Science.gov

Sample records for accelerometers sense vibration

  1. Vibration sensing in smart machine rotors using internal MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Jiménez, Samuel; Cole, Matthew O. T.; Keogh, Patrick S.

    2016-09-01

    This paper presents a novel topology for enhanced vibration sensing in which wireless MEMS accelerometers embedded within a hollow rotor measure vibration in a synchronously rotating frame of reference. Theoretical relations between rotor-embedded accelerometer signals and the vibration of the rotor in an inertial reference frame are derived. It is thereby shown that functionality as a virtual stator-mounted displacement transducer can be achieved through appropriate signal processing. Experimental tests on a prototype rotor confirm that both magnitude and phase information of synchronous vibration can be measured directly without additional stator-mounted key-phasor sensors. Displacement amplitudes calculated from accelerometer signals will become erroneous at low rotational speeds due to accelerometer zero-g offsets, hence a corrective procedure is introduced. Impact tests are also undertaken to examine the ability of the internal accelerometers to measure transient vibration. A further capability is demonstrated, whereby the accelerometer signals are used to measure rotational speed of the rotor by analysing the signal component due to gravity. The study highlights the extended functionality afforded by internal accelerometers and demonstrates the feasibility of internal sensor topologies, which can provide improved observability of rotor vibration at externally inaccessible rotor locations.

  2. Fabrication of nano piezoelectric based vibration accelerometer for mechanical sensing

    NASA Astrophysics Data System (ADS)

    Murugan, S.; Prasad, M. V. N.; Jayakumar, K.

    2016-05-01

    An electromechanical sensor unit has been fabricated using nano PZT embedded in PVDF polymer. Such a polymer nano composite has been used as vibration sensor element and sensitivity, detection of mechanical vibration, and linearity measurements have been investigated. It is found from its performance, that this nano composite sensor is suitable for mechanical sensing applications.

  3. Vibration Analysis and the Accelerometer

    ERIC Educational Resources Information Center

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  4. Smart accelerometer. [vibration damage detection

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  5. Flip Chip Bonding of a Quartz MEMS-Based Vibrating Beam Accelerometer.

    PubMed

    Liang, Jinxing; Zhang, Liyuan; Wang, Ling; Dong, Yuan; Ueda, Toshitsugu

    2015-01-01

    In this study, a novel method to assemble a micro-accelerometer by a flip chip bonding technique is proposed and demonstrated. Both the main two parts of the accelerometer, a double-ended tuning fork and a base-proof mass structure, are fabricated using a quartz wet etching process on Z cut quartz wafers with a thickness of 100 μm and 300 μm, respectively. The finite element method is used to simulate the vibration mode and optimize the sensing element structure. Taking advantage of self-alignment function of the flip chip bonding process, the two parts were precisely bonded at the desired joint position via AuSn solder. Experimental demonstrations were performed on a maximum scale of 4 × 8 mm² chip, and high sensitivity up to 9.55 Hz/g with a DETF resonator and a Q value of 5000 in air was achieved. PMID:26340632

  6. Flip Chip Bonding of a Quartz MEMS-Based Vibrating Beam Accelerometer

    PubMed Central

    Liang, Jinxing; Zhang, Liyuan; Wang, Ling; Dong, Yuan; Ueda, Toshitsugu

    2015-01-01

    In this study, a novel method to assemble a micro-accelerometer by a flip chip bonding technique is proposed and demonstrated. Both the main two parts of the accelerometer, a double-ended tuning fork and a base-proof mass structure, are fabricated using a quartz wet etching process on Z cut quartz wafers with a thickness of 100 μm and 300 μm, respectively. The finite element method is used to simulate the vibration mode and optimize the sensing element structure. Taking advantage of self-alignment function of the flip chip bonding process, the two parts were precisely bonded at the desired joint position via AuSn solder. Experimental demonstrations were performed on a maximum scale of 4 × 8 mm2 chip, and high sensitivity up to 9.55 Hz/g with a DETF resonator and a Q value of 5000 in air was achieved. PMID:26340632

  7. Flip Chip Bonding of a Quartz MEMS-Based Vibrating Beam Accelerometer.

    PubMed

    Liang, Jinxing; Zhang, Liyuan; Wang, Ling; Dong, Yuan; Ueda, Toshitsugu

    2015-01-01

    In this study, a novel method to assemble a micro-accelerometer by a flip chip bonding technique is proposed and demonstrated. Both the main two parts of the accelerometer, a double-ended tuning fork and a base-proof mass structure, are fabricated using a quartz wet etching process on Z cut quartz wafers with a thickness of 100 μm and 300 μm, respectively. The finite element method is used to simulate the vibration mode and optimize the sensing element structure. Taking advantage of self-alignment function of the flip chip bonding process, the two parts were precisely bonded at the desired joint position via AuSn solder. Experimental demonstrations were performed on a maximum scale of 4 × 8 mm² chip, and high sensitivity up to 9.55 Hz/g with a DETF resonator and a Q value of 5000 in air was achieved.

  8. ACCELEROMETER

    DOEpatents

    Pope, K.E.

    1958-11-25

    A device, commonly known as an accelerometer, is described which may be utllized for measuring acceleratlon with high sensitivity and accuracy tbroughout a relatively wlde range of values. In general, the accelerometer consists of an assembly, including an electric motor stator and a mass element located away from the axis of rotation of the stator, rotatably mounted on a support, and an electric motor rotor positioned within the stator and rotatable thereln. An electrlcal switching circuit controlled by the movement of the stator lntermittently energizes the rotor winding and retards move ment of the stator, and a centrifugal switch is rotatable with the rotor to operate upon attainment of a predetermined rotor rotational velocity.

  9. Development of a quartz digital accelerometer for environmental sensing and navigation applications

    SciTech Connect

    Kass, W.J.; Vianco, P.T.

    1993-03-01

    A quartz digital accelerometer has been developed which uses double ended tuning forks as the active sensing elements. The authors have demonstrated the ability of this accelerometer to be capable of acceleration measurements between {+-}150G with {+-}0.5G accuracy. They have further refined the original design and assembly processes to produce accelerometers with < 1mG stability in inertial measurement applications. This report covers the development, design, processing, assembly, and testing of these devices.

  10. Performance comparison of piezoelectric accelerometer and laser interferometer in vibration monitoring and measurements

    NASA Astrophysics Data System (ADS)

    Wei, Hong; Stout, Kenneth J.

    1995-12-01

    In this paper, vibration monitoring and measurement carried out in the newly developed nanometer metrology laboratory in Birmingham University, is described with respect to measurement methods and instrument performance. Two types of instrument -- piezoelectric accelerometer (B&K type 8318 with a type 2140 bus-controlled frequency analyzer) and laser interferometer (Renishaw ML10 laser interferometer with the Keithley multi-channel FFT analyzer) were used in vibration measurement on capability verification of a vibration isolation system. Vibration results from a concrete block are presented. From the point of view of the measured vibration results, it is demonstrated that the performance of the above two instruments is not completely the same in the different frequency ranges. The related comparison and discussions are presented in this paper.

  11. Physiological acoustic sensing based on accelerometers: a survey for mobile healthcare.

    PubMed

    Hu, Yating; Kim, Eric Guorui; Cao, Gang; Liu, Sheng; Xu, Yong

    2014-11-01

    This paper reviews the applications of accelerometers on the detection of physiological acoustic signals such as heart sounds, respiratory sounds, and gastrointestinal sounds. These acoustic signals contain a rich reservoir of vital physiological and pathological information. Accelerometer-based systems enable continuous, mobile, low-cost, and unobtrusive monitoring of physiological acoustic signals and thus can play significant roles in the emerging mobile healthcare. In this review, we first briefly explain the operation principle of accelerometers and specifications that are important for mobile healthcare. Applications of accelerometer-based monitoring systems are then presented. Next, we review a variety of accelerometers which have been reported in literatures for physiological acoustic sensing, including both commercial products and research prototypes. Finally, we discuss some challenges and our vision for future development. PMID:25234130

  12. Vibration transmissibility on rifle shooter: A comparison between accelerometer and laser Doppler vibrometer data

    NASA Astrophysics Data System (ADS)

    Scalise, L.; Casacanditella, L.; Santolini, C.; Martarelli, M.; Tomasini, E. P.

    2014-05-01

    The transmission of mechanical vibrations from tools to human subjects is known to be potentially dangerous for the circulatory and neurological systems. It is also known that such damages are strictly depending on the intensity and the frequency range of the vibrational signals transferred to the different anatomical districts. In this paper, very high impulsive signals, generated during a shooting by a rifle, will be studied, being such signals characterised by a very high acceleration amplitude as well as high frequency range. In this paper, it will be presented an experimental setup aimed to collect experimental data relative to the transmission of the vibration signals from the rifle to the shoulder of subject during the shooting action. In particular the transmissibility of acceleration signals, as well as of the velocity signals, between the rifle stock and the subject's back shoulder will be measured using two piezoelectric accelerometers and a single point laser Doppler vibrometer (LDV). Tests have been carried out in a shooting lab where a professional shooter has conducted the experiments, using different experimental configurations: two different types of stocks and two kinds of bullets with different weights were considered. Two uniaxial accelerometers were fixed on the stock of the weapon and on the back of the shoulder of the shooter respectively. Vibration from the back shoulder was also measured by means of a LDV simultaneously. A comparison of the measured results will be presented and the pros and cons of the use of contact and non-contact transducers will be discussed taking into account the possible sources of the measurement uncertainty as unwanted sensor vibrations for the accelerometer.

  13. A New Force Balanced Accelerometer Using Tunneling Tip Position Sensing

    NASA Technical Reports Server (NTRS)

    Zavracky, P.; Hartley, F.; Sherman, N.; Warner, K.

    1993-01-01

    In this paper, we report the initial development of a single-axis bulk micromachined accelerometer. The device employs an electron tunneling tip as a position detector in a force feedback control system. Control electrodes are placed above and below the proof mass and act as electrostatic force plates. Using the force plates, the position of the proof mass relative to the tunneling tip can be controlled.

  14. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.

    PubMed

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-01-01

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms. PMID:26287203

  15. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms

    PubMed Central

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-01-01

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms. PMID:26287203

  16. Vibration sensing method and apparatus

    DOEpatents

    Barna, B.A.

    1987-07-07

    A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.

  17. Vibration sensing method and apparatus

    DOEpatents

    Barna, B.A.

    1989-04-25

    A method and apparatus for nondestructive evaluation of a structure are disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.

  18. Vibration sensing method and apparatus

    DOEpatents

    Barna, Basil A.

    1989-04-25

    A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration.

  19. Accelerometer based measurement for the mapping of neck surface vibrations during vocalized speech.

    PubMed

    Nolan, Mark; Madden, Brian; Burke, Edward

    2009-01-01

    This paper presents a detailed study of the vibrations on the surface of the neck during a vocalization of predefined fundamental frequency and intensity. This study was carried out as part of a wider investigation into the use of laryngeal vibrations as a channel of communication. Another potential application of this study is in identifying a suitable location for a hands-free electro-larynx for laryngectomees. An analog accelerometer, with dimensions 5x5x1.6mm and of mass 80mg, was used to perform the measurements. It was connected to a 12-bit analog to digital converter via single strands of insulated wire with a diameter of 100 microm. The resulting low inertia of the measuring device minimised the effect of the measuring device on the phenomenon under investigation. The analog to digital converter simultaneously sampled the accelerometer output and a pre-amplified audio signal from a microphone. This preliminary study was carried out on two able-bodied male subjects. Measurements were taken from forty-five preselected locations on the neck. Each subject made the vowel sound /i/ (long 'e') at three different fundamental frequencies, 150Hz, 200Hz and 250Hz. Once the vocal pitch and intensity matched pre-defined target values, a 200 ms recording was captured by a virtual instrument designed in LabVIEW. A detailed map of skin surface vibration amplitude during vocalization is presented and suitable locations for laryngeal vibration measurement are identified. Further more, detailed analysis of the time varying acceleration function at various measurement positions reveals a rich and complex source of information. Novel visualizations of these signals are presented. PMID:19964631

  20. Temperature compensation method for the resonant frequency of a differential vibrating accelerometer using electrostatic stiffness control

    NASA Astrophysics Data System (ADS)

    Lee, Jungshin; Rhim, Jaewook

    2012-09-01

    Differential vibrating accelerometer (DVA) is a resonant-type sensor which detects the change in the resonant frequency in the presence of acceleration input, i.e. inertial loading. However, the resonant frequency of micromachined silicon resonators is sensitive to the temperature change as well as the input acceleration. Therefore, to design a high-precision vibrating accelerometer, the temperature sensitivity of the resonant frequency has to be predicted and compensated accurately. In this study, a temperature compensation method for resonant frequency is proposed which controls the electrostatic stiffness of the dual-ended tuning fork (DETF) using the temperature-dependent dc voltage between the parallel plate electrodes. To do this, the electromechanical model is derived first to predict the change in the electrostatic stiffness and the resonant frequency resulting from the dc voltage between the resonator and the electrodes. Next, the temperature sensitivity of the resonant frequency is modeled, estimated and compared with the measured values. Then it is shown that the resonant frequency of the DETF can be kept constant in the operating temperature range by applying the temperature-dependent driving voltage to the parallel plate electrodes. The proposed method is validated through experiment.

  1. A Simple Accelerometer Calibrator

    NASA Astrophysics Data System (ADS)

    Salam, R. A.; Islamy, M. R. F.; Munir, M. M.; Latief, H.; Irsyam, M.; Khairurrijal

    2016-08-01

    High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM.

  2. A Fiber Bragg Grating Sensing-Based Micro-Vibration Sensor and Its Application

    PubMed Central

    Li, Tianliang; Tan, Yuegang; Zhou, Zude

    2016-01-01

    This paper proposes a fiber Bragg grating sensing-based micro-vibration sensor. The optical fiber has been directly treated as an elastomer to design the micro-vibration sensor, which possesses two FBGs. The mass is fixed on the middle of the fiber, and the vertical vibration of the mass has been converted into the axial tension/compression of the fiber. The principle of the sensor has been introduced, and the experiment conclusions show that the sensor sensitivity is 2362 pm/g within the range of 200–1200 mm/s2, which is consistent with theoretical analysis sensitivity of 2532.6 pm/g, and it shows an excellent linearity of 1.376%, while the resonant frequency of the sensor is 34 Hz, and the flat frequency range resides in the 0–22 Hz range. When used to measure micro-vibrations, its measured frequency relative error is less than 1.69% compared with the values acquired with a MEMS accelerometer, and the amplitude values of its measured vibration signal are consistent with the MEMS accelerometer under different excitation conditions too, so it can effectively realize the micro-vibration measurements. PMID:27092507

  3. A Fiber Bragg Grating Sensing-Based Micro-Vibration Sensor and Its Application.

    PubMed

    Li, Tianliang; Tan, Yuegang; Zhou, Zude

    2016-01-01

    This paper proposes a fiber Bragg grating sensing-based micro-vibration sensor. The optical fiber has been directly treated as an elastomer to design the micro-vibration sensor, which possesses two FBGs. The mass is fixed on the middle of the fiber, and the vertical vibration of the mass has been converted into the axial tension/compression of the fiber. The principle of the sensor has been introduced, and the experiment conclusions show that the sensor sensitivity is 2362 pm/g within the range of 200-1200 mm/s², which is consistent with theoretical analysis sensitivity of 2532.6 pm/g, and it shows an excellent linearity of 1.376%, while the resonant frequency of the sensor is 34 Hz, and the flat frequency range resides in the 0-22 Hz range. When used to measure micro-vibrations, its measured frequency relative error is less than 1.69% compared with the values acquired with a MEMS accelerometer, and the amplitude values of its measured vibration signal are consistent with the MEMS accelerometer under different excitation conditions too, so it can effectively realize the micro-vibration measurements. PMID:27092507

  4. A Fiber Bragg Grating Sensing-Based Micro-Vibration Sensor and Its Application.

    PubMed

    Li, Tianliang; Tan, Yuegang; Zhou, Zude

    2016-04-15

    This paper proposes a fiber Bragg grating sensing-based micro-vibration sensor. The optical fiber has been directly treated as an elastomer to design the micro-vibration sensor, which possesses two FBGs. The mass is fixed on the middle of the fiber, and the vertical vibration of the mass has been converted into the axial tension/compression of the fiber. The principle of the sensor has been introduced, and the experiment conclusions show that the sensor sensitivity is 2362 pm/g within the range of 200-1200 mm/s², which is consistent with theoretical analysis sensitivity of 2532.6 pm/g, and it shows an excellent linearity of 1.376%, while the resonant frequency of the sensor is 34 Hz, and the flat frequency range resides in the 0-22 Hz range. When used to measure micro-vibrations, its measured frequency relative error is less than 1.69% compared with the values acquired with a MEMS accelerometer, and the amplitude values of its measured vibration signal are consistent with the MEMS accelerometer under different excitation conditions too, so it can effectively realize the micro-vibration measurements.

  5. Occupant traffic estimation through structural vibration sensing

    NASA Astrophysics Data System (ADS)

    Pan, Shijia; Mirshekari, Mostafa; Zhang, Pei; Noh, Hae Young

    2016-04-01

    The number of people passing through different indoor areas is useful in various smart structure applications, including occupancy-based building energy/space management, marketing research, security, etc. Existing approaches to estimate occupant traffic include vision-, sound-, and radio-based (mobile) sensing methods, which have placement limitations (e.g., requirement of line-of-sight, quiet environment, carrying a device all the time). Such limitations make these direct sensing approaches difficult to deploy and maintain. An indirect approach using geophones to measure floor vibration induced by footsteps can be utilized. However, the main challenge lies in distinguishing multiple simultaneous walkers by developing features that can effectively represent the number of mixed signals and characterize the selected features under different traffic conditions. This paper presents a method to monitor multiple persons. Once the vibration signals are obtained, features are extracted to describe the overlapping vibration signals induced by multiple footsteps, which are used for occupancy traffic estimation. In particular, we focus on analysis of the efficiency and limitations of the four selected key features when used for estimating various traffic conditions. We characterize these features with signals collected from controlled impulse load tests as well as from multiple people walking through a real-world sensing area. In our experiments, the system achieves the mean estimation error of +/-0.2 people for different occupant traffic conditions (from one to four) using k-nearest neighbor classifier.

  6. MEMS accelerometer embedded in a self-mixing displacement sensor for parasitic vibration compensation.

    PubMed

    Zabit, Usman; Bernal, Olivier D; Bosch, Thierry; Bony, Francis

    2011-03-01

    A self-mixing (SM) laser displacement sensor coupled with a microelectromechanical system (MEMS) accelerometer is presented that enables reliable displacement measurements even in the case of a nonstationary laser head. The proposed technique allows the use of SM-based sensors for embedded applications. The system resolution is currently limited to approximately 300 nm due to the noise characteristics of the currently used accelerometer. It is shown that this resolution can be greatly improved by the use of a low noise accelerometer.

  7. A MEMS accelerometer-based real-time motion-sensing module for urological diagnosis and treatment.

    PubMed

    Sun, Hongzhi; Fu, Guoqing; Xie, Huikai

    2013-02-01

    This paper reports a real-time motion-sensing module, which is realized by incorporating multiple MEMS accelerometers into a standard Foley catheter, for assisting diagnosis and treatment of stressed urinary incontinence. The accelerometers measure the orientations of the catheter at multiple points, so the shape of the urethra and movement of the bladder neck can be tracked in real time. An algorithm for extracting tilting, position and shape information from 3-axis MEMS accelerometers has been developed. The model of measurement errors for both static and dynamic testing is also established. The experimental results indicate that the module tracks the movement of the Foley catheter successfully in a real-time environment and the absolute error for static measurement is no more than 1.1° within the operation range. PMID:23360195

  8. A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics

    SciTech Connect

    Lemkin, M.; Boser, B.E.

    1999-04-01

    This paper describes a three-axis accelerometer implemented in a surface-micromachining technology with integrated CMOS. The accelerometer measures changes in a capacitive half-bridge to detect deflections of a proof mass, which result from acceleration input. The half-bridge is connected to a fully differential position-sense interface, the output of which is used for one-bit force feedback. By enclosing the proof mass in a one-bit feedback loop, simultaneous force balancing and analog-to-digital conversion are achieved. On-chip digital offset-trim electronics enable compensation of random offset in the electronic interface. Analytical performance calculations are shown to accurately model device behavior. The fabricated single-chip accelerometer measures 4 {times} 4 mm{sup 2}, draws 27 mA from a 5-V supply, and has a dynamic range of 84, 81, and 70 dB along the x-, y-, and z-axes, respectively.

  9. Accelerometer-based estimation and modal velocity feedback vibration control of a stress-ribbon bridge with pneumatic muscles

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohan; Schauer, Thomas; Goldack, Arndt; Bleicher, Achim; Schlaich, Mike

    2016-09-01

    Lightweight footbridges are very elegant but also prone to vibration. By employing active vibration control, smart footbridges could accomplish not only the architectural concept but also the required serviceability and comfort. Inertial sensors such as accelerometers allow the estimation of nodal velocities and displacements. A Kalman filter together with a band-limited multiple Fourier linear combiner (BMFLC) is applied to enable a drift-free estimation of these signals for the quasi-periodic motion under pedestrian excitation without extra information from other kinds of auxiliary sensors. The modal velocities of the structure are determined by using a second Kalman filter with the known applied actuator forces as inputs and the estimated nodal displacement and velocities as measurements. The obtained multi-modal velocities are then used for feedback control. An ultra-lightweight stress-ribbon footbridge built in the Peter-Behrens- Halle at the Technische Universitat Berlin served as the research object. Using two inertial sensors in optimal points we can estimate the dominant modal characteristics of this bridge. Real-time implementation and evaluation results of the proposed estimator will be presented in comparison to signals derived from classical displacement encoders. The real-time estimated modal velocities were applied in a multi-modal velocity feedback vibration control scheme with lightweight pneumatic muscle actuators. Experimental results demonstrate the feasibility of using inertial sensors for active vibration control of lightweight footbridges.

  10. Topographic analysis of the skull vibration-induced nystagmus test with piezoelectric accelerometers and force sensors.

    PubMed

    Dumas, Georges; Lion, Alexis; Perrin, Philippe; Ouedraogo, Evariste; Schmerber, Sébastien

    2016-03-23

    Vibration-induced nystagmus is elicited by skull or posterior cervical muscle stimulations in patients with vestibular diseases. Skull vibrations delivered by the skull vibration-induced nystagmus test are known to stimulate the inner ear structures directly. This study aimed to measure the vibration transfer at different cranium locations and posterior cervical regions to contribute toward stimulus topographic optimization (experiment 1) and to determine the force applied on the skull with a hand-held vibrator to study the test reproducibility and provide recommendations for good clinical practices (experiment 2). In experiment 1, a 100 Hz hand-held vibrator was applied on the skull (vertex, mastoids) and posterior cervical muscles in 11 healthy participants. Vibration transfer was measured by piezoelectric sensors. In experiment 2, the vibrator was applied 30 times by two experimenters with dominant and nondominant hands on a mannequin equipped to measure the force. Experiment 1 showed that after unilateral mastoid vibratory stimulation, the signal transfer was higher when recorded on the contralateral mastoid than on the vertex or posterior cervical muscles (P<0.001). No difference was observed between the different vibratory locations when vibration transfer was measured on vertex and posterior cervical muscles. Experiment 2 showed that the force applied to the mannequin varied according to the experimenters and the handedness, higher forces being observed with the most experienced experimenter and with the dominant hand (10.3 ± 1.0 and 7.8 ± 2.9 N, respectively). The variation ranged from 9.8 to 29.4% within the same experimenter. Bone transcranial vibration transfer is more efficient from one mastoid to the other mastoid than other anatomical sites. The mastoid is therefore the optimal site for skull vibration-induced nystagmus test in patients with unilateral vestibular lesions and enables a stronger stimulation of the healthy side. In clinical practice

  11. Topographic analysis of the skull vibration-induced nystagmus test with piezoelectric accelerometers and force sensors.

    PubMed

    Dumas, Georges; Lion, Alexis; Perrin, Philippe; Ouedraogo, Evariste; Schmerber, Sébastien

    2016-03-23

    Vibration-induced nystagmus is elicited by skull or posterior cervical muscle stimulations in patients with vestibular diseases. Skull vibrations delivered by the skull vibration-induced nystagmus test are known to stimulate the inner ear structures directly. This study aimed to measure the vibration transfer at different cranium locations and posterior cervical regions to contribute toward stimulus topographic optimization (experiment 1) and to determine the force applied on the skull with a hand-held vibrator to study the test reproducibility and provide recommendations for good clinical practices (experiment 2). In experiment 1, a 100 Hz hand-held vibrator was applied on the skull (vertex, mastoids) and posterior cervical muscles in 11 healthy participants. Vibration transfer was measured by piezoelectric sensors. In experiment 2, the vibrator was applied 30 times by two experimenters with dominant and nondominant hands on a mannequin equipped to measure the force. Experiment 1 showed that after unilateral mastoid vibratory stimulation, the signal transfer was higher when recorded on the contralateral mastoid than on the vertex or posterior cervical muscles (P<0.001). No difference was observed between the different vibratory locations when vibration transfer was measured on vertex and posterior cervical muscles. Experiment 2 showed that the force applied to the mannequin varied according to the experimenters and the handedness, higher forces being observed with the most experienced experimenter and with the dominant hand (10.3 ± 1.0 and 7.8 ± 2.9 N, respectively). The variation ranged from 9.8 to 29.4% within the same experimenter. Bone transcranial vibration transfer is more efficient from one mastoid to the other mastoid than other anatomical sites. The mastoid is therefore the optimal site for skull vibration-induced nystagmus test in patients with unilateral vestibular lesions and enables a stronger stimulation of the healthy side. In clinical practice

  12. Noncontact vibration measurements using magnetoresistive sensing elements

    NASA Astrophysics Data System (ADS)

    Tomassini, R.; Rossi, G.

    2016-06-01

    Contactless instrumentations is more and more used in turbomachinery testing thanks to the non-intrusive character and the possibility to monitor all the components of the machine at the same time. Performances of blade tip timing (BTT) measurement systems, used for noncontact turbine blade vibration measurements, in terms of uncertainty and resolution are strongly affected by sensor characteristics and processing methods. The sensors used for BTT generate pulses, used for precise measurements of turbine blades time of arrival. Nowadays proximity sensors used in this application are based on optical, capacitive, eddy current and microwave measuring principle. Pressure sensors has been also tried. This paper summarizes the results achieved using a novel instrumentation based on the magnetoresistive sensing elements. The characterization of the novel probe has been already published. The measurement system was validated in test benches and in a real jet-engine comparing different sensor technologies. The whole instrumentation was improved. The work presented in this paper focuses on the current developments. In particular, attention is given to the data processing software and new sensor configurations.

  13. Fiber optic accelerometer based on clamped beam

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Li, Fang

    2013-01-01

    In this paper a fiber optic accelerometer (FOA) based on camped beam is proposed. The clamped beam is used as the elastic element and a mass installed on the clamped beam is used as the inertial element. The accelerometer is based on a fiber optic Michelson interferometer and has a sensing arm and a reference arm. The optical fiber of the sensing arm is wrapped on the clamped beam and the mass, which are both cylinder shaped. The sensitivity of the FOA is analyzed based on the theory of elasticity; the frequency response is analyzed based on the theory of vibration. Experiment is carried out to test the performance of the fiber optic accelerometer. The experiment results show a high sensitivity and a flat frequency response within the low frequency range of 5-250 Hz, which agrees well with the theoretical result.

  14. Applying Thermal Gradients To Control Vibrations

    NASA Technical Reports Server (NTRS)

    Edberg, Donald L.

    1989-01-01

    Thermal actuators used to stabilize large structures. New damping concept calls for application of suitably timed and shaped thermal-gradient waveforms to generate expansions and contractions counteracting vibrations. Responding to processed signal from accelerometer, thermoelectric heat pumps apply thermal gradients producing expansions and contractions in upper and lower caps of cantilever beam. These expansions and contractions partly counteract vibrations sensed by accelerometer, thus contributing to damping.

  15. A novel differential optical fiber accelerometer

    NASA Astrophysics Data System (ADS)

    Pi, Shaohua; Zhao, Jiang; Hong, Guangwei; Jia, Bo

    2013-08-01

    The development of sensitive fiber-optic accelerometers is a subject of continuing interest. To acquire high resolution, Michelson phase interferometric techniques are widely adopted. Among the variety structures, the compliant cylinder approach is particularly attractive due to its high sensitivity that is defined as the induced phase shift per applied acceleration. While the two arms of Michelson interferometer should be at the same optical path, it is inconvenient to adjust the two arms' length to equal, also the polarization instability and phase random drift will cause a signal decline. To overcome these limitations, a novel optical fiber accelerometer based on differential interferometric techniques is proposed and investigated. The interferometer is a Sagnac-like white light interferometer, which means the bandwidth of laser spectrum can be as wide as tens nanometers. This interferometer was firstly reported by Levin in 1990s. Lights are divided to two paths before entering the coupler. To induce time difference, one passes through a delay arm and another goes a direct arm. After modulated by the sensing component, they reflect to opposite arm. The sensing part is formed by a seismic mass that is held to only one compliant cylinder, where the single-mode optical fiber is wrapped tightly. When sticking to vibrations, the cylinder compresses or stretches as a spring. The corresponding changes in cylinder circumference lead to strain in the sensing fibers, which is detected as an optical phase shift by the interferometer. The lights from two arms reach the vibration source at different time, sensing a different accelerate speed; produce a different optic path difference. Integrating the dissimilarity of the accelerated speed by time can obtain the total acceleration graph. A shaker's vibration has been tested by the proposed accelerometer referring to a standard piezoelectric accelerometer. A 99.8% linearity of the optical phase shift to the ground acceleration

  16. The novel use of a SenseCam and accelerometer to validate training load and training information in a self-recall training diary.

    PubMed

    O Connor, Siobhan; McCaffrey, Noel; Whyte, Enda; Moran, Kieran

    2016-01-01

    Self-recall training diaries are a frequently used tool to quantify training load and training information. While accelerometers are predominantly used to validate training diaries, they are unable to validate contextual training information. Thus this study aimed to examine the novel use of data fusion from a wearable camera device (SenseCam) and accelerometer to validate a self-recall training diary. Thirty participants filled in a training diary for 1 day while simultaneously wearing a SenseCam and accelerometer. The training diary was validated using Bland-Altman plots, Spearman's rank-order correlation, percentage agreement and κ measure of agreement between the diary and the SenseCam and accelerometer. The results demonstrated overall agreement, and no bias, between the training diary and the accelerometer for training intensity, and the SenseCam for duration of activity and travel time. A positive correlation was found for duration (r = 0.82, P < 0.001) and intensity (r = 0.67, P < 0.001). Hundred per cent agreement was found between the SenseCam and training diary for activity, training surface and footwear (κ = 1, P < 0.0001), with a lower agreement noted for sports played (97.3%, κ = 0.91, P < 0.0001). The self-recall training diary was found to be a valid measure of capturing training load and training information using the combined wearable camera device and accelerometer.

  17. A Fiber Bragg Grating Sensing Based Triaxial Vibration Sensor.

    PubMed

    Li, Tianliang; Tan, Yuegang; Liu, Yi; Qu, Yongzhi; Liu, Mingyao; Zhou, Zude

    2015-01-01

    A fiber Bragg grating (FBG) sensing based triaxial vibration sensor has been presented in this paper. The optical fiber is directly employed as elastomer, and the triaxial vibration of a measured body can be obtained by two pairs of FBGs. A model of a triaxial vibration sensor as well as decoupling principles of triaxial vibration and experimental analyses are proposed. Experimental results show that: sensitivities of 86.9 pm/g, 971.8 pm/g and 154.7 pm/g for each orthogonal sensitive direction with linearity are separately 3.64%, 1.50% and 3.01%. The flat frequency ranges reside in 20-200 Hz, 3-20 Hz and 4-50 Hz, respectively; in addition, the resonant frequencies are separately 700 Hz, 40 Hz and 110 Hz in the x/y/z direction. When the sensor is excited in a single direction vibration, the outputs of sensor in the other two directions are consistent with the outputs in the non-working state. Therefore, it is effectively demonstrated that it can be used for three-dimensional vibration measurement. PMID:26393616

  18. A Fiber Bragg Grating Sensing Based Triaxial Vibration Sensor

    PubMed Central

    Li, Tianliang; Tan, Yuegang; Liu, Yi; Qu, Yongzhi; Liu, Mingyao; Zhou, Zude

    2015-01-01

    A fiber Bragg grating (FBG) sensing based triaxial vibration sensor has been presented in this paper. The optical fiber is directly employed as elastomer, and the triaxial vibration of a measured body can be obtained by two pairs of FBGs. A model of a triaxial vibration sensor as well as decoupling principles of triaxial vibration and experimental analyses are proposed. Experimental results show that: sensitivities of 86.9 pm/g, 971.8 pm/g and 154.7 pm/g for each orthogonal sensitive direction with linearity are separately 3.64%, 1.50% and 3.01%. The flat frequency ranges reside in 20–200 Hz, 3–20 Hz and 4–50 Hz, respectively; in addition, the resonant frequencies are separately 700 Hz, 40 Hz and 110 Hz in the x/y/z direction. When the sensor is excited in a single direction vibration, the outputs of sensor in the other two directions are consistent with the outputs in the non-working state. Therefore, it is effectively demonstrated that it can be used for three-dimensional vibration measurement. PMID:26393616

  19. A Fiber Bragg Grating Sensing Based Triaxial Vibration Sensor.

    PubMed

    Li, Tianliang; Tan, Yuegang; Liu, Yi; Qu, Yongzhi; Liu, Mingyao; Zhou, Zude

    2015-09-18

    A fiber Bragg grating (FBG) sensing based triaxial vibration sensor has been presented in this paper. The optical fiber is directly employed as elastomer, and the triaxial vibration of a measured body can be obtained by two pairs of FBGs. A model of a triaxial vibration sensor as well as decoupling principles of triaxial vibration and experimental analyses are proposed. Experimental results show that: sensitivities of 86.9 pm/g, 971.8 pm/g and 154.7 pm/g for each orthogonal sensitive direction with linearity are separately 3.64%, 1.50% and 3.01%. The flat frequency ranges reside in 20-200 Hz, 3-20 Hz and 4-50 Hz, respectively; in addition, the resonant frequencies are separately 700 Hz, 40 Hz and 110 Hz in the x/y/z direction. When the sensor is excited in a single direction vibration, the outputs of sensor in the other two directions are consistent with the outputs in the non-working state. Therefore, it is effectively demonstrated that it can be used for three-dimensional vibration measurement.

  20. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, Ralph

    1994-01-11

    A non-linear optical crystal vibration sensing device (10) including a photorefractive crystal (26) and a laser (12). The laser (12 ) produces a coherent light beam (14) which is split by a beam splitter (18) into a first laser beam (20) and a second laser beam (22). After passing through the crystal (26) the first laser beam (20) is counter-propagated back upon itself by a retro-mirror (32), creating a third laser beam (30). The laser beams (20, 22, 30) are modulated, due to the mixing effect within the crystal (26) by vibration of the crystal (30). In the third laser beam (30), modulation is stable and such modulation is converted by a photodetector (34) into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal (26).

  1. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, R.

    1994-08-09

    A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.

  2. Ultraminiature resonator accelerometer

    SciTech Connect

    Koehler, D.R.; Kravitz, S.H.; Vianco, P.T.

    1996-04-01

    A new family of microminiature sensors and clocks is being developed with widespread application potential for missile and weapons applications, as biomedical sensors, as vehicle status monitors, and as high-volume animal identification and health sensors. To satisfy fundamental technology development needs, a micromachined clock and an accelerometer have initially been undertaken as development projects. A thickness-mode quartz resonator housed in a micromachined silicon package is used as the frequency-modulated basic component of the sensor family. Resonator design philosophy follows trapped energy principles and temperature compensation methodology through crystal orientation control, with operation in the 20--100 MHz range, corresponding to quartz wafer thicknesses in the 75--15 micron range. High-volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Chemical etching of quartz, as well as micromachining of silicon, achieves the surface and volume mechanical features necessary to fashion the resonating element and the mating package. Integration of the associated oscillator and signal analysis circuitry into the silicon package is inherent to the realization of a size reduction requirement. A low temperature In and In/Sn bonding technology allows assembly of the dissimilar quartz and silicon materials, an otherwise challenging task. Unique design features include robust vibration and shock performance, capacitance sensing with micromachined diaphragms, circuit integration, capacitance-to-frequency transduction, and extremely small dimensioning. Accelerometer sensitivities were measured in the 1--3 ppm/g range for the milligram proof-mass structures employed in the prototypes evaluated to date.

  3. The influence of different vibration exciter systems on high frequency primary calibration of single-ended accelerometers: II

    NASA Astrophysics Data System (ADS)

    Bruns, Th; Link, A.; Täubner, A.

    2012-02-01

    During the monitoring of the long term stability of two accelerometers intended for use in the CIPM key comparison CCAUV.V-K2, significant deviations of the magnitude results of the single-ended transducer were discovered. These deviations depend on whether the calibration was performed on an armature made of beryllium or of ceramic. After first investigations which led to an interpretation as a relative motion effect published in Täubner et al (2010 Metrologia 47 58-64), now, more detailed measurements combined with modelling and system identification have led to a better understanding of what is happening. The measurements, model considerations and corresponding results are presented and discussed in order to further the understanding of this important issue of primary accelerometer calibration. This contribution can be considered a sequel to the former publication (Täubner et al 2010 Metrologia 47 58-64) on the topic.

  4. Capacitive Position Sensor For Accelerometer

    NASA Technical Reports Server (NTRS)

    Vanzandt, Thomas R.; Kaiser, William J.; Kenny, Thomas W.

    1995-01-01

    Capacitive position sensor measures displacement of proof mass in prototype accelerometer described in "Single-Crystal Springs for Accelerometers" (NPO-18795). Sensor is ultrasensitive, miniature device operating at ultra-high frequency and described in more detail in "Ultra-High-Frequency Capacitive Displacement Sensor," (NPO-18675). Advances in design and fabrication of prototype accelerometer also applicable to magnetometers and other sensors in which sensed quantities measured in terms of deflections of small springs.

  5. Display-And-Alarm Circuit For Accelerometer

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Compact accelerometer assembly consists of commercial accelerometer retrofit with display-and-alarm circuit. Provides simple means for technician attending machine to monitor vibrations. Also simpifies automatic safety shutdown by providing local alarm or shutdown signal when vibration exceeds preset level.

  6. Integrated smart actuator containing a monolithic coformed accelerometer

    NASA Astrophysics Data System (ADS)

    Corsaro, Robert D.; Houston, Brian H.; Klunder, Joseph D.

    1997-05-01

    A general need exists for inexpensive finite-area transducer arrays which intrinsically combine acoustic or vibration sensing with area actuation. Such combination transducers are particularly needed in active sound and vibration control and smart-materials applications. Commercial areas of interest include advanced underwater, aerospace or robotic-sensing applications. To be economically attractive they must be relatively simple to manufacture from reasonable cost materials. One promising new technology for such applications is injection-molded 1-3 composite piezo- ceramics, pioneered by Material Systems Inc. This transducer material is well suited for use as the low-cost actuator component of such a smart actuator. The challenge of this study was to design an inexpensive accelerometer which could be injection molded along with the actuator as an interspersed array. This paper describes a monolithic accelerometer which is suitable for fabrication by injection-molding as an integrated co-formed actuator component. Experimental results are presented for actuator/accelerometer arrays and issues related to the design and use of accelerometers in close proximity to an actuator are discussed.

  7. Accelerometer having integral fault null

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1995-01-01

    An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.

  8. ATS-6 - Flight accelerometers

    NASA Technical Reports Server (NTRS)

    Mattson, R.; Honeycutt, G.; Lindner, F.

    1975-01-01

    The Applications Technology Satellite-6 (ATS-6) flight accelerometers were designed to provide data for verifying the basic spacecraft vibration modes during launch, to update the analytical model of the ATA structure, and to provide a capability for detection and diagnosis of inflight and anomalies. The experiment showed accelerations less than 2.5 g during liftoff and 1.1 g or less during staging with frequencies below 80 Hz. Measured values were generally within 1 g of predicted.

  9. Transducer senses displacements of panels subjected to vibration

    NASA Technical Reports Server (NTRS)

    Pea, R. O.

    1965-01-01

    Inductive vibration sensor measures the surface displacement of nonferrous metal panels subjected to vibration or flutter. This transducer does not make any physical contact with the test panel when measuring.

  10. Vibration detection and calibration method used to remote sensing optical camera

    NASA Astrophysics Data System (ADS)

    Li, Qi; Dong, Wende; Xu, Zhihai; Feng, Huajun

    2013-09-01

    In order to obtain sharp remote sensing images, the image stabilization technology of space camera and the remote sensing image restoration technology are usually used now. Vibration detection is the key to realize these technologies: an image stabilization system needs the displacement vector derived from vibration detection to drive the compensation mechanism; and the remote sensing image restoration technology needs the vibration displacement vector to construct the point spread function (PSF). Vibration detection not only can be used to improve image quality of panchromatic camera, infrared cameras and other optical camera, also is motion compensation basis of satellite radar equipment. In this paper we have constructed a vibration measuring method based on Fiber optic gyro (FOG). FOG is a device sensitive to angular velocity or angular displacement. High-precision FOG can be used to measure the jitter angle of the optic axis of a space camera fixed on satellite platform. According to the measured data, the vibration displacement vector of the imaging plane can be calculated. Consequently the vibration data provide a basis for image stabilization of space camera and restoration of remote sensing images. We simulated the vibration of a space camera by using a piezoelectric ceramic deflection platform, and calibrated vibration measurement by using laser beam and a high-speed linear array camera. We compared the feedback output of the deflection platform, the FOG measured data and the calibrated data of the linear array camera, and obtained a calibration accuracy better than 1.5 μrad.

  11. Non-contact FBG sensing based steam turbine rotor dynamic balance vibration detection system

    NASA Astrophysics Data System (ADS)

    Li, Tianliang; Tan, Yuegang; Cai, Lin

    2015-10-01

    This paper has proposed a non-contact vibration sensor based on fiber Bragg grating sensing, and applied to detect vibration of steam turbine rotor dynamic balance experimental platform. The principle of the sensor has been introduced, as well as the experimental analysis; performance of non-contact FBG vibration sensor has been analyzed in the experiment; in addition, turbine rotor dynamic vibration detection system based on eddy current displacement sensor and non-contact FBG vibration sensor have built; finally, compared with results of signals under analysis of the time domain and frequency domain. The analysis of experimental data contrast shows that: the vibration signal analysis of non-contact FBG vibration sensor is basically the same as the result of eddy current displacement sensor; it verified that the sensor can be used for non-contact measurement of steam turbine rotor dynamic balance vibration.

  12. Dual-Element Tunneling Accelerometer

    NASA Technical Reports Server (NTRS)

    Kaiser, William J.; Kenny, Thomas W.; Rockstad, Howard K.; Reynolds, Joseph K.

    1994-01-01

    Improved micromachined tunneling accelerometer contains two deflecting transducer elements: One an elastically supported proof mass having relatively low resonant frequency; other cantilever tunneling transducer that tracks displacement of proof mass and has relatively high resonant frequency ({sup a} 10 kHz). Deflection voltage generated by circuit like described in "Wideband Feedback Circuit for Tunneling Sensor" (NPO-18866). Accelerometers of this type suited for underwater acoustic measurements, detecting vibrations associated with malfunctions in vehicles, detecting seismic signals, monitoring and controlling vibrations in structures, and other applications.

  13. Passive Accelerometer

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.; Baugher, Charles; Alexander, Iwan

    1992-01-01

    Motion of ball in liquid indicates acceleration. Passive accelerometer measures small accelerations along cylindrical axis. Principle of operation based on Stokes' law. Provides accurate measurements of small quasi-steady accelerations. Additional advantage, automatically integrates out unwanted higher-frequency components of acceleration.

  14. Three-axis MEMS Accelerometer for Structural Inspection

    NASA Astrophysics Data System (ADS)

    Barbin, E.; Koleda, A.; Nesterenko, T.; Vtorushin, S.

    2016-01-01

    Microelectromechanical system accelerometers are widely used for metrological measurements of acceleration, tilt, vibration, and shock in moving objects. The paper presents the analysis of MEMS accelerometer that can be used for the structural inspection. ANSYS Multiphysics platform is used to simulate the behavior of MEMS accelerometer by employing a finite element model and MATLAB/Simulink tools for modeling nonlinear dynamic systems.

  15. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR.

    PubMed

    Wang, Shuai; Fan, Xinyu; Liu, Qingwen; He, Zuyuan

    2015-12-28

    A novel distributed fiber vibration sensing technique based on phase extraction from time-gated digital optical frequency domain reflectometry (TGD-OFDR) which can achieve quantitative vibration measurement with high spatial resolution and long measurement range is proposed. A 90 degree optical hybrid is used to extract phase information. By increasing frequency sweeping speed, the influence of environmental phase disturbance on TGD-OFDR is mitigated significantly, which makes phase extraction in our new scheme more reliable than that in conventional OFDR-based method, leading to the realization of long distance quantitative vibration measurement. By using the proposed technique, a distributed vibration sensor that has a measurement range of 40 km, a spatial resolution of 3.5 m, a measurable vibration frequency up to 600 Hz, and a minimal measurable vibration acceleration of 0.08g is demonstrated.

  16. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR.

    PubMed

    Wang, Shuai; Fan, Xinyu; Liu, Qingwen; He, Zuyuan

    2015-12-28

    A novel distributed fiber vibration sensing technique based on phase extraction from time-gated digital optical frequency domain reflectometry (TGD-OFDR) which can achieve quantitative vibration measurement with high spatial resolution and long measurement range is proposed. A 90 degree optical hybrid is used to extract phase information. By increasing frequency sweeping speed, the influence of environmental phase disturbance on TGD-OFDR is mitigated significantly, which makes phase extraction in our new scheme more reliable than that in conventional OFDR-based method, leading to the realization of long distance quantitative vibration measurement. By using the proposed technique, a distributed vibration sensor that has a measurement range of 40 km, a spatial resolution of 3.5 m, a measurable vibration frequency up to 600 Hz, and a minimal measurable vibration acceleration of 0.08g is demonstrated. PMID:26831995

  17. Instrument sequentially samples ac signals from several accelerometers

    NASA Technical Reports Server (NTRS)

    Chapman, C. P.

    1967-01-01

    Scanner circuit sequentially samples the ac signals from accelerometers used in conducting noise vibration tests, and provides a time-averaged output signal. The scanner is used in conjunction with other devices for random noise vibration tests.

  18. Design and Characterization of a Fully Differential MEMS Accelerometer Fabricated Using MetalMUMPs Technology

    PubMed Central

    Qu, Peng; Qu, Hongwei

    2013-01-01

    This paper presents a fully differential single-axis accelerometer fabricated using the MetalMUMPs process. The unique structural configuration and common-centriod wiring of the metal electrodes enables a fully differential sensing scheme with robust metal sensing structures. CoventorWare is used in structural and electrical design and simulation of the fully differential accelerometer. The MUMPs foundry fabrication process of the sensor allows for high yield, good process consistency and provides 20 μm structural thickness of the sensing element, which makes the capacitive sensing eligible. In device characterization, surface profile of the fabricated device is measured using a Veeco surface profilometer; and mean and gradient residual stress in the nickel structure are calculated as approximately 94.7 MPa and −5.27 MPa/μm, respectively. Dynamic characterization of the sensor is performed using a vibration shaker with a high-end commercial calibrating accelerometer as reference. The sensitivity of the sensor is measured as 0.52 mV/g prior to off-chip amplification. Temperature dependence of the sensing capacitance is also characterized. A −0.021fF/°C is observed. The findings in the presented work will provide useful information for design of sensors and actuators such as accelerometers, gyroscopes and electrothermal actuators that are to be fabricated using MetalMUMPs technology. PMID:23645109

  19. A simple intensity modulation based fiber-optic accelerometer

    NASA Astrophysics Data System (ADS)

    Guozhen, Yao; Yongqian, Li; Zhi, Yang

    2016-05-01

    A fiber-optic accelerometer with simple structure and high performance based on intensity modulation is proposed. Using only a length of single mode fiber compressed by a cantilever, the intensity of reflected light is modulated by the vibration acceleration applied to it. The effects of the fiber location, the dimension parameters of the cantilever on frequency response and sensitivity are investigated. The experimental results demonstrate that the accelerometer has a flat frequency response over a 4700 Hz bandwidth and a sensitivity of 21.24 mV/g with a cantilever dimension of 30 × 8 × 1.6 mm3 and a distance of 5 mm between the fiber location and the suspended cantilever end; the coefficient of determination is better than 0.999. In addition, the effect of temperature and the stability of the sensing system are investigated.

  20. Dissipation enhanced vibrational sensing in an olfactory molecular switch.

    PubMed

    Chęcińska, Agata; Pollock, Felix A; Heaney, Libby; Nazir, Ahsan

    2015-01-14

    Motivated by a proposed olfactory mechanism based on a vibrationally activated molecular switch, we study electron transport within a donor-acceptor pair that is coupled to a vibrational mode and embedded in a surrounding environment. We derive a polaron master equation with which we study the dynamics of both the electronic and vibrational degrees of freedom beyond previously employed semiclassical (Marcus-Jortner) rate analyses. We show (i) that in the absence of explicit dissipation of the vibrational mode, the semiclassical approach is generally unable to capture the dynamics predicted by our master equation due to both its assumption of one-way (exponential) electron transfer from donor to acceptor and its neglect of the spectral details of the environment; (ii) that by additionally allowing strong dissipation to act on the odorant vibrational mode, we can recover exponential electron transfer, though typically at a rate that differs from that given by the Marcus-Jortner expression; (iii) that the ability of the molecular switch to discriminate between the presence and absence of the odorant, and its sensitivity to the odorant vibrational frequency, is enhanced significantly in this strong dissipation regime, when compared to the case without mode dissipation; and (iv) that details of the environment absent from previous Marcus-Jortner analyses can also dramatically alter the sensitivity of the molecular switch, in particular, allowing its frequency resolution to be improved. Our results thus demonstrate the constructive role dissipation can play in facilitating sensitive and selective operation in molecular switch devices, as well as the inadequacy of semiclassical rate equations in analysing such behaviour over a wide range of parameters.

  1. Dissipation enhanced vibrational sensing in an olfactory molecular switch

    SciTech Connect

    Chęcińska, Agata; Heaney, Libby; Pollock, Felix A.; Nazir, Ahsan

    2015-01-14

    Motivated by a proposed olfactory mechanism based on a vibrationally activated molecular switch, we study electron transport within a donor-acceptor pair that is coupled to a vibrational mode and embedded in a surrounding environment. We derive a polaron master equation with which we study the dynamics of both the electronic and vibrational degrees of freedom beyond previously employed semiclassical (Marcus-Jortner) rate analyses. We show (i) that in the absence of explicit dissipation of the vibrational mode, the semiclassical approach is generally unable to capture the dynamics predicted by our master equation due to both its assumption of one-way (exponential) electron transfer from donor to acceptor and its neglect of the spectral details of the environment; (ii) that by additionally allowing strong dissipation to act on the odorant vibrational mode, we can recover exponential electron transfer, though typically at a rate that differs from that given by the Marcus-Jortner expression; (iii) that the ability of the molecular switch to discriminate between the presence and absence of the odorant, and its sensitivity to the odorant vibrational frequency, is enhanced significantly in this strong dissipation regime, when compared to the case without mode dissipation; and (iv) that details of the environment absent from previous Marcus-Jortner analyses can also dramatically alter the sensitivity of the molecular switch, in particular, allowing its frequency resolution to be improved. Our results thus demonstrate the constructive role dissipation can play in facilitating sensitive and selective operation in molecular switch devices, as well as the inadequacy of semiclassical rate equations in analysing such behaviour over a wide range of parameters.

  2. Dissipation enhanced vibrational sensing in an olfactory molecular switch

    NASA Astrophysics Data System (ADS)

    Checińska, Agata; Pollock, Felix A.; Heaney, Libby; Nazir, Ahsan

    2015-01-01

    Motivated by a proposed olfactory mechanism based on a vibrationally activated molecular switch, we study electron transport within a donor-acceptor pair that is coupled to a vibrational mode and embedded in a surrounding environment. We derive a polaron master equation with which we study the dynamics of both the electronic and vibrational degrees of freedom beyond previously employed semiclassical (Marcus-Jortner) rate analyses. We show (i) that in the absence of explicit dissipation of the vibrational mode, the semiclassical approach is generally unable to capture the dynamics predicted by our master equation due to both its assumption of one-way (exponential) electron transfer from donor to acceptor and its neglect of the spectral details of the environment; (ii) that by additionally allowing strong dissipation to act on the odorant vibrational mode, we can recover exponential electron transfer, though typically at a rate that differs from that given by the Marcus-Jortner expression; (iii) that the ability of the molecular switch to discriminate between the presence and absence of the odorant, and its sensitivity to the odorant vibrational frequency, is enhanced significantly in this strong dissipation regime, when compared to the case without mode dissipation; and (iv) that details of the environment absent from previous Marcus-Jortner analyses can also dramatically alter the sensitivity of the molecular switch, in particular, allowing its frequency resolution to be improved. Our results thus demonstrate the constructive role dissipation can play in facilitating sensitive and selective operation in molecular switch devices, as well as the inadequacy of semiclassical rate equations in analysing such behaviour over a wide range of parameters.

  3. Fiber-optic Raman sensing of cell proliferation probes and molecular vibrations: Brain-imaging perspective

    NASA Astrophysics Data System (ADS)

    Doronina-Amitonova, Lyubov V.; Fedotov, Il'ya V.; Ivashkina, Olga I.; Zots, Marina A.; Fedotov, Andrei B.; Anokhin, Konstantin V.; Zheltikov, Aleksei M.

    2012-09-01

    Optical fibers are employed to sense fingerprint molecular vibrations in ex vivo experiments on the whole brain and detect cell proliferation probes in a model study on a quantitatively controlled solution. A specifically adapted spectral filtering procedure is shown to allow the Raman signal from molecular vibrations of interest to be discriminated against the background from the fiber, allowing a highly sensitive Raman detection of the recently demonstrated EdU (5-ethynyl-2'-deoxyuridine) labels of DNA synthesis in cells.

  4. Liquid viscosity sensing using nonlinear vibration of a fiberoptic sensor.

    PubMed

    Wang, Wei-Chih; Liu, Chao-Shih

    2013-07-01

    This paper investigates the nonlinear dynamic motion of a vibrating optical fiber viscosity sensor through representative cases of primary and super-harmonic resonance. The results show that a nonlinear effect drastically improves the sensitivity of the viscosity measurement by nearly an order of magnitude from the previously developed linear systems. Experimental results and several applications of the viscosity sensor are also presented.

  5. Parametric modeling in distributed optical fiber vibration sensing system for position determination

    NASA Astrophysics Data System (ADS)

    Wu, Hongyan; Wang, Jian; Jia, Bo

    2016-04-01

    Distributed optical fiber vibration sensing system is widely used as a monitoring system in communication cable and pipeline of long distances. When a vibration signal occurs at a particular position along the fiber, the response of the system, in the frequency domain, presents a series of periodic maxima and minima (or null frequencies). These minima depend on the position of the vibration signal along the fiber. Power spectral estimation methods are considered to denoise the power spectrum of the system and determine these minima precisely. The experimental results show higher accuracy of the position using a parametric model with appropriate selection of order p and q than just using fast Fourier transform algorithm.

  6. Modeling of tape tether vibration and vibration sensing using smart film sensors

    NASA Astrophysics Data System (ADS)

    Kunugi, Kouta; Kojima, Hirohisa; Trivailo, Pavel M.

    2015-02-01

    Tape-tethered satellite systems use long and flexible tape tethers, the bending and torsional vibrations of which affect the positions and attitude of attached satellites and climbers. Owing to the distribution characteristics of a tape tether, ordinary point sensors and actuators cannot be used easily to control the vibrations. Other types of sensors and actuators are required for this purpose. The flexibility and deformability of smart materials make them particularly suitable for integration into a tape-tethered system. Thus, in this paper, we propose a method for modeling the bending and torsional vibrations of a tape tether, and report our investigation into the feasibility of using smart film sensors to distinguish between the two vibration types. We formulate equations of motion for the tape tether using multibody dynamics techniques, and perform numerical simulations to study the behavior of the bending and torsional vibrations. The results of our experiments show that the bending and torsional vibrations of a tape tether can be measured using smart film sensors attached to the tether.

  7. Type of development and application of integrating accelerometer

    NASA Astrophysics Data System (ADS)

    Pan, Hongxia; Li, Ting; Liu, Guangpu; Yu, Hongying

    2000-05-01

    In this paper a new technique is suggested to solve the problem of measuring the vibration parameters in bad conditions with strong shock, that is, using integrating accelerometers repacked with normal inertial accelerometers to measure vibration acceleration signal of rocket launcher and then integrating velocity and displacement parameters. After the problems of integral accuracy have been solved, various vibration parameters are obtained to meet the needs of a certain project. By analysis, this integrating accelerometer has been testified to be a very practical sensor with surplus value in measuring vibration parameters in bad condition with strong shock.

  8. Acoustic and vibration performance evaluations of a velocity sensing hull array

    NASA Astrophysics Data System (ADS)

    Cray, Benjamin A.; Christman, Russell A.

    1996-04-01

    Acoustic and vibration measurements were conducted at the Naval Undersea Warfare Center's Seneca Lake Facility to investigate the in situ signal response of a linear array of velocity sensors (sensors that measure either acoustic particle acceleration, velocity, or displacement have generically been denoted as velocity sensors) on a coating. The coating used at Seneca Lake consisted of air-voided elastomeric tiles with an overall coating thickness of approximately 3 inches. The accelerometer array and coating were mounted on the Seneca Lake Hull Fixture, which measures 33 feet lengthwise with an arc length of 20 feet. The fixture weighs approximately 30 tons. Specifically, measurements of in situ sensitivity, velocity reduction, reflection gain, array beam response, and equivalent planewave self-noise levels are presented.

  9. Self-excited vibrational viscometer for high-viscosity sensing

    NASA Astrophysics Data System (ADS)

    Yabuno, Hiroshi; Higashino, Keiichi; Kuroda, Masaharu; Yamamoto, Yasuyuki

    2014-09-01

    A method for vibrational viscometers capable of high-viscosity measurements using self-excited oscillations is proposed and assessed both theoretically and experimentally. Such viscometers are well-known for their rapid response and miniaturization. Unlike conventional methods based on Q-value estimations obtained experimentally from the frequency response or resonance curve, we describe the use of self-excited oscillations in viscosity measurements using positive velocity feedback control without relying on the frequency response curve. Such measurements become possible even for high viscosities where the peak of the frequency response curve is ambiguous or does not exist, i.e., the Q-value cannot be estimated from such curves. Furthermore, the validity of the proposed method is experimentally tested using a prototype self-excited viscometer. Downsized oscillators such as micro- or nanoscale cantilevers can be self-excited following a straightforward application of the method. They are expected to enable not only localized monitoring of changes in high viscosity with time but also spatial high-viscosity measurements by the distributed arrangement of the devices.

  10. Virtual sensing of structural vibrations using dynamic substructuring

    NASA Astrophysics Data System (ADS)

    Kullaa, Jyrki

    2016-10-01

    Virtual sensing techniques use information available from a limited set of physical sensors together with the finite element model to calculate an estimate of the quantity of interest. In structural dynamics applications, analytical mode shapes from the finite element model are typically used as a basis to estimate the response at unmeasured locations by an expansion algorithm. An alternative is to model only the interesting part of the structure using substructuring techniques, in which the natural modes are replaced by component modes consisting of a selected number of fixed interface modes plus the interface constraint modes. They are mutually independent and compose a valid subspace for estimating the unmeasured response. If the number of interface degrees of freedom is large, interface reduction is applied. The main advantage of the proposed approach is that the modelling effort can be substantially decreased, because only part of the structure is modelled and the modelling uncertainties, non-linearities, or changes in the omitted structure can be ignored. The method is validated by numerical simulations of three different structures under unknown excitation. Different types and locations of virtual sensors are studied. Also, the effects of noise and model errors are investigated. The most accurate estimation is obtained if the virtual sensor is located away from the interface and close to a physical sensor.

  11. The Design of Vibration Sensing System Used for the Internet of Things

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Ma, Xuejie

    2016-06-01

    A vibration sensing system used for the Internet of Things is presented in this paper. Using the distributed feedback fiber lasers (DFB-FL) collects external sound signals and digital phase generated carrier (PGC) method realizes wavelength demodulation. The platform is designed based on an open architecture and B/S (Browser/Server) technology which makes it an ideal platform to be operated under a network environment. The sensing system is no power supply and could be monitored anytime and anywhere which is the requirement of Internet of things.

  12. Shock and vibration control systems using a self-sensing magnetorheological damper

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Xu; Wang, Dai-Hua

    2014-04-01

    The theoretical analysis and the prototype testing of the integrated relative displacement self-sensing magnetorheological damper (IRDSMRD) indicate that the controllable damping force performance and the relative displacement sensing performance influence each other for varying applied currents. Aiming at verifying the feasibility and capability of the IRDSMRD to constitute semi-active shock and vibration control systems, this study presents a single-degree-of-freedom (SDOF) shock and vibration control system based on the IRDSMRD. The mathematical model of the IRDSMRD, including the control damping force and the linearity of the integrated relative displacement sensor (IRDS), is established, and the governing equation for the SDOF system based on the IRDSMRD is derived. A skyhook control algorithm is utilized to improve the shock and vibration control performance of the SDOF semi-active control systems. The simulated control performances of the SDOF systems individually using the IRDSMRD without any extra-set dynamic sensor, the conventional MR damper with a linear variable differential transformer (LVDT), and the passive damper, under shock loads due to vertical pulses (the maximum initial velocity is as high as 10 m/s), and sinusoidal vibrations with a frequency range of 0-25 Hz, are evaluated, compared, and analyzed.

  13. Compressive Sensing of Roller Bearing Faults via Harmonic Detection from Under-Sampled Vibration Signals.

    PubMed

    Tang, Gang; Hou, Wei; Wang, Huaqing; Luo, Ganggang; Ma, Jianwei

    2015-10-09

    The Shannon sampling principle requires substantial amounts of data to ensure the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often encountered as a result of the cumbersome data monitoring, thus a novel method focused on compressed vibration signals for detecting roller bearing faults is developed in this study. Considering that harmonics often represent the fault characteristic frequencies in vibration signals, a compressive sensing frame of characteristic harmonics is proposed to detect bearing faults. A compressed vibration signal is first acquired from a sensing matrix with information preserved through a well-designed sampling strategy. A reconstruction process of the under-sampled vibration signal is then pursued as attempts are conducted to detect the characteristic harmonics from sparse measurements through a compressive matching pursuit strategy. In the proposed method bearing fault features depend on the existence of characteristic harmonics, as typically detected directly from compressed data far before reconstruction completion. The process of sampling and detection may then be performed simultaneously without complete recovery of the under-sampled signals. The effectiveness of the proposed method is validated by simulations and experiments.

  14. S-shape spring sensor: Sensing specific low-frequency vibration by energy harvesting

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Lu, Jian; Takei, Ryohei; Makimoto, Natsumi; Itoh, Toshihiro; Kobayashi, Takeshi

    2016-08-01

    We have developed a Si-based microelectromechanical systems sensor with high sensitivity for specific low-frequency vibration-sensing and energy-harvesting applications. The low-frequency vibration sensor contains a disk proof mass attached to two or three lead zirconate titanate (PZT) S-shape spring flexures. To obtain a faster and less expensive prototype, the design and optimization of the sensor structure are studied via finite-element method analysis. To validate the sensor structure to detect low-frequency vibration, the effects of geometrical dimensions, including the width and diameter of the S-shape spring of the proof mass, were analyzed and measured. The functional features, including the mechanical property and electrical performance of the vibration sensor, were evaluated. The results demonstrated that a very low resonant frequency of <11 Hz and a reasonably high voltage output of 7.5 mV at acceleration of >0.2g can be typically achieved. Given a low-frequency vibration sensor with ideal performance and mass fabrication, many advanced civilian and industrial applications can be possibly realized.

  15. S-shape spring sensor: Sensing specific low-frequency vibration by energy harvesting.

    PubMed

    Zhang, Lan; Lu, Jian; Takei, Ryohei; Makimoto, Natsumi; Itoh, Toshihiro; Kobayashi, Takeshi

    2016-08-01

    We have developed a Si-based microelectromechanical systems sensor with high sensitivity for specific low-frequency vibration-sensing and energy-harvesting applications. The low-frequency vibration sensor contains a disk proof mass attached to two or three lead zirconate titanate (PZT) S-shape spring flexures. To obtain a faster and less expensive prototype, the design and optimization of the sensor structure are studied via finite-element method analysis. To validate the sensor structure to detect low-frequency vibration, the effects of geometrical dimensions, including the width and diameter of the S-shape spring of the proof mass, were analyzed and measured. The functional features, including the mechanical property and electrical performance of the vibration sensor, were evaluated. The results demonstrated that a very low resonant frequency of <11 Hz and a reasonably high voltage output of 7.5 mV at acceleration of >0.2g can be typically achieved. Given a low-frequency vibration sensor with ideal performance and mass fabrication, many advanced civilian and industrial applications can be possibly realized.

  16. S-shape spring sensor: Sensing specific low-frequency vibration by energy harvesting.

    PubMed

    Zhang, Lan; Lu, Jian; Takei, Ryohei; Makimoto, Natsumi; Itoh, Toshihiro; Kobayashi, Takeshi

    2016-08-01

    We have developed a Si-based microelectromechanical systems sensor with high sensitivity for specific low-frequency vibration-sensing and energy-harvesting applications. The low-frequency vibration sensor contains a disk proof mass attached to two or three lead zirconate titanate (PZT) S-shape spring flexures. To obtain a faster and less expensive prototype, the design and optimization of the sensor structure are studied via finite-element method analysis. To validate the sensor structure to detect low-frequency vibration, the effects of geometrical dimensions, including the width and diameter of the S-shape spring of the proof mass, were analyzed and measured. The functional features, including the mechanical property and electrical performance of the vibration sensor, were evaluated. The results demonstrated that a very low resonant frequency of <11 Hz and a reasonably high voltage output of 7.5 mV at acceleration of >0.2g can be typically achieved. Given a low-frequency vibration sensor with ideal performance and mass fabrication, many advanced civilian and industrial applications can be possibly realized. PMID:27587151

  17. Dynamic Tire Pressure Sensor for Measuring Ground Vibration

    PubMed Central

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L.

    2012-01-01

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application. PMID:23202206

  18. Dynamic tire pressure sensor for measuring ground vibration.

    PubMed

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L

    2012-11-07

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.

  19. Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires.

    PubMed

    Gil-Santos, Eduardo; Ramos, Daniel; Martínez, Javier; Fernández-Regúlez, Marta; García, Ricardo; San Paulo, Alvaro; Calleja, Montserrat; Tamayo, Javier

    2010-09-01

    One-dimensional nanomechanical resonators based on nanowires and nanotubes have emerged as promising candidates for mass sensors. When the resonator is clamped at one end and the atoms or molecules being measured land on the other end (which is free to vibrate), the resonance frequency of the device decreases by an amount that is proportional to the mass of the atoms or molecules. However, atoms and molecules can land at any position along the resonator, and many biomolecules have sizes that are comparable to the size of the resonator, so the relationship between the added mass and the frequency shift breaks down. Moreover, whereas resonators fabricated by top-down methods tend to vibrate in just one dimension because they are usually shaped like diving boards, perfectly axisymmetric one-dimensional nanoresonators can support flexural vibrations with the same amplitude and frequency in two dimensions. Here, we propose a new approach to mass sensing and stiffness spectroscopy based on the fact that the nanoresonator will enter a superposition state of two orthogonal vibrations with different frequencies when this symmetry is broken. Measuring these frequencies allows the mass, stiffness and azimuthal arrival direction of the adsorbate to be determined.

  20. Multiple-stage integrating accelerometer

    DOEpatents

    Devaney, Howard F.

    1986-01-01

    An accelerometer assembly is provided for use in activating a switch in response to multiple acceleration pulses in series. The accelerometer includes a housing forming a chamber. An inertial mass or piston is slidably disposed in the chamber and spring biased toward a first or reset position. A damping system is also provided to damp piston movement in response to first and subsequent acceleration pulses. Additionally, a cam, including a Z-shaped slot, and cooperating follower pin slidably received therein are mounted to the piston and the housing. The middle or cross-over leg of the Z-shaped slot cooperates with the follower pin to block or limit piston movement and prevent switch activation in response to a lone acceleration pulse. The switch of the assembly is only activated after two or more separate acceleration pulses are sensed and the piston reaches the end of the chamber opposite the reset position.

  1. Multiple-stage integrating accelerometer

    DOEpatents

    Devaney, H.F.

    1984-06-27

    An accelerometer assembly is provided for use in activating a switch in response to multiple acceleration pulses in series. The accelerometer includes a housing forming a chamber. An inertial mass or piston is slidably disposed in the chamber and spring biased toward a first or reset position. A damping system is also provided to damp piston movement in response to first and subsequent acceleration pulses. Additionally, a cam, including a Z-shaped slot, and cooperating follower pin slidably received therein are mounted to the piston and the housing. The middle or cross-over leg of the Z-shaped slot cooperates with the follower pin to block or limit piston movement and prevent switch activation in response to a lone acceleration pulse. The switch of the assembly is only activated after two or more separate acceleration pulses are sensed and the piston reaches the end of the chamber opposite the reset position.

  2. Identification of Capacitive MEMS Accelerometer Structure Parameters for Human Body Dynamics Measurements

    PubMed Central

    Benevicius, Vincas; Ostasevicius, Vytautas; Gaidys, Rimvydas

    2013-01-01

    Due to their small size, low weight, low cost and low energy consumption, MEMS accelerometers have achieved great commercial success in recent decades. The aim of this research work is to identify a MEMS accelerometer structure for human body dynamics measurements. Photogrammetry was used in order to measure possible maximum accelerations of human body parts and the bandwidth of the digital acceleration signal. As the primary structure the capacitive accelerometer configuration is chosen in such a way that sensing part measures on all three axes as it is 3D accelerometer and sensitivity on each axis is equal. Hill climbing optimization was used to find the structure parameters. Proof-mass displacements were simulated for all the acceleration range that was given by the optimization problem constraints. The final model was constructed in Comsol Multiphysics. Eigenfrequencies were calculated and model's response was found, when vibration stand displacement data was fed into the model as the base excitation law. Model output comparison with experimental data was conducted for all excitation frequencies used during the experiments. PMID:23974151

  3. Identification of capacitive MEMS accelerometer structure parameters for human body dynamics measurements.

    PubMed

    Benevicius, Vincas; Ostasevicius, Vytautas; Gaidys, Rimvydas

    2013-08-22

    Due to their small size, low weight, low cost and low energy consumption, MEMS accelerometers have achieved great commercial success in recent decades. The aim of this research work is to identify a MEMS accelerometer structure for human body dynamics measurements. Photogrammetry was used in order to measure possible maximum accelerations of human body parts and the bandwidth of the digital acceleration signal. As the primary structure the capacitive accelerometer configuration is chosen in such a way that sensing part measures on all three axes as it is 3D accelerometer and sensitivity on each axis is equal. Hill climbing optimization was used to find the structure parameters. Proof-mass displacements were simulated for all the acceleration range that was given by the optimization problem constraints. The final model was constructed in Comsol Multiphysics. Eigenfrequencies were calculated and model's response was found, when vibration stand displacement data was fed into the model as the base excitation law. Model output comparison with experimental data was conducted for all excitation frequencies used during the experiments.

  4. Estimation of Subjective Difficulty and Psychological Stress by Ambient Sensing of Desk Panel Vibrations

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Nana; Yamamoto, Keiko; Iwai, Daisuke; Sato, Kosuke

    We investigate ambient sensing techniques that recognize writer's psychological states by measuring vibrations of handwriting on a desk panel using a piezoelectric contact sensor attached to its underside. In particular, we describe a technique for estimating the subjective difficulty of a question for a student as the ratio of the time duration of thinking to the total amount of time spent on the question. Through experiments, we confirm that our technique correctly recognizes whether or not a person writes something down on paper by measured vibration data at the accuracy of over 80 %, and that the order of computed subjective difficulties of three questions is coincident with that reported by the subject in 60 % of experiments. We also propose a technique to estimate a writer's psychological stress by using the standard deviation of the spectrum of the measured vibration. Results of a proof-of-concept experiment show that the proposed technique correctly estimates whether or not the subject feels stress at least 90 % of the time.

  5. New accelerometers under development

    NASA Technical Reports Server (NTRS)

    Wald, Jerry; Tehrani, M.

    1990-01-01

    The commercial viability of the Space Station requires that it provide a micro-g, or submicro-g environment to users. This represents significant improvement over existing systems. Attainment of the lowest micro-g levels requires isolation systems. Passive and active systems have been evaluated. Best performance is achieved using active approaches where accelerometer sensors close feedback loops. Two emerging accelerometer technologies are presented that have promise for meeting performance goals while achieving reductions of package size, weight, and power. The technologies addressed are Honeywell's design concept for an optical cavity locking accelerometer and the recent development of an integrated silicon accelerometer for government applications.

  6. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.

    PubMed

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-02-23

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies.

  7. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring

    PubMed Central

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-01-01

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297

  8. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.

    PubMed

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-01-01

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297

  9. Ultracold-Atom Accelerometers

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1995-01-01

    Proposed class of accelerometers and related motion sensors based on use of ultracold atoms as inertial components of motion transducers. Ultracold atoms supplant spring-and-mass components of older accelerometers. As used here, "ultracold atoms" means atoms with kinetic energies equivalent to temperatures equal to or less than 20 mK. Acclerometers essentially frictionless. Primary advantage high sensitivity.

  10. A biomimetic accelerometer inspired by the cricket's clavate hair.

    PubMed

    Droogendijk, H; de Boer, M J; Sanders, R G P; Krijnen, G J M

    2014-08-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model is presented for the design of the accelerometer, and guidelines are derived to reduce responsivity due to flow-induced contributions to the accelerometer's output. Measurements show that this microelectromechanical systems (MEMS) hair-based accelerometer has a resonance frequency of 320 Hz, a detection threshold of 0.10 ms(-2) and a dynamic range of more than 35 dB. The accelerometer exhibits a clear directional response to external accelerations and a low responsivity to airflow. Further, the accelerometer's physical limits with respect to noise levels are addressed and the possibility for short-term adaptation of the sensor to the environment is discussed. PMID:24920115

  11. A biomimetic accelerometer inspired by the cricket's clavate hair

    PubMed Central

    Droogendijk, H.; de Boer, M. J.; Sanders, R. G. P.; Krijnen, G. J. M.

    2014-01-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model is presented for the design of the accelerometer, and guidelines are derived to reduce responsivity due to flow-induced contributions to the accelerometer's output. Measurements show that this microelectromechanical systems (MEMS) hair-based accelerometer has a resonance frequency of 320 Hz, a detection threshold of 0.10 ms−2 and a dynamic range of more than 35 dB. The accelerometer exhibits a clear directional response to external accelerations and a low responsivity to airflow. Further, the accelerometer's physical limits with respect to noise levels are addressed and the possibility for short-term adaptation of the sensor to the environment is discussed. PMID:24920115

  12. Miniature piezoelectric triaxial accelerometer measures cranial accelerations

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.; Rogallo, V. L.

    1966-01-01

    Tiny triaxial accelerometer whose sensing elements are piezoelectric ceramic beams measures human cranial accelerations when a subject is exposed to a centrifuge or other simulators of g environments. This device could be considered for application in dental, medical, and automotive safety research.

  13. Novel approach for non-invasive glucose sensing using vibrational contrast CD absorption measurements (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yakovlev, Vladislav V.; Tovar, Carlos; Hokr, Brett; Petrov, Georgi I.

    2016-03-01

    Noninvasive glucose sensing is a Holy Grail of diabetes mellitus management. Unfortunately, despite a number of innovative concepts and a long history of continuous instrumental improvements, the problem remains largely unsolved. Here we propose and experimentally demonstrate the first successful implementation of a novel strategy based on vibrational overtone circular dichroism absorption measurements. Such an approach uses a short-wavelength infrared excitation (1000-2000 nm), which takes the advantage of lower light scattering and intrinsic chemical contrast provided by the chemical structure of D-glucose molecule. We model the propagation of circular polarized light in scattering medium using Monte Carlo simulations to show the feasibility of such approach in turbid medium and demonstrate the proof of principle using optical detection. We also investigate the possibility of using ultrasound detection through circular dichroism absorption measurements to achieve simple and sensitive glucose monitoring.

  14. Analysis of In-Situ Vibration Monitoring for End-Point Detection of CMP Planarization Processes

    SciTech Connect

    Hetherington, Dale L.; Lauffer, James P.; Shingledecker, David M.; Stein, David J.; Wyckoff, Edward E.

    1999-05-14

    This paper details the analysis of vibration monitoring for end-point control in oxide CMP processes. Two piezoelectric accelerometers were integrated onto the backside of a stainless steel polishing head of an IPEC 472 polisher. One sensor was placed perpendicular to the carrier plate (vertical) and the other parallel to the plate (horizontal). Wafers patterned with metal and coated with oxide material were polished at different speeds and pressures. Our results show that it is possible to sense a change in the vibration signal over time during planarization of oxide material on patterned wafers. The horizontal accelerometer showed more sensitivity to change in vibration amplitude compared to the vertical accelerometer for a given polish condition. At low carrier and platen rotation rates, the change in vibration signal over time at fixed frequencies decreased approximately ½ - 1 order of magnitude (over the 2 to 10 psi polish pressure ranges). At high rotation speeds, the vibration signal remained essentially constant indicating that other factors dominated the vibration signaL These results show that while it is possible to sense changes in acceleration during polishing, more robust hardware and signal processing algorithms are required to ensure its use over a wide range of process conditions.

  15. Self Diagnostic Accelerometer Testing on the C-17 Aircraft

    NASA Technical Reports Server (NTRS)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. To demonstrate the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The SDA attachment conditions were varied from fully tight to loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first.

  16. The LISA accelerometer

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Touboul, P.

    2003-10-01

    In the frame of investigating the fundamental nature of gravity, the Laser Interferometer Space Antenna (LISA) mission could open the way to a new kind of observations unreachable from ground. The experiment, based on a V-formation of six drag-free spacecraft, uses the cubic proof masses of inertial sensors to reflect the laser light, acting as reference mirrors of a 5 × 10 9 m arm length interferometer. The proof masses are also used as inertial references for the drag-free control of the spacecraft which constitute in return a shield against external forces. Derived from space electrostatic accelerometers developed at ONERA, such as GRADIO for the ESA ARISTOTELES and now GOCE mission (Bernard and Touboul, 1991), the proposed LISA sensor should shield its proof mass from any accelerometric disturbance at a level of 10 -15ms-2Hz- 1/2. The accurate capacitive sensing of the mass provides its position relative to the satellite with a resolution better than 10 -9m Hz- 1/2 in order to control the satellite orbit and to minimise the disturbances induced by the satellite self gravity or by the proof mass charge. The sensor configuration and accomodation has to be specifically optimised for the mission requirements. Fortunately, the sensor will benefit from the thermal stability of the LISA optical bench environment, i.e. 10 -6K Hz- 1/2, and of the selected materials that exhibit a very low coefficient of thermal expansion (CTE), ensuring a high geometrical stability. Apart from the modeling and the evaluation of the flight characteristics, the necessary indirect ground demonstration of the performance and the interfaces with the drag-free control will have to be considered in detail in the future.

  17. Piezoelectric accelerometers for ultrahigh temperature application

    NASA Astrophysics Data System (ADS)

    Zhang, Shujun; Jiang, Xiaoning; Lapsley, Michael; Moses, Paul; Shrout, Thomas R.

    2010-01-01

    High temperature sensors are of major importance to aerospace and energy related industries. In this letter, a high temperature monolithic compression-mode piezoelectric accelerometer was fabricated using YCa4O(BO3)3 (YCOB) single crystals. The performance of the sensor was tested as function of temperature up to 1000 °C and over a frequency range of 100-600 Hz. The accelerometer prototype was found to possess sensitivity of 2.4±0.4 pC/g, across the measured temperature and frequency range, indicating a low temperature coefficient. Furthermore, the sensor exhibited good stability over an extended dwell time at 900 °C, demonstrating that YCOB piezoelectric accelerometers are promising candidates for high temperature sensing applications.

  18. Piezoelectric accelerometers for ultrahigh temperature application

    SciTech Connect

    Zhang Shujun; Moses, Paul; Shrout, Thomas R.; Jiang Xiaoning; Lapsley, Michael

    2010-01-04

    High temperature sensors are of major importance to aerospace and energy related industries. In this letter, a high temperature monolithic compression-mode piezoelectric accelerometer was fabricated using YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) single crystals. The performance of the sensor was tested as function of temperature up to 1000 deg. C and over a frequency range of 100-600 Hz. The accelerometer prototype was found to possess sensitivity of 2.4+-0.4 pC/g, across the measured temperature and frequency range, indicating a low temperature coefficient. Furthermore, the sensor exhibited good stability over an extended dwell time at 900 deg. C, demonstrating that YCOB piezoelectric accelerometers are promising candidates for high temperature sensing applications.

  19. Fibre Bragg grating vibration transducer based on novel mechanical sensing element for monitoring applications

    NASA Astrophysics Data System (ADS)

    Andresen, Søren; Nielsen, Finn K.; Licht, Torben R.; Rasmussen, Martin N.; Kirkelund, Morten

    2011-05-01

    We present a fibre optical accelerometer based on a balanced double cantilever design that offers improved performance in terms of sensitivity, frequency range and reliability in general. Within a three year project funded by the Danish National Advanced Technology Foundation, we have developed a rugged prototype with a wavelength sensitivity of 20 pm/g within +/-1dB over a frequency range from DC to 1 kHz. These units are currently undergoing field tests in monitoring applications, e.g. for wind turbines, energy services, aerospace etc. In particular, we consider sensitive and reliable accelerometers essential for future condition monitoring and structural health monitoring applications.

  20. YCa4O(BO3)3 (YCOB) high temperature vibration sensor

    NASA Astrophysics Data System (ADS)

    Kim, Kyungrim; Zhang, Shujun; Huang, Wenbin; Yu, Fapeng; Jiang, Xiaoning

    2011-06-01

    A shear-mode piezoelectric accelerometer using YCa4O(BO3)3 (YCOB) single crystal was designed, fabricated and successfully tested for high temperature vibration sensing applications. The prototyped sensor was tested at temperatures ranging from room temperature to 1000 °C and at frequencies ranging from 80 Hz to 1 kHz. The sensitivity of the sensor was found to be 5.7 pC/g throughout the tested frequency and temperature range. In addition, YCOB piezoelectric accelerometers remained the same sensitivity at 1000 °C for a dwell time of four hours, exhibiting high stability and reliability.

  1. YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) high temperature vibration sensor

    SciTech Connect

    Kim, Kyungrim; Huang Wenbin; Jiang Xiaoning; Zhang Shujun; Yu Fapeng

    2011-06-15

    A shear-mode piezoelectric accelerometer using YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) single crystal was designed, fabricated and successfully tested for high temperature vibration sensing applications. The prototyped sensor was tested at temperatures ranging from room temperature to 1000 deg. C and at frequencies ranging from 80 Hz to 1 kHz. The sensitivity of the sensor was found to be 5.7 pC/g throughout the tested frequency and temperature range. In addition, YCOB piezoelectric accelerometers remained the same sensitivity at 1000 deg. C for a dwell time of four hours, exhibiting high stability and reliability.

  2. Polarization effects in optical fiber communication and distributed vibration sensing systems

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyi

    This thesis includes studies of polarization effects in two main research areas of optical fiber technology: optical fiber communication systems and optical fiber sensors. Polarization of light in optical fiber is sensitive to environmental disturbances. On the negative side, this results in complex measurement processes and errors in communication systems caused by dynamic polarization mode dispersion (PMD) and polarization dependent loss (PDL). On the positive side though, it also results in the possibility of developing a distributed optical fiber vibration sensor. For the purpose of fast polarization measurement for high bit-rate communication systems, a new PDL vector method was proposed based on the equation of motion in Stokes space. It is capable of providing accurate PDL measurements while requiring less measurement steps compared with other available techniques. We had performed a PMD field test, and found the fastest PMD change in submarine fibers under the Caribbean Sea. With long measurement duration (>24h) on one pair of fiber, correlations between polarization effects and tides were reported for the first time. A histogram of the differential group delay (DGD) data and an auto-correlation function of state of polarization (SOP) and DGD were validated by theoretical fittings. The average and fastest drift time for both SOP and DGD was found to be ˜3min and less than 15s, respectively. Polarization effects were then utilized as a sensing parameter to detect and locate external disturbances along the optical fiber. A system based on polarization optical time domain reflectometry (Polarization-OTDR) technique was developed in order to pinpoint the disturbances as well as to give events' frequency information. For the first time, a fully distributed optical fiber vibration sensor has been demonstrated in a 1km fiber link with 10m spatial resolution and 5kHz maximum detectable frequency. Moreover, by our proposed spectrum analysis, multiple simultaneous

  3. Design and experimental research on cantilever accelerometer based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Xiang, Longhai; Jiang, Qi; Li, Yibin; Song, Rui

    2016-06-01

    Currently, an acceleration sensor based on fiber Bragg grating (FBG) has been widely used. A cantilever FBG accelerometer is designed. The simulation of this structure was implemented by finite element software (ANSYS) to analyze its sensing performance parameters. And then the optimized structure was produced and calibration experiments were conducted. On the basis of simulation, optical fiber is embedded in the inner tank of the vibrating mass, and Bragg grating is suspended above the cantilever structure, which can effectively avoid the phenomenon of center wavelength chirp or broadening, and greatly improve the sensitivity of the sensor. The experimental results show that the FBG accelerometer exhibits a sensitivity of 75 pm/(m/s2) (100 Hz) and dynamic range of 60 dB. Its linearity error is <2.31% and repeatability error is <2.76%. And the resonant frequency is ˜125 Hz. The simulation results match the experimental results to demonstrate the good performance of FBG accelerometer, which is expected to be used in the actual project.

  4. Design and experimental research on cantilever accelerometer based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Xiang, Longhai; Jiang, Qi; Li, Yibin; Song, Rui

    2016-06-01

    Currently, an acceleration sensor based on fiber Bragg grating (FBG) has been widely used. A cantilever FBG accelerometer is designed. The simulation of this structure was implemented by finite element software (ANSYS) to analyze its sensing performance parameters. And then the optimized structure was produced and calibration experiments were conducted. On the basis of simulation, optical fiber is embedded in the inner tank of the vibrating mass, and Bragg grating is suspended above the cantilever structure, which can effectively avoid the phenomenon of center wavelength chirp or broadening, and greatly improve the sensitivity of the sensor. The experimental results show that the FBG accelerometer exhibits a sensitivity of 75 pm/(m/s2) (100 Hz) and dynamic range of 60 dB. Its linearity error is <2.31% and repeatability error is <2.76%. And the resonant frequency is ˜125 Hz. The simulation results match the experimental results to demonstrate the good performance of FBG accelerometer, which is expected to be used in the actual project.

  5. Bent tilted fiber Bragg gratings for temperature-independent vibration sensing in vehicles

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexei; Albert, Jacques

    2007-09-01

    Fiber grating based techniques have proven themselves as low cost, small size and low weight solutions for sensing strain and/or temperature in various applications, including structural health monitoring of aircrafts, ships and other man-made structures. However, normal fiber gratings are sensitive to both strain and temperature in a manner that is impossible to distinguish from the sensor response. Methods devised to circumvent this problem rely on combinations of gratings with different sensitivity to these two perturbations. Simultaneous measurements on two gratings then provide the necessary information to decode strain and temperature values but this requires special grating configurations and packaging to maximize the differential sensitivity. We will present experimental results of an alternative approach where we use a single very weakly tilted fiber Bragg grating (TFBG), to achieve the same effect. The grating couples light from the fundamental mode guided in the core to a large number of cladding modes, depending on the wavelength of interrogation. We propose and demonstrate a novel configuration in which many high order cladding mode resonances are removed by bonding the TFBG in a pre-bent state on a metal plate. After bonding, only a few low order mode resonances are left and occupy less than 5 nm of bandwidth (thereby allowing multiplexing). These resonances all have the same temperature sensitivity but very different behavior when the plate vibrates, bends or stretches statically. Differential measurements of the resonance power levels and shifts then provide valuable information about the mechanical state of the sensor.

  6. Compact Circuit Preprocesses Accelerometer Output

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1993-01-01

    Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.

  7. Input-output stability for accelerometer control systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Morris, K. A.

    1991-01-01

    It is shown that, although accelerometer control systems are not well-posed in the sense of Salamon, a well-defined input-output relation exists. It is established that the output of an accelerometer control system can be described by the convolution of the input and a distribution. This distribution is Laplace transformable, and the Laplace transform of the distribution is the transfer function of the system.

  8. The MESA accelerometer for space application

    NASA Technical Reports Server (NTRS)

    Lange, William G.; Dietrich, Robert W.

    1990-01-01

    An electrostatically suspended proof mass in the Miniature Electrostatic Accelerometer (MESA) is used to measure acceleration in the submicro-g range. Since no fixed mechanical suspension (such as springs or strings) is used, the constrainment scaling can be changed electrically after being placed in orbit. A single proof mass can sense accelerations in three axes simultaneously. It can survive high-g pyrotechnic-generated shocks and launch environments while unpowered.

  9. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, Dale R.

    1984-01-01

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  10. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, D.R.

    1982-09-23

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  11. Superconducting Rebalance Accelerometer

    NASA Technical Reports Server (NTRS)

    Torti, R. P.; Gerver, M.; Leary, K. J.; Jagannathan, S.; Dozer, D. M.

    1996-01-01

    A multi-axis accelerometer which utilizes a magnetically-suspended, high-TC proof mass is under development. The design and performance of a single axis device which is stabilized actively in the axial direction but which utilizes ring magnets for passive radial stabilization is discussed. The design of a full six degree-of-freedom device version is also described.

  12. Accelerometer Method and Apparatus for Integral Display and Control Functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1996-01-01

    Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. Art accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.

  13. Accelerometer Method and Apparatus for Integral Display and Control Functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1998-01-01

    Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto is discussed. An accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.

  14. Vibrational spectroscopy in sensing radiobiological effects: analyses of targeted and non-targeted effects in human keratinocytes.

    PubMed

    Meade, Aidan D; Howe, Orla; Unterreiner, Valérie; Sockalingum, Ganesh D; Byrne, Hugh J; Lyng, Fiona M

    2016-06-23

    Modern models of radiobiological effects include mechanisms of damage initiation, sensing and repair, for those cells that directly absorb ionizing radiation as well as those that experience molecular signals from directly irradiated cells. In the former case, the effects are termed targeted effects while, in the latter, non-targeted effects. It has emerged that phenomena occur at low doses below 1 Gy in directly irradiated cells that are associated with cell-cycle-dependent mechanisms of DNA damage sensing and repair. Likewise in non-targeted bystander-irradiated cells the effect saturates at 0.5 Gy. Both effects at these doses challenge the limits of detection of vibrational spectroscopy. In this paper, a study of the sensing of both targeted and non-targeted effects in HaCaT human keratinocytes irradiated with gamma ray photons is conducted with vibrational spectroscopy. In the case of directly irradiated cells, it is shown that the HaCaT cell line does exhibit both hyperradiosensitivity and increased radioresistance at low doses, a transition between the two effects occurring at a dose of 200 mGy, and that cell survival and other physiological effects as a function of dose follow the induced repair model. Both Raman and FTIR signatures are shown to follow a similar model, suggesting that the spectra include signatures of DNA damage sensing and repair. In bystander-irradiated cells, pro- and anti-apoptotic signalling and mechanisms of ROS damage were inhibited in the mitogen-activated protein kinase (MAPK) transduction pathway. It is shown that Raman spectral profiles of bystander-irradiated cells are correlated with markers of bystander signalling and molecular transduction. This work demonstrates for the first time that both targeted and non-targeted effects of ionizing radiation damage are detected by vibrational spectroscopy in vitro.

  15. Vibrational spectroscopy in sensing radiobiological effects: analyses of targeted and non-targeted effects in human keratinocytes.

    PubMed

    Meade, Aidan D; Howe, Orla; Unterreiner, Valérie; Sockalingum, Ganesh D; Byrne, Hugh J; Lyng, Fiona M

    2016-06-23

    Modern models of radiobiological effects include mechanisms of damage initiation, sensing and repair, for those cells that directly absorb ionizing radiation as well as those that experience molecular signals from directly irradiated cells. In the former case, the effects are termed targeted effects while, in the latter, non-targeted effects. It has emerged that phenomena occur at low doses below 1 Gy in directly irradiated cells that are associated with cell-cycle-dependent mechanisms of DNA damage sensing and repair. Likewise in non-targeted bystander-irradiated cells the effect saturates at 0.5 Gy. Both effects at these doses challenge the limits of detection of vibrational spectroscopy. In this paper, a study of the sensing of both targeted and non-targeted effects in HaCaT human keratinocytes irradiated with gamma ray photons is conducted with vibrational spectroscopy. In the case of directly irradiated cells, it is shown that the HaCaT cell line does exhibit both hyperradiosensitivity and increased radioresistance at low doses, a transition between the two effects occurring at a dose of 200 mGy, and that cell survival and other physiological effects as a function of dose follow the induced repair model. Both Raman and FTIR signatures are shown to follow a similar model, suggesting that the spectra include signatures of DNA damage sensing and repair. In bystander-irradiated cells, pro- and anti-apoptotic signalling and mechanisms of ROS damage were inhibited in the mitogen-activated protein kinase (MAPK) transduction pathway. It is shown that Raman spectral profiles of bystander-irradiated cells are correlated with markers of bystander signalling and molecular transduction. This work demonstrates for the first time that both targeted and non-targeted effects of ionizing radiation damage are detected by vibrational spectroscopy in vitro. PMID:27043923

  16. Discrimination Threshold of Tactile Sense to Point Stimulation and Vector Stimulation in Modulated Vibration by ERP

    NASA Astrophysics Data System (ADS)

    Mizuno, Tota; Nozawa, Akio; Uchida, Masafumi; Ide, Hideto

    In this paper, we research what kind of influence with the discrimination threshold in frequency area Ts-1 vs. Tl-1 by using segment which had an aim as simple line drawing figure in other words, vector stimulation. As a result, it has been suggested that the modulated vibration discrimination doesn't depend variation of vibration frequency.

  17. Optimal GPS/accelerometer integration algorithm for monitoring the vertical structural dynamics

    NASA Astrophysics Data System (ADS)

    Meng, Xiaolin; Wang, Jian; Han, Houzeng

    2014-11-01

    The vertical structural dynamics is a crucial factor for structural health monitoring (SHM) of civil structures such as high-rise buildings, suspension bridges and towers. This paper presents an optimal GPS/accelerometer integration algorithm for an automated multi-sensor monitoring system. The closed loop feedback algorithm for integrating the vertical GPS and accelerometer measurements is proposed based on a 5 state extended KALMAN filter (EKF) and then the narrow moving window Fast Fourier Transform (FFT) analysis is applied to extract structural dynamics. A civil structural vibration is simulated and the analysed result shows the proposed algorithm can effectively integrate the online vertical measurements produced by GPS and accelerometer. Furthermore, the accelerometer bias and scale factor can also be estimated which is impossible with traditional integration algorithms. Further analysis shows the vibration frequencies detected in GPS or accelerometer are all included in the integrated vertical defection time series and the accelerometer can effectively compensate the short-term GPS outages with high quality. Finally, the data set collected with a time synchronised and integrated GPS/accelerometer monitoring system installed on the Nottingham Wilford Bridge when excited by 15 people jumping together at its mid-span are utilised to verify the effectiveness of this proposed algorithm. Its implementations are satisfactory and the detected vibration frequencies are 1.720 Hz, 1.870 Hz, 2.104 Hz, 2.905 Hz and also 10.050 Hz, which is not found in GPS or accelerometer only measurements.

  18. Low G accelerometer testing

    NASA Technical Reports Server (NTRS)

    Vaughan, M. S.

    1972-01-01

    Eight different types of low-g accelerometer tests are covered on the Bell miniature electrostatically suspended accelerometer (MESA) which is known to be sensitive to less than 10 to the minus 7th power earth's gravity. These tests include a mass attracting scheme, Leitz dividing head, Wild theodolite, precision gage blocks, precision tiltmeters, Hilger Watts autocollimator, Razdow Mark 2 autocollimator, and laser interferometer measuring system. Each test is described and a comparison of the results is presented. The output of the MESA was as linear and consistent as any of the available devices were capable of measuring. Although the extent of agreement varied with the test equipment used, it can only be concluded that the indicated errors were attributable to the test equipment coupled with the environmental conditions.

  19. Python microgravity accelerometer system

    NASA Astrophysics Data System (ADS)

    Nijhawan, V.; Arrott, A. P.; Grimes, R. S.

    1989-01-01

    A microgravity accelerometer system developed for use in the Space Shuttle middeck locker is described. The system, known as PYTHON, is a microcomputer-based digital acceleration-measurement system that uses primarily off-the-shelf qualified space hardware and modular software. It can be operated on-board in real time and on the ground either during the flight or post-flight. The sensor head consists of an accelerometer, which measures acceleration in three orthogonal axes, and an internal thermister for temperature compensation; threshold and resolution are better than 0.000001 g. The results of acceleration measurements with PYTHON carried out during parabolic maneuvers aboard the NASA's KC-135 aircraft are presented.

  20. In-Axis and Cross-Axid Accelerometer Response in Shock Environments

    SciTech Connect

    Bateman, V.I.; Brown, F.A.

    1999-03-10

    The characteristics of a piezoresistive accelerometer in shock environments have been studied at Sandia National Laboratories (SNL) in the Mechanical Shock Testing Laboratory for ten years The SNL Shock Laboratory has developed a capability to characterize accelerometers and other transducers with shocks aligned with the transducer's sensing axis and perpendicular to the transducer's sensing axis. This unique capability includes Hopkinson bars made of aluminum, steel, titanium, and beryllium. The bars are configured as both single and split Hopkinson bars. Four different areas that conclude this study are summarized in this paper: characterization of the cross-axis response of the accelerometer in the four environments of static compression, static strain on a beam, dynamic strain, and mechanical shock, the accelerometer's response on a titanium Hopkinson bar with two 45{degree} flats on the end of the bar; failure analysis of the accelerometer; and measurement of the accelerometer's self-generating cable response in a shock environment.

  1. Fiber optic micro accelerometer

    SciTech Connect

    Swierkowski, Steve P.

    2005-07-26

    An accelerometer includes a wafer, a proof mass integrated into the wafer, at least one spring member connected to the proof mass, and an optical fiber. A Fabry-Perot cavity is formed by a partially reflective surface on the proof mass and a partially reflective surface on the end of the optical fiber. The two partially reflective surfaces are used to detect movement of the proof mass through the optical fiber, using an optical detection system.

  2. Accelerometer method and apparatus for integral display and control functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1992-01-01

    Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily

  3. Levitated micro-accelerometer.

    SciTech Connect

    Warne, Larry Kevin; Schmidt, Carrie Frances; Peterson, Kenneth Allen; Kravitz, Stanley H.; Renn, Rosemarie A.; Peter, Frank J.; Kinney, Ragon D.; Gilkey, Jeffrey C.

    2004-06-01

    The objective is a significant advancement in the state-of-the-art of accelerometer design for tactical grade (or better) applications. The design goals are <1 milli-G bias stability across environments and $200 cost. This quantum leap in performance improvement and cost reduction can only be achieved by a radical new approach, not incremental improvements to existing concepts. This novel levitated closed-loop accelerometer is implemented as a hybrid micromachine. The hybrid approach frees the designer from the limitations of any given monolithic process and dramatically expands the available design space. The design can be tailored to the dynamic range, resolution, bandwidth, and environmental requirements of the application while still preserving all of the benefits of monolithic MEMS fabrication - extreme precision, small size, low cost, and low power. An accelerometer was designed and prototype hardware was built, driving the successful development and refinement of several 'never been done before' fabrication processes. Many of these process developments are commercially valuable and are key enablers for the realization of a wide variety of useful micro-devices. While controlled levitation of a proof mass has yet to be realized, the overall design concept remains sound. This was clearly demonstrated by the stable and reliable closed-loop control of a proof mass at the test structure level. Furthermore, the hybrid MEMS implementation is the most promising approach for achieving the ambitious cost and performance targets. It is strongly recommended that Sandia remain committed to the original goal.

  4. Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer.

    PubMed

    Xu, Yanping; Lu, Ping; Qin, Zengguang; Harris, Jeremie; Baset, Farhana; Lu, Ping; Bhardwaj, Vedula Ravi; Bao, Xiaoyi

    2013-02-11

    In this study, a novel fiber-optic sensor consisting of a tapered bend-insensitive fiber based Mach-Zehnder interferometer is presented to realize damped and continuous vibration measurement. The double cladding structure and the central coating region of the in-fiber interferometer ensure an enhanced mechanical strength, reduced external disturbance, and a more uniform spectrum. A damped vibration frequency range of 29-60 Hz as well as continuous vibration disturbances ranging from 1 Hz up to 500 kHz are successfully demonstrated.

  5. Development of a long-gauge vibration sensor

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.; Li, Qian; Zhang, Yiwei

    2015-03-01

    We have recently found that a long length of fiber of up to 1 km terminated with an in-fiber cavity structure can detect vibrations over a frequency range from 5 Hz to 2 kHz. We want to determine whether the sensor (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to maintenance cost. The sensor may also help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that requires the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Acoustic vibration monitoring may need sensing at even higher frequencies (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large re-enforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed longgauge vibration sensor depends on packaging.

  6. A distributed optical fiber sensing system for synchronous vibration and loss measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Xu-ping; Qiao, Wei-yan; Sun, Zhen-hong; Shan, Yuan-yuan; Zeng, Jie; Zhang, Yi-xin

    2016-09-01

    We propose a fully distributed fusion system combining phase-sensitive optical time-domain reflectometry (Φ-OTDR) and OTDR for synchronous vibration and loss measurement by setting an ingenious frequency sweep rate ( FSR) of the optical source. The relationships between FSR, probe pulse width and repeat period are given to balance the amplitude fluctuation of OTDR traces, the dead zone probability and the measurable frequency range of vibration events. In the experiment, we achieve synchronous vibration and loss measurement with FSR of 40 MHz/s, the proble pulse width of 100 ns and repeat rate of 0.4 ms. The fluctuation of OTDR trace is less than 0.45 dB when the signal-to-noise ratio ( SNR) is over 12 dB for a captured vibration event located at 9.1 km. The proposed method can be used for not only detection but also early warning of damage events in optical communication networks.

  7. SEMICONDUCTOR DEVICES: Characteristics of a novel biaxial capacitive MEMS accelerometer

    NASA Astrophysics Data System (ADS)

    Linxi, Dong; Yongjie, Li; Haixia, Yan; Lingling, Sun

    2010-05-01

    A novel MEMS accelerometer with grid strip capacitors is developed. The mechanical and electrical noise can be reduced greatly for the novel structure design. ANSOFT-Maxwell software was used to analyze the fringing electric field of the grid strip structure and its effects on the designed accelerometer. The effects of the width, thickness and overlapping width of the grid strip on the sensing capacitance are analyzed by using the ANSOFT-Maxwell software. The results show that the parameters have little effect on the characteristics of the presented accelerometer. The designed accelerometer was fabricated based on deep RIE and silicon-glass bonding processes. The preliminary tested sensitivities are 0.53 pF/g and 0.49 pF/g in the x and y axis directions, respectively. A resonator with grid strip structure was also fabricated whose tested quality factor is 514 in air, which proves that the grid strip structure can reduce mechanical noise.

  8. Micromachined accelerometer design, modeling and validation

    SciTech Connect

    Davies, B.R.; Bateman, V.I.; Brown, F.A.; Montague, S.; Murray, J.R.; Rey, D.; Smith, J.H.

    1998-04-01

    Micromachining technologies enable the development of low-cost devices capable of sensing motion in a reliable and accurate manner. The development of various surface micromachined accelerometers and gyroscopes to sense motion is an ongoing activity at Sandia National Laboratories. In addition, Sandia has developed a fabrication process for integrating both the micromechanical structures and microelectronics circuitry of Micro-Electro-Mechanical Systems (MEMS) on the same chip. This integrated surface micromachining process provides substantial performance and reliability advantages in the development of MEMS accelerometers and gyros. A Sandia MEMS team developed a single-axis, micromachined silicon accelerometer capable of surviving and measuring very high accelerations, up to 50,000 times the acceleration due to gravity or 50 k-G (actually measured to 46,000 G). The Sandia integrated surface micromachining process was selected for fabrication of the sensor due to the extreme measurement sensitivity potential associated with integrated microelectronics. Measurement electronics capable of measuring at to Farad (10{sup {minus}18} Farad) changes in capacitance were required due to the very small accelerometer proof mass (< 200 {times} 10{sup {minus}9} gram) used in this surface micromachining process. The small proof mass corresponded to small sensor deflections which in turn required very sensitive electronics to enable accurate acceleration measurement over a range of 1 to 50 k-G. A prototype sensor, based on a suspended plate mass configuration, was developed and the details of the design, modeling, and validation of the device will be presented in this paper. The device was analyzed using both conventional lumped parameter modeling techniques and finite element analysis tools. The device was tested and performed well over its design range.

  9. Experimental verification of a novel MEMS multi-modal vibration energy harvester for ultra-low power remote sensing nodes

    NASA Astrophysics Data System (ADS)

    Iannacci, J.; Sordo, G.; Serra, E.; Kucera, M.; Schmid, U.

    2015-05-01

    In this work, we discuss the verification and preliminary experimental characterization of a MEMS-based vibration Energy Harvester (EH) design. The device, named Four-Leaf Clover (FLC), is based on a circular-shaped mechanical resonator with four petal-like mass-spring cascaded systems. This solution introduces several mechanical Degrees of Freedom (DOFs), and therefore enables multiple resonant modes and deformation shapes in the vibrations frequency range of interest. The target is to realize a wideband multi-modal EH-MEMS device, that overcomes the typical narrowband working characteristics of standard cantilevered EHs, by ensuring flexible and adaptable power source to ultra-low power electronics for integrated remote sensing nodes (e.g. Wireless Sensor Networks - WSNs) in the Internet of Things (IoT) scenario, aiming to self-powered and energy autonomous smart systems. Finite Element Method simulations of the FLC EH-MEMS show the presence of several resonant modes for vibrations up to 4-5 kHz, and level of converted power up to a few μW at resonance and in closed-loop conditions (i.e. with resistive load). On the other hand, the first experimental tests of FLC fabricated samples, conducted with a Laser Doppler Vibrometer (LDV), proved the presence of several resonant modes, and allowed to validate the accuracy of the FEM modeling method. Such a good accordance holds validity for what concerns the coupled field behavior of the FLC EH-MEMS, as well. Both measurements and simulations performed at 190 Hz (i.e. out of resonance) showed the generation of power in the range of nW (Root Mean Square - RMS values). Further steps of this work will include the experimental characterization in a full range of vibrations, aiming to prove the whole functionality of the FLC EH-MEMS proposed design concept.

  10. Peri-prosthetic fracture vibration testing

    SciTech Connect

    Cruce, Jesse R; Erwin, Jenny R; Remick, Kevin R; Cornwell, Phillip J; Menegini, R. Michael; Racanelli, Joe

    2010-11-08

    The purpose of this study was to establish a test setup and vibration analysis method to predict femoral stem seating and prevent bone fracture using accelerometer and force response data from an instrumented stem and impactor. This study builds upon earlier studies to identify a means to supplement a surgeon's tactile and auditory senses by using damage identification techniques normally used for civil and mechanical structures. Testing was conducted using foam cortical shell sawbones prepared for stems of different geometries. Each stem was instrumented with an accelerometer. Two impactor designs were compared: a monolithic impactor and a two-piece impactor, each with an integrated load cell and accelerometer. Acceleration and force measurements were taken in the direction of impaction. Comparisons between different methods of applying an impacting force were made, including a drop tower and a surgical hammer. The effect of varying compliance on the data was also investigated. The ultimate goal of this study was to assist in the design of an integrated portable data acquisition system capable of being used in future cadaveric testing. This paper will discuss the experimental setup and the subsequent results of the comparisons made between impactors, prosthetic geometries, compliances, and impact methods. The results of this study can be used for both future replicate testing as well as in a cadaveric environment.

  11. Peri-prosthetic fracture vibration testing

    SciTech Connect

    Cruce, Jesse R; Erwin, Jenny R; Remick, Kevin R; Cornwell, Phillip J; Menegini, R. Michael; Racanelli, Joe

    2011-01-28

    The purpose of this study is to establish a test setup and vibration analysis method to predict femoral stem seating and prevent bone fracture using accelerometer or force response data from an instrument stem and impactor. This study builds upon earlier studies to identify a means to supplement a surgeon's tactile and auditory senses by using damage identification techniques normally used for civil and mechanical structures. Testing will be conducted using foam cortical shell sawbones prepared for stems of different geometries. Each stem will be instrumented with an accelerometer. Two impactor designs will be compared: a monolithic impactor with an integrated load cell and accelerometer and a two piece impactor. Acceleration and force measurements will be taken in the direction of impaction. Signal processing techniques will be applied to the acceleration time histories to determine features that can be used to assess device seating and potential fracture. A consistent energy input will be applied using a drop tower. The effect of introducing compliance under the bone support vise will also be investigated. The ultimate goal of this study is to design an integrated portable data acquisition system capable of being used in future cadaveric testing. This paper will discuss the experimental set-up, the signal processing techniques used and the subsequent results.

  12. Dual-Cantilever-Beam Accelerometer

    NASA Technical Reports Server (NTRS)

    Reynolds, Emmitt A.; Speckhart, Frank H.

    1988-01-01

    Sensitivity to velocity changes along beam axis reduced. Weighted-end cantilever beams of accelerometer deflected equally by acceleration in y direction. When acceleration to right as well as up or down, right beam deflected more, while left beam deflected less. Bridge circuit averages outputs of strain gauges measuring deflections, so cross-axis sensitivity of accelerometer reduced. New device simple and inexpensive.

  13. Terrestrial Applications of a Nano-g Accelerometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    1996-01-01

    The ultra-sensitive accelerometer, developed for NASA to monitor the microgravity environments of Space Shuttle, five orbiters and Space Station, needed to measure accelerations up to 10 mg with an absolute accuracy of 10 nano-g (10(exp -8)g) for at least two orbits (10(exp 4) seconds) to resolve accelerations associated with orbital drag. Also, the accelerometers needed to have less than 10(exp -9) F.S. off-axis sensitivity; to be thermally and magnetically inert; to be immune to quiescent shock, and to have an in-situ calibration capability. Multi-axis compact seismometers, designs that have twelve decades of dynamic range will be described. Density profilometers, precision gradiometers, gyros and vibration isolation designs and applications will be discussed. Finally, examples of transformations of the accelerometer into sensitive anemometers and imaging spectrometers will be presented.

  14. Experimental study of a self-powered and sensing MR-damper-based vibration control system

    NASA Astrophysics Data System (ADS)

    Sapiński, Bogdan

    2011-10-01

    The paper deals with a semi-active vibration control system based on a magnetorheological (MR) damper. The study outlines the model and the structure of the system, and describes its experimental investigation. The conceptual design of this system involves harvesting energy from structural vibrations using an energy extractor based on an electromagnetic transduction mechanism (Faraday's law). The system consists of an electromagnetic induction device (EMI) prototype and an MR damper of RD-1005 series manufactured by Lord Corporation. The energy extracted is applied to control the damping characteristics of the MR damper. The model of the system was used to prove that the proposed vibration control system is feasible. The system was realized in the semi-active control strategy with energy recovery and examined through experiments in the cases where the control coil of the MR damper was voltage-supplied directly from the EMI or voltage-supplied via the rectifier, or supplied with a current control system with two feedback loops. The external loop used the sky-hook algorithm whilst the internal loop used the algorithm switching the photorelay, at the output from the rectifier. Experimental results of the proposed vibration control system were compared with those obtained for the passive system (MR damper is off-state) and for the system with an external power source (conventional system) when the control coil of the MR damper was supplied by a DC power supply and analogue voltage amplifier or a DC power supply and a photorelay. It was demonstrated that the system is able to power-supply the MR damper and can adjust itself to structural vibrations. It was also found that, since the signal of induced voltage from the EMI agrees well with that of the relative velocity signal across the damper, the device can act as a 'velocity-sign' sensor.

  15. Optomechanical accelerometers and gravity gradiometers

    NASA Astrophysics Data System (ADS)

    Guzman, Felipe

    2016-04-01

    Compact optical cavities can be combined with highly stable mechanical oscillators to yield accelerometers and gravity gradiometers of exquisite sensitivity, which are also traceable to the SI. We have incorporated Fabry-Pérot fiber-optic micro-cavities onto low-loss monolithic fused-silica mechanical oscillators for gradiometry, acceleration, and force sensing. These devices consist solely of a glass oscillator and fiber optics to inject and read out the coherent optical signal, making them very simple and compatible with space applications. We have demonstrated displacement sensitivities better than 200 am/√Hz with these fiber-optic micro-sensors. This translates into broadband acceleration noise floors below 100 nano-g/√Hz over a 10kHz, when combined with compact high frequency mechanical oscillators. Similarly, we have developed monolithic oscillators with resonance frequencies near and below 10 Hz, yielding measurement sensitivities better than 10-9 m/s2. We will introduce our sensor concepts and present results on our fiber-optic displacement sensors and novel optomechanical devices.

  16. Vibration monitoring system for drill string

    SciTech Connect

    Wassell, M.E.

    1993-07-13

    A vibration monitoring system is described for use in monitoring lateral and torsional vibrations in a drill string comprising: a drill string component having an outer surface; first accelerometer means A[sub 1] for measuring tangential acceleration; second accelerometer means A[sub 2] for measuring tangential acceleration; third accelerometer means A[sub 3] for measuring tangential acceleration; said first, second and third accelerometer means A[sub 1], A[sub 2] and A[sub 3] being mounted in said drill string component and being spaced from one another to measure acceleration forces on said drill string component tangentially with respect to the outer surface of said component wherein said first, second and third accelerometer means are adapted to measure and distinguish between lateral and torsional vibrations exerted on said drill string component.

  17. Research and implementation of simulation for TDICCD remote sensing in vibration of optical axis

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-hong; Kang, Xiao-jun; Lin, Zhe; Song, Li

    2013-12-01

    During the exposure time, the charge transfer speed in the push-broom direction and the line-by-lines canning speed of the sensor are required to match each other strictly for a space-borne TDICCD push-broom camera. However, as attitude disturbance of satellite and vibration of camera are inevitable, it is impossible to eliminate the speed mismatch, which will make the signal of different targets overlay each other and result in a decline of image resolution. The effects of velocity mismatch will be visually observed and analyzed by simulating the degradation of image quality caused by the vibration of the optical axis, and it is significant for the evaluation of image quality and design of the image restoration algorithm. How to give a model in time domain and space domain during the imaging time is the problem needed to be solved firstly. As vibration information for simulation is usually given by a continuous curve, the pixels of original image matrix and sensor matrix are discrete, as a result, they cannot always match each other well. The effect of simulation will also be influenced by the discrete sampling in integration time. In conclusion, it is quite significant for improving simulation accuracy and efficiency to give an appropriate discrete modeling and simulation method. The paper analyses discretization schemes in time domain and space domain and presents a method to simulate the quality of image of the optical system in the vibration of the line of sight, which is based on the principle of TDICCD sensor. The gray value of pixels in sensor matrix is obtained by a weighted arithmetic, which solves the problem of pixels dismatch. The result which compared with the experiment of hardware test indicate that this simulation system performances well in accuracy and reliability.

  18. Vibration sensing in flexible structures using a distributed-effect modal domain optical fiber sensor

    NASA Technical Reports Server (NTRS)

    Reichard, Karl M.; Lindner, Douglas K.; Claus, Richard O.

    1991-01-01

    Modal domain optical fiber sensors have recently been employed in the implementation of system identification algorithms and the closed-loop control of vibrations in flexible structures. The mathematical model of the modal domain optical fiber sensor used in these applications, however, only accounted for the effects of strain in the direction of the fiber's longitudinal axis. In this paper, we extend this model to include the effects of arbitrary stress. Using this sensor model, we characterize the sensor's sensitivity and dynamic range.

  19. Wireless sensing and vibration control with increased redundancy and robustness design.

    PubMed

    Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan

    2014-11-01

    Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.

  20. Evaluation of shock isolation techniques for a piezoresistive accelerometer

    SciTech Connect

    Bateman, V.I.; Bell, R.G.; Davie, N.T. )

    1989-06-01

    Sandia conducts impact testing for a variety of structures. In this slapdown test, one end of the cask impacts the hard concrete target, then the structure rotates so that the other end of the cask impacts the target. During an impact test, metal to metal contact may occur within the structure and produce high frequency, high amplitude shock inputs. The high frequency portion of this transient vibration has been observed to excite the accelerometer resonance even though this resonance exceeds 350 kHz. The amplitude of the resonating accelerometer response can be so large that the data are clipped and are rendered useless. If the data are not clipped, a digital filter must be applied to eliminate the undesired accelerometer resonant response. If possible, it is more desirable to prevent excitation of the accelerometer resonance, This may be accomplished by mechanically isolating the accelerometer from the high frequency excitation without degrading the transducer response in the bandwidth of interest which is usually 10 kHz or less. To achieve this desirable isolation, two mounting configurations were designed and characterized. The objective of this paper is to describe the evaluation technique and to discuss the shock isolation properties of each mounting configuration. One configuration was actually used in a field test of bomb impacting a target. 4 figs.

  1. Single-Axis Accelerometer

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis Stephen (Inventor); Capo-Lugo, Pedro A. (Inventor)

    2016-01-01

    A single-axis accelerometer includes a housing defining a sleeve. An object/mass is disposed in the sleeve for sliding movement therein in a direction aligned with the sleeve's longitudinal axis. A first piezoelectric strip, attached to a first side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The first piezoelectric strip includes a first strip of a piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A second piezoelectric strip, attached to a second side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The second piezoelectric strip includes a second strip of the piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A voltage sensor is electrically coupled to at least one of the first and second piezoelectric strips.

  2. Motorized Force-Sensing Micro-Forceps with Tremor Cancelling and Controlled Micro-Vibrations for Easier Membrane Peeling*

    PubMed Central

    Gonenc, Berk; Gehlbach, Peter; Handa, James; Taylor, Russell H.; Iordachita, Iulian

    2014-01-01

    Retinal microsurgery requires the manipulation of extremely delicate tissues by various micron scale maneuvers and the application of very small forces. Among vitreoretinal procedures, membrane peeling is a standard procedure requiring the delamination of a very thin fibrous membrane on the retina surface. This study presents the development and evaluation of an integrated assistive system for membrane peeling. This system combines a force-sensing motorized micro-forceps with an active tremor-canceling handheld micromanipulator, Micron. The proposed system (1) attenuates hand-tremor when accurate positioning is needed, (2) provides auditory force feedback to keep the exerted forces at a safe level, and (3) pulsates the tool tip at high frequency to provide ease in delaminating membranes. Experiments on bandages and raw chicken eggs have revealed that controlled micro-vibrations provide significant ease in delaminating membranes. Applying similar amount of forces, much faster delamination was observed when the frequency of these vibrations were increased (up to 50 Hz). PMID:25544965

  3. Sensing of fluid viscoelasticity from piezoelectric actuation of cantilever flexural vibration

    NASA Astrophysics Data System (ADS)

    Park, Jeongwon; Jeong, Seongbin; Kim, Seung Joon; Park, Junhong

    2015-01-01

    An experimental method is proposed to measure the rheological properties of fluids. The effects of fluids on the vibration actuated by piezoelectric patches were analyzed and used in measuring viscoelastic properties. Fluid-structure interactions induced changes in the beam vibration properties and frequency-dependent variations of the complex wavenumber of the beam structure were used in monitoring these changes. To account for the effects of fluid-structure interaction, fluids were modelled as a simple viscoelastic support at one end of the beam. The measured properties were the fluid's dynamic shear modulus and loss tangent. Using the proposed method, the rheological properties of various non-Newtonian fluids were measured. The frequency range for which reliable viscoelasticity results could be obtained was 10-400 Hz. Viscosity standard fluids were tested to verify the accuracy of the proposed method, and the results agreed well with the manufacturer's reported values. The simple proposed laboratory setup for measurements was flexible so that the frequency ranges of data acquisition were adjustable by changing the beam's mechanical properties.

  4. Sensing of fluid viscoelasticity from piezoelectric actuation of cantilever flexural vibration

    SciTech Connect

    Park, Jeongwon; Jeong, Seongbin; Kim, Seung Joon; Park, Junhong

    2015-01-15

    An experimental method is proposed to measure the rheological properties of fluids. The effects of fluids on the vibration actuated by piezoelectric patches were analyzed and used in measuring viscoelastic properties. Fluid-structure interactions induced changes in the beam vibration properties and frequency-dependent variations of the complex wavenumber of the beam structure were used in monitoring these changes. To account for the effects of fluid-structure interaction, fluids were modelled as a simple viscoelastic support at one end of the beam. The measured properties were the fluid’s dynamic shear modulus and loss tangent. Using the proposed method, the rheological properties of various non-Newtonian fluids were measured. The frequency range for which reliable viscoelasticity results could be obtained was 10–400 Hz. Viscosity standard fluids were tested to verify the accuracy of the proposed method, and the results agreed well with the manufacturer’s reported values. The simple proposed laboratory setup for measurements was flexible so that the frequency ranges of data acquisition were adjustable by changing the beam’s mechanical properties.

  5. Sensing of fluid viscoelasticity from piezoelectric actuation of cantilever flexural vibration.

    PubMed

    Park, Jeongwon; Jeong, Seongbin; Kim, Seung Joon; Park, Junhong

    2015-01-01

    An experimental method is proposed to measure the rheological properties of fluids. The effects of fluids on the vibration actuated by piezoelectric patches were analyzed and used in measuring viscoelastic properties. Fluid-structure interactions induced changes in the beam vibration properties and frequency-dependent variations of the complex wavenumber of the beam structure were used in monitoring these changes. To account for the effects of fluid-structure interaction, fluids were modelled as a simple viscoelastic support at one end of the beam. The measured properties were the fluid's dynamic shear modulus and loss tangent. Using the proposed method, the rheological properties of various non-Newtonian fluids were measured. The frequency range for which reliable viscoelasticity results could be obtained was 10-400 Hz. Viscosity standard fluids were tested to verify the accuracy of the proposed method, and the results agreed well with the manufacturer's reported values. The simple proposed laboratory setup for measurements was flexible so that the frequency ranges of data acquisition were adjustable by changing the beam's mechanical properties. PMID:25638114

  6. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique.

    PubMed

    Wada, Daichi; Igawa, Hirotaka; Kasai, Tokio

    2016-09-01

    We demonstrate a dynamic distributed monitoring technique using a long-length fiber Bragg grating (FBG) interrogated by optical frequency domain reflectometry (OFDR) that measures strain at a speed of 150 Hz, spatial resolution of 1 mm, and measurement range of 20 m. A 5 m FBG is bonded to a 5.5 m helicopter blade model, and vibration is applied by the step relaxation method. The time domain responses of the strain distributions are measured, and the blade deflections are calculated based on the strain distributions. Frequency response functions are obtained using the time domain responses of the calculated deflection induced by the preload release, and the modal parameters are retrieved. Experimental results demonstrated the dynamic monitoring performances and the applicability to the modal analysis of the OFDR-FBG technique. PMID:27607270

  7. Nanoscale mass sensing based on vibration of single-layered graphene sheet in thermal environments

    NASA Astrophysics Data System (ADS)

    Fazelzadeh, S. Ahmad; Ghavanloo, Esmaeal

    2014-02-01

    Based on vibration analysis, single-layered graphene sheet (SLGS) with multiple attached nanoparticles is developed as nanoscale mass sensor in thermal environments. Graphene sensors are assumed to be in simply-supported configuration. Based on the nonlocal plate theory which incorporates size effects into the classical theory, closed-form expressions for the frequencies and relative frequency shifts of SLGS-based mass sensor are derived using the Galerkin method. The suggested model is justified by a good agreement between the results given by the present model and available data in literature. The effects of temperature difference, nonlocal parameter, the location of the nanoparticle and the number of nanoparticles on the relative frequency shift of the mass sensor are also elucidated. The obtained results show that the sensitivity of the SLGS-based mass sensor increases with increasing temperature difference. [Figure not available: see fulltext.

  8. Bragg grating-based fiber laser vibration sensing system with novel phase detection

    NASA Astrophysics Data System (ADS)

    Yang, Xiufeng; Chen, Zhihao; Teo, Ju Teng; Ng, Soon Huat

    2014-01-01

    We characterized the dynamic response of a Bragg grating-based fiber laser sensing system. The sensing system comprises of a narrow line width fiber laser based on π-phase-shifted fiber Bragg grating formed in an active fiber, an unbalanced fiber Michelson interferometer (FMI), which performs wavelength-to-phase mapping, and a phase detection algorithm, which acquires the phase change from the interferometric output signal. The novel phase detection algorithm is developed based on the combination of the two traditional phase generated carrier algorithms: differential-cross-multiplying and arctangent algorithms, and possesses the advantages of the two algorithms. The modulation depth fluctuation of the carrier does not affect the performance of the sensing system. A relatively high side mode suppression ratio of above 50 dB has been achieved within a wide range of carrier amplitude from 1.6 to 5.0 V which correspond to the modulation depth from 1.314 to 4.106 rad. The linearity is 99.082% for the relationship between the power spectral density (dBm/Hz) of the detected signal and the amplitude (mv) of the test signal. The unbalanced FMI is used to eliminate the polarization effect.

  9. Characterization of a MEMS Accelerometer for Inertial Navigating Applications

    SciTech Connect

    Kinney, R.D.

    1999-02-12

    Inertial MEMS sensors such as accelerometers and angular rotation sensing devices continue to improve in performance as advances in design and processing are made. Present state-of-the-art accelerometers have achieved performance levels in the laboratory that are consistent with requirements for successful application in tactical weapon navigation systems. However, sensor performance parameters that are of interest to the designer of inertial navigation systems are frequently not adequately addressed by the MEMS manufacturer. This paper addresses the testing and characterization of a MEMS accelerometer from an inertial navigation perspective. The paper discusses test objectives, data reduction techniques and presents results from the test of a three-axis MEMS accelerometer conducted at Sandia National Laboratories during 1997. The test was structured to achieve visibility and characterization of the accelerometer bias and scale factor stability overtime and temperature. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94AL85000.

  10. Optimal Placement of Accelerometers for the Detection of Everyday Activities

    PubMed Central

    Cleland, Ian; Kikhia, Basel; Nugent, Chris; Boytsov, Andrey; Hallberg, Josef; Synnes, Kåre; McClean, Sally; Finlay, Dewar

    2013-01-01

    This article describes an investigation to determine the optimal placement of accelerometers for the purpose of detecting a range of everyday activities. The paper investigates the effect of combining data from accelerometers placed at various bodily locations on the accuracy of activity detection. Eight healthy males participated within the study. Data were collected from six wireless tri-axial accelerometers placed at the chest, wrist, lower back, hip, thigh and foot. Activities included walking, running on a motorized treadmill, sitting, lying, standing and walking up and down stairs. The Support Vector Machine provided the most accurate detection of activities of all the machine learning algorithms investigated. Although data from all locations provided similar levels of accuracy, the hip was the best single location to record data for activity detection using a Support Vector Machine, providing small but significantly better accuracy than the other investigated locations. Increasing the number of sensing locations from one to two or more statistically increased the accuracy of classification. There was no significant difference in accuracy when using two or more sensors. It was noted, however, that the difference in activity detection using single or multiple accelerometers may be more pronounced when trying to detect finer grain activities. Future work shall therefore investigate the effects of accelerometer placement on a larger range of these activities. PMID:23867744

  11. Wide band fiber Bragg grating accelerometer for rotating AC machinery condition monitoring

    NASA Astrophysics Data System (ADS)

    Vilchis-Rodriguez, Damian S.; Djurovic, Sinisa; Kung, Peter; Comanici, Maria I.; Scepanovic, S.; Tshiloz, Kavul; Smith, Alexander C.

    2014-09-01

    This paper investigates the use of fiber Bragg grating (FBG) accelerometers for wide band vibration monitoring in a wound rotor induction generator. The sensor performance is assessed in a series of experiments on a laboratory test rig comprising a 30kW induction machine operating under steady state and variable speed regimes. Vibration measurements are investigated in the frequency domain for generator fault specific electromagnetically induced vibration components. The fiber optic sensor effectiveness in detection of wide band spectral effects (<1kHz) in the vibration signal is compared with that of a commercial piezoelectric based solution. The potential and limitations of the prototype wide band FBG accelerometer are evaluated for use in vibration monitoring applications.

  12. Measurement of Impact Acceleration: Mouthpiece Accelerometer Versus Helmet Accelerometer

    PubMed Central

    Higgins, Michael; Halstead, P. David; Snyder-Mackler, Lynn; Barlow, David

    2007-01-01

    Context: Instrumented helmets have been used to estimate impact acceleration imparted to the head during helmet impacts. These instrumented helmets may not accurately measure the actual amount of acceleration experienced by the head due to factors such as helmet-to-head fit. Objective: To determine if an accelerometer attached to a mouthpiece (MP) provides a more accurate representation of headform center of gravity (HFCOG) acceleration during impact than does an accelerometer attached to a helmet fitted on the headform. Design: Single-factor research design in which the independent variable was accelerometer position (HFCOG, helmet, MP) and the dependent variables were g and Severity Index (SI). Setting: Independent impact research laboratory. Intervention(s): The helmeted headform was dropped (n = 168) using a National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop system from the standard heights and impact sites according to NOCSAE test standards. Peak g and SI were measured for each accelerometer position during impact. Main Outcome Measures: Upon impact, the peak g and SI were recorded for each accelerometer location. Results: Strong relationships were noted for HFCOG and MP measures, and significant differences were seen between HFCOG and helmet g measures and HFCOG and helmet SI measures. No statistically significant differences were noted between HFCOG and MP g and SI measures. Regression analyses showed a significant relationship between HFCOG and MP measures but not between HFCOG and helmet measures. Conclusions: Upon impact, MP acceleration (g) and SI measurements were closely related to and more accurate in measuring HFCOG g and SI than helmet measurements. The MP accelerometer is a valid method for measuring head acceleration. PMID:17597937

  13. Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing

    NASA Astrophysics Data System (ADS)

    Yilmazoglu, O.; Popp, A.; Pavlidis, D.; Schneider, J. J.; Garth, D.; Schüttler, F.; Battenberg, G.

    2012-03-01

    We report a simple method for the micro-nano integration of flexible, vertically aligned multiwalled CNT arrays sandwiched between a top and bottom carbon layer via a porous alumina (Al2O3) template approach. The electromechanical properties of the flexible CNT arrays have been investigated under mechanical stress conditions. First experiments show highly sensitive piezoresistive sensors with a resistance decrease of up to ˜35% and a spatial resolution of <1 mm. The results indicate that these CNT structures can be utilized for tactile sensing components. They also confirm the feasibility of accessing and utilizing nanoscopic CNT bundles via lithographic processing. The method involves room-temperature processing steps and standard microfabrication techniques.

  14. Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing.

    PubMed

    Yilmazoglu, O; Popp, A; Pavlidis, D; Schneider, J J; Garth, D; Schüttler, F; Battenberg, G

    2012-03-01

    We report a simple method for the micro-nano integration of flexible, vertically aligned multiwalled CNT arrays sandwiched between a top and bottom carbon layer via a porous alumina (Al(2)O(3)) template approach. The electromechanical properties of the flexible CNT arrays have been investigated under mechanical stress conditions. First experiments show highly sensitive piezoresistive sensors with a resistance decrease of up to ∼35% and a spatial resolution of <1 mm. The results indicate that these CNT structures can be utilized for tactile sensing components. They also confirm the feasibility of accessing and utilizing nanoscopic CNT bundles via lithographic processing. The method involves room-temperature processing steps and standard microfabrication techniques.

  15. Micromachined Tunneling Accelerometer

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W.; Waltman, Stephen B.; Kaiser, William J.; Reynolds, Joseph K.

    1993-01-01

    Separation of tunneling electrodes adjusted by varying electrostatic force. Major components of tunneling transducer formed on two silicon chips by microfabrication techniques. Use of electrostatic deflection reduces sensitivity of transducer to thermal drift and simplifies design. Sensitivity suitable for applications in which larger acceleration-sensing instruments required.

  16. Exploring the electronic, vibrational, and chemical sensing properties of graphene, nanotubes, nanoparticles, and other nanomaterials

    NASA Astrophysics Data System (ADS)

    Sussman, Allen

    Some might view the "nano revolution" as one of the most important developments of our time, as nanomaterials have been and continue to be a seemingly endless source of new and exciting physics and have found application in almost every imaginable aspect of our lives. Carbon allotropes such as graphene, which is a single atomic layer of carbon atoms in a hexagonal lattice, carbon nanotubes (CNTs), which can be thought of as graphene sheets rolled up into cylinders, and graphene nanoribbons (GNRs) have garnered massive attention in recent years due to their remarkable properties and many potential uses. This work investigates the fundamental properties and applications of certain nanomaterials such as carbon allotropes, semiconducting metal oxide (SMO) nanoparticles, and others in the exciting fields of gas sensing, nanoelectromechanical oscillation, and optical near field enhancement. It also introduces a novel GNR synthesis technique. Chapter 1 of this work is a brief introduction to the nanomaterials that will be investigated here. Chapter 2 presents experimental investigations into the interaction between gases and certain nanomaterials, including SMO nanoparticles, gold nanowires and thin films, CNTs, bare graphene, and graphene functionalized by a novel electrodeposition technique. New findings on the sensing mechanism of tungsten oxide nanoparticles for hydrogen sulfide gas are discussed. These findings suggest that previous models were incorrect or incomplete. Chapter 3 discusses sustained self-oscillations of a singly-clamped CNT under constant bias, a phenomenon which obviates the need for large external sources to drive nanomechanical oscillations. A model of the phenomenon is presented and used to guide scalable, top-down fabrication of self-oscillators. In chapter 4, a novel, clean technique for synthesizing GNRs with desired dimensions is demonstrated. It is shown that this method allows for transmission electron microscopy and electronic

  17. Wearable accelerometer in clinical use.

    PubMed

    Tamura, Toshiyo

    2005-01-01

    To improve the equality of life, we must prevent the falls in both healthy elderly and patients with the cerebrovascular diseases. Wearable accelerometer was applied to monitor. In this paper, we introduced two different clinical applications. On is fall detector and the other is monitoring device for screening test. 1) We have developed body-worn accelerometer with data loggers and monitored the daily of life in patient with Parkinson disease. The patients wore the device and monitored falls while walking and standing. As a result, we could obtain fall times for a long period. 2) The ability of walking and standing have been evaluated by Timed up & go test. We used telemetry with accelerometer. The stability of walking could be evaluated by the acceleration signals. The simple body-won device can be useful for fall study.

  18. Citizen sensors for SHM: use of accelerometer data from smartphones.

    PubMed

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-01

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications.

  19. Citizen sensors for SHM: use of accelerometer data from smartphones.

    PubMed

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-01

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications. PMID:25643056

  20. Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones

    PubMed Central

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-01

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications. PMID:25643056

  1. A new z-axis resonant micro-accelerometer based on electrostatic stiffness.

    PubMed

    Yang, Bo; Wang, Xingjun; Dai, Bo; Liu, Xiaojun

    2015-01-05

    Presented in the paper is the design, the simulation, the fabrication and the experiment of a new z-axis resonant accelerometer based on the electrostatic stiffness. The new z-axis resonant micro-accelerometer, which consists of a torsional accelerometer and two plane resonators, decouples the sensing movement of the accelerometer from the oscillation of the plane resonators by electrostatic stiffness, which will improve the performance. The new structure and the sensitive theory of the acceleration are illuminated, and the equation of the scale factor is deduced under ideal conditions firstly. The Ansys simulation is implemented to verify the basic principle of the torsional accelerometer and the plane resonator individually. The structure simulation results prove that the effective frequency of the torsional accelerometer and the plane resonator are 0.66 kHz and 13.3 kHz, respectively. Then, the new structure is fabricated by the standard three-mask deep dry silicon on glass (DDSOG) process and encapsulated by parallel seam welding. Finally, the detecting and control circuits are designed to achieve the closed-loop self-oscillation, to trace the natural frequency of resonator and to measure the system frequency. Experimental results show that the new z-axis resonant accelerometer has a scale factor of 31.65 Hz/g, a bias stability of 727 µg and a dynamic range of over 10 g, which proves that the new z-axis resonant micro-accelerometer is practicable.

  2. Evaluation of transverse piezoelectric coefficient of ZnO thin films deposited on different flexible substrates: a comparative study on the vibration sensing performance.

    PubMed

    Joshi, Sudeep; Nayak, Manjunatha M; Rajanna, K

    2014-05-28

    We report on the systematic comparative study of highly c-axis oriented and crystalline piezoelectric ZnO thin films deposited on four different flexible substrates for vibration sensing application. The flexible substrates employed for present experimental study were namely a metal alloy (Phynox), metal (aluminum), polyimide (Kapton), and polyester (Mylar). ZnO thin films were deposited by an RF reactive magnetron sputtering technique. ZnO thin films of similar thicknesses of 700 ± 30 nm were deposited on four different flexible substrates to have proper comparative studies. The crystallinity, surface morphology, chemical composition, and roughness of ZnO thin films were evaluated by respective material characterization techniques. The transverse piezoelectric coefficient (d31) value for assessing the piezoelectric property of ZnO thin films on different flexible substrates was measured by a four-point bending method. ZnO thin films deposited on Phynox alloy substrate showed relatively better material characterization results and a higher piezoelectric d31 coefficient value as compared to ZnO films on metal and polymer substrates. In order to experimentally verify the above observations, vibration sensing studies were performed. As expected, the ZnO thin film deposited on Phynox alloy substrate showed better vibration sensing performance. It has generated the highest peak to peak output voltage amplitude of 256 mV as compared to that of aluminum (224 mV), Kapton (144 mV), and Mylar (46 mV). Therefore, metal alloy flexible substrate proves to be a more suitable, advantageous, and versatile choice for integrating ZnO thin films as compared to metal and polymer flexible substrates for vibration sensing applications. The present experimental study is extremely important and helpful for the selection of a suitable flexible substrate for various applications in the field of sensor and actuator technology.

  3. Physics of failure modes in accelerometers utilizing single crystal piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Wlodkowski, Paul Alexander

    1999-11-01

    For over forty years, the lead zirconate -- lead titanate system (PZT) has been the industrial standard of sensing materials for piezoelectric accelerometers. This ceramic has established a reliability benchmark given the uniformity of its electromechanical properties, the negligible dependence of these properties on temperature and pre-stress, and the ability to manufacture the sensing element cost-effectively into a myriad of geometries. Today, revolutionary advances in the growth of single crystal piezoelectric materials have spawned the evolution of novel sensor designs. With piezoelectric coefficients exceeding 2000 pC/N, and electromechanical coupling factors above 90%, single crystals of Pb(Mg1/3Nb2/3)O3-PbTiO3 [PMNT] and Pb(Zn1/3Nb2/3)O3-PbTiO3 [PZNT] have the potential of superseding PZT ceramics in certain critical applications. This dissertation reports the first results of the design, development and performance characterization for an accelerometer utilizing bulk, single crystal piezoelectric materials. Numerous prototypes, developed in the compression and flexural-mode design configurations, exhibit charge sensitivities that exceed that of their PZT-counterparts by a factor of greater than three times. The introduction of accelerometer prototypes employing single crystal piezoelectric material is an important advancement for the sensor industry. Root-cause failure processes were identified and subsequently used as a reliability enhancement tool to prevent device failures through robust design and manufacturing practices. Crystal machining techniques were analyzed in which a scanning electron microscope was used to inspect the crystal surface for defects. Inhomogeneity in the piezoelectric properties over the surface of the crystal was quantified and recognized as a major obstacle to commercialization. Measurements were made on the material's fracture toughness and electromechanical properties over a wide temperature range. Effects of aging and

  4. Optical accelerometer based on grating interferometer with phase modulation technique.

    PubMed

    Zhao, Shuangshuang; Zhang, Juan; Hou, Changlun; Bai, Jian; Yang, Guoguang

    2012-10-10

    In this paper, an optical accelerometer based on grating interferometer with phase modulation technique is proposed. This device architecture consists of a laser diode, a sensing chip and an optoelectronic processing circuit. The sensing chip is a sandwich structure, which is composed of a grating, a piezoelectric translator and a micromachined silicon structure consisting of a proof mass and four cantilevers. The detected signal is intensity-modulated with phase modulation technique and processed with a lock-in amplifier for demodulation. Experimental results show that this optical accelerometer has acceleration sensitivity of 619 V/g and high-resolution acceleration detection of 3 μg in the linear region. PMID:23052079

  5. Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  6. Self diagnostic accelerometer ground testing on a C-17 aircraft engine

    NASA Astrophysics Data System (ADS)

    Tokars, Roger P.; Lekki, John D.

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDA's flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  7. Cable force monitoring system of cable stayed bridges using accelerometers inside mobile smart phone

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Yu, Yan; Hu, Weitong; Jiao, Dong; Han, Ruicong; Mao, Xingquan; Li, Mingchu; Ou, Jinping

    2015-03-01

    Cable force is one of the most important parameters in structural health monitoring system integrated on cable stayed bridges for safety evaluation. In this paper, one kind of cable force monitoring system scheme was proposed. Accelerometers inside mobile smart phones were utilized for the acceleration monitoring of cable vibration. Firstly, comparative tests were conducted in the lab. The test results showed that the accelerometers inside smartphones can detect the cable vibration, and then the cable force can be obtained. Furthermore, there is good agreement between the monitoring results of different kinds of accelerometers. Finally, the proposed cable force monitoring system was applied on one cable strayed bridge structure, the monitoring result verified the feasibility of the monitoring system.

  8. Ultraminiature encapsulated accelerometers as a fully implantable sensor for implantable hearing aids.

    PubMed

    Park, Woo-Tae; O'Connor, Kevin N; Chen, Kuan-Lin; Mallon, Joseph R; Maetani, Toshiki; Dalal, Parmita; Candler, Rob N; Ayanoor-Vitikkate, Vipin; Roberson, Joseph B; Puria, Sunil; Kenny, Thomas W

    2007-12-01

    Experiments were conducted to evaluate a silicon accelerometer as an implantable sound sensor for implantable hearing aids. The main motivation of this study is to find an alternative sound sensor that is implantable inside the body, yet does not suffer from the signal attenuation from the body. The merit of the accelerometer sensor as a sound sensor will be that it will utilize the natural mechanical conduction in the middle ear as a source of the vibration. With this kind of implantable sound sensor, a totally implantable hearing aid is feasible. A piezoresistive silicon accelerometer that is completely encapsulated with a thin silicon film and long flexible flex-circuit electrical cables were used for this study. The sensor is attached on the middle ear ossicles and measures the vibration transmitted from the tympanic membrane due to the sound in the ear canal. In this study, the sensor is fully characterized on a human cadaveric temporal bone preparation.

  9. Measuring Vibrations With Nonvibration Sensors

    NASA Technical Reports Server (NTRS)

    Hill, Arthur J.

    1988-01-01

    Information about vibrations of structure and/or of nonvibration sensor attached to structure extracted from output of sensor. Sensor operated in usual way except, output fed to power-spectral-density analyzer. Vibrational components easily distinguishable in analyzer output because they have frequencies much higher than those of more-slowly-varying temperature, pressure, or other normally desired components. Spectral-analysis technique applied successfully to high-frequency resistance changes in output of platinum-wire resistance thermometer: vibrational peaks in resistance frequency spectrum confirmed by spectrum from accelerometer. Technique also showed predicted 17-kHz vibrational resonance in strain-guage-supporting beam in pressure sensor.

  10. Testing accelerometer rectification error caused by multidimensional composite inputs with double turntable centrifuge.

    PubMed

    Guan, W; Meng, X F; Dong, X M

    2014-12-01

    Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.

  11. Testing accelerometer rectification error caused by multidimensional composite inputs with double turntable centrifuge

    NASA Astrophysics Data System (ADS)

    Guan, W.; Meng, X. F.; Dong, X. M.

    2014-12-01

    Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.

  12. Calibration and deployment of a fiber-optic sensing system for monitoring debris flows.

    PubMed

    Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen

    2012-01-01

    This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations.

  13. Calibration and Deployment of a Fiber-Optic Sensing System for Monitoring Debris Flows

    PubMed Central

    Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen

    2012-01-01

    This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations. PMID:22778616

  14. Calibration and deployment of a fiber-optic sensing system for monitoring debris flows.

    PubMed

    Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen

    2012-01-01

    This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations. PMID:22778616

  15. Pendulous assembly for use in an accelerometer

    SciTech Connect

    Hanson, R.A.

    1991-08-27

    This patent describes a pendulous assembly for use in an accelerometer or other such device which senses forces acting on the device in a particular direction. It comprises a proofmass; and means supporting one end of the proofmass for pivotal movement about a given axis back and forth through a resting plane which contains the proofmass when the proofmass is at rest in the absence of any of the forces, the supporting means including: a frame and means for mounting the frame to a main support forming part of the force sensing device, an isolation bridge; isolation bridge flexure means connecting the isolation bridge with a section of the frame for pivotal movement of the isolation bridge back and forth about the given axis; and proofmass flexure means separate from and substantially unconnected with the isolation bridge flexure means, the proofmass flexure means comprising a pair of proofmass flexures connecting the proofmass with the isolation bridge for pivotal movement of the proofmass back and forth about the given axis; the isolation bridge flexure means and the proofmass flexure means being aligned along the given axis with the isolation bridge flexure means positioned between the proofmass flexures.

  16. The co-design of interface sensing and tailoring of ultra-thin film with ultrasonic vibration-assisted AFM system

    NASA Astrophysics Data System (ADS)

    Shi, Jialin; Liu, Lianqing; Li, Guangyong

    2016-06-01

    Ultra-thin films (e.g., graphene, MoS2, and black phosphorus) have shown amazing performance in a variety of applications. The tailoring or machining of these ultra-thin films is often the preliminary step to manufacturing them into functional devices. Atomic force microscopy (AFM) is a flexible, high-efficiency and low-cost tailoring or machining tool with the advantages of high resolution and precision. However, the current AFM-based tailoring methods are often set up as an open loop regarding the machined depth and state. Thus, because of a lack of real-time feedback, an inappropriate applied force leads to over-cutting or under-cutting, which limits the performance of the manufactured devices. In this study, we propose a real-time tailoring and sensing method based on an ultrasonic vibration-assisted (USV-assisted) AFM system to solve the above problems. With the proposed method, the machined depth and state can be sensed in real time by detecting the phase value of the vibrating cantilever. To characterize and gain insight into the phase responses of the cantilever to the machined depth and sample material, a theoretical dynamic model of a cantilever-film vibrating system is introduced to model the machining process, and a sensing theory of machined depth and state is developed based on a USV-assisted AFM system. The experimental results verify the feasibility and effectiveness of the proposed method, which in turn lay the foundation for a closed-loop tailoring control strategy for ultra-thin films.

  17. The co-design of interface sensing and tailoring of ultra-thin film with ultrasonic vibration-assisted AFM system.

    PubMed

    Shi, Jialin; Liu, Lianqing; Li, Guangyong

    2016-06-10

    Ultra-thin films (e.g., graphene, MoS2, and black phosphorus) have shown amazing performance in a variety of applications. The tailoring or machining of these ultra-thin films is often the preliminary step to manufacturing them into functional devices. Atomic force microscopy (AFM) is a flexible, high-efficiency and low-cost tailoring or machining tool with the advantages of high resolution and precision. However, the current AFM-based tailoring methods are often set up as an open loop regarding the machined depth and state. Thus, because of a lack of real-time feedback, an inappropriate applied force leads to over-cutting or under-cutting, which limits the performance of the manufactured devices. In this study, we propose a real-time tailoring and sensing method based on an ultrasonic vibration-assisted (USV-assisted) AFM system to solve the above problems. With the proposed method, the machined depth and state can be sensed in real time by detecting the phase value of the vibrating cantilever. To characterize and gain insight into the phase responses of the cantilever to the machined depth and sample material, a theoretical dynamic model of a cantilever-film vibrating system is introduced to model the machining process, and a sensing theory of machined depth and state is developed based on a USV-assisted AFM system. The experimental results verify the feasibility and effectiveness of the proposed method, which in turn lay the foundation for a closed-loop tailoring control strategy for ultra-thin films. PMID:27146083

  18. The co-design of interface sensing and tailoring of ultra-thin film with ultrasonic vibration-assisted AFM system.

    PubMed

    Shi, Jialin; Liu, Lianqing; Li, Guangyong

    2016-06-10

    Ultra-thin films (e.g., graphene, MoS2, and black phosphorus) have shown amazing performance in a variety of applications. The tailoring or machining of these ultra-thin films is often the preliminary step to manufacturing them into functional devices. Atomic force microscopy (AFM) is a flexible, high-efficiency and low-cost tailoring or machining tool with the advantages of high resolution and precision. However, the current AFM-based tailoring methods are often set up as an open loop regarding the machined depth and state. Thus, because of a lack of real-time feedback, an inappropriate applied force leads to over-cutting or under-cutting, which limits the performance of the manufactured devices. In this study, we propose a real-time tailoring and sensing method based on an ultrasonic vibration-assisted (USV-assisted) AFM system to solve the above problems. With the proposed method, the machined depth and state can be sensed in real time by detecting the phase value of the vibrating cantilever. To characterize and gain insight into the phase responses of the cantilever to the machined depth and sample material, a theoretical dynamic model of a cantilever-film vibrating system is introduced to model the machining process, and a sensing theory of machined depth and state is developed based on a USV-assisted AFM system. The experimental results verify the feasibility and effectiveness of the proposed method, which in turn lay the foundation for a closed-loop tailoring control strategy for ultra-thin films.

  19. Research In Diagnosing Bearing Defects From Vibrations

    NASA Technical Reports Server (NTRS)

    Zoladz, T.; Earhart, E.; Fiorucci, T.

    1995-01-01

    Report describes research in bearing-defect signature analysis - use of vibration-signal analysis to diagnose defects in roller and ball bearings. Experiments performed on bearings in good condition and other bearings in which various parts scratched to provide known defects correlated with vibration signals. Experiments performed on highly instrumented motor-driven rotor assembly at speeds up to 10,050 r/min, using accelerometers, velocity probes, and proximity sensors mounted at various locations on assembly to measure vibrations.

  20. Principle research on self-decoupled inelastic style piezoelectric three-degrees-of-freedom accelerometer

    NASA Astrophysics Data System (ADS)

    Lv, Huayi; Qin, Lan; Liu, Jun; Zhou, Linna; Duan, Ying; Mao, Jiubing

    2014-08-01

    A self-decoupled inelastic style piezoelectric three-degrees-of-freedom (three-DOF) accelerometer is put forward for the solution of cross coupling interference without decoupling easily in the field of three-DOF acceleration sensing. Meanwhile, the proposed piezoelectric three-DOF accelerometer has simple structure and solves the contradictions between high stiffness and high sensitivity. The operating principle of the presented piezoelectric three-DOF accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the three-axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its output sensitivity, static characteristics, dynamic natural frequency, etc. are analyzed by FEM tool (ANSYS software). Research results show that the proposed piezoelectric three-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 16 kHz, self-decoupled without complex decoupling work.

  1. Interferometric readout of a monolithic accelerometer, towards the fm /√{ Hz } resolution

    NASA Astrophysics Data System (ADS)

    van Heijningen, J. V.; Bertolini, A.; van den Brand, J. F. J.

    2016-07-01

    The European Gravitational wave Observatory Virgo is undergoing an upgrade to increase its strain sensitivity to about 3 ×10-24 1 /√{ Hz } in the detection band of 10 Hz-10 kHz. The upgrade for this detector necessitates seismically isolating sensing optics in a vacuum environment that were on an optical bench outside vacuum in previous Virgo configurations. For this purpose, Nikhef has designed and built the five compact isolators, called MultiSAS. To measure the residual motion of the optical components and the transfer function of the isolator in full assembly, no (commercial) sensor is available that has sufficient sensitivity. A novel vibration sensor has been built at Nikhef that features an interferometric readout for a horizontal monolithic accelerometer. It will be able to measure in the vicinity of the fm/Hz regime from 10 Hz onwards. Current results show unprecedented (self) noise levels around 35 fm/Hz from 25 Hz onwards. In spite of these excellent results, it is still higher than the modeled noises. Several possible unmodeled noise sources and possible solutions have been identified.

  2. Technique for Determining Bridge Displacement Response Using MEMS Accelerometers.

    PubMed

    Sekiya, Hidehiko; Kimura, Kentaro; Miki, Chitoshi

    2016-01-01

    In bridge maintenance, particularly with regard to fatigue damage in steel bridges, it is important to determine the displacement response of the entire bridge under a live load as well as that of each member. Knowing the displacement response enables the identification of dynamic deformations that can cause stresses and ultimately lead to damage and thus also allows the undertaking of appropriate countermeasures. In theory, the displacement response can be calculated from the double integration of the measured acceleration. However, data measured by an accelerometer include measurement errors caused by the limitations of the analog-to-digital conversion process and sensor noise. These errors distort the double integration results. Furthermore, as bridges in service are constantly vibrating because of passing vehicles, estimating the boundary conditions for the numerical integration is difficult. To address these problems, this paper proposes a method for determining the displacement of a bridge in service from its acceleration based on its free vibration. To verify the effectiveness of the proposed method, field measurements were conducted using nine different accelerometers. Based on the results of these measurements, the proposed method was found to be highly accurate in comparison with the reference displacement obtained using a contact displacement gauge. PMID:26907287

  3. High-Resolution Analysis and Modeling of GRACE Accelerometer Observations

    NASA Astrophysics Data System (ADS)

    Flury, J.; Bettadpur, S.; Tapley, B. D.

    2007-12-01

    A better understanding and modeling of high-resolution GRACE accelerometer data serves three purposes: (1) to ensure that the best possible data are used in the GRACE gravity field processing, (2) to obtain precise and clean non-gravitational accelerations for aeronomy research, and (3) to understand and quantify disturbances which may play a role for future space-borne accelerometry. The external non-gravitational forces acting on the twin GRACE satellites are superimposed by a complex signal pattern of satellite-induced effects, originating from switching events in electrical circuits of on-board heaters and magnetic torquers, from vibrations and thruster accelerations. For each of these processes, we compared and averaged 10 Hz acceleration signals from a large number of events from long accelerometer time series. The analysis results provide constraints, e.g., on thrust accuracy, misalignments, and vibration frequencies. These constraints may help to understand the underlying physics. We modeled and reduced acceleration signals due to thrusters and heater switching and obtained considerably smoother and cleaner signals of external non-gravitational accelerations which may be useful for applications in aeronomy research.

  4. Technique for Determining Bridge Displacement Response Using MEMS Accelerometers

    PubMed Central

    Sekiya, Hidehiko; Kimura, Kentaro; Miki, Chitoshi

    2016-01-01

    In bridge maintenance, particularly with regard to fatigue damage in steel bridges, it is important to determine the displacement response of the entire bridge under a live load as well as that of each member. Knowing the displacement response enables the identification of dynamic deformations that can cause stresses and ultimately lead to damage and thus also allows the undertaking of appropriate countermeasures. In theory, the displacement response can be calculated from the double integration of the measured acceleration. However, data measured by an accelerometer include measurement errors caused by the limitations of the analog-to-digital conversion process and sensor noise. These errors distort the double integration results. Furthermore, as bridges in service are constantly vibrating because of passing vehicles, estimating the boundary conditions for the numerical integration is difficult. To address these problems, this paper proposes a method for determining the displacement of a bridge in service from its acceleration based on its free vibration. To verify the effectiveness of the proposed method, field measurements were conducted using nine different accelerometers. Based on the results of these measurements, the proposed method was found to be highly accurate in comparison with the reference displacement obtained using a contact displacement gauge. PMID:26907287

  5. Technique for Determining Bridge Displacement Response Using MEMS Accelerometers.

    PubMed

    Sekiya, Hidehiko; Kimura, Kentaro; Miki, Chitoshi

    2016-02-19

    In bridge maintenance, particularly with regard to fatigue damage in steel bridges, it is important to determine the displacement response of the entire bridge under a live load as well as that of each member. Knowing the displacement response enables the identification of dynamic deformations that can cause stresses and ultimately lead to damage and thus also allows the undertaking of appropriate countermeasures. In theory, the displacement response can be calculated from the double integration of the measured acceleration. However, data measured by an accelerometer include measurement errors caused by the limitations of the analog-to-digital conversion process and sensor noise. These errors distort the double integration results. Furthermore, as bridges in service are constantly vibrating because of passing vehicles, estimating the boundary conditions for the numerical integration is difficult. To address these problems, this paper proposes a method for determining the displacement of a bridge in service from its acceleration based on its free vibration. To verify the effectiveness of the proposed method, field measurements were conducted using nine different accelerometers. Based on the results of these measurements, the proposed method was found to be highly accurate in comparison with the reference displacement obtained using a contact displacement gauge.

  6. Speech activity detection using accelerometer.

    PubMed

    Matic, Aleksandar; Osmani, Venet; Mayora, Oscar

    2012-01-01

    The level of social activity is linked to the overall wellbeing and to various disorders, including stress. In this regard, a myriad of automatic solutions for monitoring social interactions have been proposed, usually including audio data analysis. Such approaches often face legal and ethical issues and they may also raise privacy concerns in monitored subjects thus affecting their natural behaviour. In this paper we present an accelerometer-based speech detection which does not require capturing sensitive data while being an easily applicable and a cost-effective solution.

  7. Spatial patterns of cutaneous vibration during whole-hand haptic interactions

    PubMed Central

    Hayward, Vincent; Visell, Yon

    2016-01-01

    We investigated the propagation patterns of cutaneous vibration in the hand during interactions with touched objects. Prior research has highlighted the importance of vibrotactile signals during haptic interactions, but little is known of how vibrations propagate throughout the hand. Furthermore, the extent to which the patterns of vibrations reflect the nature of the objects that are touched, and how they are touched, is unknown. Using an apparatus comprised of an array of accelerometers, we mapped and analyzed spatial distributions of vibrations propagating in the skin of the dorsal region of the hand during active touch, grasping, and manipulation tasks. We found these spatial patterns of vibration to vary systematically with touch interactions and determined that it is possible to use these data to decode the modes of interaction with touched objects. The observed vibration patterns evolved rapidly in time, peaking in intensity within a few milliseconds, fading within 20–30 ms, and yielding interaction-dependent distributions of energy in frequency bands that span the range of vibrotactile sensitivity. These results are consistent with findings in perception research that indicate that vibrotactile information distributed throughout the hand can transmit information regarding explored and manipulated objects. The results may further clarify the role of distributed sensory resources in the perceptual recovery of object attributes during active touch, may guide the development of approaches to robotic sensing, and could have implications for the rehabilitation of the upper extremity. PMID:27035957

  8. Spatial patterns of cutaneous vibration during whole-hand haptic interactions.

    PubMed

    Shao, Yitian; Hayward, Vincent; Visell, Yon

    2016-04-12

    We investigated the propagation patterns of cutaneous vibration in the hand during interactions with touched objects. Prior research has highlighted the importance of vibrotactile signals during haptic interactions, but little is known of how vibrations propagate throughout the hand. Furthermore, the extent to which the patterns of vibrations reflect the nature of the objects that are touched, and how they are touched, is unknown. Using an apparatus comprised of an array of accelerometers, we mapped and analyzed spatial distributions of vibrations propagating in the skin of the dorsal region of the hand during active touch, grasping, and manipulation tasks. We found these spatial patterns of vibration to vary systematically with touch interactions and determined that it is possible to use these data to decode the modes of interaction with touched objects. The observed vibration patterns evolved rapidly in time, peaking in intensity within a few milliseconds, fading within 20-30 ms, and yielding interaction-dependent distributions of energy in frequency bands that span the range of vibrotactile sensitivity. These results are consistent with findings in perception research that indicate that vibrotactile information distributed throughout the hand can transmit information regarding explored and manipulated objects. The results may further clarify the role of distributed sensory resources in the perceptual recovery of object attributes during active touch, may guide the development of approaches to robotic sensing, and could have implications for the rehabilitation of the upper extremity.

  9. Spatial patterns of cutaneous vibration during whole-hand haptic interactions.

    PubMed

    Shao, Yitian; Hayward, Vincent; Visell, Yon

    2016-04-12

    We investigated the propagation patterns of cutaneous vibration in the hand during interactions with touched objects. Prior research has highlighted the importance of vibrotactile signals during haptic interactions, but little is known of how vibrations propagate throughout the hand. Furthermore, the extent to which the patterns of vibrations reflect the nature of the objects that are touched, and how they are touched, is unknown. Using an apparatus comprised of an array of accelerometers, we mapped and analyzed spatial distributions of vibrations propagating in the skin of the dorsal region of the hand during active touch, grasping, and manipulation tasks. We found these spatial patterns of vibration to vary systematically with touch interactions and determined that it is possible to use these data to decode the modes of interaction with touched objects. The observed vibration patterns evolved rapidly in time, peaking in intensity within a few milliseconds, fading within 20-30 ms, and yielding interaction-dependent distributions of energy in frequency bands that span the range of vibrotactile sensitivity. These results are consistent with findings in perception research that indicate that vibrotactile information distributed throughout the hand can transmit information regarding explored and manipulated objects. The results may further clarify the role of distributed sensory resources in the perceptual recovery of object attributes during active touch, may guide the development of approaches to robotic sensing, and could have implications for the rehabilitation of the upper extremity. PMID:27035957

  10. Superconducting six-axis accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  11. The development of an optical fiber accelerometer

    NASA Astrophysics Data System (ADS)

    Casalnuovo, S. A.; Sleefe, G. E.; James, C. E.

    1992-01-01

    We describe the design and operation of an optical fiber accelerometer intended for environments inhospitable to electronic components. An overview of the device is presented along with descriptions of the optical, electronic, and mechanical components. The performance of the current prototype is equivalent to state of the art piezoelectric accelerometers. Improvements to the current design are discussed.

  12. Interinstrument Reliability of the RT3 Accelerometer

    ERIC Educational Resources Information Center

    Reneman, Michiel

    2010-01-01

    The objective of this study was to assess the interinstrument reliability of six RT3 accelerometers for measuring physical activities. Each of the six healthy participants, mean age 36.1 years (SD 9.4), carried six RT3 accelerometers (same type and same producer) simultaneously placed ventrally at the waist belt. The participants performed three…

  13. Evaluation of Thermo-Mechanical Stability of COTS Dual-Axis MEMS Accelerometers for Space Applications

    NASA Technical Reports Server (NTRS)

    Sharma, Ashok K.; Teverovksy, Alexander; Day, John H. (Technical Monitor)

    2000-01-01

    Microelectromechanical systems in MEMS is one of the fastest growing technologies in microelectronics, and is of great interest for military and aerospace applications. Accelerometers are the earliest and most developed representatives of MEMS. First demonstrated in 1979, micromachined accelerometers were used in automobile industry for air bag crash- sensing applications since 1990. In 1999, N4EMS accelerometers were used in NASA-JPL Mars Microprobe. The most developed accelerometers for airbag crash- sensing are rated for a full range of +/- 50 G. The range of sensitivity for accelerometers required for military or aerospace applications is much larger, varying from 20,000 G (to measure acceleration during gun and ballistic munition launches), and to 10(exp -6) G, when used as guidance sensors (to measure attitude and position of a spacecraft). The presence of moving parts on the surface of chip is specific to MEMS, and particularly, to accelerometers. This characteristic brings new reliability issues to micromachined accelerometers, including cyclic fatigue cracking of polysilicon cantilevers and springs, mechanical stresses that are caused by packaging and contamination in the internal cavity of the package. Studies of fatigue cracks initiation and growth in polysilicon showed that the fatigue damage may influence MEMS device performance, and the presence of water vapor significantly enhances crack initiation and growth. Environmentally induced failures, particularly, failures due to thermal cycling and mechanical shock are considered as one of major reliability concerns in MEMS. These environmental conditions are also critical for space applications of the parts. For example, the Mars pathfinder mission had experienced 80 mechanical shock events during the pyrotechnic separation processes.

  14. A 3-axis force balanced accelerometer using a single proof-mass

    SciTech Connect

    Lemkin, M.A.; Boser, B.E.; Auslander, D.; Smith, J.

    1997-04-01

    This paper presents a new method for wideband force balancing a proof-mass in multiple axes simultaneously. Capacitive position sense and force feedback are accomplished using the same air-gap capacitors through time multiplexing. Proof of concept is experimentally demonstrated with a single-mass monolithic surface micromachined 3-axis accelerometer.

  15. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  16. An electrostatically rebalanced micromechanical accelerometer

    NASA Astrophysics Data System (ADS)

    Boxenhorn, Burton; Greiff, Paul

    The design and test performance of a low-cost micromechanical accelerometer (MA) with integral electrodes, developed for use with the vibratory micromechanical gyro described by Boxenhorn and Greiff (1988), are reported. The MA is a monolithic Si device of size 300 x 600 microns and comprises a torsional pendulum with capacitive readout and an electrostatic torquer. Data from 360-deg sweep tests performed in a g-field are presented in tables and graphs and discussed in detail. Results include bandwidth about 1 Hz, scale-factor error 480 ppm, stable bias of 260 microg over 203 min, and temperature effect 2100 microg/C on bias and -123 ppm/C on scale factor.

  17. Experiment on interface separation detection of concrete-filled steel tubular arch bridge using accelerometer array

    NASA Astrophysics Data System (ADS)

    Pan, Shengshan; Zhao, Xuefeng; Zhao, Hailiang; Mao, Jian

    2015-04-01

    Based on the vibration testing principle, and taking the local vibration of steel tube at the interface separation area as the study object, a real-time monitoring and the damage detection method of the interface separation of concrete-filled steel tube by accelerometer array through quantitative transient self-excitation is proposed. The accelerometers are arranged on the steel tube area with or without void respectively, and the signals of accelerometers are collected at the same time and compared under different transient excitation points. The results show that compared with the signal of compact area, the peak value of accelerometer signal at void area increases and attenuation speed slows down obviously, and the spectrum peaks of the void area are much more and disordered and the amplitude increases obviously. whether the input point of transient excitation is on void area or not is irrelevant with qualitative identification results. So the qualitative identification of the interface separation of concrete-filled steel tube based on the signal of acceleration transducer is feasible and valid.

  18. Integrated digital image and accelerometer measurements of rat locomotor and vibratory behaviour.

    PubMed

    Shih, Yuan-Hsing; Young, Ming-Shing

    2007-10-15

    This study developed a combined IC-type accelerometer and video camera system to simultaneously measure vibration and locomotion activities in rats. A personal computer, adopted as an image frame grabber, was combined with a digital image processing algorithm to measure the precise location of an animal in an experimental cage. An accelerometer-based vibration subsystem, based on an 89C51 single-chip microprocessor, was designed. The acceleration sensor module was attached directly to the shaved back of the rat's body to directly measure the animal's vibration. This module can detect a wide range of vibrations from movements of the entire body to micro-tremors. Along with hardware, this study also proposes novel software for video enhancement and data analysis to calculate the behaviour parameters from recorded movements. In normal mode, three vibration activities (locomotor activity, tremor and twitch) are auto-analyzed every 10 min. The results are saved, and various display, statistical and data organization options are available. The primary merits of this system are the ability to simultaneously record locomotion and vibrational data, the rapid set-up and operation, the low cost, the reduced illumination requirements, the reduction of environmental noise and the high precision. The proposed method will be of interest to researchers in various behavioural, biological and medical fields.

  19. Active damping of spacecraft structural appendage vibrations

    NASA Technical Reports Server (NTRS)

    Fedor, Joseph V. (Inventor)

    1990-01-01

    An active vibration damper system, for bending in two orthogonal directions and torsion, in each of three mutually perpendicular axes is located at the extremities of the flexible appendages of a space platform. The system components for each axis includes: an accelerometer, filtering and signal processing apparatus, and a DC motor-inertia wheel torquer. The motor torquer, when driven by a voltage proportional to the relative vibration tip velocity, produces a reaction torque for opposing and therefore damping a specific modal velocity of vibration. The relative tip velocity is obtained by integrating the difference between the signal output from the accelerometer located at the end of the appendage with the output of a usually carried accelerometer located on a relatively rigid body portion of the space platform. A selector switch, with sequential stepping logic or highest modal vibration energy logic, steps to another modal tip velocity channel and receives a signal voltage to damp another vibration mode. In this manner, several vibration modes can be damped with a single sensor/actuator pair. When a three axis damper is located on each of the major appendages of the platform, then all of the system vibration modes can be effectively damped.

  20. Hybridizing matter-wave and classical accelerometers

    SciTech Connect

    Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A.

    2014-10-06

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.

  1. GRADIO three-axis electrostatic accelerometers

    NASA Technical Reports Server (NTRS)

    Bernard, A.

    1987-01-01

    Dedicated accelerometers for satellite gravity gradiometry (GRADIO project) are described. The design profits from experience acquired with the CACTUS accelerometer payload of the satellite CASTOR-D5B and studies of highly accurate accelerometers for inertial navigation. The principle of operation, based on a three-axis electrostatic suspension of a cubic proof mass, is well suited for the measurements of accelerations less than 0.0001 m/sec/sec. A resolution better than 10 to the minus 11th power m/sec/sec/sq root Hz is expected.

  2. Single-Crystal Springs For Accelerometers

    NASA Technical Reports Server (NTRS)

    Vanzandt, Thomas R.; Kaiser, William J.; Kenny, Thomas W.

    1995-01-01

    Thermal noise reduced, enabling use of smaller proof masses. Spring-and-mass accelerometers in which springs made of single-crystal material being developed. In spring-and-mass accelerometer, proof mass attached to one end of spring, and acceleration of object at other end of spring measured in terms of deflection of spring, provided frequency spectrum of acceleration lies well below resonant frequency of spring-and-proof-mass system. Use of single-crystal spring materials instead of such polycrystalline spring materials as ordinary metals makes possible to construct highly sensitive accelerometers (including seismometers) with small proof masses.

  3. Hybridizing matter-wave and classical accelerometers

    NASA Astrophysics Data System (ADS)

    Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A.

    2014-10-01

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.

  4. Piezoelectric Shaker Development for High Frequency Calibration of Accelerometers

    SciTech Connect

    Payne, Bev; Harper, Kari K.; Vogl, Gregory W.

    2010-05-28

    Calibration of vibration transducers requires sinusoidal motion over a wide frequency range with low distortion and low cross-axial motion. Piezoelectric shakers are well suited to generate such motion and are suitable for use with laser interferometric methods at frequencies of 3 kHz and above. An advantage of piezoelectric shakers is the higher achievable accelerations and displacement amplitudes as compared to electro-dynamic (ED) shakers. Typical commercial ED calibration shakers produce maximum accelerations from 100 m/s{sup 2} to 500 m/s{sup 2}. Very large ED shakers may produce somewhat higher accelerations but require large amplifiers and expensive cooling systems to dissipate heat. Due to the limitations in maximum accelerations by ED shakers at frequencies above 5 kHz, the amplitudes of the generated sinusoidal displacement are frequently below the resolution of laser interferometers used in primary calibration methods. This limits the usefulness of ED shakers in interferometric based calibrations at higher frequencies.Small piezoelectric shakers provide much higher acceleration and displacement amplitudes for frequencies above 5 kHz, making these shakers very useful for accelerometer calibrations employing laser interferometric measurements, as will be shown in this paper. These piezoelectric shakers have been developed and used at NIST for many years for high frequency calibration of accelerometers. This paper documents the construction and performance of a new version of these shakers developed at NIST for the calibration of accelerometers over the range of 3 kHz to 30 kHz and possibly higher. Examples of typical calibration results are also given.

  5. Inertia-Wheel Vibration-Damping System

    NASA Technical Reports Server (NTRS)

    Fedor, Joseph V.

    1990-01-01

    Proposed electromechanical system would damp vibrations in large, flexible structure. In active vibration-damping system motors and reaction wheels at tips of appendages apply reaction torques in response to signals from accelerometers. Velocity signal for vibrations about one axis processes into control signal to oppose each of n vibrational modes. Various modes suppressed one at a time. Intended primarily for use in spacecraft that has large, flexible solar panels and science-instrument truss assembly, embodies principle of control interesting in its own right and adaptable to terrestrial structures, vehicles, and instrument platforms.

  6. Evaluation Of Vibration-Monitoring Gear-Diagnostic System

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Zakrajsek, James J.

    1995-01-01

    Report describes experimental evaluation of commercial electronic system designed to monitor vibration signal from accelerometer on gear-box to detect vibrations indicative of damage to gears. System includes signal-conditioning subsystem and personal computer in which analog-to-digital converter installed. Results show system fairly effective in detecting surface fatigue pits on spur-gear teeth.

  7. Compact dual-frequency fiber laser accelerometer with sub-μg resolution

    NASA Astrophysics Data System (ADS)

    Cao, Qian; Jin, Long; Liang, Yizhi; Cheng, Linghao; Guan, Bai-Ou

    2016-06-01

    We demonstrate a compact and high-resolution dual-polarization fiber laser accelerometer. A spring-mass like scheme is constructed by fixing a 10-gram proof mass on the laser cavity to transduce applied vibration into beat-frequency change. The loading is located at the intensity maximum of intracavity light to maximize the optical response. The detection limit reaches 107 ng/Hz1/2 at 200 Hz. The working bandwidth ranges from 60 Hz to 600 Hz.

  8. High sensitivity cymbal-based accelerometer

    SciTech Connect

    Sun Chengliang; Lam, K.H.; Choy, S.H.; Chan, H.L. W.; Zhao, X.-Z.; Choy, C.L.

    2006-03-15

    A high sensitivity piezoelectric accelerometer has been developed by replacing the conventional piezoelectric rings with a cymbal transducer. The sensitivity of the cymbal-based accelerometers containing cymbal transducers with different endcap thicknesses and different seismic masses has been measured as a function of driving frequency. Due to the high d{sub 33}{sup '} coefficient of the cymbal transducers, the cymbal-based accelerometers have a high sensitivity of {approx}97 pC/ms{sup -2} with the amplitude rise of 2.85% (<1 dB) at one-third of the mounted resonance frequency (3.38 kHz). The effect of the seismic mass, the resonance frequency, and d{sub 33}{sup '} coefficient of the cymbal transducers on the sensitivity and the frequency range of the cymbal-based accelerometers are reported.

  9. Accelerometer Measurements in the Amusement Park.

    ERIC Educational Resources Information Center

    Reno, Charles; Speers, Robert R.

    1995-01-01

    Describes the use of the Texas Instruments' calculator-based laboratory (CBL) and Vernier accelerometer for measuring the vector sum of the gravitational field and the acceleration of amusement park rides. (JRH)

  10. A miniature high-resolution accelerometer utilizing electron tunneling

    NASA Technical Reports Server (NTRS)

    Rockstad, Howard K.; Kenny, T. W.; Reynolds, J. K.; Kaiser, W. J.; Vanzandt, T. R.; Gabrielson, Thomas B.

    1992-01-01

    New methods have been developed to implement high-resolution position sensors based on electron tunneling. These methods allow miniaturization while utilizing the position sensitivity of electron tunneling to give high resolution. A single-element tunneling accelerometer giving a displacement resolution of 0.002 A/sq rt Hz at 10 Hz, corresponding to an acceleration resolution of 5 x 10 exp -8 g/sq rt Hz, is described. A new dual-element tunneling structure which overcomes the narrow bandwidth limitations of a single-element structure is described. A sensor with an operating range of 5 Hz to 10 kHz, which can have applications as an acoustic sensor, is discussed. Noise is analyzed for fundamental thermal vibration of the suspended masses and is compared to electronic noise. It is shown that miniature tunnel accelerometers can achieve resolution such that thermal noise in the suspended masses is the dominant cause of the resolution limit. With a proof mass of order 100 mg, noise analysis predicts limiting resolutions approaching 10 exp -9 g/sq rt Hz in a 300 Hz band and 10 exp -8 g/sq rt Hz at 1 kHz.

  11. Active Inertial Vibration Isolators And Dampers

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren; Blackburn, John; Smith, Dennis

    1994-01-01

    Report describes development of active inertial vibration isolators and dampers in which actuators electromagnet coils moving linearly within permanent magnetic fields in housings, somewhat as though massive, low-frequency voice coils in loudspeakers. Discusses principle of operation, electrical and mechanical considerations in design of actuators, characteristics of accelerometers, and frequency responses of control systems. Describes design and performance of one- and three-degree-of-freedom vibration-suppressing system based on concept.

  12. Accelerometers for Precise GNSS Orbit Determination

    NASA Astrophysics Data System (ADS)

    Hugentobler, Urs; Schlicht, Anja

    2016-07-01

    The solar radiation pressure is the largest non-gravitational acceleration on GNSS satellites limiting the accuracy of precise orbit models. Other non-gravitational accelerations may be thrusts for station keeping maneuvers. Accelerometers measure the motion of a test mass that is shielded against satellite surface forces with respect to a cage that is rigidly connected to the satellite. They can thus be used to measure these difficult-to-model non-gravitational accelerations. Accelerometers however typically show correlated noise as well as a drift of the scaling factors converting measured voltages to accelerations. The scaling thus needs to be regularly calibrated. The presented study is based on several simulated scenarios including orbit determination of accelerometer-equipped Galileo satellites. It shall evaluate different options on how to accommodate accelerometer measurements in the orbit integrator, indicate to what extent currently available accelerometers can be used to improve the modeling of non-gravitational accelerations on GNSS satellites for precise orbit determination, and assess the necessary requirements for an accelerometer that can serve this purpose.

  13. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Christophe, Bruno; Foulon, Bernard; Boulanger, Damien; Liorzou, Françoise; Lebat, Vincent

    2013-04-01

    excitation especially due to launching vibrations. As the measure must be accurate, no displacements or sliding must appear during excitations. The electrode cage is made of glass material (ULE), which is very critical, in particular due to the free motion of the proof-mass during the launch. Specific analysis on this part is realized to ensure mechanical behavior. The design of electrostatic accelerometer of the GRACE Follow-On mission benefits of the GRACE heritage, GOCE launched in 2009 and MICROSCOPE which will be launched in 2016, including some improvement to win in performance, in particular the thermal sensitivity of the measurements.

  14. A Low-Noise DC Seismic Accelerometer Based on a Combination of MET/MEMS Sensors

    PubMed Central

    Neeshpapa, Alexander; Antonov, Alexander; Agafonov, Vadim

    2015-01-01

    Molecular-electronic transducers (MET) have a high conversion coefficient and low power consumption, and do not require precision mechanical components thus allowing the construction of cost- and power-efficient seismic accelerometers. Whereas the instrumental resolution of a MET accelerometer within the 0.1–100 Hz frequency range surpasses that of the best Micro-Electro Mechanical Systems (MEMS) and even some force-balanced accelerometers, the fundamental inability to register gravity or, in other words, zero frequency acceleration, significantly constrains the further spread of MET-based accelerometers. Ways of obviating this inherent zero frequency insensitivity within MET technology have so far, not been found. This article explores a possible approach to the construction of a hybrid seismic accelerometer combining the superb performance of a MET sensor in the middle and high frequency range with a conventional on chip MEMS accelerometer covering the lower frequencies and gravity. Though the frequency separation of a signal is widely used in various applications, the opposite task, i.e., the combining of two signals with different bandwidths is less common. Based on theoretical research and the analysis of actual sensors' performance, the authors determined optimal parameters for building a hybrid sensor. Description and results for implementation of the hybrid sensor are given in the Experimental section of the article. Completing a MET sensor with a cost-effective MEMS permitted the construction of a low noise DC accelerometer preserving the noise performance of a MET sensing element. The work presented herein may prove useful in designing other combined sensors based on different technologies. PMID:25549175

  15. A Low-Noise DC seismic accelerometer based on a combination of MET/MEMS sensors.

    PubMed

    Neeshpapa, Alexander; Antonov, Alexander; Agafonov, Vadim

    2015-01-01

    Molecular-electronic transducers (MET) have a high conversion coefficient and low power consumption, and do not require precision mechanical components thus allowing the construction of cost- and power-efficient seismic accelerometers. Whereas the instrumental resolution of a MET accelerometer within the 0.1-100 Hz frequency range surpasses that of the best Micro-Electro Mechanical Systems (MEMS) and even some force-balanced accelerometers, the fundamental inability to register gravity or, in other words, zero frequency acceleration, significantly constrains the further spread of MET-based accelerometers. Ways of obviating this inherent zero frequency insensitivity within MET technology have so far, not been found. This article explores a possible approach to the construction of a hybrid seismic accelerometer combining the superb performance of a MET sensor in the middle and high frequency range with a conventional on chip MEMS accelerometer covering the lower frequencies and gravity. Though the frequency separation of a signal is widely used in various applications, the opposite task, i.e., the combining of two signals with different bandwidths is less common. Based on theoretical research and the analysis of actual sensors' performance, the authors determined optimal parameters for building a hybrid sensor. Description and results for implementation of the hybrid sensor are given in the Experimental section of the article. Completing a MET sensor with a cost-effective MEMS permitted the construction of a low noise DC accelerometer preserving the noise performance of a MET sensing element. The work presented herein may prove useful in designing other combined sensors based on different technologies.

  16. High resolution quartz flexure accelerometer based on laser self-mixing interferometry.

    PubMed

    Wang, Cuo; Li, Xingfei; Kou, Ke; Wu, Tengfei; Xiang, Hongbiao

    2015-06-01

    As common high-precision inertial sensors, quartz flexure accelerometers have a wide application prospect in low-cost inertial navigation systems. To ameliorate their resolution performance restricted by differential capacitance detection, we proposed a modified type of quartz flexure accelerometer based on an emerging optical technique named laser self-mixing interferometry, which is utilized to sense the displacement of a quartz pendulous reed, and then an equal and opposite force is accordingly produced to maintain the reed motionless relative to the inertial frame. The configuration and working principle of the improved accelerometer have been introduced and analyzed. The preliminary experiments indicate that its bias stability reaches 0.75-0.85 μg, which shows some progress when compared to the traditional type. Further improvements are mainly limited by the characteristics of the laser diode and the multiple reflections from the pendulous reed. PMID:26133862

  17. Detecting gunshots using wearable accelerometers.

    PubMed

    Loeffler, Charles E

    2014-01-01

    Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm discharges.

  18. Variometric Tests for Accelerometer Sensors

    NASA Astrophysics Data System (ADS)

    D'Urso, M. G.; Barbati, N.

    2012-08-01

    We present a comprehensive review of several variometric tests recently carried out on a home-made measurement system composed of a tern of low-cost accelerometer sensors of MEMS (Micro-Electro-Mechanical Systems) type equipped with autonomous electric supply and wireless transmission. The most important parameters characterizing the systematic errors, i.e. bias, scale factor and thermal correction factor, have been evaluated by calibration tests based upon the so-called "six -positions" static test proposed by the IEEE 517 Standard. In this way the system optimal configuration has been defined in terms of data acquisition frequency and of scale factor. In addition to such tests, partly documented elsewhere, the results of some sensitivity tests on the influence of external environmental factors are also presented. With the aim of employing the proposed MEMS-based system as a device for monitoring the onset of slope landslides, some further tests have been carried out in order to measure the inclination of rigid objects which the sensors have been fixed to. The most significant results of the tests are illustrated and discussed.

  19. Detecting Gunshots Using Wearable Accelerometers

    PubMed Central

    Loeffler, Charles E.

    2014-01-01

    Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm discharges. PMID:25184416

  20. High G MEMS integrated accelerometer

    SciTech Connect

    Davies, B.R.; Barron, C.C.; Montague, S.; Smith, J.H.; Murray, J.R.; Christenson, T.R.; Bateman, V.I.

    1996-12-31

    This paper describes the design and implementation of a surface micromachined accelerometer for measuring very high levels of acceleration (up to 50,000 G). Both the mechanical and electronic portions of the sensor were integrated on a single substrate using a process developed at Sandia National Laboratories. In this process, the mechanical components of the sensor were first fabricated at the bottom of a trench etched into the water substrate. The trench was then filled with oxide and sealed to protect the mechanical components during subsequent microelectronics processing. The wafer surface was then planarized in preparation for CMOS processing using Chemical Mechanical Polishing (CMP). Next, the CMOS electronics were fabricated on areas of the wafer adjacent to the embedded structures. Finally, the mechanical structures were released and the sensor tested. The mechanical structure of the sensor consisted of two polysilicon plate masses suspended by multiple springs (cantilevered beam structures) over corresponding polysilicon plates fixed to the substrate to form two parallel plate capacitors. The first polysilicon plate mass was suspended using compliant springs (cantilever beams) and acted as a variable capacitor during sensor acceleration. The second polysilicon plate mass was suspended using very stiff springs and acted as a fixed capacitor during acceleration. Acceleration was measured by comparing the capacitance of the variable capacitor (compliant suspension) with the fixed capacitance (stiff suspension).

  1. Accelerometer recorder and display system for ambulatory patients

    NASA Astrophysics Data System (ADS)

    Berka, Martin; Żyliński, Marek; Niewiadomski, Wiktor; Cybulski, Gerard

    2015-09-01

    This paper presents the design of a compact, wearable, rechargeable acceleration recorder to support long-term monitoring of ambulatory patients with motor disorders, and of software to display and analyze its output. The device consists of a microcontroller, operational amplifier, accelerometer, SD card, indicator LED, rechargeable battery, and associated minor components. It can operate for over a day without charging and can continuously collect data for three weeks without downloading to an outside system, as currently configured. With slight modifications, this period could be extended to several months. The accompanying software provides flexible visualization of the acceleration data over long periods, basic file operations and compression for easier archiving, annotation of segments of interest, and functions for calculation of various parameters and detection of immobility and vibration frequencies. Applications in analysis of gait and other movements are discussed.

  2. A study of the use of vibration and stress wave sensing for the detection of bearing failure

    NASA Technical Reports Server (NTRS)

    Ensor, L. C.; Feng, C. C.

    1975-01-01

    Results from an experimental study of vibrations and stress waves emitted from ball bearings are presented. Fatique tests were run with both high quality bearings and man faulted bearings, all of one size. Tests were instrumented with different sensors to detect the noises from 10 Hz to 1 MHz. Frequency spectrum plots are presented. The modulation characteristics of the ultrasonic noises were analyzed, and acoustic emission type measurements were conducted. Results are presented which show that there are usable acoustic signal levels even beyond 500 KHz. These signal levels are modulated by a low frequency carrier which is a function of the stress loading and acoustic transmissibility. The results were correlated to fault size in the bearings. The correlation shows that the sensor used for signals from 100 KHz to 1 MHz gave the best sensitivity and detected the generation of very small spalls or pits.

  3. ISA accelerometer and Moon science

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Peron, Roberto; Santoli, Francesco; Fiorenza, Emiliano; Lefevre, Carlo; Nozzoli, Sergio; Reale, Andrea

    2010-05-01

    In recent years the Moon has become again a target for exploration activities, as shown by many performed, ongoing or foreseen missions. The reason for this new wave are manifold. The knowledge of formation and evolution of the Moon to current state is important in order to trace the overall history of Solar System. An effective driving factor is the possibility of building a human settlement on its surface, with all the related issues of environment characterization, safety, resources, communication and navigation. Our natural satellite is also an important laboratory for fundamental physics: Lunar Laser Ranging is continuing to provide important data that constrain possible theories of gravitation. All these topics are providing stimulus and inspirations for new experiments. ISA (Italian Spring Accelerometer) can provide an important tool for lunar studies. Thanks to its structure (three one-dimensional sensors assembled in a composite structure) it works both in-orbit and on-ground, with the same configuration. It therefore can be used onboard a spacecraft, as a support to a radio science mission, and on the surface of the Moon, as a seismometer. The first option has been explorated in the context of MAGIA (Missione Altimetrica Gravimetrica geochImica lunAre), a proposal for an exploration mission with a noteworthy part dedicated to gravimetry and fundamental physics. The second option is candidate to be hosted on NASA ILN (International Lunar Network) and ESA First Lunar Lander. After a description of the instrument, both of them will be described and discussed, giving emphasis on the integration of the instrument with the other components of the respective experiments.

  4. CHAMP Tracking and Accelerometer Data Analysis Results

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Luthcke, S. B.; Rowlands, D. D.; Pavlis, D. E.; Colombo, O. L.; Ray, Richard D.; Thompson, B.; Nerem, R. S.; Williams, Teresa A.; Smith, David E. (Technical Monitor)

    2002-01-01

    The CHAMP (Challenging Minisatellite Payload) mission's unique combination of sensors and orbit configuration will enable unprecedented improvements in modeling and understanding the Earth's static gravity field and its temporal variations. CHAMP is the first of two missions (GRACE (Gravity Recovery and Climate Experiment) to be launched in the later part of '01) that combine a new generation of GPS (Global Positioning System) receivers, a high precision three axis accelerometer, and star cameras for the precision attitude determination. In order to isolate the gravity signal for science investigations, it is necessary to perform a detailed reduction and analysis of the GPS and SLR tracking data in conjunction with the accelerometer and attitude data. Precision orbit determination based on the GPS and SLR (Satellite Laser Ranging) tracking data will isolate the orbit perturbations, while the accelerometer data will be used to distinguish the surface forces from those due to the geopotential (static, and time varying). In preparation for the CHAMP and GRACE missions, extensive modifications have been made to NASA/GSFC's GEODYN orbit determination software to enable the simultaneous reduction of spacecraft tracking (e.g. GPS and SLR), three axis accelerometer and precise attitude data. Several weeks of CHAMP tracking and accelerometer data have been analyzed and the results will be presented. Precision orbit determination analysis based on tracking data alone in addition to results based on the simultaneous reduction of tracking and accelerometer data will be discussed. Results from a calibration of the accelerometer will be presented along with the results from various orbit determination strategies. Gravity field modeling status and plans will be discussed.

  5. Microgravity accelerometer characterization on Columbia STS-32 mission

    NASA Astrophysics Data System (ADS)

    Schoess, Jeff; Thomas, Don; Dunbar, Bonnie

    1992-05-01

    The Honeywell In-Space Accelerometer (HISA) is a three-axis microgravity accelerometer instrument package recently developed by Honeywell Systems and Research Center (SRC) to monitor oscillatory and transient accelerations onboard spacecraft and spaceborne structures. The HISA was designed to be co-located with materials and life sciences experiments to record real-time accelerometer event data, sampling time, and temperature. The HISA was originally developed to monitor the microgravity disturbances associated with a polymer morphology experiment developed by 3M Company in Minneapolis, Minnesota. The HISA was first flight tested with the 3M experiment on the Space Shuttle Atlantis STS-34 in October 1989. The HISA was successfully flown on a second shuttle mission (Columbia STS-32 in January 1990) in support of the NASA JSC-sponsored Microgravity Disturbances Experiment (MDE), which focused on the effects of microgravity disturbances on the growth of high-quality Indium crystals. The primary objective of the STS-32 MDE experiment was to investigate the effects of crew-induced gravity disturbances on the microstructure (crystal defects and uniformity of impurity distribution) of float-zone-grown crystals. The float-zone technique involves establishing a suspended molten zone between two cylindrical samples a pure, single-crystal sample and an impure, polycrystalline sample. Microgravity disturbances due to crew treadmill activity and orbiter maneuvering system thruster firings were sensed and recorded by the HISA to understand their effects on the stability of the float zone. The principle of operation of the HISA, the flight configuration of the HISA supporting the MDE experiment, and the characterization of STS-32 treadmill disturbance data are summarized.

  6. MEMS capacitive accelerometer-based middle ear microphone.

    PubMed

    Young, Darrin J; Zurcher, Mark A; Semaan, Maroun; Megerian, Cliff A; Ko, Wen H

    2012-12-01

    The design, implementation, and characterization of a microelectromechanical systems (MEMS) capacitive accelerometer-based middle ear microphone are presented in this paper. The microphone is intended for middle ear hearing aids as well as future fully implantable cochlear prosthesis. Human temporal bones acoustic response characterization results are used to derive the accelerometer design requirements. The prototype accelerometer is fabricated in a commercial silicon-on-insulator (SOI) MEMS process. The sensor occupies a sensing area of 1 mm × 1 mm with a chip area of 2 mm × 2.4 mm and is interfaced with a custom-designed low-noise electronic IC chip over a flexible substrate. The packaged sensor unit occupies an area of 2.5 mm × 6.2 mm with a weight of 25 mg. The sensor unit attached to umbo can detect a sound pressure level (SPL) of 60 dB at 500 Hz, 35 dB at 2 kHz, and 57 dB at 8 kHz. An improved sound detection limit of 34-dB SPL at 150 Hz and 24-dB SPL at 500 Hz can be expected by employing start-of-the-art MEMS fabrication technology, which results in an articulation index of approximately 0.76. Further micro/nanofabrication technology advancement is needed to enhance the microphone sensitivity for improved understanding of normal conversational speech.

  7. Microgravity accelerometer characterization on Columbia STS-32 mission

    NASA Technical Reports Server (NTRS)

    Schoess, Jeff; Thomas, Don; Dunbar, Bonnie

    1992-01-01

    The Honeywell In-Space Accelerometer (HISA) is a three-axis microgravity accelerometer instrument package recently developed by Honeywell Systems and Research Center (SRC) to monitor oscillatory and transient accelerations onboard spacecraft and spaceborne structures. The HISA was designed to be co-located with materials and life sciences experiments to record real-time accelerometer event data, sampling time, and temperature. The HISA was originally developed to monitor the microgravity disturbances associated with a polymer morphology experiment developed by 3M Company in Minneapolis, Minnesota. The HISA was first flight tested with the 3M experiment on the Space Shuttle Atlantis STS-34 in October 1989. The HISA was successfully flown on a second shuttle mission (Columbia STS-32 in January 1990) in support of the NASA JSC-sponsored Microgravity Disturbances Experiment (MDE), which focused on the effects of microgravity disturbances on the growth of high-quality Indium crystals. The primary objective of the STS-32 MDE experiment was to investigate the effects of crew-induced gravity disturbances on the microstructure (crystal defects and uniformity of impurity distribution) of float-zone-grown crystals. The float-zone technique involves establishing a suspended molten zone between two cylindrical samples a pure, single-crystal sample and an impure, polycrystalline sample. Microgravity disturbances due to crew treadmill activity and orbiter maneuvering system thruster firings were sensed and recorded by the HISA to understand their effects on the stability of the float zone. The principle of operation of the HISA, the flight configuration of the HISA supporting the MDE experiment, and the characterization of STS-32 treadmill disturbance data are summarized.

  8. Integrated Sensing and Material Damage Identification in Metallic and Ceramic Thermal Protection Systems Using Vibration and Wave Propagation Data

    SciTech Connect

    Sundararaman, S.; White, J.; Jiang, H.; Adams, D.; Jata, K.

    2006-03-06

    Global thermal and impact material damage mechanisms in metallic and ceramic thermal protection systems are detected, located, and quantified using four complementary methods for sensing and data interrogation. First, spatial-temporal beamforming algorithms are used to process active elastic waves measured from remote sensor arrays in two different equilibrium positions of a gamma Ti-Al sheet to localize simulated thermal damage. Damage is located even when it is behind the sensor array and on the edge of the panel; results are shown to be dependent on the equilibrium position considered. Second, an active virtual force method is implemented in a honeycomb Al-Al sandwich panel instrumented with a distributed piezo sensor and actuator array to identify impact and thermal damage using frequency response inversion. Damage is quantified and is similarly diagnosed regardless of the excitation location. Third, passive acoustic transmission measurements through a homogeneous baffled Al panel subject to launch-type sound pressure variations are used to detect and locate material damage. The frequency range with highest transmission is shown to be optimal for damage detection. Fourth, thermal damage in a wrapped ceramic tile with a mock strain isolation pad is identified using active propagating waves. Remote actuation and sensing on the bulkhead and the tile backside are shown to be sufficient for detection even when variability is present in the data.

  9. Microelectromechanical accelerometer with resonance-cancelling control circuit including an idle state

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.; Campbell, David V.

    2001-01-01

    A digital feedback control circuit is disclosed for use in an accelerometer (e.g. a microelectromechanical accelerometer). The digital feedback control circuit, which periodically re-centers a proof mass in response to a sensed acceleration, is based on a sigma-delta (.SIGMA..DELTA.) configuration that includes a notch filter (e.g. a digital switched-capacitor filter) for rejecting signals due to mechanical resonances of the proof mass and further includes a comparator (e.g. a three-level comparator). The comparator generates one of three possible feedback states, with two of the feedback states acting to re-center the proof mass when that is needed, and with a third feedback state being an "idle" state which does not act to move the proof mass when no re-centering is needed. Additionally, the digital feedback control system includes an auto-zero trim capability for calibration of the accelerometer for accurate sensing of acceleration. The digital feedback control circuit can be fabricated using complementary metal-oxide semiconductor (CMOS) technology, bi-CMOS technology or bipolar technology and used in single- and dual-proof-mass accelerometers.

  10. Wearable Goniometer and Accelerometer Sensory Fusion for Knee Joint Angle Measurement in Daily Life.

    PubMed

    Tognetti, Alessandro; Lorussi, Federico; Carbonaro, Nicola; de Rossi, Danilo

    2015-01-01

    Human motion analysis is crucial for a wide range of applications and disciplines. The development and validation of low cost and unobtrusive sensing systems for ambulatory motion detection is still an open issue. Inertial measurement systems and e-textile sensors are emerging as potential technologies for daily life situations. We developed and conducted a preliminary evaluation of an innovative sensing concept that combines e-textiles and tri-axial accelerometers for ambulatory human motion analysis. Our sensory fusion method is based on a Kalman filter technique and combines the outputs of textile electrogoniometers and accelerometers without making any assumptions regarding the initial accelerometer position and orientation. We used our technique to measure the flexion-extension angle of the knee in different motion tasks (monopodalic flexions and walking at different velocities). The estimation technique was benchmarked against a commercial measurement system based on inertial measurement units and performed reliably for all of the various tasks (mean and standard deviation of the root mean square error of 1:96 and 0:96, respectively). In addition, the method showed a notable improvement in angular estimation compared to the estimation derived by the textile goniometer and accelerometer considered separately. In future work, we will extend this method to more complex and multi-degree of freedom joints. PMID:26569249

  11. Wearable Goniometer and Accelerometer Sensory Fusion for Knee Joint Angle Measurement in Daily Life

    PubMed Central

    Tognetti, Alessandro; Lorussi, Federico; Carbonaro, Nicola; de Rossi, Danilo

    2015-01-01

    Human motion analysis is crucial for a wide range of applications and disciplines. The development and validation of low cost and unobtrusive sensing systems for ambulatory motion detection is still an open issue. Inertial measurement systems and e-textile sensors are emerging as potential technologies for daily life situations. We developed and conducted a preliminary evaluation of an innovative sensing concept that combines e-textiles and tri-axial accelerometers for ambulatory human motion analysis. Our sensory fusion method is based on a Kalman filter technique and combines the outputs of textile electrogoniometers and accelerometers without making any assumptions regarding the initial accelerometer position and orientation. We used our technique to measure the flexion-extension angle of the knee in different motion tasks (monopodalic flexions and walking at different velocities). The estimation technique was benchmarked against a commercial measurement system based on inertial measurement units and performed reliably for all of the various tasks (mean and standard deviation of the root mean square error of 1.96 and 0.96∘, respectively). In addition, the method showed a notable improvement in angular estimation compared to the estimation derived by the textile goniometer and accelerometer considered separately. In future work, we will extend this method to more complex and multi-degree of freedom joints. PMID:26569249

  12. Characterizing performance of ultra-sensitive accelerometers

    NASA Technical Reports Server (NTRS)

    Sebesta, Henry

    1990-01-01

    An overview is given of methodology and test results pertaining to the characterization of ultra sensitive accelerometers. Two issues are of primary concern. The terminology ultra sensitive accelerometer is used to imply instruments whose noise floors and resolution are at the state of the art. Hence, the typical approach of verifying an instrument's performance by measuring it with a yet higher quality instrument (or standard) is not practical. Secondly, it is difficult to find or create an environment with sufficiently low background acceleration. The typical laboratory acceleration levels will be at several orders of magnitude above the noise floor of the most sensitive accelerometers. Furthermore, this background must be treated as unknown since the best instrument available is the one to be tested. A test methodology was developed in which two or more like instruments are subjected to the same but unknown background acceleration. Appropriately selected spectral analysis techniques were used to separate the sensors' output spectra into coherent components and incoherent components. The coherent part corresponds to the background acceleration being measured by the sensors being tested. The incoherent part is attributed to sensor noise and data acquisition and processing noise. The method works well for estimating noise floors that are 40 to 50 dB below the motion applied to the test accelerometers. The accelerometers being tested are intended for use as feedback sensors in a system to actively stabilize an inertial guidance component test platform.

  13. Optimization of Sensing and Feedback Control for Vibration/Flutter of Rotating Disk by PZT Actuators via Air Coupled Pressure

    PubMed Central

    Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing

    2011-01-01

    In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations. PMID:22163788

  14. Optimization of sensing and feedback control for vibration/flutter of rotating disk by PZT actuators via air coupled pressure.

    PubMed

    Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing

    2011-01-01

    In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin's discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.

  15. Airbag accelerometer with a simple switched-capacitor readout ASIC

    NASA Astrophysics Data System (ADS)

    Tsugai, Masahiro; Hirata, Yoshiaki; Tanimoto, Koji; Usami, Teruo; Araki, Toru; Otani, Hiroshi

    1997-09-01

    A bulk micromachined capacitive accelerometer for airbag applications based on (110) silicon anisotropic KOH etching is presented. The sensor is a two-chip accelerometer that consists of a glass-silicon-glass stacked sense element and an interface ASIC containing an impedance converter for capacitance detection, an EPROM and DACs for digital trimming, and a self-test feature for diagnosis. A simple switched-capacitor readout circuit with DC offset error cancellation scheme is proposed as the impedance converter. The dependence of narrow gap etching, surface roughness, and uniformity of the groove depth on the KOH concentration are also investigated for the fabrication of the device, and it is shown that the etch rate of the plane intrinsically controls the depth of the narrow gap with a KOH concentration of over 30 wt. percent, and smooth surface and uniformity of groove depth are obtained at 40 wt. percent KOH. The nonlinearity of the output is about 1.5 percent FS. The temperature coefficient of sensitivity and the off-axis sensitivity are 150 ppm/degree C and 2 percent respectively. The dimensions of the sensor are 10.3 X 10.3 X 3 mm.

  16. Shock margin testing of a one-axis MEMS accelerometer.

    SciTech Connect

    Parson, Ted Blair; Tanner, Danelle Mary; Buchheit, Thomas Edward

    2008-07-01

    Shock testing was performed on a selected commercial-off-the-shelf - MicroElectroMechanical System (COTS-MEMS) accelerometer to determine the margin between the published absolute maximum rating for shock and the 'measured' level where failures are observed. The purpose of this testing is to provide baseline data for isolating failure mechanisms under shock and environmental loading in a representative device used or under consideration for use within systems and assemblies of the DOD/DOE weapons complex. The specific device chosen for this study was the AD22280 model of the ADXL78 MEMS Accelerometer manufactured by Analog Devices Inc. This study focuses only on the shock loading response of the device and provides the necessary data for adding influence of environmental exposure to the reliability of this class of devices. The published absolute maximum rating for acceleration in any axis was 4000 G for this device powered or unpowered. Results from this study showed first failures at 8000 G indicating a margin of error of two. Higher shock level testing indicated that an in-plane, but off-axis acceleration was more damaging than one in the sense direction.

  17. Compressive power spectrum sensing for vibration-based output-only system identification of structural systems in the presence of noise

    NASA Astrophysics Data System (ADS)

    Tau Siesakul, Bamrung; Gkoktsi, Kyriaki; Giaralis, Agathoklis

    2015-05-01

    Motivated by the need to reduce monetary and energy consumption costs of wireless sensor networks in undertaking output-only/operational modal analysis of engineering structures, this paper considers a multi-coset analog-toinformation converter for structural system identification from acceleration response signals of white noise excited linear damped structures sampled at sub-Nyquist rates. The underlying natural frequencies, peak gains in the frequency domain, and critical damping ratios of the vibrating structures are estimated directly from the sub-Nyquist measurements and, therefore, the computationally demanding signal reconstruction step is by-passed. This is accomplished by first employing a power spectrum blind sampling (PSBS) technique for multi-band wide sense stationary stochastic processes in conjunction with deterministic non-uniform multi-coset sampling patterns derived from solving a weighted least square optimization problem. Next, modal properties are derived by the standard frequency domain peak picking algorithm. Special attention is focused on assessing the potential of the adopted PSBS technique, which poses no sparsity requirements to the sensed signals, to derive accurate estimates of modal structural system properties from noisy sub- Nyquist measurements. To this aim, sub-Nyquist sampled acceleration response signals corrupted by various levels of additive white noise pertaining to a benchmark space truss structure with closely spaced natural frequencies are obtained within an efficient Monte Carlo simulation-based framework. Accurate estimates of natural frequencies and reasonable estimates of local peak spectral ordinates and critical damping ratios are derived from measurements sampled at about 70% below the Nyquist rate and for SNR as low as 0db demonstrating that the adopted approach enjoys noise immunity.

  18. Designing Electrostatic Accelerometers for Next Gravity Missions

    NASA Astrophysics Data System (ADS)

    Huynh, Phuong-Anh; Foulon, Bernard; Christophe, Bruno; Liorzou, Françoise; Boulanger, Damien; Lebat, Vincent

    2016-04-01

    Square cuboid electrostatic accelerometers sensor core have been used in various combinations in recent and still flying missions (CHAMP, GRACE, GOCE). ONERA is now in the process of delivering such accelerometers for the GRACE Follow-On mission. The goal is to demonstrate the performance benefits of an interferometry laser ranging method for future low-low satellite to satellite missions. The electrostatic accelerometer becoming thus the system main performance limiter, we propose for future missions a new symmetry which will allow for three ultrasensitive axes instead of two. This implies no performance ground testing, as the now cubic proof-mass will be too heavy, but only free fall tests in catapult mode, taking advantage of the additional microgravity testing time offered by the updated ZARM tower. The updated mission will be in better adequacy with the requirements of a next generation of smaller and drag compensated micro-satellites. In addition to the measurement of the surface forces exerted on the spacecraft by the atmospheric drag and by radiation pressures, the accelerometer will become a major part of the attitude and orbit control system by acting as drag free sensor and by accurately measuring the angular accelerations. ONERA also works on a hybridization of the electrostatic accelerometer with an atomic interferometer to take advantage of the absolute nature of the atomic interferometer acceleration measurement and its great accuracy in the [5-100] mHz bandwidth. After a description of the improvement of the GRACE-FO accelerometer with respect to the still in-orbit previous models and a status of its development, the presentation will describe the new cubic configuration and how its operations and performances can be verified in the Bremen drop tower.

  19. Passive Accelerometer System Measurements on MIR

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1997-01-01

    The Passive Accelerometer System (PAS) is a simple moving ball accelerometer capable of measuring the small magnitude steady relative acceleration that occurs in a low earth orbit spacecraft due to atmospheric drag and the earth's gravity gradient. The acceleration is measured by recording the average velocity of the spherical ball over a suitable time increment. A modified form of Stokes law is used to convert the average velocity into an acceleration. PAS was used to measure acceleration on the MIR space station and on the first United States Microgravity Laboratory (USML-1). The PAS measurement on MIR revealed remarkably low acceleration levels in the SPEKTR module.

  20. Low cost subpixel method for vibration measurement

    NASA Astrophysics Data System (ADS)

    Ferrer, Belen; Espinosa, Julian; Roig, Ana B.; Perez, Jorge; Acevedo, Pablo; Mas, David

    2014-05-01

    Traditional vibration measurement methods are based on devices that acquire local data by direct contact (accelerometers, GPS) or by laser beams (Doppler vibrometers). Our proposal uses video processing to obtain the vibration frequency directly from the scene, without the need of auxiliary targets or devices. Our video-vibrometer can obtain the vibration frequency at any point in the scene and can be implemented with low-cost devices, such as commercial cameras. Here we present the underlying theory and some experiments that support our technique.

  1. Low cost subpixel method for vibration measurement

    SciTech Connect

    Ferrer, Belen; Espinosa, Julian; Perez, Jorge; Acevedo, Pablo; Mas, David; Roig, Ana B.

    2014-05-27

    Traditional vibration measurement methods are based on devices that acquire local data by direct contact (accelerometers, GPS) or by laser beams (Doppler vibrometers). Our proposal uses video processing to obtain the vibration frequency directly from the scene, without the need of auxiliary targets or devices. Our video-vibrometer can obtain the vibration frequency at any point in the scene and can be implemented with low-cost devices, such as commercial cameras. Here we present the underlying theory and some experiments that support our technique.

  2. Minimizing cross-axis sensitivity in grating-based optomechanical accelerometers.

    PubMed

    Lu, Qianbo; Wang, Chen; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan; Yang, Guoguang; Liu, Dong; Yang, Yongying

    2016-04-18

    Cross-axis sensitivity of single-axis optomechanical accelerometers, mainly caused by the asymmetric structural design, is an essential issue primarily for high performance applications, which has not been systematically researched. This paper investigates the generating mechanism and detrimental effects of the cross-axis sensitivity of a high resoluion single-axis optomechanical accelerometer, which is composed of a grating-based cavity and an acceleration sensing chip consisting of four crab-shaped cantilevers and a proof mass. The modified design has been proposed and a prototype setup has been built based on the model of cross-axis sensitivity in optomechanical accelerometers. The characterization of the cross-axis sensitivity of a specific optomechanical accelerometer is quantitatively discussed for both mechanical and optical components by numerical simulation and theoretical analysis in this work. The analysis indicates that the cross-axis sensitivity decreases the contrast ratio of the interference signal and the acceleration sensitivity, as well as giving rise to an additional optical path difference, which would impact the accuracy of the accelerometer. The improved mechanical design is achieved by double side etching on a specific double-substrate-layer silicon-on-insulator (SOI) wafer to move the center of the proof mass to the support plane. The experimental results demonstrate that the modified design with highly symmetrical structure can suppress the cross-axis sensitivity significantly without compromising the sensitivity and resolution. The cross-axis sensitivity defined by the contrast ratio of the output signal drops to 2.19% /0.1g from 28.28%/0.1g under the premise that the acceleration sensitivity of this single-axis optomechanical accelerometer remains 1162.45V/g and the resolution remains 1.325μg. PMID:27137337

  3. A Self-Diagnostic System for the M6 Accelerometer

    NASA Technical Reports Server (NTRS)

    Flanagan, Patrick M.; Lekki, John

    2001-01-01

    The design of a Self-Diagnostic (SD) accelerometer system for the Space Shuttle Main Engine is presented. This retrofit system connects diagnostic electronic hardware and software to the current M6 accelerometer system. This paper discusses the general operation of the M6 accelerometer SD system and procedures for developing and evaluating the SD system. Signal processing techniques using M6 accelerometer diagnostic data are explained. Test results include diagnostic data responding to changing ambient temperature, mounting torque and base mounting impedance.

  4. Analysis of the data from a distributed set of accelerometers, for reconstruction of set geometry and its rigid body motion

    SciTech Connect

    Vreeburg, J. P. B.

    1999-01-22

    The paper reports on a current line of research in accelerometry. Two subjects are addressed: the reconstruction of the location and attitude of a linear, or uni-axial, accelerometer from its output under a known motion, and the reconstruction of the acceleration field constituent vectors from the combined output of a known arrangement of linear accelerometers. The arrangement can be arbitrary and, consequently, does not require precision mounting. The component of the acceleration along the sensitive direction gives the ideal output of the accelerometer. When the motion that induces the acceleration is known, a set of five ideal measurement data may suffice to recover the location and attitude of the accelerometer. The formulas for this calculation are given. Their use is illustrated by simulation of an accelerometer and its output. The effects of errors are shown; noisy data are much less detrimental to the reconstruction calculations than systematic errors in the known motion. If the geometry of a set of accelerometers is known, their output can be combined for the reconstruction of the linear and angular motion components that induce the acceleration. Conventionally this is achieved by elimination of the contribution of the angular rate of the geometry to the acceleration field. Only special arrangements of accelerometers, discussed in the literature, allow elimination by elementary operations. A method, thought to be new, is presented for the elimination of the linear and angular acceleration contributions to the field sensed by an arbitrary arrangement of accelerometers, and the consequent recovery of the angular rate vector from the reduced data set. Particular difficulties are encountered in this process but it has been shown that successful reconstruction is possible when a redundant set of data is available. Various options are suggested for further analysis, with the goal to determine the minimum arrangement, identify system errors or improve data

  5. Dual Accelerometer Usage Strategy for Onboard Space Navigation

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; D'Souza, Chris

    2012-01-01

    This work introduces a dual accelerometer usage strategy for onboard space navigation. In the proposed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it is used to estimate its errors otherwise. Numerical examples and comparison to other accelerometer usage schemes are presented to validate the proposed approach.

  6. Assessment of Differing Definitions of Accelerometer Nonwear Time

    ERIC Educational Resources Information Center

    Evenson, Kelly R.; Terry, James W., Jr.

    2009-01-01

    Measuring physical activity with objective tools, such as accelerometers, is becoming more common. Accelerometers measure acceleration multiple times within a given frequency and summarize this as a count over a pre-specified time period or epoch. The resultant count represents acceleration over the epoch length. Accelerometers eliminate biases…

  7. Low-Cost Accelerometers for Physics Experiments

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Straulino, Samuele

    2007-01-01

    The implementation of a modern game-console controller as a data acquisition interface for physics experiments is discussed. The investigated controller is equipped with three perpendicular accelerometers and a built-in infrared camera to evaluate its own relative position. A pendulum experiment is realized as a demonstration of the proposed…

  8. Smartphone MEMS accelerometers and earthquake early warning

    NASA Astrophysics Data System (ADS)

    Kong, Q.; Allen, R. M.; Schreier, L.; Kwon, Y. W.

    2015-12-01

    The low cost MEMS accelerometers in the smartphones are attracting more and more attentions from the science community due to the vast number and potential applications in various areas. We are using the accelerometers inside the smartphones to detect the earthquakes. We did shake table tests to show these accelerometers are also suitable to record large shakings caused by earthquakes. We developed an android app - MyShake, which can even distinguish earthquake movements from daily human activities from the recordings recorded by the accelerometers in personal smartphones and upload trigger information/waveform to our server for further analysis. The data from these smartphones forms a unique datasets for seismological applications, such as earthquake early warning. In this talk I will layout the method we used to recognize earthquake-like movement from single smartphone, and the overview of the whole system that harness the information from a network of smartphones for rapid earthquake detection. This type of system can be easily deployed and scaled up around the global and provides additional insights of the earthquake hazards.

  9. Intermonitor variability of GT3X accelerometer.

    PubMed

    Santos-Lozano, A; Torres-Luque, G; Marín, P J; Ruiz, J R; Lucia, A; Garatachea, N

    2012-12-01

    The main purpose of this study was to assess the inter-monitor reliability of the tri-axial GT3X Actigraph accelerometer over a range of physical activities (PA). This device collects motion data on each of the vertical (Y), horizontal right-left (X), and horizontal front-back (Z) axes and also calculates the vector summed value √X(2)+Y(2)+Z(2) known as 'vector magnitude' (VM). 8 GT3X accelerometers were worn at the same time by the same participant. Accelerometers were placed back-to-front, all facing forward and in sets of 4 securely taped together, attached to a belt and allocating each block above either left or right hip at waist level. Inter-monitor reliability was assessed during 6 conditions: rest, walking (4 and 6 km·h(-1)), running (8 and 10 km·h(-1)) and repeated sit-to-stand (40 times·min(-1)). The intra-class correlation coefficients were high for X, Y and Z axes (i.e., all ≥ 0.925) and for VM (≥ 0.946). In conclusion, we found good inter-instrument reliability of the GT3X accelerometer across all planes, yet our results also suggest that the X and Z axes do not provide further benefits over the 'traditional' Y-axis to assess the movement in typical PA.

  10. Micro-Accelerometers Monitor Equipment Health

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Glenn Research Center awarded SBIR funding to Ann Arbor, Michigan-based Evigia Systems to develop a miniaturized accelerometer to account for gravitational effects in space experiments. The company has gone on to implement the technology in its suite of prognostic sensors, which are used to monitor the integrity of industrial machinery. As a result, five employees have been hired.

  11. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test

  12. Transmissive grating-reflective mirror-based fiber optic accelerometer for stable signal acquisition in industrial applications

    NASA Astrophysics Data System (ADS)

    Lee, Yeon-Gwan; Kim, Dae-Hyun; Kim, Chun-Gon

    2012-05-01

    This paper discusses an applicable fiber-optic accelerometer composed of a transmissive grating panel, a reflection mirror, and two optical fibers with a separation of quarter grating pitch as transceivers that monitor the low-frequency accelerations of civil engineering structures. This sensor structure brings together the advantages of both a simple sensor structure, which leads to simplified cable design by 50% in comparison with the conventional transmission-type fiber optic accelerometer, and a stable reflected signals acquisition with repeatability in comparison to the researched grating-reflection type fiber optic accelerometer. The vibrating displacement and sinusoidal acceleration measured from the proposed fiber optic sensor demonstrated good agreement with those of a commercial laser displacement sensor and a MEMS accelerometer without electromagnetic interference. The developed fiber optic accelerometer can be used in frequency ranges below 4.0 Hz with a margin of error that is less than 5% and a high sensitivity of 5.06 rad/(m/s)2.

  13. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Lebat, V.; Foulon, B.; Christophe, B.

    2013-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation, and reached by a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure the launch vibrations and the thermal environment at

  14. A novel sensing method of fault in moving machine

    NASA Astrophysics Data System (ADS)

    Seo, Dae-Hoon; Jeon, Jong-Hoon; Kim, Yang-Hann

    2014-03-01

    Fault in rotating parts of a machine such as bearings and gears often causes periodic impulses and they are transmitted to adjacent parts while it is moving with a constant speed. It has been an issue, therefore, to find a best means that can tell us the existence of periodic impulse and the period as early as possible. Previous researches mainly use accelerometers since it can easily measure the vibration due to impulse. They normally require considerable measurement time and inconvenience, especially if we have to use them for many different machines. This is straightforward consequence because the sensor is to be removed from and attached to the machine elements as many time as required. This paper proposes a novel method to sense the periodic impulse of moving machinery, by using a non-contact sensor such as a microphone. The method uses the periodic impulsive sound radiated by the fault instead of the impulsive vibration. It is not only more convenient than using the accelerometers, but it can also promptly test a lot of machines; they only have to pass by the microphone during the measurement. However, because the machine under test is moving, the measured impulsive signal is not periodic due to Doppler effect. This makes it difficult to estimate the period of impulses as well as to find the existence of fault. In order to solve this, we firstly model and analyze the characteristics of the moving periodic impulsive sound. Based on this, a method to sense the existence of fault is introduced by utilizing characteristics of moving periodic impulsive sound. The performance is tested by theory and simulation with respect to the signal to noise ratio.

  15. Vibration manual

    NASA Technical Reports Server (NTRS)

    Green, C.

    1971-01-01

    Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.

  16. High performance, accelerometer-based control of the Mini-MAST structure at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.

    1991-01-01

    Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optimal Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.

  17. High performance, accelerometer-based control of the Mini-MAST structure

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; King, James A.; Phillips, Douglas J.; Hyland, David C.

    1992-01-01

    Many large space system concepts will require active vibration control to satisfy critical performance requirements such as line of sight pointing accuracy and constraints on rms surface roughness. In order for these concepts to become operational, it is imperative that the benefits of active vibration control be shown to be practical in ground based experiments. The results of an experiment shows the successful application of the Maximum Entropy/Optical Projection control design methodology to active vibration control for a flexible structure. The testbed is the Mini-Mast structure at NASA-Langley and has features dynamically traceable to future space systems. To maximize traceability to real flight systems, the controllers were designed and implemented using sensors (four accelerometers and one rate gyro) that are actually mounted to the structure. Ground mounted displacement sensors that could greatly ease the control design task were available but were used only for performance evaluation. The use of the accelerometers increased the potential of destabilizing the system due to spillover effects and motivated the use of precompensation strategy to achieve sufficient compensator roll-off.

  18. The Use of Accelerometers and Gyroscopes to Estimate Hip and Knee Angles on Gait Analysis

    PubMed Central

    Alonge, Francesco; Cucco, Elisa; D'Ippolito, Filippo; Pulizzotto, Alessio

    2014-01-01

    In this paper the performance of a sensor system, which has been developed to estimate hip and knee angles and the beginning of the gait phase, have been investigated. The sensor system consists of accelerometers and gyroscopes. A new algorithm was developed in order to avoid the error accumulation due to the gyroscopes drift and vibrations due to the ground contact at the beginning of the stance phase. The proposed algorithm have been tested and compared to some existing algorithms on over-ground walking trials with a commercial device for assisted gait. The results have shown the good accuracy of the angles estimation, also in high angle rate movement. PMID:24828578

  19. MGRA: Motion Gesture Recognition via Accelerometer

    PubMed Central

    Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen

    2016-01-01

    Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods. PMID:27089336

  20. Characterization of accelerometer mountings in shock environments

    SciTech Connect

    Boatman, V.I.; Solomon, O.M. Jr.

    1986-08-01

    This report describes the shock test characterization of four accelerometer mounting techniques which are: adiprene and wax, polysulfide rubber and wax, restrained adiprene, and hard mount. The mountings have all been used in field tests, and the shock testing provides some simulation of the field test environments. The characteristics of these mountings are analyzed in the time-domain and in the frequency-domain and are compared to the response of a reference accelerometer at two different shock levels, approximately 2 kg and 7 kg. While soft mounting techniques can be used to guarantee acceleratometers survival in severe mechanical environments, this report documents the tested mounting materials to be highly nonlinear. These nonlinearities result in significant data distortion at frequencies above a few hundred hertz.

  1. Multi-Axis Accelerometer Calibration System

    NASA Technical Reports Server (NTRS)

    Finley, Tom; Parker, Peter

    2010-01-01

    A low-cost, portable, and simplified system has been developed that is suitable for in-situ calibration and/or evaluation of multi-axis inertial measurement instruments. This system overcomes facility restrictions and maintains or improves the calibration quality for users of accelerometer-based instruments with applications in avionics, experimental wind tunnel research, and force balance calibration applications. The apparatus quickly and easily positions a multi-axis accelerometer system into a precisely known orientation suitable for in-situ quality checks and calibration. In addition, the system incorporates powerful and sophisticated statistical methods, known as response surface methodology and statistical quality control. These methods improve calibration quality, reduce calibration time, and allow for increased calibration frequency, which enables the monitoring of instrument stability over time.

  2. MGRA: Motion Gesture Recognition via Accelerometer.

    PubMed

    Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen

    2016-01-01

    Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods. PMID:27089336

  3. Accurate Telescope Mount Positioning with MEMS Accelerometers

    NASA Astrophysics Data System (ADS)

    Mészáros, L.; Jaskó, A.; Pál, A.; Csépány, G.

    2014-08-01

    This paper describes the advantages and challenges of applying microelectromechanical accelerometer systems (MEMS accelerometers) in order to attain precise, accurate, and stateless positioning of telescope mounts. This provides a completely independent method from other forms of electronic, optical, mechanical or magnetic feedback or real-time astrometry. Our goal is to reach the subarcminute range which is considerably smaller than the field-of-view of conventional imaging telescope systems. Here we present how this subarcminute accuracy can be achieved with very cheap MEMS sensors and we also detail how our procedures can be extended in order to attain even finer measurements. In addition, our paper discusses how can a complete system design be implemented in order to be a part of a telescope control system.

  4. The GRADIO accelerometer - Design and development status

    NASA Astrophysics Data System (ADS)

    Bernard, A.; Touboul, P.

    The concept of Satellite Gravity Gradiometry based on differential microaccelerometry has been proposed by ONERA in the early eighties. Since 1986, an important effort is devoted to the development of the GRADIO accelerometers. Their configuration has been optimized for the ARISTOTELES mission with the objective of 0.01 Eotvos resolution for an integrating time of 4 s. The achieved resolution, better than 10 exp -9 G, is limited by the actual stability of alignments on the testing equipment.

  5. High performance MEMS accelerometers for concrete SHM applications and comparison with COTS accelerometers

    NASA Astrophysics Data System (ADS)

    Kavitha, S.; Joseph Daniel, R.; Sumangala, K.

    2016-01-01

    Accelerometers used for civil and huge mechanical structural health monitoring intend to measure the shift in the natural frequency of the monitored structures (<100 Hz) and such sensors should have large sensitivity and extremely low noise floor. Sensitivity of accelerometers is inversely proportional to the frequency squared. Commercial MEMS (Micro Electro-Mechanical System) accelerometers that are generally designed for large bandwidth (e.g 25 kHz in ADXL150) have poor sensor level sensitivity and therefore uses complex signal conditioning electronics to achieve large sensitivity and low noise floor which in turn results in higher cost. In this work, an attempt has been made to design MEMS capacitive and piezoresistive accelerometers for smaller bandwidth using IntelliSuite and CoventorWare MEMS tools respectively. The various performance metrics have been obtained using simulation experiments and the results show that these sensors have excellent voltage sensitivity, noise performance and high resolution at sensor level and are even superior to commercial MEMS accelerometers.

  6. Vibration characteristics of OH-58A helicopter main rotor transmission

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Coy, John J.

    1987-01-01

    Experimental vibration tests covering a range of torque and speed conditions were performed on the OH-58A helicopter main rotor transmission at the NASA Lewis Research Center. Signals from accelerometers located on the transmission housing were analyzed by using Fourier spectra, power spectral density functions, and averaging techniques. Most peaks of the Fourier spectra occurred at the spiral bevel and planetary gear mesh harmonics. The highest level of vibration occurred at the spiral bevel meshing frequency. Transmission speed and vibration measurement location had a significant effect on measured vibration; transmission torque and measurement direction had a small effect.

  7. Accelerometer Data Analysis and Presentation Techniques

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; Moskowitz, Milton E.; Reckart, Timothy

    1997-01-01

    The NASA Lewis Research Center's Principal Investigator Microgravity Services project analyzes Orbital Acceleration Research Experiment and Space Acceleration Measurement System data for principal investigators of microgravity experiments. Principal investigators need a thorough understanding of data analysis techniques so that they can request appropriate analyses to best interpret accelerometer data. Accelerometer data sampling and filtering is introduced along with the related topics of resolution and aliasing. Specific information about the Orbital Acceleration Research Experiment and Space Acceleration Measurement System data sampling and filtering is given. Time domain data analysis techniques are discussed and example environment interpretations are made using plots of acceleration versus time, interval average acceleration versus time, interval root-mean-square acceleration versus time, trimmean acceleration versus time, quasi-steady three dimensional histograms, and prediction of quasi-steady levels at different locations. An introduction to Fourier transform theory and windowing is provided along with specific analysis techniques and data interpretations. The frequency domain analyses discussed are power spectral density versus frequency, cumulative root-mean-square acceleration versus frequency, root-mean-square acceleration versus frequency, one-third octave band root-mean-square acceleration versus frequency, and power spectral density versus frequency versus time (spectrogram). Instructions for accessing NASA Lewis Research Center accelerometer data and related information using the internet are provided.

  8. NASA Ultra-Sensitive Miniature Accelerometer

    NASA Technical Reports Server (NTRS)

    Zavracky, Paul M.; Hartley, Frank T.

    1994-01-01

    Using micro-machined silicon technology, an ultra-sensitive miniature acce.,rometer can be constructed which meets the requirements for microgravity experiments in the space environment.Such an accelerometer will have a full scale sensitivity of 1C2 g a resolution of lC8 g, low cross axis sensitivity, and low temperature sensitivity. Mass of the device is approximately five grams and its footprint is 2 cm x 2 cm. Innovative features of the accelerometer, which are patented, are: electrostatic caging to withstand handling shock up to 150 g, in-situ calibration, in situ performance characterization, and both static and dynamic compensation. The transducer operates on a force balance principle wherein the displacement of the proof mass is monitored by measuring tunneling electron current flow between a conductive tip, and a fixed platen. The four major parts of the accelerometer are tip die, incorporating the tunneling tip and four field plates for controlling pitch and roll of the proof mass; two proof mass dies, attached to the surrounding frame by sets of four leg" springs; and a force plate die. The four parts are fuse-bonded into a complete assembly. External electrical connections are made at bond pads on the front surface of the force plate die. Materials and processes used in the construction of the transducer are compatible with volume production.

  9. MEMS accelerometers in accurate mount positioning systems

    NASA Astrophysics Data System (ADS)

    Mészáros, László; Pál, András.; Jaskó, Attila

    2014-07-01

    In order to attain precise, accurate and stateless positioning of telescope mounts we apply microelectromechanical accelerometer systems (also known as MEMS accelerometers). In common practice, feedback from the mount position is provided by electronic, optical or magneto-mechanical systems or via real-time astrometric solution based on the acquired images. Hence, MEMS-based systems are completely independent from these mechanisms. Our goal is to investigate the advantages and challenges of applying such devices and to reach the sub-arcminute range { that is well smaller than the field-of-view of conventional imaging telescope systems. We present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors. Basically, these sensors yield raw output within an accuracy of a few degrees. We show what kind of calibration procedures could exploit spherical and cylindrical constraints between accelerometer output channels in order to achieve the previously mentioned accuracy level. We also demonstrate how can our implementation be inserted in a telescope control system. Although this attainable precision is less than both the resolution of telescope mount drive mechanics and the accuracy of astrometric solutions, the independent nature of attitude determination could significantly increase the reliability of autonomous or remotely operated astronomical observations.

  10. Experiment Study on Fuzzy Vibration Control of Solar Panel

    NASA Astrophysics Data System (ADS)

    Li, Dongxu X.; Xu, Rui; Jiang, Jiangjian P.

    Some flexible appendages of spacecraft are cantilever plate structures, such as solar panels. These structures usually have very low damping ratios, high dimensional order, low modal frequencies and parameter uncertainties in dynamics. Their unwanted vibrations will be caused unavoidably, and harmful to the spacecraft. To solve this problem, the dynamic equations of the solar panel with piezoelectric patches are derived, and an accelerometer based fuzzy controller is designed. In order to verify the effectiveness of the vibration control algorithms, experiment research was conducted on a piezoelectric adaptive composite honeycomb cantilever panel. The experiment results demonstrate that the accelerometer-based fuzzy vibration control method can suppress the vibration of the solar panel effectively, the first bending mode damping ratio of the controlled system increase to 1.64%, and that is 3.56 times of the uncontrolled system.

  11. Automatic compensation for the errors of a gyroscopic linear integrating accelerometer

    SciTech Connect

    Bezvesil`naya, E.N.

    1995-10-01

    The method of least squares and the Kalman filter are the basis for developing algorithms and studying the errors of estimation of the state of a gyroscopic linear integrating accelerometer with digital processing of the data. The article considers the development of algorithms for self-compensation of the errors of a gyroscopic linear integrating accelerometer (GLIA). One of the promising applications of a gyroscopic linear integrating accelerometer is its use as a sensing element for an aviration gravimetric system. At the same time, a GLIA has errors due to nonlinear distortions of the path of the sensing element or gyroscope, the nonzero damping factor of precessional oscillations due to viscous friction moments acting frequency of the precessional oscillations used in the estimation algorithms and the frequency of the precessional oscillations of the gyroscope, and the disturbances that affect the law of motion of the gyroscope. These errors may have an unacceptably large effect (roughly 0.5 g) if not taken into account. The goal here, therefore, is to obtain an algorithm of automatic compensation for the indicated errors. Such a problem has not hitherto been formulated and solved in the theory and practice of gravimetric measurements.

  12. Lumped parameter analytic modeling and behavioral simulation of a 3-DOF MEMS gyro-accelerometer

    NASA Astrophysics Data System (ADS)

    Verma, Payal; Arya, Sandeep K.; Gopal, Ram

    2015-12-01

    A new analytical model of a 3-degree-of-freedom (3-DOF) gyro-accelerometer system consisting of a 1-DOF drive and 2-DOF sense modes is presented. The model constructs lumped differential equations associated with each DOF of the system by vector analysis. The coupled differential equations thus established are solved analytically for their responses in both the time and frequency domains. Considering these frequency response equations, novel device design concepts are derived by forcing the sense phase to zero, which leads to a certain relationship between the structural frequencies, thereby causing minimization of the damping effect on the performance of the system. Furthermore, the feasibility of the present gyro-accelerometer structure is studied using a unique discriminatory scheme for the detection of both gyro action and linear acceleration at their events. This scheme combines the formulated settled transient solution of the gyro-accelerometer with the processes of synchronous demodulation and filtration, which leads to the in-phase and quadrature components of the system's output signal. These two components can be utilized in the detection of angular motion and linear acceleration. The obtained analytical results are validated by simulation in a MATLAB/Simulink environment, and it is found that the results are in excellent agreement with each other.

  13. A novel quasi-digital detection method of micro differential capacitance in micro-accelerometers

    NASA Astrophysics Data System (ADS)

    Song, Xing; Fang, Jiancheng; Yi, Ranran; Sheng, Wei

    2008-10-01

    This paper proposed a novel method of sensing the weak differential capacitance change of Micro-Electro-Mechanical Systems (MEMS) accelerometer with sandwich structure. The detection circuit mainly consisted of frequency selective networks, Phase Locked Loop (PLL), logical gate and low-pass filter. The two elemental capacitances of differential capacitance respectively harmonic oscillated in two parameter symmetry resonance units. Beating wave represented when the two output signals with different frequency had passed the logical gate and low-pass filter in turn. The frequency of beating wave was proportional to the sensing differential capacitance. One of the most important aspects of using circuit resonance elements with MEMS technology was the elimination of analog voltage amplitude measurement used in conventional MEMS accelerometers. On the other hand, this method overcame the disadvantages of conventional mechanical resonance accelerometers, with frequency output and high Signal Noise Ratio (SNR), such as poor dynamic response, temperature drift, complex structure and large power dissipation. According to the numerical simulation results, the circuit resonance detector with PLL can reach high capacitance resolution: 10-16 F.

  14. Tissue vibration in prolonged running.

    PubMed

    Friesenbichler, Bernd; Stirling, Lisa M; Federolf, Peter; Nigg, Benno M

    2011-01-01

    The impact force in heel-toe running initiates vibrations of soft-tissue compartments of the leg that are heavily dampened by muscle activity. This study investigated if the damping and frequency of these soft-tissue vibrations are affected by fatigue, which was categorized by the time into an exhaustive exercise. The hypotheses were tested that (H1) the vibration intensity of the triceps surae increases with increasing fatigue and (H2) the vibration frequency of the triceps surae decreases with increasing fatigue. Tissue vibrations of the triceps surae were measured with tri-axial accelerometers in 10 subjects during a run towards exhaustion. The frequency content was quantified with power spectra and wavelet analysis. Maxima of local vibration intensities were compared between the non-fatigued and fatigued states of all subjects. In axial (i.e. parallel to the tibia) and medio-lateral direction, most local maxima increased with fatigue (supporting the first hypothesis). In anterior-posterior direction no systematic changes were found. Vibration frequency was minimally affected by fatigue and frequency changes did not occur systematically, which requires the rejection of the second hypothesis. Relative to heel-strike, the maximum vibration intensity occurred significantly later in the fatigued condition in all three directions. With fatigue, the soft tissue of the triceps surae oscillated for an extended duration at increased vibration magnitudes, possibly due to the effects of fatigue on type II muscle fibers. Thus, the protective mechanism of muscle tuning seems to be reduced in a fatigued muscle and the risk of potential harm to the tissue may increase. PMID:20846656

  15. Using accelerometers to determine the calling behavior of tagged baleen whales.

    PubMed

    Goldbogen, J A; Stimpert, A K; DeRuiter, S L; Calambokidis, J; Friedlaender, A S; Schorr, G S; Moretti, D J; Tyack, P L; Southall, B L

    2014-07-15

    Low-frequency acoustic signals generated by baleen whales can propagate over vast distances, making the assignment of calls to specific individuals problematic. Here, we report the novel use of acoustic recording tags equipped with high-resolution accelerometers to detect vibrations from the surface of two tagged fin whales that directly match the timing of recorded acoustic signals. A tag deployed on a buoy in the vicinity of calling fin whales and a recording from a tag that had just fallen off a whale were able to detect calls acoustically but did not record corresponding accelerometer signals that were measured on calling individuals. Across the hundreds of calls measured on two tagged fin whales, the accelerometer response was generally anisotropic across all three axes, appeared to depend on tag placement and increased with the level of received sound. These data demonstrate that high-sample rate accelerometry can provide important insights into the acoustic behavior of baleen whales that communicate at low frequencies. This method helps identify vocalizing whales, which in turn enables the quantification of call rates, a fundamental component of models used to estimate baleen whale abundance and distribution from passive acoustic monitoring.

  16. Using accelerometers to determine the calling behavior of tagged baleen whales.

    PubMed

    Goldbogen, J A; Stimpert, A K; DeRuiter, S L; Calambokidis, J; Friedlaender, A S; Schorr, G S; Moretti, D J; Tyack, P L; Southall, B L

    2014-07-15

    Low-frequency acoustic signals generated by baleen whales can propagate over vast distances, making the assignment of calls to specific individuals problematic. Here, we report the novel use of acoustic recording tags equipped with high-resolution accelerometers to detect vibrations from the surface of two tagged fin whales that directly match the timing of recorded acoustic signals. A tag deployed on a buoy in the vicinity of calling fin whales and a recording from a tag that had just fallen off a whale were able to detect calls acoustically but did not record corresponding accelerometer signals that were measured on calling individuals. Across the hundreds of calls measured on two tagged fin whales, the accelerometer response was generally anisotropic across all three axes, appeared to depend on tag placement and increased with the level of received sound. These data demonstrate that high-sample rate accelerometry can provide important insights into the acoustic behavior of baleen whales that communicate at low frequencies. This method helps identify vocalizing whales, which in turn enables the quantification of call rates, a fundamental component of models used to estimate baleen whale abundance and distribution from passive acoustic monitoring. PMID:24803468

  17. Estimation of seismic response of buildings with a few accelerometers without input data

    NASA Astrophysics Data System (ADS)

    Suzuki, Yu; Mita, Akira

    2016-04-01

    To assess the health of buildings, maximum inter-story drift angle is recognized as an important indicator. If we have to estimate maximum inter-story drift angle very precisely, we need to install accelerometers on all floors. However, it is not realistic due to the cost. In many methods to estimate the response using small number of accelerometers, the excitation (input) is assumed to be available. However, in some cases, some sensors including the input sensor may not be available. Thus, in this paper, we propose a method for the estimating inter-story drift angle using small number of accelerometers without knowing input information. The proposed method is based on two assumptions. One is that the response is represented by the superposition of the response of only lower modes. The other is that mode vectors and participation factors are available from the structural design model. Based on the assumption, first, we estimate modal frequencies and damping ratios using the subspace method from obtained acceleration data. Second, we decompose observed acceleration data to each mode by solving simultaneous equations using pseudo-inverse matrix. Third, we calculate mode response by focusing on the vibration equation of each mode. It was verified that this method could successfully estimate the modal response as well as the inter-story drift angles.

  18. A high-resolution fiber optic accelerometer based on intracavity phase-generated carrier (PGC) modulation

    NASA Astrophysics Data System (ADS)

    Lin, Qiao; Chen, Liuhua; Li, Shu; Wu, X.

    2011-01-01

    A compact-size fiber optic accelerometer was designed to achieve both high resolution and wide dynamic range concurrently. An optical cavity, with its length modulated by a piezoelectric oscillator at audio frequency, is utilized to resolve the nanometer-level displacement of a silicon micro-mirror which serves as an inertial mass for acceleration sensing. Strain analysis of the proof-mass flexure structure by Cosmosworks was carried out to calculate responsivity and resonance frequency for a comparison with experimental measurement. The responsivity below the structural resonance frequency of 160 Hz reaches 36 dB re 1 rad/g. Performance measurement demonstrated that the accelerometer was able to resolve an acceleration of 48 ng Hz-1/2 with a dynamic range of 2 × 107.

  19. NIF Ambient Vibration Measurements

    SciTech Connect

    Noble, C.R.; Hoehler, M.S., S.C. Sommer

    1999-11-29

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B.

  20. A new accelerometer recording system for shuttle use

    NASA Technical Reports Server (NTRS)

    Lichtenberg, Byron

    1990-01-01

    Microgravity investigators are interested in enhancing the capabilities and improving the information return from accelerometers used in microgravity research. In addition to improving the accelerometer sensor, efforts should be directed towards using recent advances in microprocessor technology and system design techniques to improve sensor calibration and temperature compensation, online data display and analysis, and data reduction and information storage. Results from the above areas of investigation should be combined in an integrated design for a spaceflight microgravity accelerometer package.

  1. Airplane wing vibrations due to atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Pastel, R. L.; Caruthers, J. E.; Frost, W.

    1981-01-01

    The magnitude of error introduced due to wing vibration when measuring atmospheric turbulence with a wind probe mounted at the wing tip was studied. It was also determined whether accelerometers mounted on the wing tip are needed to correct this error. A spectrum analysis approach is used to determine the error. Estimates of the B-57 wing characteristics are used to simulate the airplane wing, and von Karman's cross spectrum function is used to simulate atmospheric turbulence. It was found that wing vibration introduces large error in measured spectra of turbulence in the frequency's range close to the natural frequencies of the wing.

  2. A Small Range Six-Axis Accelerometer Designed with High Sensitivity DCB Elastic Element

    PubMed Central

    Sun, Zhibo; Liu, Jinhao; Yu, Chunzhan; Zheng, Yili

    2016-01-01

    This paper describes a small range six-axis accelerometer (the measurement range of the sensor is ±g) with high sensitivity DCB (Double Cantilever Beam) elastic element. This sensor is developed based on a parallel mechanism because of the reliability. The accuracy of sensors is affected by its sensitivity characteristics. To improve the sensitivity, a DCB structure is applied as the elastic element. Through dynamic analysis, the dynamic model of the accelerometer is established using the Lagrange equation, and the mass matrix and stiffness matrix are obtained by a partial derivative calculation and a conservative congruence transformation, respectively. By simplifying the structure of the accelerometer, a model of the free vibration is achieved, and the parameters of the sensor are designed based on the model. Through stiffness analysis of the DCB structure, the deflection curve of the beam is calculated. Compared with the result obtained using a finite element analysis simulation in ANSYS Workbench, the coincidence rate of the maximum deflection is 89.0% along the x-axis, 88.3% along the y-axis and 87.5% along the z-axis. Through strain analysis of the DCB elastic element, the sensitivity of the beam is obtained. According to the experimental result, the accuracy of the theoretical analysis is found to be 90.4% along the x-axis, 74.9% along the y-axis and 78.9% along the z-axis. The measurement errors of linear accelerations ax, ay and az in the experiments are 2.6%, 0.6% and 1.31%, respectively. The experiments prove that accelerometer with DCB elastic element performs great sensitive and precision characteristics. PMID:27657089

  3. Wireless accelerometer network for process monitoring during mold forming in lost foam casting

    NASA Astrophysics Data System (ADS)

    Whelan, Matthew J.; Janoyan, Kerop D.

    2006-03-01

    Lost Foam Casting (LFC) enables the production of complex castings while offering the advantages of consolidation of components, reduced machining, and recirculation of the casting mold material. In the process, a replica of the desired product is produced of blown polystyrene, coated in refractory slurry, and cast in a dense, unbonded sand mold. In order for the unbonded sand mold to fill into pattern holes and to provide sufficient confining force to prevent the advancing molten front from penetrating beyond the mold boundaries, the sand mold is produced by an overhead raining and flask vibration schedule that encourages fluidization and subsequent densification. The amplitude, frequency, and duration of the flask vibration as well as the rate of sand filling are critical parameters in achieving quality castings. Currently, many foundries use an often-lengthy trial-and-error process for determining an acceptable raining and vibration schedule for each specific mold and rely heavily on simple measurements and operator experience to control the mold making process on the foundry line. This study focuses on developing a wireless sensor network of accelerometers to monitor vibrational characteristics of the casting flask during the mold making stage of LFC. Transformations in the vibrational characteristics of the flask can provide a "signature" for indicating the condition of the unbonded sand mold. Additionally, the wireless nature of the sensor nodes enables the technology to travel across the foundry floor during the casting cycle eliminating the necessity of routine placement and setup.

  4. Plastic latching accelerometer based on bistable compliant mechanisms

    NASA Astrophysics Data System (ADS)

    Hansen, B. J.; Carron, C. J.; Jensen, B. D.; Hawkins, A. R.; Schultz, S. M.

    2007-10-01

    This paper presents the design, fabrication, and testing of a miniature latching accelerometer that does not require electrical power. Latching is attained by using a bistable compliant mechanism that switches from one mechanical position to another when the force on the accelerometer exceeds a threshold value. Accelerometers were fabricated by laser cutting the compliant mechanism switch out of both ABS and Delrin plastic sheets. Packaging consisted of gluing the single compliant layer to a supporting substrate. The switching thresholds of the accelerometers were varied from 10g to 800g by varying the surface area of the free moving section between 100 and 500 mm2.

  5. A three-axis ultrasensitive accelerometer for space

    NASA Astrophysics Data System (ADS)

    Bernard, A.

    A three-axis ultrasensitive accelerometer ASTRE (Accelerometre Spatial Triaxial Electrostatique) is a simplified version of the GRADIO accelerometer designed for the ARISTOTELES mission, which operates by measuring the force provided by a three-axis electrostatic suspension of the proof-mass. It covers the g-spectrum from 10 exp -8 to 10 exp -4 in the frequency range dc to 5 Hz. A dedicated test bench was developed in order to preserve the accelerometer from the seismic noise. The paper presents the performance parameters of the ASTRE accelerometer and some of the design schemes.

  6. Design and Implementation of a Micromechanical Silicon Resonant Accelerometer

    PubMed Central

    Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing

    2013-01-01

    The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C. PMID:24256978

  7. Measurement of sensor axis misalignment in fibre-optic accelerometers

    NASA Astrophysics Data System (ADS)

    DeFreitas, J. M.; Wooler, J. P. F.; Nash, P. J.

    2006-07-01

    A method is described for the measurement of sensor axis misalignment relative to its mounting can for a fibre-optic accelerometer. The accelerometers investigated were based on the common cylindrical compliant mandrel design and mounted accelerometers showed typical angular misalignments of 2°. The influence of the misalignment on cross-axis sensitivity is also described for accelerometers orthogonally mounted in a three-component package. This paper was presented at the 13th International Conference on Sensors and Their Applications, held in Chatham, Kent, on 6-7 September 2005.

  8. Design and implementation of a micromechanical silicon resonant accelerometer.

    PubMed

    Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing

    2013-01-01

    The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C.

  9. Microcantilevers with embedded accelerometers for dynamic atomic force microscopy

    SciTech Connect

    Shaik, Nurul Huda; Raman, Arvind; Reifenberger, Ronald G.

    2014-02-24

    The measurement of the intermittent interaction between an oscillating nanotip and the sample surface is a key challenge in dynamic Atomic Force Microscopy (AFM). Accelerometers integrated onto AFM cantilevers can directly measure this interaction with minimal cantilever modification but have been difficult to realize. Here, we design and fabricate high frequency bandwidth accelerometers on AFM cantilevers to directly measure the tip acceleration in commercial AFM systems. We demonstrate a simple way of calibrating such accelerometers and present experiments using amplitude modulated AFM on freshly cleaved mica samples in water to study the response of the accelerometer.

  10. Instrumentation by accelerometers and distributed optical fiber sensors of a real ballastless track structure

    NASA Astrophysics Data System (ADS)

    Chapeleau, Xavier; Cottineau, Louis-Marie; Sedran, Thierry; Cailliau, Joël; Gueguen, Ivan; Dumoulin, Jean

    2015-04-01

    While relatively expensive to build, ballastless track structures are presently seen as an attractive alternative to conventional ballast. Firstly, they are built quickly since the slabs can be cast in place in an automated fashion by a slipform paver. Secondly, with its service life of at least 60 years, they requires little maintenance and hence they offers great availability. Other reasons for using ballastless tracks instead of ballasted tracks are the lack of suitable ballast material and the need of less noise and vibration for high-speed, in particularly. In the framework of a FUI project (n° 072906053), a new ballastless track structure based on concrete slabs was designed and its thermal-mechanical behavior in fatigue under selected mechanical and thermal conditions was tested on a real scale mockup in our laboratory [1,2]. By applying to the slabs both together mechanical stresses and thermal gradients, finite elements simulation and experimental results show that the weather conditions influence significantly the concrete slabs curvatures and by the way, the contact conditions with the underlaying layers. So it is absolutely necessary to take into account this effect in the design of the ballastless track structures in order to guarantee a long target life of at least of 50 years. After design and experimental tests in laboratory, a real ballastless track structure of 1km was built in France at the beginning of year 2013. This structure has 2 tracks on which several trains circulate every day since the beginning of year 2014. Before the construction, it was decided to monitor this structure to verify that the mechanical behavior is conform to the simulations. One part of the instrumentation is dedicated to monitor quasi-continuously the evolution of the curvature of a concrete slab. For this, 2 accelerometers were fixed on the slab under the track. One was placed on the edge and the other in the middle of the slab. The acquisition of the signals by a

  11. Accuracy improvement in a calibration test bench for accelerometers by a vision system

    NASA Astrophysics Data System (ADS)

    D'Emilia, Giulio; Di Gasbarro, David; Gaspari, Antonella; Natale, Emanuela

    2016-06-01

    A procedure is described in this paper for the accuracy improvement of calibration of low-cost accelerometers in a prototype rotary test bench, driven by a brushless servo-motor and operating in a low frequency range of vibrations (0 to 5 Hz). Vibration measurements by a vision system based on a low frequency camera have been carried out, in order to reduce the uncertainty of the real acceleration evaluation at the installation point of the sensor to be calibrated. A preliminary test device has been realized and operated in order to evaluate the metrological performances of the vision system, showing a satisfactory behavior if the uncertainty measurement is taken into account. A combination of suitable settings of the control parameters of the motion control system and of the information gained by the vision system allowed to fit the information about the reference acceleration at the installation point to the needs of the procedure for static and dynamic calibration of three-axis accelerometers.

  12. The GRADIO accelerometer: Design and development status

    NASA Astrophysics Data System (ADS)

    Bernard, Alain; Touboul, M. P.

    1991-12-01

    The concept of Satellite Gravity Gradiometry (SGG) based on differential microaccelerometry as proposed in the early eighties is summarized. Work devoted to the development of the GRADIO accelerometers is described. The configuration was optimized for the Aristoteles mission with the objective of increasing resolution for an integrating time of 4 s. Thanks to the selected three axis configuration, very sensitive differential tests were carried out between two very representative laboratory models, in directions perpendicular to gravity. The resolution of these tests, limited by the actual stability of alignments of the testing equipment is described.

  13. Analysis of STS-3 Get Away Special (GAS) flight data and vibration specification for gas payloads

    NASA Technical Reports Server (NTRS)

    Talapatra, D. C.

    1983-01-01

    During the Space Transportation System (STS)-3 mission, a Get Away Special (GAS) canister was flown. In order to determine the flight environment for GAS payloads, triaxial accelerometers and a microphone were installed inside the GAS canister. Data from these accelerometers and the microphone were analyzed. The microphone data is presented as overall sound pressure level (SPL) and one-third octave band time history plots. And the accelerometer data is provided in the forms of instantaneous time history, RMS time history and power spectral density plots. Also based on this flight data, vibration test specification for GAS payloads was developed and the recommended specification is presented here.

  14. Micromechanical structures and microelectronics for acceleration sensing

    SciTech Connect

    Davies, B.R.; Montague, S.; Smith, J.H.; Lemkin, M.

    1997-08-01

    MEMS is an enabling technology that may provide low-cost devices capable of sensing motion in a reliable and accurate manner. This paper describes work in MEMS accelerometer development at Sandia National Laboratories. This work leverages a process for integrating both the micromechanical structures and microelectronis circuitry of a MEMS accelerometer on the same chip. The design and test results of an integrated MEMS high-g accelerometer will be detailed. Additionally a design for a high-g fuse component (low-G or {approx} 25 G accelerometer) will be discussed in the paper (where 1 G {approx} 9.81 m/s). In particular, a design team at Sandia was assembled to develop a new micromachined silicon accelerometer which would be capable of surviving and measuring high-g shocks. Such a sensor is designed to be cheaper and more reliable than currently available sensors. A promising design for a suspended plate mass sensor was developed and the details of that design along with test data will be documented in the paper. Future development in this area at Sandia will focus on implementing accelerometers capable of measuring 200 kilo-g accelerations. Accelerometer development at Sandia will also focus on multi-axis acceleration measurement with integrated microelectronics.

  15. Calibrating Accelerometers Using an Electromagnetic Launcher

    SciTech Connect

    Erik Timpson

    2012-05-13

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering a desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  16. Classification of sporting activities using smartphone accelerometers.

    PubMed

    Mitchell, Edmond; Monaghan, David; O'Connor, Noel E

    2013-04-19

    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today's society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach.

  17. Assessment of gait kinetics using triaxial accelerometers.

    PubMed

    Fortune, Emma; Morrow, Melissa M; Kaufman, Kenton R

    2014-10-01

    Repeated durations of dynamic activity with high ground reaction forces (GRFs) and loading rates (LRs) can be beneficial to bone health. To fully characterize dynamic activity in relation to bone health, field-based measurements of gait kinetics are desirable to assess free-living lower-extremity loading. The study aims were to determine correlations of peak vertical GRF and peak vertical LR with ankle peak vertical accelerations, and of peak resultant GRF and peak resultant LR with ankle peak resultant accelerations, and to compare them to correlations with tibia, thigh, and waist accelerations. GRF data were collected as ten healthy subjects (26 [19-34] years) performed 8-10 walking trials at velocities ranging from 0.19 to 3.05 m/s while wearing ankle, tibia, thigh, and waist accelerometers. While peak vertical accelerations of all locations were positively correlated with peak vertical GRF and LR (r² > .53, P < .001), ankle peak vertical accelerations were the most correlated (r² > .75, P < .001). All peak resultant accelerations were positively correlated with peak resultant GRF and LR (r² > .57, P < .001), with waist peak resultant acceleration being the most correlated (r² > .70, P < .001). The results suggest that ankle or waist accelerometers give the most accurate peak GRF and LR estimates and could be useful tools in relating physical activity to bone health.

  18. Classification of Sporting Activities Using Smartphone Accelerometers

    PubMed Central

    Mitchell, Edmond; Monaghan, David; O'Connor, Noel E.

    2013-01-01

    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today's society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach. PMID:23604031

  19. Assessment of gait kinetics using triaxial accelerometers.

    PubMed

    Fortune, Emma; Morrow, Melissa M; Kaufman, Kenton R

    2014-10-01

    Repeated durations of dynamic activity with high ground reaction forces (GRFs) and loading rates (LRs) can be beneficial to bone health. To fully characterize dynamic activity in relation to bone health, field-based measurements of gait kinetics are desirable to assess free-living lower-extremity loading. The study aims were to determine correlations of peak vertical GRF and peak vertical LR with ankle peak vertical accelerations, and of peak resultant GRF and peak resultant LR with ankle peak resultant accelerations, and to compare them to correlations with tibia, thigh, and waist accelerations. GRF data were collected as ten healthy subjects (26 [19-34] years) performed 8-10 walking trials at velocities ranging from 0.19 to 3.05 m/s while wearing ankle, tibia, thigh, and waist accelerometers. While peak vertical accelerations of all locations were positively correlated with peak vertical GRF and LR (r² > .53, P < .001), ankle peak vertical accelerations were the most correlated (r² > .75, P < .001). All peak resultant accelerations were positively correlated with peak resultant GRF and LR (r² > .57, P < .001), with waist peak resultant acceleration being the most correlated (r² > .70, P < .001). The results suggest that ankle or waist accelerometers give the most accurate peak GRF and LR estimates and could be useful tools in relating physical activity to bone health. PMID:25010675

  20. Technical Reliability Assessment of the Actigraph GT1M Accelerometer

    ERIC Educational Resources Information Center

    Silva, Pedro; Mota, Jorge; Esliger, Dale; Welk, Gregory

    2010-01-01

    The purpose of this study was to determine the reliability of the Actigraph GT1M (Pensacola, FL, USA) accelerometer activity count and step functions. Fifty GT1M accelerometers were initialized to collect simultaneous acceleration counts and steps data using 15-sec epochs. All reliability testing was completed using a mechanical shaker plate to…

  1. Identification of Accelerometer Nonwear Time and Sedentary Behavior

    ERIC Educational Resources Information Center

    Oliver, Melody; Badland, Hannah M.; Schofield, Grant M.; Shepherd, Janine

    2011-01-01

    The primary aim of the current study was to investigate the accuracy of various automated rules for determining accelerometer nonwear time in a sample of predominantly desk-based office workers (using their self-reported nonwear times as a criterion). Second, the authors examined the effect of applying these rules to accelerometer data retention…

  2. Validation of a wireless accelerometer network for energy expenditure measurement.

    PubMed

    Montoye, Alexander H K; Dong, Bo; Biswas, Subir; Pfeiffer, Karin A

    2016-11-01

    The purpose of this study was to validate a wireless network of accelerometers and compare it to a hip-mounted accelerometer for predicting energy expenditure in a semi-structured environment. Adults (n = 25) aged 18-30 engaged in 14 sedentary, ambulatory, exercise, and lifestyle activities over a 60-min protocol while wearing a portable metabolic analyser, hip-mounted accelerometer, and wireless network of three accelerometers worn on the right wrist, thigh, and ankle. Participants chose the order and duration of activities. Artificial neural networks were created separately for the wireless network and hip accelerometer for energy expenditure prediction. The wireless network had higher correlations (r = 0.79 vs. r = 0.72, P < 0.01) but similar root mean square error (2.16 vs. 2.09 METs, P > 0.05) to the hip accelerometer. Measured (from metabolic analyser) and predicted energy expenditure from the hip accelerometer were significantly different for the 3 of the 14 activities (lying down, sweeping, and cycle fast); conversely, measured and predicted energy expenditure from the wireless network were not significantly different for any activity. In conclusion, the wireless network yielded a small improvement over the hip accelerometer, providing evidence that the wireless network can produce accurate estimates of energy expenditure in adults participating in a range of activities.

  3. A Low-Cost CMOS-MEMS Piezoresistive Accelerometer with Large Proof Mass

    PubMed Central

    Khir, Mohd Haris Md; Qu, Peng; Qu, Hongwei

    2011-01-01

    This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS) substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference. PMID:22164052

  4. High sensitivity optical waveguide accelerometer based on Fano resonance.

    PubMed

    Wan, Fenghua; Qian, Guang; Li, Ruozhou; Tang, Jie; Zhang, Tong

    2016-08-20

    An optical waveguide accelerometer based on tunable asymmetrical Fano resonance in a ring-resonator-coupled Mach-Zehnder interferometer (MZI) is proposed and analyzed. A Fano resonance accelerometer has a relatively large workspace of coupling coefficients with high sensitivity, which has potential application in inertial navigation, missile guidance, and attitude control of satellites. Due to the interference between a high-Q resonance pathway and a coherent background pathway, a steep asymmetric line shape is generated, which greatly improves the sensitivity of this accelerometer. The sensitivity of the accelerometer is about 111.75 mW/g. A 393-fold increase in sensitivity is achieved compared with a conventional MZI accelerometer and is approximately equal to the single ring structure.

  5. High sensitivity optical waveguide accelerometer based on Fano resonance.

    PubMed

    Wan, Fenghua; Qian, Guang; Li, Ruozhou; Tang, Jie; Zhang, Tong

    2016-08-20

    An optical waveguide accelerometer based on tunable asymmetrical Fano resonance in a ring-resonator-coupled Mach-Zehnder interferometer (MZI) is proposed and analyzed. A Fano resonance accelerometer has a relatively large workspace of coupling coefficients with high sensitivity, which has potential application in inertial navigation, missile guidance, and attitude control of satellites. Due to the interference between a high-Q resonance pathway and a coherent background pathway, a steep asymmetric line shape is generated, which greatly improves the sensitivity of this accelerometer. The sensitivity of the accelerometer is about 111.75 mW/g. A 393-fold increase in sensitivity is achieved compared with a conventional MZI accelerometer and is approximately equal to the single ring structure. PMID:27556984

  6. Micromachined silicon cantilever beam accelerometer incorporating an integrated optical waveguide

    NASA Technical Reports Server (NTRS)

    Burcham, Kevin E.; De Brabander, Gregory N.; Boyd, Joseph T.

    1993-01-01

    A micromachined cantilever beam accelerometer is described in which beam deflection is determined optically. A diving board structure is anisotropically etched into a silicon wafer. This diving board structure is patterned from the wafer backside so as to leave a small gap between the tip of the diving board and the opposite fixed edge on the front side of the wafer. In order to sense a realistic range of accelerations, a foot mass incorporated onto the end of the beam is found to provide design flexibility. A silicon nitride optical waveguide is then deposited by low pressure chemical vapor deposition (LPCVD) onto the sample. Beam deflection is measured by the decrease of light coupled across the gap between the waveguide sections. In order to investigate sensor response and simulate deflection of the beam, we utilized a separate beam and waveguide section which could be displaced from one another in a precisely controlled manner. Measurements were performed on samples with gaps of 4.0, 6.0, and 8.0 micron and the variation of the fraction of light coupled across the gap as a function of displacement and gap spacing was found to agree with overlap integral calculations.

  7. Detection of rail corrugation based on fiber laser accelerometers

    NASA Astrophysics Data System (ADS)

    Huang, Wenzhu; Zhang, Wentao; Du, Yanliang; Sun, Baochen; Ma, Huaixiang; Li, Fang

    2013-09-01

    Efficient inspection methods are necessary for detection of rail corrugation to improve the safety and ride quality of railway operations. This paper presents a novel fiber optic technology for detection of rail corrugation based on fiber laser accelerometers (FLAs), tailored to the measurement of surface damage on rail structures. The principle of detection of rail corrugation using double integration of axle-box acceleration is presented. Then we present the theoretical model and test results of FLAs which are installed on the bogie to detect the vertical axle-box acceleration of the train. Characteristics of high sensitivity and large dynamic range are achieved when using fiber optic interferometric demodulation. A flexible inertial algorithm based on double integration and the wavelet denoising method is proposed to accurately estimate the rail corrugation. A field test is carried out on the Datong-Qinhuangdao Railway in north China. The test results are compared with the results of a rail inspection car, which shows that the fiber laser sensing system has a good performance in monitoring rail corrugation.

  8. Design and development of PVDF-based MEMS hydrophone and accelerometer

    NASA Astrophysics Data System (ADS)

    Zhu, Bei

    It is always desirable to fabricate low-cost, highly sensitive and miniaturized sensors for various applications. In this thesis, the design and processing of PVDF-based MEMS hydrophones and accelerometers have been investigated. The basic structure of the hydrophone was fabricated on a silicon wafer using standard NMOS process technology. A MOSFET with extended gate electrode was designed as the interface circuit to a sensing material, which is a piezoelectric polymer, polyvinylidene difluoride (PVDF). Acoustic impedance possessed by this piezoelectric material provides a reasonable match to that of water, which makes it very attractive for underwater applications. The electrical signal generated by the PVDF film was directly coupled to the gate of the MOSFET. In order to minimize the parasitic capacitance underneath the PVDF film and hence improve the device sensitivity, a thick photoresist, SU-8, was first employed as the dielectric layer under the extended gate electrode. For underwater operation, the hydrophone was encapsulated by a waterproof Rho-C rubber. However, it was found that the rubber induced the degradation of the MOSFET. To improve the reliability of the hydrophone, the active device was passivated by a silicon nitride layer, which is a good barrier material to most mobile ions and solvents. The device after passivation also shows a lower noise level. A theoretical model was developed to predict the sensitivity of the hydrophone. A reasonable agreement between the theoretical and experimental results was obtained. MEMS accelerometers based on the PVDF-MOSFET structure by attaching a seismic mass on top of the PVDF film were also fabricated. The accelerometer was calibrated using a comparison method and an average sensitivity of 0.28 mV/g was achieved. A dynamic model of the accelerometer was derived and the calculated results are in good agreement with the measured results.

  9. Application of MAVEN Accelerometer and Attitude Control Data to Mars Atmospheric Characterization

    NASA Astrophysics Data System (ADS)

    Zurek, Richard W.; Tolson, Robert H.; Baird, Darren; Johnson, Mark Z.; Bougher, Stephen W.

    2015-12-01

    The structure of the upper atmosphere of Mars (above ˜100 km) has been probed in situ mainly using spacecraft accelerometers during the aerobraking phases of 3 Mars orbiters. In a similar manner, the Mars Atmosphere and Volatile Evolution (MAVEN) Accelerometer Experiment (ACC) will also use atmospheric drag accelerations sensed by inertial measurement units (IMU) onboard the spacecraft to recover atmospheric density along the orbiter path. These densities are used to estimate hydrostatic `vertical' density and temperature profiles, along track and altitudinal density waves, and latitudinal and longitudinal density variations. The IMU accelerometer signal-to-noise should permit profile reconstructions from spacecraft periapsis, nominally at 150 km altitude, to ˜170 km, an altitude range nominally spanning densities of 0.05-0.15 kg/km3. However, in situ measurements over a much greater altitude range, down to ˜125 km (reaching densities of ˜2-3.5 kg/km3), can be made during each of five week-long "Deep Dip" (DD) campaigns, and these are the prime focus of the Accelerometer Experiment. Judicious choice of the timing of these Deep-Dip campaigns during the MAVEN periapsis progression through local time, latitude and longitude in both hemispheres and in different seasons will add significantly to the existing data base of lower thermospheric densities. Other IMU and attitude control data may be used to estimate torques in order to improve the atmospheric density analysis, especially in the higher altitudes of the nominal science orbit, and, more challengingly, to estimate cross-track winds during the Deep-Dips.

  10. High-G accelerometer for earth-penetrator weapons applications. LDRD final report

    SciTech Connect

    Davies, B.R.; Montague, S.; Bateman, V.I.; Brown, F.A.; Chanchani, R.; Christenson, T.; Murray, J.R.; Rey, D.; Ryerson, D.

    1998-03-01

    Micromachining technologies, or Micro-Electro-Mechanical Systems (MEMS), enable the develop of low-cost devices capable of sensing motion in a reliable and accurate manner. Sandia has developed a MEMS fabrication process for integrating both the micromechanical structures and microelectronics circuitry of surface micromachined sensors, such as silicon accelerometers, on the same chip. Integration of the micromechanical sensor elements with microelectronics provides substantial performance and reliability advantages for MEMS accelerometers. A design team at Sandia was assembled to develop a micromachined silicon accelerometer capable of surviving and measuring very high accelerations (up to 50,000 times the acceleration due to gravity). The Sandia integrated surface micromachining process was selected for fabrication of the sensor due to the extreme measurement sensitivity potential associated with integrated microelectronics. Very fine measurement sensitivity was required due to the very small accelerometer proof mass (< 200 {times} 10{sup {minus}9} gram) obtainable with this surface micromachining process. The small proof mass corresponded to small sensor deflections which required very sensitive electronics to enable accurate acceleration measurement over a range of 1,000 to 50,000 times the acceleration due to gravity. Several prototype sensors, based on a suspended plate mass configuration, were developed and the details of the design, modeling, fabrication and validation of the device will be presented in this paper. The device was analyzed using both conventional lumped parameter modeling techniques and finite element analysis tools. The device was tested and performed well over its design range (the device was tested over a range of a few thousand G to 46,000 G, where 1 G equals the acceleration due to gravity).

  11. Mars Reconnaissance Orbiter Accelerometer Experiment Results

    NASA Astrophysics Data System (ADS)

    Keating, G. M.; Bougher, S. W.; Theriot, M. E.; Zurek, R. W.; Blanchard, R. C.; Tolson, R. H.; Murphy, J. R.

    2007-05-01

    The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005, designed for aerobraking, achieved Mars Orbital Insertion (MOI), March 10, 2006. Atmospheric density decreases exponentially with increasing height. By small propulsive adjustments of the apoapsis orbital velocity, periapsis altitude is fine tuned to the density surface that safely used the atmosphere of Mars to aerobrake over 400 orbits. MRO periapsis precessed from the South Pole at 6pm LST to near the equator at 3am LST. Meanwhile, apoapsis was brought dramatically from 40,000km at MOI to 460 km at aerobraking completion (ABX) August 30, 2006. After ABX, a few small propulsive maneuvers established the Primary Science Orbit (PSO), which without aerobraking would have required an additional 400 kg of fuel. Each of the 400 plus aerobraking orbits provided a vertical structure and distribution of density, scale heights, and temperatures, along the orbital path, providing key in situ insight into various upper atmosphere (greater than 100 km) processes. One of the major questions for scientists studying Mars is: "Where did the water go?" Honeywell's substantially improved electronics package for its IMU (QA-2000 accelerometer, gyro, electronics) maximized accelerometer sensitivities at the requests of The George Washington University, JPL, and Lockheed Martin. The improved accelerometer sensitivities allowed density measurements to exceed 200km, at least 40 km higher than with Mars Odyssey (MO). This extended vertical structures from MRO into the neutral lower exosphere, a region where various processes may allow atmospheric gasses to escape. Over the eons, water may have been lost in both near the surface and in the upper atmosphere. Thus the water balance throughout the entire atmosphere from subsurface to exosphere may both be critical. Comparisons of data from Mars Global Surveyor (MGS), MO and MRO help characterize key temporal and spatial cycles including: winter polar warming, planetary scale

  12. Hand-arm vibration exposure monitoring with wearable sensor module.

    PubMed

    Austad, Hanne O; Røed, Morten H; Liverud, Anders E; Dalgard, Steffen; Seeberg, Trine M

    2013-01-01

    Vibration exposure is a serious risk within work physiology for several work groups. Combined with cold artic climate, the risk for permanent harm is even higher. Equipment that can monitor the vibration exposure and warn the user when at risk will provide a safer work environment for these work groups. This study evaluates whether data from a wearable wireless multi-parameter sensor module can be used to estimate vibration exposure and exposure time. This work has been focused on the characterization of the response from the accelerometer in the sensor module and the optimal location of the module in the hand-arm configuration.

  13. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  14. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  15. A high performance, variable capacitance accelerometer

    NASA Astrophysics Data System (ADS)

    Wilner, L. Bruce

    1988-12-01

    A variable capacitance acceleration sensor is described. Manufactured using silicon microfabrication techniques, the sensor uses a midplane, flat plate suspension, gas damping, and overrange stops. The sensor is assembled from three silicon wafers, using anodic bonds to inlays of borosilicate glass. Typical sensor properties are 7-pF active capacitance, 3-pF tare capacitance, a response of 0.05 pF/G, a resonance frequency of 3.4 kHz, and damping 0.7 critical. It is concluded that this sensor, with appropriate electronics, forms an accelerometer with an order-of-magnitude greater sensitivity-bandwidth product than a comparable piezoresistive acclerometer, and with extraordinary shock resistance.

  16. Validation study of Polar V800 accelerometer

    PubMed Central

    Hernández-Vicente, Adrián; De Cocker, Katrien; Garatachea, Nuria

    2016-01-01

    Background The correct quantification of physical activity (PA) and energy expenditure (EE) in daily life is an important target for researchers and professionals. The objective of this paper is to study the validity of the Polar V800 for the quantification of PA and the estimation of EE against the ActiGraph (ActiTrainer) in healthy young adults. Methods Eighteen Caucasian active people (50% women) aged between 19–23 years wore an ActiTrainer on the right hip and a Polar V800 on the preferred wrist during 7 days. Paired samples t-tests were used to analyze differences in outcomes between devices, and Pearson’s correlation coefficients to examine the correlation between outcomes. The agreement was studied using the Bland-Altman method. Also, the association between the difference and the magnitude of the measurement (heteroscedasticity) was examined. Sensitivity, specificity and area under the receiver operating characteristic curve (ROC-AUC value) were calculated to evaluate the ability of the devices to accurately define a person who fulfills the recommendation of 10,000 daily steps. Results The devices significantly differed from each other on all outcomes (P<0.05), except for Polar V800’s alerts vs. ActiTrainer’s 1 hour sedentary bouts (P=0.595) and Polar V800’s walking time vs. ActiTrainer’s lifestyle time (P=0.484). Heteroscedasticity analyses were significant for all outcomes, except for Kcal and sitting time. The ROC-AUC value was fair (0.781±0.048) and the sensitivity and specificity was 98% and 58%, respectively. Conclusions The Polar V800 accelerometer has a comparable validity to the accelerometer in free-living conditions, regarding “1 hour sedentary bouts” and “V800’s walking time vs. ActiTrainer’s lifestyle time” in young adults. PMID:27570772

  17. Simultaneous vibration and high-speed microscopy to study mechanotransduction in living cells

    NASA Astrophysics Data System (ADS)

    Holdsworth, David W.; Nikolov, Hristo N.; Au, Jen; Beaucage, Kim; Kishimoto, Jessica; Dixon, S. Jeffrey

    2012-03-01

    Cells exhibit the ability to sense and respond to local mechanical stimuli, leading to changes in function. This capability, referred to as mechanotransduction, is essential to normal tissue function, but the exact mechanisms by which cells sense local forces (strain, shear, compression and vibration) remain unclear. Recent studies in small animals and humans indicate that the frequency of cyclic mechanical stimuli is important, with physiological responses observed for stimuli ranging between 1 and 90 Hz. To better understand the cellular and molecular mechanisms underlying mechanotransduction, it will be important to observe cells in real time, using optical microscopy during high-frequency mechanical stimulation. We have developed a motion-control platform that can produce sinusoidal vibration of live cells during simultaneous high-speed microscopy and fluorimetry, at frequencies up to 100 Hz with peak acceleration up to 9.8 m s-2. The platform is driven by a voice coil and acceleration is measured with an accelerometer (Dytran 7521A1). The motion waveform was verified by high-speed imaging, using a digital camera (Casio EX-F1) operating at 1200 frames s-1 attached to an inverted microscope (Nikon Diaphot). When operating at 45 Hz and 2.94 m s-2 peak acceleration, the observed motion waveform exhibited sinusoidal behaviour, with measured peak-to-peak amplitude of 72 μm. Cultured osteoblast-like cells (UMR-106) were subjected to 2.94 m s-2 vibration at 45 Hz and remained attached and viable. This device provides - for the first time - the capability to mechanically stimulate living cells while simultaneously observing responses with optical microscopy.

  18. Recent Results from CHAMP Tracking and Accelerometer Data Analysis

    NASA Technical Reports Server (NTRS)

    Luthcke, S. B.; Rowlands, D. D.; Lemoine, F. G.; Nerem, R. S.; Thompson, B.; Pavlis, E.; Williams, T. A.; Colombo, O. L.; Chao, Benjamin F. (Technical Monitor)

    2002-01-01

    The CHAMP mission's unique combination of sensors and orbit configuration will enable unprecedented improvements in modeling and understanding the Earth's static gravity field and its temporal variations. CHAMP is the first of two missions (GRACE to be launched in the early part of 02') that combine a new generation of Global Positioning System (GPS) receivers, a high precision three-axis accelerometer, and star cameras for the precision attitude determination. In order to isolate the gravity signal for science investigations, it is necessary to perform a detailed reduction and analysis of the GPS and Satellite Laser Ranging (SLR) tracking data in conjunction with the accelerometer and attitude data. Precision orbit determination based on the GPS and SLR tracking data will isolate the orbit perturbations, while the accelerometer data will be used to distinguish the non-gravitational forces from those due to the geopotential (static, and time varying). In preparation for the CHAMP and GRACE missions, extensive modifications have been made to NASA/GSFC's GEODYN orbit determination software to enable the simultaneous reduction of spacecraft tracking (e.g. GPS and SLR), three-axis accelerometer and precise attitude data. Several weeks of CHAMP tracking and accelerometer data have been analyzed and the results will be presented. Precision orbit determination analysis based on tracking data alone in addition to results based on the simultaneous reduction of tracking and accelerometer data will be discussed. Results from a calibration of the accelerometer will be presented along with the results from various orbit determination strategies.

  19. Vibrational rainbows

    SciTech Connect

    Drolshagen, G.; Mayne, H.R.; Toennies, J.P.

    1981-07-01

    We extend the theory of inelastic rainbows to include vibrationally inelastic scattering, showing how the existence of vibrational rainbows can be deduced from collinear classical scattering theory. Exact close-coupling calculations are carried out for a breathing sphere potential, and rainbow structures are, in fact, observed. The location of the rainbows generally agrees well with the classical prediction. In addition, the sensitivity of the location of the rainbow to changes in the vibrational coupling has been investigated. It is shown that vibrational rainbows persist in the presence of anisotropy. Experimental results (R. David, M. Faubel, and J. P. Toennies, Chem. Phys. Lett. 18, 87 (1973)) are examined for evidence of vibrational rainbow structure, and it is shown that vibrational rainbow theory is not inconsistent with these results.

  20. Predicting Human Movement with Multiple Accelerometers Using Movelets

    PubMed Central

    He, Bing; Bai, Jiawei; Zipunnikov, Vadim V.; Koster, Annemarie; Caserotti, Paolo; Lange-Maia, Brittney; Glynn, Nancy W.; Harris, Tamara B.; Crainiceanu, Ciprian M.

    2014-01-01

    Purpose The study aims were: 1) to develop transparent algorithms that use short segments of training data for predicting activity types; and 2) to compare prediction performance of proposed algorithms using single accelerometers and multiple accelerometers. Methods Sixteen participants (age, 80.6 yr (4.8 yr); BMI, 26.1 kg·m−2 (2.5 kg·m−2)) performed fifteen life-style activities in the laboratory, each wearing three accelerometers at the right hip, left and right wrists. Triaxial accelerometry data were collected at 80 Hz using Actigraph GT3X+. Prediction algorithms were developed, which, instead of extracting features, build activity specific dictionaries composed of short signal segments called movelets. Three alternative approaches were proposed to integrate the information from the multiple accelerometers. Results With at most several seconds of training data per activity, the prediction accuracy at the second-level temporal resolution was very high for lying, standing, normal/fast walking, and standing up from a chair (the median prediction accuracy ranged from 88.2% to 99.9% based on the single-accelerometer movelet approach). For these activities wrist-worn accelerometers performed almost as well as hip-worn accelerometers (the median difference in accuracy between wrist and hip ranged from −2.7% to 5.8%). Modest improvements in prediction accuracy were achieved by integrating information from multiple accelerometers. Discussion and conclusions It is possible to achieve high prediction accuracy at the secondlevel temporal resolution with very limited training data. To increase prediction accuracy from the simultaneous use of multiple accelerometers, a careful selection of integrative approaches is required. PMID:25134005

  1. USML-1 microgravity glovebox experiment no. 1 Passive Accelerometer System

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Rogers, Melissa J. B.

    1995-01-01

    The passive accelerometer system (PAS) is a simple moving ball accelerometer capable of measuring the small magnitude steady relative acceleration that occurs in a low earth orbit spacecraft due to atmospheric drag and the earth's gravity gradient. The accelerometer can be used when the spacecraft continuously rotates during the orbit such that some line of reference in the craft always points along the vector connecting the earth's mass center with the spacecraft mass center. PAS was used successfully on the first United States Microgravity Laboratory (USML-1).

  2. Low Cost Digital Vibration Meter

    PubMed Central

    Payne, W. Vance; Geist, Jon

    2007-01-01

    This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device. PMID:27110459

  3. Active Suppression Of Vibrations On Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    1995-01-01

    Method of active suppression of nonlinear and nonstationary vibrations developed to reduce sonic fatigue and interior noise in high-speed aircraft. Structure of aircraft exhibits periodic, chaotic, and random vibrations when forced by high-intensity sound from jet engines, shock waves, turbulence, and separated flows. Method of suppressing vibrations involves feedback control: Strain gauges or other sensors mounted in paths of propagation of vibrations on structure sense vibrations; outputs of sensors processed into control signal applied to actuator mounted on structure, inducing compensatory forces.

  4. Vibrating Frequency Thresholds in Mice and Rats: Implications for the Effects of Vibrations on Animal Health.

    PubMed

    Rabey, Karyne N; Li, Yao; Norton, John N; Reynolds, Randall P; Schmitt, Daniel

    2015-08-01

    Vibrations in research facilities can cause complex animal behavioral and physiological responses that can affect animal health and research outcomes. The goal of this study was to determine the range of frequency values, where animals are unable to attenuate vibrations, and therefore may be most susceptible to their effects. Anesthetized and euthanized adult rats and mice were exposed to vibration frequencies over a wide range (0-600 Hz) and at a constant magnitude of 0.3 m/s(2). Euthanized animals were additionally exposed to vibrations at an acceleration of 1 m/s(2). The data showed that at most frequencies rodents were able to attenuate vibration magnitudes, with values for the back-mounted accelerometer being substantially less than that of the table. At frequencies of 41-60 Hz mice did not attenuate vibration magnitude, but instead the magnitude of the table and animal were equal or amplified. Rats experienced the same pattern of non-attenuation between 31 and 50 Hz. Once euthanized, the mice vibrated at a slightly more elevated frequency (up to 100 Hz). Based on these results, it may be prudent that in laboratory settings, vibrations in the ranges reported here should be accounted for as possible contributors to animal stress and/or biomechanical changes. PMID:25533769

  5. The effect of tennis racket string vibration dampers on racket handle vibrations and discomfort following impacts.

    PubMed

    Stroede, C L; Noble, L; Walker, H S

    1999-05-01

    In this study, we evaluated the effect of the use of tennis racket string vibration dampers on racket handle vibrations, and perceptions of hand and arm discomfort experienced by tennis players owing to stationary racket impacts. Twenty tennis players (10 males, 10 females) aged 18-29 years volunteered for the study. Two different racket models were impacted at the geometric centre of the racket face and 100 mm distal to the centre both with and without string vibration dampers in place. The participants could neither see nor hear the impacts, and they indicated their discomfort immediately after each impact using a visual analogue scale. An analysis of variance (2 x 2 x 2 factorial) was performed on the scaled discomfort ratings with the factors damping condition, racket type and impact location. No significant differences in discomfort ratings between damped and undamped impacts or between the two racket types were found. Also, central impacts were found to be more comfortable than impacts 100 mm distal to the centre (P< 0.05). There were no significant interaction effects. Vibration traces from an accelerometer mounted on the racket handle revealed that string vibration dampers quickly absorbed high-frequency string vibration without attenuating the lower-frequency frame vibration. In conclusion, we found no evidence to support the contention that string vibration dampers reduce hand and arm impact discomfort.

  6. Investigation of Gearbox Vibration Transmission Paths on Gear Condition Indicator Performance

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Islam, AKM Anwarul; Feldman, Jason; Larsen, Chris

    2013-01-01

    Helicopter health monitoring systems use vibration signatures generated from damaged components to identify transmission faults. For damaged gears, these signatures relate to changes in dynamics due to the meshing of the damaged tooth. These signatures, referred to as condition indicators (CI), can perform differently when measured on different systems, such as a component test rig, or a full-scale transmission test stand, or an aircraft. These differences can result from dissimilarities in systems design and environment under dynamic operating conditions. The static structure can also filter the response between the vibration source and the accelerometer, when the accelerometer is installed on the housing. To assess the utility of static vibration transfer paths for predicting gear CI performance, measurements were taken on the NASA Glenn Spiral Bevel Gear Fatigue Test Rig. The vibration measurements were taken to determine the effect of torque, accelerometer location and gearbox design on accelerometer response. Measurements were taken at the housing and compared while impacting the gear set near mesh. These impacts were made at gear mesh to simulate gear meshing dynamics. Data measured on a helicopter gearbox installed in a static fixture were also compared to the test rig. The behavior of the structure under static conditions was also compared to CI values calculated under dynamic conditions. Results indicate that static vibration transfer path measurements can provide some insight into spiral bevel gear CI performance by identifying structural characteristics unique to each system that can affect specific CI response.

  7. Vibrational Coupling

    SciTech Connect

    2011-01-01

    By homing in on the distribution patterns of electrons around an atom, a team of scientists team with Berkeley Lab's Molecular Foundry showed how certain vibrations from benzene thiol cause electrical charge to "slosh" onto a gold surface (left), while others do not (right). The vibrations that cause this "sloshing" behavior yield a stronger SERS signal.

  8. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  9. The vertical accelerometer, a new instrument for air navigation

    NASA Technical Reports Server (NTRS)

    Laboccetta, Letterio

    1923-01-01

    This report endeavors to show the possibility of determining the rate of acceleration and the advantage of having such an accelerometer in addition to other aviation instruments. Most of the discussions concern balloons.

  10. Development of an accelerometer-based underwater acoustic intensity sensor.

    PubMed

    Kim, Kang; Gabrielson, Thomas B; Lauchle, Gerald C

    2004-12-01

    An underwater acoustic intensity sensor is described. This sensor derives acoustic intensity from simultaneous, co-located measurement of the acoustic pressure and one component of the acoustic particle acceleration vector. The sensor consists of a pressure transducer in the form of a hollow piezoceramic cylinder and a pair of miniature accelerometers mounted inside the cylinder. Since this sensor derives acoustic intensity from measurement of acoustic pressure and acoustic particle acceleration, it is called a p-a intensity probe. The sensor is ballasted to be nearly neutrally buoyant. It is desirable for the accelerometers to measure only the rigid body motion of the assembled probe and for the effective centers of the pressure sensor and accelerometer to be coincident. This is achieved by symmetric disposition of a pair of accelerometers inside the ceramic cylinder. The response of the intensity probe is determined by comparison with a reference hydrophone in a predominantly reactive acoustic field.

  11. Sensor agent robot with servo-accelerometer for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Lee, Nobukazu; Mita, Akira

    2012-04-01

    SHM systems are becoming feasible with the growth of computer and sensor technologies during the last decade. However, high cost prevents SHM to become common in general homes. The reason of this high cost is partially due to many accelerometers. In this research, we propose a moving sensor agent robot with accelerometers and a laser range finder (LRF). If this robot can properly measure accurate acceleration data, the cost of SHM would be cut down and resulting in the spread of SHM systems. Our goal is to develop a platform for SHM using the sensor agent robot. We designed the prototype robot to correctly detect the floor vibrations and acquire the micro tremor information. When the sensor agent robot is set in the mode of acquiring the data, the dynamics of the robot should be tuned not to be affected by its flexibility. To achieve this purpose the robot frame was modified to move down to the ground and to provide enough rigidity to obtain good data. In addition to this mechanism, we tested an algorithm to correctly know the location of the robot and the map of the floor to be used in the SHM system using the LRF and Simultaneously Localization and Mapping (SLAM).

  12. Design, Simulation and Fabrication of Triaxial MEMS High Shock Accelerometer.

    PubMed

    Zhang, Zhenhai; Shi, Zhiguo; Yang, Zhan; Xie, Zhihong; Zhang, Donghong; Cai, De; Li, Kejie; Shen, Yajing

    2015-04-01

    On the basis of analyzing the disadvantage of other structural accelerometer, three-axis high g MEMS piezoresistive accelerometer was put forward in order to apply to the high-shock test field. The accelerometer's structure and working principle were discussed in details. The simulation results show that three-axis high shock MEMS accelerometer can bear high shock. After bearing high shock impact in high-shock shooting test, three-axis high shock MEMS accelerometer can obtain the intact metrical information of the penetration process and still guarantee the accurate precision of measurement in high shock load range, so we can not only analyze the law of stress wave spreading and the penetration rule of the penetration process of the body of the missile, but also furnish the testing technology of the burst point controlling. The accelerometer has far-ranging application in recording the typical data that projectile penetrating hard target and furnish both technology guarantees for penetration rule and defend engineering.

  13. Factors associated with participant compliance in studies using accelerometers.

    PubMed

    Lee, Paul H; Macfarlane, Duncan J; Lam, T H

    2013-09-01

    Participant compliance is an important issue in studies using accelerometers. Some participants wear the accelerometer for the duration specified by the researchers but many do not. We investigated a range of demographic factors associated with participant compliance in obtaining analyzable accelerometer data. A total of 3601 participants (aged 47.6±13.1 years, 44.6% male) were included. They were asked to wear an accelerometer (ActiGraph) for four consecutive days after completing a household survey during March 2009-January 2011 in Hong Kong. Participants wore the accelerometer on average for 13.9h in a 24-h day. No significant difference was found between males and females (p=0.38). Using log-linear regression, it was found that older participants (0.5% more wearing hours for each year of age, p<0.001), those with full-time job (p<0.01), with tertiary education (p<0.01), non-smokers (p<0.01) and with high self-reported health (p<0.05) wore the accelerometer for more hours. These results provide details for estimating compliance rates for samples with different characteristics and thus sample size calculation to account for participant compliance. PMID:23688408

  14. Performance of several low-cost accelerometers

    USGS Publications Warehouse

    Evans, J.R.; Allen, R.M.; Chung, A. I.; Cochran, E.S.; Guy, R.; Hellweg, M.; Lawrence, J. F.

    2014-01-01

    Several groups are implementing low‐cost host‐operated systems of strong‐motion accelerographs to support the somewhat divergent needs of seismologists and earthquake engineers. The Advanced National Seismic System Technical Implementation Committee (ANSS TIC, 2002), managed by the U.S. Geological Survey (USGS) in cooperation with other network operators, is exploring the efficacy of such systems if used in ANSS networks. To this end, ANSS convened a working group to explore available Class C strong‐motion accelerometers (defined later), and to consider operational and quality control issues, and the means of annotating, storing, and using such data in ANSS networks. The working group members are largely coincident with our author list, and this report informs instrument‐performance matters in the working group’s report to ANSS. Present examples of operational networks of such devices are the Community Seismic Network (CSN; csn.caltech.edu), operated by the California Institute of Technology, and Quake‐Catcher Network (QCN; Cochran et al., 2009; qcn.stanford.edu; November 2013), jointly operated by Stanford University and the USGS. Several similar efforts are in development at other institutions. The overarching goals of such efforts are to add spatial density to existing Class‐A and Class‐B (see next paragraph) networks at low cost, and to include many additional people so they become invested in the issues of earthquakes, their measurement, and the damage they cause.

  15. Quantitative evaluation of gait ataxia by accelerometers.

    PubMed

    Shirai, Shinichi; Yabe, Ichiro; Matsushima, Masaaki; Ito, Yoichi M; Yoneyama, Mitsuru; Sasaki, Hidenao

    2015-11-15

    An appropriate biomarker for spinocerebellar degeneration (SCD) has not been identified. Here, we performed gait analysis on patients with pure cerebellar type SCD and assessed whether the obtained data could be used as a neurophysiological biomarker for cerebellar ataxia. We analyzed 25 SCD patients, 25 patients with Parkinson's disease as a disease control, and 25 healthy control individuals. Acceleration signals during 6 min of walking and 1 min of standing were measured by two sets of triaxial accelerometers that were secured with a fixation vest to the middle of the lower and upper back of each subject. We extracted two gait parameters, the average and the coefficient of variation of motion trajectory amplitude, from each acceleration component. Then, each component was analyzed by correlation with the Scale for the Assessment and Rating of Ataxia (SARA) and the Berg Balance Scale (BBS). Compared with the gait control of healthy subjects and concerning correlation with severity and disease specificity, our results suggest that the average amplitude of medial-lateral (upper back) of straight gait is a physiological biomarker for cerebellar ataxia. Our results suggest that gait analysis is a quantitative and concise evaluation scale for the severity of cerebellar ataxia.

  16. An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process

    NASA Technical Reports Server (NTRS)

    Yazdi, N.; Najafi, K.

    2000-01-01

    This paper reports an all-silicon fully symmetrical z-axis micro-g accelerometer that is fabricated on a single-silicon wafer using a combined surface and bulk fabrication process. The microaccelerometer has high device sensitivity, low noise, and low/controllable damping that are the key factors for attaining micro g and sub-micro g resolution in capacitive accelerometers. The microfabrication process produces a large proof mass by using the whole wafer thickness and a large sense capacitance by utilizing a thin sacrificial layer. The sense/feedback electrodes are formed by a deposited 2-3 microns polysilicon film with embedded 25-35 microns-thick vertical stiffeners. These electrodes, while thin, are made very stiff by the thick embedded stiffeners so that force rebalancing of the proof mass becomes possible. The polysilicon electrodes are patterned to create damping holes. The microaccelerometers are batch-fabricated, packaged, and tested successfully. A device with a 2-mm x 1-mm proof mass and a full bridge support has a measured sensitivity of 2 pF/g. The measured sensitivity of a 4-mm x 1-mm accelerometer with a cantilever support is 19.4 pF/g. The calculated noise floor of these devices at atmosphere are 0.23 micro g/sqrt(Hz) and 0.16 micro g/sqrt(Hz), respectively.

  17. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging.

    PubMed

    Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I; Nikolov, Hristo N; Holdsworth, David W

    2015-08-21

    Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as  ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice.

  18. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging.

    PubMed

    Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I; Nikolov, Hristo N; Holdsworth, David W

    2015-08-21

    Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as  ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice. PMID:26248045

  19. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging

    NASA Astrophysics Data System (ADS)

    Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I.; Nikolov, Hristo N.; Holdsworth, David W.

    2015-08-01

    Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as  ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice.

  20. Screening of inorganic gases released from firework-rockets by a gas chromatography/whistle-accelerometer method.

    PubMed

    Chen, Kuan-Fu; Wu, Hui-Hsin; Lin, Chien-Hung; Lin, Cheng-Huang

    2013-08-30

    The use of an accelerometer for detecting inorganic gases in gas chromatography (GC) is described. A milli-whistle was connected to the outlet of the GC capillary and was used instead of a classical GC detector. When the GC carrier gases and the sample gases pass through the milli-whistle, a sound is produced, leading to vibrational changes, which can be recorded using an accelerometer. Inorganic gases, including SO2, N2 and CO2, which are released from traditional Chinese firework-rockets at relatively high levels as the result of burning the propellant and explosive material inside could be rapidly determined using the GC/whistle-accelerometer system. The method described herein is safe, the instrumentation is compact and has potential to be modified so as to be portable for use in the field. It also can be used in conjunction with FID (flame ionization detector) or TCD (thermal conductivity detector), in which either no response for FID (CO2, N2, NO2, SO2, etc.) or helium gas is needed for TCD, respectively.

  1. Screening of inorganic gases released from firework-rockets by a gas chromatography/whistle-accelerometer method.

    PubMed

    Chen, Kuan-Fu; Wu, Hui-Hsin; Lin, Chien-Hung; Lin, Cheng-Huang

    2013-08-30

    The use of an accelerometer for detecting inorganic gases in gas chromatography (GC) is described. A milli-whistle was connected to the outlet of the GC capillary and was used instead of a classical GC detector. When the GC carrier gases and the sample gases pass through the milli-whistle, a sound is produced, leading to vibrational changes, which can be recorded using an accelerometer. Inorganic gases, including SO2, N2 and CO2, which are released from traditional Chinese firework-rockets at relatively high levels as the result of burning the propellant and explosive material inside could be rapidly determined using the GC/whistle-accelerometer system. The method described herein is safe, the instrumentation is compact and has potential to be modified so as to be portable for use in the field. It also can be used in conjunction with FID (flame ionization detector) or TCD (thermal conductivity detector), in which either no response for FID (CO2, N2, NO2, SO2, etc.) or helium gas is needed for TCD, respectively. PMID:23891209

  2. Principal Components Analysis of Triaxial Vibration Data From Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; Huff, Edward M.

    2001-01-01

    Research on the nature of the vibration data collected from helicopter transmissions during flight experiments has led to several crucial observations believed to be responsible for the high rates of false alarms and missed detections in aircraft vibration monitoring systems. This work focuses on one such finding, namely, the need to consider additional sources of information about system vibrations. In this light, helicopter transmission vibration data, collected using triaxial accelerometers, were explored in three different directions, analyzed for content, and then combined using Principal Components Analysis (PCA) to analyze changes in directionality. In this paper, the PCA transformation is applied to 176 test conditions/data sets collected from an OH58C helicopter to derive the overall experiment-wide covariance matrix and its principal eigenvectors. The experiment-wide eigenvectors. are then projected onto the individual test conditions to evaluate changes and similarities in their directionality based on the various experimental factors. The paper will present the foundations of the proposed approach, addressing the question of whether experiment-wide eigenvectors accurately model the vibration modes in individual test conditions. The results will further determine the value of using directionality and triaxial accelerometers for vibration monitoring and anomaly detection.

  3. Vibration Testing of an Operating Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Mark E.; Goodnight, Thomas W.

    2000-01-01

    The NASA John H. Glenn Research Center and the U.S. Department of Energy are currently developing a Stirling convertor for use as an advanced spacecraft power system for future NASA deep-space missions. As part of this development, a Stirling Technology Demonstrator Convertor (TDC) was recently tested to verify its survivability and capability of withstanding its expected launch random vibration environment. The TDC was fully operational (producing power) during the random vibration testing. The output power of the convertor was measured during the testing, and these results are discussed in this paper. Numerous accelerometers and force gauges were also present which provided information on the dynamic characteristics of the TDC and an indication of any possible damage due to vibration. These measurements will also be discussed in this paper. The vibration testing of the Stirling TDC was extremely successful. The TDC survived all its vibration testing with no structural damage or functional performance degradation. As a result of this testing, the Stirling convertor's capability to withstand vibration has been demonstrated, enabling its usage in future spacecraft power systems.

  4. Italian spring accelerometer (ISA) a high sensitive accelerometer for ``BepiColombo'' ESA CORNERSTONE

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Nozzoli, S.

    2001-12-01

    The targets of the ESA CORNERSTONE mission to Mercury "BepiColombo" are concerned with both planetary and magnetospheric physics and to test some aspects of the general relativity. A payload devoted to a set of experiments named radio science is located within one of the three proposed modules, the Mercury Planetary Orbiter (MPO). In particular, a high sensitivity accelerometer ( a min<10 -9√g/ Hz in the range 10 -4- 10 -1 Hz) will measure the inertial acceleration acting on the MPO. Such data, together with tracking data are used to evaluate the purely gravitational trajectory of the MPO, transforming it to a virtual drag-free satellite system. The ISA accelerometer, considered for this mission, is a well-studied instrument developed at the Istituto di Fisica dello Spazio Interplanetario (IFSI), with the financial support of the Agenzia Spaziale Italiana (ASI). A prototype of such an instrument was constructed, matching the requirements of the radio science experiment. Results of the study concerning the use of ISA in the BepiColombo mission are reported here, particular care being devoted to the description of the instrument and to its sensitivity and thermal stabilisation.

  5. Relative performance of several inexpensive accelerometers

    USGS Publications Warehouse

    Evans, John R.; Rogers, John A.

    1995-01-01

    We examined the performance of several low-cost accelerometers for highly cost-driven applications in recording earthquake strong motion. We anticipate applications for such sensors in providing the lifeline and emergency-response communities with an immediate, comprehensive picture of the extent and characteristics of likely damage. We also foresee their use as 'filler' instruments sited between research-grade instruments to provide spatially detailed and near-field records of large earthquakes (on the order of 1000 stations at 600-m intervals in San Fernando Valley, population 1.2 million, for example). The latter applications would provide greatly improved attenuation relationships for building codes and design, the first examples of mainshock information (that is, potentially nonlinear regime) for microzonation, and a suite of records for structural engineers. We also foresee possible applications in monitoring structural inter-story drift during earthquakes, possibly leading to local and remote alarm functions as well as design criteria. This effort appears to be the first of its type at the USGS. It is spurred by rapid advances in sensor technology and the recognition of potential non-classical applications. In this report, we estimate sensor noise spectra, relative transfer functions and cross-axis sensitivity of six inexpensive sensors. We tested three micromachined ('silicon-chip') sensors in addition to classical force-balance and piezoelectric examples. This sample of devices is meant to be representative, not comprehensive. Sensor noise spectra were estimated by recording system output with the sensor mounted on a pneumatically supported 545-kg optical-bench isolation table. This isolation table appears to limit ground motion to below our system noise level. These noise estimates include noise introduced by signal-conditioning circuitry, the analog-to-digital converter (ADC), and noise induced in connecting wiring by ambient electromagnetic fields in

  6. Strong Motion Seismograph Based On MEMS Accelerometer

    NASA Astrophysics Data System (ADS)

    Teng, Y.; Hu, X.

    2013-12-01

    The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The

  7. Calorimetric validation of the Caltrac accelerometer during level walking.

    PubMed

    Balogun, J A; Martin, D A; Clendenin, M A

    1989-06-01

    The primary purpose of this study was to compare the Caltrac accelerometer output with measured energy expenditure (Ee). Twenty-five volunteers (10 men, 15 women) walked on a level motor-driven treadmill at four different speeds (54, 81, 104, and 130 m.min-1) with the Caltrac device affixed to the waistline. Each of the four experimental trials lasted eight minutes, and the testing was completed within an hour. During the test, oxygen consumption (VO2) (in L.min-1 and in mL.kg-1.min-1) and nonprotein respiratory exchange ratio were monitored by the Beckman Horizon metabolic cart. The accelerometer output at the end of each exercise bout was also monitored and subsequently divided by 8 to convert the readings to counts.min-1. The mean VO2 (L.min-1) at steady state (ie, 6th-8th minutes of exercise) was converted to a caloric value. We obtained a moderate correlation coefficient (r) of .76 between the accelerometer output and the VO2 (mL.kg-1.min-1) and a high correlation coefficient of .92 between the Ee and the accelerometer readings. The Caltrac accelerometer output (counts.min-1) was significantly higher (p less than .01) than the Ee (kcal.min-1) at the four walking speeds. The difference between the accelerometer output and the Ee ranged from 13.3% to 52.9%. The data were further analyzed with linear, polynomial, multiple, and stepwise regression models. The results of the analyses revealed that the Caltrac accelerometer output is a valid predictor of Ee during level walking when the appropriate regression equation is used to adjust the values.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. A Comparison of PSD Enveloping Methods for Nonstationary Vibration

    NASA Technical Reports Server (NTRS)

    Irvine, Tom

    2015-01-01

    There is a need to derive a power spectral density (PSD) envelope for nonstationary acceleration time histories, including launch vehicle data, so that components can be designed and tested accordingly. This paper presents the results of the three methods for an actual flight accelerometer record. Guidelines are given for the application of each method to nonstationary data. The method can be extended to other scenarios, including transportation vibration.

  9. Structural vibration field test using optical flow analysis of a video sequence

    NASA Astrophysics Data System (ADS)

    Diamond, Dawie; Oberholster, Abrie; Heyns, Stephan

    2016-06-01

    This paper illustrates the use of Optical Flow (OF) video processing to measure structural vibration. This fairly new application of the technique has been validated under laboratory conditions and is now applied to measurements outside of the laboratory. It is demonstrated that the method is capable of identifying the first three vibration natural frequencies of the structure being measured. Validation data is obtained from an accelerometer.

  10. One testing method of dynamic linearity of an accelerometer

    NASA Astrophysics Data System (ADS)

    Lei, Jing-Yu; Guo, Wei-Guo; Tan, Xue-Ming; Shi, Yun-Bo

    2015-09-01

    To effectively test dynamic linearity of an accelerometer over a wide rang of 104 g to about 20 × 104g, one published patent technology is first experimentally verified and analysed, and its deficient is presented, then based on stress wave propagation theory on the thin long bar, the relation between the strain signal and the corresponding acceleration signal is obtained, one special link of two coaxial projectile is developed. These two coaxial metal cylinders (inner cylinder and circular tube) are used as projectiles, to prevent their mutual slip inside the gun barrel during movement, the one end of two projectiles is always fastened by small screws. Ti6-AL4-V bar with diameter of 30 mm is used to propagate loading stress pulse. The resultant compression wave can be measured by the strain gauges on the bar, and a half -sine strain pulse is obtained. The measuring accelerometer is attached on the other end of the bar by a vacuum clamp. In this clamp, the accelerometer only bear compression wave, the reflected tension pulse make the accelerometer off the bar. Using this system, dynamic linearity measurement of accelerometer can be easily tested in wider range of acceleration values. And a really measuring results are presented.

  11. Operational Data Reduction Procedure for Determining Density and Vertical Structure of the Martian Upper Atmosphere from Mars Global Surveyor Accelerometer Measurements

    NASA Technical Reports Server (NTRS)

    Cancro, George J.; Tolson, Robert H.; Keating, Gerald M.

    1998-01-01

    The success of aerobraking by the Mars Global Surveyor (MGS) spacecraft was partly due to the analysis of MGS accelerometer data. Accelerometer data was used to determine the effect of the atmosphere on each orbit, to characterize the nature of the atmosphere, and to predict the atmosphere for future orbits. To interpret the accelerometer data, a data reduction procedure was developed to produce density estimations utilizing inputs from the spacecraft, the Navigation Team, and pre-mission aerothermodynamic studies. This data reduction procedure was based on the calculation of aerodynamic forces from the accelerometer data by considering acceleration due to gravity gradient, solar pressure, angular motion of the MGS, instrument bias, thruster activity, and a vibration component due to the motion of the damaged solar array. Methods were developed to calculate all of the acceleration components including a 4 degree of freedom dynamics model used to gain a greater understanding of the damaged solar array. The total error inherent to the data reduction procedure was calculated as a function of altitude and density considering contributions from ephemeris errors, errors in force coefficient, and instrument errors due to bias and digitization. Comparing the results from this procedure to the data of other MGS Teams has demonstrated that this procedure can quickly and accurately describe the density and vertical structure of the Martian upper atmosphere.

  12. Random Vibrations

    NASA Technical Reports Server (NTRS)

    Messaro. Semma; Harrison, Phillip

    2010-01-01

    Ares I Zonal Random vibration environments due to acoustic impingement and combustion processes are develop for liftoff, ascent and reentry. Random Vibration test criteria for Ares I Upper Stage pyrotechnic components are developed by enveloping the applicable zonal environments where each component is located. Random vibration tests will be conducted to assure that these components will survive and function appropriately after exposure to the expected vibration environments. Methodology: Random Vibration test criteria for Ares I Upper Stage pyrotechnic components were desired that would envelope all the applicable environments where each component was located. Applicable Ares I Vehicle drawings and design information needed to be assessed to determine the location(s) for each component on the Ares I Upper Stage. Design and test criteria needed to be developed by plotting and enveloping the applicable environments using Microsoft Excel Spreadsheet Software and documenting them in a report Using Microsoft Word Processing Software. Conclusion: Random vibration liftoff, ascent, and green run design & test criteria for the Upper Stage Pyrotechnic Components were developed by using Microsoft Excel to envelope zonal environments applicable to each component. Results were transferred from Excel into a report using Microsoft Word. After the report is reviewed and edited by my mentor it will be submitted for publication as an attachment to a memorandum. Pyrotechnic component designers will extract criteria from my report for incorporation into the design and test specifications for components. Eventually the hardware will be tested to the environments I developed to assure that the components will survive and function appropriately after exposure to the expected vibration environments.

  13. Tomographic elastography of contracting skeletal muscles from their natural vibrations

    NASA Astrophysics Data System (ADS)

    Sabra, Karim G.; Archer, Akibi

    2009-11-01

    Conventional elastography techniques require an external mechanical or radiation excitation to measure noninvasively the viscoelastic properties of skeletal muscles and thus monitor human motor functions. We developed instead a passive elastography technique using only an array of skin-mounted accelerometers to record the low-frequency vibrations of the biceps brachii muscle naturally generated during voluntary contractions and to determine their two-dimensional directionality. Cross-correlating these recordings provided travel-times measurements of these muscle vibrations between multiple sensor pairs. Travel-time tomographic inversions yielded spatial variations of their propagation velocity during isometric elbow flexions which indicated a nonuniform longitudinal stiffening of the biceps.

  14. Development of a long-gauge vibration sensor

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.; Li, Qian; Zhang, Yiwei

    2014-11-01

    Recently, we found that by terminating a long length of fiber of up to 1 km with an in-fiber cavity structure, the entire structure can detect vibrations over a frequency range from 5 Hz to 100 Hz. We want to determine whether the structure (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to the maintenance cost. Similarly, it will help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that will require the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Then, at even higher frequencies, the structure can be useful to detect acoustic vibrations (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large reenforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed long-gauge vibration sensor depends on packaging.

  15. Development of a long-gauge vibration sensor

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Recently, we found that by terminating a long length of fiber of up to 2 km with an in-fiber cavity structure, the entire structure can detect vibrations over a frequency range from 5 Hz to 100 Hz. We want to determine whether the structure (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to the maintenance cost. Similarly, it will help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that will require the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Then, at even higher frequencies, the structure can be useful to detect acoustic vibrations (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large re-enforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed long-gauge vibration sensor depends on packaging.

  16. Description of the three axis low-g accelerometer package

    NASA Technical Reports Server (NTRS)

    Amalavage, A. J.; Fikes, E. H.; Berry, E. H.

    1978-01-01

    The three axis low-g accelerometer package designed for use on the Space Processing Application Rocket (SPAR) Program is described. The package consists of the following major sections: (1) three Kearfott model 2412 accelerometers mounted in an orthogonal triad configuration on a temperature controlled, thermally isolated cube, (2) the accelerometer servoelectronics (printed circuit cards PC-6 through PC-12), and (3) the signal conditioner (printed circuit cards PC-15 and PC-16). The measurement range is 0 + or - 0.031 g with a quantization of 1.1 x 10 to the 7th power g. The package was flown successfully on six SPAR launches with the Black Brant booster. These flights provide approximately 300 s of free fall or zero-g environment.

  17. The ISA accelerometer for BepiColombo mission .

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Fiorenza, E.; Lefevre, C.; Nozzoli, S.; Peron, R.; Reale, A.; Santoli, F.

    The Italian Spring Accelerometer (ISA) will give a fundamental contribution to the Radio Science Experiments of BepiColombo mission, enabling substantial improvement of the knowledge of Mercury's orbit and rotation, and of the relativistic dynamics in the solar system. ISA is a three-axis accelerometer devoted to the measurement of the non-gravitational acceleration of Mercury Planetary Orbiter (MPO), whose knowledge is important in order to fully exploit the quality of the tracking data. ISA shall have an intrinsic noise level of (10^{-9} m/s^2/&sqrt;{Hz}) in the (3 \\cdot 10^{-5}) Hz to (10^{-1}) Hz frequency range, to guarantee the fulfilment of the RSE scientific goals. A comprehensive presentation of ISA accelerometer is given, including details about its scientific and technological features, the updated measurement error budget, the ongoing experimental activities and foreseen calibration and science operations strategies.

  18. Design and Process Considerations for a Tunneling Tip Accelerometer

    NASA Technical Reports Server (NTRS)

    Paul M. Zavracky, Bob McClelland, Keith Warner, Neil Sherman, Frank Hartley

    1995-01-01

    In this paper, we discuss issues related to the fabrication of a bulk micromachined single axis accelerometer. The accelerometer is designed to have a full scale range of ten millig and a sensitivity of tens of nanog. During the process, three distinctly different die are fabricated. These are subsequently assembled using an ally bonding technique. During the bonding operation, electrical contacts are made between layers. The accelerometer is controlled by electrostatic force plates above and below the proof mass. The lower electrode has a dual role. In operation, it provides a necessary control electrode. When not in operation, it is used to clamp the proof mass and prevents its motion. Results of the fabrication process and initial testing of the clamping function are reported.

  19. Adapting MCM-D technology to a piezoresistive accelerometer packaging

    NASA Astrophysics Data System (ADS)

    Collado, A.; Plaza, J. A.; Cabruja, E.; Esteve, J.

    2003-07-01

    A silicon-on-silicon multichip module for a piezoresistive accelerometer is presented in this paper. This packaging technology, a type of wafer level packaging, offers fully complementary metal-oxide semiconductor compatible silicon substrates, so a pre-amplification stage can be included at substrate level. The electrical contacts and a partial sealing of the sensor mobile structures are performed at the same step using flip-chip technology, so the cost is reduced. As accelerometers are stress-sensitive devices, great care must be taken in the fabrication process and materials. Thus, test structures have been included to study the packaging effects. In this paper we report on the compatibility of accelerometer and wafer level packaging technologies.

  20. Micromachined force-balance feedback accelerometer with optical displacement detection

    SciTech Connect

    Nielson, Gregory N.; Langlois, Eric; Baker, Michael; Okandan, Murat; Anderson, Robert

    2014-07-22

    An accelerometer includes a proof mass and a frame that are formed in a handle layer of a silicon-on-an-insulator (SOI). The proof mass is separated from the frame by a back-side trench that defines a boundary of the proof mass. The accelerometer also includes a reflector coupled to a top surface of the proof mass. An optical detector is located above the reflector at the device side. The accelerometer further includes at least one suspension spring. The suspension spring has a handle anchor that extends downwards from the device side to the handle layer to mechanically support upward and downward movement of the proof mass relative to a top surface of the proof mass.

  1. Optical accelerometer design based on laser self-mixing interference

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Li, Xingfei; Kou, Ke; Zhang, Limin

    2015-03-01

    A novel optical accelerometer based on laser self-mixing effect is presented and experimentally demonstrated, which consists of a mass-loaded elastic-beam assembly and laser self-mixing interferometer. Under external acceleration, an inertial force is applied to the mass, flexible beams deflect from their equilibrium position. The deflection can be read out by the self-mixing interferometer. In order to reduce the impact of higher harmonic, wavelet analysis is introduced to remove singular points. Preliminary results indicate that the resolution is 0.19μg/Hz1/2 within a bandwidth of 100Hz. The optical accelerometer has the potential to achieve high-precision, compact accelerometers.

  2. Dynamic Loads Generation for Multi-Point Vibration Excitation Problems

    NASA Technical Reports Server (NTRS)

    Shen, Lawrence

    2011-01-01

    A random-force method has been developed to predict dynamic loads produced by rocket-engine random vibrations for new rocket-engine designs. The method develops random forces at multiple excitation points based on random vibration environments scaled from accelerometer data obtained during hot-fire tests of existing rocket engines. This random-force method applies random forces to the model and creates expected dynamic response in a manner that simulates the way the operating engine applies self-generated random vibration forces (random pressure acting on an area) with the resulting responses that we measure with accelerometers. This innovation includes the methodology (implementation sequence), the computer code, two methods to generate the random-force vibration spectra, and two methods to reduce some of the inherent conservatism in the dynamic loads. This methodology would be implemented to generate the random-force spectra at excitation nodes without requiring the use of artificial boundary conditions in a finite element model. More accurate random dynamic loads than those predicted by current industry methods can then be generated using the random force spectra. The scaling method used to develop the initial power spectral density (PSD) environments for deriving the random forces for the rocket engine case is based on the Barrett Criteria developed at Marshall Space Flight Center in 1963. This invention approach can be applied in the aerospace, automotive, and other industries to obtain reliable dynamic loads and responses from a finite element model for any structure subject to multipoint random vibration excitations.

  3. Vibration-based SHM System: Application to Wind Turbine Blades

    NASA Astrophysics Data System (ADS)

    Tcherniak, D.; Mølgaard, L. L.

    2015-07-01

    This study presents an vibration-based system designed for structural health monitoring of wind turbine blades. Mechanical energy is introduced by means of an electromechanical actuator mounted inside the blade. The actuator's plunger periodically hits the blade structure; the induced vibrations propagate along the blade and are measured by an array of accelerometers. Unsupervised learning is applied to the data: the vibration patterns corresponding to the undamaged blade are used to create a statistical model of the reference state. During the detection stage, the current vibration pattern is compared with the reference state, and the novelties can be associated with damage. The vibration pattern is described by the covariance matrix between the accelerometer signals. The mid-range frequencies are used: this range is above the frequencies excited by blade-wind interaction, thus ensuring a good signal-to-noise ratio. Simultaneously, the frequencies are low enough to be able to propagate the entire blade length, so good results can be obtained even using only one actuator. The system is demonstrated on a real 34m blade mounted on a test rig. Using the suggested approach, the system enables detection of, e.g., a 20cm long trailing edge opening under realistic noise conditions. It is also demonstrated that the system provides rough information about damage location. Progression of damage, if any, can also be detected.

  4. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to

  5. A bimorph flexural-disk accelerometer for underwater use

    SciTech Connect

    Moffett, M.B.; Powers, J.M.

    1996-04-01

    Design equations, based on Ralph Woollett{close_quote}s 1960 report [{open_quote}{open_quote}The Flexural Disk Transducer,{close_quote}{close_quote} U.S. Navy Underwater Sound Laboratory Research Report No. 490], are presented for a bimorph accelerometer. Figures-of-merit are compared for PZT-4, PZT-5A, PZT-5H, PZT-8 piezoceramics, and PVDF-TrFE copolymer. Neutrally buoyant, spherical and cylindrical accelerometer configurations can be designed to meet bandwidth, sensitivity, and depth requirements. Experimental results for PZT-8 bimorphs indicate that simply-supported edge conditions are easily achievable. {copyright} {ital 1996 American Institute of Physics.}

  6. Monitoring the Dynamic Deformation of the Bridge Structures by Accelerometers

    NASA Astrophysics Data System (ADS)

    Lipták, Imrich

    2013-10-01

    The paper presents current trends in determining the dynamic deformations of bridge structures through the exploitation of geodetic measurements by accelerometers. The main aim of the paper is to demonstrate the practical application of these measurements on the cycling bridge over the river Morava in Devínska Nová Ves. Possibilities for the processing and analysis of accelerometer measurements by spectral analysis are described. An evaluation of the results is realized based on the modal characteristics from a numerical model designed by the finite element method.

  7. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests.

    PubMed

    Kim, Hyun Chan; Song, Sangho; Kim, Jaehwan

    2016-01-01

    This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO) nanowire (NW) grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm², thus fitting the 1.8 × 1.8 mm² haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices. PMID:27649184

  8. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests

    PubMed Central

    Kim, Hyun Chan; Song, Sangho; Kim, Jaehwan

    2016-01-01

    This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO) nanowire (NW) grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices. PMID:27649184

  9. Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.

    2010-01-01

    The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.

  10. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests.

    PubMed

    Kim, Hyun Chan; Song, Sangho; Kim, Jaehwan

    2016-01-01

    This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO) nanowire (NW) grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm², thus fitting the 1.8 × 1.8 mm² haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices.

  11. Characterization of a roof tile-shaped out-of-plane vibrational mode in aluminum-nitride-actuated self-sensing micro-resonators for liquid monitoring purposes

    NASA Astrophysics Data System (ADS)

    Kucera, Martin; Wistrela, Elisabeth; Pfusterschmied, Georg; Ruiz-Díez, Víctor; Manzaneque, Tomás; Luis Sánchez-Rojas, José; Schalko, Johannes; Bittner, Achim; Schmid, Ulrich

    2014-06-01

    This Letter reports on an advanced out-of-plane bending mode for aluminum-nitride (AlN)-actuated cantilevers. Devices of different thickness were fabricated and characterized by optical and electrical measurements in air and liquid media having viscosities up to 615 cP and compared to the classical out-of-plane bending and torsional modes. Finite element method eigenmode analyses were performed showing excellent agreement with the measured mode shapes and resonance frequencies. Quality factors (Q-factor) and the electrical behavior were evaluated as a function of the cantilever thickness. A very high Q-factor of about 197 was achieved in deionized water at a low resonance frequency of 336 kHz, being up to now, the highest quality factor reported for cantilever sensors in liquid media. Compared to the quality factor of the common fundamental out-of-plane bending mode, a 5 times higher Q-factor was achieved. Furthermore, the strain related conductance peak of the roof tile-shaped mode is superior. Compared to any out-of-plane bending mode, this combination of most beneficial properties is unique and make this mode superior for a large variety of resonator-based sensing applications.

  12. Customized DSP-based vibration measurement for wind turbines

    SciTech Connect

    LaWhite, N.E.; Cohn, K.E.

    1996-12-31

    As part of its Advanced Distributed Monitoring System (ADMS) project funded by NREL, Second Wind Inc. is developing a new vibration measurement system for use with wind turbines. The system uses low-cost accelerometers originally designed for automobile airbag crash-detection coupled with new software executed on a Digital Signal Processor (DSP) device. The system is envisioned as a means to monitor the mechanical {open_quotes}health{close_quotes} of the wind turbine over its lifetime. In addition the system holds promise as a customized emergency vibration detector. The two goals are very different and it is expected that different software programs will be executed for each function. While a fast Fourier transform (FFT) signature under given operating conditions can yield much information regarding turbine condition, the sampling period and processing requirements make it inappropriate for emergency condition monitoring. This paper briefly reviews the development of prototype DSP and accelerometer hardware. More importantly, it reviews our work to design prototype vibration alarm filters. Two-axis accelerometer test data from the experimental FloWind vertical axis wind turbine is analyzed and used as a development guide. Two levels of signal processing are considered. The first uses narrow band pre-processing filters at key fundamental frequencies such as the 1P, 2P and 3P. The total vibration energy in each frequency band is calculated and evaluated as a possible alarm trigger. In the second level of signal processing, the total vibration energy in each frequency band is further decomposed using the two-axis directional information. Directional statistics are calculated to differentiate between linear translations and circular translations. After analyzing the acceleration statistics for normal and unusual operating conditions, the acceleration processing system described could be used in automatic early detection of fault conditions. 9 figs.

  13. Comb structure analysis of the capacitive sensitive element in MEMS-accelerometer

    NASA Astrophysics Data System (ADS)

    Shalimov, Andrew; Timoshenkov, Sergey; Korobova, Natalia; Golovinskiy, Maxim; Timoshenkov, Alexey; Zuev, Egor; Berezueva, Svetlana; Kosolapov, Andrey

    2015-05-01

    In this paper analysis of comb design for the sensing element MEMS accelerometer with longitudinal displacement of the inertial mass under the influence of acceleration to obtain the necessary parameters for the further construction of an electronic circuit for removal and signal processing has been done. Fixed on the stator the inertia mass has the ability to move under the influence of acceleration along the longitudinal structure. As a result the distance between the fixed and movable combs, and hence the capacitance in the capacitors have been changed. Measuring the difference of these capacitances you can estimate the value of the applied acceleration. Furthermore, managing combs that should apply an electrostatic force for artificial deviation of the inertial mass may be used for the initial sensitive elements culling. Also in this case there is a change of capacitances, which can be measured by the comb and make a decision about the spoilage presence or absence.

  14. Vibration analyzer

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1990-01-01

    The invention relates to monitoring circuitry for the real time detection of vibrations of a predetermined frequency and which are greater than a predetermined magnitude. The circuitry produces an instability signal in response to such detection. The circuitry is particularly adapted for detecting instabilities in rocket thrusters, but may find application with other machines such as expensive rotating machinery, or turbines. The monitoring circuitry identifies when vibration signals are present having a predetermined frequency of a multi-frequency vibration signal which has an RMS energy level greater than a predetermined magnitude. It generates an instability signal only if such a vibration signal is identified. The circuitry includes a delay circuit which responds with an alarm signal only if the instability signal continues for a predetermined time period. When used with a rocket thruster, the alarm signal may be used to cut off the thruster if such thruster is being used in flight. If the circuitry is monitoring tests of the thruster, it generates signals to change the thruster operation, for example, from pulse mode to continuous firing to determine if the instability of the thruster is sustained once it is detected.

  15. Self-noise models of five commercial strong-motion accelerometers

    USGS Publications Warehouse

    Ringler, Adam; Evans, John R.; Hutt, Charles R.

    2015-01-01

    To better characterize the noise of a number of commonly deployed accelerometers in a standardized way, we conducted noise measurements on five different models of strong‐motion accelerometers. Our study was limited to traditional accelerometers (Fig. 1) and is in no way exhaustive.

  16. Improved assembly processes for the Quartz Digital Accelerometer cantilever

    SciTech Connect

    Romero, A.M.; Gebert, C.T.

    1990-07-01

    This report covers the development of improved assembly processes for the Quartz Digital Accelerometer cantilever. In this report we discuss improved single-assembly tooling, the development of tooling and processes for precision application of polyimide adhesive, the development of the wafer scale assembly procedure, and the application of eutectic bonding to cantilever assembly. 2 refs., 17 figs.

  17. Validation of an accelerometer for measuring sport performance.

    PubMed

    Sato, Kimitake; Smith, Sarah L; Sands, William A

    2009-01-01

    Weightlifting technique is a well-studied subject with regard to standard biomechanical analysis that includes barbell velocity as well as barbell trajectory, but kinematic data such as barbell acceleration have not often been reported. Real-time or near-real-time feedback can be more helpful to coaches and athletes than delayed feedback. The purpose of this study was to validate measures obtained by a commercially available accelerometer in comparison with kinematic data derived from video. The hypothesis was that there would be a high positive relationship between accelerometer data and acceleration measures derived from video records of a barbell high-pull movement. Accelerometer values and kinematic data from high-speed video were obtained from 7 volunteers performing 2 trials each of a barbell high-pull. The results showed that the accelerometer measures were highly correlated with derived acceleration data from video (r = 0.94-0.99). On the basis of these results, the device was considered to be validated; thus, the unit may be a useful tool to measure acceleration during real-time training sessions rather than only reserved for collecting data in a laboratory setting. This device can be a valuable tool to provide instant feedback to coaches and athletes to assess individual barbell acceleration performance.

  18. Silicon-micromachined accelerometers for space inertial systems

    NASA Astrophysics Data System (ADS)

    Saha, I.; Islam, R.; Kanakaraju, K.; Jain, Yashwant K.; Alex, T. K.

    1999-11-01

    Accelerometers are key components of various motion control systems ranging in use from inertial guidance of rockets and satellite launch vehicles to safety applications in the automotive industry. The accelerometers that are used for spare inertial systems are characterized by high resolution, small bandwidth, large working range and excellent linearity. Current advances in this field are based on silicon micromachining. Silicon bulk and surface micromachined accelerometers offer advantages of reduced size and weight, less power consumption and the use of a fabrication process derived form an already well established semiconductor fab technology. Of the various approaches to silicon micromachined accelerometers, two are in a well advanced state of development. The first is the capacitive force balanced type and the second the piezoresistive type. The capacitive approach has the advantage of higher stability and resolution and lower temperature coefficients. But it requires proximal detection circuitry to prevent parasitics to overwhelm the circuit. A new approach reported recently uses a silicon micromachined cantilever beam which acts as a Fabry Perot interferometer when light form an optical fiber is impinged on it. In this paper we overview all the approaches and try to select a suitable candidate for use in space borne inertial systems.

  19. Standardizing accelerometer-based activity monitor calibration and output reporting.

    PubMed

    Coolbaugh, Crystal L; Hawkins, David A

    2014-08-01

    Wearable accelerometer-based activity monitors (AMs) are used to estimate energy expenditure and ground reaction forces in free-living environments, but a lack of standardized calibration and data reporting methods limits their utility. The objectives of this study were to (1) design an inexpensive and easily reproducible AM testing system, (2) develop a standardized calibration method for accelerometer-based AMs, and (3) evaluate the utility of the system and accuracy of the calibration method. A centrifuge-type device was constructed to apply known accelerations (0-8g) to each sensitive axis of 30 custom and two commercial AMs. Accelerometer data were recorded and matrix algebra and a least squares solution were then used to determine a calibration matrix for the custom AMs to convert raw accelerometer output to units of g's. Accuracy was tested by comparing applied and calculated accelerations for custom and commercial AMs. AMs were accurate to within 4% of applied accelerations. The relatively inexpensive AM testing system (< $100) and calibration method has the potential to improve the sharing of AM data, the ability to compare data from different studies, and the accuracy of AM-based models to estimate various physiological and biomechanical quantities of interest in field-based assessments of physical activity.

  20. Estimating Energy Expenditure with the RT3 Triaxial Accelerometer

    ERIC Educational Resources Information Center

    Maddison, Ralph; Jiang, Yannan; Vander Hoorn, Stephen; Mhurchu, Cliona Ni; Lawes, Carlene M. M.; Rodgers, Anthony; Rush, Elaine

    2009-01-01

    The RT3 is a relatively new triaxial accelerometer that has replaced the TriTrac. The aim of this study was to validate the RT3 against doubly labeled water (DLW) in a free-living, mixed weight sample of adults. Total energy expenditure (TEE) was measured over a 15-day period using DLW. Activity-related energy expenditure (AEE) was estimated by…

  1. Diurnal Cycles of Tree Mass Obtained Using Accelerometers

    NASA Astrophysics Data System (ADS)

    Llamas, R. A.; Niemeier, J. J.; Kruger, A.; Lintz, H. E.; Kleinknecht, G. J.; Miller, R. A.

    2013-12-01

    We used a non-invasive technique to estimate the mass of trees using accelerometers. The technique was inspired by Selker et al., 2011 who performed experiments with an oak tree to estimate the time-varying canopy mass. The technique consists of placing an accelerometer on the trunk of a live tree. The resonance frequency is related to the mass of the tree. Wind drives the tree and the accelerometer data are analyzed to obtain estimates of the resonance frequency and mass of the tree. In addition to wind speed and direction, we also collected ambient temperature and rain accumulation using co-located instruments. We collected data for 3 months using several accelerometers configured for different sampling rates. Analysis of the data revealed diurnal cycles in temperature, wind speed, and tree mass derived from the tree resonance frequency. We used the Welch method for power spectral density estimation to obtain hourly estimates of the tree resonance frequency. Our hypothesis is that the mass diurnal cycle is related to the tree water content.

  2. Joint angle estimation with accelerometers for dynamic postural analysis.

    PubMed

    Ma, Jianting; Kharboutly, Haissam; Benali, Abderraouf; Benamar, Faïz; Bouzit, Mourad

    2015-10-15

    This paper presents a new accelerometer based method for estimating the posture of a subject standing on a dynamic perturbation platform. The induced perturbation is used to study the control mechanisms as well as the balance requirements that regulate the upright standing. These perturbations are translated into different intensity levels of speed and acceleration along longitudinal and lateral directions of motion. In our method, the human posture is modeled by a tridimensional, three-segment inverted pendulum which simultaneously takes into account both the anterior-posterior and medio-lateral strategies of hip and ankle. Four tri-axial accelerometers are used her, one accelerometer is placed on the platform, and the other three are attached to a human subject. Based on the results, the joint angle estimated compare closely to measurements from magnetic encoders placed on an articulated arm joint. The results were also comparable to those found when using a high-end optical motion capture system coupled with advanced biomechanical simulation software. This paper presents the comparisons of our accelerometer-based method with encoder and optical marker based method of the estimated joint angles under different dynamics perturbations. PMID:26338097

  3. Micromachined low frequency rocking accelerometer with capacitive pickoff

    DOEpatents

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  4. Joint angle estimation with accelerometers for dynamic postural analysis.

    PubMed

    Ma, Jianting; Kharboutly, Haissam; Benali, Abderraouf; Benamar, Faïz; Bouzit, Mourad

    2015-10-15

    This paper presents a new accelerometer based method for estimating the posture of a subject standing on a dynamic perturbation platform. The induced perturbation is used to study the control mechanisms as well as the balance requirements that regulate the upright standing. These perturbations are translated into different intensity levels of speed and acceleration along longitudinal and lateral directions of motion. In our method, the human posture is modeled by a tridimensional, three-segment inverted pendulum which simultaneously takes into account both the anterior-posterior and medio-lateral strategies of hip and ankle. Four tri-axial accelerometers are used her, one accelerometer is placed on the platform, and the other three are attached to a human subject. Based on the results, the joint angle estimated compare closely to measurements from magnetic encoders placed on an articulated arm joint. The results were also comparable to those found when using a high-end optical motion capture system coupled with advanced biomechanical simulation software. This paper presents the comparisons of our accelerometer-based method with encoder and optical marker based method of the estimated joint angles under different dynamics perturbations.

  5. Accelerometer body sensor network improves systolic time interval assessment with wearable ballistocardiography.

    PubMed

    Wiens, Andrew D; Inan, Omer T

    2015-01-01

    Systolic time intervals (STI) are non-invasive measures of cardiac function. Due to the fact that STI can be measured noninvasively outside the clinic, STI are a promising method for long-term monitoring of patients with cardiovascular disease. In particular, the pre-ejection period (PEP) has been measured successfully from body vibrations of the beating heart, a technique called ballistocardiography (BCG), using a weighing scale. Similar measurements can be made with on-body accelerometers, however these wearable BCG signals are typically more challenging to interpret than whole-body BCG. In this paper, we conducted a small pilot study with four subjects to investigate whether a body sensor network of four accelerometers positioned on the wrist, arm, sternum, and head could improve beat-by-beat PEP prediction beyond that of each sensor alone. Linear models were fitted from the R-J and R-I intervals of the four BCG signals to PEP measured with impedance cardiography from 5-minute recordings after isometric lower-body exercise. Specifically, we found that (i) the RMS error of PEP estimation from the wearable BCG sensors can be reduced by using double integration, (ii) the standard deviation of PEP estimates from R-I intervals was smaller than from R-J intervals, and (iii) linear models combining both R-J and R-I measurements from all sensors resulted in the best average correlation (r(2) = 0.96 ± 0.01) and lowest average root mean square error (2.5 ± 0.8 ms) from 5×2-fold cross validation.

  6. GPS-Based Reduced Dynamic Orbit Determination Using Accelerometer Data

    NASA Technical Reports Server (NTRS)

    VanHelleputte, Tom; Visser, Pieter

    2007-01-01

    Currently two gravity field satellite missions, CHAMP and GRACE, are equipped with high sensitivity electrostatic accelerometers, measuring the non-conservative forces acting on the spacecraft in three orthogonal directions. During the gravity field recovery these measurements help to separate gravitational and non-gravitational contributions in the observed orbit perturbations. For precise orbit determination purposes all these missions have a dual-frequency GPS receiver on board. The reduced dynamic technique combines the dense and accurate GPS observations with physical models of the forces acting on the spacecraft, complemented by empirical accelerations, which are stochastic parameters adjusted in the orbit determination process. When the spacecraft carries an accelerometer, these measured accelerations can be used to replace the models of the non-conservative forces, such as air drag and solar radiation pressure. This approach is implemented in a batch least-squares estimator of the GPS High Precision Orbit Determination Software Tools (GHOST), developed at DLR/GSOC and DEOS. It is extensively tested with data of the CHAMP and GRACE satellites. As accelerometer observations typically can be affected by an unknown scale factor and bias in each measurement direction, they require calibration during processing. Therefore the estimated state vector is augmented with six parameters: a scale and bias factor for the three axes. In order to converge efficiently to a good solution, reasonable a priori values for the bias factor are necessary. These are calculated by combining the mean value of the accelerometer observations with the mean value of the non-conservative force models and empirical accelerations, estimated when using these models. When replacing the non-conservative force models with accelerometer observations and still estimating empirical accelerations, a good orbit precision is achieved. 100 days of GRACE B data processing results in a mean orbit fit of

  7. VibeComm: Radio-Free Wireless Communication for Smart Devices Using Vibration

    PubMed Central

    Hwang, Inhwan; Cho, Jungchan; Oh, Songhwai

    2014-01-01

    This paper proposes VibeComm, a novel communication method for smart devices using a built-in vibrator and accelerometer. The proposed approach is ideal for low-rate off-line communication, and its communication medium is an object on which smart devices are placed, such as tables and desks. When more than two smart devices are placed on an object and one device wants to transmit a message to the other devices, the transmitting device generates a sequence of vibrations. The vibrations are propagated through the object on which the devices are placed. The receiving devices analyze their accelerometer readings to decode incoming messages. The proposed method can be the alternative communication method when general types of radio communication methods are not available. VibeComm is implemented on Android smartphones, and a comprehensive set of experiments is conducted to show its feasibility. PMID:25390406

  8. Vibration in operating heavy haul trucks in overburden mining.

    PubMed

    Kumar, Shrawan

    2004-11-01

    The objective of this study was to determine if the vibration in sagittal (x), coronal (y) and vertical (z) axes of the seat pan of the heavy haul trucks used in overburden mining, and the vibration experienced by the drivers at the third lumbar and seventh cervical vertebral levels in operating these trucks exceeded the ISO standards, thereby posing threat to safety. A new and an old truck of two different makes and different carrying capacities (200 and 300 series) were instrumented with a triaxial accelerometer on the seat pan. Fourteen drivers (8 male and 6 female) were instrumented with a triaxial accelerometer at C7 and L3 spinous processes. The vibration at the seat pan, C7, and L3 levels were recorded using an onboard computer with PCMCIA card and, compared against the ISO standards. The vertical vibration of the seat pan in the entire sample ranged from a low of .37 m/s2 to a high of 11.73 m/s2. The vibration at the lumbar level in the sample ranged between .34 and 2.72 m/s2. The values for cervical level vertical vibration in the sample ranged between .2 and 2.22 m/s2. The gender of the driver, truck make, and it's carrying capacity did not have a significant effect on the vibration. However, the body weight of the driver, the segment of the truck and the site of measurement revealed significant differences in vibration (p < 0.001). Out of a total 36 combinations (4 trucks x 9 recording locations) the seat pan vertical vibration exceeded the ISO standards 8 times for males and 9 times for females. The lumbar vertebral vertical vibration in males exceeded ISO standards 12 times and in females 11 times. The cervical vertebral vertical vibration exceeded ISO standards once in females only. However, in sagittal and coronal planes the whole body vibration exceeded the ISO standards many times. Heavy haul trucks (240 and 320 ton capacity) frequently generated vibrations in excess of ISO standards in overburden mining operation representing a health hazard.

  9. Vibration Analysis of the Space Shuttle External Tank Cable Tray Flight Data With and Without PAL Ramp

    NASA Technical Reports Server (NTRS)

    Walker, Bruce E.; Panda, Jayanta; Sutliff, Daniel L.

    2008-01-01

    External Tank Cable Tray vibration data for three successive Space Shuttle flights were analyzed to assess response to buffet and the effect of removal of the Protuberance Air Loads (PAL) ramp. Waveform integration, spectral analysis, cross-correlation analysis and wavelet analysis were employed to estimate vibration modes and temporal development of vibration motion from a sparse array of accelerometers and an on-board system that acquired 16 channels of data for approximately the first 2 min of each flight. The flight data indicated that PAL ramp removal had minimal effect on the fluctuating loads on the cable tray. The measured vibration frequencies and modes agreed well with predicted structural response.

  10. Vibration Analysis of the Space Shuttle External Tank Cable Tray Flight Data with and without PAL Ramp

    NASA Technical Reports Server (NTRS)

    Walker, B. E.; Panda, B. E.; Sutliff, D. L.

    2008-01-01

    External Tank Cable Tray vibration data for three successive Space Shuttle flights were analyzed to assess response to buffet and the effect of removal of the Protuberance Air Loads (PAL) ramp. Waveform integration, spectral analysis, cross-correlation analysis and wavelet analysis were employed to estimate vibration modes and temporal development of vibration motion from a sparse array of accelerometers and an on-board system that acquired 16 channels of data for approximately the first two minutes of each flight. The flight data indicated that PAL ramp removal had minimal effect on the fluctuating loads on the cable tray. The measured vibration frequencies and modes agreed well with predicted structural response.

  11. Variable-Tension-Cord Suspension/Vibration-Isolation System

    NASA Technical Reports Server (NTRS)

    Villemarette, Mark L.; Boston, Joshua; RInks, Judith; Felice, Pat; Stein, Tim; Payne, Patrick

    2006-01-01

    A system for mechanical suspension and vibration isolation of a machine or instrument is based on the use of Kevlar (or equivalent aromatic polyamide) cord held in variable tension between the machine or instrument and a surrounding frame. The basic concept of such a tensioned-cord suspension system (including one in which the cords are made of aromatic polyamide fibers) is not new by itself; what is new here is the additional provision for adjusting the tension during operation to optimize vibration- isolation properties. In the original application for which this system was conceived, the objective is to suspend a reciprocating cryocooler aboard a space shuttle and to prevent both (1) transmission of launch vibrations to the cryocooler and (2) transmission of vibrations from the cryocooler to samples in a chamber cooled by the cryocooler. The basic mechanical principle of this system can also be expected to be applicable to a variety of other systems in which there are requirements for cord suspension and vibration isolation. The reciprocating cryocooler of the original application is a generally axisymmetric object, and the surrounding frame is a generally axisymmetric object with windows (see figure). Two cords are threaded into a spoke-like pattern between attachment rings on the cryocooler, holes in the cage, and cord-tension- adjusting assemblies. Initially, the cord tensions are adjusted to at least the level necessary to suspend the cryocooler against gravitation. Accelerometers for measuring vibrations are mounted (1) on the cold tip of the cryocooler and (2) adjacent to the cage, on a structure that supports the cage. During operation, a technician observes the accelerometer outputs on an oscilloscope while manually adjusting the cord tensions in an effort to minimize the amount of vibration transmitted to and/or from the cryocooler. A contemplated future version of the system would include a microprocessor-based control subsystem that would include cord

  12. High-temperature piezoelectric sensing.

    PubMed

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2013-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  13. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  14. Low-cost vibration sensor based on dual fiber Bragg gratings and light intensity measurement.

    PubMed

    Gao, Xueqing; Wang, Yongjiao; Yuan, Bo; Yuan, Yinquan; Dai, Yawen; Xu, Gang

    2013-09-20

    A vibration monitoring system based on light intensity measurement has been constructed, and the designed accelerometer is based on steel cantilever frame and dual fiber Bragg gratings (FBGs). By using numerical simulations for the dual FBGs, the dependence relationship of the area of main lobes on the difference of initial central wavelengths is obtained and the most optimal choice for the initial value and the vibration amplitude of the difference of central wavelengths of two FBGs is suggested. The vibration monitoring experiments are finished, and the measured data are identical to the simulated results.

  15. Good Vibrations

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A Small Business Innovation Research (SBIR) sponsorship from NASA's Dryden Flight Research Center, assisted MetroLaser, of Irvine, California, in the development of a self-aligned laser vibrometer system. VibroMet, capable of measuring surface vibrations in a variety of industries, provides information on the structural integrity and acoustical characteristics of manufactured products. This low-cost, easy-to-use sensor performs vibration measurement from distances of up to three meters without the need for adjustment. The laser beam is simply pointed at the target and the system then uses a compact laser diode to illuminate the surface and to subsequently analyze the reflected light. The motion of the surface results in a Doppler shift that is measured with very high precision. VibroMet is considered one of the many behind-the-scenes tools that can be relied on to assure the quality, reliability and safety of everything from airplane panels to disk brakes

  16. Damage monitoring and impact detection using optical fiber vibration sensors

    NASA Astrophysics Data System (ADS)

    Yang, Y. C.; Han, K. S.

    2002-06-01

    Intensity-based optical fiber vibrations sensors (OFVSs) are used in damage monitoring of fiber-reinforced plastics, in vibration sensing, and location of impacts. OFVSs were constructed by placing two cleaved fiber ends in a capillary tube. This sensor is able to monitor structural vibrations. For vibration sensing, the optical fiber sensor was mounted on the carbon fiber reinforced composite beam, and its response was investigated for free and forced vibration. For locating impact points, four OFVSs were placed at chosen positions and the different arrival times of impact-generated vibration signals were recorded. The impact location can be determined from these time delays. Indentation and tensile tests were performed with the measurement of the optical signal and acoustic emission (AE). The OFVSs accurately detected both free and forced vibration signals. Accurate locations of impact were determined on an acrylate plate. It was found that damage information, comparable in quality to AE data, could be obtained from the OFVS signals.

  17. Driving an Active Vibration Balancer to Minimize Vibrations at the Fundamental and Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Holliday, Ezekiel S. (Inventor)

    2014-01-01

    Vibrations of a principal machine are reduced at the fundamental and harmonic frequencies by driving the drive motor of an active balancer with balancing signals at the fundamental and selected harmonics. Vibrations are sensed to provide a signal representing the mechanical vibrations. A balancing signal generator for the fundamental and for each selected harmonic processes the sensed vibration signal with adaptive filter algorithms of adaptive filters for each frequency to generate a balancing signal for each frequency. Reference inputs for each frequency are applied to the adaptive filter algorithms of each balancing signal generator at the frequency assigned to the generator. The harmonic balancing signals for all of the frequencies are summed and applied to drive the drive motor. The harmonic balancing signals drive the drive motor with a drive voltage component in opposition to the vibration at each frequency.

  18. Interferometric vibration sensor using phase-generated carrier method.

    PubMed

    Li, Yang; Liu, Zhibo; Liu, Yan; Ma, Lin; Tan, Zhongwei; Jian, Shuisheng

    2013-09-01

    An interferometric fiber-optic vibration sensing system using the phase-generated carrier (PGC) method is proposed and experimentally demonstrated. The sensing section consists of a Sagnac interferometer combined with a Mach-Zehnder interferometer, a length of sensing fiber is shared between the two interferometers. The PGC demodulation scheme is used to demodulate the time-varying phase shifts induced by vibrations. Spatial information can be extracted from the demodulated results. A prototype sensing system with a 628 m long sensing fiber has been tested and a spatial resolution better than 12 m is successfully achieved.

  19. A high and low noise model for strong motion accelerometers

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Cauzzi, C.; Olivieri, M.

    2010-12-01

    We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; <155dB dynamic range) coupled with a 24-bit Nanometrics Taurus datalogger. The proposed noise models are based on power spectral density (PSD) noise levels for each strong motion station computed via PQLX (McNamara and Buland, 2004) from several years of continuous recording. The 'Accelerometer Low Noise Model', ALNM, is dominated by instrument noise from the sensor and datalogger. The 'Accelerometer High Noise Model', AHNM, reflects 1) at high frequencies the acceptable site noise in urban areas, 2) at mid-periods the peak microseismal energy, as determined by the Peterson High Noise Model and 3) at long periods the maximum noise observed from well insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular

  20. Sensing temperature.

    PubMed

    Sengupta, Piali; Garrity, Paul

    2013-04-22

    Temperature is an omnipresent physical variable reflecting the rotational, vibrational and translational motion of matter, what Richard Feynman called the "jiggling" of atoms. Temperature varies across space and time, and this variation has dramatic effects on the physiology of living cells. It changes the rate and nature of chemical reactions, and it alters the configuration of the atoms that make up nucleic acids, proteins, lipids and other biomolecules, significantly affecting their activity. While life may have started in a "warm little pond", as Charles Darwin mused, the organisms that surround us today have only made it this far by devising sophisticated systems for sensing and responding to variations in temperature, and by using these systems in ways that allow them to persist and thrive in the face of thermal fluctuation.

  1. DuraNode: wireless-networked sensing system for structural safety monitoring

    NASA Astrophysics Data System (ADS)

    Chung, H.; Park, C.; Xie, Q.; Chou, P.; Shinozuka, M.

    2005-05-01

    DuraNode is a sensing system designed for structural monitoring. It can detect the damage of structural members, provide crucial intelligence information of structural integrity and activate emergency response mechanism in the initial stages of a disaster. The sensor encompasses three MEMS-type accelerometers (SD-1221) and Wi-Fi (802.11b) communication adapter. It operates on solar power and rechargeable battery making it last for long term service without battery replacement. DuraNodes can be deployed in the form of a dense wireless network to enable seamless acquisition of structural intelligence in a complex structural system. A preliminary data acquisition and signal display module with graphic user interface (GUI) has been developed for connection of access points in ad-hoc networking. To validate the performance of DuraNode in structural monitoring applications, experiments were conducted on measuring vibration of a Pedestrian bridge in UC, Irvine, and a two-column bridge bent specimen with a Shake-table test in University of Neveda, Reno. Results were compared with that from conventional wired sensors and showed that DuraNode is cost-effective for carrying out robust sensing functions in the structural safety monitoring missions.

  2. Tendon reflex is suppressed during whole-body vibration.

    PubMed

    Karacan, Ilhan; Cidem, Muharrem; Yilmaz, Gizem; Sebik, Oguz; Cakar, Halil Ibrahim; Türker, Kemal Sıtkı

    2016-10-01

    In this study we have investigated the effect of whole body vibration (WBV) on the tendon reflex (T-reflex) amplitude. Fifteen young adult healthy volunteer males were included in this study. Records of surface EMG of the right soleus muscle and accelerometer taped onto the right Achilles tendon were obtained while participant stood upright with the knees in extension, on the vibration platform. Tendon reflex was elicited before and during WBV. Subjects completed a set of WBV. Each WBV set consisted of six vibration sessions using different frequencies (25, 30, 35, 40, 45, 50Hz) applied randomly. In each WBV session the Achilles tendon was tapped five times with a custom-made reflex hammer. The mean peak-to-peak (PP) amplitude of T-reflex was 1139.11±498.99µV before vibration. It decreased significantly during WBV (p<0.0001). The maximum PP amplitude of T-reflex was 1333±515μV before vibration. It decreased significantly during WBV (p<0.0001). No significant differences were obtained in the mean acceleration values of Achilles tendon with tapping between before and during vibration sessions. This study showed that T-reflex is suppressed during WBV. T-reflex suppression indicates that the spindle primary afferents must have been pre-synaptically inhibited during WBV similar to the findings in high frequency tendon vibration studies. PMID:27485766

  3. Primary mirror dynamic disturbance models for TMT: vibration and wind

    NASA Astrophysics Data System (ADS)

    MacMynowski, Douglas G.; Colavita, M. Mark; Skidmore, Warren; Vogiatzis, Konstantinos

    2010-07-01

    The principal dynamic disturbances acting on a telescope segmented primary mirror are unsteady wind pressure (turbulence) and narrowband vibration from rotating equipment. Understanding these disturbances is essential for the design of the segment support assembly (SSA), segment actuators, and primary mirror control system (M1CS). The wind disturbance is relatively low frequency, and is partially compensated by M1CS; the response depends on the control bandwidth and the quasi-static stiffness of the actuator and SSA. Equipment vibration is at frequencies higher than the M1CS bandwidth; the response depends on segment damping, and the proximity of segment support resonances to dominant vibration tones. We present here both disturbance models and parametric response. Wind modeling is informed by CFD and based on propagation of a von Karman pressure screen. The vibration model is informed by analysis of accelerometer and adaptive optics data from Keck. This information is extrapolated to TMT and applied to the telescope structural model to understand the response dependence on actuator design parameters in particular. Whether the vibration response or the wind response is larger depends on these design choices; "soft" (e.g. voice-coil) actuators provide better vibration reduction but require high servo bandwidth for wind rejection, while "hard" (e.g. piezo-electric) actuators provide good wind rejection but require damping to avoid excessive vibration transmission to the primary mirror segments. The results for both nominal and worst-case disturbances and design parameters are incorporated into the TMT actuator performance assessment.

  4. Understanding Vibration Spectra of Planetary Gear Systems for Fault Detection

    NASA Technical Reports Server (NTRS)

    Mosher, Marianne

    2003-01-01

    An understanding of the vibration spectra is very useful for any gear fault detection scheme based upon vibration measurements. The vibration measured from planetary gears is complicated. Sternfeld noted the presence of sidebands about the gear mesh harmonics spaced at the planet passage frequency in spectra measured near the ring gear of a CH-47 helicopter. McFadden proposes a simple model of the vibration transmission that predicts high spectral amplitudes at multiples of the planet passage frequency, for planetary gears with evenly spaced planets. This model correctly predicts no strong signal at the meshing frequency when the number of teeth on the ring gear is not an integer multiple of the number of planets. This paper will describe a model for planetary gear vibration spectra developed from the ideas started in reference. This model predicts vibration to occur only at frequencies that are multiples of the planet repetition passage frequency and clustered around gear mesh harmonics. Vibration measurements will be shown from tri-axial accelerometers mounted on three different planetary gear systems and compared with the model. The model correctly predicts the frequencies with large components around the first several gear mesh harmonics in measurements for systems with uniformly and nonuniformly spaced planet gears. Measurements do not confirm some of the more detailed features predicted by the model. Discrepancies of the ideal model to the measurements are believed due to simplifications in the model and will be discussed. Fault detection will be discussed applying the understanding will be discussed.

  5. Kappa Delta Award. Low back pain and whole body vibration.

    PubMed

    Pope, M H; Magnusson, M; Wilder, D G

    1998-09-01

    The investigators describe their multifaceted approach to the study of the relationship between whole body vibration and low back pain. The epidemiologic study was a two center study of drivers and sedentary workers in the United States and Sweden. The vibration exposure was measured in the vehicles. It was found that the career vibration exposure was related to low back, neck, and shoulder pain. However, disability was related to job satisfaction. In vivo experiments, using percutaneous pin mounted accelerometers have shown that the natural frequency is at 4.5 Hz. The frequency response is affected by posture, seating, and seat back inclination. The response appears to be determined largely by the rocking of the pelvis. Electromyographic studies have shown that muscle fatigue occurs under whole body vibration. After whole body vibration exposure the muscle response to a sudden load has greater latency. Vehicle driving may be a reason for low back pain or herniated nucleus pulposus. Prolonged seating exposure, coupled with the whole body vibration, should be reduced for those recovering from these problems. Vibration attenuating seats and correct ergonomic layout of the cabs may reduce the risks of recurrence. PMID:9755785

  6. Transfer of tennis racket vibrations onto the human forearm.

    PubMed

    Hennig, E M; Rosenbaum, D; Milani, T L

    1992-10-01

    One of several factors suspected in the development of lateral epicondylitis, often referred to as tennis elbow, is the impact-induced vibration of the racket-and-arm system at ball contact. Using two miniature accelerometers at the wrist and the elbow of 24 tennis players, the effects of 23 different tennis racket constructions were evaluated in a simulated backhand stroke situation. The influences of body weight, skill level, and tennis racket construction onto the magnitude of vibrations at wrist and elbow were investigated. Amplitudes, integrals, and fourier components were used to characterize arm vibration. More than fourfold reductions in acceleration amplitude and integral were found between wrist and elbow. Off-center as compared with center ball impacts resulted in approximately three times increased acceleration values. Between subjects, body weight as well as skill level were found to influence arm vibration. Compared with proficient players, a group of less skilled subjects demonstrated increased vibration loads on the arm. Between different racket constructions, almost threefold differences in acceleration values could be observed. Increased racket head size as well as a higher resonance frequency of the racket were found to reduce arm vibration. The vibration at the arm after ball impact showed a strong inverse relationship (r = -0.88) with the resonance frequency of tennis rackets.

  7. Tendon reflex is suppressed during whole-body vibration.

    PubMed

    Karacan, Ilhan; Cidem, Muharrem; Yilmaz, Gizem; Sebik, Oguz; Cakar, Halil Ibrahim; Türker, Kemal Sıtkı

    2016-10-01

    In this study we have investigated the effect of whole body vibration (WBV) on the tendon reflex (T-reflex) amplitude. Fifteen young adult healthy volunteer males were included in this study. Records of surface EMG of the right soleus muscle and accelerometer taped onto the right Achilles tendon were obtained while participant stood upright with the knees in extension, on the vibration platform. Tendon reflex was elicited before and during WBV. Subjects completed a set of WBV. Each WBV set consisted of six vibration sessions using different frequencies (25, 30, 35, 40, 45, 50Hz) applied randomly. In each WBV session the Achilles tendon was tapped five times with a custom-made reflex hammer. The mean peak-to-peak (PP) amplitude of T-reflex was 1139.11±498.99µV before vibration. It decreased significantly during WBV (p<0.0001). The maximum PP amplitude of T-reflex was 1333±515μV before vibration. It decreased significantly during WBV (p<0.0001). No significant differences were obtained in the mean acceleration values of Achilles tendon with tapping between before and during vibration sessions. This study showed that T-reflex is suppressed during WBV. T-reflex suppression indicates that the spindle primary afferents must have been pre-synaptically inhibited during WBV similar to the findings in high frequency tendon vibration studies.

  8. High-speed system for FBG-based measurements of vibration and sound

    NASA Astrophysics Data System (ADS)

    Karabacak, Devrez M.; Ibrahim, Selwan K.; Koumans, Yorick; Meulblok, Bastiaan; Knoppers, Rik

    2016-05-01

    Fiber Bragg Gratings (FBGs) allow for optical detection of localized physical effects without the need to couple the light out and back into a fiber, enabling robust and multiplexed sensor systems. The need of combining wide bandwidth and high resolution for dynamic sensing applications, like acoustics and vibrations, has presented significant challenges for FBG-based solutions. Here, we present a novel FBG-based measurement system enabled by using high-speed and highprecision tunable laser-based optical interrogation scheme. Multiple levels of integrated wavelength referencing coupled with low-noise high-speed electronics allow for spectral feature tracking at a resolution of <20 fm at kHz-frequencies. In combination with fiber accelerometers that employ unique force transmission mechanisms, amplifying strain on the Bragg grating and increasing the resonance frequency of the transducer, resolutions <10 μg (150 Hz bandwidth) to submg resolution in kHz-frequencies is achieved. Similarly, compact wavelength-multiplexed hydrophones with wide range linearity and dynamic range, sub-Pa resolution and flat-sensitivity down to static pressures are demonstrated. The sensors are demonstrated to be customizable to application-specific requirements, and designed to be scalable to large quantity reproducible manufacturing. In contrast to interferometry-based solutions, the tunable swept-laser detection scheme in combination with strain-based FBG sensors provides a cost-effective system that allows for easy scaling of sensor counts per fiber with multiple fibers being simultaneously recorded. Finally, the integrated high accuracy triggering and hybrid measurement capabilities present the potential to monitor sounds and vibrations in a wide range of applications from seismic surveys to machine and structural monitoring applications in harsh environments.

  9. Guidelines for Standardized Testing of Broadband Seismometers and Accelerometers

    USGS Publications Warehouse

    Hutt, Charles R.; Evans, John R.; Followill, Fred; Nigbor, Robert L.; Wielandt, Erhard

    2010-01-01

    Testing and specification of seismic and earthquake-engineering sensors and recorders has been marked by significant variations in procedures and selected parameters. These variations cause difficulty in comparing such specifications and test results. In July 1989, and again in May 2005, the U.S. Geological Survey hosted international pub-lic/private workshops with the goal of defining widely accepted guidelines for the testing of seismological inertial sensors, seismometers, and accelerometers. The Proceedings of the 2005 workshop have been published and include as appendix 6 the report of the 1989 workshop. This document represents a collation and rationalization of a single set of formal guidelines for testing and specifying broadband seismometers and accelerometers.

  10. Planetary Gearbox Fault Detection Using Vibration Separation Techniques

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    Studies were performed to demonstrate the capability to detect planetary gear and bearing faults in helicopter main-rotor transmissions. The work supported the Operations Support and Sustainment (OSST) program with the U.S. Army Aviation Applied Technology Directorate (AATD) and Bell Helicopter Textron. Vibration data from the OH-58C planetary system were collected on a healthy transmission as well as with various seeded-fault components. Planetary fault detection algorithms were used with the collected data to evaluate fault detection effectiveness. Planet gear tooth cracks and spalls were detectable using the vibration separation techniques. Sun gear tooth cracks were not discernibly detectable from the vibration separation process. Sun gear tooth spall defects were detectable. Ring gear tooth cracks were only clearly detectable by accelerometers located near the crack location or directly across from the crack. Enveloping provided an effective method for planet bearing inner- and outer-race spalling fault detection.

  11. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  12. Magnetic torquer induced disturbing signals within GRACE accelerometer data

    NASA Astrophysics Data System (ADS)

    Peterseim, Nadja; Flury, Jakob; Schlicht, Anja

    2012-05-01

    The GRACE (Gravity Recovery And Climate Experiment) gravity field satellite mission was launched in 2002. Although many investigations have been carried out, not all disturbances and perturbations upon satellite instruments and sensors are resolved yet. In this work the issue of acceleration disturbances onboard of GRACE due to magnetic torquers is investigated and discussed. Each of the GRACE satellites is equipped with a three-axes capacitive accelerometer to measure non-gravitational forces acting on the spacecraft. We used 10 Hz Level 1a raw accelerometer data in order to determine the impact of electric current changes on the accelerometer. After reducing signals which are induced by highly dominating processes in the low frequency range, such as thermospheric drag and solar radiation pressure, which can easily be done by applying a high-pass filter, disturbing signals from onboard instruments such as thruster firing events or heater switch events need to be removed from the previously filtered data. Afterwards the spikes which are induced by the torquers can be very well observed. Spikes vary in amplitude with respect to an increasing or decreasing current used for magnetic torquers, and can be as large as 20 nm/s2. Furthermore, we were able to set up a model for the spikes of each scenario with which we were able to compute model spike time series. With these time series the spikes can successfully be removed from the 10 Hz raw accelerometer data. Spectral analysis of the time series reveal that an influence onto gravity field determination due to these effects is very unlikely, but can theoretically not be excluded.

  13. Teaching elementary mechanics using a simple 'bubble tube' accelerometer

    NASA Astrophysics Data System (ADS)

    Bunker, C. A.

    1986-09-01

    Most people would probably like a direct-reading accelerometer which will give acceleration immediately and which may be used to confirm Newton's second law quickly and simply without the need for the excessive use of ticker timers. The article describes such an instrument for use in these experiments and in many others too: in particular, it enables what might be thought of as a revolutionary approach to circular motion.

  14. Microelectromechanical power generator and vibration sensor

    DOEpatents

    Roesler, Alexander W.; Christenson, Todd R.

    2006-11-28

    A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

  15. Determination of gait events using an externally mounted shank accelerometer.

    PubMed

    Sinclair, Jonathan; Hobbs, Sarah J; Protheroe, Laurence; Edmundson, Christopher J; Greenhalgh, Andrew

    2013-02-01

    Biomechanical analysis requires the determination of specific foot contact events. This is typically achieved using force platform information; however, when force platforms are unavailable, alternative methods are necessary. A method was developed for the determination of gait events using an accelerometer mounted to the distal tibia, measuring axial accelerations. The aim of the investigation was to determine the efficacy of this method. Sixteen participants ran at 4.0 m/s ± 5%. Synchronized tibial accelerations and vertical ground reaction forces were sampled at 1000 Hz as participants struck a force platform with their dominant foot. Events determined using the accelerometer, were compared with the corresponding events determined using the force platform. Mean errors of 1.68 and 5.46 ms for average and absolute errors were observed for heel strike and of -3.59 and 5.00 ms for toe-off. Mean and absolute errors of 5.18 and 11.47 ms were also found for the duration of the stance phase. Strong correlations (r = .96) were also observed between duration of stance obtained using the two different methods. The error values compare favorably to other alternative methods of predicting gait events. This suggests that shank-mounted accelerometers can be used to accurately and reliably detect gait events.

  16. Huygens HASI servo accelerometer: A review and lessons learned

    NASA Astrophysics Data System (ADS)

    Hathi, B.; Ball, A. J.; Colombatti, G.; Ferri, F.; Leese, M. R.; Towner, M. C.; Withers, P.; Fulchigioni, M.; Zarnecki, J. C.

    2009-10-01

    The servo accelerometer constituted a vital part of the Huygens Atmospheric Structure Instrument (HASI): flown aboard the Huygens probe, it operated successfully during the probe's entry, descent, and landing on Titan, on 14th January 2005. This paper reviews the Servo accelerometer, starting from its development/assembly in the mid-1990s, to monitoring its technical performance through its seven-year long in-flight (or cruise) journey, and finally its performance in measuring acceleration (or deceleration) upon encountering Titan's atmosphere. The aim of this article is to review the design, ground tests, in-flight tests and operational performance of the Huygens servo accelerometer. Techniques used for data analysis and lessons learned that may be useful for accelerometry payloads on future planetary missions are also addressed. The main finding of this review is that the conventional approach of having multiple channels to cover a very broad measurement range: from 10 -6g to the order of 10 g (where g=Earth's surface gravity, 9.8 m/s 2), with on-board software deciding which of the channels to telemeter depending on the magnitude of the measured acceleration, works well. However, improvements in understanding the potential effects of the sensor drifts and ageing on the measurements can be achieved in future missions by monitoring the 'scale factor' - a measure of such sensors' sensitivity, along with the already implemented monitoring of the sensor's offset during the in-flight phase.

  17. Determination of gait events using an externally mounted shank accelerometer.

    PubMed

    Sinclair, Jonathan; Hobbs, Sarah J; Protheroe, Laurence; Edmundson, Christopher J; Greenhalgh, Andrew

    2013-02-01

    Biomechanical analysis requires the determination of specific foot contact events. This is typically achieved using force platform information; however, when force platforms are unavailable, alternative methods are necessary. A method was developed for the determination of gait events using an accelerometer mounted to the distal tibia, measuring axial accelerations. The aim of the investigation was to determine the efficacy of this method. Sixteen participants ran at 4.0 m/s ± 5%. Synchronized tibial accelerations and vertical ground reaction forces were sampled at 1000 Hz as participants struck a force platform with their dominant foot. Events determined using the accelerometer, were compared with the corresponding events determined using the force platform. Mean errors of 1.68 and 5.46 ms for average and absolute errors were observed for heel strike and of -3.59 and 5.00 ms for toe-off. Mean and absolute errors of 5.18 and 11.47 ms were also found for the duration of the stance phase. Strong correlations (r = .96) were also observed between duration of stance obtained using the two different methods. The error values compare favorably to other alternative methods of predicting gait events. This suggests that shank-mounted accelerometers can be used to accurately and reliably detect gait events. PMID:23462448

  18. Optical Readout of Micro-Accelerometer Code Features

    SciTech Connect

    Dickey, Fred M.; Holswade, Scott C.; Polosky, Marc A.; Shagam, Richard N.; Sullivan, Charles T.

    1999-07-08

    Micromachine accelerometers offer a way to enable critical functions only when a system encounters a particular acceleration environment. This paper describes the optical readout of a surface micromachine accelerometer containing a unique 24-bit code. The readout uses waveguide-based optics, which are implemented as a photonic integrated circuit (PIC). The PIC is flip-chip bonded over the micromachine, for a compact package. The shuttle moves 500 {micro}m during readout, and each code element is 17 {micro}m wide. The particular readout scheme makes use of backscattered radiation from etched features in the accelerometer shuttle. The features are etched to create corner reflectors that return radiation back toward the source for a one bit. For a zero bit, the shuttle is not etched, and the radiation scatters forward, away from the detector. This arrangement provides a large signal difference between a one and zero signal, since the zero signal returns virtually no signal to the detector. It is thus superior to schemes that interrogate the code vertically, which have a limited contrast between a one and a zero. Experimental results are presented for mock shuttle features etched into a silicon substrate. To simulate the shuttle moving under a fixed PIC, a commercially available waveguide source was scanned over the mock code.

  19. Characterization of Train-Induced Vibration and its Effect on Fecal Corticosterone Metabolites in Mice.

    PubMed

    Atanasov, Nicholas A; Sargent, Jennifer L; Parmigiani, John P; Palme, Rupert; Diggs, Helen E

    2015-11-01

    Excessive environmental vibrations can have deleterious effects on animal health and experimental results, but they remain poorly understood in the animal laboratory setting. The aims of this study were to characterize train-associated vibration in a rodent vivarium and to assess the effects of this vibration on the reproductive success and fecal corticosterone metabolite levels of mice. An instrumented cage, featuring a high-sensitivity microphone and accelerometer, was used to characterize the vibrations and sound in a vivarium that is near an active railroad. The vibrations caused by the passing trains are 3 times larger in amplitude than are the ambient facility vibrations, whereas most of the associated sound was below the audible range for mice. Mice housed in the room closest to the railroad tracks had pregnancy rates that were 50% to 60% lower than those of mice of the same strains but bred in other parts of the facility. To verify the effect of the train vibrations, we used a custom-built electromagnetic shaker to simulate the train-induced vibrations in a controlled environment. Fecal pellets were collected from male and female mice that were exposed to the simulated vibrations and from unexposed control animals. Analysis of the fecal samples revealed that vibrations similar to those produced by a passing train can increase the levels of fecal corticosterone metabolites in female mice. These increases warrant attention to the effects of vibration on mice and, consequently, on reproduction and experimental outcomes.

  20. Characterization of Train-Induced Vibration and its Effect on Fecal Corticosterone Metabolites in Mice

    PubMed Central

    Atanasov, Nicholas A; Sargent, Jennifer L; Parmigiani, John P; Palme, Rupert; Diggs, Helen E

    2015-01-01

    Excessive environmental vibrations can have deleterious effects on animal health and experimental results, but they remain poorly understood in the animal laboratory setting. The aims of this study were to characterize train-associated vibration in a rodent vivarium and to assess the effects of this vibration on the reproductive success and fecal corticosterone metabolite levels of mice. An instrumented cage, featuring a high-sensitivity microphone and accelerometer, was used to characterize the vibrations and sound in a vivarium that is near an active railroad. The vibrations caused by the passing trains are 3 times larger in amplitude than are the ambient facility vibrations, whereas most of the associated sound was below the audible range for mice. Mice housed in the room closest to the railroad tracks had pregnancy rates that were 50% to 60% lower than those of mice of the same strains but bred in other parts of the facility. To verify the effect of the train vibrations, we used a custom-built electromagnetic shaker to simulate the train-induced vibrations in a controlled environment. Fecal pellets were collected from male and female mice that were exposed to the simulated vibrations and from unexposed control animals. Analysis of the fecal samples revealed that vibrations similar to those produced by a passing train can increase the levels of fecal corticosterone metabolites in female mice. These increases warrant attention to the effects of vibration on mice and, consequently, on reproduction and experimental outcomes. PMID:26632783

  1. Characterization of Train-Induced Vibration and its Effect on Fecal Corticosterone Metabolites in Mice.

    PubMed

    Atanasov, Nicholas A; Sargent, Jennifer L; Parmigiani, John P; Palme, Rupert; Diggs, Helen E

    2015-11-01

    Excessive environmental vibrations can have deleterious effects on animal health and experimental results, but they remain poorly understood in the animal laboratory setting. The aims of this study were to characterize train-associated vibration in a rodent vivarium and to assess the effects of this vibration on the reproductive success and fecal corticosterone metabolite levels of mice. An instrumented cage, featuring a high-sensitivity microphone and accelerometer, was used to characterize the vibrations and sound in a vivarium that is near an active railroad. The vibrations caused by the passing trains are 3 times larger in amplitude than are the ambient facility vibrations, whereas most of the associated sound was below the audible range for mice. Mice housed in the room closest to the railroad tracks had pregnancy rates that were 50% to 60% lower than those of mice of the same strains but bred in other parts of the facility. To verify the effect of the train vibrations, we used a custom-built electromagnetic shaker to simulate the train-induced vibrations in a controlled environment. Fecal pellets were collected from male and female mice that were exposed to the simulated vibrations and from unexposed control animals. Analysis of the fecal samples revealed that vibrations similar to those produced by a passing train can increase the levels of fecal corticosterone metabolites in female mice. These increases warrant attention to the effects of vibration on mice and, consequently, on reproduction and experimental outcomes. PMID:26632783

  2. Three Three-Axis IEPE Accelerometers on the Inner Liner of a Tire for Finding the Tire-Road Friction Potential Indicators.

    PubMed

    Niskanen, Arto; Tuononen, Ari J

    2015-08-05

    Direct tire-road contact friction estimation is essential for future autonomous cars and active safety systems. Friction estimation methods have been proposed earlier for driving conditions in the presence of a slip angle or slip ratio. However, the estimation of the friction from a freely-rolling tire is still an unsolved topic. Knowing the existing friction potential would be beneficial since vehicle control systems could be adjusted before any remarkable tire force has been produced. Since accelerometers are well-known and robust, and thus a promising sensor type for intelligent tires, this study uses three three-axis IEPE accelerometers on the inner liner of a tire to detect friction potential indicators on two equally smooth surfaces with different friction levels. The equal roughness was chosen for both surfaces in order to study the friction phenomena by neglecting the effect of surface texture on vibrations. The acceleration data before the contact is used to differentiate the two friction levels between the tire and the road. In addition, the contact lengths from the three accelerometers are used to validate the acceleration data. A method to differentiate the friction levels on the basis of the acceleration signal is also introduced.

  3. Three Three-Axis IEPE Accelerometers on the Inner Liner of a Tire for Finding the Tire-Road Friction Potential Indicators †

    PubMed Central

    Niskanen, Arto; Tuononen, Ari J.

    2015-01-01

    Direct tire-road contact friction estimation is essential for future autonomous cars and active safety systems. Friction estimation methods have been proposed earlier for driving conditions in the presence of a slip angle or slip ratio. However, the estimation of the friction from a freely-rolling tire is still an unsolved topic. Knowing the existing friction potential would be beneficial since vehicle control systems could be adjusted before any remarkable tire force has been produced. Since accelerometers are well-known and robust, and thus a promising sensor type for intelligent tires, this study uses three three-axis IEPE accelerometers on the inner liner of a tire to detect friction potential indicators on two equally smooth surfaces with different friction levels. The equal roughness was chosen for both surfaces in order to study the friction phenomena by neglecting the effect of surface texture on vibrations. The acceleration data before the contact is used to differentiate the two friction levels between the tire and the road. In addition, the contact lengths from the three accelerometers are used to validate the acceleration data. A method to differentiate the friction levels on the basis of the acceleration signal is also introduced. PMID:26251914

  4. Three Three-Axis IEPE Accelerometers on the Inner Liner of a Tire for Finding the Tire-Road Friction Potential Indicators.

    PubMed

    Niskanen, Arto; Tuononen, Ari J

    2015-01-01

    Direct tire-road contact friction estimation is essential for future autonomous cars and active safety systems. Friction estimation methods have been proposed earlier for driving conditions in the presence of a slip angle or slip ratio. However, the estimation of the friction from a freely-rolling tire is still an unsolved topic. Knowing the existing friction potential would be beneficial since vehicle control systems could be adjusted before any remarkable tire force has been produced. Since accelerometers are well-known and robust, and thus a promising sensor type for intelligent tires, this study uses three three-axis IEPE accelerometers on the inner liner of a tire to detect friction potential indicators on two equally smooth surfaces with different friction levels. The equal roughness was chosen for both surfaces in order to study the friction phenomena by neglecting the effect of surface texture on vibrations. The acceleration data before the contact is used to differentiate the two friction levels between the tire and the road. In addition, the contact lengths from the three accelerometers are used to validate the acceleration data. A method to differentiate the friction levels on the basis of the acceleration signal is also introduced. PMID:26251914

  5. A novel sandwich differential capacitive accelerometer with symmetrical double-sided serpentine beam-mass structure

    NASA Astrophysics Data System (ADS)

    Xiao, D. B.; Li, Q. S.; Hou, Z. Q.; Wang, X. H.; Chen, Z. H.; Xia, D. W.; Wu, X. Z.

    2016-02-01

    This paper presents a novel differential capacitive silicon micro-accelerometer with symmetrical double-sided serpentine beam-mass sensing structure and glass-silicon-glass sandwich structure. The symmetrical double-sided serpentine beam-mass sensing structure is fabricated with a novel pre-buried mask fabrication technology, which is convenient for manufacturing multi-layer sensors. The glass-silicon-glass sandwich structure is realized by a double anodic bonding process. To solve the problem of the difficulty of leading out signals from the top and bottom layer simultaneously in the sandwich sensors, a silicon pillar structure is designed that is inherently simple and low-cost. The prototype is fabricated and tested. It has low noise performance (the peak to peak value is 40 μg) and μg-level Allan deviation of bias (2.2 μg in 1 h), experimentally demonstrating the effectiveness of the design and the novel fabrication technology.

  6. Comparison of Four Actigraph Accelerometers During Walking and Running

    PubMed Central

    John, Dinesh; Tyo, Brian; Bassett, David R.

    2009-01-01

    Currently, researchers can use the Actigraph 7164 or one of three different versions of the Actigraph GT1M to objectively measure physical activity. Purpose To determine if differences exist between activity counts from the Actigraph 7164 and the three versions of the GT1M at given walking and running speeds. Methods Ten male participants (23.6 ± 2.7 yrs) completed treadmill walking and running at ten different speeds (3-minute stages) while wearing either the Actigraph 7164 and the latest GT1M (GT1M-V3) or GT1M version one (GT1M-V1) and GT1M version two (GT1M-V2). Participants walked at 3, 5, and at 7 km˙hr−1 followed by running at 8, 10, 12, 14, 16, 18, and 20 km˙hr−1. The accelerometers were worn on an elastic belt around the waist over the left and right hips. Testing was performed on different days using a counterbalanced within-subjects design to account for potential differences attributable to accelerometer placement. At each speed, a one-way repeated measures ANOVA was used to examine differences between activity counts in counts˙min−1(cpm). Post-hoc pairwise comparisons with Bonferroni adjustments were used where appropriate. Results There were no significant differences between activity counts at any given walking or running speed (p<0.05). At all running speeds, activity counts from the Actigraph 7164 and GT1M-V2 displayed the lowest and highest values, respectively. Output from all accelerometers peaked at 14 km˙hr−1 (mean range: 8974 ± 677 to 9412 ± 982 cpm) and then gradually declined at higher speeds. The mean difference score at peak output between the Actigraph 7164 and GT1M-V2 was 439 ± 565 cpm. Conclusions There were no statistically significant differences between outputs from all the accelerometers indicating that researchers can select any of the four Actigraph accelerometers to do research. PMID:19927022

  7. Possible Mechanisms of Low Back Pain due to Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Pope, M. H.; Wilder, D. G.; Magnusson, M.

    1998-08-01

    The investigators describe their multifaceted approach to the study of the relationship between whole-body vibration and low back pain.In vitroexperiments, using percutaneous pin-mounted accelerometers have shown that the natural frequency is at 4·5 Hz. The frequency response was affected by posture, seating, and seat-back inclination. The response appears to be largely determined by the rocking of the pelvis. Electromyographic studies have shown that muscle fatigue occurs under whole body vibration. After whole body vibration exposure the muscle response to a sudden load has greater latency. Vehicle driving may be a reason for low back pain or herniated nucleus pulposus. Prolonged seating exposure, coupled with the whole body vibration should be reduced for those recovering from these problems. Vibration attenuating seats, and correct ergonomic layout of the cabs may reduce the risks of recurrence.

  8. Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle

    PubMed Central

    Bencsik, Martin; Le Conte, Yves; Reyes, Maritza; Pioz, Maryline; Whittaker, David; Crauser, Didier; Simon Delso, Noa; Newton, Michael I.

    2015-01-01

    Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time. PMID:26580393

  9. Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle.

    PubMed

    Bencsik, Martin; Le Conte, Yves; Reyes, Maritza; Pioz, Maryline; Whittaker, David; Crauser, Didier; Simon Delso, Noa; Newton, Michael I

    2015-01-01

    Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time. PMID:26580393

  10. Note: vibration reduction control of an atomic force microscope using an additional cantilever.

    PubMed

    Kim, Chulsoo; Jung, Jongkyu; Park, Kyihwan

    2011-11-01

    Since an atomic force microscope is used to measure sub-nanometer level precision, it is sensitive to external vibration. If the vibration can be measured by using an additional sensor, we can obtain the vibration-free signal by subtracting the vibration signal from the signal containing the vibration. To achieve a highly effective vibration rejection ratio, it is important to decide where to locate the additional sensor. This is because the vibration measured at the sensing position should have the same phase as that of the vibration in the signal. Vibration reduction control using this electrical sensing method is verified through time domain analysis and topology images of a standard grid sample.

  11. Accelerometer Adherence and Performance in a Cohort Study of US Hispanic Adults

    PubMed Central

    Evenson, Kelly R.; Sotres-Alvarez, Daniela; Deng, Yu; Marshall, Simon J.; Isasi, Carmen R.; Esliger, Dale W.; Davis, Sonia

    2014-01-01

    Purpose This study described participant adherence to wearing the accelerometer and accelerometer performance in a cohort study of adults. Methods From 2008-2011, 16,415 United States (US) Hispanic/Latino adults age 18-74 years enrolled in the Hispanic Community Health Study/Study of Latinos. Immediately following the baseline visit, participants wore an Actical accelerometer for one week. This study explored correlates of accelerometer participation and adherence, defined as wearing it for at least 3 of a possible days for >=10 hours/day. Accelerometer performance was assessed by exploring the number of different values of accelerometer counts/minute for each participant. Results Overall, 92.3% (n=15,153) had at least one day with accelerometer data and 77.7% (n=12,750) were adherent. Both accelerometer participation and adherence were higher among participants who were married or partnered, reported a higher household income, were first generation immigrants, or reported lower sitting time. Participation was also higher among those with no stair limitations. Adherence was higher among participants who were male, older, employed or retired, not US born, preferred Spanish over English, reported higher work activity or lower recreational activity, and those with a lower body mass index. Among the sample that met the adherence definition, the maximum recorded count/minute was 12,000, and there were a total of 5,846 different counts/minute. On average, participants had 112.5 different counts/minute over 6 days (median 106, interquartile range 91-122). The number of different counts/minute were higher among men, younger ages, normal weight, and those with higher accelerometer assessed physical activity. Conclusion Several correlates differed between accelerometer participation and adherence. These characteristics could be targeted in future studies to improve accelerometer wear. The performance of the accelerometer provided insight into creating a more accurate non

  12. Using consumer electronic devices to estimate whole-body vibration exposure.

    PubMed

    Wolfgang, Rebecca; Burgess-Limerick, Robin

    2014-01-01

    The cost and complexity of commercially available devices for measuring whole-body vibration is a barrier to the systematic collection of the information required to manage this hazard at workplaces. The potential for a consumer electronic device to be used to estimate whole-body vibration was assessed by use of an accelerometer calibrator, and by collecting 42 simultaneous pairs of measurements from a fifth-generation iPod Touch and one of two gold standard vibration measurement devices (Svantech SV111 [Svantech, Warsaw, Poland] or Brüel & Kjær 4447 [Brüel & Kjær Sound & Vibration Measurement A/S, Nærum, Denmark]) while driving light vehicles on a variety of different roadway surfaces. While sampling rate limitations make the accelerometer data collected from the iPod Touch unsuitable for frequency analysis, the vibration amplitudes recorded are sufficiently accurate (errors less than 0.1 m/s(2)) to assist workplaces manage whole-body vibration exposures.

  13. Imaging photorefractive optical vibration measurement method and device

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.; Hale, Thomas C.

    2000-01-01

    A method and apparatus are disclosed for characterizing a vibrating image of an object of interest. The method includes providing a sensing media having a detection resolution within a limited bandwidth and providing an object of interest having a vibrating medium. Two or more wavefronts are provided, with at least one of the wavefronts being modulated by interacting the one wavefront with the vibrating medium of the object of interest. The another wavefront is modulated such that the difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. The modulated one wavefront and another wavefront are combined in association with the sensing media to interfere and produce simultaneous vibration measurements that are distributed over the object so as to provide an image of the vibrating medium. The image has an output intensity that is substantially linear with small physical variations within the vibrating medium. Furthermore, the method includes detecting the image. In one implementation, the apparatus comprises a vibration spectrum analyzer having an emitter, a modulator, sensing media and a detector configured so as to realize such method. According to another implementation, the apparatus comprises a vibration imaging device.

  14. Effect of skin-transmitted vibration enhancement on vibrotactile perception.

    PubMed

    Tanaka, Yoshihiro; Ueda, Yuichiro; Sano, Akihito

    2015-06-01

    Vibration on skin elicited by the mechanical interaction of touch between the skin and an object propagates to skin far from the point of contact. This paper investigates the effect of skin-transmitted vibration on vibrotactile perception. To enhance the transmission of high-frequency vibration on the skin, stiff tape was attached to the skin so that the tape covered the bottom surface of the index finger from the periphery of the distal interphalangeal joint to the metacarpophalangeal joint. Two psychophysical experiments with high-frequency vibrotactile stimuli of 250 Hz were conducted. In the psychophysical experiments, discrimination and detection thresholds were estimated and compared between conditions of the presence or the absence of the tape (normal bare finger). A method of limits was applied for the detection threshold estimation, and the discrimination task using a reference stimulus and six test stimuli with different amplitudes was applied for the discrimination threshold estimation. The stimulation was given to bare fingertips of participants. Result showed that the detection threshold was enhanced by attaching the tape, and the discrimination threshold enhancement by attaching the tape was confirmed for participants who have relatively large discrimination threshold under normal bare finger. Then, skin-transmitted vibration was measured with an accelerometer with the psychophysical experiments. Result showed that the skin-transmitted vibration when the tape was attached to the skin was larger than that when normal bare skin. There is a correlation between the increase in skin-transmitted vibration and the enhancement of the discrimination threshold.

  15. Inertial Sensor Development for Active Vibration

    SciTech Connect

    Frisch, Josef C

    2003-05-21

    Future Linear Colliders require nanometer stability of the beams at the interaction point. One approach to stabilizing the beams is to use feedback based on inertial sensors (accelerometers / seismometers) to control the positions of the final focus magnets. Commercial seismometers developed for geo-science applications have sufficient noise performance (nanometer noise down to a fraction of a hertz), but due to their large size and magnetic sensitivity are unsuitable for use in a linear collider detector. We report on the development of a high sensitivity, compact, non-magnetic inertial sensor for this application. In addition to its use in linear colliders, the sensor is also expected to have application in vibration measurement and control in synchrotron light sources.

  16. Optical fiber sensor for membrane submicrometer vibration measurement.

    PubMed

    Prokopczuk, Krzysztof; Rozwadowski, Krzysztof; Aleksandra Starzyńska, M D; Domański, Andrzej W

    2014-09-10

    This paper presents an optical fiber sensor for membrane submicrometer vibration measurement. The sensor is designed ultimately for low-cost medical audiometric applications such as determining the mobility of the tympanic membrane stimulated by the tone. The sensing method is minimally invasive, and the sensing head does not contact the surface of the membrane. Measurements were performed on tympanic membrane phantoms. Deflections of a few nanometers were measured, and vibration maps of phantoms were taken.

  17. System Wide Joint Position Sensor Fault Tolerance in Robot Systems Using Cartesian Accelerometers

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    Joint position sensors are necessary for most robot control systems. A single position sensor failure in a normal robot system can greatly degrade performance. This paper presents a method to obtain position information from Cartesian accelerometers without integration. Depending on the number and location of the accelerometers. the proposed system can tolerate the loss of multiple position sensors. A solution technique suitable for real-time implementation is presented. Simulations were conducted using 5 triaxial accelerometers to recover from the loss of up to 4 joint position sensors on a 7 degree of freedom robot moving in general three dimensional space. The simulations show good estimation performance using non-ideal accelerometer measurements.

  18. Chemical and biological sensing using tuning forks

    SciTech Connect

    Tao, Nongjian; Boussaad, Salah

    2012-07-10

    A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.

  19. Tennis Racket Vibrations and Shock Transmission to the Wrist during Forehand Drive.

    PubMed

    Rogowski, Isabelle; Creveaux, Thomas; Triquigneaux, Sylvain; Macé, Pierre; Gauthier, Fabien; Sevrez, Violaine

    2015-01-01

    This study aimed to investigate the effects of two different racket models and two different forehand drive velocities on the three-dimensional vibration behavior of the racket and shock transmission to the player's wrist under real playing conditions. Nine tennis players performed a series of crosscourt flat forehand drives at two velocities, using a lightly and a highly vibrant racket. Two accelerometers were fixed on the racket frame and the player's wrist. The analysis of vibration signals in both time and frequency domains showed no interaction effect of velocity and racket conditions either on the racket vibration behavior or on shock transmission. An increase in playing velocity enlarged the amount of vibrations at the racket and wrist, but weakly altered their frequency content. As compared to a racket perceived as highly vibrating, a racket perceived as lightly vibrating damped longer in the out-of-plane axis of the racket and shorter on the other axis of the racket and on the wrist, and displayed a lower amount of energy in the high frequency of the vibration signal at the racket and wrist. These findings indicated that the playing velocity must be controlled when investigating the vibration loads due to the racket under real playing conditions. Similarly, a reduced perception of vibration by the tennis player would be linked to decreased amplitude of the racket vibration signal, which may concentrate the signal energy in the low frequencies. PMID:26177373

  20. Tennis Racket Vibrations and Shock Transmission to the Wrist during Forehand Drive.

    PubMed

    Rogowski, Isabelle; Creveaux, Thomas; Triquigneaux, Sylvain; Macé, Pierre; Gauthier, Fabien; Sevrez, Violaine

    2015-01-01

    This study aimed to investigate the effects of two different racket models and two different forehand drive velocities on the three-dimensional vibration behavior of the racket and shock transmission to the player's wrist under real playing conditions. Nine tennis players performed a series of crosscourt flat forehand drives at two velocities, using a lightly and a highly vibrant racket. Two accelerometers were fixed on the racket frame and the player's wrist. The analysis of vibration signals in both time and frequency domains showed no interaction effect of velocity and racket conditions either on the racket vibration behavior or on shock transmission. An increase in playing velocity enlarged the amount of vibrations at the racket and wrist, but weakly altered their frequency content. As compared to a racket perceived as highly vibrating, a racket perceived as lightly vibrating damped longer in the out-of-plane axis of the racket and shorter on the other axis of the racket and on the wrist, and displayed a lower amount of energy in the high frequency of the vibration signal at the racket and wrist. These findings indicated that the playing velocity must be controlled when investigating the vibration loads due to the racket under real playing conditions. Similarly, a reduced perception of vibration by the tennis player would be linked to decreased amplitude of the racket vibration signal, which may concentrate the signal energy in the low frequencies.

  1. Tennis Racket Vibrations and Shock Transmission to the Wrist during Forehand Drive

    PubMed Central

    Rogowski, Isabelle; Creveaux, Thomas; Triquigneaux, Sylvain; Macé, Pierre; Gauthier, Fabien; Sevrez, Violaine

    2015-01-01

    This study aimed to investigate the effects of two different racket models and two different forehand drive velocities on the three-dimensional vibration behavior of the racket and shock transmission to the player’s wrist under real playing conditions. Nine tennis players performed a series of crosscourt flat forehand drives at two velocities, using a lightly and a highly vibrant racket. Two accelerometers were fixed on the racket frame and the player’s wrist. The analysis of vibration signals in both time and frequency domains showed no interaction effect of velocity and racket conditions either on the racket vibration behavior or on shock transmission. An increase in playing velocity enlarged the amount of vibrations at the racket and wrist, but weakly altered their frequency content. As compared to a racket perceived as highly vibrating, a racket perceived as lightly vibrating damped longer in the out-of-plane axis of the racket and shorter on the other axis of the racket and on the wrist, and displayed a lower amount of energy in the high frequency of the vibration signal at the racket and wrist. These findings indicated that the playing velocity must be controlled when investigating the vibration loads due to the racket under real playing conditions. Similarly, a reduced perception of vibration by the tennis player would be linked to decreased amplitude of the racket vibration signal, which may concentrate the signal energy in the low frequencies. PMID:26177373

  2. Noncontact Electromagnetic Vibration Source

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Fulton, James P.; Wincheski, Buzz A.

    1994-01-01

    Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.

  3. Interest of the MICROSTAR Accelerometer to improve the GRASP Mission.

    NASA Astrophysics Data System (ADS)

    Perrot, E.; Lebat, V.; Foulon, B.; Christophe, B.; Liorzou, F.; Huynh, P. A.

    2015-12-01

    The Geodetic Reference Antenna in Space (GRASP) is a micro satellite mission concept proposed by JPL to improve the definition of the Terrestrial Reference Frame (TRF). GRASP collocates GPS, SLR, VLBI, and DORIS sensors on a dedicated spacecraft in order to establish precise and stable ties between the key geodetic techniques used to define and disseminate the TRF. GRASP also offers a space-based reference antenna for the present and future Global Navigation Satellite Systems (GNSS). By taking advantage of the new testing possibilities offer by the catapult facility at the ZARM drop tower, the ONERA's space accelerometer team proposes an up-dated version, called MICROSTAR, of its ultra sensitive electrostatic accelerometers which have contributed to the success of the last Earth's gravity missions GRACE and GOCE. Built around a cubic proof-mass, it provides the 3 linear accelerations with a resolution better than 10-11 ms-2/Hz1/2 into a measurement bandwidth between 10-3 Hz and 0.1 Hz and the 3 angular accelerations about its 3 orthogonal axes with 5´10-10 rad.s-2/Hz1/2 resolution. Integrated at the centre of mass of the satellite, MICROSTAR improves the Precise Orbit Determination (POD) by accurate measurement of the non-gravitational force acting on the satellite. It offers also the possibility to calibrate the change in the position of the satellite center of mass with an accuracy better than 100 μm as demonstrated in the GRACE mission. Assuming a sufficiently rigid structure between the antennas and the accelerometer, its data can participate to reach the mission objective of 1 mm precision for the TRF position.

  4. Distributed Computing and MEMS Accelerometers: The Quake Catcher Network

    NASA Astrophysics Data System (ADS)

    Lawrence, J. F.; Cochran, E. S.; Christensen, C.; Jakka, R. S.

    2008-12-01

    Recent advances in distributed computing provide exciting opportunities for seismic data collection. We are in the early stages of implementing a high density, low cost strong-motion network for rapid response and early warning by placing accelerometers in schools, homes, offices, government buildings, fire houses and more. The Quake Catcher Network (QCN) employs existing networked laptops and desktops to form a dense, distributed computing seismic network. Costs for this network are minimal because the QCN uses 1) strong motion sensors (accelerometers) already internal to many laptops and 2) low-cost universal serial bus (USB) accelerometers for use with desktops. The Berkeley Open Infrastructure for Network Computing (BOINC!) provides a free, proven paradigm for involving the public in large-scale computational research projects. The QCN leverages public participation to fully implement the seismic network. As such engaging the public to participate in seismic data collection is not only an integral part of the project, but an added value to the QCN. The software provides the client-user with a screen-saver displaying seismic data recorded on their laptop or recently detected earthquakes. Furthermore, this project installs sensors in K-12 classrooms as an educational tool for teaching science. Through a variety of interactive experiments students can learn about earthquakes and the hazards earthquakes pose. In the first six months of limited release of the QCN software, we successfully received triggers and waveforms from laptops near the M 4.7 April 25, 2008 earthquake in Reno, Nevada and the M 5.4 July 29, 2008 earthquake in Chino, California (as well as a few 3.6 and higher events). This fall we continued to expand the network further by installing seismometers in K-12 schools, museums, and government buildings in the greater Los Angeles basin and the San Francisco Bay Area. By summer 2009 we expect to have 1000 USB sensors deployed in California, in addition

  5. ISA accelerometer onboard the Mercury Planetary Orbiter: error budget

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Lucchesi, David M.; Nozzoli, Sergio; Santoli, Francesco

    2007-03-01

    We have estimated a preliminary error budget for the Italian Spring Accelerometer (ISA) that will be allocated onboard the Mercury Planetary Orbiter (MPO) of the European Space Agency (ESA) space mission to Mercury named BepiColombo. The role of the accelerometer is to remove from the list of unknowns the non-gravitational accelerations that perturb the gravitational trajectory followed by the MPO in the strong radiation environment that characterises the orbit of Mercury around the Sun. Such a role is of fundamental importance in the context of the very ambitious goals of the Radio Science Experiments (RSE) of the BepiColombo mission. We have subdivided the errors on the accelerometer measurements into two main families: (i) the pseudo-sinusoidal errors and (ii) the random errors. The former are characterised by a periodic behaviour with the frequency of the satellite mean anomaly and its higher order harmonic components, i.e., they are deterministic errors. The latter are characterised by an unknown frequency distribution and we assumed for them a noise-like spectrum, i.e., they are stochastic errors. Among the pseudo-sinusoidal errors, the main contribution is due to the effects of the gravity gradients and the inertial forces, while among the random-like errors the main disturbing effect is due to the MPO centre-of-mass displacements produced by the onboard High Gain Antenna (HGA) movements and by the fuel consumption and sloshing. Very subtle to be considered are also the random errors produced by the MPO attitude corrections necessary to guarantee the nadir pointing of the spacecraft. We have therefore formulated the ISA error budget and the requirements for the satellite in order to guarantee an orbit reconstruction for the MPO spacecraft with an along-track accuracy of about 1 m over the orbital period of the satellite around Mercury in such a way to satisfy the RSE requirements.

  6. A thin rod is all that is needed to transmit vibrations from a shaker device (at bottom) and the win

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A thin rod is all that is needed to transmit vibrations from a shaker device (at bottom) and the wingtip of the Active Aeroelastic Wing F/A-18 research aircraft during ground vibration testing at NASA's Dryden Flight Research Center. Wiring hanging down from the wingtip launcher rail transfer signals from accelerometers and other sensors mounted on the wing's upper surface to monitoring equipment. The tests help engineers determine if aerodynamically induced vibrations are controlled or suppressed during flight, and were the last major ground tests prior to the initiation of research flights.

  7. Flow-induced vibration

    SciTech Connect

    Blevins, R.D.

    1990-01-01

    This book reports on dimensional analysis; ideal fluid models; vortex-induced vibration; galloping and flutter; instability of tube and cylinder arrays; vibrations induced by oscillating flow; vibration induced by turbulence and sound; damping of structures; sound induced by vortex shedding; vibrations of a pipe containing a fluid flow; indices. It covers the analysis of the vibrations of structures exposed to fluid flows; explores applications for offshore platforms and piping; wind-induced vibration of buildings, bridges, and towers; and acoustic and mechanical vibration of heat exchangers, power lines, and process ducting.

  8. Rapid tremor frequency assessment with the iPhone accelerometer.

    PubMed

    Joundi, Raed A; Brittain, John-Stuart; Jenkinson, Ned; Green, Alexander L; Aziz, Tipu

    2011-05-01

    The physician is often seeking more efficient ways of performing patient assessments. Currently, measuring tremor frequency requires expensive and bulky equipment. We propose the use of the in-built accelerometer of the iPhone via the iSeismo application for rapid measurement of tremor frequency. We use this device in a series of 7 different tremor cases, and show that the frequency measurements on the iSeismo graph closely match the more sophisticated EMG analysis during tremor. This is a preliminary confirmation of the usefulness of this device in the clinical setting for quick assessment of the dominant frequency component in a variety of tremors. PMID:21300563

  9. Accelerometer Placement for the International Space Station Node Modal Test

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.

    1998-01-01

    Accelerometer location analysis for the modal survey test of the International Space Station Node is described. Three different approaches were utilized: (1) Guyan reduction; (2) Iterative Guyan reduction; and (3) The average driving point residue (ADPR) method. Both Guyan approaches worked well, but poor results were observed for the ADPR method. Although the iterative Guyan approach appears to provide the best set of sensor locations, it is intensive computationally, becoming impractical for large initial location sets. While this is computer dependent, it appears that initial sets larger than about 1500 degrees of freedom are impractical for the iterative technique.

  10. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    SciTech Connect

    Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; /SLAC

    2006-09-28

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

  11. Feasibility of vibration monitoring of small rotating machines for the environmental control and life support systems (ECLSS) of the NASA advanced space craft

    NASA Technical Reports Server (NTRS)

    Milner, G. Martin; Black, Mike; Hovenga, Mike; Mcclure, Paul; Miller, Patrice

    1988-01-01

    The application of vibration monitoring to the rotating machinery typical of ECLSS components in advanced NASA spacecraft was studied. It is found that the weighted summation of the accelerometer power spectrum is the most successful detection scheme for a majority of problem types. Other detection schemes studied included high-frequency demodulation, cepstrum, clustering, and amplitude processing.

  12. Assessment of Gait Kinetics Using Tri-Axial Accelerometers

    PubMed Central

    Fortune, Emma; Morrow, Melissa M. B.; Kaufman, Kenton R.

    2015-01-01

    Repeated durations of dynamic activity with high ground reaction forces (GRFs) and loading rates (LRs) can be beneficial to bone health. To fully characterize dynamic activity in relation to bone health, field-based measurements of gait kinetics are desirable to assess free-living lower-extremity loading. The study aims were to determine correlations of peak vertical GRF and peak vertical LR with ankle peak vertical accelerations, and of peak resultant GRF and peak resultant LR with ankle peak resultant accelerations and to compare them to correlations with tibia, thigh, and waist accelerations. GRF data were collected as ten healthy subjects (26 (19–34) years) performed 8–10 walking trials at velocities ranging from 0.19–3.05 m/s, wearing ankle, tibia, thigh, and waist accelerometers. While peak vertical accelerations of all locations were positively correlated with peak vertical GRF and LR (r2>0.53, P<0.001), ankle peak vertical accelerations were the most correlated (r2>0.75, P<0.001). All peak resultant accelerations were positively correlated with peak resultant GRF and LR (r2>0.57, P<0.001) with waist peak resultant acceleration being the most correlated (r2>0.70, P<0.001). The results suggest that ankle or waist accelerometers give the most accurate peak GRF and LR estimates and could be useful tools in relating physical activity to bone health. PMID:25010675

  13. Microelectromechanical Resonant Accelerometer Designed with a High Sensitivity.

    PubMed

    Zhang, Jing; Su, Yan; Shi, Qin; Qiu, An-Ping

    2015-01-01

    This paper describes the design and experimental evaluation of a silicon micro-machined resonant accelerometer (SMRA). This type of accelerometer works on the principle that a proof mass under acceleration applies force to two double-ended tuning fork (DETF) resonators, and the frequency output of two DETFs exhibits a differential shift. The dies of an SMRA are fabricated using silicon-on-insulator (SOI) processing and wafer-level vacuum packaging. This research aims to design a high-sensitivity SMRA because a high sensitivity allows for the acceleration signal to be easily demodulated by frequency counting techniques and decreases the noise level. This study applies the energy-consumed concept and the Nelder-Mead algorithm in the SMRA to address the design issues and further increase its sensitivity. Using this novel method, the sensitivity of the SMRA has been increased by 66.1%, which attributes to both the re-designed DETF and the reduced energy loss on the micro-lever. The results of both the closed-form and finite-element analyses are described and are in agreement with one another. A resonant frequency of approximately 22 kHz, a frequency sensitivity of over 250 Hz per g, a one-hour bias stability of 55 μg, a bias repeatability (1σ) of 48 μg and the bias-instability of 4.8 μg have been achieved. PMID:26633425

  14. Evolution of accelerometer methods for physical activity research.

    PubMed

    Troiano, Richard P; McClain, James J; Brychta, Robert J; Chen, Kong Y

    2014-07-01

    The technology and application of current accelerometer-based devices in physical activity (PA) research allow the capture and storage or transmission of large volumes of raw acceleration signal data. These rich data not only provide opportunities to improve PA characterisation, but also bring logistical and analytic challenges. We discuss how researchers and developers from multiple disciplines are responding to the analytic challenges and how advances in data storage, transmission and big data computing will minimise logistical challenges. These new approaches also bring the need for several paradigm shifts for PA researchers, including a shift from count-based approaches and regression calibrations for PA energy expenditure (PAEE) estimation to activity characterisation and EE estimation based on features extracted from raw acceleration signals. Furthermore, a collaborative approach towards analytic methods is proposed to facilitate PA research, which requires a shift away from multiple independent calibration studies. Finally, we make the case for a distinction between PA represented by accelerometer-based devices and PA assessed by self-report.

  15. GRACE KBR and Accelerometer Data Reduction and Calibration

    NASA Astrophysics Data System (ADS)

    Rowlands, D. D.; Luthcke, S. B.; Klosko, S. M.; Lemoine, F. G.; Williams, T. A.

    2004-12-01

    The Gravity Recovery And Climate Experiment (GRACE), launched on March 17, 2002, represents the state-of-the-art in geodetic observations of the static and time varying components of the Earth's geopotential field. The fundamental measurement used to observe gravity is the inter-satellite range and range rate between two coplanar, low altitude satellites obtained from a K-band ranging (KBR) system. In addition to the K-band ranging system, each satellite possess a SuperSTAR Accelerometer, a GPS receiver/antenna package, Star Cameras and a Laser Retro Reflector (LRR) to complete the compliment of science instruments. The GRACE project has now released two years of Level 1B data derived from the science instruments and sensors. An integral component of our time variable gravity research is the reduction, calibration and analyses of these Level 1B data. In particular we have analyzed several months of K-band ranging (KBR1B), accelerometry (ACC1B) and GPS navigation (GNAV1B) data. Accelerometer calibration and KBR data reduction methodology and results will be presented. We discuss the impact of these analyses on the recovery of time variable gravity.

  16. Applications of the ISA accelerometer for Moon exploration

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Peron, Roberto; Carmisciano, Cosmo

    2012-07-01

    The recent years have seen again the Moon as a target for exploration activities. The reasons for this new wave are manifold, from the knowledge of formation and evolution of the Moon towards its current state to the possibility of building a human settlement on its surface, with all the related issues of environment characterization, safety, resources, communication and navigation. The space agencies are planning future missions for Moon exploration, in particular they are defining the main science objectives and the core instruments to be used in the nodes intended for a future lunar network. The International Lunar Network (ILN) Core Instruments Working Group identified these core instruments, recommending a broadband seismometer as one of the most important. It will be presented a broadband seismometer that can be a suitable candidate for this purpose. The seismometer is based on the heritage experience from IAPS made in the ongoing development of the ISA (Italian Spring Accelerometer) accelerometer, for the ESA BepiColombo mission to Mercury, and in the know-how in the production of geophysical instrument owned by AGI srl, plus the experience of the INGV in the use of such instruments. The proposed instrument can be considered a possible candidate to be hosted both in NASA ILN and in ESA First Lunar Lander. The concept underlying this new instrument and its principal characteristics will be described, giving emphasis on the possible science return and operational scenarios.

  17. Surface Micromachined Silicon Carbide Accelerometers for Gas Turbine Applications

    NASA Technical Reports Server (NTRS)

    DeAnna, Russell G.

    1998-01-01

    A finite-element analysis of possible silicon carbide (SIC) folded-beam, lateral-resonating accelerometers is presented. Results include stiffness coefficients, acceleration sensitivities, resonant frequency versus temperature, and proof-mass displacements due to centripetal acceleration of a blade-mounted sensor. The surface micromachined devices, which are similar to the Analog Devices Inc., (Norwood, MA) air-bag crash detector, are etched from 2-pm thick, 3C-SiC films grown at 1600 K using atmospheric pressure chemical vapor deposition (APCVD). The substrate is a 500 gm-thick, (100) silicon wafer. Polysilicon or silicon dioxide is used as a sacrificial layer. The finite element analysis includes temperature-dependent properties, shape change due to volume expansion, and thermal stress caused by differential thermal expansion of the materials. The finite-element results are compared to experimental results for a SiC device of similar, but not identical, geometry. Along with changes in mechanical design, blade-mounted sensors would require on-chip circuitry to cancel displacements due to centripetal acceleration and improve sensitivity and bandwidth. These findings may result in better accelerometer designs for this application.

  18. Noise power spectral density of the Sundstrand QA-2000 accelerometer

    NASA Technical Reports Server (NTRS)

    Peters, Rex; Grindeland, David; Baugher, Charles R. (Editor)

    1990-01-01

    There are no good data on low frequency (less than 0.1 Hz) power spectral density (PSD) for the Q-Flex accelerometer. However, some preliminary stability measurements were made over periods of 12 to 24 hours and demonstrated stability less than 0.5 micro-g over greater than 12 hours. The test data appear to contain significant contributions from temperature variations at that level, so the true sensor contribution may be less than that. If what was seen could be construed as a true random process, it would correspond to about 0.1 micro-g rms over a bandwidth from 10(exp -5) Hz to about 1 Hz. Other studies of low frequency PSD in flexure accelerometers have indicated that material aging effects tend to approximate a first order Markhov process. If we combine such a model with the spectrum obtained at higher frequencies, it suggests the spectrum shown here as a conservative estimate of Q-Flex noise performance.

  19. GRACE KBR and Accelerometer Data Reduction and Calibration

    NASA Technical Reports Server (NTRS)

    Rowlands, David D.; Lutheke, Scott B.; Klosko, Steven M.; Lemoine, Frank G.; Williams, Terry A.

    2004-01-01

    The Gravity Recovery and Climate Experiment (GRACE), launched on March 17, 2002, represents the state-of-the-art in geodetic observations of the static and time varying components of the Earth's geopotential field. The fundamental measurement used to observe gravity is the inter-satellite range and range rate between two coplanar, low altitude satellites obtained from a K-band ranging (KBR) system. In addition to the K-band ranging system, each satellite possess a Super-STAR Accelerometer, a GPS receiver/antenna package, Star Cameras and a Laser Retro Reflector (LRR) to complete the compliment of science instruments. The GRACE project has now released two years of Level 1B data derived from the science instruments and sensors. An integral component of our time variable gravity research is the reduction, calibration and analyses of these Level 1B data. In particular we have analyzed several months of K-band ranging (KBR1B), accelerometry (ACC1B) and GPS navigation (GNAV1B) data. Accelerometer calibration and KBR data reduction methodology and results will be presented. We discuss the impact of these analyses on the recovery of time variable gravity.

  20. Use of accelerometers to measure stress levels in shelter dogs.

    PubMed

    Jones, Sarah; Dowling-Guyer, Seana; Patronek, Gary J; Marder, Amy R; Segurson D'Arpino, Sheila; McCobb, Emily

    2014-01-01

    Stress can compromise welfare in any confined group of nonhuman animals, including those in shelters. However, an objective and practical method for assessing the stress levels of individual dogs housed in a shelter does not exist. Such a method would be useful for monitoring animal welfare and would allow shelters to measure the effectiveness of specific interventions for stress reduction. In this pilot study, activity levels were studied in 13 dogs using accelerometers attached to their collars. Behavioral stress scores as well as urinary and salivary cortisol levels were measured to determine if the dogs' activity levels while confined in the kennel correlated with behavioral and physiological indicators of stress in this population. The results indicated that the accelerometer could be a useful tool to study stress-related activity levels in dogs. Specific findings included a correlation between the salivary cortisol and maximum activity level (r = .62, p = .025) and a correlation between the urine cortisol-to-creatinine ratio and average activity level (r = .61, p = .028) among the study dogs. Further research is needed to better understand the complex relationship between stress and activity level among dogs in a kennel environment. PMID:24484308

  1. Microelectromechanical Resonant Accelerometer Designed with a High Sensitivity

    PubMed Central

    Zhang, Jing; Su, Yan; Shi, Qin; Qiu, An-Ping

    2015-01-01

    This paper describes the design and experimental evaluation of a silicon micro-machined resonant accelerometer (SMRA). This type of accelerometer works on the principle that a proof mass under acceleration applies force to two double-ended tuning fork (DETF) resonators, and the frequency output of two DETFs exhibits a differential shift. The dies of an SMRA are fabricated using silicon-on-insulator (SOI) processing and wafer-level vacuum packaging. This research aims to design a high-sensitivity SMRA because a high sensitivity allows for the acceleration signal to be easily demodulated by frequency counting techniques and decreases the noise level. This study applies the energy-consumed concept and the Nelder-Mead algorithm in the SMRA to address the design issues and further increase its sensitivity. Using this novel method, the sensitivity of the SMRA has been increased by 66.1%, which attributes to both the re-designed DETF and the reduced energy loss on the micro-lever. The results of both the closed-form and finite-element analyses are described and are in agreement with one another. A resonant frequency of approximately 22 kHz, a frequency sensitivity of over 250 Hz per g, a one-hour bias stability of 55 μg, a bias repeatability (1σ) of 48 μg and the bias-instability of 4.8 μg have been achieved. PMID:26633425

  2. Applying macro design tools to the design of MEMS accelerometers

    SciTech Connect

    Davies, B.R.; Rodgers, M.S.; Montague, S.

    1998-02-01

    This paper describes the design of two different surface micromachined (MEMS) accelerometers and the use of design and analysis tools intended for macro sized devices. This work leverages a process for integrating both the micromechanical structures and microelectronics circuitry of a MEMS accelerometer on the same chip. In this process, the mechanical components of the sensor are first fabricated at the bottom of a trench etched into the wafer substrate. The trench is then filled with oxide and sealed to protect the mechanical components during subsequent microelectronics processing. The wafer surface is then planarized in preparation for CMOS processing. Next, the CMOS electronics are fabricated and the mechanical structures are released. The mechanical structure of each sensor consists of two polysilicon plate masses suspended by multiple springs (cantilevered beam structures) over corresponding polysilicon plates fixed to the substrate to form two parallel plate capacitors. One polysilicon plate mass is suspended using compliant springs forming a variable capacitor. The other polysilicon plate mass is suspended using very stiff springs acting as a fixed capacitor. Acceleration is measured by comparing the variable capacitance with the fixed capacitance during acceleration.

  3. A statistical test to determine the quality of accelerometer data.

    PubMed

    Slaven, J E; Andrew, M E; Violanti, J M; Burchfiel, C M; Vila, B J

    2006-04-01

    Accelerometer data quality can be inadequate due to data corruption or to non-compliance of the subject with regard to study protocols. We propose a simple statistical test to determine if accelerometer data are of good quality and can be used for analysis or if the data are of poor quality and should be discarded. We tested several data evaluation methods using a group of 105 subjects who wore Motionlogger actigraphs (Ambulatory Monitoring, Inc.) over a 15 day period to assess sleep quality in a study of health outcomes associated with stress among police officers. Using leave-one-out cross-validation and calibration-testing methods of discrimination statistics, error rates for the methods ranged from 0.0167 to 0.4046. We found that the best method was to use the overall average distance between consecutive time points and the overall average mean amplitude of consecutive time points. These values gave us a classification error rate of 0.0167. The average distance between points is a measure of smoothness in the data, and the average mean amplitude between points gave an average reading. Both of these values were then normed to determine a final statistic, K, which was then compared to a cut-off value, K(C), to determine data quality.

  4. Free fall tests of the accelerometers of the MICROSCOPE mission

    NASA Astrophysics Data System (ADS)

    Liorzou, F.; Boulanger, D.; Rodrigues, M.; Touboul, P.; Selig, H.

    2014-09-01

    The MICROSCOPE mission is fully dedicated to the in-orbit test of the Universality of free fall, the so-called Weak Equivalence Principle (WEP), with an expected accuracy better than 10-15. The test principle consists in comparing the accelerations of two proof masses of different composition in the Earth gravitational field. The payload embarks two pairs of test-masses made of Platinum Rhodium and Titanium alloys at the core of two dedicated coaxial electrostatic accelerometers. These instruments are under qualification for a launch in 2016. Their operations are only possible in microgravity environment which makes its validation on ground a real issue. In Europe, only the drop tower of the ZARM Institute provides a facility for experiments under conditions of weightlessness and offers the experimental conditions to verify the correct functioning of the MICROSCOPE payload. The height of the tower limits the “free fall” experiment period to 4.72 s. Under this strong constraint, the demonstration of the capability to control the test masses of the two coaxial electrostatic accelerometers is challenging. This paper describes the complete experimental set up and in which condition the test has been performed, then an analysis of a drop result is given with its interpretations.

  5. Free vibrations of the ERDA-NASA 100 kW wind turbine

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sullivan, T. L.

    1976-01-01

    The ERDA-NASA wind turbine (windmill), which consists of a 93-foot truss tower, a bed plate that supports mechanical and electrical equipment, and two 62.5-foot long blades, was analyzed to determine its free vibrations using NASTRAN. The finite element representation of the system consisted of beam and plate elements. The free vibrations of the tower alone, the blades alone, and the complete system were determined experimentally in the field. These results were obtained by instrumenting the tower or blades with an accelerometer and impacting the components with an instrumented mass. The predicted results for natural frequencies and mode shapes were in excellent agreement with measured data.

  6. FPGA-based fused smart sensor for dynamic and vibration parameter extraction in industrial robot links.

    PubMed

    Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA).

  7. FPGA-based fused smart sensor for dynamic and vibration parameter extraction in industrial robot links.

    PubMed

    Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345

  8. FPGA-Based Fused Smart Sensor for Dynamic and Vibration Parameter Extraction in Industrial Robot Links

    PubMed Central

    Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345

  9. Low Frequency Noise Measurement and Analysis of Capacitive Micro-Accelerometers: Temperature Effect

    NASA Astrophysics Data System (ADS)

    Mohd-Yasin, Faisal; Nagel, David J.; Ong, D. S.; Korman, Can E.; Chuah, H. T.

    2008-06-01

    A noise measurements of micro-accelerometers were performed using a special measurement system. A common spectral behavior of noise is found, with 1/ f noise dominating at low frequencies and white thermal noise being the limiting factor at higher frequencies. A temperature dependent and an acceleration dependant of the noise are found in the accelerometers, in agreement and contract of the theories, respectively.

  10. Assessing Physical Activity in Children with Asthma: Convergent Validity between Accelerometer and Electronic Diary Data

    ERIC Educational Resources Information Center

    Floro, Josh N.; Dunton, Genevieve F.; Delfino, Ralph J.

    2009-01-01

    Convergent validity of accelerometer and electronic diary physical activity data was assessed in children with asthma. Sixty-two participants, ages 9-18 years, wore an accelerometer and reported their physical activity level in quarter-hour segments every 2 hr using the Ambulatory Diary Assessment (ADA). Moderate validity was found between…

  11. Decision boundaries and receiver operating characteristic curves: New methods for determining accelerometer cutpoints

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We propose and evaluate the utility of an alternative method (decision boundaries) for establishing physical activity intensity-related accelerometer cutpoints. Accelerometer data collected from 76 11- to 14-year-old boys during controlled bouts of moderate- and vigorous-intensity field physical act...

  12. Terrestrial Applications of a Nano-g Accelerometer

    NASA Technical Reports Server (NTRS)

    Hartley, F.

    1999-01-01

    Multi-axis compact seismometers designs that have twelve decades of dynamic range will be described. Density profilometers, precision gradiometers, gyros and vibration isolation designs and applications will be discussed.

  13. High shock, high frequency characteristics of a mechanical isolator for a piezoresistive accelerometer

    SciTech Connect

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1995-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories. An Extended Technical Assistance Program with the accelerometer manufacturer has resulted in a commercial isolator that will be available to the general public. This mechanical isolator has ten times the bandwidth of any other commercial isolator and has acceptable frequency domain performance from DC to 10 kHz ({plus_minus} 10%) over a temperature range of -65{degrees}F to +185{degrees}F as demonstrated in this paper.

  14. Sensitivity and temperature behavior of a novel z-axis differential resonant micro accelerometer

    NASA Astrophysics Data System (ADS)

    Comi, C.; Corigliano, A.; Langfelder, G.; Zega, V.; Zerbini, S.

    2016-03-01

    The present work concerns the operating principle and a thorough experimental characterization of a new polysilicon resonant micro accelerometer for out-of-plane measurements, fabricated using an industrial surface micromachining technique. This device is characterized by differential resonant sensing, obtained from the variation of the electrostatic stiffness of two torsional resonators under the application of an external acceleration. The sensitivity, defined as the differential shift in resonance frequencies per gravity unit (lg  =  9.8 m s-2), is of about 10 Hz g-1when operated at a DC bias of 1.5 V only. Over an acceleration range larger than 10 g, the deviation from linearity is lower than 1% and the cross-axis rejection is larger than 34 dB. The resonators temperature coefficients of frequency, in the order of  -29 ppm {{}\\circ} C-1, are matched within about 0.1%, resulting in linear offset drifts against temperature lower than 5 mg up to 95 {{}\\circ} C in absence of any digital compensation.

  15. Characterization and Comparison of Vibration Transfer Paths in a Helicopter Gearbox and a Fixture Mounted Gearbox

    NASA Technical Reports Server (NTRS)

    Islam, Akm Anwarul; Dempsey, Paula J.; Feldman, Jason; Larsen, Chris

    2014-01-01

    Health monitoring of rotorcraft components, currently being performed by Health and Usage Monitoring Systems through analyses of vibration signatures of dynamic mechanical components, is very important for their safe and economic operation. HUMS analyze vibration signatures associated with faults and quantify them as condition indicators to predict component behavior. Vibration transfer paths are characterized by frequency response functions derived from the input/output relationship between applied force and dynamic response through a structure as a function of frequency. With an objective to investigate the differences in transfer paths, transfer path measurements were recorded under similar conditions in the left and right nose gearboxes of an AH-64 helicopter and in an isolated left nose gearbox in a test fixture at NASA Glenn Research Center. The test fixture enabled the application of measured torques-common during an actual operation. An impact hammer as well as commercial and lab piezo shakers, were used in conjunction with two types of commercially available accelerometers to collect the vibration response under various test conditions. The frequency response functions measured under comparable conditions of both systems were found to be consistent. Measurements made on the fixture indicated certain real-world installation and maintenance issues, such as sensor alignments, accelerometer locations and installation torques, had minimal effect. However, gear vibration transfer path dynamics appeared to be somewhat dependent on the presence of oil, and the transfer path dynamics were notably different if the force input was on the internal ring gear rather than on the external gearbox case.

  16. An active control system for helicopter vibration reduction by higher harmonic pitch

    NASA Technical Reports Server (NTRS)

    Taylor, R. B.; Farrar, F. A.; Miao, W.

    1980-01-01

    An analytical study defining the basic configuration of an active control system to reduce helicopter vibrations is presented. Theoretical results for a nonlinear four-bladed single rotor helicopter simulation are discussed, showing that vibration reductions on the order of 80-90% for airspeeds up to 150 kn can be expected when using a higher harmonic pitch in an active feedback control system. The rotor performance penalty associated with this level of vibration reduction is about 1-3% and the increase in rotor blade stresses is considered to be low. The location of sensor accelerometers proved to be significant for vibration reductions, and it is noted that the RTSA controller is tolerant of sensor signal noise.

  17. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    NASA Astrophysics Data System (ADS)

    Wibowo, Zakaria, Lambang, Lullus; Triyono, Muhayat, Nurul

    2016-03-01

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  18. Composite Bending Box Section Modal Vibration Fault Detection

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy

    2002-01-01

    One of the primary concerns with Composite construction in critical structures such as wings and stabilizers is that hidden faults and cracks can develop operationally. In the real world, catastrophic sudden failure can result from these undetected faults in composite structures. Vibration data incorporating a broad frequency modal approach, could detect significant changes prior to failure. The purpose of this report is to investigate the usefulness of frequency mode testing before and after bending and torsion loading on a composite bending Box Test section. This test article is representative of construction techniques being developed for the recent NASA Blended Wing Body Low Speed Vehicle Project. The Box section represents the construction technique on the proposed blended wing aircraft. Modal testing using an impact hammer provides an frequency fingerprint before and after bending and torsional loading. If a significant structural discontinuity develops, the vibration response is expected to change. The limitations of the data will be evaluated for future use as a non-destructive in-situ method of assessing hidden damage in similarly constructed composite wing assemblies. Modal vibration fault detection sensitivity to band-width, location and axis will be investigated. Do the sensor accelerometers need to be near the fault and or in the same axis? The response data used in this report was recorded at 17 locations using tri-axial accelerometers. The modal tests were conducted following 5 independent loading conditions before load to failure and 2 following load to failure over a period of 6 weeks. Redundant data was used to minimize effects from uncontrolled variables which could lead to incorrect interpretations. It will be shown that vibrational modes detected failure at many locations when skin de-bonding failures occurred near the center section. Important considerations are the axis selected and frequency range.

  19. Use of a laser displacement sensor with a non-contact electromagnetic vibration device for assessment of simulated periodontal tissue conditions.

    PubMed

    Kobayashi, Hiroshi; Yamaoka, Masaru; Hayashi, Makoto; Ogiso, Bunnai

    2016-01-01

    A non-contact electromagnetic vibration device (NEVD) was previously developed to monitor the condition of periodontal tissues by assessing mechanical parameters. This system requires placement of an accelerometer on the target tooth, to detect vibration. Using experimental tooth models, we evaluated the performance of an NEVD system with a laser displacement sensor (LDS), which does not need an accelerometer. Simulated teeth (polyacetal rods) were submerged at various depths in simulated bone (polyurethane or polyurethane foam) containing simulated periodontal ligament (tissue conditioner). Then, mechanical parameters (resonant frequency, elastic modulus, and viscosity coefficient) were assessed using the NEVD with the following detection methods: Group 1, measurement with an accelerometer; Group 2, measurement with an LDS in the presence of the accelerometer; and Group 3, measurement with an LDS in the absence of the accelerometer. Statistical analyses were performed using nonparametric methods (n = 5) (P < 0.05). The three mechanical parameters significantly increased with increasing depth. In addition, the mechanical parameters significantly differed between the polyurethane and polyurethane foam models. Although Groups 1 and 2 did not significantly differ, most all mechanical parameters in Group 3 were significantly larger and more distinguishable than those in Groups 1 and 2. The LDS was more accurate in measuring mechanical parameters and better able to differentiate periodontal tissue conditions. (J Oral Sci 58, 93-99, 2016). PMID:27021545

  20. Use of a laser displacement sensor with a non-contact electromagnetic vibration device for assessment of simulated periodontal tissue conditions.

    PubMed

    Kobayashi, Hiroshi; Yamaoka, Masaru; Hayashi, Makoto; Ogiso, Bunnai

    2016-01-01

    A non-contact electromagnetic vibration device (NEVD) was previously developed to monitor the condition of periodontal tissues by assessing mechanical parameters. This system requires placement of an accelerometer on the target tooth, to detect vibration. Using experimental tooth models, we evaluated the performance of an NEVD system with a laser displacement sensor (LDS), which does not need an accelerometer. Simulated teeth (polyacetal rods) were submerged at various depths in simulated bone (polyurethane or polyurethane foam) containing simulated periodontal ligament (tissue conditioner). Then, mechanical parameters (resonant frequency, elastic modulus, and viscosity coefficient) were assessed using the NEVD with the following detection methods: Group 1, measurement with an accelerometer; Group 2, measurement with an LDS in the presence of the accelerometer; and Group 3, measurement with an LDS in the absence of the accelerometer. Statistical analyses were performed using nonparametric methods (n = 5) (P < 0.05). The three mechanical parameters significantly increased with increasing depth. In addition, the mechanical parameters significantly differed between the polyurethane and polyurethane foam models. Although Groups 1 and 2 did not significantly differ, most all mechanical parameters in Group 3 were significantly larger and more distinguishable than those in Groups 1 and 2. The LDS was more accurate in measuring mechanical parameters and better able to differentiate periodontal tissue conditions. (J Oral Sci 58, 93-99, 2016).

  1. High-resolution monitoring of bedload transport rates: a benchmark of two approaches (accelerometers and image processing)

    NASA Astrophysics Data System (ADS)

    Dhont, Blaise; Rousseau, Gauthier; Ancey, Christophe

    2016-04-01

    Experimental and field studies have shown how intermittent bedload transport can be at low flow rates. The development and validation of bedload-transport equations require high-resolution records over long periods of time. Two technologies are considered in the present investigation: image processing and accelerometers mounted on impact plates. The former has been successfully applied to monitor bedload transport in many flume experiments, and the latter has shown encouraging results at different field sites. Calibration is a major issue in both cases, and it is often difficult to assess the precision of the data collected. In our talk, we show how to calibrate and compare the performances of accelerometer and image-processing based techniques in laboratory conditions. The accelerometer is fixed on a perforated steel plate, which is placed vertically at the lower end of the flume. The vibrations due to the particles impacting the plate are recorded with a sampling frequency of 10 kHz. The proxy for bedload transport rate is chosen as the number of peaks above a fixed threshold of the recorded signal. Note that impact plates are usually set in flush with the bed, and to our knowledge, the vertical configuration presented here has not yet been documented. The experimental setup for image processing involves a video-camera that takes top-view images of the particles moving over a white board mounted at the outlet of the flume. Data storage poses an issue, which can be got round by pre-processing the images in real time. The bedload transport rate is estimated based on the number of particles that are identified on the images. The two technologies have the advantages of being cost-effective and demanding limited effort for implementation. They provide high-resolution bedload transport rates over several hours. Estimates of bedload discharge were found to be robust and accurate for low sediment transport rates. At higher rates, the sensors may saturate due the arrival

  2. Control System Damps Vibrations

    NASA Technical Reports Server (NTRS)

    Kopf, E. H., Jr.; Brown, T. K.; Marsh, E. L.

    1983-01-01

    New control system damps vibrations in rotating equipment with help of phase-locked-loop techniques. Vibrational modes are controlled by applying suitable currents to drive motor. Control signals are derived from sensors mounted on equipment.

  3. Slice&Dice: Recognizing Food Preparation Activities Using Embedded Accelerometers

    NASA Astrophysics Data System (ADS)

    Pham, Cuong; Olivier, Patrick

    Within the context of an endeavor to provide situated support for people with cognitive impairments in the kitchen, we developed and evaluated classifiers for recognizing 11 actions involved in food preparation. Data was collected from 20 lay subjects using four specially designed kitchen utensils incorporating embedded 3-axis accelerometers. Subjects were asked to prepare a mixed salad in our laboratory-based instrumented kitchen environment. Video of each subject's food preparation activities were independently annotated by three different coders. Several classifiers were trained and tested using these features. With an overall accuracy of 82.9% our investigation demonstrated that a broad set of food preparation actions can be reliably recognized using sensors embedded in kitchen utensils.

  4. Estimation of METs by Accelerometers while Walking and Running

    NASA Astrophysics Data System (ADS)

    Kurihara, Yosuke; Watanabe, Kajiro; Yoneyama, Mitsuru

    It is quite important for Japan to maintain or promote the health condition of elderly citizens. Given the circumstances, the Ministry of Health, Labour and Welfare has established the standards for the activities and exercises for promoting the health, and quantitatively determined the exercise intensity on 107 items of activities. This exercise intensity, however, requires recording the type and the duration of the activity to be calculated. In this paper, the exercise intensities are surmised using 3D accelerometer while the subjects are walking and running. As the result, the exercise intensities were surmised to be within the root mean square error of 1.2[METs] for walking and 3.2[METs] for running respectively.

  5. ISLES: Probing Extra Dimensions Using a Superconducting Accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung; Moody, M. Vol; Prieto-Gortcheva, Violeta A.

    2003-01-01

    In string theories, extra dimensions must be compactified. The possibility that gravity can have large radii of compactification leads to a violation of the inverse square law at submillimeter distances. The objective of ISLES is to perform a null test of Newton s law in space with a resolution of one part in 10(exp 5) or better at 100 microns. The experiment will be cooled to less than or equal to 2 K, which permits superconducting magnetic levitation of the test masses. To minimize Newtonian errors, ISLES employs a near null source, a circular disk of large diameter-to-thickness ratio. Two test masses, also disk-shaped, are suspended on the two sides of the source mass at a nominal distance of 100 microns. The signal is detected by a superconducting differential accelerometer. A ground test apparatus is under construction.

  6. Flight calibration assessment of HiRAP accelerometer data

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Larman, Kevin T.; Moast, Christina D.

    1993-01-01

    A flight derived method of calibrating the High Resolution Accelerometer Package (HiRAP) flight data has been developed and is discussed for Shuttle Orbiter missions STS-35 and STS-40. These two mission data sets have been analyzed using ground calibration factors and flight derived calibration factors. This flight technique evolved early in the flight program when it was recognized that ground calibration factors are insufficient to determine absolute low-acceleration levels. The application of flight calibration factors to the data sets from these missions produced calibrated acceleration levels within an accuracy of less than +/- 1.5 microgravity of zero during a time in the flight when the acceleration level was known to be less than 1.0 microgravity. This analysis further confirms the theory that flight calibrations are required in order to obtain the absolute measurement of low-frequency, low-acceleration flight signals.

  7. GOCE Accelerometers Data Revisited: Stability And Detector Noise

    NASA Astrophysics Data System (ADS)

    Berge, J.; Christophe, B.; Foulon, B.

    2013-12-01

    We report on our analyses of Gravity field and steady- state Ocean Circulation Explorer (GOCE) data aiming to characterize the stability and the noise of GOCE's ac- celerometers. We first measure science and detector co- herence signals, which allow us to infer the role of the accelerometers Digital Voltage Amplifiers and measure- ment chanel in the overall quadratic factor and scale fac- tor; we show that their temporal stability is as low as ex- pected. We then investigate the effect of the aliasing of high frequency detector's noise on the measured noise, in an attempt to explain why the measured noise is higher than originally expected. We find that although this alias- ing explains part of the higher noise, it does not account for the total of the difference seen between the expected and the measured noise.

  8. A naive accelerometer acting in the continuum range.

    PubMed

    Peluso, F; Castagnolo, D; Albanese, C

    2002-01-01

    The space experiment TRAMP (Thermal Radiation Aspects of Migrating Particles) flown in 1999 onboard the mission Foton 12 sponsored by the European Space Agency (ESA), was conceived to reveal and measure a new kind of forces, named Thermal Radiation Forces (TRF). The experiment was dramatically disturbed by the occurrence of undesired convective motions due to the rotation of the spacecraft. Apart from that, corrosion occurred in some parts of the flight apparatus, resulting in the presence of gas bubbles inside the experimental liquid, completely compromising the results. Consequently, the experiment did not allow to reveal and/or to measure TRF, but it turned out to be useful in another way, as a very sensitive accelerometer, since the accelerations deduced from velocity measurements concurred with those measured by the Quasi-Steady Acceleration Measurement (QSAM) system.

  9. Estimating Physical Activity in Youth Using a Wrist Accelerometer

    PubMed Central

    Crouter, Scott E.; Flynn, Jennifer I.; Bassett, David R.

    2014-01-01

    PURPOSE The purpose of this study was to develop and validate methods for analyzing wrist accelerometer data in youth. METHODS 181 youth (mean±SD; age, 12.0±1.5 yrs) completed 30-min of supine rest and 8-min each of 2 to 7 structured activities (selected from a list of 25). Receiver Operator Characteristic (ROC) curves and regression analyses were used to develop prediction equations for energy expenditure (child-METs; measured activity VO2 divided by measured resting VO2) and cut-points for computing time spent in sedentary behaviors (SB), light (LPA), moderate (MPA), and vigorous (VPA) physical activity. Both vertical axis (VA) and vector magnitude (VM) counts per 5 seconds were used for this purpose. The validation study included 42 youth (age, 12.6±0.8 yrs) who completed approximately 2-hrs of unstructured PA. During all measurements, activity data were collected using an ActiGraph GT3X or GT3X+, positioned on the dominant wrist. Oxygen consumption was measured using a Cosmed K4b2. Repeated measures ANOVAs were used to compare measured vs predicted child-METs (regression only), and time spent in SB, LPA, MPA, and VPA. RESULTS All ROC cut-points were similar for area under the curve (≥0.825), sensitivity (≥0.756), and specificity (≥0.634) and they significantly underestimated LPA and overestimated VPA (P<0.05). The VA and VM regression models were within ±0.21 child-METs of mean measured child-METs and ±2.5 minutes of measured time spent in SB, LPA, MPA, and VPA, respectively (P>0.05). CONCLUSION Compared to measured values, the VA and VM regression models developed on wrist accelerometer data had insignificant mean bias for child-METs and time spent in SB, LPA, MPA, and VPA; however they had large individual errors. PMID:25207928

  10. Accelerometer Use in a Physical Activity Intervention Trial

    PubMed Central

    Borradaile, Kelley E.; Lewis, Beth A.; Whiteley, Jessica A.; Longval, Jaime L.; Parisi, Alfred F.; Albrecht, Anna E.; Sciamanna, Christopher N.; Jakicic, John M.; Papandonatos, George D.; Marcus, Bess H.

    2010-01-01

    This paper describes the application of best practice recommendations for using accelerometers in a physical activity (PA) intervention trial, and the concordance of different methods for measuring PA. A subsample (n=63; 26%) of the 239 healthy, sedentary adults participating in a PA trial (mean age=47.5; 82% women) wore the ActiGraph monitor at all 3 assessment time points. ActiGraph data were compared with self-report (i.e., PA weekly recall and monthly log) and fitness variables. Correlations between the PA recall and ActiGraph for moderate intensity activity ranged from 0.16–0.48 and from 0.28–0.42 for vigorous intensity activity. ActiGraph and fitness [estimated VO2(ml/kg/min)] had correlations of 0.15–0.45. The ActiGraph and weekly self-report were significantly correlated at all time points (correlations ranged from 0.23–0.44). In terms of detecting intervention effects, intervention groups recorded more minutes of at least moderate-intensity PA on the ActiGraph than the control group at 6 months (min=46.47, 95% CI=14.36–78.58), but not at 12 months. Limitations of the study include a small sample size and only 3 days of ActiGraph monitoring. To obtain optimal results with accelerometers in clinical trials, the authors recommend following best practice recommendations: detailed protocols for monitor use, calibration of monitors and validation of data quality, and use of validated equations for analysis. The ActiGraph has modest concordance with other assessment tools and is sensitive to change over time. However, until more information validating the use of accelerometry in clinical trials becomes available, properly administered self-report measures of PA should remain part of the assessment battery. PMID:20723619

  11. Accelerometer use in a physical activity intervention trial.

    PubMed

    Napolitano, Melissa A; Borradaile, Kelley E; Lewis, Beth A; Whiteley, Jessica A; Longval, Jaime L; Parisi, Alfred F; Albrecht, Anna E; Sciamanna, Christopher N; Jakicic, John M; Papandonatos, George D; Marcus, Bess H

    2010-11-01

    This paper describes the application of best practice recommendations for using accelerometers in a physical activity (PA) intervention trial, and the concordance of different methods for measuring PA. A subsample (n = 63; 26%) of the 239 healthy, sedentary adults participating in a PA trial (mean age = 47.5; 82% women) wore the ActiGraph monitor at all 3 assessment time points. ActiGraph data were compared with self-report (i.e., PA weekly recall and monthly log) and fitness variables. Correlations between the PA recall and ActiGraph for moderate intensity activity ranged from 0.16-0.48 and from 0.28-0.42 for vigorous intensity activity. ActiGraph and fitness [estimated VO(2)(ml/kg/min)] had correlations of 0.15-0.45. The ActiGraph and weekly self-report were significantly correlated at all time points (correlations ranged from 0.23 to 0.44). In terms of detecting intervention effects, intervention groups recorded more minutes of at least moderate-intensity PA on the ActiGraph than the control group at 6 months (min = 46.47, 95% CI = 14.36-78.58), but not at 12 months. Limitations of the study include a small sample size and only 3 days of ActiGraph monitoring. To obtain optimal results with accelerometers in clinical trials, the authors recommend following best practice recommendations: detailed protocols for monitor use, calibration of monitors and validation of data quality, and use of validated equations for analysis. The ActiGraph has modest concordance with other assessment tools and is sensitive to change over time. However, until more information validating the use of accelerometry in clinical trials becomes available, properly administered self-report measures of PA should remain part of the assessment battery.

  12. Hermetically sealed vibration damper

    NASA Technical Reports Server (NTRS)

    Wheatley, D. G.

    1969-01-01

    Simple fluidic vibration damper for installation at each pivotal mounting between gimbals isolates inertial measuring units from external vibration and other disruptive forces. Installation between each of the three gimbal axes can dampen vibration and shock in any direction while permitting free rotation of the gimbals.

  13. The Development of a Robust Accelerometer-Based Start of Combustion Sensing System

    SciTech Connect

    Lynn Davis

    2010-03-31

    Polymer nanofibers are nanoscale materials whose properties can be adjusted to provide desirable light management performance for high efficiency solid-state lighting luminaires. The polymeric nanofibers at the core of this project have diameters on the order of 100 to 1000 nm and a length of more than 1 cm. By controlling fiber diameter, fiber packing, and fiber morphology, a low cost, high performance optical material can be fabricated. This report describes the fabrication of these nanofiber structures and their uses and benefits in solid-state lighting application. When used in solid state lighting devices, nanofibers can take the form of either diffuse reflectors or photoluminescent materials. Nanofiber reflectors (NFR) were developed which displayed high diffuse reflectance with reflectance values in excess of 0.90. In contrast, traditional reflector materials such as aluminum and paint typically possess reflectance values below 0.80 and absorb a larger fraction of light, reducing luminaire output efficiency. The incorporation of the NFR technology into reflectors, troffers, and beam formers present in SSL luminaires provides better reflectance and lower light loss than is possible with conventional materials. Photoluminescent nanofibers (PLN) can be formed by combining nanofibers with photoluminescent materials such as phosphors and quantum dots (QD). Forming the PLN with the proper combination of green and red luminescent materials and exciting the nanocomposite with a blue light emitting diode (LED) has been demonstrated to produce high efficiency (> 55 lumens per watt) white light with excellent color rendering properties. The incorporation of QDs in the PLN is particularly advantageous in that this approach enables the correction of any color deficiencies in the light source without creating unnecessary radiation in the near infrared. Cost models developed during this project have demonstrated that both the NFR and PLN materials can be mass produced at a manufacturing cost of less than $5 per square foot, making it commercially attractive. To capitalize on the benefits of nanofiber technologies in solid-state lighting, several new remote phosphor reflector configurations were developed in the project. When combined with these unique lighting designs, nanofibers have a number of demonstrated benefits in lighting devices including: (1) Providing high quantum efficiency down-conversion of LED wavelengths to produce full spectrum white light; (2) Enabling tunable device structures that achieve colors ranging from warm white to cool white with high CRIs; (3) Supplying mass producible, cost-effective solutions for diffuse, high reflectance light management across the visible spectrum; (4) Facilitating remote phosphor luminaire designs that increase the lifetime and performance of luminescent materials; and (5) Providing conformability to geometries imposed by the light fixture enabling new lighting designs. This report provides a review of the activities conducted during this project and the major advances that have been made during this work in the field of nanoscale materials for solid-state lighting. Section 1 provides background on the nanofiber technologies and patent-pending luminaire structures developed during this project. Section 2 provides a detailed discussion of the benefits of the technologies developed during this work. Section 3 compares the execution of this project with the original proposal. A high level summary of the findings from each Task is also provided in the section. Section 4 lists the products (i.e., patent applications, presentations, publications, collaborations) that have been developed during this project. More details on work conducted during Budget Periods 1-3 can be found in Appendices A-C. The technologies developed during this program have significant commercial potential, and there has already been strong interest in these breakthroughs from the lighting community. It is anticipated that these technologies will begin appearing in commercial products in roughly 5 years to provide significant energy savings for the United States.

  14. Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing.

    PubMed

    Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco

    2016-01-01

    Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394

  15. Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing

    PubMed Central

    Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco

    2016-01-01

    Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394

  16. The Development of a Rebust Accelerometer-Based Start of Combustion Sensing System

    SciTech Connect

    Jim Huang; David Mumford

    2009-01-31

    The development of modern combustion systems increasingly relies on detailed knowledge of the combustion event. As the limits of combustion are approached, tight control of combustion leads to improved emissions and higher efficiencies, while retaining and even improving engine reliability and durability. While developing a novel HCCI (Homogeneous Charge Compression Ignition) technology for large natural gas engines, Westport found that there was no reliable cost-effective technology to monitor the combustion event. As a result, Westport began working on developing a solution based on commercially available knock sensors. While initially developed around HCCI, Westport has identified that numerous other forms of combustion (high EGR systems, Homogeneous Charge Direct Injection, etc) will require combustion sensors. This requirement is also reflected in the development of other technologies in this field. However, the potential low system cost and the lack of intrusion into the cylinder head area are significant benefits for the Westport approach. Previous work by Westport has proven the method on two different large compression ignition gas engines. The objective of the current work is to improve the robustness of this technology; particularly, to identify and reduce the sensor-to-sensor and engine-to-engine variations.

  17. A brief test of the Hewlett-Packard MEMS seismic accelerometer

    USGS Publications Warehouse

    Homeijer, Brian D.; Milligan, Donald J.; Hutt, Charles R.

    2014-01-01

    Testing was performed on a prototype of Hewlett-Packard (HP) Micro-Electro-Mechanical Systems (MEMS) seismic accelerometer at the U.S. Geological Survey’s Albuquerque Seismological Laboratory. This prototype was built using discrete electronic components. The self-noise level was measured during low seismic background conditions and found to be 9.8 ng/√Hz at periods below 0.2 s (frequencies above 5 Hz). The six-second microseism noise was also discernible. The HP MEMS accelerometer was compared to a Geotech Model GS-13 reference seismometer during seismic noise and signal levels well above the self-noise of the accelerometer. Matching power spectral densities (corrected for accelerometer and seismometer responses to represent true ground motion) indicated that the HP MEMS accelerometer has a flat (constant) response to acceleration from 0.0125 Hz to at least 62.5 Hz. Tilt calibrations of the HP MEMS accelerometer verified that the flat response to acceleration extends to 0 Hz. Future development of the HP MEMS accelerometer includes replacing the discreet electronic boards with a low power application-specific integrated circuit (ASIC) and increasing the dynamic range of the sensor to detect strong motion signals above one gravitational acceleration, while maintaining the self-noise observed during these tests.

  18. Comparison of Self-Reported and Accelerometer-Assessed Physical Activity in Older Women

    PubMed Central

    Shiroma, Eric J.; Cook, Nancy R.; Manson, JoAnn E.; Buring, Julie E.; Rimm, Eric B.; Lee, I-Min

    2015-01-01

    Background Self-reported physical activity measures continue to be validated against accelerometers; however, the absence of standardized, accelerometer moderate-to-vigorous physical activity (MVPA) definitions has made comparisons across studies difficult. Furthermore, recent accelerometer models assess accelerations in three axes, instead of only the vertical axis, but validation studies have yet to take incorporate triaxial data. Methods Participants (n = 10 115) from the Women’s Health Study wore a hip-worn accelerometer (ActiGraph GT3X+) for seven days during waking hours (2011–2014). Women then completed a physical activity questionnaire. We compared self-reported with accelerometer-assessed MVPA, using four established cutpoints for MVPA: three using only vertical axis data (760, 1041 and 1952 counts per minute (cpm)) and one using triaxial data (2690 cpm). Results According to self-reported physical activity, 66.6% of women met the US federal physical activity guidelines, engaging in ≥150 minutes per week of MVPA. The percent of women who met guidelines varied widely depending on the accelerometer MVPA definition (760 cpm: 50.0%, 1041 cpm: 33.0%, 1952 cpm: 13.4%, and 2690 cpm: 19.3%). Conclusions Triaxial count data do not substantially reduce the difference between self-reported and accelerometer-assessed MVPA. PMID:26713857

  19. A triaxial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Jia, Jingqing; Feng, Shuo; Liu, Wei

    2015-06-01

    Optimal sensor placement (OSP) technique is a vital part of the field of structural health monitoring (SHM). Triaxial accelerometers have been widely used in the SHM of large-scale structures in recent years. Triaxial accelerometers must be placed in such a way that all of the important dynamic information is obtained. At the same time, the sensor configuration must be optimal, so that the test resources are conserved. The recommended practice is to select proper degrees of freedom (DOF) based upon several criteria and the triaxial accelerometers are placed at the nodes corresponding to these DOFs. This results in non-optimal placement of many accelerometers. A ‘triaxial accelerometer monkey algorithm’ (TAMA) is presented in this paper to solve OSP problems of triaxial accelerometers. The EFI3 measurement theory is modified and involved in the objective function to make it more adaptable in the OSP technique of triaxial accelerometers. A method of calculating the threshold value based on probability theory is proposed to improve the healthy rate of monkeys in a troop generation process. Meanwhile, the processes of harmony ladder climb and scanning watch jump are proposed and given in detail. Finally, Xinghai NO.1 Bridge in Dalian is implemented to demonstrate the effectiveness of TAMA. The final results obtained by TAMA are compared with those of the original monkey algorithm and EFI3 measurement, which show that TAMA can improve computational efficiency and get a better sensor configuration.

  20. Vibration exposure for selected power hand tools used in automobile assembly.

    PubMed

    Radwin, R G; Armstrong, T J; Vanbergeijk, E

    1990-09-01

    A practical method for assessing vibration exposure for workers operating vibrating hand tools on an automobile assembly line is presented. Vibration exposure is difficult to assess directly using many fast Fourier transform (FFT) spectral analyzers because of long task cycle times. Exposure time cannot be accurately estimated using time standards because of the high variability between operators and work methods. Furthermore, because workers frequently move about and get into inaccessible spaces, it is difficult to record vibration without interfering with the operation. A work sampling method was used for determining vibration exposure time by attaching accelerometers to the tools and suspending a battery-operated digital data logger from the air hose. Vibration acceleration and frequency spectra for each tool were obtained off-line replicating actual working conditions and analyzed together with exposure time data for determining individual worker vibration exposure. Eight pneumatic vibrating power hand tools, representing tools commonly used in an automobile assembly plant, were studied. Spectra for the rotary and reciprocating power tools and had large distinct dominant fundamental frequencies occurring in a narrow frequency range between 35 Hz and 150 Hz. These frequencies corresponded closely to tool free-running speeds, suggesting that major spectral component frequencies may be predicted on the basis of speed for some tools. PMID:2220569