASA Astrophysics Data System (ADS)

    Kavitha, S.; Joseph Daniel, R.; Sumangala, K.

    2016-01-01

    Accelerometers used for civil and huge mechanical structural health monitoring intend to measure the shift in the natural frequency of the monitored structures (<100 Hz) and such sensors should have large sensitivity and extremely low noise floor. Sensitivity of accelerometers is inversely proportional to the frequency squared. Commercial MEMS (Micro Electro-Mechanical System) accelerometers that are generally designed for large bandwidth (e.g 25 kHz in ADXL150) have poor sensor level sensitivity and therefore uses complex signal conditioning electronics to achieve large sensitivity and low noise floor which in turn results in higher cost. In this work, an attempt has been made to design MEMS capacitive and piezoresistive accelerometers for smaller bandwidth using IntelliSuite and CoventorWare MEMS tools respectively. The various performance metrics have been obtained using simulation experiments and the results show that these sensors have excellent voltage sensitivity, noise performance and high resolution at sensor level and are even superior to commercial MEMS accelerometers.

  1. NASA Ultra-Sensitive Miniature Accelerometer

    NASA Technical Reports Server (NTRS)

    Zavracky, Paul M.; Hartley, Frank T.

    1994-01-01

    Using micro-machined silicon technology, an ultra-sensitive miniature acce.,rometer can be constructed which meets the requirements for microgravity experiments in the space environment.Such an accelerometer will have a full scale sensitivity of 1C2 g a resolution of lC8 g, low cross axis sensitivity, and low temperature sensitivity. Mass of the device is approximately five grams and its footprint is 2 cm x 2 cm. Innovative features of the accelerometer, which are patented, are: electrostatic caging to withstand handling shock up to 150 g, in-situ calibration, in situ performance characterization, and both static and dynamic compensation. The transducer operates on a force balance principle wherein the displacement of the proof mass is monitored by measuring tunneling electron current flow between a conductive tip, and a fixed platen. The four major parts of the accelerometer are tip die, incorporating the tunneling tip and four field plates for controlling pitch and roll of the proof mass; two proof mass dies, attached to the surrounding frame by sets of four leg" springs; and a force plate die. The four parts are fuse-bonded into a complete assembly. External electrical connections are made at bond pads on the front surface of the force plate die. Materials and processes used in the construction of the transducer are compatible with volume production.

  2. Machine Learning Methods for Classifying Human Physical Activity from On-Body Accelerometers

    PubMed Central

    Mannini, Andrea; Sabatini, Angelo Maria

    2010-01-01

    The use of on-body wearable sensors is widespread in several academic and industrial domains. Of great interest are their applications in ambulatory monitoring and pervasive computing systems; here, some quantitative analysis of human motion and its automatic classification are the main computational tasks to be pursued. In this paper, we discuss how human physical activity can be classified using on-body accelerometers, with a major emphasis devoted to the computational algorithms employed for this purpose. In particular, we motivate our current interest for classifiers based on Hidden Markov Models (HMMs). An example is illustrated and discussed by analysing a dataset of accelerometer time series. PMID:22205862

  3. A Morlet wavelet signal analysis with a Daubechies filter for the wear assessment of hip prostheses coated with diamond-like carbon by triboadhesion.

    PubMed

    Rodríguez-Lelis, Jose Maria; Mata, Dagoberto Tolosa; Vargas-Treviño, Marciano; Navarro-Torres, Jose; Piña-Piña, Gilberto; Abundez-Pliego, Arturo

    2010-08-01

    In the present work, based on high frequency wavelet analysis of dynamic signals of mechanical systems, a multiple-resolution wavelet analysis is carried out, to the signal obtained from an accelerometer mounted on the structure of a hip prosthesis wearing test device. The prostheses employed had a femoral head made of aluminum oxide and the acetabular cup of ultra-high-molecular-weight polyethylene. The first two aluminum oxide femoral heads were coated with diamond-like carbon and a third one was tested without coating and used as a reference. The coating was carried out by triboadhesion. Tests results showed that maximum vibration amplitude reached after 32 hr for the coated prostheses was 0.2 g. The noncoated prosthesis amplitude presented was 0.75 g in the same time interval. These values were attributed to wear damage on the surface of the prostheses, indicating that thin film DLC coating caused an increase of stiffness on the surface and therefore an increase in wear resistance approximately of 314%. PMID:20841618

  4. Physical Activity and Adiposity Markers at Older Ages: Accelerometer Vs Questionnaire Data

    PubMed Central

    Sabia, Séverine; Cogranne, Pol; van Hees, Vincent T.; Bell, Joshua A.; Elbaz, Alexis; Kivimaki, Mika; Singh-Manoux, Archana

    2015-01-01

    Objective Physical activity is critically important for successful aging, but its effect on adiposity markers at older ages is unclear as much of the evidence comes from self-reported data on physical activity. We assessed the associations of questionnaire-assessed and accelerometer-assessed physical activity with adiposity markers in older adults. Design/Setting/Participants This was a cross-sectional study on 3940 participants (age range 60-83 years) of the Whitehall II study who completed a 20-item physical activity questionnaire and wore a wrist-mounted accelerometer for 9 days in 2012 and 2013. Measurements Total physical activity was estimated using metabolic equivalent hours/week for the questionnaire and mean acceleration for the accelerometer. Time spent in moderate-and-vigorous physical activity (MVPA) was also assessed by questionnaire and accelerometer. Adiposity assessment included body mass index, waist circumference, and fat mass index. Fat mass index was calculated as fat mass/height² (kg/m²), with fat mass estimated using bioimpedance. Results Greater total physical activity was associated with lower adiposity for all adiposity markers in a dose-response manner. In men, the strength of this association was 2.4 to 2.8 times stronger with the accelerometer than with questionnaire data. In women, it was 1.9 to 2.3 times stronger. For MVPA, questionnaire data in men suggested no further benefit for adiposity markers past 1 hour/week of activity. This was not the case for accelerometer-assessed MVPA where, for example, compared with men undertaking <1 hour/week of accelerometer-assessed MVPA, waist circumference was 3.06 (95% confidence interval 2.06–4.06) cm lower in those performing MVPA 1–2.5 hours/week, 4.69 (3.47–5.91) cm lower in those undertaking 2.5–4 hours/week, and 7.11 (5.93–8.29) cm lower in those performing ≥4 hours/week. Conclusions The association of physical activity with adiposity markers in older adults was

  5. Intelligent identification of wear mechanism via on-line ferrograph images

    NASA Astrophysics Data System (ADS)

    Wu, Tonghai; Peng, Yeping; Sheng, Chenxing; Wu, Jiaoyi

    2014-03-01

    Condition based maintenance(CBM) issues a new challenge of real-time monitoring for machine health maintenance. Wear state monitoring becomes the bottle-neck of CBM due to the lack of on-line information acquiring means. The wear mechanism judgment with characteristic wear debris has been widely adopted in off-line wear analysis; however, on-line wear mechanism characterization remains a big problem. In this paper, the wear mechanism identification via on-line ferrograph images is studied. To obtain isolated wear debris in an on-line ferrograph image, the deposition mechanism of wear debris in on-line ferrograph sensor is studied. The study result shows wear debris chain is the main morphology due to local magnetic field around the deposited wear debris. Accordingly, an improved sampling route for on-line wear debris deposition is designed with focus on the self-adjustment deposition time. As a result, isolated wear debris can be obtained in an on-line image, which facilitates the feature extraction of characteristic wear debris. By referring to the knowledge of analytical ferrograph, four dimensionless morphological features, including equivalent dimension, length-width ratio, shape factor, and contour fractal dimension of characteristic wear debris are extracted for distinguishing four typical wear mechanisms including normal, cutting, fatigue, and severe sliding wear. Furthermore, a feed-forward neural network is adopted to construct an automatic wear mechanism identification model. By training with the samples from analytical ferrograph, the model might identify some typical characteristic wear debris in an on-line ferrograph image. This paper performs a meaningful exploratory for on-line wear mechanism analysis, and the obtained results will provide a feasible way for on-line wear state monitoring.

  6. Wear Independent Similarity.

    PubMed

    Steele, Adam; Davis, Alexander; Kim, Joohyung; Loth, Eric; Bayer, Ilker S

    2015-06-17

    This study presents a new factor that can be used to design materials where desired surface properties must be retained under in-system wear and abrasion. To demonstrate this factor, a synthetic nonwetting coating is presented that retains chemical and geometric performance as material is removed under multiple wear conditions: a coarse vitrified abradant (similar to sanding), a smooth abradant (similar to rubbing), and a mild abradant (a blend of sanding and rubbing). With this approach, such a nonwetting material displays unprecedented mechanical durability while maintaining desired performance under a range of demanding conditions. This performance, herein termed wear independent similarity performance (WISP), is critical because multiple mechanisms and/or modes of wear can be expected to occur in many typical applications, e.g., combinations of abrasion, rubbing, contact fatigue, weathering, particle impact, etc. Furthermore, these multiple wear mechanisms tend to quickly degrade a novel surface's unique performance, and thus many promising surfaces and materials never scale out of research laboratories. Dynamic goniometry and scanning electron microscopy results presented herein provide insight into these underlying mechanisms, which may also be applied to other coatings and materials. PMID:26018058

  7. A biomimetic accelerometer inspired by the cricket's clavate hair

    PubMed Central

    Droogendijk, H.; de Boer, M. J.; Sanders, R. G. P.; Krijnen, G. J. M.

    2014-01-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model is presented for the design of the accelerometer, and guidelines are derived to reduce responsivity due to flow-induced contributions to the accelerometer's output. Measurements show that this microelectromechanical systems (MEMS) hair-based accelerometer has a resonance frequency of 320 Hz, a detection threshold of 0.10 ms−2 and a dynamic range of more than 35 dB. The accelerometer exhibits a clear directional response to external accelerations and a low responsivity to airflow. Further, the accelerometer's physical limits with respect to noise levels are addressed and the possibility for short-term adaptation of the sensor to the environment is discussed. PMID:24920115

  8. Design of a self-diagnostic beam-mode piezoelectric accelerometer

    NASA Technical Reports Server (NTRS)

    Flanagan, Patrick M.

    1992-01-01

    A technique was developed for detecting in situ real-time soft failures in a beam-mode piezoelectric accelerometer. The new technique can be used to detect changes in the piezoelectric capacitance, the equivalent mechanical stiffness of the piezoelectric element and the surface mounting impedance, and the piezoelectric efficiency.

  9. A 3-axis force balanced accelerometer using a single proof-mass

    SciTech Connect

    Lemkin, M.A.; Boser, B.E.; Auslander, D.; Smith, J.

    1997-04-01

    This paper presents a new method for wideband force balancing a proof-mass in multiple axes simultaneously. Capacitive position sense and force feedback are accomplished using the same air-gap capacitors through time multiplexing. Proof of concept is experimentally demonstrated with a single-mass monolithic surface micromachined 3-axis accelerometer.

  10. Optical wear monitoring

    DOEpatents

    Kidane, Getnet S; Desilva, Upul P.; He, Chengli; Ulerich, Nancy H.

    2016-07-26

    A gas turbine includes first and second parts having outer surfaces located adjacent to each other to create an interface where wear occurs. A wear probe is provided for monitoring wear of the outer surface of the first part, and includes an optical guide having first and second ends, wherein the first end is configured to be located flush with the outer surface of the first part. A fiber bundle includes first and second ends, the first end being located proximate to the second end of the optical guide. The fiber bundle includes a transmit fiber bundle comprising a first plurality of optical fibers coupled to a light source, and a receive fiber bundle coupled to a light detector and configured to detect reflected light. A processor is configured to determine a length of the optical guide based on the detected reflected light.

  11. A new accelerometer recording system for shuttle use

    NASA Technical Reports Server (NTRS)

    Lichtenberg, Byron

    1990-01-01

    Microgravity investigators are interested in enhancing the capabilities and improving the information return from accelerometers used in microgravity research. In addition to improving the accelerometer sensor, efforts should be directed towards using recent advances in microprocessor technology and system design techniques to improve sensor calibration and temperature compensation, online data display and analysis, and data reduction and information storage. Results from the above areas of investigation should be combined in an integrated design for a spaceflight microgravity accelerometer package.

  12. Wear analysis of disc cutters of full face rock tunnel boring machine

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaohuang; Meng, Liang; Sun, Fei

    2014-11-01

    Wear is a major factor of disc cutters' failure. No current theory offers a standard for the prediction of disc cutter wear yet. In the field the wear prediction method commonly used is based on the excavation length of tunnel boring machine(TBM) to predict the disc cutter wear and its wear law, considering the location number of each disc cutter on the cutterhead(radius for installation); in theory, there is a prediction method of using arc wear coefficient. However, the preceding two methods have their own errors, with their accuracy being 40% or so and largely relying on the technicians' experience. Therefore, radial wear coefficient, axial wear coefficient and trajectory wear coefficient are defined on the basis of the operating characteristics of TBM. With reference to the installation and characteristics of disc cutters, those coefficients are modified according to penetration, which gives rise to the presentation of comprehensive axial wear coefficient, comprehensive radial wear coefficient and comprehensive trajectory wear coefficient. Calculation and determination of wear coefficients are made with consideration of data from a segment of TBM project(excavation length 173 m). The resulting wear coefficient values, after modification, are adopted to predict the disc cutter wear in the follow-up segment of the TBM project(excavation length of 5621 m). The prediction results show that the disc cutter wear predicted with comprehensive radial wear coefficient and comprehensive trajectory wear coefficient are not only accurate(accuracy 16.12%) but also highly congruous, whereas there is a larger deviation in the prediction with comprehensive axial wear coefficient(accuracy 41%, which is in agreement with the prediction of disc cutters' life in the field). This paper puts forth a new method concerning prediction of life span and wear of TBM disc cutters as well as timing for replacing disc cutters.

  13. Microcantilevers with embedded accelerometers for dynamic atomic force microscopy

    SciTech Connect

    Shaik, Nurul Huda; Raman, Arvind; Reifenberger, Ronald G.

    2014-02-24

    The measurement of the intermittent interaction between an oscillating nanotip and the sample surface is a key challenge in dynamic Atomic Force Microscopy (AFM). Accelerometers integrated onto AFM cantilevers can directly measure this interaction with minimal cantilever modification but have been difficult to realize. Here, we design and fabricate high frequency bandwidth accelerometers on AFM cantilevers to directly measure the tip acceleration in commercial AFM systems. We demonstrate a simple way of calibrating such accelerometers and present experiments using amplitude modulated AFM on freshly cleaved mica samples in water to study the response of the accelerometer.

  14. Design and Implementation of a Micromechanical Silicon Resonant Accelerometer

    PubMed Central

    Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing

    2013-01-01

    The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C. PMID:24256978

  15. Suitability of MEMS Accelerometers for Condition Monitoring: An experimental study

    PubMed Central

    Albarbar, Alhussein; Mekid, Samir; Starr, Andrew; Pietruszkiewicz, Robert

    2008-01-01

    With increasing demands for wireless sensing nodes for assets control and condition monitoring; needs for alternatives to expensive conventional accelerometers in vibration measurements have been arisen. Micro-Electro Mechanical Systems (MEMS) accelerometer is one of the available options. The performances of three of the MEMS accelerometers from different manufacturers are investigated in this paper and compared to a well calibrated commercial accelerometer used as a reference for MEMS sensors performance evaluation. Tests were performed on a real CNC machine in a typical industrial environmental workshop and the achieved results are presented.

  16. A novel class of MEMS accelerometers for very high-G munitions environment

    NASA Astrophysics Data System (ADS)

    Rastegar, Jahangir; Feng, Dake

    2016-05-01

    The state of art in shock resistant MEMS accelerometer design is to reduce the size of the proof-mass, thereby reducing the generated forces and moments due to shock loading. Physical stops are also provided to limit proof-mass motion to prevent damage to various moving components. The reduction of the proof-mass size reduces the sensor sensitivity. In addition, to increase the sensor dynamic response, proof-mass motion needs to be minimally damped, resulting in a significant sensor settling time after experiencing a high shock loading such as those experienced by gun-fired munitions during firing. The settling time is particularly important for accelerometers that are used in gun-fired munitions and mortars for navigation and guidance. This paper describes the development of a novel class of accelerometers that are provided with the means of locking the sensor proof-mass in its "null" position when subjected to acceleration levels above a prescribed threshold, thereby protecting the moving parts of the accelerometer. In munitions applications, the proof-mass is thereby locked in its null position during the firing and is released during the flight to measure flight acceleration with minimal settling time. Details of the design and operation of the developed sensors and results of their prototyping and testing are presented. The application of the developed technology to other types of inertial sensors and devices is discussed.

  17. A novel class of MEMS accelerometers for guidance and control of gun-fired munitions

    NASA Astrophysics Data System (ADS)

    Rastegar, Jahangir; Feng, Dake; Pereira, Carlos M.

    2015-05-01

    The state of art in shock resistant MEMS accelerometer design is to reduce the size of the proof-mass, thereby reducing the generated forces and moments due to shock loading. Physical stops are also provided to limit proof-mass motion to prevent damage to various moving components. The reduction of the proof-mass size reduces the sensor sensitivity. In addition, to increase the sensor dynamic response, proof-mass motion needs to be minimally damped, resulting in a significant sensor settling time after experiencing a high shock loading such as those experienced by gun-fired munitions during firing. The settling time is particularly important for accelerometers that are used in gun-fired munitions and mortars for navigation and guidance. This paper describes the development of a novel class of accelerometers that are provided with the means of locking the sensor proof-mass in its "null" position when subjected to acceleration levels above prescribed thresholds, thereby protecting the moving parts of the accelerometer. In munitions applications, the proof-mass is thereby locked in its null position during the firing and released during the flight to begin to measure flight acceleration with minimal settling time. Details of the design and operation of the developed sensors and results of their prototyping and testing are presented. The application of the developed technology to other types of inertial sensors and devices is discussed.

  18. A novel class of MEMS accelerometers for very high-G munitions environment

    NASA Astrophysics Data System (ADS)

    Rastegar, Jahangir; Feng, Dake

    2016-04-01

    The state of art in shock resistant MEMS accelerometer design is to reduce the size of the proof-mass, thereby reducing the generated forces and moments due to shock loading. Physical stops are also provided to limit proof-mass motion to prevent damage to various moving components. The reduction of the proof-mass size reduces the sensor sensitivity. In addition, to increase the sensor dynamic response, proof-mass motion needs to be minimally damped, resulting in a significant sensor settling time after experiencing a high shock loading such as those experienced by gun-fired munitions during firing. The settling time is particularly important for accelerometers that are used in gun-fired munitions and mortars for navigation and guidance. This paper describes the development of a novel class of accelerometers that are provided with the means of locking the sensor proof-mass in its "null" position when subjected to acceleration levels above a prescribed threshold, thereby protecting the moving parts of the accelerometer. In munitions applications, the proof-mass is thereby locked in its null position during the firing and is released during the flight to measure flight acceleration with minimal settling time. Details of the design and operation of the developed sensors and results of their prototyping and testing are presented. The application of the developed technology to other types of inertial sensors and devices is discussed.

  19. Cyclostationarity approach for monitoring chatter and tool wear in high speed milling

    NASA Astrophysics Data System (ADS)

    Lamraoui, M.; Thomas, M.; El Badaoui, M.

    2014-02-01

    Detection of chatter and tool wear is crucial in the machining process and their monitoring is a key issue, for: (1) insuring better surface quality, (2) increasing productivity and (3) protecting both machines and safe workpiece. This paper presents an investigation of chatter and tool wear using the cyclostationary method to process the vibrations signals acquired from high speed milling. Experimental cutting tests were achieved on slot milling operation of aluminum alloy. The experimental set-up is designed for acquisition of accelerometer signals and encoding information picked up from an encoder. The encoder signal is used for re-sampling accelerometers signals in angular domain using a specific algorithm that was developed in LASPI laboratory. The use of cyclostationary on accelerometer signals has been applied for monitoring chatter and tool wear in high speed milling. The cyclostationarity appears on average properties (first order) of signals, on the energetic properties (second order) and it generates spectral lines at cyclic frequencies in spectral correlation. Angular power and kurtosis are used to analyze chatter phenomena. The formation of chatter is characterized by unstable, chaotic motion of the tool and strong anomalous fluctuations of cutting forces. Results show that stable machining generates only very few cyclostationary components of second order while chatter is strongly correlated to cyclostationary components of second order. By machining in the unstable region, chatter results in flat angular kurtosis and flat angular power, such as a pseudo (white) random signal with flat spectrum. Results reveal that spectral correlation and Wigner Ville spectrum or integrated Wigner Ville issued from second-order cyclostationary are an efficient parameter for the early diagnosis of faults in high speed machining, such as chatter, tool wear and bearings, compared to traditional stationary methods. Wigner Ville representation of the residual signal shows

  20. The new integral electronic microphones and accelerometers

    NASA Astrophysics Data System (ADS)

    Judd, John E.

    Techniques to deal with problems in the piezoelectric sensor are discussed, and the advantages and disadvantages of the latest integrated accelerometers are considered. The Driven Shield approach to voltage amplification allowed the use of 50-ft input cable without excessive loss of sensitivity, though the widely used charge approach to signal conditioning has output sensitivity which is independent of cable length or capacity. Integrated low impedance sensors have improved noise immunity, do not require low noise cables, and are insensitive to moisture and contamination, though their use imposes temperature limitations.

  1. Measurement of friction and wear

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    Report reviews various techniques and surface tools available for study of wear of materials. Atomic nature of solid surfaces plays important role in wear behavior for materials in solid-state contact.

  2. Wear formulation for aircraft brake material sliding against steel

    NASA Technical Reports Server (NTRS)

    Ho, T. L.; Peterson, M. B.

    1977-01-01

    Predictions of wear on contemporary copper-based brake material sliding against 17-22 AS grade steel, wear testing equipment, formulation of wear, and test results are discussed. An initial investigation of worn surfaces of the brake material and a mating steel rotor was carried out. A wear model proposed suggests initiation of cracks at a hard particle inclusion site in the surface layer of the brake material; crack propagation allows particles to be removed by intersection of cracks. Mutual relations between sliding variables, load, time, hardness, and surface temperature are studied. Empirical formulas are exhibited.

  3. Employees Wearing Religious Attire

    ERIC Educational Resources Information Center

    Zirkel, Perry

    2004-01-01

    While adherents to many religions can be identified by distinctive clothing or accessories, the wearing of such garb by teachers is not necessarily related to evangelism in the classroom. The following case and the accompanying question-and-answer discussion illustrate the problem of the principal caught between the rock of First Amendment…

  4. Estimating Physical Activity in Youth Using a Wrist Accelerometer

    PubMed Central

    Crouter, Scott E.; Flynn, Jennifer I.; Bassett, David R.

    2014-01-01

    PURPOSE The purpose of this study was to develop and validate methods for analyzing wrist accelerometer data in youth. METHODS 181 youth (mean±SD; age, 12.0±1.5 yrs) completed 30-min of supine rest and 8-min each of 2 to 7 structured activities (selected from a list of 25). Receiver Operator Characteristic (ROC) curves and regression analyses were used to develop prediction equations for energy expenditure (child-METs; measured activity VO2 divided by measured resting VO2) and cut-points for computing time spent in sedentary behaviors (SB), light (LPA), moderate (MPA), and vigorous (VPA) physical activity. Both vertical axis (VA) and vector magnitude (VM) counts per 5 seconds were used for this purpose. The validation study included 42 youth (age, 12.6±0.8 yrs) who completed approximately 2-hrs of unstructured PA. During all measurements, activity data were collected using an ActiGraph GT3X or GT3X+, positioned on the dominant wrist. Oxygen consumption was measured using a Cosmed K4b2. Repeated measures ANOVAs were used to compare measured vs predicted child-METs (regression only), and time spent in SB, LPA, MPA, and VPA. RESULTS All ROC cut-points were similar for area under the curve (≥0.825), sensitivity (≥0.756), and specificity (≥0.634) and they significantly underestimated LPA and overestimated VPA (P<0.05). The VA and VM regression models were within ±0.21 child-METs of mean measured child-METs and ±2.5 minutes of measured time spent in SB, LPA, MPA, and VPA, respectively (P>0.05). CONCLUSION Compared to measured values, the VA and VM regression models developed on wrist accelerometer data had insignificant mean bias for child-METs and time spent in SB, LPA, MPA, and VPA; however they had large individual errors. PMID:25207928

  5. Experiment on interface separation detection of concrete-filled steel tubular arch bridge using accelerometer array

    NASA Astrophysics Data System (ADS)

    Pan, Shengshan; Zhao, Xuefeng; Zhao, Hailiang; Mao, Jian

    2015-04-01

    Based on the vibration testing principle, and taking the local vibration of steel tube at the interface separation area as the study object, a real-time monitoring and the damage detection method of the interface separation of concrete-filled steel tube by accelerometer array through quantitative transient self-excitation is proposed. The accelerometers are arranged on the steel tube area with or without void respectively, and the signals of accelerometers are collected at the same time and compared under different transient excitation points. The results show that compared with the signal of compact area, the peak value of accelerometer signal at void area increases and attenuation speed slows down obviously, and the spectrum peaks of the void area are much more and disordered and the amplitude increases obviously. whether the input point of transient excitation is on void area or not is irrelevant with qualitative identification results. So the qualitative identification of the interface separation of concrete-filled steel tube based on the signal of acceleration transducer is feasible and valid.

  6. Wear of Spur Gears Having a Dithering Motion and Lubricated with a Perfluorinated Polyether Grease

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy; Oswald, Fred; Handschuh, Robert

    2007-01-01

    Gear contact surface wear is one of the important failure modes for gear systems. Dedicated experiments are required to enable precise evaluations of gear wear for a particular application. The application of interest for this study required evaluation of wear of gears lubricated with a grade 2 perfluorinated polyether grease and having a dithering (rotation reversal) motion. Experiments were conducted using spur gears made from AISI 9310 steel. Wear was measured using a profilometer at test intervals encompassing 10,000 to 80,000 cycles of dithering motion. The test load level was 1.1 GPa maximum Hertz contact stress at the pitch-line. The trend of total wear as a function of test cycles was linear, and the wear depth rate was approximately 1.2 nm maximum wear depth per gear dithering cycle. The observed wear rate was about 600 times greater than the wear rate for the same gears operated at high speed and lubricated with oil.

  7. Classification of Sporting Activities Using Smartphone Accelerometers

    PubMed Central

    Mitchell, Edmond; Monaghan, David; O'Connor, Noel E.

    2013-01-01

    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today's society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach. PMID:23604031

  8. Six Degree Freedom Optical Fiber Accelerometer

    NASA Astrophysics Data System (ADS)

    Cazo, Rogerio Moreira; dos Reis Ribeiro, Erik; Nunes, Marcelo Buonocore; Barbosa, Carmem Lucia; de Siqueira Ferreira, Jorge Luis; de Barros Caldas, Tales; dos Santos, Josemir Coelho; de Arruda, Josiel Urbaninho

    2008-10-01

    Linear accelerations measurements are needed in many applications, as industry, military, aircrafts, space navigation, robotics and others. Actually, the most usual solutions to measure linear accelerations are three piezoelectric sensors used in orthogonal mounting, or MEM's sensors chips. Angular accelerations also are interesting to control and stabilize structures, like satellites and servo motors. It is possible to measure angular accelerations in two ways: direct measurement (using special sensors), or indirect measurements (obtaining acceleration of the angular velocity information) [1]. This work intends to present the structural and optical requirements of a six degree freedom opto-mechanical accelerometer based on fiber Bragg grating (FBG). With this sensor, it will be possible the direct measurement of three axial accelerations, and of three angular accelerations, with unlimited rotation angle, using one single proof mass. The FBG's are used as strain sensors and sustaining elements of the proof mass in the structure. Simulations have demonstrated that cross influences of 10 parts per million at worst case are possible. This kind of accelerometer may be used in navigation control, structural monitoring, satellite stabilization, guidance control and harsh environments, for example. The project requirements include the wavelength of FBG's, pre-strain and length of active segment of optical fibers, dimensions, material and structure of inertial proof mass and position of the fibers in the sustaining structure

  9. Calibrating Accelerometers Using an Electromagnetic Launcher

    SciTech Connect

    Erik Timpson

    2012-05-13

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering a desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  10. Analysis of walking improvement with dynamic shoe insoles, using two accelerometers

    NASA Astrophysics Data System (ADS)

    Tsuruoka, Yuriko; Tamura, Yoshiyasu; Shibasaki, Ryosuke; Tsuruoka, Masako

    2005-07-01

    The orthopedics at the rehabilitation hospital found that disorders caused by sports injuries to the feet or caused by lower-back are improved by wearing dynamic shoe insoles, these improve walking balance and stability. However, the relationship of the lower-back and knees and the rate of increase in stability were not quantitatively analyzed. In this study, using two accelerometers, we quantitatively analyzed the reciprocal spatiotemporal contributions between the lower-back and knee of patients with left lower-back pain by means of Relative Power Contribution Analysis. When the insoles were worn, the contribution of the left and right knee relative to the left lower-back pain was up to 26% ( p<0.05) greater than without the insoles. Comparing patients with and without insoles, we found that the variance in the step response analysis of the left and right knee decreased by up to 67% ( p<0.05). This shows an increase in stability.

  11. Accelerometer Use in a Physical Activity Intervention Trial

    PubMed Central

    Borradaile, Kelley E.; Lewis, Beth A.; Whiteley, Jessica A.; Longval, Jaime L.; Parisi, Alfred F.; Albrecht, Anna E.; Sciamanna, Christopher N.; Jakicic, John M.; Papandonatos, George D.; Marcus, Bess H.

    2010-01-01

    This paper describes the application of best practice recommendations for using accelerometers in a physical activity (PA) intervention trial, and the concordance of different methods for measuring PA. A subsample (n=63; 26%) of the 239 healthy, sedentary adults participating in a PA trial (mean age=47.5; 82% women) wore the ActiGraph monitor at all 3 assessment time points. ActiGraph data were compared with self-report (i.e., PA weekly recall and monthly log) and fitness variables. Correlations between the PA recall and ActiGraph for moderate intensity activity ranged from 0.16–0.48 and from 0.28–0.42 for vigorous intensity activity. ActiGraph and fitness [estimated VO2(ml/kg/min)] had correlations of 0.15–0.45. The ActiGraph and weekly self-report were significantly correlated at all time points (correlations ranged from 0.23–0.44). In terms of detecting intervention effects, intervention groups recorded more minutes of at least moderate-intensity PA on the ActiGraph than the control group at 6 months (min=46.47, 95% CI=14.36–78.58), but not at 12 months. Limitations of the study include a small sample size and only 3 days of ActiGraph monitoring. To obtain optimal results with accelerometers in clinical trials, the authors recommend following best practice recommendations: detailed protocols for monitor use, calibration of monitors and validation of data quality, and use of validated equations for analysis. The ActiGraph has modest concordance with other assessment tools and is sensitive to change over time. However, until more information validating the use of accelerometry in clinical trials becomes available, properly administered self-report measures of PA should remain part of the assessment battery. PMID:20723619

  12. AN EFFICIENT METHOD FOR ACCURATELY DETERMINING WEAR VOLUMES OF SLIDERS WITH NON-FLAT WEAR SCARS AND COMPOUND CURVATURES

    SciTech Connect

    Qu, Jun; Truhan, Jr., John J

    2006-01-01

    Point contact is often used in unidirectional pin-on-disk and reciprocating pin-on-flat sliding friction and wear tests. The slider tip could have either a spherical shape or compound curvatures (such as an ellipsoidal shape), and the worn tip usually is not flat but has unknown curvatures. Current methods for determining the wear volumes of sliders suffer from one or more limitations. For example, the gravimetric method is not able to detect small amounts of wear, and the two-dimensional wear scar size measurement is valid only for flat wear scars. More rigorous methods can be very time consuming, such as the 3D surface profiling method that involves obtaining tedious multiple surface profiles and analyzing a large set of data. In this study, a new 'single-trace' analysis is introduced to efficiently evaluate the wear volumes of non-flat worn sliders. This method requires only the measurement of the wear scar size and one trace of profiling to obtain the curvature on the wear cap. The wear volume calculation only involves closed-form algebraic equations. This single-trace method has demonstrated much higher accuracy and fewer limitations than the gravimetric method and 2D method, and has shown good agreement with the 3D method while saving significant surface profiling and data analysis time.

  13. Hierarchical classifier approach to physical activity recognition via wearable smartphone tri-axial accelerometer.

    PubMed

    Yusuf, Feridun; Maeder, Anthony; Basilakis, Jim

    2013-01-01

    Physical activity recognition has emerged as an active area of research which has drawn increasing interest from researchers in a variety of fields. It can support many different applications such as safety surveillance, fraud detection, and clinical management. Accelerometers have emerged as the most useful and extensive tool to capture and assess human physical activities in a continuous, unobtrusive and reliable manner. The need for objective physical activity data arises strongly in health related research. With the shift to a sedentary lifestyle, where work and leisure tend to be less physically demanding, research on the health effects of low physical activity has become a necessity. The increased availability of small, inexpensive components has led to the development of mobile devices such as smartphones, providing platforms for new opportunities in healthcare applications. In this study 3 subjects performed directed activity routines wearing a smartphone with a built in tri-axial accelerometer, attached on a belt around the waist. The data was collected to classify 11 basic physical activities such as sitting, lying, standing, walking, and the transitions in between them. A hierarchical classifier approach was utilised with Artificial Neural Networks integrated in a rule-based system, to classify the activities. Based on our evaluation, recognition accuracy of over 89.6% between subjects and over 91.5% within subject was achieved. These results show that activities such as these can be recognised with a high accuracy rate; hence the approach is promising for use in future work. PMID:23823307

  14. Technical Reliability Assessment of the Actigraph GT1M Accelerometer

    ERIC Educational Resources Information Center

    Silva, Pedro; Mota, Jorge; Esliger, Dale; Welk, Gregory

    2010-01-01

    The purpose of this study was to determine the reliability of the Actigraph GT1M (Pensacola, FL, USA) accelerometer activity count and step functions. Fifty GT1M accelerometers were initialized to collect simultaneous acceleration counts and steps data using 15-sec epochs. All reliability testing was completed using a mechanical shaker plate to…

  15. Effect of atmosphere and temperature on wear, friction, and transfer of polyimide films

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1976-01-01

    Friction and wear experiments conducted on polyimide films bonded to 440 C stainless steel disks indicated that a wear transition (from high wear to low wear) accompanied the friction transition (from high friction to low friction). The transition was found to be atmospheric dependent as well as temperature dependent. Wear rate calculations indicated that, at temperatures above the transition, wear could be up to 600 times less than at temperatures below the transition. Transfer to metallic riders was also investigated and found to be considerably different at temperatures above and below the transition.

  16. Effect of atmosphere and temperature on wear, friction, and transfer of polyimide films

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1976-01-01

    Friction and wear experiments conducted on polyimide films bonded to 440C stainless steel disks indicated that a wear transition (from high wear to low wear) accompanied the friction transition (from high friction to low friction). The transition was found to be atmosphere dependent as well as temperature dependent. Wear rate calculations indicated that at temperatures above the transition, wear could be up to 600 times less than at temperatures below the transition. Transfer to metallic riders was also investigated and found to be considerably different at temperatures above and below the transition.

  17. Theory of powdery rubber wear.

    PubMed

    Persson, B N J

    2009-12-01

    Rubber wear typically involves the removal of small rubber particles from the rubber surface. On surfaces with not too sharp roughness, e.g. most road surfaces, this involves (slow) crack propagation. In this paper I shall present a theory of mild rubber wear. I shall derive the distribution of wear particle sizes Φ(D), which is in excellent agreement with experiment. I shall also show that the calculated wear rate is consistent with experimental data for tire tread block wear. PMID:21832508

  18. Flight calibration assessment of HiRAP accelerometer data

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Larman, Kevin T.; Moast, Christina D.

    1993-01-01

    A flight derived method of calibrating the High Resolution Accelerometer Package (HiRAP) flight data has been developed and is discussed for Shuttle Orbiter missions STS-35 and STS-40. These two mission data sets have been analyzed using ground calibration factors and flight derived calibration factors. This flight technique evolved early in the flight program when it was recognized that ground calibration factors are insufficient to determine absolute low-acceleration levels. The application of flight calibration factors to the data sets from these missions produced calibrated acceleration levels within an accuracy of less than +/- 1.5 microgravity of zero during a time in the flight when the acceleration level was known to be less than 1.0 microgravity. This analysis further confirms the theory that flight calibrations are required in order to obtain the absolute measurement of low-frequency, low-acceleration flight signals.

  19. An integrated GPS-accelerometer data processing technique for structural deformation monitoring

    NASA Astrophysics Data System (ADS)

    Chan, W. S.; Xu, Y. L.; Ding, X. L.; Dai, W. J.

    2006-12-01

    Global Positioning System (GPS) is being actively applied to measure static and dynamic displacement responses of large civil engineering structures under winds. However, multipath effects and low sampling frequencies affect the accuracy of GPS for displacement measurement. On the other hand, accelerometers cannot reliably measure static and low-frequency structural responses, but can accurately measure high-frequency structural responses. Therefore, this paper explores the possibility of integrating GPS-measured signals with accelerometer-measured signals to enhance the measurement accuracy of total (static plus dynamic) displacement response of a structure. Integrated data processing techniques using both empirical mode decomposition (EMD) and an adaptive filter are presented. A series of motion simulation table tests are then performed at a site using three GPS receivers, one accelerometer, and one motion simulation table that can simulate various types of motion defined by input wave time histories around a pre-defined static position. The proposed data processing techniques are applied to the recorded GPS and accelerometer data to find both static and dynamic displacements. These results are compared with the actual displacement motions generated by the motion simulation table. The comparative results demonstrate that the proposed technique can significantly enhance the measurement accuracy of the total displacement of a structure.

  20. Computing body segment trajectories in the Hybrid III dummy using linear accelerometer data.

    PubMed

    Shea, R T; Viano, D C

    1994-02-01

    An analytical method was developed and tested using several mini-sled and Hyge sled tests to calculate the planar trajectory of a Hybrid III dummy head. Aimed at expediting the Hybrid III test analyses, it may provide an opportunity for cost savings through reduced hardware and manpower on film analyses. Transformation from the moving coordinate to the laboratory coordinate is based on the angular positions integrated from the derived angular accelerations. Gravitational correction of the linear accelerometers was found to be insignificant. The computed head trajectories were compared to the ones obtained from the high speed film images. Accuracy of the calculated head trajectory relies heavily on the accuracy of the computed angular acceleration. Strain-gaged accelerometers are not dependable at all times during an impact and an ill-behaved signal for a very short period may create a significant drift in computed displacement due to double integrations. Accuracy of the currently available accelerometers is not high enough for an angular displacement calculation. A new generation of accelerometers with higher accuracy, or an angular velocity sensor may provide more accurate angular displacement for trajectory analyses. The redundancy of the in-line accelerations helps improve the isolation of erroneous outputs and improve accuracy of the procedure. PMID:8189712

  1. Application of a tri-axial accelerometer to estimate jump frequency in volleyball.

    PubMed

    Jarning, Jon M; Mok, Kam-Ming; Hansen, Bjørge H; Bahr, Roald

    2015-03-01

    Patellar tendinopathy is prevalent among athletes, and most likely associated with a high jumping load. If methods for estimating jump frequency were available, this could potentially assist in understanding and preventing this condition. The objective of this study was to explore the possibility of using peak vertical acceleration (PVA) or peak resultant acceleration (PRA) measured by an accelerometer to estimate jump frequency. Twelve male elite volleyball players (22.5 ± 1.6 yrs) performed a training protocol consisting of seven typical motion patterns, including jumping and non-jumping movements. Accelerometer data from the trial were obtained using a tri-axial accelerometer. In addition, we collected video data from the trial. Jump-float serving and spike jumping could not be distinguished from non-jumping movements using differences in PVA or PRA. Furthermore, there were substantial inter-participant differences in both the PVA and the PRA within and across movement types (p < 0.05). These findings suggest that neither PVA nor PRA measured by a tri-axial accelerometer is an applicable method for estimating jump frequency in volleyball. A method for acquiring real-time estimates of jump frequency remains to be verified. However, there are several alternative approaches, and further investigations are needed. PMID:25902964

  2. Measurement of six degree-of-freedom ground motion by using eight accelerometers

    NASA Astrophysics Data System (ADS)

    Yang, Zhenyu; Shen, Yi; Liu, Zhiyan

    2005-12-01

    A new integrated measuring system with eight force-balance accelerometers is proposed to obtain a direct measurement of six degree-of freedom (DOF) ground motions, including three rotational and three actual translational acceleration components without gyroscopes. In the proposed measuring system, the relationship between the output from eight force-balance accelerometer and the six DOF motion of the measuring system under an earthquake are described by differential equations. These equations are derived from the positions and directions of the eight force-balance accelerometers in the measuring system. The third-order Runge-Kutta algorithm is used to guarantee the accuracy of the numerical calculation. All the algorithms used to compute the six DOF components of the ground motion are implemented in a real-time in Digital Signal Processor (DSP). The distortion of the measured results caused by position and direction errors of the accelerometers in the measuring system are reduced by multiplying a compensation coefficient C to the output and subtracting static zero drift from the measured results, respectively.

  3. Structural transformations, strengthening, and wear resistance of titanium nickelide upon abrasive and adhesive wear

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Pushin, V. G.; Chernenko, N. L.; Makarov, V. V.

    2010-07-01

    Wear resistance and structural transformations upon abrasive and adhesive wear of titanium nickelide Ti49.4Ni50.6 in microcrystalline (MC) and submicrocrystalline (SMC) states have been investigated. It has been shown that the abrasive wear resistance of this alloy exceeds that of the steel 12Kh18N9 by a factor of about 2, that of the steel 110G13 (Hadfield steel), by a factor of 1.3, and is close to that of the steel 95Kh18. Upon adhesive wear in a testing-temperature range from -50 to +300°C, the Ti49.4Ni50.6 alloy, as compared to the steel 12Kh18N9, is characterized by the wear rate that is tens of times smaller and by a reduced (1.5-2.0 times) friction coefficient. The enhanced wear resistance of the Ti49.4Ni50.6 alloy is due to the development of intense strain hardening in it and to a high fracture toughness, which is a consequence of effective relaxation of high contact stresses arising in the surface layer of the alloy. The SMC state produced in the alloy with the help of equal-channel angular pressing (ECAP) has no effect on the abrasive wear resistance of the alloy. The favorable effect of ECAP on the wear resistance of the Ti49.4Ni50.6 alloy takes place under conditions of its adhesive wear at temperatures from -25 to +70°C. The electron-microscopic investigation showed that under conditions of wear at negative and room temperatures in the surface layer (1-5 μm thick) of titanium nickelide there arises a mixed structure consisting of an amorphous phase and nanocrystals of supposedly austenite and martensite. Upon friction at 200-300°C, a nanocrystalline structure of the B2 phase arises near the alloy surface, which, as is the case with the amorphous-nanocrystalline structure, is characterized by significant effective strength and wear resistance.

  4. High sensitivity optical waveguide accelerometer based on Fano resonance.

    PubMed

    Wan, Fenghua; Qian, Guang; Li, Ruozhou; Tang, Jie; Zhang, Tong

    2016-08-20

    An optical waveguide accelerometer based on tunable asymmetrical Fano resonance in a ring-resonator-coupled Mach-Zehnder interferometer (MZI) is proposed and analyzed. A Fano resonance accelerometer has a relatively large workspace of coupling coefficients with high sensitivity, which has potential application in inertial navigation, missile guidance, and attitude control of satellites. Due to the interference between a high-Q resonance pathway and a coherent background pathway, a steep asymmetric line shape is generated, which greatly improves the sensitivity of this accelerometer. The sensitivity of the accelerometer is about 111.75 mW/g. A 393-fold increase in sensitivity is achieved compared with a conventional MZI accelerometer and is approximately equal to the single ring structure. PMID:27556984

  5. Wear Testing of Moderate Activities of Daily Living Using In Vivo Measured Knee Joint Loading

    PubMed Central

    Reinders, Jörn; Sonntag, Robert; Vot, Leo; Gibney, Christian; Nowack, Moritz; Kretzer, Jan Philippe

    2015-01-01

    Resumption of daily living activities is a basic expectation for patients provided with total knee replacements. However, there is a lack of knowledge regarding the impact of different activities on the wear performance. In this study the wear performance under application of different daily activities has been analyzed. In vivo load data for walking, walking downstairs/upstairs, sitting down/standing up, and cycling (50 W & 120 W) has been standardized for wear testing. Wear testing of each activity was carried out on a knee wear simulator. Additionally, ISO walking was tested for reasons of comparison. Wear was assessed gravimetrically and wear particles were analyzed. In vivo walking produced the highest overall wear rates, which were determined to be three times higher than ISO walking. Moderate wear rates were determined for walking upstairs and downstairs. Low wear rates were determined for standing up/sitting down and cycling at power levels of 50 W and 120 W. The largest wear particles were observed for cycling. Walking based on in vivo data has been shown to be the most wear-relevant activity. Highly demanding activities (stair climbing) produced considerably less wear. Taking into account the expected number of loads, low-impact activities like cycling may have a greater impact on articular wear than highly demanding activities. PMID:25811996

  6. In Situ Wear Test on Thermal Spray Coatings in a Large Chamber Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Luo, Weifeng; Tillmann, Wolfgang; Selvadurai, Ursula

    2015-01-01

    Currently, the determination of the mass loss is usually used for a quantitative evaluation of wear tests, while the analysis of wear tracks is utilized for a qualitative evaluation of wear. Both evaluation methods can only be used after the wear testing process and their results only present the final outcome of the wear test. However, the changes during the wear test and the time-dependent wear mechanisms are of great interest as well. A running wear test in a large chamber scanning electron microscope (SEM) offers the first opportunity to observe the wear process in situ. Different wear mechanisms, such as the adhesive, abrasive wear, surface fatigue and tribochemical reaction, can be recorded with high magnification. Within this research, a special pin-on-disk testing device is designed for a vacuum environment. Using this device, arc-sprayed NiCrBSi coatings and high-velocity-oxygen-fuel-sprayed WC-12Co coatings were tested in a large chamber SEM with Al2O3 ceramic balls as wear counterparts. During the wear testing, different wear mechanisms were determined and the processes were recorded in short video streams.

  7. Incisor wear and age in Yellowstone bison

    USGS Publications Warehouse

    Christianson, D.A.; Gogan, P.J.P.; Podruzny, K.M.; Olexa, E.M.

    2005-01-01

    Biologists commonly use tooth eruption and wear patterns or cementum annuli techniques to estimate age of ungulates. However, in some situations the accuracy or sampling procedures of either approach are undesirable. We investigated the progression of several quantitative measures of wear with age, using permanent first incisors from Yellowstone bison (Bison bison), and tested for differences between sexes and herds. We further investigated the relationship of wear and age to explore an age-estimation method. Labial-lingual width (LLW) correlated best with assigned age (r2=0.66, males; r2=0.76 females). Labial-lingual width differed between sexes, with females showing ∼0.2 mm more wear than males. Additionally, differences in rate of wear existed between bison of the northern and central Yellowstone herds (1.2 and 0.9 mm/year, respectively). We developed a regression formula to test the power of LLW as an estimator of Yellowstone bison age. Our method provided estimated ages within 1 year of the assigned age 73% and 82% of the time for female and male bison, respectively.

  8. Some wear studies on aircraft brake systems

    NASA Technical Reports Server (NTRS)

    Ho, T. L.

    1975-01-01

    An initial investigation of worn surfaces in friction pads and steel rotors used in current aircraft brakes was carried out using electron microprobe and X-ray diffraction analysis. It consists of the topographical study and the analysis of chemical element distribution. Based upon this initial examination, two approaches, microscopic and macroscopic have been conducted to interpret and formulate the wear mechanism of the aircraft brake materials. Microscopically, the wear particles were examined. The initiation and growth of surface cracks and the oxidation were emphasized in this investigation. Macroscopically, it has been found that, for the current copper based brake material sliding against 17-22 AS steel in a caliper brake, the surface temperature raised due to frictional heat is nonlinearly proportional to the load applied and slide time with speed at 1750 rpm. The wear of brake materials is then proportional to this temperature and is also a function of the melting temperature for copper.

  9. Mars Reconnaissance Orbiter Accelerometer Experiment Results

    NASA Astrophysics Data System (ADS)

    Keating, G. M.; Bougher, S. W.; Theriot, M. E.; Zurek, R. W.; Blanchard, R. C.; Tolson, R. H.; Murphy, J. R.

    2007-05-01

    The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005, designed for aerobraking, achieved Mars Orbital Insertion (MOI), March 10, 2006. Atmospheric density decreases exponentially with increasing height. By small propulsive adjustments of the apoapsis orbital velocity, periapsis altitude is fine tuned to the density surface that safely used the atmosphere of Mars to aerobrake over 400 orbits. MRO periapsis precessed from the South Pole at 6pm LST to near the equator at 3am LST. Meanwhile, apoapsis was brought dramatically from 40,000km at MOI to 460 km at aerobraking completion (ABX) August 30, 2006. After ABX, a few small propulsive maneuvers established the Primary Science Orbit (PSO), which without aerobraking would have required an additional 400 kg of fuel. Each of the 400 plus aerobraking orbits provided a vertical structure and distribution of density, scale heights, and temperatures, along the orbital path, providing key in situ insight into various upper atmosphere (greater than 100 km) processes. One of the major questions for scientists studying Mars is: "Where did the water go?" Honeywell's substantially improved electronics package for its IMU (QA-2000 accelerometer, gyro, electronics) maximized accelerometer sensitivities at the requests of The George Washington University, JPL, and Lockheed Martin. The improved accelerometer sensitivities allowed density measurements to exceed 200km, at least 40 km higher than with Mars Odyssey (MO). This extended vertical structures from MRO into the neutral lower exosphere, a region where various processes may allow atmospheric gasses to escape. Over the eons, water may have been lost in both near the surface and in the upper atmosphere. Thus the water balance throughout the entire atmosphere from subsurface to exosphere may both be critical. Comparisons of data from Mars Global Surveyor (MGS), MO and MRO help characterize key temporal and spatial cycles including: winter polar warming, planetary scale

  10. Accelerometer based calf muscle pump activity monitoring.

    PubMed

    O'Donovan, Karol J; O'Keeffe, Derek T; Grace, Pierce A; Lyons, Gerard M

    2005-10-01

    Long distance travel is associated with increased risk of deep vein thrombosis (DVT). There is an increased risk of travel related DVT in passengers with a predisposition to thrombosis. Assisting blood circulation in the lower limb will reduce the risk of DVT. Leg exercises are recommended as a DVT preventative measure while flying but this fails to account for a passenger who is distracted by in flight entertainment or who falls asleep for an extended period. A method for monitoring calf muscle pump activity using accelerometers has been developed and evaluated. The proposed technique could be used to alert the traveller that there is a need to exercise their calf muscle, thus reducing the risk of DVT. PMID:16139770

  11. A high performance, variable capacitance accelerometer

    NASA Astrophysics Data System (ADS)

    Wilner, L. Bruce

    1988-12-01

    A variable capacitance acceleration sensor is described. Manufactured using silicon microfabrication techniques, the sensor uses a midplane, flat plate suspension, gas damping, and overrange stops. The sensor is assembled from three silicon wafers, using anodic bonds to inlays of borosilicate glass. Typical sensor properties are 7-pF active capacitance, 3-pF tare capacitance, a response of 0.05 pF/G, a resonance frequency of 3.4 kHz, and damping 0.7 critical. It is concluded that this sensor, with appropriate electronics, forms an accelerometer with an order-of-magnitude greater sensitivity-bandwidth product than a comparable piezoresistive acclerometer, and with extraordinary shock resistance.

  12. Ultralow wear of gallium nitride

    NASA Astrophysics Data System (ADS)

    Zeng, Guosong; Tan, Chee-Keong; Tansu, Nelson; Krick, Brandon A.

    2016-08-01

    Here, we reveal a remarkable (and surprising) physical property of GaN: it is extremely wear resistant. In fact, we measured the wear rate of GaN is approaching wear rates reported for diamond. Not only does GaN have an ultralow wear rate but also there are quite a few experimental factors that control the magnitude of its wear rate, further contributing to the rich and complex physics of wear of GaN. Here, we discovered several primary controlling factors that will affect the wear rate of III-Nitride materials: crystallographic orientation, sliding environment, and coating composition (GaN, InN and InGaN). Sliding in the ⟨ 1 2 ¯ 10 ⟩ is significantly lower wear than ⟨ 1 1 ¯ 00 ⟩ . Wear increases by 2 orders of magnitude with increasing humidity (from ˜0% to 50% RH). III-Nitride coatings are promising as multifunctional material systems for device design and sliding wear applications.

  13. Predictors of non-response in a UK-wide cohort study of children's accelerometer-determined physical activity using postal methods

    PubMed Central

    Rich, Carly; Cortina-Borja, Mario; Dezateux, Carol; Geraci, Marco; Sera, Francesco; Calderwood, Lisa; Joshi, Heather; Griffiths, Lucy J

    2013-01-01

    Objectives To investigate the biological, social, behavioural and environmental factors associated with non-consent, and non-return of reliable accelerometer data (≥2 days lasting ≥10 h/day), in a UK-wide postal study of children's activity. Design Nationally representative prospective cohort study. Setting Children born across the UK, between 2000 and 2002. Participants 13 681 7 to 8-year-old singleton children who were invited to wear an accelerometer on their right hip for 7 consecutive days. Consenting families were posted an Actigraph GT1M accelerometer and asked to return it by post. Primary outcome measures Study consent and reliable accelerometer data acquisition. Results Consent was obtained for 12 872 (94.5%) interviewed singletons, of whom 6497 (50.5%) returned reliable accelerometer data. Consent was less likely for children with a limiting illness or disability, children who did not have people smoking near them, children who had access to a garden, and those who lived in Northern Ireland. From those who consented, reliable accelerometer data were less likely to be acquired from children who: were boys; overweight/obese; of white, mixed or ‘other’ ethnicity; had an illness or disability limiting daily activity; whose mothers did not have a degree; who lived in rented accommodation; who exercised once a week or less; who had been breastfed; were from disadvantaged wards; had younger mothers or lone mothers; or were from households with just one, or more than three children. Conclusions Studies need to encourage consent and reliable data return in the wide range of groups we have identified to improve response and reduce non-response bias. Additional efforts targeted at such children should increase study consent and data acquisition while also reducing non-response bias. Adjustment must be made for missing data that account for missing data as a non-random event. PMID:23457328

  14. Vibration sensing in smart machine rotors using internal MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Jiménez, Samuel; Cole, Matthew O. T.; Keogh, Patrick S.

    2016-09-01

    This paper presents a novel topology for enhanced vibration sensing in which wireless MEMS accelerometers embedded within a hollow rotor measure vibration in a synchronously rotating frame of reference. Theoretical relations between rotor-embedded accelerometer signals and the vibration of the rotor in an inertial reference frame are derived. It is thereby shown that functionality as a virtual stator-mounted displacement transducer can be achieved through appropriate signal processing. Experimental tests on a prototype rotor confirm that both magnitude and phase information of synchronous vibration can be measured directly without additional stator-mounted key-phasor sensors. Displacement amplitudes calculated from accelerometer signals will become erroneous at low rotational speeds due to accelerometer zero-g offsets, hence a corrective procedure is introduced. Impact tests are also undertaken to examine the ability of the internal accelerometers to measure transient vibration. A further capability is demonstrated, whereby the accelerometer signals are used to measure rotational speed of the rotor by analysing the signal component due to gravity. The study highlights the extended functionality afforded by internal accelerometers and demonstrates the feasibility of internal sensor topologies, which can provide improved observability of rotor vibration at externally inaccessible rotor locations.

  15. Consideration of wear rates at high velocity

    NASA Astrophysics Data System (ADS)

    Hale, Chad S.

    The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models

  16. USML-1 microgravity glovebox experiment no. 1 Passive Accelerometer System

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Rogers, Melissa J. B.

    1995-01-01

    The passive accelerometer system (PAS) is a simple moving ball accelerometer capable of measuring the small magnitude steady relative acceleration that occurs in a low earth orbit spacecraft due to atmospheric drag and the earth's gravity gradient. The accelerometer can be used when the spacecraft continuously rotates during the orbit such that some line of reference in the craft always points along the vector connecting the earth's mass center with the spacecraft mass center. PAS was used successfully on the first United States Microgravity Laboratory (USML-1).

  17. Nonlinear aspects of shock response in isolated accelerometers

    SciTech Connect

    Paez, T.L.; Hunter, N.

    1992-04-01

    Numerous investigations have studied the potential for chaotic vibrations of nonlinear systems. It has been shown for many simple nonlinear systems, that when they are excited severely enough, or with the appropriate parametric combinations, that they will execute chaotic vibrations. The present investigation considers the potential for the occurrence of chaos in a practical nonlinear system -- the isolated accelerometer. A simple, first order model is proposed for the isolated accelerometer, and it is shown that chaos can occur in the isolated accelerometer. A preliminary investigation into the bearing that this chaos potential has on the measurement of shock response is summarized. 7 refs.

  18. Wear Characteristics of Sintered Cermets

    NASA Astrophysics Data System (ADS)

    Bidulský, Róbert; Bidulská, Jana; Arenas, Freddy; Grande, Marco Actis

    2012-02-01

    The present paper deals with the tribological behaviour of the boride and carbide hardmetals evaluated by performing comparative dry sliding pin-on-disc experiments using normal contact loads. Analyses of the wear performance results, microstructural evaluation and processing conditions effect indicate that microstructure inhomogenities play an important role in abrasive wear behaviour of cermets. In term of grain size and chemical composition, the addition of VC also play an important role in increasing the wear resistance.

  19. Mechanical modelling of tooth wear.

    PubMed

    Karme, Aleksis; Rannikko, Janina; Kallonen, Aki; Clauss, Marcus; Fortelius, Mikael

    2016-07-01

    Different diets wear teeth in different ways and generate distinguishable wear and microwear patterns that have long been the basis of palaeodiet reconstructions. Little experimental research has been performed to study them together. Here, we show that an artificial mechanical masticator, a chewing machine, occluding real horse teeth in continuous simulated chewing (of 100 000 chewing cycles) is capable of replicating microscopic wear features and gross wear on teeth that resemble wear in specimens collected from nature. Simulating pure attrition (chewing without food) and four plant material diets of different abrasives content (at n = 5 tooth pairs per group), we detected differences in microscopic wear features by stereomicroscopy of the chewing surface in the number and quality of pits and scratches that were not always as expected. Using computed tomography scanning in one tooth per diet, absolute wear was quantified as the mean height change after the simulated chewing. Absolute wear increased with diet abrasiveness, originating from phytoliths and grit. In combination, our findings highlight that differences in actual dental tissue loss can occur at similar microwear patterns, cautioning against a direct transformation of microwear results into predictions about diet or tooth wear rate. PMID:27411727

  20. Wear mechanism based on adhesion

    NASA Technical Reports Server (NTRS)

    Yamamoto, T.; Buckley, D. H.

    1982-01-01

    Various concepts concerning wear mechanisms and deformation behavior observed in the sliding wear track are surveyed. The mechanisms for wear fragment formation is discussed on the basis of adhesion. The wear process under unlubricated sliding conditions is explained in relation to the concept of adhesion at the interface during the sliding process. The mechanism for tearing away the surface layer from the contact area and forming the sliding track contour is explained by assuming the simplified process of material removal based on the adhesion theory.

  1. Quantification of in vivo implant wear in total knee replacement from dynamic single plane radiography

    NASA Astrophysics Data System (ADS)

    Teeter, Matthew G.; Seslija, Petar; Milner, Jaques S.; Nikolov, Hristo N.; Yuan, Xunhua; Naudie, Douglas D. R.; Holdsworth, David W.

    2013-05-01

    An in vivo method to measure wear in total knee replacements was developed using dynamic single-plane fluoroscopy. A dynamic, anthropomorphic total knee replacement phantom with interchangeable, custom-fabricated components of known wear volume was created, and dynamic imaging was performed. For each frame of the fluoroscopy data, the relative location of the femoral and tibial components were determined, and the apparent intersection of the femoral component with the tibial insert was used to calculate wear volume, wear depth, and frequency of intersection. No difference was found between the measured and true wear volumes. The precision of the measurements was ±39.7 mm3 for volume and ±0.126 mm for wear depth. The results suggest the system is capable of tracking wear volume changes across multiple time points in patients. As a dynamic technique, this method can provide both kinematic and wear measurements that may be useful for evaluating new implant designs for total knee replacements.

  2. Machining conditions and the wear of TiC-coated carbide tools

    SciTech Connect

    Lim, C.Y.H.; Lim, S.C.; Lee, K.S.

    1998-07-01

    This paper examines the wear behavior of TiC-coated cemented carbide tools in turning. Experimental data from dry turning tests, together with similar data from the open literature, are used to construct wear maps depicting the flank and crater wear characteristics of these tools over a wide range of machining conditions. The maps show that both flank and crater wear rates vary according to the cutting speeds and feed rates used. An overall wear-damage map for this class of coated tools is also presented for the first time. The presence of the safety zone and the least-wear regime, within which the overall wear damage to the tools is low, suggests the possibility of selecting the machining conditions to achieve a compromise between the rates of material removal and tool wear.

  3. Wear-Out Sensitivity Analysis Project Abstract

    NASA Technical Reports Server (NTRS)

    Harris, Adam

    2015-01-01

    During the course of the Summer 2015 internship session, I worked in the Reliability and Maintainability group of the ISS Safety and Mission Assurance department. My project was a statistical analysis of how sensitive ORU's (Orbital Replacement Units) are to a reliability parameter called the wear-out characteristic. The intended goal of this was to determine a worst case scenario of how many spares would be needed if multiple systems started exhibiting wear-out characteristics simultaneously. The goal was also to determine which parts would be most likely to do so. In order to do this, my duties were to take historical data of operational times and failure times of these ORU's and use them to build predictive models of failure using probability distribution functions, mainly the Weibull distribution. Then, I ran Monte Carlo Simulations to see how an entire population of these components would perform. From here, my final duty was to vary the wear-out characteristic from the intrinsic value, to extremely high wear-out values and determine how much the probability of sufficiency of the population would shift. This was done for around 30 different ORU populations on board the ISS.

  4. Elucidation of wear mechanisms by ferrographic analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1981-01-01

    The use of ferrographic analysis in conjunction with light and scanning electron microscopy is described for the elucidation of wear mechanisms taking place in operating equipment. Example of adhesive wear, abrasive wear, corrosive wear, rolling element fatigue, lubricant breakdown, and other wear modes are illustrated. In addition, the use of magnetic solutions to precipitate nonmagnetic debris from aqueous and nonaqueous fluids is described.

  5. Comprehensive Testing of ASL-Owned Accelerometers

    NASA Astrophysics Data System (ADS)

    Evans, J. R.; Hutt, C. R.; Ringler, A. T.; de la Torre, T.

    2011-12-01

    The Albuquerque Seismological Laboratory (ASL) of the U.S. Geological Survey (USGS) has undertaken detailed testing of several commercial, off-the-shelf accelerometers to characterize production-standard examples of each instrument. The models tested are the Geotech PA-23, Guralp CMG-5TC, Kinemetrics ES-T (Episensor), Nanometrics Titan (sensor only), and RefTek RT-147-01/3. All are ±4 g accelerometers excepting the CMG-5TC at ±2 g (self noise could be depressed relative to 4-g variant). For dynamic tests, all were recorded on Quanterra Q330 (24-bit) or Q330HR (26-bit) recorders; for static tests high-precision multimeters were used (generally Agilent 3458A 81/2-digit or 34401A 61/2-digit). We also used a translational shake table (Anorad LW10-18-P-E-A-A-B-0) to input controlled test motions. We performed the tests described by Hutt et al. (2010; U.S. Geol. Surv. Open File Rep., 2009-1295, http://pubs.usgs.gov/of/2009/1295/) for these strong-motion sensors (Section 7, Recommended Testing for Strong Motion Acceleration Sensors). These recommended tests result from a public/private effort called "GST2" (the second Guidelines for Seismometer Testing workshop) and represent a consensus of experts in government, academia, and industry (a secondary goal of this work is vetting the tests in this consensus document). The recommended accelerometer tests are: 7.1 Power Demand (Start-up and Steady-State) 7.2 Static Sensitivity, Offset, and Linearity 7.3 Frequency Response and Bandwidth 7.4 Clip Level 7.5 Self Noise and Operating Range 7.6 Distortion 7.7 Orientation (Case to Actual) and Orthogonally 7.8 Translational Cross-Axis Sensitivity 7.9 Temperature Effects (Sensitivity and Offset) 7.10 Power Supply Voltage and Voltage-Noise Effects (Offset and Sensitivity) 7.11 Double Integration (Band-Limited Displacement Square Wave) To the degree the tests and analyses have progressed at this writing, the results are generally good but have revealed a number of issues needing

  6. Development of an accelerometer-based underwater acoustic intensity sensor

    NASA Astrophysics Data System (ADS)

    Kim, Kang; Gabrielson, Thomas B.; Lauchle, Gerald C.

    2004-12-01

    An underwater acoustic intensity sensor is described. This sensor derives acoustic intensity from simultaneous, co-located measurement of the acoustic pressure and one component of the acoustic particle acceleration vector. The sensor consists of a pressure transducer in the form of a hollow piezoceramic cylinder and a pair of miniature accelerometers mounted inside the cylinder. Since this sensor derives acoustic intensity from measurement of acoustic pressure and acoustic particle acceleration, it is called a p-a intensity probe. The sensor is ballasted to be nearly neutrally buoyant. It is desirable for the accelerometers to measure only the rigid body motion of the assembled probe and for the effective centers of the pressure sensor and accelerometer to be coincident. This is achieved by symmetric disposition of a pair of accelerometers inside the ceramic cylinder. The response of the intensity probe is determined by comparison with a reference hydrophone in a predominantly reactive acoustic field. .

  7. Design and fabrication of wireless remotely readable MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Subramanian, Hareesh; Varadan, Vasundara V.

    1997-11-01

    The integration of MEMS, SAW devices and required microelectronics and conformal antenna to realize a programmable wireless accelerometer is presented in this paper. This unique combination of technologies results in a novel accelerometer that can be remotely sensed by a microwave system with the advantage of no power requirements at the sensor site. The microaccelerometer presented is simple in construction and easy to manufacture with existing silicon micromachining techniques. The relatively small size of the sensor makes it an ideal conformal sensor. The accelerometer finds application as air bag deployment sensors, vibration sensors for noise control, deflection and strain sensors, inertial and dimensional positioning systems, ABS/traction control, smart suspension, active roll stabilization and four wheel steering. The wireless accelerometer is very attractive to study the response of a 'dummy' in automobile crash test.

  8. The vertical accelerometer, a new instrument for air navigation

    NASA Technical Reports Server (NTRS)

    Laboccetta, Letterio

    1923-01-01

    This report endeavors to show the possibility of determining the rate of acceleration and the advantage of having such an accelerometer in addition to other aviation instruments. Most of the discussions concern balloons.

  9. Decrease in the visibility of the interference fringes in a cold-atom accelerometer

    SciTech Connect

    Stickney, James A.; Zozulya, Alex A.

    2004-06-01

    We analyze operation of a cold-atom accelerometer, an interferometric device which measures linear accelerations. We develop an analytic model that predicts a decrease in the visibility of the interference fringes and also their shift caused by the acceleration of the device. This effect places an upper limit on the maximum value of acceleration that can be measured for given parameters of the confining potential and the measurement cycle time.

  10. High sensitivity accelerometers for high performance seismic attenuators

    NASA Astrophysics Data System (ADS)

    Bertolini, A.; de Salvo, R.; Fidecaro, F.; Francesconi, M.; Sannibale, V.; Takamori, A.

    2000-06-01

    We present concepts and features of a new horizontal accelerometer whose mechanical design and machining process aim to improve the sensitivity in the frequency region between 10 mHz and 1 Hz. The expected sensitivity, less than 10-11 m/s2/Hz around 100 mHz, is a couple of orders of magnitude below the state of art limits. This accelerometer could be integrated in the active control of the LIGO II mirror seismic isolators. .

  11. LANCE Q-flex accelerometer qualification test program

    NASA Astrophysics Data System (ADS)

    Hunter, J. S.; Mitchell, J. N.; Hester, T.; Searcy, D.

    1982-03-01

    This report covers the performance obtained on six Sundstrand Q-Flex accelerometers during the qualification test program for the LANCE missile. The Qualification Test Program was divided into three parts: (1) Flight Assurance Tests (FAT), (2) Storage and Transportation Tests (SATT), and (3) Reliability Overstress Tests (ROT). All testing was performed in accordance with Vought accelerometer procurement specification 704-166C dated 8 June 1978.

  12. Input-output stability for accelerometer control systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Morris, K. A.

    1991-01-01

    It is shown that, although accelerometer control systems are not well-posed in the sense of Salamon, a well-defined input-output relation exists. It is established that the output of an accelerometer control system can be described by the convolution of the input and a distribution. This distribution is Laplace transformable, and the Laplace transform of the distribution is the transfer function of the system.

  13. A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics

    SciTech Connect

    Lemkin, M.; Boser, B.E.

    1999-04-01

    This paper describes a three-axis accelerometer implemented in a surface-micromachining technology with integrated CMOS. The accelerometer measures changes in a capacitive half-bridge to detect deflections of a proof mass, which result from acceleration input. The half-bridge is connected to a fully differential position-sense interface, the output of which is used for one-bit force feedback. By enclosing the proof mass in a one-bit feedback loop, simultaneous force balancing and analog-to-digital conversion are achieved. On-chip digital offset-trim electronics enable compensation of random offset in the electronic interface. Analytical performance calculations are shown to accurately model device behavior. The fabricated single-chip accelerometer measures 4 {times} 4 mm{sup 2}, draws 27 mA from a 5-V supply, and has a dynamic range of 84, 81, and 70 dB along the x-, y-, and z-axes, respectively.

  14. Child activity recognition based on cooperative fusion model of a triaxial accelerometer and a barometric pressure sensor.

    PubMed

    Nam, Yunyoung; Park, Jung Wook

    2013-03-01

    This paper presents a child activity recognition approach using a single 3-axis accelerometer and a barometric pressure sensor worn on a waist of the body to prevent child accidents such as unintentional injuries at home. Labeled accelerometer data are collected from children of both sexes up to the age of 16 to 29 months. To recognize daily activities, mean, standard deviation, and slope of time-domain features are calculated over sliding windows. In addition, the FFT analysis is adopted to extract frequency-domain features of the aggregated data, and then energy and correlation of acceleration data are calculated. Child activities are classified into 11 daily activities which are wiggling, rolling, standing still, standing up, sitting down, walking, toddling, crawling, climbing up, climbing down, and stopping. The overall accuracy of activity recognition was 98.43% using only a single- wearable triaxial accelerometer sensor and a barometric pressure sensor with a support vector machine. PMID:24235114

  15. Design, Simulation and Fabrication of Triaxial MEMS High Shock Accelerometer.

    PubMed

    Zhang, Zhenhai; Shi, Zhiguo; Yang, Zhan; Xie, Zhihong; Zhang, Donghong; Cai, De; Li, Kejie; Shen, Yajing

    2015-04-01

    On the basis of analyzing the disadvantage of other structural accelerometer, three-axis high g MEMS piezoresistive accelerometer was put forward in order to apply to the high-shock test field. The accelerometer's structure and working principle were discussed in details. The simulation results show that three-axis high shock MEMS accelerometer can bear high shock. After bearing high shock impact in high-shock shooting test, three-axis high shock MEMS accelerometer can obtain the intact metrical information of the penetration process and still guarantee the accurate precision of measurement in high shock load range, so we can not only analyze the law of stress wave spreading and the penetration rule of the penetration process of the body of the missile, but also furnish the testing technology of the burst point controlling. The accelerometer has far-ranging application in recording the typical data that projectile penetrating hard target and furnish both technology guarantees for penetration rule and defend engineering. PMID:26353519

  16. Intelligent seismic sensor with double three component MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Fu, Jihua; Wang, Jianjun; Li, Zhitao; Liu, Xiaoxi; Wang, Zhongyu

    2010-08-01

    To better understand the response and damage characteristics of structures under earthquakes, a great number of intelligent seismic sensors with high performance were needed to be installed distributed in the whole country. The intelligent seismic sensor was a cost-sensitive application because of its large number of usages. For this reason, a low cost intelligent seismic sensor was put forward in this paper. This kind of intelligent seismic sensor cut down the cost without sacrificing performance by introducing two three component MEMS accelerometers. It was composed by a microprocessor, two three component MEMS accelerometers, an A/D converter, a flash memory, etc. The MEMS accelerometer has better structure and frequency response characteristics than the conventional geophones'. But one MEMS accelerometer tended to be unreliable and have no enough dynamic range for precision measurement. Therefore two three component MEMS accelerometers were symmetrically mounted on both sides of the circuit board. And their measuring values were composed to describe the ground motion or structure response. The composed value was the in-phase stacking of the two accelerometers' measuring values, which enhanced the signal noise ratio of the sensor and broadened its dynamic range. Through the preliminary theory and experiment analysis, the low cost intelligent seismic sensor could measure the acceleration in accuracy.

  17. Performance of several low-cost accelerometers

    USGS Publications Warehouse

    Evans, J.R.; Allen, R.M.; Chung, A. I.; Cochran, E.S.; Guy, R.; Hellweg, M.; Lawrence, J. F.

    2014-01-01

    Several groups are implementing low‐cost host‐operated systems of strong‐motion accelerographs to support the somewhat divergent needs of seismologists and earthquake engineers. The Advanced National Seismic System Technical Implementation Committee (ANSS TIC, 2002), managed by the U.S. Geological Survey (USGS) in cooperation with other network operators, is exploring the efficacy of such systems if used in ANSS networks. To this end, ANSS convened a working group to explore available Class C strong‐motion accelerometers (defined later), and to consider operational and quality control issues, and the means of annotating, storing, and using such data in ANSS networks. The working group members are largely coincident with our author list, and this report informs instrument‐performance matters in the working group’s report to ANSS. Present examples of operational networks of such devices are the Community Seismic Network (CSN; csn.caltech.edu), operated by the California Institute of Technology, and Quake‐Catcher Network (QCN; Cochran et al., 2009; qcn.stanford.edu; November 2013), jointly operated by Stanford University and the USGS. Several similar efforts are in development at other institutions. The overarching goals of such efforts are to add spatial density to existing Class‐A and Class‐B (see next paragraph) networks at low cost, and to include many additional people so they become invested in the issues of earthquakes, their measurement, and the damage they cause.

  18. Tooth wear: the view of the anthropologist.

    PubMed

    Kaidonis, John A

    2008-03-01

    Anthropologists have for many years considered human tooth wear a normal physiological phenomenon where teeth, although worn, remain functional throughout life. Wear was considered pathological only if pulpal exposure or premature tooth loss occurred. In addition, adaptive changes to the stomatognathic system in response to wear have been reported including continual eruption, the widening of the masticatory cycle, remodelling of the temporomandibular joint and the shortening of the dental arches from tooth migration. Comparative studies of many different species have also documented these physiological processes supporting the idea of perpetual change over time. In particular, differential wear between enamel and dentine was considered a physiological process relating to the evolution of the form and function of teeth. Although evidence of attrition and abrasion has been known to exist among hunter-gatherer populations for many thousands of years, the prevalence of erosion in such early populations seems insignificant. In particular, non-carious cervical lesions to date have not been observed within these populations and therefore should be viewed as 'modern-day' pathology. Extrapolating this anthropological perspective to the clinical setting has merits, particularly in the prevention of pre-mature unnecessary treatment. PMID:17938977

  19. Combination of High Rate, Real-Time GNSS and Accelerometer Observations and Rapid Seismic Event Notification for Earthquake Early Warning and Volcano Monitoring with a Focus on the Pacific Rim.

    NASA Astrophysics Data System (ADS)

    Zimakov, L. G.; Passmore, P.; Raczka, J.; Alvarez, M.; Jackson, M.

    2014-12-01

    Scientific GNSS networks are moving towards a model of real-time data acquisition, epoch-by-epoch storage integrity, and on-board real-time position and displacement calculations. This new paradigm allows the integration of real-time, high-rate GNSS displacement information with acceleration and velocity data to create very high-rate displacement records. The mating of these two instruments allows the creation of a new, very high-rate (200 sps) displacement observable that has the full-scale displacement characteristics of GNSS and high-precision dynamic motions of seismic technologies. It is envisioned that these new observables can be used for earthquake early warning studies, volcano monitoring, and critical infrastructure monitoring applications. Our presentation will focus on the characteristics of GNSS, seismic, and strong motion sensors in high dynamic environments, including historic earthquakes in Southern California and the Pacific Rim, replicated on a shake table, over a range of displacements and frequencies. We will explore the optimum integration of these sensors from a filtering perspective including simple harmonic impulses over varying frequencies and amplitudes and under the dynamic conditions of various earthquake scenarios. In addition we will discuss implementation of a Rapid Seismic Event Notification System that provides quick delivery of digital data from seismic stations to the acquisition and processing center and a full data integrity model for real-time earthquake notification that provides warning prior to significant ground shaking.

  20. Wear of metal fiber brushes

    NASA Astrophysics Data System (ADS)

    Brown, Lloyd Perryman, Jr.

    The goal of this dissertation was determining the wear mechanism of metal fiber brushes on commutators and slip rings with the goal of achieving the lowest possible wear rate. To this end, metal fiber brushes were operated, while conducting direct current, on gold-plated copper rotors with and without unfilled gaps to simulate slip rings and commutators, respectively. Wear rates on unfilled-groove commutators were found to be only modestly higher than on slip ring style rotors. Three possible causes for enhanced metal fiber brush wear on commutators were considered: (i) accelerated "adhesive" wear controlled by contact spots, (ii) fatigue induced wear and (iii) "fiber chopping". Similarly, SEM analysis of fiber tips and wear particles produced scant, if any, evidence of fiber chopping, which would occur as, again, fiber tips extend elastically into the commutator grooves and small slices of them would be "chopped" off by oncoming edges of commutator bars. Finally considered was "modified chopping", wherein fiber tips would be dragged over groove edges, resulting in tensile fracture and chopping. Only a single fiber fragment showed damage that might be compatible with that mechanism. Moreover, the fact that it was exemplified by a single tenuous case, rules it out as significant. The same conclusion also follows from comparing commutator wear rates with that on slip rings. These show good correlation in terms of effective brush pressure, which on commutators is increased because only bars conduct current and gaps do not support load. (Abstract shortened by UMI.)

  1. Erosive tooth wear in children.

    PubMed

    Carvalho, Thiago S; Lussi, Adrian; Jaeggi, Thomas; Gambon, Dein L

    2014-01-01

    Erosive tooth wear in children is a common condition. Besides the anatomical differences between deciduous and permanent teeth, additional histological differences may influence their susceptibility to dissolution. Considering laboratory studies alone, it is not clear whether deciduous teeth are more liable to erosive wear than permanent teeth. However, results from epidemiological studies imply that the primary dentition is less wear resistant than permanent teeth, possibly due to the overlapping of erosion with mechanical forces (like attrition or abrasion). Although low severity of tooth wear in children does not cause a significant impact on their quality of life, early erosive damage to their permanent teeth may compromise their dentition for their entire lifetime and require extensive restorative procedures. Therefore, early diagnosis of erosive wear and adequate preventive measures are important. Knowledge on the aetiological factors of erosive wear is a prerequisite for preventive strategies. Like in adults, extrinsic and intrinsic factors, or a combination of them, are possible reasons for erosive tooth wear in children and adolescents. Several factors directly related to erosive tooth wear in children are presently discussed, such as socio-economic aspects, gastroesophageal reflux or vomiting, and intake of some medicaments, as well as behavioural factors such as unusual eating and drinking habits. Additionally, frequent and excessive consumption of erosive foodstuffs and drinks are of importance. PMID:24993274

  2. High-G accelerometer for earth-penetrator weapons applications. LDRD final report

    SciTech Connect

    Davies, B.R.; Montague, S.; Bateman, V.I.; Brown, F.A.; Chanchani, R.; Christenson, T.; Murray, J.R.; Rey, D.; Ryerson, D.

    1998-03-01

    Micromachining technologies, or Micro-Electro-Mechanical Systems (MEMS), enable the develop of low-cost devices capable of sensing motion in a reliable and accurate manner. Sandia has developed a MEMS fabrication process for integrating both the micromechanical structures and microelectronics circuitry of surface micromachined sensors, such as silicon accelerometers, on the same chip. Integration of the micromechanical sensor elements with microelectronics provides substantial performance and reliability advantages for MEMS accelerometers. A design team at Sandia was assembled to develop a micromachined silicon accelerometer capable of surviving and measuring very high accelerations (up to 50,000 times the acceleration due to gravity). The Sandia integrated surface micromachining process was selected for fabrication of the sensor due to the extreme measurement sensitivity potential associated with integrated microelectronics. Very fine measurement sensitivity was required due to the very small accelerometer proof mass (< 200 {times} 10{sup {minus}9} gram) obtainable with this surface micromachining process. The small proof mass corresponded to small sensor deflections which required very sensitive electronics to enable accurate acceleration measurement over a range of 1,000 to 50,000 times the acceleration due to gravity. Several prototype sensors, based on a suspended plate mass configuration, were developed and the details of the design, modeling, fabrication and validation of the device will be presented in this paper. The device was analyzed using both conventional lumped parameter modeling techniques and finite element analysis tools. The device was tested and performed well over its design range (the device was tested over a range of a few thousand G to 46,000 G, where 1 G equals the acceleration due to gravity).

  3. Development of a six station knee wear simulator and preliminary wear results.

    PubMed

    Burgess, I C; Kolar, M; Cunningham, J L; Unsworth, A

    1997-01-01

    In order to assess the wear performance of different designs of total knee replacements (TKR), a six station multi-axis knee simulator has been designed, built and commissioned. The most important features of a knee simulator are representative angles of flexion-extension synchronized with a dynamically applied load, and a combination of rolling and sliding motion. The simulator typically applies flexion-extension of 0-65, anterior-posterior translation of up to 15 mm, a dynamic load of up to 5.0 kN, and operates at 1.0 Hz. The loads and motions are applied using computer controlled servohydraulic actuators and hence their profiles are easily modified. A preliminary wear test has been conducted using a Kinemax (Howmedica, United Kingdom) TKR. The test was conducted in 30 per cent bovine serum which was changed every 150,000 cycles, at which time the bearing surfaces were examined and the UHMWPE tibial component was weighed. Over eight million cycles, a tibial wear rate of 2.62 mg/10(6) cycles was measured. The mild wear observed was characterized by burnishing and slight scratching in the anterior posterior direction. These observations are broadly in line with both in vitro and ex vivo studies reported in the literature for this type of prosthesis. Delamination wear sometimes observed in vivo was not seen. PMID:9141889

  4. Measurement of the impulsive bone motion by skin-mounted accelerometers.

    PubMed

    Kim, W; Voloshin, A S; Johnson, S H; Simkin, A

    1993-02-01

    A measurement system was designed to investigate longitudinal wave propagation through the lower extremity generated from foot strikes. The principal goal of the design was to eliminate measurement time lag and amplitude reduction, such that the acceleration measured by Skin Mounted Accelerometer--SMA is equal to the actual acceleration of the bone measured by Bone Mounted Accelerometer--BMA. For accurate dynamic measurement, it is important that the gain and phase of the measurement system are as close as possible to a constant and zero, respectively, for the frequency range being covered. An in vitro experiment was carried out to simultaneously measure skin and bone accelerations. The obtained information was used for identification of a linear spring/damper model representing the interface between the BMA and the SMA. The present work showed that the SMA overestimated the BMA by 12 percent in the signals between 15-30 Hz. PMID:8445898

  5. Off-the-shelf mobile handset environments for deploying accelerometer based gait and activity analysis algorithms.

    PubMed

    Hynes, Martin; Wang, Han; Kilmartin, Liam

    2009-01-01

    Over the last decade, there has been substantial research interest in the application of accelerometry data for many forms of automated gait and activity analysis algorithms. This paper introduces a summary of new "of-the-shelf" mobile phone handset platforms containing embedded accelerometers which support the development of custom software to implement real time analysis of the accelerometer data. An overview of the main software programming environments which support the development of such software, including Java ME based JSR 256 API, C++ based Motion Sensor API and the Python based "aXYZ" module, is provided. Finally, a sample application is introduced and its performance evaluated in order to illustrate how a standard mobile phone can be used to detect gait activity using such a non-intrusive and easily accepted sensing platform. PMID:19964383

  6. Steady-state wear and friction in boundary lubrication studies

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.; Jones, W. R., Jr.

    1980-01-01

    A friction and wear study was made at 20 C to obtain improved reproducibility and reliability in boundary lubrication testing. Ester-base and C-ether-base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a friction and wear apparatus. Conditions included loads of 1/2 and 1 kg and sliding velocities of 3.6 to 18.2 m/min in a dry air atmosphere and stepwise time intervals from 1 to 250 min for wear measurements. The wear rate results were compared with those from previous studies where a single 25 min test period was used. Satisfactory test conditions for studying friction and wear in boundary lubrication for this apparatus were found to be 1 kg load; sliding velocities of 7.1 to 9.1 m/min (50 rpm disk speed); and use of a time stepwise test procedure. Highly reproducible steady-state wear rates and steady-state friction coefficients were determined under boundary conditions. Wear rates and coefficients of friction were constant following initially high values during run-in periods.

  7. Switch wear leveling

    SciTech Connect

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2015-09-01

    An apparatus for switch wear leveling includes a switching module that controls switching for two or more pairs of switches in a switching power converter. The switching module controls switches based on a duty cycle control technique and closes and opens each switch in a switching sequence. The pairs of switches connect to a positive and negative terminal of a DC voltage source. For a first switching sequence a first switch of a pair of switches has a higher switching power loss than a second switch of the pair of switches. The apparatus includes a switch rotation module that changes the switching sequence of the two or more pairs of switches from the first switching sequence to a second switching sequence. The second switch of a pair of switches has a higher switching power loss than the first switch of the pair of switches during the second switching sequence.

  8. A modified Hopkinson pressure bar experiment to evaluate a damped piezoresistive MEMS accelerometer.

    SciTech Connect

    Frew, Danny Joe; Duong, Henry

    2009-03-01

    We conducted a series of modified Hopkinson pressure bar (HPB) experiments to evaluate a new, damped, high-shock accelerometer that has recently been developed by PCB Piezotronics Inc. Pulse shapers were used to create a long duration, non-dispersive stress pulse in an aluminum bar that interacted with a tungsten disk at the end of the incident bar. We measured stress at the aluminum bar-disk interface with a quartz gage and measured acceleration at the free-end of the disk with an Endevco brand 7270A and the new PCB 3991 accelerometers. The rise-time of the incident stress pulse in the aluminum bar was long enough and the disk length short enough so that the response of the disk can be approximated closely as rigid-body motion; an experimentally verified analytical model has been shown previously to support this assumption. Since the cross-sectional area and mass of the disk were known, we calculated acceleration of the rigid-disk from the quartz-gage force measurement and Newton's Second Law of Motion. Comparisons of accelerations calculated from the quartz-gage data and measured acceleration data show excellent agreement for acceleration pulses with the PCB accelerometer for peak amplitudes between 4,000 and 40,000 Gs , rise times as short as 40 microsec, and pulse durations between 150 and 320 microsec.

  9. Test-Retest Reliability and Concurrent Validity of a Single Tri-Axial Accelerometer-Based Gait Analysis in Older Adults with Normal Cognition

    PubMed Central

    Byun, Seonjeong; Han, Ji Won; Kim, Tae Hui; Kim, Ki Woong

    2016-01-01

    Objective We investigated the concurrent validity and test-retest reliability of spatio-temporal gait parameters measured with a single tri-axial accelerometer (TAA), determined the optimal number of steps required for obtaining acceptable levels of reliability, and compared the validity and reliability of the estimated gait parameters across the three reference axes of the TAA. Methods A total of 82 cognitively normal elderly participants walked around a 40-m long round walkway twice wearing a TAA at their center of body mass. Gait parameters such as cadence, gait velocity, step time, step length, step time variability, and step time asymmetry were estimated from the low pass-filtered signal of the TAA. The test-retest reliability and concurrent validity with the GAITRite® system were evaluated for the estimated gait parameters. Results Gait parameters using signals from the vertical axis showed excellent reliability for all gait parameters; the intraclass correlation coefficient (ICC) was 0.79–0.90. A minimum of 26 steps and 14 steps were needed to achieve excellent reliability in step time variability and step time asymmetry, respectively. A strong level of agreement was seen for the basic gait parameters between the TAA and GAITRiteⓇ (ICC = 0.91–0.96). Conclusions The measurement of gait parameters of elderly individuals with normal cognition using a TAA placed on the body’s center of mass was reliable and showed superiority over the GAITRiteⓇ with regard to gait variability and asymmetry. The TAA system was a valid tool for measuring basic gait parameters. Considering its wearability and low price, the TAA system may be a promising alternative to the pressure sensor walkway system for measuring gait parameters. PMID:27427965

  10. Application of MAVEN Accelerometer and Attitude Control Data to Mars Atmospheric Characterization

    NASA Astrophysics Data System (ADS)

    Zurek, Richard W.; Tolson, Robert H.; Baird, Darren; Johnson, Mark Z.; Bougher, Stephen W.

    2015-12-01

    The structure of the upper atmosphere of Mars (above ˜100 km) has been probed in situ mainly using spacecraft accelerometers during the aerobraking phases of 3 Mars orbiters. In a similar manner, the Mars Atmosphere and Volatile Evolution (MAVEN) Accelerometer Experiment (ACC) will also use atmospheric drag accelerations sensed by inertial measurement units (IMU) onboard the spacecraft to recover atmospheric density along the orbiter path. These densities are used to estimate hydrostatic `vertical' density and temperature profiles, along track and altitudinal density waves, and latitudinal and longitudinal density variations. The IMU accelerometer signal-to-noise should permit profile reconstructions from spacecraft periapsis, nominally at 150 km altitude, to ˜170 km, an altitude range nominally spanning densities of 0.05-0.15 kg/km3. However, in situ measurements over a much greater altitude range, down to ˜125 km (reaching densities of ˜2-3.5 kg/km3), can be made during each of five week-long "Deep Dip" (DD) campaigns, and these are the prime focus of the Accelerometer Experiment. Judicious choice of the timing of these Deep-Dip campaigns during the MAVEN periapsis progression through local time, latitude and longitude in both hemispheres and in different seasons will add significantly to the existing data base of lower thermospheric densities. Other IMU and attitude control data may be used to estimate torques in order to improve the atmospheric density analysis, especially in the higher altitudes of the nominal science orbit, and, more challengingly, to estimate cross-track winds during the Deep-Dips.

  11. Classification of knee arthropathy with accelerometer-based vibroarthrography.

    PubMed

    Moreira, Dinis; Silva, Joana; Correia, Miguel V; Massada, Marta

    2016-01-01

    One of the most common knee joint disorders is known as osteoarthritis which results from the progressive degeneration of cartilage and subchondral bone over time, affecting essentially elderly adults. Current evaluation techniques are either complex, expensive, invasive or simply fails into detection of small and progressive changes that occur within the knee. Vibroarthrography appeared as a new solution where the mechanical vibratory signals arising from the knee are recorded recurring only to an accelerometer and posteriorly analyzed enabling the differentiation between a healthy and an arthritic joint. In this study, a vibration-based classification system was created using a dataset with 92 healthy and 120 arthritic segments of knee joint signals collected from 19 healthy and 20 arthritic volunteers, evaluated with k-nearest neighbors and support vector machine classifiers. The best classification was obtained using the k-nearest neighbors classifier with only 6 time-frequency features with an overall accuracy of 89.8% and with a precision, recall and f-measure of 88.3%, 92.4% and 90.1%, respectively. Preliminary results showed that vibroarthrography can be a promising, non-invasive and low cost tool that could be used for screening purposes. Despite this encouraging results, several upgrades in the data collection process and analysis can be further implemented. PMID:27225550

  12. BepiColombo ISA accelerometer: ready for launch

    NASA Astrophysics Data System (ADS)

    Francesco, Santoli; Valerio, Iafolla; Emiliano, Fiorenza; Carlo, Lefevre; Lucchesi David, M.; Marco, Lucente; Carmelo, Magnafico; Sergio, Nozzoli; Roberto, Peron

    2016-04-01

    To be launched in 2017, ESA mission BepiColombo will perform a thorough study of the planet Mercury and its environment. Among the wide range of its scientific objectives, an important set is constituted by the so-called Radio Science Experiments (RSE), which will study the gravitational field and rotation of the planet, and will perform very precise tests of general relativity theory. The fulfilment of these scientific objectives will be made possible by a precise orbit determination of the Mercury Planetary Orbiter (MPO), at the same time estimating a number of relevant parameters. In order to reach the required level of accuracy in recovering these parameters, the data coming from the high-sensitivity ISA (Italian Spring Accelerometer) instrument onboard the MPO probe will be used: the first time for a deep-space probe. After a long path of design and development, the instrument is now ready for integration into MPO. Following a brief description of the RSE in the context of the mission, the instrument and its capabilities will be reviewed. Emphasis will be given to the foreseen strategies for its operation in the various phases of the mission, along with the manifold calibration possibilities.

  13. Modelling of the MEA float zone using accelerometer data

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1993-01-01

    During a floating zone experiment involving the growth of indium on a recent orbiter mission, (STS 32) oscillation of the zone shapes were observed to occur in response to the background acceleration. An understanding of the nature of the response of the zone shape to forced (g-jitter) oscillations and predictions of its impact on future experiments is of great interest not only to the PI's but to other commercial and academic investigators who plan to fly similar experiments in the orbiter and on space station. Motivated by this, a 15 month study was undertaken to analyze the nature of the g-sensitivity of the STS 32 floating zone crystal growth experiment. Numerical models were used to describe the time-dependent free surface motion of the zone as it responds to the spacecraft residual acceleration. Relevant experimental data concerning the acceleration environment was obtained from the Honeywell in Space Accelerometer (HISA) investigators through MSFC's ACAP program and processed and analyzed. For the indium floating zone experiment, a series of calculations were made using time-dependent axial accelerations g(t). The form of g(t) included simple sinusoidal disturbances as well as actual data (subject to appropriate filtering) measured on the STS 32 mission. Focus was on the calculation of the response of the free surface of the zone as well as the internal flows and internal heat transfer. The influence of solidification on the response of the zone shape was also examined but found to be negligible.

  14. Efficient Wear Leveling in NAND Flash Memory

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Hao; Chang, Li-Pin

    In the recent years, flash storage devices such as solid-state drives (SSDs) and flash cards have become a popular choice for the replacement of hard disk drives, especially in the applications of mobile computing devices and consumer electronics. However, the physical constraints of flash memory pose a lifetime limitation on these storage devices. New technologies for ultra-high density flash memory such as multilevel-cell (MLC) flash further degrade flash endurance and worsen this lifetime concern. As a result, flash storage devices may experience a unexpectedly short lifespan, especially when accessing these devices with high frequencies. In order to enhance the endurance of flash storage device, various wear leveling algorithms are proposed to evenly erase blocks of the flash memory so as to prevent wearing out any block excessively. In this chapter, various existing wear leveling algorithms are investigated to point out their design issues and potential problems. Based on this investigation, two efficient wear leveling algorithms (i.e., the evenness-aware algorithm and dual-pool algorithm) are presented to solve the problems of the existing algorithms with the considerations of the limited computing power and memory space in flash storage devices. The evenness-aware algorithm maintains a bit array to keep track of the distribution of block erases to prevent any cold data from staying in any block for a long period of time. The dual-pool algorithm maintains one hot pool and one cold pool to maintain the blocks that store hot data and cold data, respectively, and the excessively erased blocks in the hot pool are exchanged with the rarely erased blocks in the cold pool to prevent any block from being erased excessively. In this chapter, a series of explanations and analyses shows that these two wear leveling algorithms could evenly distribute block erases to the whole flash memory to enhance the endurance of flash memory.

  15. Relative performance of several inexpensive accelerometers

    USGS Publications Warehouse

    Evans, John R.; Rogers, John A.

    1995-01-01

    We examined the performance of several low-cost accelerometers for highly cost-driven applications in recording earthquake strong motion. We anticipate applications for such sensors in providing the lifeline and emergency-response communities with an immediate, comprehensive picture of the extent and characteristics of likely damage. We also foresee their use as 'filler' instruments sited between research-grade instruments to provide spatially detailed and near-field records of large earthquakes (on the order of 1000 stations at 600-m intervals in San Fernando Valley, population 1.2 million, for example). The latter applications would provide greatly improved attenuation relationships for building codes and design, the first examples of mainshock information (that is, potentially nonlinear regime) for microzonation, and a suite of records for structural engineers. We also foresee possible applications in monitoring structural inter-story drift during earthquakes, possibly leading to local and remote alarm functions as well as design criteria. This effort appears to be the first of its type at the USGS. It is spurred by rapid advances in sensor technology and the recognition of potential non-classical applications. In this report, we estimate sensor noise spectra, relative transfer functions and cross-axis sensitivity of six inexpensive sensors. We tested three micromachined ('silicon-chip') sensors in addition to classical force-balance and piezoelectric examples. This sample of devices is meant to be representative, not comprehensive. Sensor noise spectra were estimated by recording system output with the sensor mounted on a pneumatically supported 545-kg optical-bench isolation table. This isolation table appears to limit ground motion to below our system noise level. These noise estimates include noise introduced by signal-conditioning circuitry, the analog-to-digital converter (ADC), and noise induced in connecting wiring by ambient electromagnetic fields in

  16. Structurally Integrated Coatings for Wear and Corrosion

    SciTech Connect

    Beardsley, M. Brad; Sebright, Jason L.

    2008-11-18

    Wear and corrosion of structures cuts across industries and continues to challenge materials scientists and engineers to develop cost effective solutions. Industries typically seek mature technologies that can be implemented for production with rapid or minimal development and have little appetite for the longer-term materials research and development required to solve complex problems. The collaborative work performed in this project addressed the complexity of this problem in a multi-year program that industries would be reluctant to undertake without government partnership. This effort built upon the prior development of Advanced Abrasion Resistant Materials conduct by Caterpillar Inc. under DOE Cooperative Agreement No. DE-FC26-01NT41054. In this referenced work, coatings were developed that exhibited significant wear life improvements over standard carburized heat treated steel in abrasive wear applications. The technology used in this referenced work, arc lamp fusing of thermal spray coatings, was one of the primary technical paths in this work effort. In addition to extending the capability of the coating technology to address corrosion issues, additional competitive coating technologies were evaluated to insure that the best technology was developed to meet the goals of the program. From this, plasma transferred arc (PTA) welding was selected as the second primary technology that was investigated. Specifically, this project developed improved, cost effective surfacing materials and processes for wear and corrosion resistance in both sliding and abrasive wear applications. Materials with wear and corrosion performance improvements that are 4 to 5 times greater than heat treated steels were developed. The materials developed were based on low cost material systems utilizing ferrous substrates and stainless steel type matrix with hard particulates formed from borides and carbides. Affordability was assessed against other competing hard surfacing or coating

  17. Assessment of the MyWellness Key accelerometer in people with type 2 diabetes.

    PubMed

    McGinley, Samantha Kate; Armstrong, Marni J; Khandwala, Farah; Zanuso, Silvano; Sigal, Ronald J

    2015-11-01

    Accelerometers are designed to measure physical activity (PA) objectively. The MyWellness Key (MWK) accelerometer has been validated primarily in younger, normal-weight populations. The aims of this study were to examine the accuracy of the MWK against directly measured lab-based exercise and free-living PA in people with type 2 diabetes, many of whom are older and overweight or obese. Thirty-five participants with type 2 diabetes completed the protocol, which included a laboratory-based session and a free-living phase. In the laboratory visit, participants completed a structured treadmill protocol wearing MWKs on each hip (all subjects) and bra cup (women only). The speed where each MWK switched from recording light- to moderate-intensity activity was determined for each MWK worn. In the free-living phase, participants wore the MWK for all waking hours for 2 weeks, and recorded exercise in PA diaries immediately after each exercise session. The mean cut-points between low ("Free") and moderate ("Play") intensity for the right and left waist-worn MWKs were 4.1 ± 0.5 km/h and 5.0 ± 0.9 km/h for the bra-mounted MWK; ideal cut-point would be 4.0 km/h. In the free-living phase, the Spearman correlation between PA according to PA diary and the waist-worn MWK was 0.81 (95% confidence interval (CI): 0.76, 0.85; P < 0.001), but only 0.66 (95% CI: 0.53, 0.77; P < 0.001) when on the bra. In conclusion, the waist-worn MWK measured PA volume accurately, and was acceptably accurate at discriminating between low- and moderate-intensity PA in people with type 2 diabetes. The MWK underestimated PA volume and intensity when worn on a bra. PMID:26489052

  18. Friction and wear of nickel in sulfuric acid

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Experiments were conducted with elemental nickel sliding on aluminum oxide in aerated sulfuric acid in concentrations ranging from very dilute (10 -4 N, i.e., 5 ppm) to very concentrated (96 percent) acid. Load and reciprocating sliding speeds were kept constant. With the most dilute concentration (10 -4 N) no observable corrosion occurred in or outside the wear area. This was used as the base condition to determine the high contribution of corrosion to total wear loss at acid concentrations between 0.5 percent (0.1 N) and 75 percent. Corrosion reached a maximum rate of 100 millimeters per year at 30 percent acid. At the same time, general corrosion outside the wear area was very low, in agreement with published information. It is clear that friction and wear greatly accelerated corrosion in the wear area. At dilute concentrations of 0.001 and 0.01 N, corrosion in the wear area was low, and general corrosion outside was also low, but local outside regions in the direction of the wear motion experienced some enhanced corrosion, apparently due to fluid motion of the acid.

  19. Quality of GOCE accelerometer data and analysis with ionospheric dynamics during geomagnetically active days

    NASA Astrophysics Data System (ADS)

    Sinem Ince, Elmas; Fomichev, Victor; Floberghagen, Rune; Schlicht, Anja; Martynenko, Oleg; Pagiatakis, Spiros

    2016-07-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) was launched in March, 2009 and completed its mission with great success in November, 2011. GOCE data processing is challenging and not all the disturbances are removed from the gravitational field observations. The disturbances observed in GOCE Vyy gradients around magnetic poles are investigated by using external datasets. It is found that the amplitude of these disturbances increase during geomagnetically active days and can reach up to 5 times the expected noise level of the gradiometer. ACE (Advanced Composition Explorer) and Wind satellites measured electric field and interplanetary magnetic field components have shown that the disturbances observed in the polar regions agree with the increased solar activity. Moreover, equivalent ionospheric currents computed along ascending satellite tracks over North America and Greenland have shown a noticeable correlation with the cross-track and vertical currents and the pointing flux (ExB) components in the satellite cross track direction. Lastly, Canadian Ionosphere and Atmosphere Model (C-IAM) electric field and neutral wind simulations have shown a strong correlation of the enhancement in the ionospheric dynamics during geomagnetically active days and disturbances measured by the GOCE accelerometers over high latitudes. This may be a result of imperfect instrumentation and in-flight calibration of the GOCE accelerometers for an increased geomagnetic activity or a real disturbance on the accelerometers. We use above listed external datasets to understand the causes of the disturbances observed in gravity gradients and reduce/ eliminate them by using response analyses in frequency domain. Based on our test transfer functions, improvement is possible in the quality of the gradients. Moreover, this research also confirms that the accelerometer measurements can be useful to understand the ionospheric dynamics and space weather forecasting.

  20. Should We Believe Atmospheric Temperatures Measured by Entry Accelerometers Traveling at "Slow" Near-Sonic Speeds?

    NASA Technical Reports Server (NTRS)

    Withers, Paul

    2005-01-01

    Mars Pathfinder's Accelerometer instrument measured an unexpected and large temperature inversion between 10 and 20 kilometer altitude. Other instruments have failed to detect similar temperature inversions. I test whether this inversion is real or not by examining what changes have to be made to the assumptions in the accelerometer data processing to obtain a more "expected" temperature profile. Changes in derived temperature of up to 30K, or 15%, are necessary, which correspond to changes in derived density of up to 25% and changes in derived pressure of up to 10%. If the drag coefficient is changed to satisfy this, then instead of decreasing from 1.6 to 1.4 from 20 kilometers to 10 kilometers, the drag coefficient must increase from 1.6 to 1.8 instead. If winds are invoked, then speeds of 60 meters per second are necessary, four times greater than those predicted. Refinements to the equation of hydrostatic equilibrium modify the temperature profile by an order of magnitude less than the desired amount. Unrealistically large instrument drifts of 0.5-1.0 meters per square second are needed to adjust the temperature profile as desired. However, rotational contributions to the accelerations may have the necessary magnitude and direction to make this correction. Determining whether this hypothesis is true will require further study of the rigid body equations of motion, with detailed knowledge of the positions of all six accelerometers. The paradox concerning this inversion is not yet resolved. It is important to resolve it because the paradox has some startling implications. At one extreme, are temperature profiles derived from accelerometers inherently inaccurate by 20K or more? At the other extreme, are RS temperature profiles inaccurate by this same amount?

  1. Accelerometers for the GOCE Mission: on-ground verification and in-orbit early results

    NASA Astrophysics Data System (ADS)

    Foulon, B.; Christophe, B.; Marque, J.-P.

    2009-04-01

    The six accelerometers of the ESA GOCE mission have been developed by ONERA under contract with ThalesAleniaSpace France as Prime Contractor of the Gradiometer. These instruments are based on a principle similar to the ones flying from several years on board the CHAMP and the twin GRACE satellites but with some technological evolution to improve their resolution by 2 orders of magnitude in order to guarantee a level of noise acceleration lower than 2E-12 ms-2 Hz-1/2 as required by the GOCE mission scientific performance. Their contribution to the mission is double by providing the Satellite with the linear accelerations as input to the continuous drag compensation system and with the scientific data measurements to be on-ground processed. The presentation will first shortly describe the accelerometer together with a summary of on-ground test plan philosophy and results, including free fall tests in the Bremen drop tower. Then, if available at that time, the first and preliminary results of the in orbit performance of the accelerometers will be presented and compared. Such instrument can also contribute to improve the performance of some new geodetic mission by measuring more accurately the non gravitational forces acting on the satellites, as corner-stone instrument in some gradiometer arms or as sensor for drag compensation system of low orbit spacecrafts.

  2. Lumped parameter analytic modeling and behavioral simulation of a 3-DOF MEMS gyro-accelerometer

    NASA Astrophysics Data System (ADS)

    Verma, Payal; Arya, Sandeep K.; Gopal, Ram

    2015-12-01

    A new analytical model of a 3-degree-of-freedom (3-DOF) gyro-accelerometer system consisting of a 1-DOF drive and 2-DOF sense modes is presented. The model constructs lumped differential equations associated with each DOF of the system by vector analysis. The coupled differential equations thus established are solved analytically for their responses in both the time and frequency domains. Considering these frequency response equations, novel device design concepts are derived by forcing the sense phase to zero, which leads to a certain relationship between the structural frequencies, thereby causing minimization of the damping effect on the performance of the system. Furthermore, the feasibility of the present gyro-accelerometer structure is studied using a unique discriminatory scheme for the detection of both gyro action and linear acceleration at their events. This scheme combines the formulated settled transient solution of the gyro-accelerometer with the processes of synchronous demodulation and filtration, which leads to the in-phase and quadrature components of the system's output signal. These two components can be utilized in the detection of angular motion and linear acceleration. The obtained analytical results are validated by simulation in a MATLAB/Simulink environment, and it is found that the results are in excellent agreement with each other.

  3. Application of MEMS Accelerometers and Gyroscopes in Fast Steering Mirror Control Systems

    PubMed Central

    Tian, Jing; Yang, Wenshu; Peng, Zhenming; Tang, Tao; Li, Zhijun

    2016-01-01

    In a charge-coupled device (CCD)-based fast steering mirror (FSM) tracking control system, high control bandwidth is the most effective way to enhance the closed-loop performance. However, the control system usually suffers a great deal from mechanical resonances and time delays induced by the low sampling rate of CCDs. To meet the requirements of high precision and load restriction, fiber-optic gyroscopes (FOGs) are usually used in traditional FSM tracking control systems. In recent years, the MEMS accelerometer and gyroscope are becoming smaller and lighter and their performance have improved gradually, so that they can be used in a fast steering mirror (FSM) to realize the stabilization of the line-of-sight (LOS) of the control system. Therefore, a tentative approach to implement a CCD-based FSM tracking control system, which uses MEMS accelerometers and gyroscopes as feedback components and contains an acceleration loop, a velocity loop and a position loop, is proposed. The disturbance suppression of the proposed method is the product of the error attenuation of the acceleration loop, the velocity loop and the position loop. Extensive experimental results show that the MEMS accelerometers and gyroscopes can act the similar role as the FOG with lower cost for stabilizing the LOS of the FSM tracking control system. PMID:27023557

  4. Application of MEMS Accelerometers and Gyroscopes in Fast Steering Mirror Control Systems.

    PubMed

    Tian, Jing; Yang, Wenshu; Peng, Zhenming; Tang, Tao; Li, Zhijun

    2016-01-01

    In a charge-coupled device (CCD)-based fast steering mirror (FSM) tracking control system, high control bandwidth is the most effective way to enhance the closed-loop performance. However, the control system usually suffers a great deal from mechanical resonances and time delays induced by the low sampling rate of CCDs. To meet the requirements of high precision and load restriction, fiber-optic gyroscopes (FOGs) are usually used in traditional FSM tracking control systems. In recent years, the MEMS accelerometer and gyroscope are becoming smaller and lighter and their performance have improved gradually, so that they can be used in a fast steering mirror (FSM) to realize the stabilization of the line-of-sight (LOS) of the control system. Therefore, a tentative approach to implement a CCD-based FSM tracking control system, which uses MEMS accelerometers and gyroscopes as feedback components and contains an acceleration loop, a velocity loop and a position loop, is proposed. The disturbance suppression of the proposed method is the product of the error attenuation of the acceleration loop, the velocity loop and the position loop. Extensive experimental results show that the MEMS accelerometers and gyroscopes can act the similar role as the FOG with lower cost for stabilizing the LOS of the FSM tracking control system. PMID:27023557

  5. Using accelerometers to determine the calling behavior of tagged baleen whales.

    PubMed

    Goldbogen, J A; Stimpert, A K; DeRuiter, S L; Calambokidis, J; Friedlaender, A S; Schorr, G S; Moretti, D J; Tyack, P L; Southall, B L

    2014-07-15

    Low-frequency acoustic signals generated by baleen whales can propagate over vast distances, making the assignment of calls to specific individuals problematic. Here, we report the novel use of acoustic recording tags equipped with high-resolution accelerometers to detect vibrations from the surface of two tagged fin whales that directly match the timing of recorded acoustic signals. A tag deployed on a buoy in the vicinity of calling fin whales and a recording from a tag that had just fallen off a whale were able to detect calls acoustically but did not record corresponding accelerometer signals that were measured on calling individuals. Across the hundreds of calls measured on two tagged fin whales, the accelerometer response was generally anisotropic across all three axes, appeared to depend on tag placement and increased with the level of received sound. These data demonstrate that high-sample rate accelerometry can provide important insights into the acoustic behavior of baleen whales that communicate at low frequencies. This method helps identify vocalizing whales, which in turn enables the quantification of call rates, a fundamental component of models used to estimate baleen whale abundance and distribution from passive acoustic monitoring. PMID:24803468

  6. Automatic compensation for the errors of a gyroscopic linear integrating accelerometer

    SciTech Connect

    Bezvesil`naya, E.N.

    1995-10-01

    The method of least squares and the Kalman filter are the basis for developing algorithms and studying the errors of estimation of the state of a gyroscopic linear integrating accelerometer with digital processing of the data. The article considers the development of algorithms for self-compensation of the errors of a gyroscopic linear integrating accelerometer (GLIA). One of the promising applications of a gyroscopic linear integrating accelerometer is its use as a sensing element for an aviration gravimetric system. At the same time, a GLIA has errors due to nonlinear distortions of the path of the sensing element or gyroscope, the nonzero damping factor of precessional oscillations due to viscous friction moments acting frequency of the precessional oscillations used in the estimation algorithms and the frequency of the precessional oscillations of the gyroscope, and the disturbances that affect the law of motion of the gyroscope. These errors may have an unacceptably large effect (roughly 0.5 g) if not taken into account. The goal here, therefore, is to obtain an algorithm of automatic compensation for the indicated errors. Such a problem has not hitherto been formulated and solved in the theory and practice of gravimetric measurements.

  7. Automatic Stress Detection in Working Environments From Smartphones' Accelerometer Data: A First Step.

    PubMed

    Garcia-Ceja, Enrique; Osmani, Venet; Mayora, Oscar

    2016-07-01

    Increase in workload across many organizations and consequent increase in occupational stress are negatively affecting the health of the workforce. Measuring stress and other human psychological dynamics is difficult due to subjective nature of selfreporting and variability between and within individuals. With the advent of smartphones, it is now possible to monitor diverse aspects of human behavior, including objectively measured behavior related to psychological state and consequently stress. We have used data from the smartphone's built-in accelerometer to detect behavior that correlates with subjects stress levels. Accelerometer sensor was chosen because it raises fewer privacy concerns (e.g., in comparison to location, video, or audio recording), and because its low-power consumption makes it suitable to be embedded in smaller wearable devices, such as fitness trackers. About 30 subjects from two different organizations were provided with smartphones. The study lasted for eight weeks and was conducted in real working environments, with no constraints whatsoever placed upon smartphone usage. The subjects reported their perceived stress levels three times during their working hours. Using combination of statistical models to classify selfreported stress levels, we achieved a maximum overall accuracy of 71% for user-specific models and an accuracy of 60% for the use of similar-users models, relying solely on data from a single accelerometer. PMID:26087509

  8. Cost-effective monitoring of ground motion by joint use of a single-frequency GPS and a MEMS accelerometer

    NASA Astrophysics Data System (ADS)

    Tu, Rui; Wang, Rongjiang; Ge, Maorong; Walter, Thomas R.; Ramatschi, Markus; Milkereit, Claus; Bindi, Dino; Dahm, Torsten

    2014-05-01

    Real-time detection and precise estimation of strong ground motion are crucial for rapid assessment and early warning of geohazards such as earthquakes, landslides, and volcanic activity. This challenging task can be accomplished by combining GPS and accelerometer measurements because of their complementary capabilities to resolve broadband ground motion signals. However, for implementing an operational monitoring network of such joint measurement systems, cost-effective techniques need to be developed and rigorously tested. We propose a new approach for joint processing of single-frequency GPS and MEMS (micro-electro-mechanical systems) accelerometer data in real time. To demonstrate the performance of our method, we describe results from outdoor experiments under controlled conditions. For validation, we analysed dual-frequency GPS data and images recorded by a video camera. The results of the different sensors agree very well, suggesting that real-time broadband information of ground motion can be provided by using single-frequency GPS and MEMS accelerometers. Reference: Tu, R., R. Wang, M. Ge, T. R. Walter, M. Ramatschi, C. Milkereit, D. Bindi, and T. Dahm (2013), Cost-effective monitoring of ground motion related to earthquakes, landslides, or volcanic activity by joint use of a single-frequency GPS and a MEMS accelerometer, Geophysical Research Letters, 40, 3825-3829, doi:10.1002/grl.50653.

  9. Can accelerometers detect mass variations in Amazonian trees?

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Steele-Dunne, Susan; Gentine, Pierre; Guerin, Marceau; Hut, Rolf; Oliveira, Rafael; van de Giesen, Nick

    2016-04-01

    The mass of trees is influenced by physiological processes within the tree (e.g. transpiration and root water uptake), as well as external loads (e.g. intercepted precipitation). Recent studies have found diurnal variations in radar backscatter over vegetated areas, which might be attributed to mass changes of the vegetation layer. Field measurements are required to study the driving processes. This study aims to use measured three-dimensional displacement and acceleration of trees, to detect and quantify their diurnal (bio)mass variations. Accelerometers and dendrometers were installed on seven different tree species in the Amazon rainforest. Trees were selected to cover a broad range of wood density. Using spectral analysis, the governing frequencies in the acceleration time series were found. The governing frequencies showed a diurnal pattern, as well as a change during precipitation events. Our results suggest that we can separate and potentially quantify tree mass changes due to (1) internal water redistribution and (2) intercepted precipitation. This will allow further investigation of the effect of precipitation and water stress on tree dynamics in forest canopies.

  10. Evaluation of shock isolation techniques for a piezoresistive accelerometer

    SciTech Connect

    Bateman, V.I.; Bell, R.G.; Davie, N.T. )

    1989-06-01

    Sandia conducts impact testing for a variety of structures. In this slapdown test, one end of the cask impacts the hard concrete target, then the structure rotates so that the other end of the cask impacts the target. During an impact test, metal to metal contact may occur within the structure and produce high frequency, high amplitude shock inputs. The high frequency portion of this transient vibration has been observed to excite the accelerometer resonance even though this resonance exceeds 350 kHz. The amplitude of the resonating accelerometer response can be so large that the data are clipped and are rendered useless. If the data are not clipped, a digital filter must be applied to eliminate the undesired accelerometer resonant response. If possible, it is more desirable to prevent excitation of the accelerometer resonance, This may be accomplished by mechanically isolating the accelerometer from the high frequency excitation without degrading the transducer response in the bandwidth of interest which is usually 10 kHz or less. To achieve this desirable isolation, two mounting configurations were designed and characterized. The objective of this paper is to describe the evaluation technique and to discuss the shock isolation properties of each mounting configuration. One configuration was actually used in a field test of bomb impacting a target. 4 figs.

  11. Characterization of a MEMS Accelerometer for Inertial Navigating Applications

    SciTech Connect

    Kinney, R.D.

    1999-02-12

    Inertial MEMS sensors such as accelerometers and angular rotation sensing devices continue to improve in performance as advances in design and processing are made. Present state-of-the-art accelerometers have achieved performance levels in the laboratory that are consistent with requirements for successful application in tactical weapon navigation systems. However, sensor performance parameters that are of interest to the designer of inertial navigation systems are frequently not adequately addressed by the MEMS manufacturer. This paper addresses the testing and characterization of a MEMS accelerometer from an inertial navigation perspective. The paper discusses test objectives, data reduction techniques and presents results from the test of a three-axis MEMS accelerometer conducted at Sandia National Laboratories during 1997. The test was structured to achieve visibility and characterization of the accelerometer bias and scale factor stability overtime and temperature. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94AL85000.

  12. Prediction of Gap Asymmetry in Differential Micro Accelerometers

    PubMed Central

    Zhou, Wu; Li, Baili; Peng, Bei; Su, Wei; He, Xiaoping

    2012-01-01

    Gap asymmetry in differential capacitors is the primary source of the zero bias output of force-balanced micro accelerometers. It is also used to evaluate the applicability of differential structures in MEMS manufacturing. Therefore, determining the asymmetry level has considerable significance for the design of MEMS devices. This paper proposes an experimental-theoretical method for predicting gap asymmetry in differential sensing capacitors of micro accelerometers. The method involves three processes: first, bi-directional measurement, which can sharply reduce the influence of the feedback circuit on bias output, is proposed. Experiments are then carried out on a centrifuge to obtain the input and output data of an accelerometer. Second, the analytical input-output relationship of the accelerometer with gap asymmetry and circuit error is theoretically derived. Finally, the prediction methodology combines the measurement results and analytical derivation to identify the asymmetric error of 30 accelerometers fabricated by DRIE. Results indicate that the level of asymmetry induced by fabrication uncertainty is about ±5 × 10−2, and that the absolute error is about ±0.2 μm under a 4 μm gap. PMID:22969325

  13. Fabrication and characterization of polymeric three-axis thermal accelerometers

    NASA Astrophysics Data System (ADS)

    Silva, Cátia; Noh, Jong; Fonseca, Helder; Pontes, António; Gaspar, João; Alexandre Rocha, Luis

    2015-08-01

    The concept, fabrication process, and characterization of a three-axis thermal accelerometer are presented in this paper. A combination of microelectromechanical systems (MEMS) technology with microinjection molding enables the realization of functional, highly complex 3D geometries at the microscale, used here for the fabrication of a fully integrated three-axis accelerometer. While conventional thermal accelerometers are silicon based, using MEMS technologies only, the integration of polymeric materials and technologies into the fabrication process can greatly improve the realization of three-axis devices while diminishing the typical thermal losses. Three-axis thermal accelerometers were successfully fabricated by combining the proposed technologies proving the viability of the concept. Fabricated accelerometers show xy-axis sensitivity around 8 mV g-1, a z-axis sensitivity of 2.2 mV g-1 for a power of 45 mW and a 4 Hz bandwidth (bandwidth is based on simulations). Thermal tests performed showed that the heater can sustain up to 280 °C without overheating the remaining structures and damaging the device.

  14. One testing method of dynamic linearity of an accelerometer

    NASA Astrophysics Data System (ADS)

    Lei, Jing-Yu; Guo, Wei-Guo; Tan, Xue-Ming; Shi, Yun-Bo

    2015-09-01

    To effectively test dynamic linearity of an accelerometer over a wide rang of 104 g to about 20 × 104g, one published patent technology is first experimentally verified and analysed, and its deficient is presented, then based on stress wave propagation theory on the thin long bar, the relation between the strain signal and the corresponding acceleration signal is obtained, one special link of two coaxial projectile is developed. These two coaxial metal cylinders (inner cylinder and circular tube) are used as projectiles, to prevent their mutual slip inside the gun barrel during movement, the one end of two projectiles is always fastened by small screws. Ti6-AL4-V bar with diameter of 30 mm is used to propagate loading stress pulse. The resultant compression wave can be measured by the strain gauges on the bar, and a half -sine strain pulse is obtained. The measuring accelerometer is attached on the other end of the bar by a vacuum clamp. In this clamp, the accelerometer only bear compression wave, the reflected tension pulse make the accelerometer off the bar. Using this system, dynamic linearity measurement of accelerometer can be easily tested in wider range of acceleration values. And a really measuring results are presented.

  15. Wearing gloves in the hospital

    MedlinePlus

    Wearing gloves in the hospital helps prevent the spread of germs. This helps protect both patients and health care ... Gloves are called personal protective equipment (PPE). Other types of PPE are gowns, masks, and shoe and ...

  16. Update on slip and wear in multi-layer azimuth track systems

    NASA Astrophysics Data System (ADS)

    Juneja, Gunjeet; Kan, Frank W.; Antebi, Joseph

    2006-06-01

    Many antennas, such as the 100-m Green Bank Telescope, use a wheel-on-track systems in which the track segments consist of wear plates mounted on base plates. The wear plates are typically 2 to 3 inches thick and are case hardened or through hardened. The base plates are usually 3 to 4 times thicker than the wear plates and are not hardened. The wear plates are typically connected to the base plates using bolts. The base plates are supported on grout and anchored to the underlying concrete foundation. For some antennas, slip has been observed between the wear plate and base plate, and between the base plate and the grout, with the migration in the wheel rolling direction. In addition, there has been wear at the wear plate/base plate interface. This paper is an update on the evaluation of GBT track retrofit. The paper describes the use of three-dimensional non-linear finite element analyses to understand and evaluate the behavior of (1) the existing GBT wheel-on-track system with mitered joints, and (2) the various proposed modifications. The modifications include welding of the base plate joints, staggering of the wear plate joints from the base plate joints, changing thickness of the wear plate, and increasing bolt diameter and length. Parameters included in the evaluation were contact pressure, relative slip, wear at the wear plate/base plate interface, and bolt shears and moments.

  17. Terrestrial Applications of a Nano-g Accelerometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    1996-01-01

    The ultra-sensitive accelerometer, developed for NASA to monitor the microgravity environments of Space Shuttle, five orbiters and Space Station, needed to measure accelerations up to 10 mg with an absolute accuracy of 10 nano-g (10(exp -8)g) for at least two orbits (10(exp 4) seconds) to resolve accelerations associated with orbital drag. Also, the accelerometers needed to have less than 10(exp -9) F.S. off-axis sensitivity; to be thermally and magnetically inert; to be immune to quiescent shock, and to have an in-situ calibration capability. Multi-axis compact seismometers, designs that have twelve decades of dynamic range will be described. Density profilometers, precision gradiometers, gyros and vibration isolation designs and applications will be discussed. Finally, examples of transformations of the accelerometer into sensitive anemometers and imaging spectrometers will be presented.

  18. Design and Process Considerations for a Tunneling Tip Accelerometer

    NASA Technical Reports Server (NTRS)

    Paul M. Zavracky, Bob McClelland, Keith Warner, Neil Sherman, Frank Hartley

    1995-01-01

    In this paper, we discuss issues related to the fabrication of a bulk micromachined single axis accelerometer. The accelerometer is designed to have a full scale range of ten millig and a sensitivity of tens of nanog. During the process, three distinctly different die are fabricated. These are subsequently assembled using an ally bonding technique. During the bonding operation, electrical contacts are made between layers. The accelerometer is controlled by electrostatic force plates above and below the proof mass. The lower electrode has a dual role. In operation, it provides a necessary control electrode. When not in operation, it is used to clamp the proof mass and prevents its motion. Results of the fabrication process and initial testing of the clamping function are reported.

  19. Micromachined force-balance feedback accelerometer with optical displacement detection

    DOEpatents

    Nielson, Gregory N.; Langlois, Eric; Baker, Michael; Okandan, Murat; Anderson, Robert

    2014-07-22

    An accelerometer includes a proof mass and a frame that are formed in a handle layer of a silicon-on-an-insulator (SOI). The proof mass is separated from the frame by a back-side trench that defines a boundary of the proof mass. The accelerometer also includes a reflector coupled to a top surface of the proof mass. An optical detector is located above the reflector at the device side. The accelerometer further includes at least one suspension spring. The suspension spring has a handle anchor that extends downwards from the device side to the handle layer to mechanically support upward and downward movement of the proof mass relative to a top surface of the proof mass.

  20. Description of the three axis low-g accelerometer package

    NASA Technical Reports Server (NTRS)

    Amalavage, A. J.; Fikes, E. H.; Berry, E. H.

    1978-01-01

    The three axis low-g accelerometer package designed for use on the Space Processing Application Rocket (SPAR) Program is described. The package consists of the following major sections: (1) three Kearfott model 2412 accelerometers mounted in an orthogonal triad configuration on a temperature controlled, thermally isolated cube, (2) the accelerometer servoelectronics (printed circuit cards PC-6 through PC-12), and (3) the signal conditioner (printed circuit cards PC-15 and PC-16). The measurement range is 0 + or - 0.031 g with a quantization of 1.1 x 10 to the 7th power g. The package was flown successfully on six SPAR launches with the Black Brant booster. These flights provide approximately 300 s of free fall or zero-g environment.

  1. Design and fabrication of a highly symmetrical capacitive triaxial accelerometer

    NASA Astrophysics Data System (ADS)

    Li, Gang; Li, Zhihong; Wang, Congshun; Hao, Yilong; Li, Ting; Zhang, Dacheng; Wu, Guoying

    2001-01-01

    A monolithic capacitive triaxial accelerometer using a highly symmetric quad-beam structure with a single seismic mass is developed. The structure of the accelerometer is analysed in detail theoretically and numerically. Static and modal simulations with a finite element method simulator are done to analyse the mechanical response at accelerations of different directions. The simulated results show that the accelerometer can sense triaxial acceleration separately and synchronously. It has sensitivities of about 7.66, 6.08 and 6.08 fF g-1 in the z-axis, x-axis and y-axis, respectively, and has nearly zero cross-axis sensitivity theoretically. Moreover, some design optimizations are made to improve its performance. Finally, the fabrication and the basic performance of the device are presented.

  2. An Electromagnetically Excited Silicon Nitride Beam Resonant Accelerometer

    PubMed Central

    Chen, Deyong; Wu, Zhengwei; Liu, Lei; Shi, Xiaojing; Wang, Junbo

    2009-01-01

    A resonant microbeam accelerometer of a novel highly symmetric structure based on MEMS bulk-silicon technology is proposed and some numerical modeling results for this scheme are presented. The accelerometer consists of two proof masses, four supporting hinges, two anchors, and a vibrating triple beam, which is clamped at both ends to the two proof masses. LPCVD silicon rich nitride is chosen as the resonant triple beam material, and parameter optimization of the triple-beam structure has been performed. The triple beam is excited and sensed electromagnetically by film electrodes located on the upper surface of the beam. Both simulation and experimental results show that the novel structure increases the scale factor of the resonant accelerometer, and ameliorates other performance issues such as cross axis sensitivity of insensitive input acceleration, etc. PMID:22573956

  3. Tool Wear in Friction Drilling

    SciTech Connect

    Miller, Scott F; Blau, Peter Julian; Shih, Albert J.

    2007-01-01

    This study investigated the wear of carbide tools used in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a hard tungsten carbide tool used for friction drilling a low carbon steel workpiece has been investigated. Tool wear characteristics were studied by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectroscopy was applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size were measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11000 holes, but observations also indicate progressively severe abrasive grooving on the tool tip.

  4. Fractal characterization of wear-erosion surfaces

    SciTech Connect

    Rawers, J.; Tylczak, J.

    1999-12-01

    Wear erosion is a complex phenomenon resulting in highly distorted and deformed surface morphologies. Most wear surface features have been described only qualitatively. In this study wear surfaces features were quantified using fractal analysis. The ability to assign numerical values to wear-erosion surfaces makes possible mathematical expressions that will enable wear mechanisms to be predicted and understood. Surface characterization came from wear-erosion experiments that included varying the erosive materials, the impact velocity, and the impact angle. Seven fractal analytical techniques were applied to micrograph images of wear-erosion surfaces. Fourier analysis was the most promising. Fractal values obtained were consistent with visual observations and provided a unique wear-erosion parameter unrelated to wear rate. In this study stainless steel was evaluated as a function of wear erosion conditions.

  5. Thermal EMF method for monitoring drilling tool wear

    NASA Astrophysics Data System (ADS)

    Pan, Haili; An, Bangjian; Chen, Yu-bao; Orady, Elsayed

    1993-09-01

    This paper describes a techniQue for on-line monitoring of drilling tool wear based on the thermal EMF (electromotive force) signal. The EMF signal was obtained from a natural thermocouple consisting of the tool (H. S. S.) and workpiece (AISI 1045) metals. The natural thermocouple is thus used as a kind of functional sensor which is sensitive to the cutting zone. The signal was collected and analyzed for three experiments at different cutting conditions. Analysis was carried out in time, frequency and amplitude domains. Several indices for the EMF signal were computed and their relationships with the tool wear were constructed. The results showed that the thermal EMF signal can be used to identify the occurrence of abnormal tool wear on major cutting edges and can indicate the end of tool life. Tool breakage can also be predicted. Consequently, a methodology for monitoring drilling tool wear can be established.

  6. Surgery to improve contact lens wear in keratoconus.

    PubMed

    Moodaley, L; Buckley, R J; Woodward, E G

    1991-04-01

    Contact lens intolerance in keratoconus may be due to the formation of a proud nebula at or near the apex of the cone that gives rise to contact lens related abrasions. These nebulae do not flatten when contact lens wear is discontinued. We describe a simple technique of superficial keratectomy to remove proud nebulae in which the resulting defect healed quickly under a therapeutic hydrogel lens. In all of the six cases described patients were able to resume contact lens wear within one month of the procedure. One case was lost to follow-up. Of the remaining five (follow-up 3-9 months), all achieved comfortable wearing times of 8 hours or more and visual acuities of 20/40 or better. One patient developed a recurrent epithelial defect that resolved on discontinuing lens wear for one week. Corneal transplantation was thus avoided. PMID:2049822

  7. A bimorph flexural-disk accelerometer for underwater use

    SciTech Connect

    Moffett, M.B.; Powers, J.M.

    1996-04-01

    Design equations, based on Ralph Woollett{close_quote}s 1960 report [{open_quote}{open_quote}The Flexural Disk Transducer,{close_quote}{close_quote} U.S. Navy Underwater Sound Laboratory Research Report No. 490], are presented for a bimorph accelerometer. Figures-of-merit are compared for PZT-4, PZT-5A, PZT-5H, PZT-8 piezoceramics, and PVDF-TrFE copolymer. Neutrally buoyant, spherical and cylindrical accelerometer configurations can be designed to meet bandwidth, sensitivity, and depth requirements. Experimental results for PZT-8 bimorphs indicate that simply-supported edge conditions are easily achievable. {copyright} {ital 1996 American Institute of Physics.}

  8. A PFV/sub 2/ accelerometer for high shock applications

    SciTech Connect

    Tise, B.; Smith, T.

    1989-08-01

    This report describes the development, fabrication, and testing of a high-g piezoelectric accelerometer that uses PVF/sub 2/ as the piezoelectric transducer. The accelerometer is designed to continuously measure accelerations up to 1000,000 g. The device is packages in a 3/8'' hex head bolt and can include a built-in hybrid buffer to provide a low-output impedance analog signal. Included in this report are fabrication procedures, mechanical drawings, and software listings for test data analysis programs. 30 refs., 21 figs.

  9. Improved single- and multi-contact life-time testing of dental restorative materials using key characteristics of the human masticatory system and a force/position-controlled robotic dental wear simulator.

    PubMed

    Raabe, D; Harrison, A; Ireland, A; Alemzadeh, K; Sandy, J; Dogramadzi, S; Melhuish, C; Burgess, S

    2012-03-01

    This paper presents a new in vitro wear simulator based on spatial parallel kinematics and a biologically inspired implicit force/position hybrid controller to replicate chewing movements and dental wear formations on dental components, such as crowns, bridges or a full set of teeth. The human mandible, guided by passive structures such as posterior teeth and the two temporomandibular joints, moves with up to 6 degrees of freedom (DOF) in Cartesian space. The currently available wear simulators lack the ability to perform these chewing movements. In many cases, their lack of sufficient DOF enables them only to replicate the sliding motion of a single occlusal contact point by neglecting rotational movements and the motion along one Cartesian axis. The motion and forces of more than one occlusal contact points cannot accurately be replicated by these instruments. Furthermore, the majority of wear simulators are unable to control simultaneously the main wear-affecting parameters, considering abrasive mechanical wear, which are the occlusal sliding motion and bite forces in the constraint contact phase of the human chewing cycle. It has been shown that such discrepancies between the true in vivo and the simulated in vitro condition influence the outcome and the quality of wear studies. This can be improved by implementing biological features of the human masticatory system such as tooth compliance realized through the passive action of the periodontal ligament and active bite force control realized though the central nervous system using feedback from periodontal preceptors. The simulator described in this paper can be used for single- and multi-occlusal contact testing due to its kinematics and ability to exactly replicate human translational and rotational mandibular movements with up to 6 DOF without neglecting movements along or around the three Cartesian axes. Recorded human mandibular motion and occlusal force data are the reference inputs of the simulator

  10. Wear Assessment of Conical Pick used in Coal Cutting Operation

    NASA Astrophysics Data System (ADS)

    Dewangan, Saurabh; Chattopadhyaya, Somnath; Hloch, Sergej

    2015-09-01

    Conical pick is a widely used tool for cutting coal in mines. It has a cemented carbide tip inserted in a steel body. Cemented carbide has been in use for many years for coal/rock cutting because it has the optimum combination of hardness, toughness and resistance against abrasive wear. As coal/rock is a heterogeneous substance, the cutting tool has to undergo various obstructions at the time of excavation that cause the tool to wear out. The cracks and fractures developing in the cemented carbide limit the life of the tool. For a long time, different wear mechanisms have been studied to develop improved grades of cemented carbide with high wear resistance properties. The research is still continuing. Moreover, due to the highly unpredictable nature of coal/rock, it is not easy to understand the wear mechanisms. In the present work, an attempt has been made to understand the wear mechanisms in four conical picks, which were used in a continuous miner machine for underground mining of coal. The wearing pattern of the conical pick indicates damage in its cemented carbide tip as well as the steel body. The worn out parts of the tools have been critically examined using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) point analysis. Mainly four types of wear mechanisms, namely, coal/rock intermixing, plastic deformation, rock channel formation and crushing and cracking, have been detected. The presence of coal/rock material and their respective concentrations in the selected area of worn out surface were observed using the spectra generated by EDX analysis.

  11. Validity of two brief physical activity questionnaires with accelerometers among African-American women

    PubMed Central

    Joseph, Rodney P.; Keller, Colleen; Adams, Marc A.; Ainsworth, Barbara E.

    2015-01-01

    Aim To evaluate the validity of the Stanford Brief Activity Survey (SBAS) and Exercise Vital Sign (EVS) questionnaire against accelerometer-determined time in moderate-to-vigorous physical activity (MVPA) among African-American (AA) women. Background Limited research has evaluated the validity of brief physical activity (PA) questionnaires among AA women. Since the validity of PA questionnaires may differ among members of varying racial/ethnic groups, research is needed to explore the validity of self-report PA measures among AA women. Methods A total of 30 AA women [M age = 35.5 ± 5.3; M body mass index (BMI) = 31.1 ± 7.8] wore ActiGraph GT3X + accelerometers (ActiGraph, LLC, Pensacola FL, USA) for seven days and completed both the SBAS and EVS at two different assessment periods (T1 and T2). Criterion validity was calculated using Spearman's rank order correlations between each questionnaire score and accelerometer-measured MVPA. Sensitivity, specificity, and positive and negative predictive values were calculated using accelerometer-measured MVPA as the criterion to determine the ability of each questionnaire to predict whether or not a participant was meeting the 2008 US PA Guidelines Findings Spearman correlation coefficients between questionnaire scores and minutes of accelerometer-measured MVPA were low (EVS, r = 0.27 at T1 and r = 0.26 at T2; SBAS, r = 0.10 at T1 and r = 0.28 at T2) and not statistically significant (P's > 0.05). The EVS had sensitivity, specificity, and negative and positive predictive values of 27, 89, 59, and 68% at T1 and 33, 74, 38, and 70% at T2, respectively. The SBAS had sensitivity, specificity, and negative and positive predictive values were 18, 79, 33, and 62% at T1 and 67, 58, 43, and 79% at T2. While both questionnaires may be useful in identifying AA women who do not meet the 2008 PA Guidelines, using the questionnaires to identify AA women meeting the PA Guidelines should be done with caution. PMID:26178779

  12. Analysis of Accelerometer Data from a Woven Inflatable Creep Burst Test

    NASA Technical Reports Server (NTRS)

    James, George H.; Grygier, Michael; Selig, Molly M.

    2015-01-01

    Accelerometers were used to montor an inflatable test article during a creep test to failure. The test article experienced impulse events that were classified based on the response of the sensors and their time-dependent manifestation. These impulse events required specialized techniques to process the structural dynamics data. However, certain phenomena were defined as worthy of additional study. An assessment of one phenomena (a frequency near 1000Hz) showed a time dependent frequency and an amplitude that increased significantly near the end of the test. Hence, these observations are expected to drive future understanding of and utility in inflatable space structures.

  13. Design and Fabrication of a Differential Electrostatic Accelerometer for Space-Station Testing of the Equivalence Principle.

    PubMed

    Han, Fengtian; Liu, Tianyi; Li, Linlin; Wu, Qiuping

    2016-01-01

    The differential electrostatic space accelerometer is an equivalence principle (EP) experiment instrument proposed to operate onboard China's space station in the 2020s. It is designed to compare the spin-spin interaction between two rotating extended bodies and the Earth to a precision of 10(-12), which is five orders of magnitude better than terrestrial experiment results to date. To achieve the targeted test accuracy, the sensitive space accelerometer will use the very soft space environment provided by a quasi-drag-free floating capsule and long-time observation of the free-fall mass motion for integration of the measurements over 20 orbits. In this work, we describe the design and capability of the differential accelerometer to test weak space acceleration. Modeling and simulation results of the electrostatic suspension and electrostatic motor are presented based on attainable space microgravity condition. Noise evaluation shows that the electrostatic actuation and residual non-gravitational acceleration are two major noise sources. The evaluated differential acceleration noise is 1.01 × 10(-9) m/s²/Hz(1/2) at the NEP signal frequency of 0.182 mHz, by neglecting small acceleration disturbances. The preliminary work on development of the first instrument prototype is introduced for on-ground technological assessments. This development has already confirmed several crucial fabrication processes and measurement techniques and it will open the way to the construction of the final differential space accelerometer. PMID:27517927

  14. Fretting Wear Mechanisms in A216 Plain Carbon Steel

    NASA Astrophysics Data System (ADS)

    Maich, Alyssa Anne

    The subsurface and surface microstructures during pin-on-disk fretting wear of A216 steel disks under various loading conditions and times are investigated. The corresponding pins are fabricated from 410 stainless steel to simulate in-service conditions found in such engineering components as the Siemens W501FD engine row-2 diaphragm of a Siemens turbine engine, which is known to be prone to failure by fretting wear. Loading conditions range from 2N to 15N and times from 1 hour to a maximum of 69 hours, when steady state is confirmed. Wear track depth is quantitatively determined by optical profilometry, and found to range from 3 to 11 microns dependent upon load. Wear depth increases from 2N to 10N load, but decreases when increased to 15N load, due to heavier transfer of pin material to disk, as can be seen by EDS images of chromium transfer on A216 disk. Microstructures are evaluated by transmission electron microscopy of samples prepared by focused ion beam machining to pinpoint wear tracks and expose them in cross-section. EDS is used, in conjunction with TEM, to elucidate primary wear mechanisms at each stage of fretting wear. Microstructures in the subsurface of wear tracks are found to be heavily dislocated and layered, features that vary with both applied load and time. The microstructure eventually evolves into stable dislocation cells with cell walls aligned parallel to the surface. Penetration depth of the damaged layers increases with applied load, associated with a non-uniform maximum shear stress distribution that varies with depth. Primary oxide appears to evolve from Fe2O3 to Fe3O4, with increasing fretting time, leading to a uniform oxide on the surface of the A216 disk. Oxidation rate may be increased with the evolution of this subsurface dislocation cell structure. It is concluded that fretting wear failure is likely associated with a synergy between oxidative wear and crack initiation and propagation along dislocation cell walls under high

  15. Gaze Tracking System for User Wearing Glasses

    PubMed Central

    Gwon, Su Yeong; Cho, Chul Woo; Lee, Hyeon Chang; Lee, Won Oh; Park, Kang Ryoung

    2014-01-01

    Conventional gaze tracking systems are limited in cases where the user is wearing glasses because the glasses usually produce noise due to reflections caused by the gaze tracker's lights. This makes it difficult to locate the pupil and the specular reflections (SRs) from the cornea of the user's eye. These difficulties increase the likelihood of gaze detection errors because the gaze position is estimated based on the location of the pupil center and the positions of the corneal SRs. In order to overcome these problems, we propose a new gaze tracking method that can be used by subjects who are wearing glasses. Our research is novel in the following four ways: first, we construct a new control device for the illuminator, which includes four illuminators that are positioned at the four corners of a monitor. Second, our system automatically determines whether a user is wearing glasses or not in the initial stage by counting the number of white pixels in an image that is captured using the low exposure setting on the camera. Third, if it is determined that the user is wearing glasses, the four illuminators are turned on and off sequentially in order to obtain an image that has a minimal amount of noise due to reflections from the glasses. As a result, it is possible to avoid the reflections and accurately locate the pupil center and the positions of the four corneal SRs. Fourth, by turning off one of the four illuminators, only three corneal SRs exist in the captured image. Since the proposed gaze detection method requires four corneal SRs for calculating the gaze position, the unseen SR position is estimated based on the parallelogram shape that is defined by the three SR positions and the gaze position is calculated. Experimental results showed that the average gaze detection error with 20 persons was about 0.70° and the processing time is 63.72 ms per each frame. PMID:24473283

  16. Industrial Noise and Tooth Wear - Experimental Study

    PubMed Central

    Cavacas, Maria Alzira; Tavares, Vitor; Borrecho, Gonçalo; Oliveira, Maria João; Oliveira, Pedro; Brito, José; Águas, Artur; dos Santos, José Martins

    2015-01-01

    Tooth wear is a complex multifactorial process that involves the loss of hard dental tissue. Parafunctional habits have been mentioned as a self-destructive process caused by stress, which results in hyperactivity of masticatory muscles. Stress manifests itself through teeth grinding, leading to progressive teeth wear. The effects of continuous exposure to industrial noise, a “stressor” agent, cannot be ignored and its effects on the teeth must be evaluated. Aims: The aim of this study was to ascertain the effects of industrial noise on dental wear over time, by identifying and quantifying crown area loss. Material and Methods: 39 Wistar rats were used. Thirty rats were divided in 3 experimental groups of 10 animals each. Animals were exposed to industrial noise, rich in LFN components, for 1, 4 and 7 months, with an average weekly exposure of 40 hours (8h/day, 5 days/week with the weekends in silence). The remaining 9 animals were kept in silence. The areas of the three main cusps of the molars were measured under light microscopy. Statistical analysis used: A two-way ANOVA model was applied at significance level of 5%. Results: The average area of the molar cusps was significantly different between exposed and non-exposed animals. The most remarkable differences occurred between month 1 and 4. The total crown loss from month 1 to month 7 was 17.3% in the control group, and 46.5% in the exposed group, and the differences between these variations were significant (p<0.001). Conclusions: Our data suggest that industrial noise is an important factor in the pathogenesis of tooth wear. PMID:25798052

  17. Self-noise models of five commercial strong-motion accelerometers

    USGS Publications Warehouse

    Ringler, Adam; Evans, John R.; Hutt, Charles R.

    2015-01-01

    To better characterize the noise of a number of commonly deployed accelerometers in a standardized way, we conducted noise measurements on five different models of strong‐motion accelerometers. Our study was limited to traditional accelerometers (Fig. 1) and is in no way exhaustive.

  18. Fractal characterization of wear-erosion surfaces

    SciTech Connect

    Rawers, James C.; Tylczak, Joseph H.

    1999-12-01

    Wear erosion is a complex phenomenon resulting in highly distorted and deformed surface morphologies. Most wear surface features have been described only qualitatively. In this study wear surfaces features were quantified using fractal analysis. The ability to assign numerical values to wear-erosion surfaces makes possible mathematical expressions that will enable wear mechanisms to be predicted and understood. Surface characterization came from wear-erosion experiments that included varying the erosive materials, the impact velocity, and the impact angle. Seven fractal analytical techniques were applied to micrograph images of wear-erosion surfaces. Fourier analysis was the most promising. Fractal values obtained were consistent with visual observations and provided a unique wear-erosion parameter unrelated to wear rate.

  19. The development of a bearing spectral analyzer and algorithms to detect turbopump bearing wear from deflectometer and strain gage data

    NASA Astrophysics Data System (ADS)

    Martinez, Carol L.

    1992-07-01

    Over the last several years, Rocketdyne has actively developed condition and health monitoring techniques and their elements for rocket engine components, specifically high pressure turbopumps. Of key interest is the development of bearing signature analysis systems for real-time monitoring of the cryogen-cooled turbopump shaft bearings, which spin at speeds up to 36,000 RPM. These system elements include advanced bearing vibration sensors, signal processing techniques, wear mode algorithms, and integrated control software. Results of development efforts in the areas of signal processing and wear mode identification and quantification algorithms based on strain gage and deflectometer data are presented. Wear modes investigated include: inner race wear, cage pocket wear, outer race wear, differential ball wear, cracked inner race, and nominal wear.

  20. Wear resistance of ductile irons

    SciTech Connect

    Lerner, Y.S. )

    1994-06-01

    This study was undertaken to evaluate the wear resistance of different grades of ductile iron as alternatives to high-tensile-strength alloyed and inoculated gray irons and bronzes for machine-tool and high-pressure hydraulic components. Special test methods were employed to simulate typical conditions of reciprocating sliding wear with and without abrasive-contaminated lubricant for machine and press guideways. Quantitative relationships were established among wear rate, microstructure and microhardness of structural constituents, and nodule size of ductile iron. The frictional wear resistance of ductile iron as a bearing material was tested with hardened steel shafts using standard test techniques under continuous rotating movement with lubricant. Lubricant sliding wear tests on specimens and components for hydraulic equipment and apparatus were carried out on a special rig with reciprocating motion, simulating the working conditions in a piston/cylindrical unit in a pressure range from 5 to 32 MPa. Rig and field tests on machine-tool components and units and on hydraulic parts have confirmed the test data.

  1. Evaluation Of Saltstone Mixer Paddle Configuration For Improved Wear Resistance

    SciTech Connect

    Reigel, M. M.; Fowley, M. D.; Pickenheim, B. R.

    2012-09-27

    A soft metal with low wear resistance (6000 series aluminum), was used to minimize run time while maximizing wear rate. Two paddle configurations were tested, with the first four paddles after the augers replaced by the wear paddles. The first configuration was all flat paddles, with the first paddle not aligned with the augers and is consistent with present SPF mixer. The second configuration had helical paddles for the first three stages after the augers and a flat paddle at the fourth stage. The first helical paddle was aligned with the auger flight for the second configuration. The all flat paddle configuration wear rate was approximately double the wear rate of the helical paddles for the first two sets of paddles after the augers. For both configurations, there was little or no wear on the third and fourth paddle sets based on mass change, indicating that the fully wetted premix materials are much less abrasive than the un-wetted or partially wetted premix. Additionally, inspection of the wear surface of the paddles at higher magnification showed the flat paddles were worn much more than the helical and is consistent with the wear rates. Aligning the auger discharge flight with the first set of helical paddles was effective in reducing the wear rate as compared to the flat paddle configuration. Changing the paddle configuration from flat to helical resulted in a slight increase in rheological properties. Although, both tests produced grout-like material that is within the processing rage of the SPF, it should be noted that cement is not included in the premix and water was used rather than salt solution, which does affect the rheology of the fresh grout. The higher rheological properties from the helical wear test are most likely due to the reduced number of shearing paddles in the mixer. In addition, there is variation in the rheological data for each wear test. This is most likely due to the way that the dry feeds enter the mixer from the dry feeder. The

  2. Improved assembly processes for the Quartz Digital Accelerometer cantilever

    SciTech Connect

    Romero, A.M.; Gebert, C.T.

    1990-07-01

    This report covers the development of improved assembly processes for the Quartz Digital Accelerometer cantilever. In this report we discuss improved single-assembly tooling, the development of tooling and processes for precision application of polyimide adhesive, the development of the wafer scale assembly procedure, and the application of eutectic bonding to cantilever assembly. 2 refs., 17 figs.

  3. Systematic characterisation of silicon-embedded accelerometers for mechanomyography.

    PubMed

    Silva, J; Chau, T; Naumann, S; Heim, W

    2003-05-01

    Silicon soft suction sockets (roll-on sleeves) currently used in passive prostheses for below-elbow amputees could also be used in externally powered prostheses, enhancing their functionality and comfort. However, as it is extremely difficult to hold currently used electromyography (EMG) sensors in place reliably within a silicon socket, an alternative measurement of muscular activity as the control input is necessary. Mechanomyography (MMG) is the epidermal measurement of the low-frequency vibrations produced by a contracting muscle. MMG sensors do not have to be in direct contact with the skin. Moreover, the embedding of sensors in the roll-on sleeve may also solve attachment issues, making sensor placement flexible. Therefore the objective was to determine the feasibility of recording MMG signals using silicon-embedded, micro-machined accelerometers. Fifteen embedded accelerometers were excited with predefined vibration patterns. The signal-to-noise ratio (SNR) and frequency response of each sample were measured and compared with those of non-embedded accelerometers. The SNR of embedded samples (approximately equal to 19 dB) was significantly higher than that of non-embedded samples (approximately equal to 12 dB), owing to the considerable mechanical damping effect of the silicon in the 300-900 Hz bandwidth (p=0.0028). This has implications for the application of silicon-embedded accelerometers for externally powered prosthesis control. PMID:12803293

  4. Estimating Energy Expenditure with the RT3 Triaxial Accelerometer

    ERIC Educational Resources Information Center

    Maddison, Ralph; Jiang, Yannan; Vander Hoorn, Stephen; Mhurchu, Cliona Ni; Lawes, Carlene M. M.; Rodgers, Anthony; Rush, Elaine

    2009-01-01

    The RT3 is a relatively new triaxial accelerometer that has replaced the TriTrac. The aim of this study was to validate the RT3 against doubly labeled water (DLW) in a free-living, mixed weight sample of adults. Total energy expenditure (TEE) was measured over a 15-day period using DLW. Activity-related energy expenditure (AEE) was estimated by…

  5. Joint angle estimation with accelerometers for dynamic postural analysis.

    PubMed

    Ma, Jianting; Kharboutly, Haissam; Benali, Abderraouf; Benamar, Faïz; Bouzit, Mourad

    2015-10-15

    This paper presents a new accelerometer based method for estimating the posture of a subject standing on a dynamic perturbation platform. The induced perturbation is used to study the control mechanisms as well as the balance requirements that regulate the upright standing. These perturbations are translated into different intensity levels of speed and acceleration along longitudinal and lateral directions of motion. In our method, the human posture is modeled by a tridimensional, three-segment inverted pendulum which simultaneously takes into account both the anterior-posterior and medio-lateral strategies of hip and ankle. Four tri-axial accelerometers are used her, one accelerometer is placed on the platform, and the other three are attached to a human subject. Based on the results, the joint angle estimated compare closely to measurements from magnetic encoders placed on an articulated arm joint. The results were also comparable to those found when using a high-end optical motion capture system coupled with advanced biomechanical simulation software. This paper presents the comparisons of our accelerometer-based method with encoder and optical marker based method of the estimated joint angles under different dynamics perturbations. PMID:26338097

  6. Investigation of Electrostatic Accelerometer in HUST for Space Science Missions

    NASA Astrophysics Data System (ADS)

    Bai, Yanzheng; Hu, Ming; Li, Gui; Liu, Li; Qu, Shaobo; Wu, Shuchao; Zhou, Zebing

    2014-05-01

    High-precision electrostatic accelerometers are significant payload in CHAMP, GRACE and GOCE gravity missions to measure the non-gravitational forces. In our group, space electrostatic accelerometer and inertial sensor based on the capacitive sensors and electrostatic control technique has been investigated for space science research in China such as testing of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, satellite Earth's field recovery and so on. In our group, a capacitive position sensor with a resolution of 10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are developed. The fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. Meanwhile, high voltage suspension and free fall methods are applied to verify the function of electrostatic accelerometer. Last, the engineering model of electrostatic accelerometer has been developed and tested successfully in space and preliminary results are present.

  7. GPS-Based Reduced Dynamic Orbit Determination Using Accelerometer Data

    NASA Technical Reports Server (NTRS)

    VanHelleputte, Tom; Visser, Pieter

    2007-01-01

    Currently two gravity field satellite missions, CHAMP and GRACE, are equipped with high sensitivity electrostatic accelerometers, measuring the non-conservative forces acting on the spacecraft in three orthogonal directions. During the gravity field recovery these measurements help to separate gravitational and non-gravitational contributions in the observed orbit perturbations. For precise orbit determination purposes all these missions have a dual-frequency GPS receiver on board. The reduced dynamic technique combines the dense and accurate GPS observations with physical models of the forces acting on the spacecraft, complemented by empirical accelerations, which are stochastic parameters adjusted in the orbit determination process. When the spacecraft carries an accelerometer, these measured accelerations can be used to replace the models of the non-conservative forces, such as air drag and solar radiation pressure. This approach is implemented in a batch least-squares estimator of the GPS High Precision Orbit Determination Software Tools (GHOST), developed at DLR/GSOC and DEOS. It is extensively tested with data of the CHAMP and GRACE satellites. As accelerometer observations typically can be affected by an unknown scale factor and bias in each measurement direction, they require calibration during processing. Therefore the estimated state vector is augmented with six parameters: a scale and bias factor for the three axes. In order to converge efficiently to a good solution, reasonable a priori values for the bias factor are necessary. These are calculated by combining the mean value of the accelerometer observations with the mean value of the non-conservative force models and empirical accelerations, estimated when using these models. When replacing the non-conservative force models with accelerometer observations and still estimating empirical accelerations, a good orbit precision is achieved. 100 days of GRACE B data processing results in a mean orbit fit of

  8. In vitro wear simulation on the RandomPOD wear testing system as a screening method for bearing materials intended for total knee arthroplasty.

    PubMed

    Saikko, Vesa

    2014-08-22

    The 16-station RandomPOD wear test system, previously validated for prosthetic hip wear, was used in the simulation of knee wear mechanisms with a ball-on-flat test configuration. This consisted of a CoCr pin with a ground and polished spherical bearing surface (radius 28 mm) against a conventional, gamma-sterilized UHMWPE disk in serum lubrication. The biaxial motion, consisting of x and y translations, and the load was non-cyclic. Relative to the disk, the center of contact wandered within a circle of 10mm diameter, and the average sliding velocity was 15.5mm/s (ranging from 0 to 31 mm/s). The load varied non-cyclically between 0 and 142 N (average 73 N). In the 60-day test with 16 similar wear couples, moderate adhesive wear, the principal wear mechanism of a well-functioning prosthetic knee, dominated. This showed as a burnished, circular wear mark (diameter 13.2mm, area 137 mm(2)). The wear factor was 2.04 ± 0.03 × 10(-6)mm(3)/Nm (mean ± 95 percent confidence limit). For the first time a truly multidirectional, realistic and uniform, large capacity pin-on-disk simulation of knee wear mechanisms was implemented. PMID:24835561

  9. High Sensitive Precise 3D Accelerometer for Solar System Exploration with Unmanned Spacecrafts

    NASA Astrophysics Data System (ADS)

    Savenko, Y. V.; Demyanenko, P. O.; Zinkovskiy, Y. F.

    serve as recipients of the information. It allows to save up all advantages of FOS (carrier of information, as earlier, remains an optical flow), but problem of accuracy of measurements now will not be more connected with problem of measurement of low power intensity of optical flow - it is transferred from area of optical measurements in other, non-optical area, where there is no this problem, or it had been solved duly. It had been developed a new class of FOS with pulse modulation of radiation flow intensity at the Department of Design and Production of Redioelectronic Systems of National Technical University of Ukraine ``Kiev Polytechnic Institute''. PFOS have benefit differ from usual analogue FOS on high threshold sensitivity and wide dynamic range of measured values. As example there are described design and performances of proposed 3D accelerometer. High precision of accelerometer measurements on PFOS is provided by following: possibility of high precision measurements of time intervals, which serve as informative parameters in output pulse signal of PFOS; possibility of creating a high quality quartz oscillating system, which serves as sensitive element of PFOS; insensitiveness of metrological performances of the accelerometer to any parameter instabilities (time, temperature, etc.) of optical and electrical elements in measuring path of PFOS; digital processing of PFOS signal practically excludes processing errors; principle insensitiveness of PFOS to electromagnetic noises of any nature and any intensity; possibility of direct correction of measuring results, during their processing, for taking into account and excluding undesirable influences of any destabilizing factors are acting on PFOS. Quasi stationary approach The developed 3D accelerometer on PFOS of extra low accelerations has unique technical performances, that confirms our conclusions about potentially high metrological abilities of pulse FOS. It has the following performances (calculated

  10. Total hip wear assessment: a comparison between computational and in vitro wear assessment techniques using ISO 14242 loading and kinematics.

    PubMed

    Matsoukas, George; Willing, Ryan; Kim, Il Yong

    2009-04-01

    In the present study a direct comparison was made between in vitro total hip wear testing and a computational analysis considering the effects of time and a nonlinear stress-strain relationship for ultrahigh molecular weight polyethylene (UHMWPE) at 37 degrees C. The computational simulation was made correct through calibration to experimental volumetric wear results, and the predicted damage layout on the acetabular liner surface was compared with results estimated from laser scanning of the actual worn specimens. The wear rates for the testing specimens were found to be 17.14+/-1.23 mg/10(6) cycles and 19.39+/-0.79 mg/10(6) cycles, and the cumulative volumetric wear values after 3x10(6) cycles were 63.70 mm(3) and 64.02 mm(3) for specimens 1 and 2, respectively. The value of the calibrated wear coefficient was found to be 5.32(10(-10)) mm(3)/N mm for both specimens. The major difference between the computational and experimental wear results was the existence of two damage vectors in the experimental case. The actual location of damage was virtually the same in both cases, and the maximum damage depth of the computational model agreed well with the experiment. The existence of multiple wear vectors may indicate the need for computational approaches to account for multidirectional sliding or strain hardening of UHMWPE. Despite the limitation in terms of describing the overall damage layout, the present computational model shows that simulation can mimic some of the behavior of in vitro wear. PMID:19275440

  11. The MICROSTAR electrostatic accelerometer for the GRASP Mission

    NASA Astrophysics Data System (ADS)

    Foulon, Bernard; Christophe, Bruno; Liorzou, Francoise; Huynh, Phuong-Anh; Perrot, Eddy

    2015-04-01

    The Geodetic Reference Antenna in Space (GRASP) is a micro satellite mission concept dedicated to the enhancement of all the space geodetic techniques, and promising revolutionary improvements to the definition of the Terrestrial Reference Frame (TRF). GRASP collocates GPS, SLR, VLBI, and DORIS sensors on a dedicated spacecraft in order to establish precise and stable ties between the key geodetic techniques used to define and disseminate the TRF. GRASP also offers a space-based reference antenna for the present and future Global Navigation Satellite Systems (GNSS). The integration of an ultra sensitive accelerometer at the Center of mass of the satellite can provide not only improvement of the Precise Orbit Determination (POD) by the accurate measurement of the non-gravitational force acting on the surface of the satellite but also by the possibility to calibrate with an accuracy better than 100 µm the change in the position of the Satellite Center of Mass as it is performed in the GRACE mission and to determine the precise motion of the antennas assuming some rigid structure between them and the accelerometer as it is done between the star sensor, the optical cube assembly of satellite laser ranging system and the accelerometer in the GRACE-Follow On mission. The proposed accelerometer is miniaturized version of the electrostatic accelerometers developed for the Earth gravity missions CHAMP, GRACE, GOCE and GRACE-FO. He has 3 sensitive axes thanks to a cubic proof-mass and provides the 3 linear accelerations and the 3 angular accelerations about its 3 orthogonal axes. He is called MICROSTAR and its foreseen performance is a linear acceleration noise lower than 10-11 ms-2/Hz1/2 into a measurement bandwidth between 10-3 Hz and 0.1 Hz.

  12. New Perspectives on Tooth Wear

    PubMed Central

    Lucas, Peter W.; Omar, Ridwaan

    2012-01-01

    Some of the efforts that have been made to document tooth wear are reviewed here with an emphasis on nonhuman mammals, literature with which dentists may not be very familiar. We project a change in research strategy from the description of wear at various scales of measurement towards investigation of the mechanical mechanisms that actually create the texture of a worn surface. These studies should reveal exactly how tooth tissue is lost and what aspects of the structure of dental tissues affect this. The most important aspects of the interaction between the tooth surface and wear particles would appear to be particle size, particle shape, their mechanical properties with respect to those of tooth tissues, and the influence of saliva. PMID:22536239

  13. Ultra-Low Power Event-Driven Wireless Sensor Node Using Piezoelectric Accelerometer for Health Monitoring

    NASA Astrophysics Data System (ADS)

    Okada, Hironao; Kobayashi, Takeshi; Masuda, Takashi; Itoh, Toshihiro

    2009-07-01

    We describe a low power consumption wireless sensor node designed for monitoring the conditions of animals, especially of chickens. The node detects variations in 24-h behavior patterns by acquiring the number of the movement of an animal whose acceleration exceeds a threshold measured in per unit time. Wireless sensor nodes when operated intermittently are likely to miss necessary data during their sleep mode state and waste the power in the case of acquiring useless data. We design the node worked only when required acceleration is detected using a piezoelectric accelerometer and a comparator for wake-up source of micro controller unit.

  14. Lameness detection via leg-mounted accelerometers on dairy cows on four commercial farms.

    PubMed

    Thorup, V M; Munksgaard, L; Robert, P-E; Erhard, H W; Thomsen, P T; Friggens, N C

    2015-10-01

    Lameness in dairy herds is traditionally detected by visual inspection, which is time-consuming and subjective. Compared with healthy cows, lame cows often spend longer time lying down, walk less and change behaviour around feeding time. Accelerometers measuring cow leg activity may assist farmers in detecting lame cows. On four commercial farms, accelerometer data were derived from hind leg-mounted accelerometers on 348 Holstein cows, 53 of them during two lactations. The cows were milked twice daily and had no access to pasture. During a lactation, locomotion score (LS) was assessed on average 2.4 times (s.d. 1.3). Based on daily lying duration, standing duration, walking duration, total number of steps, step frequency, motion index (MI, i.e. total acceleration) for lying, standing and walking, eight accelerometer means and their corresponding coefficient of variation (CV) were calculated for each week immediately before an LS. A principal component analysis was performed to evaluate the relationship between the variables. The effects of LS and farm on the principal components (PC) and on the variables were analysed in a mixed model. The first four PC accounted for 27%, 18%, 12% and 10% of the total variation, respectively. PC1 corresponded to Activity variability due to heavy loading by five CV variables related to standing and walking. PC2 corresponded to Activity level due to heavy loading by MI walking, MI standing and walking duration. PC3 corresponded to Recumbency due to heavy loading by four variables related to lying. PC4 corresponded mainly to Stepping due to heavy loading by step frequency. Activity variability at LS4 was significantly higher than at the lower LS levels. Activity level was significantly higher at LS1 than at LS2, which was significantly higher than at LS4. Recumbency was unaffected by LS. Stepping at LS1 and LS2 was significantly higher than at LS3 and LS4. Activity level was significantly lower on farm 3 compared with farms 1 and 2

  15. Clinical measurement of tooth wear: Tooth wear indices

    PubMed Central

    López-Frías, Francisco J.; Castellanos-Cosano, Lizett; Martín-González, Jenifer; Llamas-Carreras, José M.

    2012-01-01

    Attrition, erosion, and abrasion result in alterations to the tooth and manifest as tooth wear. Each classification corresponds to a different process with specific clinical features. Classifications made so far have no accurate prevalence data because the indexes do not necessarily measure a specific etiology, or because the study populations can be diverse in age and characteristics. Tooth wears (attrition, erosion and abrasion) is perceived internationally as a growing problem. However, the interpretation and comparison of clinical and epidemiological studies, it is increasingly difficult because of differences in terminology and the large number of indicators/indices that have been developed for the diagnosis, classification and monitoring of the loss of dental hard tissue. These indices have been designed to identify increasing severity and are usually numerical, none have universal acceptance, complicating the evaluation of the true increase in prevalence reported. This article considers the ideal requirements for an erosion index. A literature review is conducted with the aim of analyzing the evolution of the indices used today and discuss whether they meet the clinical needs and research in dentistry. Key words:Tooth wear, tooth wear indices, attrition, erosion, abrasion, abfraction. PMID:24558525

  16. Steam generator fretting-wear damage: A summary of recent findings

    SciTech Connect

    Guerout, F.M.; Fisher, N.J.

    1999-08-01

    Flow-induced vibration of steam generator (SG) tubes may sometimes result in fretting-wear damage at the tube-to-support locations. Fretting-wear damage predictions are largely based on experimental data obtained at representative test conditions. Fretting-wear of SG materials has been studied at the Chalk River Laboratories for two decades. Tests are conducted in fretting-wear test machines that simulate SG environmental conditions and tube-to-support dynamic interactions. A new high-temperature force and displacement measuring system was developed to monitor tube-to-support interaction (i.e., work-rate) at operating conditions. This improvement in experimental fretting-wear technology was used to perform a comprehensive study of the effect of various environment and design parameters on SG tube wear damage. This paper summarizes the results of tests performed over the past 4 yr to study the effect of temperature, water chemistry, support geometry, and tube material on fretting-wear. The results show a significant effect of temperature on tube wear damage. Therefore, fretting-wear tests must be performed at operating temperatures in order to be relevant. No significant effect of the type of water treatment on tube wear damage was observed. For predominantly impacting motion, the wear of SG tubes in contact with 410 stainless steel is similar regardless of whether Alloy 690 or Alloy 800 is used as tubing material or whether lattice bars or broached hole supports are used. Based on results presented in this paper, an average wear coefficient value is recommended that is used for the prediction of SG tube wear depth versus time.

  17. Assessing head and trunk symmetry during sleep using tri-axial accelerometers.

    PubMed

    Sato, Haruhiko; Ikura, Daiki; Tsunoda, Masahiro

    2015-03-01

    Using two types of small, lightweight tri-axial accelerometers, we obtained evidence for the effectiveness of an approach for assessing head-trunk symmetrical or asymmetrical positions during sleep. First, we assessed the accuracy of our monitoring system in five healthy young adults (age range, 22-24 years). The participants wore acceleration monitors on the sternum and forehead; then spent 5 min in six different positions. Once accuracy was confirmed, we assessed head-trunk symmetry during night-time sleep in 10 healthy children (age range, 3-13 years) and 10 young adults (age range, 21-26 years) in their home environments. All participants wore the monitors during one night's sleep in their homes. After computing head-trunk positions using the orientation data obtained by the accelerometers, head and trunk symmetry were evaluated. The head and trunk positions were correctly detected: the positional data from the trunk had 99% agreement, and the data from the head had 96% agreement. Both the young adults and children were observed to spend time with the head-trunk in asymmetric positions; however, the subjects changed position frequently so the asymmetrical postures were mobile. We concluded that the proposed monitoring system is a reliable and valid approach for assessing head-trunk symmetry during sleep at home. Implications for Rehabilitation We propose a head and trunk symmetry monitoring system using accelerometers. The proposed system could accurately identify head and trunk position. Asymmetrical positioning was seen in healthy participants but it was not immobile. PMID:24274623

  18. Performance comparison of accelerometer calibration algorithms based on 3D-ellipsoid fitting methods.

    PubMed

    Gietzelt, Matthias; Wolf, Klaus-Hendrik; Marschollek, Michael; Haux, Reinhold

    2013-07-01

    Calibration of accelerometers can be reduced to 3D-ellipsoid fitting problems. Changing extrinsic factors like temperature, pressure or humidity, as well as intrinsic factors like the battery status, demand to calibrate the measurements permanently. Thus, there is a need for fast calibration algorithms, e.g. for online analyses. The primary aim of this paper is to propose a non-iterative calibration algorithm for accelerometers with the focus on minimal execution time and low memory consumption. The secondary aim is to benchmark existing calibration algorithms based on 3D-ellipsoid fitting methods. We compared the algorithms regarding the calibration quality and the execution time as well as the number of quasi-static measurements needed for a stable calibration. As evaluation criterion for the calibration, both the norm of calibrated real-life measurements during inactivity and simulation data was used. The algorithms showed a high calibration quality, but the execution time differed significantly. The calibration method proposed in this paper showed the shortest execution time and a very good performance regarding the number of measurements needed to produce stable results. Furthermore, this algorithm was successfully implemented on a sensor node and calibrates the measured data on-the-fly while continuously storing the measured data to a microSD-card. PMID:23566707

  19. The dual cycle bridge detection of piezoresistive triaxial accelerometer based on MEMS technology

    NASA Astrophysics Data System (ADS)

    Juanting, Zhang; Changde, He; Hui, Zhang; Yuping, Li; Yongping, Zhang; Chunhui, Du; Wendong, Zhang

    2014-06-01

    A cycle bridge detection method, which uses a piezoresistive triaxial accelerometer, has been described innovatively. This method just uses eight resistors to form a cycle detection bridge, which can detect the signal of the three directions for real time. It breaks the law of the ordinary independent Wheatstone bridge detection method, which uses at least 12 resistors and each four resistors connected as a Wheatstone bridge to detect the output signal from a specific direction. In order to verify the feasibility of this method, the modeling and simulating of the sensor structure have been conducted by ANSYS, then the dual cycle bridge detection method and independent Wheatstone bridge detection method are compared, the result shows that the former method can improve the sensitivity of the sensor effectively. The sensitivity of the x, y-axis used in the former method is two times that of the sensor used in the latter method, and the sensitivity of the z-axis is four times. At the same time, it can also reduce the cross-axis coupling degree of the sensor used in the dual cycle bridge detection method. In addition, a signal amplifier circuit and adder circuit have been provided. Finally, the test result of the “eight-beams/mass” triaxial accelerometer, which is based on the dual cycle bridge detection method and the related circuits, have been provided. The results of the test and the theoretical analysis are consistent, on the whole.

  20. Numerical modelling of tool wear in turning with cemented carbide cutting tools

    SciTech Connect

    Franco, P.; Estrems, M.; Faura, F.

    2007-04-07

    A numerical model is proposed for analysing the flank and crater wear resulting from the loss of material on cutting tool surface in turning processes due to wear mechanisms of adhesion, abrasion and fracture. By means of this model, the material loss along cutting tool surface can be analysed, and the worn surface shape during the workpiece machining can be determined. The proposed model analyses the gradual degradation of cutting tool during turning operation, and tool wear can be estimated as a function of cutting time. Wear-land width (VB) and crater depth (KT) can be obtained for description of material loss on cutting tool surface, and the effects of the distinct wear mechanisms on surface shape can be studied. The parameters required for the tool wear model are obtained from bibliography and experimental observation for AISI 4340 steel turning with WC-Co cutting tools.

  1. Recent developments in wear and corrosion resistant alloys for oil industry

    SciTech Connect

    Raghu, D.; Wu, J.B.C.

    1997-08-01

    Oil production and refining environments pose a very severe wear and corrosion environment. Material designers are challenged with the need to design and develop materials that combine a high corrosion resistance with very good wear resistance. Coupled with that is the need for these materials to meet requirements, such as, fracture toughness and resistance to sulfide and chloride stress corrosion cracking. Often times, increasing the resistance to wear compromises the corrosion and welding characteristics. This paper covers a variety of material developments that aim to address the twin problems of wear and corrosion. The paper covers the alloy design fundamentals and discusses the pertinent wear properties and general corrosion resistance compared to traditional wear resistant materials. Proven applications, with particular reference to petroleum and petro-chemical areas are discussed. Potential applications are also cited.

  2. Tribochemical wear of sodium trisilicate glass at the nanometer size scale

    SciTech Connect

    Stevens, F.; Langford, S.C.; Dickinson, J.T.

    2006-01-15

    We report measurements of single-asperity wear on sodium trisilicate glass in basic solution using atomic force microscopy (AFM), where the silicon nitride tip was used both to tribologically load and image the surface. Single-asperity micron-square polishing was performed by rastering the AFM tip in a square pattern. More localized, 'nano'-machining was performed by drawing the AFM tip back and forth across the substrate in a linear fashion. In both modes, the wear rate gradually slowed during prolonged scanning. Changes in contact stress due to the wear of the AFM tip dramatically affect the observed wear rates. The changes in surface elevation for both the tip and the substrate display the same dependence on true stress and time for the case of square-raster scanning over micron dimensions. In the case of linear reciprocal scanning, conformal wear substantially modifies the rates and morphology of the wear of both the tip and the substrate.

  3. Critical length scale controls adhesive wear mechanisms

    PubMed Central

    Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-Francois

    2016-01-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients. PMID:27264270

  4. Critical length scale controls adhesive wear mechanisms.

    PubMed

    Aghababaei, Ramin; Warner, Derek H; Molinari, Jean-Francois

    2016-01-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients. PMID:27264270

  5. Critical length scale controls adhesive wear mechanisms

    NASA Astrophysics Data System (ADS)

    Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-Francois

    2016-06-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients.

  6. Elastomer Compound Developed for High Wear Applications

    NASA Technical Reports Server (NTRS)

    Crawford, D.; Feuer, H.; Flanagan, D.; Rodriguez, G.; Teets, A.; Touchet, P.

    1993-01-01

    The U.S. Army is currently spending 300 million dollars per year replacing rubber track pads. An experimental rubber compound has been developed which exhibits 2 to 3 times greater service life than standard production pad compounds. To improve the service life of the tank track pads various aspects of rubber chemistry were explored including polymer, curing and reinforcing systems. Compounds that exhibited superior physical properties based on laboratory data were then fabricated into tank pads and field tested. This paper will discuss the compounding studies, laboratory data and field testing that led to the high wear elastomer compound.

  7. A high and low noise model for strong motion accelerometers

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Cauzzi, C.; Olivieri, M.

    2010-12-01

    We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; <155dB dynamic range) coupled with a 24-bit Nanometrics Taurus datalogger. The proposed noise models are based on power spectral density (PSD) noise levels for each strong motion station computed via PQLX (McNamara and Buland, 2004) from several years of continuous recording. The 'Accelerometer Low Noise Model', ALNM, is dominated by instrument noise from the sensor and datalogger. The 'Accelerometer High Noise Model', AHNM, reflects 1) at high frequencies the acceptable site noise in urban areas, 2) at mid-periods the peak microseismal energy, as determined by the Peterson High Noise Model and 3) at long periods the maximum noise observed from well insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular

  8. Should School Nurses Wear Uniforms?

    ERIC Educational Resources Information Center

    Journal of School Health, 2001

    2001-01-01

    This 1958 paper questions whether school nurses should wear uniforms (specifically, white uniforms). It concludes that white uniforms are often associated with the treatment of ill people, and since many people have a fear reaction to them, they are not necessary and are even undesirable. Since school nurses are school staff members, they should…

  9. Using Accelerometer and Gyroscopic Measures to Quantify Postural Stability

    PubMed Central

    Alberts, Jay L.; Hirsch, Joshua R.; Koop, Mandy Miller; Schindler, David D.; Kana, Daniel E.; Linder, Susan M.; Campbell, Scott; Thota, Anil K.

    2015-01-01

    Context Force platforms and 3-dimensional motion-capture systems provide an accurate method of quantifying postural stability. Substantial cost, space, time to administer, and need for trained personnel limit widespread use of biomechanical techniques in the assessment of postural stability in clinical or field environments. Objective To determine whether accelerometer and gyroscope data sampled from a consumer electronics device (iPad2) provide sufficient resolution of center-of-gravity (COG) movements to accurately quantify postural stability in healthy young people. Design Controlled laboratory study. Setting Research laboratory in an academic medical center. Patients or Other Participants A total of 49 healthy individuals (age = 19.5 ± 3.1 years, height = 167.7 ± 13.2 cm, mass = 68.5 ± 17.5 kg). Intervention(s) Participants completed the NeuroCom Sensory Organization Test (SOT) with an iPad2 affixed at the sacral level. Main Outcome Measure(s) Primary outcomes were equilibrium scores from both systems and the time series of the angular displacement of the anteroposterior COG sway during each trial. A Bland-Altman assessment for agreement was used to compare equilibrium scores produced by the NeuroCom and iPad2 devices. Limits of agreement was defined as the mean bias (NeuroCom − iPad) ± 2 standard deviations. Mean absolute percentage error and median difference between the NeuroCom and iPad2 measurements were used to evaluate how closely the real-time COG sway measured by the 2 systems tracked each other. Results The limits between the 2 devices ranged from −0.5° to 0.5° in SOT condition 1 to −2.9° to 1.3° in SOT condition 5. The largest absolute value of the measurement error within the 95% confidence intervals for all conditions was 2.9°. The mean absolute percentage error analysis indicated that the iPad2 tracked NeuroCom COG with an average error ranging from 5.87% to 10.42% of the NeuroCom measurement across SOT conditions. Conclusions The i

  10. Microstructure and elevated temperature wear behavior of induction melted Fe-based composite coating

    NASA Astrophysics Data System (ADS)

    Hu, Ge; Meng, Huimin; Liu, Junyou

    2014-10-01

    Fe-based composite coating prepared onto the component of guide wheel using ultrasonic frequency inductive cladding (UFIC) technique has been investigated in terms of microstructure, phase constitutions, microhardness and elevated temperature wear behavior by scanning electron microscopy (SEM), energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), Vickers microhardness tester and ball-on-disc wear tester. The results indicated that the primary phase in the coating contained austenite γ-Fe, eutectic γ-Fe/(Cr,Fe)2B, boride (Cr,Fe)2B and precipitation enriched in Mo. The average microhardness of the coating was 760 ± 10 HV0.2, which was three times higher than that of the substrate. With increasing temperature, the friction coefficients of the coating and high-chromium cast iron decreased gradually while the wear rates increased during dry sliding wear condition. The relative wear resistance of the coating was 1.63 times higher than that of the high-chromium cast iron at 500 °C, which was ascribed to the hard borides with high thermal stability uniformly embedded in the coating and the formation of dense transfer layer formed onto the worn surface. The high temperature wear mechanism of the coating was dominated by mild abrasive wear. The study revealed that Fe-based composite coating had excellent high temperature wear resistance under dry sliding wear condition.

  11. Characterizing coarse bedload transport during floods with RFID and accelerometer tracers, in-stream RFID antennas and HEC-RAS modeling

    NASA Astrophysics Data System (ADS)

    Olinde, L.; Johnson, J. P.

    2013-12-01

    By monitoring the transport timing and distances of tracer grains in a steep mountains stream, we collected data that can constrain numerical bedload transport models considered for these systems. We captured bedload activity during a weeks-spanning snowmelt period in Reynolds Creek, Idaho by deploying Radio Frequency Identification (RFID) and accelerometer embedded tracers with in-stream stationary RFID antennas. During transport events, RFID dataloggers recorded the times when tracers passed over stationary antennas. The accelerometer tracers also logged x, y, z-axis accelerations every 10 minutes to identify times of motion and rest. After snowmelt flows receded, we found tracers with mobile antennas and surveyed their positions. We know the timing and tracer locations when accelerometer tracers were initially entrained, passed stationary antennas, and were finally deposited at the surveyed locations. The fraction of moving accelerometers over time correlates well with discharge. Comparisons of the transported tracer fraction between rising and falling limbs over multiple flood peaks suggest that some degree of clockwise hysteresis persisted during the snowmelt period. Additionally, we apply accelerometer transport durations and displacement distances to calculate virtual velocities over full tracer path lengths and over lengths between initial locations to stationary antennas as well as between stationary antennas to final positions. The accelerometer-based virtual velocities are significantly faster than those estimated from traditional tracer methods that estimate bedload transport durations by assuming threshold flow conditions. We also subsample the motion data to calculate how virtual velocities change over the measurement intervals. Regressions of these relations are in turn used to extrapolate virtual velocities at smaller sampling timescales. Minimum hop lengths are also evaluated for each accelerometer tracer. Finally, flow conditions during the

  12. Needs and challenges in precision wear measurement

    SciTech Connect

    Blau, P.J.

    1996-01-10

    Accurate, precise wear measurements are a key element in solving both current wear problems and in basic wear research. Applications range from assessing durability of micro-scale components to accurate screening of surface treatments and thin solid films. Need to distinguish small differences in wear tate presents formidable problems to those who are developing new materials and surface treatments. Methods for measuring wear in ASTM standard test methods are discussed. Errors in using alterate methods of wear measurement on the same test specimen are also described. Human judgemental factors are a concern in common methods for wear measurement, and an experiment involving measurement of a wear scar by ten different people is described. Precision in wear measurement is limited both by the capabilities of the measuring instruments and by the nonuniformity of the wear process. A method of measuring wear using nano-scale indentations is discussed. Current and future prospects for incorporating advanced, higher-precision wear measurement methods into standards are considered.

  13. Wear particle analysis using the ferrograph

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1983-01-01

    The use of the Ferrograph in analyzing wear particles from a variety of different sources is reported. Examples of wear particles from gas turbine engines, bearing tests, friction and wear tests, hydraulic systems, and human joints are illustrated. In addition, the separation of bacteria and human cells is described.

  14. Testing of a Fiber Optic Wear, Erosion and Regression Sensor

    NASA Technical Reports Server (NTRS)

    Korman, Valentin; Polzin, Kurt A.

    2011-01-01

    The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.

  15. Validation of triaxial accelerometers to measure the lying behaviour of adult domestic horses.

    PubMed

    DuBois, C; Zakrajsek, E; Haley, D B; Merkies, K

    2015-01-01

    Examining the characteristics of an animal's lying behaviour, such as frequency and duration of lying bouts, has become increasingly relevant for animal welfare research. Triaxial accelerometers have the advantage of being able to continuously monitor an animal's standing and lying behaviour without relying on live observations or video recordings. Multiple models of accelerometers have been validated for use in monitoring dairy cattle; however, no units have been validated for use in equines. This study tested Onset Pendant G data loggers attached to the hind limb of each of two mature Standardbred horses for a period of 5 days. Data loggers were set to record their position every 20 s. Horses were monitored via live observations during the day and by video recordings during the night to compare activity against accelerometer data. All lying events occurred overnight (three to five lying bouts per horse per night). Data collected from the loggers was converted and edited using a macro program to calculate the number of bouts and the length of time each animal spent lying down by hour and by day. A paired t-test showed no significant difference between the video observations and the output from the data loggers (P=0.301). The data loggers did not distinguish standing hipshot from standing square. Predictability, sensitivity, and specificity were all >99%. This study has validated the use of Onset Pendant G data loggers to determine the frequency and duration of standing and lying bouts in adult horses when set to sample and register readings at 20 s intervals. PMID:25273864

  16. The impact of accelerometer use in exercise-associated hypoglycemia prevention in type 1 diabetes.

    PubMed

    Stenerson, Matthew; Cameron, Fraser; Payne, Shelby R; Payne, Sydney L; Ly, Trang T; Wilson, Darrell M; Buckingham, Bruce A

    2015-01-01

    Exercise-associated hypoglycemia is a common adverse event in people with type 1 diabetes. Previous in silico testing by our group demonstrated superior exercise-associated hypoglycemia mitigation when a predictive low glucose suspend (PLGS) algorithm was augmented to incorporate activity data. The current study investigates the effectiveness of an accelerometer-augmented PLGS algorithm in an outpatient exercise protocol. Subjects with type 1 diabetes on insulin pump therapy participated in two structured soccer sessions, one utilizing the algorithm and the other using the subject's regular basal insulin rate. Each subject wore their own insulin pump and a Dexcom G4™ Platinum continuous glucose monitor (CGM); subjects on-algorithm also wore a Zephyr BioHarness™ 3 accelerometer. The algorithm utilized a Kalman filter with a 30-minute prediction horizon. Activity and CGM readings were manually entered into a spreadsheet and at five-minute intervals, the algorithm indicated whether the basal insulin infusion should be on or suspended; any changes were then implemented by study staff. The rate of hypoglycemia during and after exercise (until the following morning) was compared between groups. Eighteen subjects (mean age 13.4 ± 3.7 years) participated in two separate sessions 7-22 days apart. The difference in meter blood glucose levels between groups at each rest period did not achieve statistical significance at any time point. Hypoglycemia during the session was recorded in three on-algorithm subjects, compared to six off-algorithm subjects. In the postexercise monitoring period, hypoglycemia occurred in two subjects who were on-algorithm during the session and four subjects who were off-algorithm. The accelerometer-augmented algorithm failed to prevent exercise-associated hypoglycemia compared to subjects on their usual basal rates. A larger sample size may have achieved statistical significance. Further research involving an automated system, a larger sample

  17. Corrosive wear behavior of 2014 and 6061 aluminum alloy composites

    SciTech Connect

    Varma, S.K.; Andrews, S.; Vasquez, G.

    1999-02-01

    Alloys of 2014 and 6061 aluminum reinforced with 0.1 volume fraction of alumina particles (VFAP) were subjected to impact scratching during a corrosive wear process. The transient currents generated due to the impact were measured in the two composites as well as in their respective monoliths. The effect of solutionizing time on the transient currents was correlated to the near surface microstructures, scratch morphology, concentration of quenched-in vacancies, and changes in grain sizes. It was observed that the transient current values increase with an increase in solutionizing time, indicating that the corrosive wear behavior is not strongly affected by the grain boundaries. However, a combination of pitting and the galvanic corrosion may account for the typical corrosive wear behavior exhibited by the alloys and the composites of this study.

  18. Design of MEMS accelerometer based acceleration measurement system for automobiles

    NASA Astrophysics Data System (ADS)

    Venkatesh, K. Arun; Mathivanan, N.

    2012-10-01

    Design of an acceleration measurement system using a MEMS accelerometer to measure acceleration of automobiles in all the three axes is presented. Electronic stability control and anti-lock breaking systems in automobiles use the acceleration measurements to offer safety in driving. The system uses an ARM microcontroller to quantize the outputs of accelerometer and save the measurement data on a microSD card. A LabVIEW program has been developed to analyze the longitudinal acceleration measurement data and test the measurement system. Random noises generated and added with measurement data during measurement are filtered by a Kalman filter implemented in LabVIEW. Longitudinal velocity of the vehicle is computed from the measurement data and displayed on a graphical chart. Typical measurement of velocity of a vehicle at different accelerations and decelerations is presented.

  19. Fibre Bragg grating based accelerometer with extended bandwidth

    NASA Astrophysics Data System (ADS)

    Basumallick, Nandini; Biswas, Palas; Chakraborty, Rajib; Chakraborty, Sushanta; Dasgupta, Kamal; Bandyopadhyay, Somnath

    2016-03-01

    We have shown experimentally that the operable bandwidth of a fibre Bragg grating (FBG) based accelerometer can be extended significantly, without compromising its sensitivity, using a post-signal processing technique which involves frequency domain weighting. It has been demonstrated that using the above technique acceleration can be correctly interpreted even when the operating frequency encroaches on the region where the frequency response of the sensor is non-uniform. Two different excitation signals, which we often encounter in structural health monitoring applications, e.g. (i) a signal composed of multi-frequency components and (ii) a sinusoidal excitation with a frequency sweep, have been considered in our experiment. The results obtained have been compared with a piezo accelerometer.

  20. Guidelines for Standardized Testing of Broadband Seismometers and Accelerometers

    USGS Publications Warehouse

    Hutt, Charles R.; Evans, John R.; Followill, Fred; Nigbor, Robert L.; Wielandt, Erhard

    2010-01-01

    Testing and specification of seismic and earthquake-engineering sensors and recorders has been marked by significant variations in procedures and selected parameters. These variations cause difficulty in comparing such specifications and test results. In July 1989, and again in May 2005, the U.S. Geological Survey hosted international pub-lic/private workshops with the goal of defining widely accepted guidelines for the testing of seismological inertial sensors, seismometers, and accelerometers. The Proceedings of the 2005 workshop have been published and include as appendix 6 the report of the 1989 workshop. This document represents a collation and rationalization of a single set of formal guidelines for testing and specifying broadband seismometers and accelerometers.

  1. Shuttle entry trajectory reconstruction using inflight accelerometer and gyro measurements

    NASA Technical Reports Server (NTRS)

    Compton, H. R.; Blanchard, R. C.; Findlay, J. T.

    1979-01-01

    An error analysis has been made of a Shuttle postflight entry trajectory reconstruction process to obtain trajectory state estimation errors and to assess the impact of these errors on Shuttle aerodynamic force coefficient extraction. In this analysis, the entry trajectory is assumed to be reconstructed via numerical integration of onboard accelerometer and gyro measurements and constrained to satisfy ground-based radio tracking. The trajectory state estimation errors are calculated using a Kalman-Schmidt sequential filter assuming various measurement error models and combinations of ground-based tracking. The resultant trajectory estimation errors are analyzed in a simplified perturbation process to establish the accuracy to which postflight aerodynamic force coefficients can be determined. Results are presented which show that the principal error sources affecting the trajectory reconstruction and thus the force coefficient extraction, assuming perfect atmospheric density knowledge, are the accelerometer and gyro resolution, acceleration-sensitive gyro drifts, and the alignment uncertainties associated with integration on the Shuttle.

  2. Atmospheric structure measurements from accelerometer instrumented falling spheres

    NASA Astrophysics Data System (ADS)

    Philbrick, C. R.; McIsaac, J. P.; Fryklund, D. H.; Buck, R. F.

    1981-12-01

    A three axis piezoelectric accelerometer, mounted in a 25 cm diameter sphere was used to measure atmospheric density and winds and to obtain a temperature profile in the altitude range from 50 to 150 km. The sphere with its own telemetry system and beacon transponder was released from a rocket at 70 km altitude on the up leg of the flight. The drag acceleration measured by the accelerometer can be used to directly calculate the atmospheric density with a vertical resolution of 100 m. The wind field is calculated, assuming uniform distribution in the horizontal plane between the up and down leg regions, which are 30 km apart. The atmospheric temperature profile is determined by integrating along the density profile, assuming ideal gas law conditions and hydrostatic equilibrium. The profiles obtained from the density, temperature and wind profiles can be used to describe those regions of the atmosphere expected to be statically and dynamically unstable.

  3. A simple intensity modulation based fiber-optic accelerometer

    NASA Astrophysics Data System (ADS)

    Guozhen, Yao; Yongqian, Li; Zhi, Yang

    2016-05-01

    A fiber-optic accelerometer with simple structure and high performance based on intensity modulation is proposed. Using only a length of single mode fiber compressed by a cantilever, the intensity of reflected light is modulated by the vibration acceleration applied to it. The effects of the fiber location, the dimension parameters of the cantilever on frequency response and sensitivity are investigated. The experimental results demonstrate that the accelerometer has a flat frequency response over a 4700 Hz bandwidth and a sensitivity of 21.24 mV/g with a cantilever dimension of 30 × 8 × 1.6 mm3 and a distance of 5 mm between the fiber location and the suspended cantilever end; the coefficient of determination is better than 0.999. In addition, the effect of temperature and the stability of the sensing system are investigated.

  4. A New Force Balanced Accelerometer Using Tunneling Tip Position Sensing

    NASA Technical Reports Server (NTRS)

    Zavracky, P.; Hartley, F.; Sherman, N.; Warner, K.

    1993-01-01

    In this paper, we report the initial development of a single-axis bulk micromachined accelerometer. The device employs an electron tunneling tip as a position detector in a force feedback control system. Control electrodes are placed above and below the proof mass and act as electrostatic force plates. Using the force plates, the position of the proof mass relative to the tunneling tip can be controlled.

  5. Accelerometer Output and MET Values of Common Physical Activities

    PubMed Central

    Kozey, Sarah L.; Lyden, Kate; Howe, Cheryl A.; Staudenmayer, John W.; Freedson, Patty S.

    2010-01-01

    Purpose This paper 1) provides the calibration procedures and methods for metabolic and activity monitor data collection, 2) compares measured MET values to the MET values from the Compendium of Physical Activities, and 3) examines the relationship between accelerometer output and METs for a range of physical activities Methods Participants (n=277) completed 11 activities for seven minutes each from a menu of 23 physical activities. Oxygen consumption (VO2) was measured using a portable metabolic system and an accelerometer was worn. MET values were defined as follows; measuredMETs (VO2/measured RMR) and standardMETs (VO2/3.5ml·kg·min−1). For the total sample and by sub-group (age [young <40y], sex and BMI [normal-weight <25 kg·m2]), measuredMETs and standardMETs were compared to the Compendium, using 95% confidence intervals to determine statistical significance (α=0.05). Average count·min−1 for each activity and the linear association between count·min−1 and METs are presented. Results Compendium METs were different than measured METs for 17/21 activities (81%). The number of activities different than the Compendium were similar between sub-groups or when standard METs were used. The average counts for the activities ranged from 11 counts·min−1(dishes) to 7490 counts·min−1 (2.23m·s−1, 3%) The r2 between counts and METs was 0.65. Conclusions This study provides valuable information about data collection, metabolic responses, and accelerometer output for common physical activities in a diverse participant sample. The Compendium should be updated with additional empirical data and linear regression models are inappropriate for accurately predicting METs from accelerometer output. PMID:20142781

  6. Sedentary Behavior in Preschoolers: How Many Days of Accelerometer Monitoring Is Needed?

    PubMed Central

    Byun, Wonwoo; Beets, Michael W.; Pate, Russell R.

    2015-01-01

    The reliability of accelerometry for measuring sedentary behavior in preschoolers has not been determined, thus we determined how many days of accelerometry monitoring are necessary to reliably estimate daily time spent in sedentary behavior in preschoolers. In total, 191 and 150 preschoolers (three to five years) wore ActiGraph accelerometers (15-s epoch) during the in-school (≥4 days) and the total-day (≥6 days) period respectively. Accelerometry data were summarized as time spent in sedentary behavior (min/h) using three different cutpoints developed for preschool-age children (<37.5, <200, and <373 counts/15 s). The intraclass correlations (ICCs) and Spearman-Brown prophecy formula were used to estimate the reliability of accelerometer for measuring sedentary behavior. Across different cutpoints, the ICCs ranged from 0.81 to 0.92 for in-school sedentary behavior, and from 0.75 to 0.81 for total-day sedentary behavior, respectively. To achieve an ICC of ≥0.8, two to four days or six to nine days of monitoring were needed for in-school sedentary behavior and total-day sedentary behavior, respectively. These findings provide important guidance for future research on sedentary behavior in preschool children using accelerometry. Understanding the reliability of accelerometry will facilitate the conduct of research designed to inform policies and practices aimed at reducing sedentary behavior in preschool children. PMID:26492261

  7. Spectral Regression Based Fault Feature Extraction for Bearing Accelerometer Sensor Signals

    PubMed Central

    Xia, Zhanguo; Xia, Shixiong; Wan, Ling; Cai, Shiyu

    2012-01-01

    Bearings are not only the most important element but also a common source of failures in rotary machinery. Bearing fault prognosis technology has been receiving more and more attention recently, in particular because it plays an increasingly important role in avoiding the occurrence of accidents. Therein, fault feature extraction (FFE) of bearing accelerometer sensor signals is essential to highlight representative features of bearing conditions for machinery fault diagnosis and prognosis. This paper proposes a spectral regression (SR)-based approach for fault feature extraction from original features including time, frequency and time-frequency domain features of bearing accelerometer sensor signals. SR is a novel regression framework for efficient regularized subspace learning and feature extraction technology, and it uses the least squares method to obtain the best projection direction, rather than computing the density matrix of features, so it also has the advantage in dimensionality reduction. The effectiveness of the SR-based method is validated experimentally by applying the acquired vibration signals data to bearings. The experimental results indicate that SR can reduce the computation cost and preserve more structure information about different bearing faults and severities, and it is demonstrated that the proposed feature extraction scheme has an advantage over other similar approaches. PMID:23202017

  8. Sedentary Behavior in Preschoolers: How Many Days of Accelerometer Monitoring Is Needed?

    PubMed

    Byun, Wonwoo; Beets, Michael W; Pate, Russell R

    2015-10-01

    The reliability of accelerometry for measuring sedentary behavior in preschoolers has not been determined, thus we determined how many days of accelerometry monitoring are necessary to reliably estimate daily time spent in sedentary behavior in preschoolers. In total, 191 and 150 preschoolers (three to five years) wore ActiGraph accelerometers (15-s epoch) during the in-school (≥4 days) and the total-day (≥6 days) period respectively. Accelerometry data were summarized as time spent in sedentary behavior (min/h) using three different cutpoints developed for preschool-age children (<37.5, <200, and <373 counts/15 s). The intraclass correlations (ICCs) and Spearman-Brown prophecy formula were used to estimate the reliability of accelerometer for measuring sedentary behavior. Across different cutpoints, the ICCs ranged from 0.81 to 0.92 for in-school sedentary behavior, and from 0.75 to 0.81 for total-day sedentary behavior, respectively. To achieve an ICC of ≥0.8, two to four days or six to nine days of monitoring were needed for in-school sedentary behavior and total-day sedentary behavior, respectively. These findings provide important guidance for future research on sedentary behavior in preschool children using accelerometry. Understanding the reliability of accelerometry will facilitate the conduct of research designed to inform policies and practices aimed at reducing sedentary behavior in preschool children. PMID:26492261

  9. Spectral regression based fault feature extraction for bearing accelerometer sensor signals.

    PubMed

    Xia, Zhanguo; Xia, Shixiong; Wan, Ling; Cai, Shiyu

    2012-01-01

    Bearings are not only the most important element but also a common source of failures in rotary machinery. Bearing fault prognosis technology has been receiving more and more attention recently, in particular because it plays an increasingly important role in avoiding the occurrence of accidents. Therein, fault feature extraction (FFE) of bearing accelerometer sensor signals is essential to highlight representative features of bearing conditions for machinery fault diagnosis and prognosis. This paper proposes a spectral regression (SR)-based approach for fault feature extraction from original features including time, frequency and time-frequency domain features of bearing accelerometer sensor signals. SR is a novel regression framework for efficient regularized subspace learning and feature extraction technology, and it uses the least squares method to obtain the best projection direction, rather than computing the density matrix of features, so it also has the advantage in dimensionality reduction. The effectiveness of the SR-based method is validated experimentally by applying the acquired vibration signals data to bearings. The experimental results indicate that SR can reduce the computation cost and preserve more structure information about different bearing faults and severities, and it is demonstrated that the proposed feature extraction scheme has an advantage over other similar approaches. PMID:23202017

  10. Optical Readout of Micro-Accelerometer Code Features

    SciTech Connect

    Dickey, Fred M.; Holswade, Scott C.; Polosky, Marc A.; Shagam, Richard N.; Sullivan, Charles T.

    1999-07-08

    Micromachine accelerometers offer a way to enable critical functions only when a system encounters a particular acceleration environment. This paper describes the optical readout of a surface micromachine accelerometer containing a unique 24-bit code. The readout uses waveguide-based optics, which are implemented as a photonic integrated circuit (PIC). The PIC is flip-chip bonded over the micromachine, for a compact package. The shuttle moves 500 {micro}m during readout, and each code element is 17 {micro}m wide. The particular readout scheme makes use of backscattered radiation from etched features in the accelerometer shuttle. The features are etched to create corner reflectors that return radiation back toward the source for a one bit. For a zero bit, the shuttle is not etched, and the radiation scatters forward, away from the detector. This arrangement provides a large signal difference between a one and zero signal, since the zero signal returns virtually no signal to the detector. It is thus superior to schemes that interrogate the code vertically, which have a limited contrast between a one and a zero. Experimental results are presented for mock shuttle features etched into a silicon substrate. To simulate the shuttle moving under a fixed PIC, a commercially available waveguide source was scanned over the mock code.

  11. An integrated MEMS piezoresistive tri-axis accelerometer

    NASA Astrophysics Data System (ADS)

    Yongping, Zhang; Changde, He; Jiaqi, Yu; Chunhui, Du; Juanting, Zhang; Xiujian, Chou; Wendong, Zhang

    2013-10-01

    An integrated MEMS accelerometer has been designed and fabricated. The device, which is based on the piezoresistive effect, accomplishes the detection of three components of acceleration by using piezoresistors to compose three Wheatstone bridges that are sensitive to the only given orientation. The fabrication of the accelerometer is described, and the theory behind its operation developed. Experimental results on sensitivity, cross-axis-coupling degree, and linearity are presented. The sensitivity of X, Y and Z were 5.49 mV/g, 5.12 mV/g and 4.82 mV/g, respectively; the nonlinearity of X, Y and Z were 0.01%, 0.04% and 0.01%, respectively; the cross-axis-coupling factor of X axis to Y axis and Z axis are 0.119% and 2.26% the cross-axis-coupling factor of Y axis to X axis and Z axis are 0.157% and 4.12% the cross-axis-coupling factor of Z axis to X axis and Y axis are 0.511% and 0.938%. The measured performance indexes attain accurate vector-detection in practical applications, and even at a navigation level. In conclusion, the accelerometer is a highly integrated sensor.

  12. Validation of mercury tip-switch and accelerometer activity sensors for identifying resting and active behavior in bears

    USGS Publications Warehouse

    Jasmine Ware; Rode, Karyn D.; Pagano, Anthony M.; Bromaghin, Jeffrey; Charles T Robbins; Joy Erlenbach; Shannon Jensen; Amy Cutting; Nicole Nicassio-Hiskey; Amy Hash; Owen, Megan A.; Heiko Jansen

    2015-01-01

    Activity sensors are often included in wildlife transmitters and can provide information on the behavior and activity patterns of animals remotely. However, interpreting activity-sensor data relative to animal behavior can be difficult if animals cannot be continuously observed. In this study, we examined the performance of a mercury tip-switch and a tri-axial accelerometer housed in collars to determine whether sensor data can be accurately classified as resting and active behaviors and whether data are comparable for the 2 sensor types. Five captive bears (3 polar [Ursus maritimus] and 2 brown [U. arctos horribilis]) were fitted with a collar specially designed to internally house the sensors. The bears’ behaviors were recorded, classified, and then compared with sensor readings. A separate tri-axial accelerometer that sampled continuously at a higher frequency and provided raw acceleration values from 3 axes was also mounted on the collar to compare with the lower resolution sensors. Both accelerometers more accurately identified resting and active behaviors at time intervals ranging from 1 minute to 1 hour (≥91.1% accuracy) compared with the mercury tip-switch (range = 75.5–86.3%). However, mercury tip-switch accuracy improved when sampled at longer intervals (e.g., 30–60 min). Data from the lower resolution accelerometer, but not the mercury tip-switch, accurately predicted the percentage of time spent resting during an hour. Although the number of bears available for this study was small, our results suggest that these activity sensors can remotely identify resting versus active behaviors across most time intervals. We recommend that investigators consider both study objectives and the variation in accuracy of classifying resting and active behaviors reported here when determining sampling interval.

  13. Friction and wear of alumina ceramics at high sliding speed

    SciTech Connect

    Chen, Y.M.; Rigaut, B.; Armanet, F. Compiegne, Universite de Technologie )

    1991-07-01

    The influence of the sliding speed (from 5 m/s to 50 m/s) on friction properties of two Al2O3 steel sliding couples was studied on a pin-on-disk wear machine. For one Al2O3 pin on steel disk, a transition speed was found at about 30 m/s for both friction coefficient and wear rate of the pin. The wear rate is very small when the speed is lower than 30 m/s, and it becomes three times higher when the speed is over this value. In addition five alumina ceramics (94 percent, 95 percent, 96 percent, 99.7 percent, 99.8 percent HIP) were tested on the wear machine at 40 m/s. Four of them were also tested on an abrasion machine (pin-test) at very low speed (40 mm/s). Both experimental results show that the wear resistance of this kind of material is more closely related to fracture toughness than to hardness. 19 refs.

  14. 3D Simulation Modeling of the Tooth Wear Process

    PubMed Central

    Dai, Ning; Hu, Jian; Liu, Hao

    2015-01-01

    Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation. PMID:26241942

  15. Wear prediction in a fluidized bed

    SciTech Connect

    Boyle, E.J.; Rogers, W.A.

    1993-06-01

    A procedure to model the wear of surfaces exposed to a fluidized bed is formulated. A stochastic methodology adapting the kinetic theory of gases to granular flows is used to develop an impact wear model. This uses a single-particle wear model to account for impact wear from all possible-particle collisions. An adaptation of a single-particle abrasion model to describe the effects of many abrading particles is used to account for abrasive wear. Parameters describing granular flow within the fluidized bed, necessary for evaluation of the wear expressions, are determined by numerical solution of the fluidized bed hydrodynamic equations. Additional parameters, describing the contact between fluidized particles and the wearing surface, are determined by optimization based on wear measurements. The modeling procedure was used to analyze several bubbling and turbulent fluidized bed experiments with single-tube and tube bundle configurations. Quantitative agreement between the measured and predicted wear rates was found, with some exceptions for local wear predictions. This work demonstrates a methodology for wear predictions in fluidized beds.

  16. Vehicle unpaved road response spectrum acquisition based on accelerometer and GPS data.

    PubMed

    Cong, Nan; Shang, Jianzhong; Ren, Yanxi; Guo, Yao

    2012-01-01

    This paper describes a response acquisition system composed of some spindle accelerometers and a time synchronized on-board GPS receiver developed in order to collect the dynamic response of vehicle riding on an unpaved road. A method of time-space conversion for calculating the response spectrum is proposed to eliminate the adverse effect of time-varying speed, based on the transform from the equitime sampled spindle acceleration responses to equidistance sampling. By using two groups of independent distance histories acquired from GPS, a method called long-range error correction is proposed to improve the accuracy of the vehicle's distance information, which is critical for the time-space conversion. The accuracy and limitations of the system have been analyzed, and its validity has been verified by implementing the system on a wheel loader for road response spectrum measuring. This paper offers a practical approach to obtaining unpaved road response spectra for durability road simulation. PMID:23112581

  17. Assessing Sitting Across Contexts: Development of the Multi-Context Sitting Time Questionnaire

    PubMed Central

    Whitfield, Geoffrey P.; Pettee Gabriel, Kelley K.; Kohl, Harold W.

    2013-01-01

    Purpose To describe the development and preliminary evaluation of the Multi-context Sitting Time Questionnaire (MSTQ). Method During development of the MSTQ, contexts and domains of sitting behavior were utilized as recall cues to improve to accuracy of sitting assessment. The terms “workday” and “non-workday” were used to disambiguate occupational and discretionary sitting. An expert panel evaluated content validity. Among 25 participants, test-retest reliability of the MSTQ items was assessed with intra-class correlation coefficients (ICCs). Convergent validity was assessed versus relative and absolute accelerometer-estimated sedentary time and activity log using Pearson (r) or Spearman (ρ) correlation coefficients where appropriate. Results Pilot testing revealed web-based MSTQ administration to be rapid, scalable, and inexpensive. Most items in the MSTQ demonstrated acceptable reliability (ICCs > .70). Compared to accelerometer-estimated sedentary time relative to total wear time, the MSTQ exhibited a low correlation on workdays (r = .34) and a moderately high correlation on non-workdays (r = .61). Conclusions The systematic development of the MSTQ resulted in several improvements over previous tools and may serve as a model for purpose-driven questionnaire design. Additional validation is needed to conclusively determine the utility of the MSTQ. PMID:24261011

  18. Coatings for wear and lubrication

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1978-01-01

    Recent advances in the tribological uses of rf-sputtered and ion plated films of solid film lubricants (laminar solids, soft metals, organic polymers) and wear resistant refractory compounds (carbides, nitrides, silicides) are reviewed. The sputtering and ion plating potentials and the corresponding coatings formed were evaluated relative to the friction coefficient, wear endurance life and mechanical properties. The tribological and mechanical properties for each kind of film are discussed in terms of film adherence, coherence, density, grain size, morphology, internal stresses, thickness, and substrate conditions such as temperature, topography, chemistry and dc-biasing. The ion plated metallic films in addition to improved tribological properties also have better mechanical properties such as tensile strength and fatigue life.

  19. Low wear partially fluorinated polyimides

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.; Hady, W. F.

    1984-01-01

    Tribological studies were conducted on five different polyimide solid bodies formulated from the diamine 2,2-bis 4-(4-aminophenoxy)phenyl hexafluoropropane (4-BDAF) and the dianhydrides pyromellitic acid (PMDS) and benzophenonetetracarboxylic acid (BTDA). The following polyimides were evaluated 4-BDAF/PMDA, 4-BDAF/BTDA, 4-BDAF/80 mole percent PMDA, 20 mole percent BTDA, 4-BDAF/60 mole percent BTDA. Friction coefficients, polyimide wear rates, polyimide surface morphology and transfer films were evaluated at sliding speeds of 0.31 to 11.6 m/s and at temperatures of 25 C to 300 C. The results indicate that the tribological properties are highly dependent on the composition of the polyimide and on the experimental conditions. Two polyimides were found which produced very low wear rates but very high friction coefficients (greater than 0.85) under ambient conditions. They offer considerable potential for high traction types of application such as brakes.

  20. Rod Control Assemblies Wear Mechanisms

    SciTech Connect

    Kaczorowski, Damien; Georges, Jean-Mary; Bec, Sandrine; Vannes, Andre-Bernard; Tonck, Andre; Vernot, Jean-Philippe

    2002-07-01

    In nuclear power plants, slender tubular components are subjected to vibrations in a PHTW environment. As a result, the two contacting surfaces, tubes and their guides undergo impact at low contact pressures. The components are usually made of stainless steel and it was found that the influence of the PHTW, combined with other actions (such as corrosion, erosion, squeeze film effect, third body effect and cavitation) leads to a particular wear of the material. Therefore, this paper aims to show that the colloidal oxides, formed on the steel surfaces in PHTW, play a principal role in the wear of the surfaces. Actually, due to the specific kinematic conditions of the contact, the flow of compacted oxides abrades the surfaces. (authors)

  1. Multiple Hollow Cathode Wear Testing

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been baselined for use on the Space Station to reduce station charging. The plasma contactor provides a low impedance connection to space plasma via a plasma produced by an arc discharge. The hollow cathode of the plasma contactor is a refractory metal tube, through which xenon gas flows, which has a disk-shaped plate with a centered orifice at the downstream end of the tube. Within the cathode, arc attachment occurs primarily on a Type S low work function insert that is next to the orifice plate. This low work function insert is used to reduce cathode operating temperatures and energy requirements and, therefore, achieve increased efficiency and longevity. The operating characteristics and lifetime capabilities of this hollow cathode, however, are greatly reduced by oxygen bearing contaminants in the xenon gas. Furthermore, an optimized activation process, where the cathode is heated prior to ignition by an external heater to drive contaminants such as oxygen and moisture from the insert absorbed during exposure to ambient air, is necessary both for cathode longevity and a simplified power processor. In order to achieve the two year (approximately 17,500 hours) continuous operating lifetime requirement for the plasma contactor, a test program was initiated at NASA Lewis Research Center to demonstrate the extended lifetime capabilities of the hollow cathode. To date, xenon hollow cathodes have demonstrated extended lifetimes with one test having operated in excess of 8000 hours in an ongoing test utilizing contamination control protocols developed by Sarver-Verhey. The objectives of this study were to verify the transportability of the contamination control protocols developed by Sarver-Verhey and to evaluate cathode contamination control procedures, activation processes, and cathode-to-cathode dispersions in operating characteristics with time. These were accomplished by conducting a 2000 hour wear test of four hollow

  2. Friction and wear behavior of aluminum and composite airplane skins

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.

    1984-01-01

    Friction and wear behavior was determined for small skin specimens under abrasive loading conditions typical of those occurring on the underside of a transport airplane during emergency belly landing. A test apparatus consisting of a standard belt sander provided the sliding surface. Small test specimens constructed of aluminum, standard graphite-epoxy composite, aramid-epoxy composite, and toughened-resin composites were tested undar a range of pressures, belt velocities, and belt-surface textures. The effects of these test variables on the wear rate and the coefficient of friction are discussed and comparisons are made between the composite materials and aluminum. The effect of fiber orientation in the composite materials on wear rate was also investigated. In addition, tests were performed in which thermocouples were imbedded into the various test specimens to obtain temperature-time histories during abrasion.

  3. Characterisation of alumina hip-joint wear by FIB Microscopy

    NASA Astrophysics Data System (ADS)

    Zeng, Peng; Inkson, Beverley J.; Rainforth, W. Mark

    2006-02-01

    The wear of hip-joints is a significant clinical problem, which causes adverse tissue reactions leading to bone absorption and consequent loosening of the fixation. Artificial hip joints retrieved after use and tested on simulators typically exhibit a 'stripe' wear area on the surface of the alumina bearing components. Focused Ion Beam (FIB) microscopy has been used to investigate the sub-surface damage mechanisms in worn alumina hip-joints for the first time. The alumina acetabular cup, both inside and outside the 'stripe' wear trace, has been cross-sectioned by FIB milling. The sub-surface microstructures revealed by the FIB machining, outside, inside and at the edge of the 'stripe' have been imaged by SEM and FIB and are compared with the microstructure of unworn bulk material. The advantage of this technique is that it enables site specific selected areas of the worn surface to be analysed.

  4. Wear of steel by rubber

    NASA Technical Reports Server (NTRS)

    Gent, A. N.; Pulford, C. T. R.

    1978-01-01

    Wear of a steel blade used as a scraper to abrade rubber surfaces has been found to take place much more rapidly on a cis-polyisoprene (natural rubber) surface than on a cis-polybutadiene surface, and much more rapidly in an inert atmosphere than in air. These observations are attributed to the direct attack upon steel of free-radical species generated by mechanical rupture of elastomer molecules during abrasion.

  5. Investigation of wear and scuffing behaviour of ferrous thermal spray coatings for aluminum engines

    NASA Astrophysics Data System (ADS)

    Edrisy, Afsaneh

    model to calculate the friction induced contact temperature increase was developed and used to explain the differences in the wear rates of the coatings. Wear maps for thermal sprayed coatings have been constructed for the first time. The wear maps constructed showed the wear rates as a function of the loading conditions (load and velocity). The potential industrial application of wear maps includes prediction of scuffing behaviour of lightweight engines coated by thermal spray coatings. A laboratory experimental method has been developed based on information provided on the wear maps to simulate the wear mechanisms seen in the scuffed engines.

  6. Diagnosis of erosive tooth wear.

    PubMed

    Ganss, Carolina; Lussi, Adrian

    2014-01-01

    The clinical diagnosis 'erosion' is made from characteristic deviations from the original anatomical tooth morphology, thus distinguishing acid-induced tissue loss from other forms of wear. Primary pathognomonic features are shallow concavities on smooth surfaces occurring coronal from the enamel-cementum junction. Problems from diagnosing occlusal surfaces and exposed dentine are discussed. Indices for recording erosive wear include morphological as well as quantitative criteria. Currently, various indices are used, each having their virtues and flaws, making the comparison of prevalence studies difficult. The Basic Erosive Wear Examination (BEWE) is described, which is intended to provide an easy tool for research as well as for use in general dental practice. The cumulative score of this index is the sum of the most severe scores obtained from all sextants and is linked to suggestions for clinical management. In addition to recording erosive lesions, the assessment of progression is important as the indication of treatment measures depends on erosion activity. A number of evaluated and sensitive methods for in vitro and in situ approaches are available, but the fundamental problem for their clinical use is the lack of reidentifiable reference areas. Tools for clinical monitoring are described. PMID:24993255

  7. Diabetes and contact lens wear.

    PubMed

    O'Donnell, Clare; Efron, Nathan

    2012-05-01

    The literature suggests that diabetic patients may have altered tear chemistry and tear secretion as well as structural and functional changes to the corneal epithelium, endothelium and nerves. These factors, together with a reported increased incidence of corneal infection, suggest that diabetic patients may be particularly susceptible to developing ocular complications during contact lens wear. Reports of contact lens-induced complications in diabetic patients do exist, although a number of these reports concern patients with advanced diabetic eye disease using lenses on an extended wear basis. Over the past decade or so, there have been published studies documenting the response of the diabetic eye to more modern contact lens modalities. The results of these studies suggest that contact lenses can be a viable mode of refractive correction for diabetic patients. Furthermore, new research suggests that the measurement of tear glucose concentration could, in future, be used to monitor metabolic control non-invasively in diabetic patients. This could be carried out using contact lenses manufactured from hydrogel polymers embedded with glucose-sensing agents or nanoscale digital electronic technology. The purpose of this paper is to review the literature on the anterior ocular manifestations of diabetes, particularly that pertaining to contact lens wear. PMID:22537249

  8. Spend Less, Get More? Using Low-Cost Accelerometers to Calculate Building Responses

    NASA Astrophysics Data System (ADS)

    Chung, A. I.; Lawrence, J. F.; Prieto, G.; Kohler, M. D.; Cochran, E. S.

    2009-12-01

    We present a new technique for predicting the earthquake responses of various structures, and we demonstrate its effectiveness by applying the method to several buildings, including several newly instrumented buildings around the Stanford University campus. While the use of ambient noise recordings to determine structural qualities of buildings is not new, our technique produces robust results that are independent of the noise sources. The process of averaging 10-minute inter-station transfer functions for a long duration (approximately 14 days) generates robust building responses comparable to those generated with earthquake data. The method allows us to employ large volumes of data recorded from low-gain accelerometers such as those currently used by the Quake-Catcher Network. Furthermore, as we can obtain the phase information, we can Fourier transform the transfer functions into the time domain to calculate the Impulse Response Function (IRF). The IRF can then be used to approximate a building’s response to a moderate earthquake. Using small, inexpensive accelerometers means that there is the exciting potential of being able to perform minimally invasive campaign-style state-of-health monitoring for many buildings at low cost. The increased data volume will provide useful and dependable results for many structures, thereby improving our understanding of building responses.

  9. Characterization of a 21-Story Reinforced Building in the Valley of Mexico Using MEMS Accelerometers.

    NASA Astrophysics Data System (ADS)

    Husker, A. L.; Dominguez, L. A.; Becerril, A.; Espejo, L.; Cochran, E. S.

    2014-12-01

    Low cost MEMS accelerometers are becoming increasingly higher resolution making them useful in strong motion studies. Here we present a building response analysis in the lakebed zone of the Valley of Mexico. The Valley of Mexico represents one of the highest seismic risk locations in the world and incorporates Mexico City and part of Mexico State. More than 20 million people live there and it is the political and economic center of Mexico. In addition the valley has very high site effects with amplifications 100 - 500 times that of sites outside of the basin (Singh et al., 1988; Singh et al., 1995). We instrumented a 21-story building with MEMS accelerometers as part of the Quake Catcher Network or Red Atrapa Sismos as it is called in Mexico. The building known as the Centro Cultural de Tlateloco is located in an important historical and political area as well as a zone with some of the highest amplifications in the Valley of Mexico that had some of the worst destruction after the 1985 M8.1 Michoacan earthquake. During the earthquake most of the buildings that failed were between 7 - 18 stories tall. The peak accelerations near Tlateloco were at periods of 2 seconds. Since the earthquake the building has been retrofitted with N-S crossing supports to help withstand another earthquake. We present the measurements of frequencies and amplifications between floors for the length of the building.

  10. Using commodity accelerometers and gyroscopes to improve speed and accuracy of JanusVF

    NASA Astrophysics Data System (ADS)

    Hutson, Malcolm; Reiners, Dirk

    2010-01-01

    Several critical limitations exist in the currently available commercial tracking technologies for fully-enclosed virtual reality (VR) systems. While several 6DOF solutions can be adapted to work in fully-enclosed spaces, they still include elements of hardware that can interfere with the user's visual experience. JanusVF introduced a tracking solution for fully-enclosed VR displays that achieves comparable performance to available commercial solutions but without artifacts that can obscure the user's view. JanusVF employs a small, high-resolution camera that is worn on the user's head, but faces backwards. The VR rendering software draws specific fiducial markers with known size and absolute position inside the VR scene behind the user but in view of the camera. These fiducials are tracked by ARToolkitPlus and integrated by a single-constraint-at-a-time (SCAAT) filter to update the head pose. In this paper we investigate the addition of low-cost accelerometers and gyroscopes such as those in Nintendo Wii remotes, the Wii Motion Plus, and the Sony Sixaxis controller to improve the precision and accuracy of JanusVF. Several enthusiast projects have implemented these units as basic trackers or for gesture recognition, but none so far have created true 6DOF trackers using only the accelerometers and gyroscopes. Our original experiments were repeated after adding the low-cost inertial sensors, showing considerable improvements and noise reduction.

  11. In-Axis and Cross-Axid Accelerometer Response in Shock Environments

    SciTech Connect

    Bateman, V.I.; Brown, F.A.

    1999-03-10

    The characteristics of a piezoresistive accelerometer in shock environments have been studied at Sandia National Laboratories (SNL) in the Mechanical Shock Testing Laboratory for ten years The SNL Shock Laboratory has developed a capability to characterize accelerometers and other transducers with shocks aligned with the transducer's sensing axis and perpendicular to the transducer's sensing axis. This unique capability includes Hopkinson bars made of aluminum, steel, titanium, and beryllium. The bars are configured as both single and split Hopkinson bars. Four different areas that conclude this study are summarized in this paper: characterization of the cross-axis response of the accelerometer in the four environments of static compression, static strain on a beam, dynamic strain, and mechanical shock, the accelerometer's response on a titanium Hopkinson bar with two 45{degree} flats on the end of the bar; failure analysis of the accelerometer; and measurement of the accelerometer's self-generating cable response in a shock environment.

  12. Development of a quartz digital accelerometer for environmental sensing and navigation applications

    SciTech Connect

    Kass, W.J.; Vianco, P.T.

    1993-03-01

    A quartz digital accelerometer has been developed which uses double ended tuning forks as the active sensing elements. The authors have demonstrated the ability of this accelerometer to be capable of acceleration measurements between {+-}150G with {+-}0.5G accuracy. They have further refined the original design and assembly processes to produce accelerometers with < 1mG stability in inertial measurement applications. This report covers the development, design, processing, assembly, and testing of these devices.

  13. Acquisition and analysis of accelerometer data

    NASA Technical Reports Server (NTRS)

    Verges, Keith R.

    1990-01-01

    Acceleration data reduction must be undertaken with a complete understanding of the physical process, the means by which the data are acquired, and finally, the calculations necessary to put the data into a meaningful format. Discussed here are the acceleration sensor requirements dictated by the measurements desired. Sensor noise, dynamic range, and linearity will be determined from the physical parameters of the experiment. The digitizer requirements are discussed. Here the system from sensor to digital storage medium will be integrated, and rules of thumb for experiment duration, filter response, and number of bits are explained. Data reduction techniques after storage are also discussed. Time domain operations including decimating, digital filtering, and averaging are covered, as well as frequency domain methods, including windowing and the difference between power and amplitude spectra, and simple noise determination via coherence analysis. Finally, an example experiment using the Teledyne Geotech Model 44000 Seismometer to measure from 1 Hz to 10(exp -6) Hz is discussed. The sensor, data acquisition system, and example spectra are presented.

  14. Development of a gear vibration indicator and its application in gear wear monitoring

    NASA Astrophysics Data System (ADS)

    Hu, Chongqing; Smith, Wade A.; Randall, Robert B.; Peng, Zhongxiao

    2016-08-01

    Gear tooth wear is an inevitable phenomenon and has a significant influence on gear dynamic features. Although vibration analysis has been widely used to diagnose localised gear tooth faults, its techniques for gear wear monitoring have not been well-established. This paper aims at developing a vibration indicator to evaluate the effects of wear on gear performance. For this purpose, a gear state vector is extracted from time synchronous averaged gear signals to describe the gear state. This gear state vector consists of the sideband ratios obtained from a number of tooth meshing harmonics and their sidebands. Then, two averaged logarithmic ratios, ALR and mALR, are defined with fixed and moving references, respectively, to provide complementary information for gear wear monitoring. Since a fixed reference is utilised in the definition of ALR, it reflects the cumulated wear effects on the gear state. An increase in the ALR value indicates that the gear state deviates further from its reference condition. With the use of a moving reference, the indicator mALR shows changes in the gear state within short time intervals, making it suitable for wear process monitoring. The efficiency of these vibration indicators is demonstrated using experimental results from two sets of tests, in which the gears experienced different wear processes. In addition to gear wear monitoring, the proposed indicators can be used as general parameters to detect the occurrence of other faults, such as a tooth crack or shaft misalignment, because these faults would also change the gear vibrations.

  15. Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation

    DOE PAGESBeta

    Qu, Jun; Cooley, Kevin M.; Shaw, Austin H.; Lu, Roger Y.; Blau, Peter J.

    2016-03-16

    In the cores of pressurized water nuclear reactors, water-flow induced vibration is known to cause claddings on the fuel rods to rub against their supporting grids. Such grid-to-rod-fretting (GTRF) may lead to fretting wear-through and the leakage of radioactive species. The surfaces of actual zirconium alloy claddings in a reactor are inevitably oxidized in the high-temperature pressurized water, and some claddings are even pre-oxidized. As a result, the wear process of the surface oxide film is expected to be quite different from the zirconium alloy substrate. In this paper, we attempt to measure the wear coefficients of zirconium claddings withoutmore » and with pre-oxidation rubbing against grid samples using a bench-scale fretting tribometer. Results suggest that the volumetric wear coefficient of the pre-oxidized cladding is 50 to 200 times lower than that of the untreated cladding. In terms of the linear rate of wear depth, the pre-oxidized alloy wears about 15 times more slowly than the untreated cladding. Finally, fitted with the experimentally-determined wear rates, a stage-wise GTRF engineering wear model demonstrates good agreement with in-reactor experience in predicting the trend of cladding lives.« less

  16. Ferrographic analysis of wear particles from sliding elastohydrodynamic experiments

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Nagaraj, H. S.; Winer, W. O.

    1978-01-01

    The Ferrograph was used to analyze wear debris generated in a sliding elastohydrodynamic contact. The amount of wear debris correlates well with the ratio of film thickness to composite surface roughness (A ratio). The general wear level parameter and the wear severity index yielded similar correlations with average A ratios. Essentially all the generated wear particles were of the normal rubbing wear type. The Ferrograph was more sensitive in detecting the wear debris than was the commonly used emission spectrograph.

  17. Alternate paddle configuration for improved wear resistance in the saltstone mixer

    SciTech Connect

    Reigel, M.; Fowley, M.

    2013-09-23

    The Saltstone Production Facility has a 10-inch Readco-Kurimoto continuous mixer that mixes the premix dry feeds and low-level waste salt solution to make fresh (uncured) saltstone. Inspection of the mixer in January 2013 showed significant wear on the third, fourth and fifth paddle pairs after the conveying augers. A 2-inch Readco-Kurimoto continuous mixer was used to test alternate paddle configurations for use in the 10-inch mixer to decrease the wear rate on the paddles. Two wear tests were conducted to investigate a method of reducing wear on the mixer paddles. The first test (wear test 2a) had a paddle configuration similar to the currently installed 10-inch mixer in the SPF. This test established baseline wear. The second test (wear test 2b) had a reconfigured paddle arrangement that replaced the flat paddles with helical paddles for paddle pairs 2 - 6 and aligned paddle pair 1 with the augers. The intent of the reconfiguration was to more effectively convey the partially wetted dry feeds through the transition region and into the liquid feed where paddle wear is reduced due to dry feeds and salt solution being mixed at the intended water to premix ratio. The design of the helical paddles provides conveyance through the transition region to the liquid feed inlet. The alignment with the auger is aimed to provide a smoother transition (minimizing the discontinuity between the auger and paddle pair 1) into the downstream paddles. A soft metal with low wear resistance (6000 series aluminum) was used for the wear testing paddles to determine wear patterns while minimizing run time and maximizing wear rate. For the two paddle configurations tested using the scaled 2-inch Readco-Kurimoto continuous mixer, with the first six paddles after the augers replaced by the wear paddles and the remaining paddles were stainless steel. Since the 10-inch SPF mixer is designed with the liquid inlet centered over paddle pairs 5 and 6, the scaled 2-inch mixer was configured the

  18. A new methodology for predictive tool wear

    NASA Astrophysics Data System (ADS)

    Kim, Won-Sik

    An empirical approach to tool wear, which requires a series of machining tests for each combination of insert and work material, has been a standard practice for industries since early part of the twentieth century. With many varieties of inserts and work materials available for machining, the empirical approach is too experiment-intensive that the demand for the development of a model-based approach is increasing. With a model-based approach, the developed wear equation can be extended without additional machining experiments. The main idea is that the temperatures on the primary wear areas are increasing such that the physical properties of the tool material degrade substantially and consequently tool wear increases. Dissolution and abrasion are identified to be the main mechanisms for tool wear. Flank wear is predominantly a phenomenon of abrasion as evident by the presence of a scoring mark on the flank surface. Based on this statement, it is reasonable to expect that the flank-wear rate would increase with the content of hard inclusions. However, experimental flank wear results did not necessary correspond to the content of cementite phase present in the steels. Hence, other phenomena are believed to significantly affect wear behavior under certain conditions. When the cutting temperature in the flank interface is subjected to high enough temperatures, pearlitic structure austenizes. During the formation of a new austenitic phase, the existing carbon is dissolved into the ferrite matrix, which will reduce the abrasive action. To verify the austenitic transformation, turning tests were conducted with plain carbon steels. The machined surface areas are imaged using X-ray diffraction the Scanning Electron Microscope (SEM) and the Transmission Electron Microscope (TEM). On the other hand, crater wear occurs as a result of dissolution wear and abrasive wear. To verify the wear mechanisms of crater wear, various coating inserts as well as uncoated inserts were

  19. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 3, Traditional approaches to wear prevention

    SciTech Connect

    Schwalb, J.A.

    1991-06-01

    Contamination of the lube-oil with hard abrasive particles leads to a three-body abrasive wear mechanism that highly accelerates piston ring/cylinder liner wear in coal-fueled diesel engines. One approach to reducing that wear is to modify the size and orientation of surface asperities on the cylinder to enhance the formation of a hydrodynamic film, and to provide avenues of escape for particles that would otherwise be trapped in the wear zone. Another approach is to introduce additives into the contaminated lube-oil that further enhance hydrodynamic film formation, form chemical films on the wearing surfaces, or form films on the contaminant particles. This work focuses on defining the effects of cylinder liner surface finish, various configurations of slots in the cylinder liner surface, and various additives in the contaminated lube-oil on the wear process. Wear tests were initiated in a bench apparatus using coal-ash contaminated lube-oil to test the various wear configurations. The results of these tests indicate that the formation of a hydrodynamic film between the ring and cylinder specimens is enhanced by increasing surface roughness, and by orienting the surface asperities normal to the direction of ring travel but modifications to the cylinder liner surface did not greatly reduce the wear rate. Additives to the lubricant seemed to have a much more significant effect on wear, with a dispersant additive highly accelerating the wear, while a detergent additive was able to reduce the wear almost to the rate achieved where there was no contaminant.

  20. Relationships between vocal function measures derived from an acoustic microphone and a subglottal neck-surface accelerometer

    PubMed Central

    Mehta, Daryush D.; Van Stan, Jarrad H.; Hillman, Robert E.

    2016-01-01

    Monitoring subglottal neck-surface acceleration has received renewed attention due to the ability of low-profile accelerometers to confidentially and noninvasively track properties related to normal and disordered voice characteristics and behavior. This study investigated the ability of subglottal neck-surface acceleration to yield vocal function measures traditionally derived from the acoustic voice signal and help guide the development of clinically functional accelerometer-based measures from a physiological perspective. Results are reported for 82 adult speakers with voice disorders and 52 adult speakers with normal voices who produced the sustained vowels /a/, /i/, and /u/ at a comfortable pitch and loudness during the simultaneous recording of radiated acoustic pressure and subglottal neck-surface acceleration. As expected, timing-related measures of jitter exhibited the strongest correlation between acoustic and neck-surface acceleration waveforms (r ≤ 0.99), whereas amplitude-based measures of shimmer correlated less strongly (r ≤ 0.74). Additionally, weaker correlations were exhibited by spectral measures of harmonics-to-noise ratio (r ≤ 0.69) and tilt (r ≤ 0.57), whereas the cepstral peak prominence correlated more strongly (r ≤ 0.90). These empirical relationships provide evidence to support the use of accelerometers as effective complements to acoustic recordings in the assessment and monitoring of vocal function in the laboratory, clinic, and during an individual’s daily activities. PMID:27066520

  1. HVOF coatings for heavy wear, high impact applications

    SciTech Connect

    Moskowitz, L.

    1994-12-31

    A-4 aircraft are used extensively for carrier training. The hook point used for grabbing the cable that arrests the aircraft during a carrier landing is relatively expensive to manufacture and can only be produced by a limited number of qualified vendors. For training, the aircraft lands on a concrete runway, then drags the hook for 100 to 1500 feet. A wear-resistant coating on the bottom of the hook point was desired to extend the life of parts used for training, especially if the coating could be reapplied several times. The coating sought had to be capable of withstanding the impact sustained when the hook point contacted the ground while moving at greater than 100 MPH, then survive the wear of rubbing across 1000 feet of concrete while moving at these speeds. A further restriction was that the coating had to be applied to an alloy steel heat treated to a hardness of RC 47--50, especially for recoat applications. Coating materials were selected on the basis of finding a material considered tough enough to withstand the initial impact, then hard enough to provide the wear resistance needed. It was felt that increased hardness and increased thickness would lower the ability to withstand impact, while increasing the ability to withstand the severe rubbing wear. Coating candidates included NiCrB systems at two hardnesses, each sprayed to three different thicknesses, 25%NiCr-CrC and Colmonoy 88A were selected for high hardness in a ductile matrix, Stellite compositions varying in as-sprayed hardness because of their ability to provide wear resistance by work hardening, molybdenum and Tribaloy for possible reduced friction, and an amorphous FeNiB alloy applied with twin arc wire. The coatings were first screened with simulated tests involving a drop weight for impact resistance and a spinning concrete wheel test developed by Dayton T. Brown Co. for wear resistance.

  2. Piezoelectric Shaker Development for High Frequency Calibration of Accelerometers

    SciTech Connect

    Payne, Bev; Harper, Kari K.; Vogl, Gregory W.

    2010-05-28

    Calibration of vibration transducers requires sinusoidal motion over a wide frequency range with low distortion and low cross-axial motion. Piezoelectric shakers are well suited to generate such motion and are suitable for use with laser interferometric methods at frequencies of 3 kHz and above. An advantage of piezoelectric shakers is the higher achievable accelerations and displacement amplitudes as compared to electro-dynamic (ED) shakers. Typical commercial ED calibration shakers produce maximum accelerations from 100 m/s{sup 2} to 500 m/s{sup 2}. Very large ED shakers may produce somewhat higher accelerations but require large amplifiers and expensive cooling systems to dissipate heat. Due to the limitations in maximum accelerations by ED shakers at frequencies above 5 kHz, the amplitudes of the generated sinusoidal displacement are frequently below the resolution of laser interferometers used in primary calibration methods. This limits the usefulness of ED shakers in interferometric based calibrations at higher frequencies.Small piezoelectric shakers provide much higher acceleration and displacement amplitudes for frequencies above 5 kHz, making these shakers very useful for accelerometer calibrations employing laser interferometric measurements, as will be shown in this paper. These piezoelectric shakers have been developed and used at NIST for many years for high frequency calibration of accelerometers. This paper documents the construction and performance of a new version of these shakers developed at NIST for the calibration of accelerometers over the range of 3 kHz to 30 kHz and possibly higher. Examples of typical calibration results are also given.

  3. A Multi-Stage Wear Model for Grid-to-Rod Fretting of Nuclear Fuel Rods

    SciTech Connect

    Blau, Peter Julian

    2014-01-01

    The wear of fuel rod cladding against the supporting structures in the cores of pressurized water nuclear reactors (PWRs) is an important and potentially costly tribological issue. Grid-to-rod fretting (GTRF), as it is known, involves not only time-varying contact conditions, but also elevated temperatures, flowing hot water, aqueous tribo-corrosion, and the embrittling effects of neutron fluences. The multi-stage, closed-form analytical model described in this paper relies on published out-of-reactor wear and corrosion data and a set of simplifying assumptions to portray the conversion of frictional work into wear depth. The cladding material of interest is a zirconium-based alloy called Zircaloy-4, and the grid support is made of a harder and more wear-resistant material. Focus is on the wear of the cladding. The model involves an incubation stage, a surface oxide wear stage, and a base alloy wear stage. The wear coefficient, which is a measure of the efficiency of conversion of frictional work into wear damage, can change to reflect the evolving metallurgical condition of the alloy. Wear coefficients for Zircaloy-4 and for a polyphase zirconia layer were back-calculated for a range of times required to wear to a critical depth. Inputs for the model, like the friction coefficient, are taken from the tribology literature in lieu of in-reactor tribological data. Concepts of classical fretting were used as a basis, but are modified to enable the model to accommodate the complexities of the PWR environment. Factors like grid spring relaxation, pre-oxidation of the cladding, multiple oxide phases, gap formation, impact, and hydrogen embrittlement are part of the problem definition but uncertainties in their relative roles limits the ability to validate the model. Sample calculations of wear depth versus time in the cladding illustrate how GTRF wear might occur in a discontinuous fashion during months-long reactor operating cycles. A means to account for grid/rod gaps

  4. Distortion effects in primary calibration of low-frequency accelerometers

    NASA Astrophysics Data System (ADS)

    Scott, D. A.; Dickinson, L. P.

    2014-06-01

    According to ISO 16063-11 (1999), at frequencies below 1600 Hz primary calibration of accelerometers may employ two methods: fringe counting or sine approximation. During a recent intercomparison (APMP.AUV.V-S1) small but systematic differences were found between the results obtained by using these two methods, and by the use of different amplifier modes to drive the shaker at frequencies between 0.5 Hz and 20 Hz. The influences of distortion and noise on the two methods are explored. The results and a discussion of the differences are presented in this paper.

  5. Rapid tremor frequency assessment with the iPhone accelerometer.

    PubMed

    Joundi, Raed A; Brittain, John-Stuart; Jenkinson, Ned; Green, Alexander L; Aziz, Tipu

    2011-05-01

    The physician is often seeking more efficient ways of performing patient assessments. Currently, measuring tremor frequency requires expensive and bulky equipment. We propose the use of the in-built accelerometer of the iPhone via the iSeismo application for rapid measurement of tremor frequency. We use this device in a series of 7 different tremor cases, and show that the frequency measurements on the iSeismo graph closely match the more sophisticated EMG analysis during tremor. This is a preliminary confirmation of the usefulness of this device in the clinical setting for quick assessment of the dominant frequency component in a variety of tremors. PMID:21300563

  6. Accelerometer Placement for the International Space Station Node Modal Test

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.

    1998-01-01

    Accelerometer location analysis for the modal survey test of the International Space Station Node is described. Three different approaches were utilized: (1) Guyan reduction; (2) Iterative Guyan reduction; and (3) The average driving point residue (ADPR) method. Both Guyan approaches worked well, but poor results were observed for the ADPR method. Although the iterative Guyan approach appears to provide the best set of sensor locations, it is intensive computationally, becoming impractical for large initial location sets. While this is computer dependent, it appears that initial sets larger than about 1500 degrees of freedom are impractical for the iterative technique.

  7. Temperature insensitive accelerometer based on a strain-chirped FBG

    NASA Astrophysics Data System (ADS)

    Zhou, Wenjun; Dong, Xinyong; Ni, Kai; Chan, C. C.; Shum, P.

    2009-10-01

    A novel accelerometer based on a strain-chirped optical fiber Bragg grating (FBG) is proposed. The FBG is glued in a slanted direction onto the lateral side of a right-angled triangle cantilever beam with a mass bonded on its free end. Vertical acceleration applied to the cantilever beam leads to a uniform bending along the beam length. As a result, the FBG is chirped and its reflection bandwidth changes linearly with the applied acceleration. A high sensitivity of 0.684 nm/g has been achieved in the experiment. This sensor is temperature insensitive, owning to the temperatureindependence nature of reflection bandwidth of the FBG.

  8. Concept for a low profile mold-in-place accelerometer

    SciTech Connect

    Baird, P.D.

    1996-04-01

    Furture sensor system requirements favor accelerometers with the following characteristics: (1) low profile, (2) high and flat acceleration sensitivity, (3) low electrical impedance, (4) pressure tolerant, (5) compatible with mold-in-place and extrusion technology, and (6) low cost. Piezoceramic materials configured as flexural discs attached to an inertial mass provide for high acceleration sensitivity and low electrical impedance. This concept when integrated with an inner/outer decoupler system retains a significant portion of its inherent electro-acoustic advantage. Measured performance is provided for a promising configuration that incorporates these features. {copyright} {ital 1996 American Institute of Physics.}

  9. Concept for a low profile mold-in-place accelerometer

    NASA Astrophysics Data System (ADS)

    Baird, P. David

    1996-04-01

    Furture sensor system requirements favor accelerometers with the following characteristics: 1) low profile, 2) high and flat acceleration sensitivity, 3) low electrical impedance, 4) pressure tolerant, 5) compatible with mold-in-place and extrusion technology, and 6) low cost. Piezoceramic materials configured as flexural discs attached to an inertial mass provide for high acceleration sensitivity and low electrical impedance. This concept when integrated with an inner/outer decoupler system retains a significant portion of its inherent electro-acoustic advantage. Measured performance is provided for a promising configuration that incorporates these features.

  10. Monitoring mobility in older adults using global positioning system (GPS) watches and accelerometers: a feasibility study.

    PubMed

    Webber, Sandra C; Porter, Michelle M

    2009-10-01

    This exploratory study examined the feasibility of using Garmin global positioning system (GPS) watches and ActiGraph accelerometers to monitor walking and other aspects of community mobility in older adults. After accuracy at slow walking speeds was initially determined, 20 older adults (74.4 +/- 4.2 yr) wore the devices for 1 day. Steps, distances, and speeds (on foot and in vehicle) were determined. GPS data acquisition varied from 43 min to over 12 hr, with 55% of participants having more than 8 hr between initial and final data-collection points. When GPS data were acquired without interruptions, detailed mobility information was obtained regarding the timing, distances covered, and speeds reached during trips away from home. Although GPS and accelerometry technology offer promise for monitoring community mobility patterns, new GPS solutions are required that allow for data collection over an extended period of time between indoor and outdoor environments. PMID:19940324

  11. Backside wear in modern total knee designs.

    PubMed

    Jayabalan, Prakash; Furman, Bridgette D; Cottrell, Jocelyn M; Wright, Timothy M

    2007-02-01

    Although modularity affords various options to the orthopedic surgeon, these benefits come at a price. The unintended bearing surface between the back surface of the tibial insert and the metallic tray results in micromotion leading to polyethylene wear debris. The objective of this study was to examine the backside wear of tibial inserts from three modern total knee designs with very different locking mechanisms: Insall-Burstein II (IB II), Optetrak, and Advance. A random sample of 71 inserts were obtained from our institution's retrieval collection and examined to assess the extent of wear, depth of wear, and wear damage modes. Patient records were also obtained to determine patient age, body mass index, length of implantation, and reason for revision. Modes of wear damage (abrasion, burnishing, scratching, delamination, third body debris, surface deformation, and pitting) were then scored in each zone from 0 to 3 (0 = 0%, 1 = 0-10%, 2 = 10-50%, and 3 = >50%). The depth of wear was subjectively identified as removal of manufacturing identification markings stamped onto the inferior surface of the polyethylene. Both Advance and IB II polyethylene inserts showed significantly higher scores for backside wear than the Optetrak inserts. All IB II and Advance implants showed evidence of backside wear, whereas 17% (5 out of 30) of the retrieved Optetrak implants had no observable wear. There were no significant differences when comparing the depth of wear score between designs. The locking mechanism greatly affects the propensity for wear and should be considered when choosing a knee implant system. PMID:18751767

  12. Investigation of wear phenomena by microscopy

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1982-01-01

    The various wear mechanisms involved in the loss of material from metallic and nonmetallic surfaces are discussed. The results presented indicate how various microscopy techniques used in conjunction with other analytical tools can assist in the elucidation of a wear mechanism. Without question, microscopy is the single most important tool for the study of the wear of surfaces, to assess and address inherent mechanisms of the material removal process.

  13. A rheological mechanism of penetrative wear

    NASA Technical Reports Server (NTRS)

    Bates, T. R., Jr.; Ludema, K. C.; Brainard, W. A.

    1974-01-01

    A model is proposed which explains the penetrative wear of a soft material by a harder one. Three distinct modes of penetration are present depending on the applied load. During the most severe penetration plate-like wear debris is ejected at the leading edge of the slider. A series of slip line fields is presented to approximate this debris formation process. Plastic constraint is seen to be an important factor in wear particle formation.

  14. Surface chemical modification for exceptional wear life of MEMS materials

    NASA Astrophysics Data System (ADS)

    Singh, R. Arvind; Satyanarayana, N.; Sinha, Sujeet Kumar

    2011-12-01

    Micro-Electro-Mechanical-Systems (MEMS) are built at micro/nano-scales. At these scales, the interfacial forces are extremely strong. These forces adversely affect the smooth operation and cause wear resulting in the drastic reduction in wear life (useful operating lifetime) of actuator-based devices. In this paper, we present a surface chemical modification method that reduces friction and significantly extends the wear life of the two most popular MEMS structural materials namely, silicon and SU-8 polymer. The method includes surface chemical treatment using ethanolamine-sodium phosphate buffer, followed by coating of perfluoropolyether (PFPE) nanolubricant on (i) silicon coated with SU-8 thin films (500 nm) and (ii) MEMS process treated SU-8 thick films (50 μm). After the surface chemical modification, it was observed that the steady-state coefficient of friction of the materials reduced by 4 to 5 times and simultaneously their wear durability increased by more than three orders of magnitude (> 1000 times). The significant reduction in the friction coefficients is due to the lubrication effect of PFPE nanolubricant, while the exceptional increase in their wear life is attributed to the bonding between the -OH functional group of ethanolamine treated SU-8 thin/thick films and the -OH functional group of PFPE. The surface chemical modification method acts as a common route to enhance the performance of both silicon and SU-8 polymer. It is time-effective (process time ≤ 11 min), cost-effective and can be readily integrated into MEMS fabrication/assembly processes. It can also work for any kind of structural material from which the miniaturized devices are/can be made.

  15. CCLRU standards for success of daily and extended wear contact lenses.

    PubMed

    Terry, R L; Schnider, C M; Holden, B A; Cornish, R; Grant, T; Sweeney, D; La Hood, D; Back, A

    1993-03-01

    Success in contact lens wear is often judged on the basis of patient "survival" rather than the achievement of satisfactory performance based on specific criteria. In 1971, Sarver and Harris defined a series of standards for successful polymethyl methacrylate (PMMA) lens wear which incorporated criteria for wearing time, comfort, vision, ocular tissue changes, and patient appearance. In this paper we propose a revision of these criteria based on current understanding of the ocular response to contact lens wear. These revised CCLRU (Cornea and Contact Lens Research Unit) standards for success are intended as realistic performance objectives, and can be applied in clinical trials to evaluate and compare the clinical performance of present and future rigid and soft contact lenses, worn for daily and extended wear. PMID:8483586

  16. Abrasive Wear Study of NiCrFeSiB Flame Sprayed Coating

    NASA Astrophysics Data System (ADS)

    Sharma, Satpal

    2013-10-01

    In the present study, abrasive wear behavior of NiCrFeSiB alloy coating on carbon steel was investigated. The NiCrFeSiB coating powder was deposited by flame spraying process. The microstructure, porosity and hardness of the coatings were evaluated. Elemental mapping was carried out in order to study the distribution of various elements in the coating. The abrasive wear behavior of these coatings was investigated under three normal loads (5, 10 and 15 N) and two abrasive grit sizes (120 and 320 grit). The abrasive wear rate was found to increase with the increase of load and abrasive size. The abrasive wear resistance of coating was found to be 2-3 times as compared to the substrate. Analysis of the scanning electron microscope images revealed cutting and plowing as the material removal mechanisms in these coatings under abrasive wear conditions used in this investigation.

  17. Wear of hard materials by hard particles

    SciTech Connect

    Hawk, Jeffrey A.

    2003-10-01

    Hard materials, such as WC-Co, boron carbide, titanium diboride and composite carbide made up of Mo2C and WC, have been tested in abrasion and erosion conditions. These hard materials showed negligible wear in abrasion against SiC particles and erosion using Al2O3 particles. The WC-Co materials have the highest wear rate of these hard materials and a very different material removal mechanism. Wear mechanisms for these materials were different for each material with the overall wear rate controlled by binder composition and content and material grain size.

  18. Wear Performance of Laser Processed Tantalum Coatings

    PubMed Central

    Dittrick, Stanley; Balla, Vamsi Krishna; Bose, Susmita; Bandyopadhyay, Amit

    2011-01-01

    This first generation investigation evaluates the in vitro tribological performance of laser-processed Ta coatings on Ti for load-bearing implant applications. Linear reciprocating wear tests in simulated body fluid showed one order of magnitude less wear rate, of the order of 10−4mm3(N.m)−1, for Ta coatings compared to Ti. Our results demonstrate that Ta coatings can potentially minimize the early-stage bone-implant interface micro-motion induced wear debris generation due to their excellent bioactivity comparable to that of hydroxyapatite (HA), high wear resistance and toughness compared to popular HA coatings. PMID:22058608

  19. A Novel, Open Access Method to Assess Sleep Duration Using a Wrist-Worn Accelerometer

    PubMed Central

    Anderson, Kirstie N.; Denton, Sarah J.; Oliver, James; Catt, Michael; Abell, Jessica G.; Kivimäki, Mika; Trenell, Michael I.; Singh-Manoux, Archana

    2015-01-01

    Wrist-worn accelerometers are increasingly being used for the assessment of physical activity in population studies, but little is known about their value for sleep assessment. We developed a novel method of assessing sleep duration using data from 4,094 Whitehall II Study (United Kingdom, 2012–2013) participants aged 60–83 who wore the accelerometer for 9 consecutive days, filled in a sleep log and reported sleep duration via questionnaire. Our sleep detection algorithm defined (nocturnal) sleep as a period of sustained inactivity, itself detected as the absence of change in arm angle greater than 5 degrees for 5 minutes or more, during a period recorded as sleep by the participant in their sleep log. The resulting estimate of sleep duration had a moderate (but similar to previous findings) agreement with questionnaire based measures for time in bed, defined as the difference between sleep onset and waking time (kappa = 0.32, 95%CI:0.29,0.34) and total sleep duration (kappa = 0.39, 0.36,0.42). This estimate was lower for time in bed for women, depressed participants, those reporting more insomnia symptoms, and on weekend days. No such group differences were found for total sleep duration. Our algorithm was validated against data from a polysomnography study on 28 persons which found a longer time window and lower angle threshold to have better sensitivity to wakefulness, while the reverse was true for sensitivity to sleep. The novelty of our method is the use of a generic algorithm that will allow comparison between studies rather than a “count” based, device specific method. PMID:26569414

  20. Characteristics of satellite accelerometer measurements of thermospheric neutral winds at high latitudes

    NASA Astrophysics Data System (ADS)

    Doornbos, E.; Ridley, A. J.; Cnossen, I.; Aruliah, A. L.; Foerster, M.

    2015-12-01

    Thermospheric neutral winds play an important part in the coupled thermosphere-ionosphere system at high latitudes. Neutral wind speeds have been derived from the CHAMP and GOCE satellites, which carried precise accelerometers in low Earth orbits. Due to the need to simultaneously determine thermosphere neutral density from the accelerometer in-track measurements, only information on the wind component in the cross-track direction, perpendicular to the flight direction can be derived. However, contrary to ground-based Fabry-Perot interferometer and scanning Doppler imager observations of the thermosphere wind, these satellite-based measurements provide equally distributed coverage over both hemispheres. The sampling of seasonal and local time variations depend on the precession rate of the satellite's orbital plane, with CHAMP covering about 28 cycles of 24-hour local solar time coverage, during its 10 year mission (2000-2010), while the near sun-synchronous orbit of GOCE resulted in a much more limited local time coverage ranging from 6:20 to 8:00 (am and pm), during a science mission duration of 4 years (2009-2013). For this study, the wind data from both CHAMP and GOCE have been analysed in terms of seasonal variations and geographic and geomagnetic local solar time and latitude coordinates, in order to make statistical comparisons for both the Northern and Southern polar areas. The wind data from both satellites were studied independently and in combination, in order to investigate how the strengths and weaknesses of the instruments and orbit parameters of these missions affect investigations of interhemispheric differences. Finally, the data have been compared with results from coupled ionosphere-thermosphere models and from ground-based FPI and SDI measurements.

  1. Dry Sliding Wear Behavior of Fly Ash Cenosphere/AZ91D Mg Alloy Composites

    NASA Astrophysics Data System (ADS)

    Yu, S. R.; Huang, Z. Q.

    2014-10-01

    Fly ash cenosphere/AZ91D Mg alloy (FAC/AZ91D) composites were prepared using stir casting method. The effects of the applied load, the wearing time, and the diameter and the content of fly ash cenosphere on the wear behavior of the composites were investigated under dry sliding condition. The results showed the wear resistance of FAC/AZ91D composites is generally better than that of AZ91D Mg alloy. The mass fraction and diameter of FAC have important effects on the wear resistance of the composites, and the wear resistance of the composites is excellent when the mass fraction and diameter of FAC are moderate. When the mass fraction and diameter of FAC are more than the critical values, the wear resistance of the composites lowers again. The wear resistance of the composites decreases with the increase in the applied load. The relationship between the worn mass loss and the applied load is nonlinear. When the applied load is smaller, the worn mass loss of the composites increases rapidly with the increase of the applied load. These research results show that the composites have broad application prospects under dry sliding wear condition, and they can provide guidance for the selection of the raw materials, the structure design, and the application conditions of the composites.

  2. Fault sensitivity and wear-out analysis of VLSI systems

    NASA Astrophysics Data System (ADS)

    Choi, Gwan Seung

    1994-07-01

    This thesis describes simulation approaches to conduct fault sensitivity and wear-out failure analysis of VLSI systems. A fault-injection approach to study transient impact in VLSI systems is developed. Through simulated fault injection at the device level and, subsequent fault propagation at the gate functional and software levels, it is possible to identify critical bottlenecks in dependability. Techniques to speed up the fault simulation and to perform statistical analysis of fault-impact are developed. A wear-out simulation environment is also developed to closely mimic dynamic sequences of wear-out events in a device through time, to localize weak location/aspect of target chip and to allow generation of TTF (Time-to-failure) distribution of VLSI chip as a whole. First, an accurate simulation of a target chip and its application code is performed to acquire trace data (real workload) on switch activity. Then, using this switch activity information, wear-out of the each component in the entire chip is simulated using Monte Carlo techniques.

  3. 7Be recoil implantation for ultra-thin-layer-activation of medical grade polyethylene: Effect on wear resistance

    NASA Astrophysics Data System (ADS)

    Hoffmann, M.; Abbas, K.; Sauvage, T.; Blondiaux, G.; Vincent, L.; Stroosnijder, M. F.

    2001-10-01

    Wear of ultra-high-molecular-weight-polyethylene (UHMWPE) is usually measured by gravimetric methods making laboratory wear tests a time consuming exercise. Methods for the determination of polyethylene wear with a higher sensitivity would reduce test times and costs. One of these alternative methods is ultra-thin-layer-activation (UTLA), which relies on recoil implantation of heavy radioactive nuclei, such as 7Be, by using light mass particle beams. However, the possibility of damages within the polyethylene surface, which would have consequences on its wear behavior, cannot be excluded. In this work the effect of an implantation of 7Be on wear of a medical grade UHMWPE was studied using a block-on-cylinder screening wear tester. The results show that the implantation of UHMWPE with 7Be recoils under the implantation conditions chosen does not alter the tribological behavior of medical grade UHMWPE.

  4. Number of Days Required to Estimate Habitual Activity Using Wrist-Worn GENEActiv Accelerometer: A Cross-Sectional Study

    PubMed Central

    Dillon, Christina B.; Fitzgerald, Anthony P.; Kearney, Patricia M.; Perry, Ivan J.; Rennie, Kirsten L.; Kozarski, Robert; Phillips, Catherine M.

    2016-01-01

    Introduction Objective methods like accelerometers are feasible for large studies and may quantify variability in day-to-day physical activity better than self-report. The variability between days suggests that day of the week cannot be ignored in the design and analysis of physical activity studies. The purpose of this paper is to investigate the optimal number of days needed to obtain reliable estimates of weekly habitual physical activity using the wrist-worn GENEActiv accelerometer. Methods Data are from a subsample of the Mitchelstown cohort; 475 (44.6% males; mean aged 59.6±5.5 years) middle-aged Irish adults. Participants wore the wrist GENEActiv accelerometer for 7-consecutive days. Data were collected at 100Hz and summarised into a signal magnitude vector using 60s epochs. Each time interval was categorised according to intensity based on validated cut-offs. Spearman pairwise correlations determined the association between days of the week. Repeated measures ANOVA examined differences in average minutes across days. Intraclass correlations examined the proportion of variability between days, and Spearman-Brown formula estimated intra-class reliability coefficient associated with combinations of 1–7 days. Results Three hundred and ninety-seven adults (59.7±5.5yrs) had valid accelerometer data. Overall, men were most sedentary on weekends while women spent more time in sedentary behaviour on Sunday through Tuesday. Post hoc analysis found sedentary behaviour and light activity levels on Sunday to differ to all other days in the week. Analysis revealed greater than 1 day monitoring is necessary to achieve acceptable reliability. Monitoring frame duration for reliable estimates varied across intensity categories, (sedentary (3 days), light (2 days), moderate (2 days) and vigorous activity (6 days) and MVPA (2 days)). Conclusion These findings provide knowledge into the behavioural variability in weekly activity patterns of middle-aged adults. Since Sunday

  5. Patient and surgery related factors associated with fatigue type polyethylene wear on 49 PCA and DURACON retrievals at autopsy and revision

    PubMed Central

    Rohrbach, Markus; Lüem, Martin; Ochsner, Peter E

    2008-01-01

    Background Polyethylene wear is an important factor for longevity of total knee arthroplasty. Proven and suspicious factors causing wear can be grouped as material, patient and surgery related. There are more studies correlating design and/or biomaterial factors to in vivo wear than those to patient and surgery related factors. Many retrieval studies just include revision implants and therefore may not be representative. This study is aimed to correlate patient- and surgery- related factors to visual wear score by minimizing design influence and include both autopsy and revision implants. Comparison between the groups was expected to unmask patient and surgery-related factors responsible for wear. Methods The amount of joint side wear on polyethylene retrievals was measured using a modification of an established visual wear score. Fatigue type wear was defined as summation of the most severe wear modes of delamination, pitting and cracks. Analysis of patient and surgery related variables suspicious to cause wear included prospectively sampled patient activity which was measured by self reported walking capacity. Statistical analysis was done by univariate analysis of variance. Activity level and implantation time were merged to an index of use and correlated to the wear score. Results Wear score after comparable implantation time was significantly less in the autopsy group. Even so, fatigue type wear accounted for 84 and 93 % of total wear score on autopsy and revision implants respectively. A highly significant influence on wear score was found in time of implantation (p = 0.002), level of activity (p = 0.025) and inserts belonging to revision group (p = 0.006). No influence was found for the kind of patella replacement (p = 0.483). Body mass index and accuracy of component alignment had no significant influence on visual wear score. Fatigue-type wear in the medial compartment was closely correlated to the index of use in the autopsy (R2 = 0.383) and the revision

  6. Diagnostics of wear in aeronautical systems

    NASA Technical Reports Server (NTRS)

    Wedeven, L. D.

    1979-01-01

    The use of appropriate diagnostic tools for aircraft oil wetted components is reviewed, noting that it can reduce direct operating costs through reduced unscheduled maintenance, particularly in helicopter engine and transmission systems where bearing failures are a significant cost factor. Engine and transmission wear modes are described, and diagnostic methods for oil and wet particle analysis, the spectrometric oil analysis program, chip detectors, ferrography, in-line oil monitor and radioactive isotope tagging are discussed, noting that they are effective over a limited range of particle sizes but compliment each other if used in parallel. Fine filtration can potentially increase time between overhauls, but reduces the effectiveness of conventional oil monitoring techniques so that alternative diagnostic techniques must be used. It is concluded that the development of a diagnostic system should be parallel and integral with the development of a mechanical system.

  7. Comparison of a Commercial Accelerometer with Polysomnography and Actigraphy in Children and Adolescents

    PubMed Central

    Meltzer, Lisa J.; Hiruma, Laura S.; Avis, Kristin; Montgomery-Downs, Hawley; Valentin, Judith

    2015-01-01

    Study Objectives: To evaluate the reliability and validity of the commercially available Fitbit Ultra (2012) accelerometer compared to polysomnography (PSG) and two different actigraphs in a pediatric sample. Design and Setting: All subjects wore the Fitbit Ultra while undergoing overnight clinical polysomnography in a sleep laboratory; a randomly selected subset of participants also wore either the Ambulatory Monitoring Inc. Motionlogger Sleep Watch (AMI) or Phillips-Respironics Mini-Mitter Spectrum (PRMM). Participants: 63 youth (32 females, 31 males), ages 3–17 years (mean 9.7 years, SD 4.6 years). Measurements: Both “Normal” and “Sensitive” sleep-recording Fitbit Ultra modes were examined. Outcome variables included total sleep time (TST), wake after sleep onset (WASO), and sleep efficiency (SE). Primary analyses examined the differences between Fitbit Ultra and PSG using repeated-measures ANCOVA, with epoch-by-epoch comparisons between Fitbit Ultra and PSG used to determine sensitivity, specificity, and accuracy. Intra-device reliability, differences between Fitbit Ultra and actigraphy, and differences by both developmental age group and sleep disordered breathing (SDB) status were also examined. Results: Compared to PSG, the Normal Fitbit Ultra mode demonstrated good sensitivity (0.86) and accuracy (0.84), but poor specificity (0.52); conversely, the Sensitive Fitbit Ultra mode demonstrated adequate specificity (0.79), but inadequate sensitivity (0.70) and accuracy (0.71). Compared to PSG, the Fitbit Ultra significantly overestimated TST (41 min) and SE (8%) in Normal mode, and underestimated TST (105 min) and SE (21%) in Sensitive mode. Similar differences were found between Fitbit Ultra (both modes) and both brands of actigraphs. Conclusions: Despite its low cost and ease of use for consumers, neither sleep-recording mode of the Fitbit Ultra accelerometer provided clinically comparable results to PSG. Further, pediatric sleep researchers and

  8. Micromachined magnetometer-accelerometer for a navigation system

    NASA Astrophysics Data System (ADS)

    Cho, Ji-Man; Kim, Kyung S.; An, Seungdo; Park, HoJoon; Hahm, Ghun

    2002-11-01

    A new type of magnetometer-accelerometer is developed with a silicon micromachining. The operation principle of the sensor is based on the well known Lorentz force caused by the interaction of a current and an external magnetic field on a suspended conducting beam. To realize a new resonant micro sensor detecting both acceleration and the geomagnetic field simultaneously, a conducting line is formed on a spring part of a silicon accelerometer having two mass plates. And a new Samsung MEMS fabrication process is developed for this sensor. The process uses a silicon-on-glass (SOG) wafer, an inverted SOG wafer, and a gold-silicon eutectic bonding for the wafer-level hermetic packaging. To operate the sensor, an ac current of its mechanical resonant frequency is driven through the conducting line. Totally 1 mW is consumed in the current driving element. This newly developed sensor is enough for the 10 degree electronic display of the orientation angle and can be used in a portable navigator such as SmartPhones and PDAs that need a small, low cost and low power electronic compass.

  9. Technique for Determining Bridge Displacement Response Using MEMS Accelerometers.

    PubMed

    Sekiya, Hidehiko; Kimura, Kentaro; Miki, Chitoshi

    2016-01-01

    In bridge maintenance, particularly with regard to fatigue damage in steel bridges, it is important to determine the displacement response of the entire bridge under a live load as well as that of each member. Knowing the displacement response enables the identification of dynamic deformations that can cause stresses and ultimately lead to damage and thus also allows the undertaking of appropriate countermeasures. In theory, the displacement response can be calculated from the double integration of the measured acceleration. However, data measured by an accelerometer include measurement errors caused by the limitations of the analog-to-digital conversion process and sensor noise. These errors distort the double integration results. Furthermore, as bridges in service are constantly vibrating because of passing vehicles, estimating the boundary conditions for the numerical integration is difficult. To address these problems, this paper proposes a method for determining the displacement of a bridge in service from its acceleration based on its free vibration. To verify the effectiveness of the proposed method, field measurements were conducted using nine different accelerometers. Based on the results of these measurements, the proposed method was found to be highly accurate in comparison with the reference displacement obtained using a contact displacement gauge. PMID:26907287

  10. Surface Micromachined Silicon Carbide Accelerometers for Gas Turbine Applications

    NASA Technical Reports Server (NTRS)

    DeAnna, Russell G.

    1998-01-01

    A finite-element analysis of possible silicon carbide (SIC) folded-beam, lateral-resonating accelerometers is presented. Results include stiffness coefficients, acceleration sensitivities, resonant frequency versus temperature, and proof-mass displacements due to centripetal acceleration of a blade-mounted sensor. The surface micromachined devices, which are similar to the Analog Devices Inc., (Norwood, MA) air-bag crash detector, are etched from 2-pm thick, 3C-SiC films grown at 1600 K using atmospheric pressure chemical vapor deposition (APCVD). The substrate is a 500 gm-thick, (100) silicon wafer. Polysilicon or silicon dioxide is used as a sacrificial layer. The finite element analysis includes temperature-dependent properties, shape change due to volume expansion, and thermal stress caused by differential thermal expansion of the materials. The finite-element results are compared to experimental results for a SiC device of similar, but not identical, geometry. Along with changes in mechanical design, blade-mounted sensors would require on-chip circuitry to cancel displacements due to centripetal acceleration and improve sensitivity and bandwidth. These findings may result in better accelerometer designs for this application.

  11. Technique for Determining Bridge Displacement Response Using MEMS Accelerometers

    PubMed Central

    Sekiya, Hidehiko; Kimura, Kentaro; Miki, Chitoshi

    2016-01-01

    In bridge maintenance, particularly with regard to fatigue damage in steel bridges, it is important to determine the displacement response of the entire bridge under a live load as well as that of each member. Knowing the displacement response enables the identification of dynamic deformations that can cause stresses and ultimately lead to damage and thus also allows the undertaking of appropriate countermeasures. In theory, the displacement response can be calculated from the double integration of the measured acceleration. However, data measured by an accelerometer include measurement errors caused by the limitations of the analog-to-digital conversion process and sensor noise. These errors distort the double integration results. Furthermore, as bridges in service are constantly vibrating because of passing vehicles, estimating the boundary conditions for the numerical integration is difficult. To address these problems, this paper proposes a method for determining the displacement of a bridge in service from its acceleration based on its free vibration. To verify the effectiveness of the proposed method, field measurements were conducted using nine different accelerometers. Based on the results of these measurements, the proposed method was found to be highly accurate in comparison with the reference displacement obtained using a contact displacement gauge. PMID:26907287

  12. Microelectromechanical Resonant Accelerometer Designed with a High Sensitivity.

    PubMed

    Zhang, Jing; Su, Yan; Shi, Qin; Qiu, An-Ping

    2015-01-01

    This paper describes the design and experimental evaluation of a silicon micro-machined resonant accelerometer (SMRA). This type of accelerometer works on the principle that a proof mass under acceleration applies force to two double-ended tuning fork (DETF) resonators, and the frequency output of two DETFs exhibits a differential shift. The dies of an SMRA are fabricated using silicon-on-insulator (SOI) processing and wafer-level vacuum packaging. This research aims to design a high-sensitivity SMRA because a high sensitivity allows for the acceleration signal to be easily demodulated by frequency counting techniques and decreases the noise level. This study applies the energy-consumed concept and the Nelder-Mead algorithm in the SMRA to address the design issues and further increase its sensitivity. Using this novel method, the sensitivity of the SMRA has been increased by 66.1%, which attributes to both the re-designed DETF and the reduced energy loss on the micro-lever. The results of both the closed-form and finite-element analyses are described and are in agreement with one another. A resonant frequency of approximately 22 kHz, a frequency sensitivity of over 250 Hz per g, a one-hour bias stability of 55 μg, a bias repeatability (1σ) of 48 μg and the bias-instability of 4.8 μg have been achieved. PMID:26633425

  13. Noise power spectral density of the Sundstrand QA-2000 accelerometer

    NASA Technical Reports Server (NTRS)

    Peters, Rex; Grindeland, David; Baugher, Charles R. (Editor)

    1990-01-01

    There are no good data on low frequency (less than 0.1 Hz) power spectral density (PSD) for the Q-Flex accelerometer. However, some preliminary stability measurements were made over periods of 12 to 24 hours and demonstrated stability less than 0.5 micro-g over greater than 12 hours. The test data appear to contain significant contributions from temperature variations at that level, so the true sensor contribution may be less than that. If what was seen could be construed as a true random process, it would correspond to about 0.1 micro-g rms over a bandwidth from 10(exp -5) Hz to about 1 Hz. Other studies of low frequency PSD in flexure accelerometers have indicated that material aging effects tend to approximate a first order Markhov process. If we combine such a model with the spectrum obtained at higher frequencies, it suggests the spectrum shown here as a conservative estimate of Q-Flex noise performance.

  14. A miniature high-resolution accelerometer utilizing electron tunneling

    NASA Technical Reports Server (NTRS)

    Rockstad, Howard K.; Kenny, T. W.; Reynolds, J. K.; Kaiser, W. J.; Vanzandt, T. R.; Gabrielson, Thomas B.

    1992-01-01

    New methods have been developed to implement high-resolution position sensors based on electron tunneling. These methods allow miniaturization while utilizing the position sensitivity of electron tunneling to give high resolution. A single-element tunneling accelerometer giving a displacement resolution of 0.002 A/sq rt Hz at 10 Hz, corresponding to an acceleration resolution of 5 x 10 exp -8 g/sq rt Hz, is described. A new dual-element tunneling structure which overcomes the narrow bandwidth limitations of a single-element structure is described. A sensor with an operating range of 5 Hz to 10 kHz, which can have applications as an acoustic sensor, is discussed. Noise is analyzed for fundamental thermal vibration of the suspended masses and is compared to electronic noise. It is shown that miniature tunnel accelerometers can achieve resolution such that thermal noise in the suspended masses is the dominant cause of the resolution limit. With a proof mass of order 100 mg, noise analysis predicts limiting resolutions approaching 10 exp -9 g/sq rt Hz in a 300 Hz band and 10 exp -8 g/sq rt Hz at 1 kHz.

  15. Shock margin testing of a one-axis MEMS accelerometer.

    SciTech Connect

    Parson, Ted Blair; Tanner, Danelle Mary; Buchheit, Thomas Edward

    2008-07-01

    Shock testing was performed on a selected commercial-off-the-shelf - MicroElectroMechanical System (COTS-MEMS) accelerometer to determine the margin between the published absolute maximum rating for shock and the 'measured' level where failures are observed. The purpose of this testing is to provide baseline data for isolating failure mechanisms under shock and environmental loading in a representative device used or under consideration for use within systems and assemblies of the DOD/DOE weapons complex. The specific device chosen for this study was the AD22280 model of the ADXL78 MEMS Accelerometer manufactured by Analog Devices Inc. This study focuses only on the shock loading response of the device and provides the necessary data for adding influence of environmental exposure to the reliability of this class of devices. The published absolute maximum rating for acceleration in any axis was 4000 G for this device powered or unpowered. Results from this study showed first failures at 8000 G indicating a margin of error of two. Higher shock level testing indicated that an in-plane, but off-axis acceleration was more damaging than one in the sense direction.

  16. Microelectromechanical Resonant Accelerometer Designed with a High Sensitivity

    PubMed Central

    Zhang, Jing; Su, Yan; Shi, Qin; Qiu, An-Ping

    2015-01-01

    This paper describes the design and experimental evaluation of a silicon micro-machined resonant accelerometer (SMRA). This type of accelerometer works on the principle that a proof mass under acceleration applies force to two double-ended tuning fork (DETF) resonators, and the frequency output of two DETFs exhibits a differential shift. The dies of an SMRA are fabricated using silicon-on-insulator (SOI) processing and wafer-level vacuum packaging. This research aims to design a high-sensitivity SMRA because a high sensitivity allows for the acceleration signal to be easily demodulated by frequency counting techniques and decreases the noise level. This study applies the energy-consumed concept and the Nelder-Mead algorithm in the SMRA to address the design issues and further increase its sensitivity. Using this novel method, the sensitivity of the SMRA has been increased by 66.1%, which attributes to both the re-designed DETF and the reduced energy loss on the micro-lever. The results of both the closed-form and finite-element analyses are described and are in agreement with one another. A resonant frequency of approximately 22 kHz, a frequency sensitivity of over 250 Hz per g, a one-hour bias stability of 55 μg, a bias repeatability (1σ) of 48 μg and the bias-instability of 4.8 μg have been achieved. PMID:26633425

  17. Applying macro design tools to the design of MEMS accelerometers

    SciTech Connect

    Davies, B.R.; Rodgers, M.S.; Montague, S.

    1998-02-01

    This paper describes the design of two different surface micromachined (MEMS) accelerometers and the use of design and analysis tools intended for macro sized devices. This work leverages a process for integrating both the micromechanical structures and microelectronics circuitry of a MEMS accelerometer on the same chip. In this process, the mechanical components of the sensor are first fabricated at the bottom of a trench etched into the wafer substrate. The trench is then filled with oxide and sealed to protect the mechanical components during subsequent microelectronics processing. The wafer surface is then planarized in preparation for CMOS processing. Next, the CMOS electronics are fabricated and the mechanical structures are released. The mechanical structure of each sensor consists of two polysilicon plate masses suspended by multiple springs (cantilevered beam structures) over corresponding polysilicon plates fixed to the substrate to form two parallel plate capacitors. One polysilicon plate mass is suspended using compliant springs forming a variable capacitor. The other polysilicon plate mass is suspended using very stiff springs acting as a fixed capacitor. Acceleration is measured by comparing the variable capacitance with the fixed capacitance during acceleration.

  18. Free fall tests of the accelerometers of the MICROSCOPE mission

    NASA Astrophysics Data System (ADS)

    Liorzou, F.; Boulanger, D.; Rodrigues, M.; Touboul, P.; Selig, H.

    2014-09-01

    The MICROSCOPE mission is fully dedicated to the in-orbit test of the Universality of free fall, the so-called Weak Equivalence Principle (WEP), with an expected accuracy better than 10-15. The test principle consists in comparing the accelerations of two proof masses of different composition in the Earth gravitational field. The payload embarks two pairs of test-masses made of Platinum Rhodium and Titanium alloys at the core of two dedicated coaxial electrostatic accelerometers. These instruments are under qualification for a launch in 2016. Their operations are only possible in microgravity environment which makes its validation on ground a real issue. In Europe, only the drop tower of the ZARM Institute provides a facility for experiments under conditions of weightlessness and offers the experimental conditions to verify the correct functioning of the MICROSCOPE payload. The height of the tower limits the “free fall” experiment period to 4.72 s. Under this strong constraint, the demonstration of the capability to control the test masses of the two coaxial electrostatic accelerometers is challenging. This paper describes the complete experimental set up and in which condition the test has been performed, then an analysis of a drop result is given with its interpretations.

  19. Evolution of accelerometer methods for physical activity research

    PubMed Central

    Troiano, Richard P.; McClain, James J.; Brychta, Robert J.; Chen, Kong Y.

    2014-01-01

    The technology and application of current accelerometer-based devices in physical activity (PA) research allow the capture and storage or transmission of large volumes of raw acceleration signal data. These rich data provide opportunities to improve physical activity characterization, but also bring logistical and analytic challenges. We discuss how researchers and developers from multiple disciplines are responding to the analytic challenges and how advances in data storage, transmission, and big data computing will minimize logistical challenges. These new approaches also bring the need for several paradigm shifts for PA researchers, including a shift from count-based approaches and regression calibrations for PA energy expenditure (EE) estimation to activity characterization and EE estimation based on features extracted from raw acceleration signals. Furthermore, a collaborative approach toward analytic methods is proposed to facilitate PA research, which requires a shift away from multiple independent calibration studies. Finally, we make the case for a distinction between PA represented by accelerometer-based devices and PA assessed by self-report. PMID:24782483

  20. Wear of highly crosslinked polyethylene acetabular components

    PubMed Central

    Callary, Stuart A; Solomon, Lucian B; Holubowycz, Oksana T; Campbell, David G; Munn, Zachary; Howie, Donald W

    2015-01-01

    Background and purpose Wear rates of highly crosslinked polyethylene (XLPE) acetabular components have varied considerably between different published studies. This variation is in part due to the different techniques used to measure wear and to the errors inherent in measuring the relatively low amounts of wear in XLPE bearings. We undertook a scoping review of studies that have examined the in vivo wear of XLPE acetabular components using the most sensitive method available, radiostereometric analysis (RSA). Methods A systematic search of the PubMed, Scopus, and Cochrane databases was performed to identify published studies in which RSA was used to measure wear of XLPE components in primary total hip arthroplasty (THA). Results 18 publications examined 12 primary THA cohorts, comprising only 260 THAs at 2–10 years of follow-up. The mean or median proximal wear rate reported ranged from 0.00 to 0.06 mm/year. However, differences in the manner in which wear was determined made it difficult to compare some studies. Furthermore, differences in RSA methodology between studies, such as the use of supine or standing radiographs and the use of beaded or unbeaded reference segments, may limit future meta-analyses examining the effect of patient and implant variables on wear rates. Interpretation This scoping review confirmed the low wear rates of XLPE in THA, as measured by RSA. We make recommendations to enhance the standardization of reporting of RSA wear results, which will facilitate early identification of poorly performing implants and enable a better understanding of the effects of surgical and patient factors on wear. PMID:25301435

  1. Decision boundaries and receiver operating characteristic curves: New methods for determining accelerometer cutpoints

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We propose and evaluate the utility of an alternative method (decision boundaries) for establishing physical activity intensity-related accelerometer cutpoints. Accelerometer data collected from 76 11- to 14-year-old boys during controlled bouts of moderate- and vigorous-intensity field physical act...

  2. The Use of Miniature Accelerometer for Detecting Glottal Waveforms and Nasality.

    ERIC Educational Resources Information Center

    Stevens, Kenneth N.; And Others

    A lightweight accelerometer has been used to produce a waveform related to the glottal acoustic output when attached to the throat of a speaker, and to provide an indication of acoustic coupling to the nasal cavities when attached to the external surface of the nose. Examples of signals produced by the accelerometer are shown, and possible…

  3. Assessing Physical Activity in Children with Asthma: Convergent Validity between Accelerometer and Electronic Diary Data

    ERIC Educational Resources Information Center

    Floro, Josh N.; Dunton, Genevieve F.; Delfino, Ralph J.

    2009-01-01

    Convergent validity of accelerometer and electronic diary physical activity data was assessed in children with asthma. Sixty-two participants, ages 9-18 years, wore an accelerometer and reported their physical activity level in quarter-hour segments every 2 hr using the Ambulatory Diary Assessment (ADA). Moderate validity was found between…

  4. A New Z-axis Resonant Micro-Accelerometer Based on Electrostatic Stiffness

    PubMed Central

    Yang, Bo; Wang, Xingjun; Dai, Bo; Liu, Xiaojun

    2015-01-01

    Presented in the paper is the design, the simulation, the fabrication and the experiment of a new z-axis resonant accelerometer based on the electrostatic stiffness. The new z-axis resonant micro-accelerometer, which consists of a torsional accelerometer and two plane resonators, decouples the sensing movement of the accelerometer from the oscillation of the plane resonators by electrostatic stiffness, which will improve the performance. The new structure and the sensitive theory of the acceleration are illuminated, and the equation of the scale factor is deduced under ideal conditions firstly. The Ansys simulation is implemented to verify the basic principle of the torsional accelerometer and the plane resonator individually. The structure simulation results prove that the effective frequency of the torsional accelerometer and the plane resonator are 0.66 kHz and 13.3 kHz, respectively. Then, the new structure is fabricated by the standard three-mask deep dry silicon on glass (DDSOG) process and encapsulated by parallel seam welding. Finally, the detecting and control circuits are designed to achieve the closed-loop self-oscillation, to trace the natural frequency of resonator and to measure the system frequency. Experimental results show that the new z-axis resonant accelerometer has a scale factor of 31.65 Hz/g, a bias stability of 727 μg and a dynamic range of over 10 g, which proves that the new z-axis resonant micro-accelerometer is practicable. PMID:25569748

  5. Validation of the PDPAR as an adolescent diary: Effect of accelerometer cut points

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PURPOSE: To evaluate the validity of the Previous Day Physical Activity Recall (PDPAR) as a physical activity diary in adolescents using two accelerometer intensity classifications. METHODS: One hundred eighth graders (47 boys, 53 girls) used the PDPAR as a daily diary and wore MTI accelerometers fo...

  6. Accelerometer data reduction: A comparison of four reduction algorithms on select outcome variables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PURPOSE: Accelerometers are recognized as a valid and objective tool to assess free-living physical activity. Despite the widespread use of accelerometers, there is no standardized way to process and summarize data from them, which limits our ability to compare results across studies. This paper a) ...

  7. A new z-axis resonant micro-accelerometer based on electrostatic stiffness.

    PubMed

    Yang, Bo; Wang, Xingjun; Dai, Bo; Liu, Xiaojun

    2015-01-01

    Presented in the paper is the design, the simulation, the fabrication and the experiment of a new z-axis resonant accelerometer based on the electrostatic stiffness. The new z-axis resonant micro-accelerometer, which consists of a torsional accelerometer and two plane resonators, decouples the sensing movement of the accelerometer from the oscillation of the plane resonators by electrostatic stiffness, which will improve the performance. The new structure and the sensitive theory of the acceleration are illuminated, and the equation of the scale factor is deduced under ideal conditions firstly. The Ansys simulation is implemented to verify the basic principle of the torsional accelerometer and the plane resonator individually. The structure simulation results prove that the effective frequency of the torsional accelerometer and the plane resonator are 0.66 kHz and 13.3 kHz, respectively. Then, the new structure is fabricated by the standard three-mask deep dry silicon on glass (DDSOG) process and encapsulated by parallel seam welding. Finally, the detecting and control circuits are designed to achieve the closed-loop self-oscillation, to trace the natural frequency of resonator and to measure the system frequency. Experimental results show that the new z-axis resonant accelerometer has a scale factor of 31.65 Hz/g, a bias stability of 727 µg and a dynamic range of over 10 g, which proves that the new z-axis resonant micro-accelerometer is practicable. PMID:25569748

  8. A comparison of methods to detect postural transitions using a single tri-axial accelerometer.

    PubMed

    Godfrey, Alan; Barry, Gillian; Mathers, John C; Rochester, Lynn

    2014-01-01

    Two algorithms for evaluating postural transitions (PTs) in cohorts of 40 healthy younger and 40 older adults are described and evaluated. The time of sit-to-stand (SiSt) and stand-to-sit (StSi) transitions and their duration were measured with two tri-axial accelerometers, one on the chest and one on the lower back. Each algorithm was optimized for these sensor placements. The first algorithm for sensor placement on the chest used a scalar product and vertical velocity estimates. The second algorithm for sensor placement on the lower back used a vector magnitude and a discrete wavelet transform. Both algorithms performed excellently in PT classification for younger and older adults (>86%). However, the chest based sensor and algorithm were better for estimating transition duration (TD) with ICCs to video analysis ranging from 0.678 to 0.969. PMID:25571421

  9. Curve aligning approach for gait authentication based on a wearable accelerometer.

    PubMed

    Sun, Hu; Yuao, Tao

    2012-06-01

    Gait authentication based on a wearable accelerometer is a novel biometric which can be used for identity identification, medical rehabilitation and early detection of neurological disorders. The method for matching gait patterns tells heavily on authentication performances. In this paper, curve aligning is introduced as a new method for matching gait patterns and it is compared with correlation and dynamic time warping (DTW). A support vector machine (SVM) is proposed to fuse pattern-matching methods in a decision level. Accelerations collected from ankles of 22 walking subjects are processed for authentications in our experiments. The fusion of curve aligning with backward-forward accelerations and DTW with vertical accelerations promotes authentication performances substantially and consistently. This fusion algorithm is tested repeatedly. Its mean and standard deviation of equal error rates are 0.794% and 0.696%, respectively, whereas among all presented non-fusion algorithms, the best one shows an EER of 3.03%. PMID:22621972

  10. Wear rate control of peek surfaces modified by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Hammouti, S.; Pascale-Hamri, A.; Faure, N.; Beaugiraud, B.; Guibert, M.; Mauclair, C.; Benayoun, S.; Valette, S.

    2015-12-01

    This paper presents the effect of laser texturing on the tribological properties of PEEK surfaces under a ball-on-flat contact configuration. Thus, surfaces with circular dimples of various diameters and depth were created. Tests were conducted with a normal load of 5 N and a sliding velocity of 0.01 m s-1, using bovine calf serum at 37.5 °C as a lubricant. The tribological conditions including the sliding frequency and the lubricant viscosity indicate that tests were performed under boundary lubrication regime. Results showed that discs with higher dimple depth exhibited higher friction coefficient and caused more abrasive wear on the ball specimen. Nevertheless, tribosystems (ball and disc) with dimpled disc surfaces showed a higher wear resistance. In the frame of our experiments, wear rates obtained for tribosystems including dimpled surfaces were 10 times lower than tribosystems including limited patterned or untextured surfaces. Applications such as design of spinal implants may be concerned by such a surface treatment to increase wear resistance of components.

  11. Development of wear resistant ceramic coatings for diesel engine components

    SciTech Connect

    Haselkorn, M.H. )

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  12. Macro- to nanoscale wear prevention via molecular adsorption.

    SciTech Connect

    Kim, Seong H.; Asay, David B.; Dugger, Michael Thomas; Ohlhausen, James Anthony

    2007-04-01

    As the size of mechanical systems shrinks from macro- to nanoscales, surface phenomena such as adhesion, friction, and wear become increasingly significant. This paper demonstrates the use of alcohol adsorption as a means of continuously replenishing the lubricating layer on the working device surfaces and elucidates the tribochemical reaction products formed in the sliding contact region. Friction and wear of native silicon oxide were studied over a wide range of length scales from macro- to nanoscales using a ball-on-flat tribometer (millimeter scale), sidewall microelectromechanical system (MEMS) tribometer (micrometer scale), and atomic force microscopy (nanometer scale). In all cases, the alcohol vapor adsorption successfully lubricated and prevented wear. Imaging time-of-flight secondary ion mass spectrometry analysis of the sliding contact region revealed that high molecular weight oligomeric species were formed via tribochemical reactions of the adsorbed linear alcohol molecules. These tribochemical products seemed to enhance the lubrication and wear prevention. In the case of sidewall MEMS tests, the lifetime of the MEMS device was radically increased via vapor-phase lubrication with alcohol.

  13. Use of three-dimensional accelerometers to evaluate behavioral changes in cattle experimentally infected with bovine viral diarrhea virus.

    PubMed

    Bayne, Jenna E; Walz, Paul H; Passler, Thomas; White, Brad J; Theurer, Miles E; van Santen, Edzard

    2016-06-01

    OBJECTIVE To assess the use of 3-D accelerometers to evaluate behavioral changes in cattle experimentally infected with a low-virulent strain of bovine viral diarrhea virus (BVDV). ANIMALS 20 beef steers (mean weight, 238 kg). PROCEDURES Calves were allocated to a BVDV (n = 10) or control (10) group. On day 0, calves in the BVDV group were inoculated with a low-virulent strain of BVDV (4 × 10(6) TCID50, intranasally), and calves in the control group were sham inoculated with BVDV-free medium (4 mL; intranasally). An accelerometer was affixed to the right hind limb of each calf on day -7 to record activity (lying, walking, and standing) continuously until 35 days after inoculation. Baseline was defined as days -7 to -1. Blood samples were collected at predetermined times for CBC, serum biochemical analysis, virus isolation, and determination of anti-BVDV antibody titers. RESULTS All calves in the BVDV group developed viremia and anti-BVDV antibodies but developed only subclinical or mild disease. Calves in the control group did not develop viremia or anti-BVDV antibodies. Mean time allocated to each activity did not differ significantly between the BVDV and control groups on any day except day 8, when calves in the BVDV group spent less time standing than the calves in the control group. Following inoculation, calves in both groups tended to spend more time lying and less time walking and standing than they did during baseline. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that behavioral data obtained by accelerometers could not distinguish calves subclinically infected with BVDV from healthy control calves. However, subtle changes in the behavior of the BVDV-infected calves were detected and warrant further investigation. PMID:27227496

  14. The abrasion-wear resistance of arc sprayed stainless steel and composite stainless steel coatings

    SciTech Connect

    Dallaire, S.; Legoux, J.G.; Levert, H.

    1994-12-31

    Stainless steels are often used to palliate wear problems in various industries. Though they are not wear resistant, they have been used to a limited extent in applications involving both corrosive and abrasive/erosive environments. The protection of industrial components by arc sprayed stainless steel composite coatings could be considered very attractive provided these coatings offer a better wear protection than bulk stainless steel. The wear resistance of stainless steel and composite stainless steel-titanium boride coatings arc sprayed with air and argon was evaluated following the ASTM G-65 Abrasion Wear Test procedures. Wear volume loss measurements show that stainless steel coatings arc sprayed with air were slightly more resistant than bulk stainless steel while those sprayed with argon were slightly less resistant. The abrasion wear resistance of composite stainless steel-titanium diboride coatings is by two or four times beyond the wear resistance of bulk stainless steel depending upon the core wire constitution and the type of gas used for spraying. Microstructural analysis of coatings, microhardness measurements of sprayed lamellae and optical profilometry were used to characterize coatings and wear damages. Spraying with air instead of argon produced much more small particles. These particles, being removed from the metal sheath surface, are individually sprayed without diluting the concentration hard phases within cores. It results in coatings that contain large lamellae with hardnesses sufficient to withstand abrasion. By considering both the wire constitution and the spraying conditions, it was found possible to fabricate composite stainless steel coatings that show a 400% increase in wear resistance over bulk stainless steel.

  15. Teenagers' attitudes towards bicycle helmets three years after the introduction of mandatory wearing.

    PubMed Central

    Finch, C. F.

    1996-01-01

    OBJECTIVES AND SETTING: To address helmet wearing by 13-17 year olds this study posed the following research questions: 'Do education programs continue to be necessary even after the community wearing rate has increased?' and 'Are helmet laws more effective in encouraging wearing among certain age groups?' Victoria was the first place in the world to introduce bicycle helmet legislation. Experiences in Victoria therefore provide a good model for the introduction of similar legislation in other areas. This study is the first to examine teenagers' attitudes towards helmet wearing after the introduction of compulsory helmet wearing legislation. METHODS: A survey of 1240 year 9 and year 10 students, aged 13-17 years, from 14 secondary schools in the outer south eastern suburbs of Melbourne, was conducted in September 1993. Information about bicycle use, helmet wearing, and attitudes towards helmets was obtained by a self report questionnaire. RESULTS: Bicycles are a popular form of wheeled recreation/self transport among teenagers. 65% of teenagers reported that they owned a helmet but only one third wore a helmet the last time they rode a bicycle. Fewer than 25% of students always wore a helmet when they rode a bicycle, despite compulsory helmet wearing legislation. Major factors leading to teenagers not wanting to wear a helmet were appearance and comfort. Both safety considerations and parental pressures were factors that influenced a teenager to wear a helmet. CONCLUSIONS: The major areas that need to be addressed are low helmet wearing rates; the low priority given to safety issues compared with comfort and peer acceptance; an ignorance of the need for helmets in all riding situations; and a perception that the legislation would not be enforced. PMID:9346076

  16. Physiological acoustic sensing based on accelerometers: a survey for mobile healthcare.

    PubMed

    Hu, Yating; Kim, Eric Guorui; Cao, Gang; Liu, Sheng; Xu, Yong

    2014-11-01

    This paper reviews the applications of accelerometers on the detection of physiological acoustic signals such as heart sounds, respiratory sounds, and gastrointestinal sounds. These acoustic signals contain a rich reservoir of vital physiological and pathological information. Accelerometer-based systems enable continuous, mobile, low-cost, and unobtrusive monitoring of physiological acoustic signals and thus can play significant roles in the emerging mobile healthcare. In this review, we first briefly explain the operation principle of accelerometers and specifications that are important for mobile healthcare. Applications of accelerometer-based monitoring systems are then presented. Next, we review a variety of accelerometers which have been reported in literatures for physiological acoustic sensing, including both commercial products and research prototypes. Finally, we discuss some challenges and our vision for future development. PMID:25234130

  17. Astronaut James Buchli wearing extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut James F. Buchli, wearing an extravehicular mobility unit (EMU), is about to be submerged in the weightless environment training facility (WETF) to simulate a contingency extravehicular activity (EVA) for STS 61-A. In this portrait view, Buchli is wearing a communications carrier assembly (CCA).

  18. Astronaut Bonnie Dunbar wearing extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut Bonnie J. Dunbar, wearing an extravehicular mobility unit (EMU), is about to be submerged in the weightless environment training facility (WETF) to simulate a contingency extravehicular activity (EVA) for STS 61-A. In this portrait view, Dunbar is not wearing a helmet.

  19. Friction, wear, and lubrication in vacuum

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1971-01-01

    A review of studies and observations on the friction, wear, and lubrication behavior of materials in a vacuum environment is presented. The factors that determine and influence friction and wear are discussed. They include topographical, physical, mechanical, and the chemical nature of the surface. The effects of bulk properties such as deformation characteristics, fracture behavior, and structure are included.

  20. Swarm accelerometer data processing from raw accelerations to thermospheric neutral densities

    NASA Astrophysics Data System (ADS)

    Siemes, Christian; de Teixeira da Encarnação, João; Doornbos, Eelco; van den IJssel, Jose; Kraus, Jiří; Pereštý, Radek; Grunwaldt, Ludwig; Apelbaum, Guy; Flury, Jakob; Holmdahl Olsen, Poul Erik

    2016-05-01

    The Swarm satellites were launched on November 22, 2013, and carry accelerometers and GPS receivers as part of their scientific payload. The GPS receivers do not only provide the position and time for the magnetic field measurements, but are also used for determining non-gravitational forces like drag and radiation pressure acting on the spacecraft. The accelerometers measure these forces directly, at much finer resolution than the GPS receivers, from which thermospheric neutral densities can be derived. Unfortunately, the acceleration measurements suffer from a variety of disturbances, the most prominent being slow temperature-induced bias variations and sudden bias changes. In this paper, we describe the new, improved four-stage processing that is applied for transforming the disturbed acceleration measurements into scientifically valuable thermospheric neutral densities. In the first stage, the sudden bias changes in the acceleration measurements are manually removed using a dedicated software tool. The second stage is the calibration of the accelerometer measurements against the non-gravitational accelerations derived from the GPS receiver, which includes the correction for the slow temperature-induced bias variations. The identification of validity periods for calibration and correction parameters is part of the second stage. In the third stage, the calibrated and corrected accelerations are merged with the non-gravitational accelerations derived from the observations of the GPS receiver by a weighted average in the spectral domain, where the weights depend on the frequency. The fourth stage consists of transforming the corrected and calibrated accelerations into thermospheric neutral densities. We present the first results of the processing of Swarm C acceleration measurements from June 2014 to May 2015. We started with Swarm C because its acceleration measurements contain much less disturbances than those of Swarm A and have a higher signal-to-noise ratio