Science.gov

Sample records for accelerometers strain gauges

  1. Research on novel MEMS shear beam strain gauge and PZT accelerometer based on deep RIE process

    NASA Astrophysics Data System (ADS)

    Wang, Yu

    2000-10-01

    In this thesis research, the design and processing of a shear beam strain gauge and a PZT accelerometer MEMS device have been investigated in order to understand the effects of chip geometry and processing methods on the performance of these two kinds of MEMS chips. The thesis provides a theoretical analysis using an area-moment method coupled with silicon piezoresistance characteristics to analyze the stresses and the strain state and the piezoresistance effect on the resistors that formed a Wheatstone bridge in the shear beam; the analysis also demonstrates the relation between the dimensions of key chip structures and the device sensitivity. A processing including ion implantation plus drive-in and metalization was investigated in order to attain high sensitivity and good ohmic contact characteristics for a single-step implantation process. A photolithography process, using photo resists of about 30 mum thickness, was developed and investigated for Deep RIE etching in order to form the microstructure. As a result of the design and processing work, the strain gauge device showed good linearity over a +/-300 mum/m range, good temperature characteristics over 13--54°C, low transverse sensitivity and a gauge factor 10 times larger than the foil gauge cousin. The thesis presents the processing research on PZT accelerometer. The research involved compatible process development in order to integrate a PZT capacitor structure (with thick PZT film) into the silicon microstructure. The thesis also presents investigation of wet bulk micromachining processes and Deep RIE process. The thesis discusses the process and behavior of different mask layers for different approaches. The factors that affect the aspect ratio of Si during the DRIE process are also discussed. Accelerometers showed good sensitivities (2.04 PC/g) with a bandwidth of 8kHz. Future work based on these investigations has been proposed to improve the devices performance.

  2. Dynamic Force Measurement with Strain Gauges

    ERIC Educational Resources Information Center

    Lee, Bruce E.

    1974-01-01

    Discusses the use of four strain gauges, a Wheatstone bridge, and an oscilloscope to measure forces dynamically. Included is an example of determining the centripetal force of a pendulum in a general physics laboratory. (CC)

  3. Hydraulic Calibrator for Strain-Gauge Balances

    NASA Technical Reports Server (NTRS)

    Skelly, Kenneth; Ballard, John

    1987-01-01

    Instrument for calibrating strain-gauge balances uses hydraulic actuators and load cells. Eliminates effects of nonparallelism, nonperpendicularity, and changes of cable directions upon vector sums of applied forces. Errors due to cable stretching, pulley friction, and weight inaccuracy also eliminated. New instrument rugged and transportable. Set up quickly. Developed to apply known loads to wind-tunnel models with encapsulated strain-gauge balances, also adapted for use in calibrating dynamometers, load sensors on machinery and laboratory instruments.

  4. Nanocomposite Strain Gauges Having Small TCRs

    NASA Technical Reports Server (NTRS)

    Gregory, Otto; Chen, Ximing

    2009-01-01

    Ceramic strain gauges in which the strain-sensitive electrically conductive strips made from nanocomposites of noble metal and indium tin oxide (ITO) are being developed for use in gas turbine engines and other power-generation systems in which gas temperatures can exceed 1,500 F (about 816 C). In general, strain gauges exhibit spurious thermally induced components of response denoted apparent strain. When temperature varies, a strain-gauge material that has a nonzero temperature coefficient of resistance (TCR) exhibits an undesired change in electrical resistance that can be mistaken for the change in resistance caused by a change in strain. It would be desirable to formulate straingauge materials having TCRs as small as possible so as to minimize apparent strain. Most metals exhibit positive TCRs, while most semiconductors, including ITO, exhibit negative TCRs. The present development is based on the idea of using the negative TCR of ITO to counter the positive TCRs of noble metals and of obtaining the benefit of the ability of both ITO and noble metals to endure high temperatures. The noble metal used in this development thus far has been platinum. Combinatorial libraries of many ceramic strain gauges containing nanocomposites of various proportions of ITO and platinum were fabricated by reactive co-sputtering from ITO and platinum targets onto alumina- and zirconia-based substrates mounted at various positions between the targets.

  5. ACCELEROMETER

    DOEpatents

    Pope, K.E.

    1958-11-25

    A device, commonly known as an accelerometer, is described which may be utllized for measuring acceleratlon with high sensitivity and accuracy tbroughout a relatively wlde range of values. In general, the accelerometer consists of an assembly, including an electric motor stator and a mass element located away from the axis of rotation of the stator, rotatably mounted on a support, and an electric motor rotor positioned within the stator and rotatable thereln. An electrlcal switching circuit controlled by the movement of the stator lntermittently energizes the rotor winding and retards move ment of the stator, and a centrifugal switch is rotatable with the rotor to operate upon attainment of a predetermined rotor rotational velocity.

  6. Dual-Cantilever-Beam Accelerometer

    NASA Technical Reports Server (NTRS)

    Reynolds, Emmitt A.; Speckhart, Frank H.

    1988-01-01

    Sensitivity to velocity changes along beam axis reduced. Weighted-end cantilever beams of accelerometer deflected equally by acceleration in y direction. When acceleration to right as well as up or down, right beam deflected more, while left beam deflected less. Bridge circuit averages outputs of strain gauges measuring deflections, so cross-axis sensitivity of accelerometer reduced. New device simple and inexpensive.

  7. Inexpensive Implementation of Many Strain Gauges

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew C.

    2010-01-01

    It has been proposed to develop arrays of strain gauges as arrays of ordinary metal film resistors and associated electronic readout circuitry on printed circuit boards or other suitable substrates. This proposal is a by-product of a development of instrumentation utilizing metal film resistors on printed-circuit boards to measure temperatures at multiple locations. In the course of that development, it was observed that in addition to being sensitive to temperature, the metal film resistors were also sensitive to strains in the printed-circuit boards to which they were attached. Because of the low cost of ordinary metal film resistors (typically <$0.01 apiece at 2007 prices), the proposal could enable inexpensive implementation of arrays of many (e.g., 100 or more) strain gauges, possibly concentrated in small areas. For example, such an array could be designed for use as a computer keyboard with no moving parts, as a device for sensing the shape of an object resting on a surface, or as a device for measuring strains at many points on a mirror, a fuel tank, an airplane wing, or other large object. Ordinarily, the effect of strain on resistance would be regarded as a nuisance in a temperature-measuring application, and the effect of temperature on resistance would be regarded as a nuisance in a strain-measuring application. The strain-induced changes in resistance of the metal film resistors in question are less than those of films in traditional strain gauges. The main novel aspect of present proposal lies in the use of circuitry affording sufficient sensitivity to measure strain plus means for compensating for the effect of temperature. For an array of metal film resistors used as proposed, the readout circuits would include a high-accuracy analog-to-digital converter fed by a low noise current source, amplifier chain, and an analog multiplexer chain. Corrections would be provided by use of high-accuracy calibration resistors and a temperature sensor. By use of

  8. Load cell having strain gauges of arbitrary location

    DOEpatents

    Spletzer, Barry

    2007-03-13

    A load cell utilizes a plurality of strain gauges mounted upon the load cell body such that there are six independent load-strain relations. Load is determined by applying the inverse of a load-strain sensitivity matrix to a measured strain vector. The sensitivity matrix is determined by performing a multivariate regression technique on a set of known loads correlated to the resulting strains. Temperature compensation is achieved by configuring the strain gauges as co-located orthogonal pairs.

  9. OTDR strain gauge for smart skins

    SciTech Connect

    Kercel, S.W.

    1993-09-01

    Optical time-domain reflectometry (OTDR) is a simple and rugged technique for measuring quantities such as strain that affect the propagation of light in an optical fiber. For engineering applications of OTDR, it is important to know the repeatable limits of its performance. The author constructed an OTDR-based, submillimeter resolution strain measurement system from off-the-shelf components. The systems repeatably resolves changes in time of flight to within {plus_minus}2 ps. Using a 1-m, single-mode fiber as a gauge and observing the time of flight between Fresnel reflections, a repeatable sensitivity of 400 microstrains was observed. Using the same fiber to connect the legs of a 3-dB directional coupler to form a loop, a repeatable sensitivity of 200 microstrains was observed. Realizable changes to the system that should improve the repeatable sensitivity to 20 microstrains or less are discussed.

  10. Gauge Factor and Stretchability of Silicon-on-Polymer Strain Gauges

    PubMed Central

    Yang, Shixuan; Lu, Nanshu

    2013-01-01

    Strain gauges are widely applied to measure mechanical deformation of structures and specimens. While metallic foil gauges usually have a gauge factor slightly over 2, single crystalline silicon demonstrates intrinsic gauge factors as high as 200. Although silicon is an intrinsically stiff and brittle material, flexible and even stretchable strain gauges have been achieved by integrating thin silicon strips on soft and deformable polymer substrates. To achieve a fundamental understanding of the large variance in gauge factor and stretchability of reported flexible/stretchable silicon-on-polymer strain gauges, finite element and analytically models are established to reveal the effects of the length of the silicon strip, and the thickness and modulus of the polymer substrate. Analytical results for two limiting cases, i.e., infinitely thick substrate and infinitely long strip, have found good agreement with FEM results. We have discovered that strains in silicon resistor can vary by orders of magnitude with different substrate materials whereas strip length or substrate thickness only affects the strain level mildly. While the average strain in silicon reflects the gauge factor, the maximum strain in silicon governs the stretchability of the system. The tradeoff between gauge factor and stretchability of silicon-on-polymer strain gauges has been proposed and discussed. PMID:23881128

  11. Optical fiber strain gauge using a mirror with a pinhole

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Toru; Takase, Hiroshi; Yamamoto, Masayuki; Otani, Yukitoshi

    2001-11-01

    In the conventional measurement of strain, resistance wire types of strain gauges have been used in most of cases. However, other kinds of strain gauges have been reported recently and optical fiber gauges appeared on the market. Here, instead of a conventional strain gauge made of a metal wire, we propose an optical fiber gauge. This gauge consists of two fibers for transmitting a beam from a light source and for receiving a reflecting-back beam, and in between them a concave mirror with a hole is settled. This mirror is used for transmission and partial reflection of the beam. When strain is given to the testing specimen to which the gauge is adhered, small displacement between two fiber ends is brought. The construction of this gauge is so sensitive to gap change between the fibers that high sensitivity is realized in measurement. In addition to high sensitivity, this gauge is featured by a small size and short gauge length. To verify this principle, experiments are repeated by using a thin plate specimen made of copper. The gauge is made of a plastic fiber of 0.5 mm in diameter and a small concave miro with a pinhole. Due to this mirror construction, the fluctuation of the beam intensity can be checked and the stable normalized output signal is obtained. Because the normalized signal is obtained form two signals; transmitted and reflected signals. An experimental result showed a high sensitivity in experimental measurement, and even for the intentional fluctuation of the beam intensity, we could get same measuring result in strain measurement.

  12. Operational verification of a blow out preventer utilizing fiber Bragg grating based strain gauges

    NASA Astrophysics Data System (ADS)

    Turner, Alan L.; Loustau, Philippe; Thibodeau, Dan

    2015-05-01

    Ultra-deep water BOP (Blowout Preventer) operation poses numerous challenges in obtaining accurate knowledge of current system integrity and component condition- a salient example is the difficulty of verifying closure of the pipe and shearing rams during and after well control events. Ascertaining the integrity of these functions is currently based on a manual volume measurement performed with a stop watch. Advances in sensor technology now permit more accurate methods of BOP condition monitoring. Fiber optic sensing technology and particularly fiber optic strain gauges have evolved to a point where we can derive a good representation of what is happening inside a BOP by installing sensors on the outside shell. Function signatures can be baselined to establish thresholds that indicate successful function activation. Based on this knowledge base, signal variation over time can then be utilized to assess degradation of these functions and subsequent failure to function. Monitoring the BOP from the outside has the advantage of gathering data through a system that can be interfaced with risk based integrity management software and/or a smart monitoring system that analyzes BOP control redundancies without the requirement of interfacing with OEM control systems. The paper will present the results of ongoing work on a fully instrumented 13-½" 10,000 psi pipe ram. Instrumentation includes commonly used pressure transducers, accelerometers, flow meters, and optical strain gauges. Correlation will be presented between flow, pressure, acceleration signatures and the fiber optic strain gauge's response as it relates to functional verification and component level degradation trending.

  13. Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong

    2016-03-01

    A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors.

  14. Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings.

    PubMed

    Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong

    2016-01-01

    A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors.

  15. Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings

    PubMed Central

    Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong

    2016-01-01

    A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors. PMID:27005493

  16. An Intelligent Strain Gauge with Debond Detection and Temperature Compensation

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L.

    2012-01-01

    The harsh rocket propulsion test environment will expose any inadequacies associated with preexisting instrumentation technologies, and the criticality for collecting reliable test data justifies investigating any encountered data anomalies. Novel concepts for improved systems are often conceived during the high scrutiny investigations by individuals with an in-depth knowledge from maintaining critical test operations. The Intelligent Strain Gauge concept was conceived while performing these kinds of activities. However, the novel concepts are often unexplored even if it has the potential for advancing the current state of the art. Maturing these kinds of concepts is often considered to be a tangential development or a research project which are both normally abandoned within the propulsion-oriented environment. It is also difficult to justify these kinds of projects as a facility enhancement because facility developments are only accepted for mature and proven technologies. Fortunately, the CIF program has provided an avenue for bringing the Intelligent Strain Gauge to fruition. Two types of fully functional smart strain gauges capable of performing reliable and sensitive debond detection have been successfully produced. Ordinary gauges are designed to provide test article data and they lack the ability to supply information concerning the gauge itself. A gauge is considered to be a smart gauge when it provides supplementary data relating other relevant attributes for performing diagnostic function or producing enhanced data. The developed strain gauges provide supplementary signals by measuring strain and temperature through embedded Karma and nickel chromium (NiCr) alloy elements. Intelligently interpreting the supplementary data into valuable information can be performed manually, however, integrating this functionality into an automatic system is considered to be an intelligent gauge. This was achieved while maintaining a very low mass. The low mass enables

  17. Strain Gauges Indicate Differential-CTE-Induced Failures

    NASA Technical Reports Server (NTRS)

    Harris, Brian

    2007-01-01

    A method of detecting mechanical failure induced by variation in temperature at an adhesive bond between two materials that have different coefficients of thermal expansion (CTEs) involves monitoring of strain-gauge readings. This method can be regarded as an exploitation of the prior observation that the readings of strain gauges commonly used in tensile and compressive testing of material specimens include features indicative of incremental failures in the specimens. In this method, one or more strain gauges are bonded to either or both of the two materials near the bond between the materials. (The adhesive used to bond the strain gauges would not ordinarily be the same as the one used to bond the two materials). Then strain-gauge readings are recorded as the temperature of the materials is varied through a range of interest. Any significant discontinuity in the slope of the resulting strain-versus-temperature curve(s) is taken to be a qualitative indication of a failure of the bond between the two materials and/or a failure within one of the materials in the vicinity of the bond. The method has been demonstrated in experiments on specimens consisting of polyacrylonitrile-fiber/epoxy-matrix laminated composite plates bonded by epoxy to smaller plates made, variously, of aluminum, titanium, and a low-CTE nickel/iron alloy. In preparation for each experiment, strain gauges were bonded, by use of cryogenic-rated adhesives, to the composite plate near the corners of the metal plate (see Figure 1). In each experiment, strain-gauge and temperature readings were taken as the specimen was cooled from room temperature to 20 K. The specimens were then returned to room temperature and ultrasonically inspected for damage in the bond region. No failure events were detectable in the strain-gauge readings from the composite/ titanium and composite/low-thermalexpansion- alloy specimens, and ultrasonic inspection of these specimens revealed no damage. However, failure events were

  18. Tunable strain gauges based on two-dimensional silver nanowire networks.

    PubMed

    Ho, Xinning; Cheng, Chek Kweng; Tey, Ju Nie; Wei, Jun

    2015-05-15

    Strain gauges are used in various applications such as wearable strain gauges and strain gauges in airplanes or structural health monitoring. Sensitivity of the strain gauge required varies, depending on the application of the strain gauge. This paper reports a tunable strain gauge based on a two-dimensional percolative network of silver nanowires. By varying the surface coverage of the nanowire network and the waviness of the nanowires in the network, the sensitivity of the strain gauge can be controlled. Hence, a tunable strain gauge can be engineered, based on demands of the application. A few applications are demonstrated. The strain gauge can be adhered to the human neck to detect throat movements and a glove integrated with such a strain gauge can detect the bending of the forefinger. Other classes of two-dimensional percolative networks of one-dimensional materials are also expected to exhibit similar tunable properties. PMID:25902896

  19. Strain flexibility identification of bridges from long-gauge strain measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Xia, Qi; Cheng, YuYao; Wu, ZhiShen

    2015-10-01

    Strain flexibility, defined as the strain response of a structure's element to a unit input force, is import for structural safety evaluation, but its identification is seldom investigated. A novel long-gauge fiber optic sensor has been developed to measure the averaged strain within a long gauge length. Its advantage of measuring both local and global information of the structure offers an excellent opportunity of developing the strain flexibility identification theory. In this article, the method to identify structural strain flexibility from long-gauge dynamic strain measurements is proposed. It includes the following main steps: (a) macro strain frequency response function (FRF) estimation from macro strain measurements and its feature characterization; (b) general strain modal parameter identification; (c) scaling factor calculation, and (d) strain flexibility identification. Numerical and experimental examples successfully verify the effectiveness of the proposed method.

  20. Interface strength studies of calcium phosphate ceramic coated strain gauges.

    PubMed

    Battraw, G A; Szivek, J A; Anderson, P L

    1998-01-01

    In vivo strain gauging has been used to understand physiological loading and bone remodeling. In early studies, a cyanoacrylate adhesive was used to bond gauges to bone, even though this adhesive is susceptible to biodegradation that results in rapid debonding. Calcium phosphate ceramic (CPC) coated gauges have been successfully bonded to bone for long periods. However, earlier studies noted occasional debonding of coatings from gauges. The goals of this project were to develop a technique to securely bond particles to gauge backings and develop an in vitro test and assess its accuracy in simulating in vivo degradation of this interface. Gauges were heated for different time intervals, roughened with carbide papers, and prepared using layered coatings of polysulfone and CPC particles that varied in size, shape, and crystallinity. They were soaked in solution or placed in muscle pouches of rats for up to 16 weeks. They were then epoxied to fixtures, mounted on an MTS machine, and loaded to failure. Heating and roughening gauge surfaces increased the interface strengths by up to 2000%. In vivo and in vitro testing showed an initial drop in the interface strength, which leveled off to approximately 7.0+/-2.0 MPa.

  1. Method of attaching strain gauges to various materials

    NASA Astrophysics Data System (ADS)

    Schott, Timothy D.; Fox, Robert L.; Buckley, John D.

    1988-08-01

    A method is provided to bond strain gauges to various materials. First, a tape with an adhesive backing is placed across the inside of the fixture frame. The strain gauge is flatly placed against the adhesive backing and coated with a thin, uniform layer of adhesive. The tape is then removed from the fixture frame and placed, strain gauge side down, on the material to be tested. If the material is a high reluctance material, the induction heating source is placed on the tape. If the material is a low reluctance material, a plate with a ferric side and a rubber side is placed, ferric side down, onto the tape. The induction heating source is then placed upon the rubber side. If the material is an insulator material, a ferric plate is placed on the tape. The induction heating source is then placed on the ferric plate. The inductive heating source then generates frequenty from 60 to 70 kilocycles to inductively heat either low reluctance material, ferric side, of ferric plate and provides incidental pressure of approximately five pounds per square inch to the tape for two minutes, thoroughly curing the adhesive. The induction heating source, and, if necessary, the plate or ferric plate, are then removed from the tape after one minute. The tape is then removed from the bonded strain gauge.

  2. Fiber-Optic Strain Gauge With High Resolution And Update Rate

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Mahajan, Ajay; Sayeh, Mohammad; Regez, Bradley

    2007-01-01

    An improved fiber-optic strain gauge is capable of measuring strains in the approximate range of 0 to 50 microstrains with a resolution of 0.1 microstrain. (To some extent, the resolution of the strain gauge can be tailored and may be extensible to 0.01 microstrain.) The total cost of the hardware components of this strain gauge is less than $100 at 2006 prices. In comparison with prior strain gauges capable of measurement of such low strains, this strain gauge is more accurate, more economical, and more robust, and it operates at a higher update rate. Strain gauges like this one are useful mainly for measuring small strains (including those associated with vibrations) in such structures as rocket test stands, buildings, oilrigs, bridges, and dams. The technology was inspired by the need to measure very small strains on structures supporting liquid oxygen tanks, as a way to measure accurately mass of liquid oxygen during rocket engine testing. This improved fiber-optic strain gauge was developed to overcome some of the deficiencies of both traditional foil strain gauges and prior fiber-optic strain gauges. Traditional foil strain gages do not have adequate signal-to-noise ratios at such small strains. Fiber-optic strain gauges have been shown to be potentially useful for measuring such small strains, but heretofore, the use of fiberoptic strain gauges has been inhibited, variously, by complexity, cost, or low update rate.

  3. Dynamic and static strain gauge using superimposed fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Ma, Y. C.; Yang, Y. H.; Li, J. M.; Yang, M. W.; Tang, J.; Liang, T.

    2012-10-01

    This paper demonstrates a simple and fast interrogation method for the dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to decrease nonequidistant space of generated a sensing pulse train in a time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A four times increase in the interrogation speed of dynamic strain, by generating a 2 kHz optical sensing pulse train from a 500 Hz scanning frequency, is demonstrated experimentally. The interrogation uncertainty and total harmonic distortion characterization of superimposed FBGs are tested and less than 4 pm standard deviation is obtained.

  4. Hydroxyapatite-coated strain gauges for long-term in vivo bone strain measurements.

    PubMed

    Maliniak, M M; Szivek, J A; DeYoung, D W; Emmanual, J

    1993-01-01

    The aim of this study was to examine the bonding process between hydroxyapatite-coated strain gauges and bone in order to continue development of a long term in vivo strain measurement device. Two types of commercially available hydroxyapatite (HA) particles were applied to the sensing surface of uniaxial strain gauges using a polysulfone solution as an adhesive. Characterization by scanning electron microscopy and x-ray diffraction (XRD) was used to determine materials property differences between the two powders. Interfacial strengths between the HA coatings and the strain gauges were tested and found comparable to interfacial strength obtained by a plasma sprayed HA coating on the surface of a titanium implant. Gauges were surgically placed on the periosteal surface of greyhound femora. Three groups of dogs were implanted with gauges for periods of 3, 6, and 12 weeks using cyanoacrylate, resorbable sutures, and cable ties to initially hold the gauge against the surface of the bone. Following euthanasia, the femora of the dogs were explanted and subjected to cantilever loading. Response of the implanted HA-coated gauges were compared to a control set that had been freshly glued onto the contralateral femur. Full response, that is, 100% of the strain measurement with respect to the control, was obtained after 12 weeks in vivo. Attachment of HA-coated gauges with circumferential suture showed bonding, while HA-coated gauges attached with cyanoacrylate did not bond to bone. After mechanical testing, femora were embedded in polymethylmethacrylate, cut, ground, and polished. Sections were stained using mineralized bone stain (MIBS) and optical microscopy was performed using transmitted and fluorescent light to allow analysis of remodeling occurring in the region of the strain gauges. Bone formation occurred at the HA surface of sutured gauges, and a fibrous tissue layer developed between the bone and HA coating when the tissue adhesive was used to initially bond the

  5. Measurement of high temperature strain by the laser-speckle strain gauge

    NASA Technical Reports Server (NTRS)

    Yamaguchi, I.

    1984-01-01

    By using the laser-speckle strain gauge, the strain of metal at the temperature lower than 250 C is measured. The principle of the gauge is to measure the expansion or contraction of the fine structures of surface by detecting the resultant speckle displacement in an optoelectronic way, whereby the effect of rigid-body motion is automatically cancelled out with the aid of a differential detection system. A transportable apparatus was built and a comparison experiment performed with a resistance strain gauge at room temperature. It has a strain sensitivity of .00002, a gauge length smaller than 1 mm, and no upper limit in a range of strain measurement. In the measurement of high-temperature strain it is free from the need for a dummy gauge and insensitive to an electric drift effect. As examples of strain measurement at high-temperature, thermal expansion and contraction of a top of a soldering iron are measured. The interval of the measurement can be made at shortest 1.6 sec. and the change in the strain is clearly followed until the ultimate stationary temperature is reached.

  6. Embedded strain gauges for condition monitoring of silicone gaskets.

    PubMed

    Schotzko, Timo; Lang, Walter

    2014-01-01

    A miniaturized strain gauge with a thickness of 5 µm is molded into a silicone O-ring. This is a first step toward embedding sensors in gaskets for structural health monitoring. The signal of the integrated sensor exhibits a linear correlation with the contact pressure of the O-ring. This affords the opportunity to monitor the gasket condition during installation. Thus, damages caused by faulty assembly can be detected instantly, and early failures, with their associated consequences, can be prevented. Through the embedded strain gauge, the contact pressure applied to the gasket can be directly measured. Excessive pressure and incorrect positioning of the gasket can cause structural damage to the material of the gasket, which can lead to an early outage. A platinum strain gauge is fabricated on a thin polyimide layer and is contacted through gold connections. The measured resistance pressure response exhibits hysteresis for the first few strain cycles, followed by a linear behavior. The short-term impact of the embedded sensor on the stability of the gasket is investigated. Pull-tests with O-rings and test specimens have indicated that the integration of the miniaturized sensors has no negative impact on the stability in the short term. PMID:25014099

  7. Embedded Strain Gauges for Condition Monitoring of Silicone Gaskets

    PubMed Central

    Schotzko, Timo; Lang, Walter

    2014-01-01

    A miniaturized strain gauge with a thickness of 5 µm is molded into a silicone O-ring. This is a first step toward embedding sensors in gaskets for structural health monitoring. The signal of the integrated sensor exhibits a linear correlation with the contact pressure of the O-ring. This affords the opportunity to monitor the gasket condition during installation. Thus, damages caused by faulty assembly can be detected instantly, and early failures, with their associated consequences, can be prevented. Through the embedded strain gauge, the contact pressure applied to the gasket can be directly measured. Excessive pressure and incorrect positioning of the gasket can cause structural damage to the material of the gasket, which can lead to an early outage. A platinum strain gauge is fabricated on a thin polyimide layer and is contacted through gold connections. The measured resistance pressure response exhibits hysteresis for the first few strain cycles, followed by a linear behavior. The short-term impact of the embedded sensor on the stability of the gasket is investigated. Pull-tests with O-rings and test specimens have indicated that the integration of the miniaturized sensors has no negative impact on the stability in the short term. PMID:25014099

  8. First International Symposium on Strain Gauge Balances. Pt. 1

    NASA Technical Reports Server (NTRS)

    Tripp, John S. (Editor); Tcheng, Ping (Editor)

    1999-01-01

    The first International Symposium on Strain Gauge Balances was sponsored and held at NASA Langley Research Center during October 22-25, 1996. The symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. Over 130 delegates from 15 countries were in attendance. The program opened with a panel discussion, followed by technical paper sessions, and guided tours of the National Transonic Facility (NTF) wind tunnel, a local commercial balance fabrication facility, and the LaRC balance calibration laboratory. The opening panel discussion addressed "Future Trends in Balance Development and Applications." Forty-six technical papers were presented in 11 technical sessions covering the following areas: calibration, automatic calibration, data reduction, facility reports, design, accuracy and uncertainty analysis, strain gauges, instrumentation, balance design, thermal effects, finite element analysis, applications, and special balances. At the conclusion of the Symposium, a steering committee representing most of the nations and several U.S. organizations attending the Symposium was established to initiate planning for a second international balance symposium, to be held in 1999 in the UK.

  9. First International Symposium on Strain Gauge Balances. Part 2

    NASA Technical Reports Server (NTRS)

    Tripp, John S (Editor); Tcheng, Ping (Editor)

    1999-01-01

    The first International Symposium on Strain Gauge Balances was sponsored and held at NASA Langley Research Center during October 22-25, 1996. The symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. Over 130 delegates from 15 countries were in attendance. The program opened with a panel discussion, followed by technical paper sessions, and guided tours of the National Transonic Facility (NTF) wind tunnel, a local commercial balance fabrication facility, and the LaRC balance calibration laboratory. The opening panel discussion addressed "Future Trends in Balance Development and Applications." Forty-six technical papers were presented in 11 technical sessions covering the following areas: calibration, automatic calibration, data reduction, facility reports, design, accuracy and uncertainty analysis, strain gauges, instrumentation, balance design, thermal effects, finite element analysis, applications, and special balances. At the conclusion of the Symposium, a steering committee representing most of the nations and several U.S. organizations attending the Symposium was established to initiate planning for a second international balance symposium, to be held in 1999 in the UK.

  10. Monopiece strain gauge sting mounted wind tunnel balance

    NASA Astrophysics Data System (ADS)

    Faucher, Gilles; Paradis, Marc-Andre; Girard, Bertrand

    1992-12-01

    A balance is disclosed for an apparatus for measuring the various aerodynamic coefficients of flight vehicles by testing scale models of these vehicles in a wind tunnel. The balance of the invention measures the following parameters: axial, normal, and side force; and pitching, yawing, and rolling moments. The balance is based on a monopiece center core where sensing components have a roll or primary frame as well as being reference supports to strain gauges. The dual function of the primary frame means that forces and moments, when applied to the balance, will generate interferences in several other components. Because of the center core configuration, it is possible to calibrate, calculate, and deduct with a very high precision the interferences of each component over the other. Except for the axial force sensing components, all forces and moments are sensed by two groups of crossed webs, one cross web at each end of the center core. The axial force sensing components are made of two tensioning rings, one at each end of the center core. The configuration of the balance is of the rigid-frame type, in order to make use of semiconductor strain gauges which are very precise. The resulting balance is more precise than any known balance of its size and can resist starting and stopping overloads which occur at the beginning and end of a test.

  11. A novel class of strain gauges based on layered percolative films of 2D materials.

    PubMed

    Hempel, Marek; Nezich, Daniel; Kong, Jing; Hofmann, Mario

    2012-11-14

    Here we report on the fabrication and characterization of a novel type of strain gauge based on percolative networks of 2D materials. The high sensitivity of the percolative carrier transport to strain induced morphology changes was exploited in strain sensors that can be produced from a wide variety of materials. Highly reliable and sensitive graphene-based thin film strain gauges were produced from solution processed graphene flakes by spray deposition. Control of the gauge sensitivity could be exerted through deposition-induced changes to the film morphology. This exceptional property was explained through modeling of the strain induced changes to the flake-flake overlap for different percolation networks. The ability to directly deposit strain gauges on complex-shaped and transparent surfaces was presented. The demonstrated scalable fabrication, superior sensitivity over conventional sensors, and unique properties of the described strain gauges have the potential to improve existing technology and open up new fields of applications for strain sensors.

  12. A high-resolution strain-gauge nanolaser

    PubMed Central

    Choi, Jae-Hyuck; No, You-Shin; So, Jae-Pil; Lee, Jung Min; Kim, Kyoung-Ho; Hwang, Min-Soo; Kwon, Soon-Hong; Park, Hong-Gyu

    2016-01-01

    Interest in mechanical compliance has been motivated by the development of flexible electronics and mechanosensors. In particular, studies and characterization of structural deformation at the fundamental scale can offer opportunities to improve the device sensitivity and spatiotemporal response; however, the development of precise measurement tools with the appropriate resolution remains a challenge. Here we report a flexible and stretchable photonic crystal nanolaser whose spectral and modal behaviours are sensitive to nanoscale structural alterations. Reversible spectral tuning of ∼26 nm in lasing wavelength, with a sub-nanometre resolution of less than ∼0.6 nm, is demonstrated in response to applied strain ranging from −10 to 12%. Instantaneous visualization of the sign of the strain is also characterized by exploring the structural and corresponding modal symmetry. Furthermore, our high-resolution strain-gauge nanolaser functions as a stable and deterministic strain-based pH sensor in an opto-fluidic system, which may be useful for further analysis of chemical/biological systems. PMID:27175544

  13. Effect of finite strain on clast-based vorticity gauges

    NASA Astrophysics Data System (ADS)

    Stahr, Donald W., III; Law, Richard D.

    2011-07-01

    Clast-based vorticity gauges utilize orientations of grains assumed to have behaved as isolated rigid particles suspended in a flowing viscous matrix. A fundamental assumption behind use of the method is that sufficient strain has accumulated for high aspect ratio grains to rotate into positions approaching their stable sink orientation, and that clasts below a critical aspect ratio may be observed in any orientation relative to the flow plane. We constructed a numerical model to explore the effect of variable finite strain on development of the orientation distribution of a large population of rigid clasts embedded in a viscous medium for end-member pure and simple shear and for several distinct general shear flows. Our model predicts the technique will tend to produce vorticity overestimates for lower vorticity flows for a wide range of finite strain. The model also indicates that clast populations in moderate to high vortical flows tend to develop shape preferred orientations that closely resemble those expected for flows of lower vorticity. We conclude that clast-based methods are not effective for extracting detailed kinematic information from a mylonite deformed in a flow with arbitrary boundary conditions. In fact, it appears that most general shear flows continued long enough to develop moderate-high finite strains will tend to produce a clast orientation distribution that will yield a visual estimate of the critical aspect ratio that suggests approximately equal contributions of pure and simple shear components.

  14. A high-resolution strain-gauge nanolaser.

    PubMed

    Choi, Jae-Hyuck; No, You-Shin; So, Jae-Pil; Lee, Jung Min; Kim, Kyoung-Ho; Hwang, Min-Soo; Kwon, Soon-Hong; Park, Hong-Gyu

    2016-01-01

    Interest in mechanical compliance has been motivated by the development of flexible electronics and mechanosensors. In particular, studies and characterization of structural deformation at the fundamental scale can offer opportunities to improve the device sensitivity and spatiotemporal response; however, the development of precise measurement tools with the appropriate resolution remains a challenge. Here we report a flexible and stretchable photonic crystal nanolaser whose spectral and modal behaviours are sensitive to nanoscale structural alterations. Reversible spectral tuning of ∼26 nm in lasing wavelength, with a sub-nanometre resolution of less than ∼0.6 nm, is demonstrated in response to applied strain ranging from -10 to 12%. Instantaneous visualization of the sign of the strain is also characterized by exploring the structural and corresponding modal symmetry. Furthermore, our high-resolution strain-gauge nanolaser functions as a stable and deterministic strain-based pH sensor in an opto-fluidic system, which may be useful for further analysis of chemical/biological systems. PMID:27175544

  15. A high-resolution strain-gauge nanolaser

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hyuck; No, You-Shin; So, Jae-Pil; Lee, Jung Min; Kim, Kyoung-Ho; Hwang, Min-Soo; Kwon, Soon-Hong; Park, Hong-Gyu

    2016-05-01

    Interest in mechanical compliance has been motivated by the development of flexible electronics and mechanosensors. In particular, studies and characterization of structural deformation at the fundamental scale can offer opportunities to improve the device sensitivity and spatiotemporal response; however, the development of precise measurement tools with the appropriate resolution remains a challenge. Here we report a flexible and stretchable photonic crystal nanolaser whose spectral and modal behaviours are sensitive to nanoscale structural alterations. Reversible spectral tuning of ~26 nm in lasing wavelength, with a sub-nanometre resolution of less than ~0.6 nm, is demonstrated in response to applied strain ranging from -10 to 12%. Instantaneous visualization of the sign of the strain is also characterized by exploring the structural and corresponding modal symmetry. Furthermore, our high-resolution strain-gauge nanolaser functions as a stable and deterministic strain-based pH sensor in an opto-fluidic system, which may be useful for further analysis of chemical/biological systems.

  16. Increasing Durability of Flame-Sprayed Strain Gauges

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J.; Downey, Markus A.; Wnuk, Steve; Wnuk, Vince

    2007-01-01

    Thermally sprayed dielectric ceramic coatings are the primary means of attaching strain and temperature gauges to hot-section rotating parts of turbine engines. As hot-section temperatures increase, lifetimes of installed gauges decrease, and seldom exceed one hour above 2,000 F (approx.1,100 C). Advanced engine components are expected to operate at temperatures approaching 2,200 F (approx.1,200 C), and the required high-temperature lifetime is 10 hours minimum. Typically, to enable a ceramic coating to adhere to the smooth surface of an engine component, a thermally sprayed NiCrAlY or NiCoCrAlY bond coat is applied to the smooth surface, thereby providing a textured surface to which the ceramic coat can adhere. The main failure mechanism of this system is decohesion and/or delamination at the interface between the ceramic top coat and the bond coat, caused by oxidation of the bond coat and stresses from the mismatch between the coefficients of thermal expansion of the ceramic top coat and the metallic bond coat. The approach taken to increase the high-temperature lifetime of a gauge attached to an engine component by the method described above involves (1) selective oxidation of the bond coat by means of a heat treatment in reduced oxygen partial pressure followed by (2) the application of a noble-metal diffusion barrier. In experiments to test this approach, heat treatments of NiCoCrAlY bond coats were carried out in a tube furnace in which, in each case, the temperature was alternately (1) increased at a rate of 3 C per minute and (2) held steady for one hour until the desired temperature was reached. The tube furnace was continuously purged with dry nitrogen gas. A final heat-treatment temperature range of 1,600 to 1,800 F (871 to 982 C) proved most beneficial.

  17. Protective Coats For High-Temperature Strain Gauges

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1993-01-01

    Addition of some rare-earth oxides to prior alumina (only) coating material increases maximum service temperature of palladium/chromium-wire strain gauges. Pd/Cr wires used at temperatures up to 800 degrees C without excessive drift in electrical resistance. Oxides used: zirconia (ZrO2), yttria (Y2O3), ceria (CeO2), and hafnia (HfO2). Addition of one of these oxides to decrease oxidation of wire at high temperature. Protection against oxidation increases with concentration of rare-earth oxide. Addition of ZrO2 at 4 to 6 weight percent or Y2O3 at 1 weight percent results in smallest drift in electrical resistance.

  18. A nanocrystal strain gauge for luminescence detection of mechanical forces

    SciTech Connect

    Choi, Charina; Koski, Kristie; Olson, Andrew; Alivisatos, Paul

    2010-07-26

    Local microscale stresses play a crucial role in inhomogeneous mechanical processes from cell motility to material failure. However, it remains difficult to spatially resolve stress at these small length scales. While contact-probe and non-contact based techniques have been used to quantify local mechanical behavior in specific systems with high stiffness or stress and spatial resolution, these methods cannot be used to study a majority of micromechanical systems due to spectroscopic and geometrical constraints. We present here the design and implementation of a luminescent nanocrystal strain gauge, the CdSe/CdS core/shell tetrapod. The tetrapod can be incorporated into many materials, yielding a local stress measurement through optical fluorescence spectroscopy of the electronically confined CdSe core states. The stress response of the tetrapod is calibrated and utilized to study mechanical behavior in single polymer fibers. We expect that tetrapods can be used to investigate local stresses in many other mechanical systems.

  19. Pencil Drawn Strain Gauges and Chemiresistors on Paper

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Wei; Zhao, Zhibo; Kim, Jaemyung; Huang, Jiaxing

    2014-01-01

    Pencil traces drawn on print papers are shown to function as strain gauges and chemiresistors. Regular graphite/clay pencils can leave traces composed of percolated networks of fine graphite powders, which exhibit reversible resistance changes upon compressive or tensile deflections. Flexible toy pencils can leave traces that are essentially thin films of graphite/polymer composites, which show reversible changes in resistance upon exposure to volatile organic compounds due to absorption/desorption induced swelling/recovery of the polymer binders. Pencil-on-paper devices are low-cost, extremely simple and rapid to fabricate. They are light, flexible, portable, disposable, and do not generate potentially negative environmental impact during processing and device fabrication. One can envision many other types of pencil drawn paper electronic devices that can take on a great variety of form factors. Hand drawn devices could be useful in resource-limited or emergency situations. They could also lead to new applications integrating art and electronics.

  20. Luminescent Tension-Indicating Orthopedic Strain Gauges for Non-Invasive Measurements Through Tissue

    NASA Technical Reports Server (NTRS)

    Anker, Jeffrey (Inventor); Rogalski, Melissa (Inventor); Anderson, Dakota (Inventor); Heath, Jonathon (Inventor)

    2015-01-01

    Strain gauges that can provide information with regard to the state of implantable devices are described. The strain gauges can exhibit luminescence that is detectable through living tissue, and the detectable luminescent emission can vary according to the strain applied to the gauge. A change in residual strain of the device can signify a loss of mechanical integrity and/or loosening of the implant, and this can be non-invasively detected either by simple visual detection of the luminescent emission or through examination of the emission with a detector such as a spectrometer or a camera.

  1. Cold pressor test using strain-gauge plethysmography.

    PubMed

    Feliciani, Giacomo; Peron, Cristiano; La Rocca, Augusto; Scuppa, Maria Francesca; Malavolta, Andrea; Bianchini, David; Corazza, Ivan; Zannoli, Romano

    2016-09-01

    This laboratory activity is designed to teach students how to measure forearm muscle blood flow (FBF) to describe the mechanisms of peripheral blood flow thermal regulation in healthy subjects. The cold pressor test (CPT) is the clinical procedure used in the experiment to induce arterial vasoconstriction. Strain-gauge plethysmography is applied on the patient's forearm to noninvasive monitor vasoconstriction effects on local blood perfusion and physiological parameters such as blood pressure (BP) and heart rate (HR). Patients with an altered peripheral vascular resistance (e.g., in hypertension) have different responses to the CPT from healthy subjects. To date, experimental evidence remains unexplained, as we do not know if the BP and HR increase is caused by a decrease in flow rate or an increase in peripheral vascular resistance during the test. To clarify this situation, we have to quantify the parameter we assume is being conditioned by the regulatory physiological intervention, i.e., peripheral vascular resistance. Peripheral vascular resistance quantification can be calculated as the ratio between muscle flow and mean arterial pressure. Students will learn how to apply the instrumental procedure to collect and analyze data before, during, and after the CPT and to describe the physiological responses of the peripheral vascular system to external stressors. They will also learn how to distinguish healthy from pathological responses on the basis of how sympathetic nervous system reactions influence the biomechanics of peripheral vessels. PMID:27503902

  2. Metal ion implantation in inert polymers for strain gauge applications

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Giovanni; Massaro, Marcello; Piscopiello, Emanuela; Tapfer, Leander

    2010-10-01

    Metal ion implantation in inert polymers may produce ultra-thin conducting films below the polymer surface. These subsurface films are promising structures for strain gauge applications. To this purpose, polycarbonate substrates were irradiated at room temperature with low-energy metal ions (Cu + and Ni +) and with fluences in the range between 1 × 10 16 and 1 × 10 17 ions/cm 2, in order to promote the precipitation of dispersed metal nanoparticles or the formation of a continuous thin film. The nanoparticle morphology and the microstructural properties of polymer nanocomposites were investigated by glancing-incidence X-ray diffraction and transmission electron microscopy (TEM) measurements. At lower fluences (<5 × 10 16 ions/cm 2) a spontaneous precipitation of spherical-shaped metal nanoparticles occurred below the polymer top-surface (˜50 nm), whereas at higher fluences the aggregation of metal nanoparticles produced the formation of a continuous polycrystalline nanofilm. Furthermore, a characteristic surface plasmon resonance peak was observed for nanocomposites produced at lower ion fluences, due to the presence of Cu nanoparticles. A reduced electrical resistance of the near-surface metal-polymer nanocomposite was measured. The variation of electrical conductivity as a function of the applied surface load was measured: we found a linear relationship and a very small hysteresis.

  3. Fiber Optic Rosette Strain Gauge Development and Application on a Large-Scale Composite Structure

    NASA Technical Reports Server (NTRS)

    Moore, Jason P.; Przekop, Adam; Juarez, Peter D.; Roth, Mark C.

    2015-01-01

    A detailed description of the construction, application, and measurement of 196 FO rosette strain gauges that measured multi-axis strain across the outside upper surface of the forward bulkhead component of a multibay composite fuselage test article is presented. A background of the FO strain gauge and the FO measurement system as utilized in this application is given and results for the higher load cases of the testing sequence are shown.

  4. The use of intraluminal strain gauges for recording ambulant small bowel motility.

    PubMed

    Gill, R C; Kellow, J E; Browning, C; Wingate, D L

    1990-04-01

    Perfused-tube manometry has hitherto been the standard technique for recording intraluminal intestinal pressure in humans, but it is unsuitable for ambulant use. The aim of our study was to evaluate the ability of resistive strain gauge transducers attached to a fine catheter to detect pressure change. Simultaneous strain gauge and perfused-tube manometry was performed on six fasting subjects; in four, strain gauge activation was continuous and in two, the transducers were activated in a pulsed mode with data encoded as a pulse train with an approximate frequency of 20 Hz. Eight thousand eight hundred eighty-eight pressure waves were recorded by strain gauge, of which 96% were detected by perfused-tube manometry. There was good agreement in both phases II and III of the migrating motor complex. The amplitude of pressure waves recorded by strain gauge was slightly but significantly greater. A proportion (14-17%) of pressure waves recorded by strain gauge were bifid; this was not seen with the perfused tube. These differences are best explained by the greater sensitivity and more rapid rise time of the strain gauges. There was no loss of fidelity in the pulse-interval recording mode. A seventh subject underwent a continuous 72-h recording with the strain gauge catheter attached to a battery-operated encoder and magnetic tape cassette recorder and was freely ambulant during this period. The procedure was well tolerated and motility patterns could be clearly identified. We conclude that intraluminal strain gauge catheters are suitable for prolonged use in ambulant subjects and produce data that are closely comparable to the data acquired from perfused-tube manometry under laboratory conditions. PMID:2333973

  5. Design and proposal of dual line-of-defense perimeter watchdog incorporating optimally designed FBG based accelerometers and strain sensors using single optical fiber

    NASA Astrophysics Data System (ADS)

    Khan, Mohd. Mansoor; Sonkar, Ramesh Kumar

    2015-06-01

    Paper presents Opto-Mechanical intrusion sensor fence with FBGs attached to mechanical accelerometers and strain sensors, optimized on SolidWorks 2013 for desired frequency to 35 Hz, picking up accelerations/ strains and its deployment for perimeter security. The accelerometer structure consists of inertial mass supported by an L-shaped modified cantilever beam having non-uniform cross section area connected to base by a thin neck element which acts as strain concentrated centre hence an optimum zone for FBG sensors placement. Bragg wavelength shifts were obtained on Optigrating software for the obtained strain values on mechanical assembly of fence. CFD wind analysis is performed on the assembly to obtain the spot for accelerometer's placement to avoid false alarms up to wind velocities of 20 m/s.

  6. Network of flexible capacitive strain gauges for the reconstruction of surface strain

    NASA Astrophysics Data System (ADS)

    Wu, Jingzhe; Song, Chunhui; Saleem, Hussam S.; Downey, Austin; Laflamme, Simon

    2015-05-01

    Monitoring of surface strain on mesosurfaces is a difficult task, often impeded by the lack of scalability of conventional sensing systems. A solution is to deploy large networks of flexible strain gauges, a type of large area electronics. The authors have recently proposed a soft elastomeric capacitor (SEC) as an economical skin-type solution for large-scale deployment onto mesosurfaces. The sensing principle is based on a measurable change in the sensor’s capacitance upon strain. In this paper, we study the performance of the sensor at reconstructing surface strain map and deflection shapes. A particular feature of the sensor is that it measures surface strain additively, because it is not utilized within a Wheatstone bridge configuration. An algorithm is proposed to decompose the additive in-plane strain measurements from the SEC into principal components. The algorithm consists of assuming a polynomial shape function, and deriving the strain based on Kirchhoff plate theory. A least-squares estimator (LSE) is used to minimize the error between the assumed model and the SEC signals after the enforcement of boundary conditions. Numerical simulations are conducted on a symmetric rectangular cantilever thin plate under symmetric and asymmetric static loads to demonstrate the accuracy and real-time applicability of the algorithm. The performance of the algorithm is further examined on an asymmetric cantilever laminated thin plate constituted with orthotropic materials mimicking a wind turbine blade, and subjected to a non-stationary wind load. Results from simulations show good performance of the algorithm at reconstructing the surface strain maps for both in-plane principal strain components, and that it can be applied in real time. However, its performance can be improved by strengthening assumptions on boundary conditions. The algorithm exhibits robustness in performance with respect to load and noise in signals, except when most of the sensors’ signals are

  7. Evaluation results of the 700 deg C Chinese strain gauges. [for gas turbine engine

    NASA Technical Reports Server (NTRS)

    Hobart, H. F.

    1985-01-01

    Gauges fabricated from specially developed Fe-Cr-Al-V-Ti-Y alloy wire in the Republic of China were evaluated for use in static strain measurement of hot gas turbine engines. Gauge factor variation with temperature, apparent strain, and drift were included. Results of gauge factor versus temperature tests show gauge factor decreasing with increasing temperature. The average slope is -3-1/2 percent/100 K, with an uncertainty band of + or - 8 percent. Values of room temperature gauge factor for the Chinese and Kanthal A-1 gauges averaged 2.73 and 2.12, respectively. The room temperature gauge factor of the Chinese gauges was specified to be 2.62. The apparent strain data for both the Chinese alloy and Kanthal A-1 showed large cycle to cycle nonrepeatability. All apparent strain curves had a similar S-shape, first going negative and then rising to positive value with increasing temperatures. The mean curve for the Chinese gauges between room temperature and 100 K had a total apparent strain of 1500 microstrain. The equivalent value for Kanthal A-1 was about 9000 microstrain. Drift tests at 950 K for 50 hr show an average drift rate of about -9 microstrain/hr. Short-term (1 hr) rates are higher, averaging about -40 microstrain for the first hour. In the temperature range 700 to 870 K, however, short-term drift rates can be as high as 1700 microstrain for the first hour. Therefore, static strain measurements in this temperature range should be avoided.

  8. Validation of a novel fiber optic strain gauge in a cryogenic and high magnetic field environment

    NASA Astrophysics Data System (ADS)

    Baxter, Scott; Lakrimi, M.'hamed; Thomas, Adrian M.; Gao, Yunxin; Blakes, Hugh; Gibbens, Paul; Looi, Mengche

    2010-10-01

    We report on the first operation of an easy to use low cost novel fiber optic strain gauge (FOSG) in cryogenic and magnetic field environments. The FOSGs were mounted on a superconducting coil and resin impregnated. The gauges detected resin shrinkage upon curing. On cooldown, the FOSG monitored the thermal contraction strains of the coil and the electromagnetic strain during energization. The coil was deliberately quenched, in excess of 175 times, and again the FOSG detected the quenches and measured the thermal expansion-induced strains and subsequent re-cooling of the coil after a quench. Agreement with FEA predictions was very good.

  9. [Application and electric insulation of strain gauges used on fresh bone. Preliminary study].

    PubMed

    De Geeter, J L; Verhelpen, M; Munting, E

    1991-01-01

    This report describes the optimal use of strain gauges placed on fresh wet bones. Two principal stages in gauge installation were studied: surface preparation and gauge insulation. Different surface preparation procedures were tested on bovine bone specimens loaded in traction. The preparation efficiency was evaluated by comparing strains measured from gauges and from an extensometer with sharp edges. Results show the necessity of sufficient rubbing: a minimum of 5 rubbing cycles with n. 320 emery paper. Scanning electron microscopy was used to examine the effect of the preparation procedures. Different coatings were also tested with special attention given to the influence of these coatings on the measured strains. An optimal polyurethane coating is proposed.

  10. Additive non-uniform random sampling in superimposed fiber Bragg grating strain gauge

    NASA Astrophysics Data System (ADS)

    Ma, Y. C.; Liu, H. Y.; Yan, S. B.; Yang, Y. H.; Yang, M. W.; Li, J. M.; Tang, J.

    2013-05-01

    This paper demonstrates an additive non-uniform random sampling and interrogation method for dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to generate non-equidistant space of a sensing pulse train in the time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A 1.9 kHz dynamic strain is measured by generating an additive non-uniform randomly distributed 2 kHz optical sensing pulse train from a mean 500 Hz triangular periodically changing scanning frequency.

  11. Evaluation of support bandaging during measurement of proximal sesamoidean ligament strain in horses by use of a mercury strain gauge.

    PubMed

    Keegan, K G; Baker, G J; Boero, M J; Pijanowski, G J; Phillips, J W

    1992-07-01

    Liquid mercury strain gauges were implanted in the forelimb proximal sesamoidean ligaments (PSL) of 8 adult horses. The gauges measured PSL strain while horses were standing with or without external support. In 6 of the horses, the gauges also measured PSL strain in horses at a walk, with or without external support. Gauges were enclosed within sliding polypropylene tubes to prevent nonaxial deformation. Each gauge was placed in 1 arm of a low-resistance half-bridge circuit. To provide temperature compensation, a dummy gauge was placed in the adjacent arm of the bridge circuit and was implanted next to the active gauge in the surrounding fascial tissue. External support included fiberglass cast support (CAST), dorsal fetlock splint support (DFS), support wraps of 3 bandage materials (SW1, SW2, and SW3), and support wrap with caudal splint (SW4). The cast was applied, with the fetlock and foot in weightbearing position, from the proximal portion of the metacarpus distal to and including the foot. The DFS was applied by placing the cranial half of the fiberglass cast on the dorsal aspect of the instrumented limb. The SW1, SW2, and SW3 were applied in a figure-8 pattern around the fetlock, using 50% of the linear stretch capacity of the bandage material, with the horse standing squarely on all 4 limbs. The SW4 was applied identically to the other support wraps, with the exception of addition of a flexible caudal splint incorporated in the support wrap. Mean maximal strain while standing (epsilon S) without external support for 8 horses was 6.0% (range, 3.8 to 7.5%).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. HOLEGAGE 1.0 - Strain-Gauge Drilling Analysis Program

    NASA Technical Reports Server (NTRS)

    Hampton, Roy V.

    1992-01-01

    Interior stresses inferred from changes in surface strains as hole is drilled. Computes stresses using strain data from each drilled-hole depth layer. Planar stresses computed in three ways: least-squares fit for linear variation with depth, integral method to give incremental stress data for each layer, and/or linear fit to integral data. Written in FORTRAN 77.

  13. Tattoo-Like Strain Gauges Based on Silicon Nano-Membranes

    NASA Astrophysics Data System (ADS)

    Lu, Nanshu

    2012-02-01

    This talk reports the in vivo measurement of tissue deformation through adhesive-free, conformable lamination of a tattoo-like elastic strain gauge consisted of piezoresistive silicon nano-membranes strategically integrated with tissue-like elastomeric substrates. The mechanical deformation in soft tissues cannot yet be directly quantified due to the lack of enabling tools. While stiff strain gauges for structural health monitoring have long existed, biological tissues are soft, curvilinear and highly deformable in contrast to civil or aerospace structures. An ultra-thin, ultra-soft, tattoo-like strain gauge that can conform to the convoluted surface of human body and stay attached during locomotion will be able to directly quantify tissue deformation without affecting the mechanical behavior of the tissue. While single crystalline silicon is known to have the highest gauge factor and best elastic response, it is intrinsically stiff and brittle. To achieve strain gauges with high compliance, high stretchability and reasonable sensitivity, single crystalline silicon nano-membranes will be transfer-printed onto polymeric support through carefully engineered stamps. The thickness and length of the Si strip will be chosen according to theoretical and numerical mechanics analysis which takes into account for the tradeoff between stretchability and sensitivity.

  14. Cyclopean gauge factor of the strain-resistance transduction of indium oxide films

    NASA Astrophysics Data System (ADS)

    Ivančo, J.; Halahovets, Y.; Végsö, K.; Klačková, I.; Kotlár, M.; Vojtko, A.; Micuśík, M.; Jergel, M.; Majková, E.

    2016-03-01

    The resistance of indium-oxide covered polyethylene terephthalate foils (IO-PET) shows an extreme sensitivity to tensile strain. In terms of the deformation-resistance transduction, the gauge factor as high as about 60 000 was recorded upon the relative elongation up to 1%. Except the onset of deformation, the nearly exponential dependence of the resistance on strain suggests that the conductivity of the strained films is governed by tunnelling mechanism; this notion is supported by the formation of scattered cracks in the IO- PET film. The cracks are oriented perpendicularly to the strain vector and are characterized by a rather similar and uniform width. Appropriateness of the standard definition of the gauge factor for strain sensors, which are governed by tunnelling conductance, is critically discussed.

  15. Pressure transducer with Au-Ni thin-film strain gauges

    SciTech Connect

    Rajanna, K.; Mohan, S. ); Nayak, M.M.; Gunasekaran, N.; Muthunayagam, A.E. )

    1993-03-01

    The behavior of a pressure transducer with Au-Ni (89:11) film as strain gauges have been studied. The effects of post-deposition heat treatment on the resistance of the thin-film strain gauges and hence the output performance of the pressure transducer are discussed. The effect of a repeated number of pressure cycles carried out over a period of eight months has also been reported. The maximum nonlinearity and the hysteresis is improved from 0.92% FSO to 0.06% FSO after 1,000 pressure cycles. The output behavior of the pressure transducer with temperature has also been studied.

  16. One testing method of dynamic linearity of an accelerometer

    NASA Astrophysics Data System (ADS)

    Lei, Jing-Yu; Guo, Wei-Guo; Tan, Xue-Ming; Shi, Yun-Bo

    2015-09-01

    To effectively test dynamic linearity of an accelerometer over a wide rang of 104 g to about 20 × 104g, one published patent technology is first experimentally verified and analysed, and its deficient is presented, then based on stress wave propagation theory on the thin long bar, the relation between the strain signal and the corresponding acceleration signal is obtained, one special link of two coaxial projectile is developed. These two coaxial metal cylinders (inner cylinder and circular tube) are used as projectiles, to prevent their mutual slip inside the gun barrel during movement, the one end of two projectiles is always fastened by small screws. Ti6-AL4-V bar with diameter of 30 mm is used to propagate loading stress pulse. The resultant compression wave can be measured by the strain gauges on the bar, and a half -sine strain pulse is obtained. The measuring accelerometer is attached on the other end of the bar by a vacuum clamp. In this clamp, the accelerometer only bear compression wave, the reflected tension pulse make the accelerometer off the bar. Using this system, dynamic linearity measurement of accelerometer can be easily tested in wider range of acceleration values. And a really measuring results are presented.

  17. Modeling and strain gauging of eddy current repulsion deicing systems

    NASA Technical Reports Server (NTRS)

    Smith, Samuel O.

    1993-01-01

    Work described in this paper confirms and extends work done by Zumwalt, et al., on a variety of in-flight deicing systems that use eddy current repulsion for repelling ice. Two such systems are known as electro-impulse deicing (EIDI) and the eddy current repulsion deicing strip (EDS). Mathematical models for these systems are discussed for their capabilities and limitations. The author duplicates a particular model of the EDS. Theoretical voltage, current, and force results are compared directly to experimental results. Dynamic strain measurements results are presented for the EDS system. Dynamic strain measurements near EDS or EIDI coils are complicated by the high magnetic fields in the vicinity of the coils. High magnetic fields induce false voltage signals out of the gages.

  18. Some aspects of the compatibility between strain gauge readout equipment and multi-component wind tunnel balances

    NASA Astrophysics Data System (ADS)

    Pollock, N.

    1983-07-01

    In multicomponent strain gauge wind tunnel balances it is common to use four arm bridges of gauges arranged to produce an output from one load component and not from other load components which also cause significant strains under the gauges. This system relies on the fact that there is fundamentally one output producing pattern of strains and three nonoutput producing patterns. It is shown that interactions arise between the various strain patterns and that these interactions, and hence the balance calibration equations, are dependent on the nature of the readout equipment used. Specific precautions which must be observed to obtain 0.01% accuracy levels are investigated.

  19. Gauge factors of fibre Bragg grating strain sensors in different types of optical fibres

    NASA Astrophysics Data System (ADS)

    Jülich, Florian; Aulbach, Laura; Wilfert, Andre; Kratzer, Peter; Kuttler, Rolf; Roths, Johannes

    2013-09-01

    Gauge factors of fibre Bragg grating (FBG)-based strain sensors that had been inscribed into three different types of optical fibres, which differ in core diameters and doping concentrations, were determined at room temperature with high accuracy. Repeated measurements were carried out with several samples of each type of fibre to allow statistical evaluations. For each type, the gauge factors were measured in two configurations: when the bare fibres were glued on a specimen at the location of the FBG and when they were vertically suspended and not bonded to any structure at the location of the FBG. By combining the results of both configurations, the strain transfer ratio of the gluing process and the strain-optic coefficient, peff, of the different types of fibres were determined. The strain-optic coefficient was found to vary up to 1.5% for the different types of optical fibres. The strain transfer ratio was obtained to be close to unity (>99%), showing the high quality of the gluing technique employed. The investigations demonstrate that highly accurate strain sensing is possible with fibre-optic strain sensors. The results are important for the development of accurate and reliable attaching techniques for coated sensor fibres and fibre-optic sensor patches.

  20. Force measurement using strain-gauge balance in a shock tunnel with long test duration.

    PubMed

    Wang, Yunpeng; Liu, Yunfeng; Luo, Changtong; Jiang, Zonglin

    2016-05-01

    Force tests were conducted at the long-duration-test shock tunnel JF12, which has been designed and built in the Institute of Mechanics, Chinese Academy of Sciences. The performance tests demonstrated that this facility is capable of reproducing a flow of dry air at Mach numbers from 5 to 9 at more than 100 ms test duration. Therefore, the traditional internal strain-gauge balance was considered for the force tests use in this large impulse facility. However, when the force tests are conducted in a shock tunnel, the inertial forces lead to low-frequency vibrations of the test model and its motion cannot be addressed through digital filtering because a sufficient number of cycles cannot be found during a shock tunnel run. The post-processing of the balance signal thus becomes extremely difficult when an averaging method is employed. Therefore, the force measurement encounters many problems in an impulse facility, particularly for large and heavy models. The objective of the present study is to develop pulse-type sting balance by using a strain-gauge sensor that can be applied in the force measurement of 100 ms test time, especially for the force test of the large-scale model. Different structures of the S-series (i.e., sting shaped balances) strain-gauge balance are proposed and designed, and the measuring elements are further optimized to overcome the difficulties encountered during the measurement of aerodynamic force in a shock tunnel. In addition, the force tests were conducted using two large-scale test models in JF12 and the S-series strain-gauge balances show good performance in the force measurements during the 100 ms test time. PMID:27250471

  1. Long-gauge strain sensors for underwater and deep-water applications

    NASA Astrophysics Data System (ADS)

    Inaudi, Daniele

    2011-05-01

    The evaluation of the structural performance of marine structures, such as ship hulls, off-shore platforms and risers requires the monitoring of the static and dynamic strain levels undergone during the whole lifetime. In these environments, the use of passive fiber optic sensors presents advantages in terms of reliability and multiplexing ability. Frequently used structural materials, such as steel and composites, exhibit local defects or discontinuities, such as welds, thickness / diameter variations, marine growths and cracks, introducing discontinuities in the mechanical properties of the material at a local level. Yet, the properties of the material at a global level are more indicative for structural behavior. Therefore, for structural monitoring purposes, it is necessary to use sensors that are insensitive to local material discontinuities. A long-gauge strain or deformation sensor, by definition, is a sensor with a gauge-length several times larger than the maximal distance between discontinuities or the maximal diameter of defects in the monitored material. In this paper we will present the design, testing and applications of a long-gauge fiber optics strain sensor for underwater applications.

  2. Design and Analysis of a Compact Precision Positioning Platform Integrating Strain Gauges and the Piezoactuator

    PubMed Central

    Huang, Hu; Zhao, Hongwei; Yang, Zhaojun; Fan, Zunqiang; Wan, Shunguang; Shi, Chengli; Ma, Zhichao

    2012-01-01

    Miniaturization precision positioning platforms are needed for in situ nanomechanical test applications. This paper proposes a compact precision positioning platform integrating strain gauges and the piezoactuator. Effects of geometric parameters of two parallel plates on Von Mises stress distribution as well as static and dynamic characteristics of the platform were studied by the finite element method. Results of the calibration experiment indicate that the strain gauge sensor has good linearity and its sensitivity is about 0.0468 mV/μm. A closed-loop control system was established to solve the problem of nonlinearity of the platform. Experimental results demonstrate that for the displacement control process, both the displacement increasing portion and the decreasing portion have good linearity, verifying that the control system is available. The developed platform has a compact structure but can realize displacement measurement with the embedded strain gauges, which is useful for the closed-loop control and structure miniaturization of piezo devices. It has potential applications in nanoindentation and nanoscratch tests, especially in the field of in situ nanomechanical testing which requires compact structures. PMID:23012566

  3. Application of etched fiber strain gauges to low-cost on-board vehicle load monitoring

    NASA Astrophysics Data System (ADS)

    Lacquet, Beatrys M.; Swart, Pieter L.; Kotze, Abraham P.

    1996-08-01

    We investigated the use of wavelength compensated coupler sensors and etched optical fiber strain sensors to provide an economical on-board load indicator for passenger vehicles. Cost considerations favored the etched fiber sensor. Manufactured sensors were evaluated experimentally by straining them on a cantilever beam. For strain smaller than 600 microstrain the output of a 10 segment sensor was linear with a typical gauge factor of minus 57. Bending losses in the fiber sensor became more pronounced for larger strain. Proper weighting of the outputs of the front and back sensors on the vehicle ensures a monotonic relationship between the sensor output and load. Difference-over-sum processing minimizes the effects of sensitivity to common- mode perturbations such as temperature and source intensity changes.

  4. Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement

    NASA Astrophysics Data System (ADS)

    Calderón, Pedro A.; Glisic, Branko

    2012-06-01

    In many civil and geotechnical applications it is of interest to monitor the strain deep inside the structure; consequently, it is necessary to embed the sensors into the structure's material. Construction and geotechnical materials, such as concrete and soil, can be affected by local defects, e.g. cracks, air pockets and inclusions. To monitor these materials at a structural level it is necessary to use long-gauge sensors. As the sensor has to be embedded in the host material, its presence causes perturbation of the strain field and influences the accuracy of the strain measurement. The aim of this research was to identify the critical parameters that influence the accuracy of the strain measurement, to study how these parameters affect the accuracy, and to give recommendations for sensor users. The study was based on finite element analysis and all involved materials were assumed to have the Möhr-Coulomb elastic, perfectly plastic behavior. A suitability of the numerical model for the analysis was verified using the experimental results of two cases reported in the literature and one on-site application. The study revealed that the most important parameters that influence the accuracy of the strain measurement are the goodness of interaction (strain transfer) between the host material and the anchor pieces of the sensor, the ratio between equivalent Young's modulus of the sensor and the Young's modulus of the host material, the radius of the anchor piece and the gauge length. The numerical model and parametric study are presented in detail along with practical recommendations.

  5. A High Performance Torque Sensor for Milling Based on a Piezoresistive MEMS Strain Gauge

    PubMed Central

    Qin, Yafei; Zhao, Yulong; Li, Yingxue; Zhao, You; Wang, Peng

    2016-01-01

    In high speed and high precision machining applications, it is important to monitor the machining process in order to ensure high product quality. For this purpose, it is essential to develop a dynamometer with high sensitivity and high natural frequency which is suited to these conditions. This paper describes the design, calibration and performance of a milling torque sensor based on piezoresistive MEMS strain. A detailed design study is carried out to optimize the two mutually-contradictory indicators sensitivity and natural frequency. The developed torque sensor principally consists of a thin-walled cylinder, and a piezoresistive MEMS strain gauge bonded on the surface of the sensing element where the shear strain is maximum. The strain gauge includes eight piezoresistances and four are connected in a full Wheatstone circuit bridge, which is used to measure the applied torque force during machining procedures. Experimental static calibration results show that the sensitivity of torque sensor has been improved to 0.13 mv/Nm. A modal impact test indicates that the natural frequency of torque sensor reaches 1216 Hz, which is suitable for high speed machining processes. The dynamic test results indicate that the developed torque sensor is stable and practical for monitoring the milling process. PMID:27070620

  6. A High Performance Torque Sensor for Milling Based on a Piezoresistive MEMS Strain Gauge.

    PubMed

    Qin, Yafei; Zhao, Yulong; Li, Yingxue; Zhao, You; Wang, Peng

    2016-01-01

    In high speed and high precision machining applications, it is important to monitor the machining process in order to ensure high product quality. For this purpose, it is essential to develop a dynamometer with high sensitivity and high natural frequency which is suited to these conditions. This paper describes the design, calibration and performance of a milling torque sensor based on piezoresistive MEMS strain. A detailed design study is carried out to optimize the two mutually-contradictory indicators sensitivity and natural frequency. The developed torque sensor principally consists of a thin-walled cylinder, and a piezoresistive MEMS strain gauge bonded on the surface of the sensing element where the shear strain is maximum. The strain gauge includes eight piezoresistances and four are connected in a full Wheatstone circuit bridge, which is used to measure the applied torque force during machining procedures. Experimental static calibration results show that the sensitivity of torque sensor has been improved to 0.13 mv/Nm. A modal impact test indicates that the natural frequency of torque sensor reaches 1216 Hz, which is suitable for high speed machining processes. The dynamic test results indicate that the developed torque sensor is stable and practical for monitoring the milling process. PMID:27070620

  7. A High Performance Torque Sensor for Milling Based on a Piezoresistive MEMS Strain Gauge.

    PubMed

    Qin, Yafei; Zhao, Yulong; Li, Yingxue; Zhao, You; Wang, Peng

    2016-01-01

    In high speed and high precision machining applications, it is important to monitor the machining process in order to ensure high product quality. For this purpose, it is essential to develop a dynamometer with high sensitivity and high natural frequency which is suited to these conditions. This paper describes the design, calibration and performance of a milling torque sensor based on piezoresistive MEMS strain. A detailed design study is carried out to optimize the two mutually-contradictory indicators sensitivity and natural frequency. The developed torque sensor principally consists of a thin-walled cylinder, and a piezoresistive MEMS strain gauge bonded on the surface of the sensing element where the shear strain is maximum. The strain gauge includes eight piezoresistances and four are connected in a full Wheatstone circuit bridge, which is used to measure the applied torque force during machining procedures. Experimental static calibration results show that the sensitivity of torque sensor has been improved to 0.13 mv/Nm. A modal impact test indicates that the natural frequency of torque sensor reaches 1216 Hz, which is suitable for high speed machining processes. The dynamic test results indicate that the developed torque sensor is stable and practical for monitoring the milling process.

  8. Micromachined strain gauges for the determination of liquid flow friction coefficients in microchannels

    NASA Astrophysics Data System (ADS)

    Baviere, R.; Ayela, F.

    2004-02-01

    In this research program, we have performed and tested cupro-nickel (Cu-Ni) strain gauges micromachined on different sorts of silicon nitride (Si3N4) membranes. The design of the gauges obeys an electrical Wheatstone bridge configuration. We have found a good agreement between the expected electromechanical response of the bridge and the experimental signals. The results have displayed sensitivity to static pressure ranging from 50 to 100 µV V-1 bar-1 as a function of the thickness and of the diameter of the membranes. This is part of a study devoted to determining liquid flow friction coefficients in silicon-Pyrex microchannels. Preliminary attempts (Reynolds number up to 300) made using global pressure measurements and with very simple local pressure probes are discussed. Further experiments using Cu-Ni strain gauges are described. Their micromachining, characterization and integration along silicon microchannels are presented. These sensors permitted us to perform the first local and reliable pressure drop measurements in a 7.5 µm deep microchannel. The results are in good agreement with the classical laminar theory for a Reynolds number ranging from 0.2 to 3.

  9. Flexible gastrointestinal motility pressure sensors based on aluminum thin-film strain-gauge arrays

    NASA Astrophysics Data System (ADS)

    Silva, L. R.; Sousa, P. J.; Goncalves, L. M.; Minas, G.

    2015-07-01

    This paper reports on an innovative approach to measuring intraluminal pressure in the upper gastrointestinal (GI) tract, especially monitoring GI motility and peristaltic movements. The proposed approach relies on thin-film aluminum strain gauges deposited on top of a Kapton membrane, which in turn lies on top of an SU-8 diaphragm-like structure. This structure enables the Kapton membrane to bend when pressure is applied, thereby affecting the strain gauges and effectively changing their electrical resistance. The sensor, with an area of 3.4 mm2, is fabricated using photolithography and standard microfabrication techniques (wet etching). It features a linear response (R2 = 0.9987) and an overall sensitivity of 2.6 mV mmHg-1. Additionally, its topology allows a high integration capability. The strain gauges’ responses to pressure were studied and the fabrication process optimized to achieve high sensitivity, linearity, and reproducibility. The sequential acquisition of the different signals is carried out by a microcontroller, with a 10-bit ADC and a sample rate of 250 Hz. The pressure signals are then presented in a user-friendly interface, developed using the Integrated Development Environment software, QtCreator IDE, for better visualization by physicians.

  10. Exploiting the Different Polarity in Piezoresistive Characteristics of Conducting Polymers for Strain Gauge Applications

    NASA Astrophysics Data System (ADS)

    Sezen, Melda; Register, Jeffrey T.; Yao, Yao; Glisic, Branko; Loo, Yueh-Lin

    2015-03-01

    Piezoresistivity defines the change in resistance of a material in response to mechanical stress. We exploited the effects of structural modifications on the piezoresistive properties of conducting polymers, poly(2-acrylamido-2-methyl-1-propanesulfonic acid) doped polyaniline, PANI-PAAMPSA, and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, for strain gauge applications. Under tensile deformation, the resistances of as-cast PANI-PAAMPSA and PEDOT:PSS increase due to increased separation between the electrostatically stabilized conducting polymer particles. Upon solvent annealing in dichloroacetic acid, DCA, PANI-PAAMPSA's resistance decreases whereas PEDOT:PSS's resistance still increases with tension. While DCA treatment reduces the electrostatic interactions between PANI and PAAMPSA, it only removes the PSS overlayer in PEDOT:PSS. The change in the polarity of PANI-PAAMPSA's piezoresistivity is attributed to the unlocking of the globular structure of the as-synthesized conducting polymer complex with DCA-treatment, which then enables strain-induced crystallization on deformation. By tuning the piezoresistive characteristics of the polymers through structural modification, we can design strain gauge circuits for monitoring the conditions of civil structures.

  11. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres

    NASA Astrophysics Data System (ADS)

    Pang, Changhyun; Lee, Gil-Yong; Kim, Tae-Il; Kim, Sang Moon; Kim, Hong Nam; Ahn, Sung-Hoon; Suh, Kahp-Yang

    2012-09-01

    Flexible skin-attachable strain-gauge sensors are an essential component in the development of artificial systems that can mimic the complex characteristics of the human skin. In general, such sensors contain a number of circuits or complex layered matrix arrays. Here, we present a simple architecture for a flexible and highly sensitive strain sensor that enables the detection of pressure, shear and torsion. The device is based on two interlocked arrays of high-aspect-ratio Pt-coated polymeric nanofibres that are supported on thin polydimethylsiloxane layers. When different sensing stimuli are applied, the degree of interconnection and the electrical resistance of the sensor changes in a reversible, directional manner with specific, discernible strain-gauge factors. The sensor response is highly repeatable and reproducible up to 10,000 cycles with excellent on/off switching behaviour. We show that the sensor can be used to monitor signals ranging from human heartbeats to the impact of a bouncing water droplet on a superhydrophobic surface.

  12. Small angle X-ray scattering coupled with in situ electromechanical probing of nanoparticle-based resistive strain gauges

    NASA Astrophysics Data System (ADS)

    Decorde, Nicolas; Sangeetha, Neralagatta M.; Viallet, Benoit; Viau, Guillaume; Grisolia, Jérémie; Coati, Alessandro; Vlad, Alina; Garreau, Yves; Ressier, Laurence

    2014-11-01

    A comprehensive study on the electromechanical behavior of nanoparticle-based resistive strain gauges in action through normal and grazing incidence small angle X-ray scattering (SAXS/GISAXS) investigations is presented. The strain gauges were fabricated from arrays of colloidal gold nanoparticle (NP) wires assembled on flexible polyethylene terephthalate and polyimide substrates by convective self-assembly. Microstructural changes (mean interparticle distance variations) within these NP wires under uniaxial stretching estimated by SAXS/GISAXS are correlated to their macroscopic electrical resistance variations. SAXS measurements suggest a linear longitudinal extension and transversal contraction of the NP wires with applied strain (0 to ~13%). The slope of this longitudinal variation is less than unity, implying a partial strain transfer from the substrate to the NP wires. The simultaneously measured electrical resistance of the strain gauges shows an exponential variation within the elastic domain of the substrate deformation, consistent with electron tunnelling through the interparticle gaps. A slower variation observed within the plastic domain suggests the formation of new electronic conduction pathways. Implications of transversal contraction of the NP wires on the directional sensitivities of strain gauges are evaluated by simulating electronic conduction in models mimicking a realistic NP arrangement. A loss of directionality of the NP-based strain gauges due to transversal current flow within the NP wires is deduced.A comprehensive study on the electromechanical behavior of nanoparticle-based resistive strain gauges in action through normal and grazing incidence small angle X-ray scattering (SAXS/GISAXS) investigations is presented. The strain gauges were fabricated from arrays of colloidal gold nanoparticle (NP) wires assembled on flexible polyethylene terephthalate and polyimide substrates by convective self-assembly. Microstructural changes (mean

  13. Research on the FBG strain gauge used for the safety monitoring of high-temperature pressure pipes

    NASA Astrophysics Data System (ADS)

    Cai, Qing-mu; Liu, Yue-ming; He, Zheng-yan; Chen, Zhong-you; Huang, Chang-qing; Lou, Jun; Tian, Wei-jian

    2012-10-01

    High temperature pressure pipes were widely used in the chemical, oil companies and power plants, but the pipe burst incidents occurred from time to time, which had caused some damages on people's lives and property. Thus, in this paper, with the aim to solve this problem, a FBG (FBG: Fiber Bragg Grating) strain gauge structure which consists of three FBGs is designed and fabricated based on the theoretical strain and stress analysis. The strain gauge can be used for the real-time surface strain monitoring of high temperature pressure pipes. In the strain gauge, the elastic hightemperature alloy(10MoWVNb) is chosen as the substrate. The three FBGs with a similar performance are fabricated on the substrate with the high-temperature glue. Among the three FBGs, FBG1 is used for the horizontal strain sensing of high temperature pressure pipes., FBG2 is used for the longitudinal strain of high temperature pressure pipes, and FGB3 is used for temperature compensation. The strain gauge has a feature of high temperature resistance, temperature compensation and two-dimensional strain measurement. The experiment result shows that : the sensing ranges of temperature is 0~300°C, the transverse strain sensitivity is 1.110nm/μɛ, the temperature sensitivity is 0.0213nm/°C; The longitudinal strain sensitivity is 1.104nm/μɛ, the temperature sensitivity is 0.0212nm/°C; the temperature sensitivity is 0.0103nm/°C. Therefore, the strain gauge can meet the needs of the high temperature and pressure pipes.

  14. Passive Accelerometer

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.; Baugher, Charles; Alexander, Iwan

    1992-01-01

    Motion of ball in liquid indicates acceleration. Passive accelerometer measures small accelerations along cylindrical axis. Principle of operation based on Stokes' law. Provides accurate measurements of small quasi-steady accelerations. Additional advantage, automatically integrates out unwanted higher-frequency components of acceleration.

  15. Very large strain gauges based on single layer MoSe2 and WSe2 for sensing applications

    NASA Astrophysics Data System (ADS)

    Hosseini, Manouchehr; Elahi, Mohammad; Pourfath, Mahdi; Esseni, David

    2015-12-01

    Here, we propose a strain gauge based on single-layer MoSe2 and WSe2 and show that, in these materials, the strain induced modulation of inter-valley phonon scattering leads to large mobility changes, which in turn result in highly sensitive strain gauges. By employing density-functional theory bandstructure calculations, comprehensive scattering models, and the linearized Boltzmann equation, we explain the physical mechanisms for the high sensitivity to strain of the resistivity in single-layer MoSe2 and WSe2, discuss the reduction of the gauge factor produced by extrinsic scattering sources (e.g., chemical impurities), and propose ways to mitigate such sensitivity degradation.

  16. Modal macro-strain vector based damage detection methodology with long-gauge FBG sensors

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Liu, Chongwu W.; Masri, Sami F.

    2009-07-01

    Advances in optic fiber sensing technology provide easy and reliable way for the vibration-based strain measurement of engineering structures. As a typical optic fiber sensing techniques with high accuracy and resolution, long-gauge Fiber Bragg Grating (FBG) sensors have been widely employed in health monitoring of civil engineering structures. Therefore, the development of macro strain-based identification methods is crucial for damage detection and structural condition evaluation. In the previous study by the authors, a damage detection algorithm for a beam structure with the direct use of vibration-based macro-strain measurement time history with neural networks had been proposed and validated with experimental measurements. In this paper, a damage locating and quantifying method was proposed using modal macrostrain vectors (MMSVs) which can be extracted from vibration induced macro-strain response measurement time series from long-gage FBG sensors. The performance of the proposed methodology for damage detection of a beam with different damage scenario was studied with numerical simulation firstly. Then, dynamic tests on a simply-supported steel beam with different damage scenarios were carried out and macro-strain measurements were employed to detect the damage severity. Results show that the proposed MMSV based structural identification and damage detection methodology can locate and identify the structural damage severity with acceptable accuracy.

  17. A thin-film aluminum strain gauges array in a flexible gastrointestinal catheter for pressure measurements

    NASA Astrophysics Data System (ADS)

    Sousa, P. J.; Silva, L. R.; Pinto, V. C.; Goncalves, L. M.; Minas, G.

    2016-08-01

    This paper presents an innovative approach to measure the pressure patterns associated with the motility and peristaltic movements in the upper gastrointestinal tract. This approach is based on inexpensive and easy to fabricate thin-film aluminum strain gauge pressure sensors using a flexible polyimide film (Kapton) as substrate and SU-8 structural support. These sensors are fabricated using well-established and standard photolithographic and wet etching techniques. Each sensor has a 3.4 mm2 area, allowing a fabrication process with a high level of sensors integration (four sensors in 1.7 cm), which is suitable for placing them in a single catheter. These strain gauges bend when pressure is applied and, consequently, their electrical resistance is changed. The fabricated sensors feature an almost linear response (R 2  =  0.9945) and an overall sensitivity of 6.4 mV mmHg-1. Their readout and control electronics were developed in a flexible Kapton ribbon cable and, together with the sensors, bonded and wrapped around a catheter-like structure. The sequential acquisition of the different signals is carried by a microcontroller with a 10 bit ADC at a sample rate of 250 Hz per-1 sensor. The signals are presented in a user friendly interface developed using the integrated development environment software, QtCreator IDE, for better visualization by physicians.

  18. LCSR Method to Verify the Attachment of Temperature Sensors and Strain Gauges to Solid Material

    NASA Astrophysics Data System (ADS)

    Hashemian, H. M.

    2003-09-01

    Resistance Temperature Detectors (RTDs) and thermocouples in some applications are attached to solid surfaces or imbedded in solid material for measurement of temperature of the solid material or the material within the solid boundary. For example, thermocouples are imbedded in the nozzle of Solid Rocket Motors (SRMs) to measure the temperature of the lining material of the nozzle. These thermocouples must remain intact during SRM firing tests to provide an accurate temperature profile especially under transient temperature conditions. This paper describes the Loop Current Step Response (LCSR) method that was developed for this and a number of other applications. This method is based on heating the thermocouple with an electric current to characterize the heat transfer condition around the measuring tip of the thermocouple. The same principle can also be used to verify the attachment of RTDs and strain gauges to solid surfaces. This is important in such applications as fuel leak detection in space shuttle engines, measurement of fluid temperatures within pressure sensing lines in nuclear power plants, and diagnostics of problems in instrumentation which involve strain gauges.

  19. A thin-film aluminum strain gauges array in a flexible gastrointestinal catheter for pressure measurements

    NASA Astrophysics Data System (ADS)

    Sousa, P. J.; Silva, L. R.; Pinto, V. C.; Goncalves, L. M.; Minas, G.

    2016-08-01

    This paper presents an innovative approach to measure the pressure patterns associated with the motility and peristaltic movements in the upper gastrointestinal tract. This approach is based on inexpensive and easy to fabricate thin-film aluminum strain gauge pressure sensors using a flexible polyimide film (Kapton) as substrate and SU-8 structural support. These sensors are fabricated using well-established and standard photolithographic and wet etching techniques. Each sensor has a 3.4 mm2 area, allowing a fabrication process with a high level of sensors integration (four sensors in 1.7 cm), which is suitable for placing them in a single catheter. These strain gauges bend when pressure is applied and, consequently, their electrical resistance is changed. The fabricated sensors feature an almost linear response (R 2  =  0.9945) and an overall sensitivity of 6.4 mV mmHg‑1. Their readout and control electronics were developed in a flexible Kapton ribbon cable and, together with the sensors, bonded and wrapped around a catheter-like structure. The sequential acquisition of the different signals is carried by a microcontroller with a 10 bit ADC at a sample rate of 250 Hz per‑1 sensor. The signals are presented in a user friendly interface developed using the integrated development environment software, QtCreator IDE, for better visualization by physicians.

  20. A microfabricated strain gauge array on polymer substrate for tactile neuroprostheses in rats

    NASA Astrophysics Data System (ADS)

    Beygi, M.; Mutlu, S.; Güçlü, B.

    2016-08-01

    In this study, we present the design, microfabrication and characterization of a tactile sensor system which can be used for sensory neuroprostheses in rats. The sensor system consists of an array of 2  ×  7 cells, each of which has a series combination of four strain gauges. Each group of four strain gauges is placed around a square membrane with a size of 2.5  ×  2.5 mm2. Unlike most common tactile sensors based on silicon substrates, we used 3D-printed polylactic acid as a substrate, because it is not brittle, and under local extremes, it would prevent the catastrophic failure of all cells. The strain gauges were fabricated by depositing and patterning a 50 nm thick aluminum (Al) film on a polyimide sheet with a thickness of 0.125 mm. Polydimethylsiloxane (PDMS) elastomer was bonded on the top surface of the PI membrane. The PDMS layer was prepared in two different thicknesses, 1.2 and 1.7 mm, to investigate its effect on the static response of the sensor. The sensitivity and the maximum allowable force, corresponding to the maximum deformation of 0.9 mm at the center of each cell, changed based on the thickness of the PDMS layer. Sensor cells operated linearly up to 3 N with an average sensitivity of 200 mΩ N-1 (0.7 Ω mm-1) for 1.2 mm thick PDMS. These values changed to 4 N and 70 mΩ N-1 (0.3 Ω mm-1), respectively, for 1.7 mm thick PDMS. The nonlinearity was less than 3%. The cells had low cross-talk (~5 mΩ N-1 and 0.02 Ω mm-1) relative to the average sensitivity. Additionally, the dynamic response of the sensor was characterized at several frequencies by using a vibrotactile stimulation system previously designed for psychophysics experiments. The sensor was also tested inside the rat conditioning chamber to demonstrate the relevant signals in a tactile neuroprosthesis.

  1. A microfabricated strain gauge array on polymer substrate for tactile neuroprostheses in rats

    NASA Astrophysics Data System (ADS)

    Beygi, M.; Mutlu, S.; Güçlü, B.

    2016-08-01

    In this study, we present the design, microfabrication and characterization of a tactile sensor system which can be used for sensory neuroprostheses in rats. The sensor system consists of an array of 2  ×  7 cells, each of which has a series combination of four strain gauges. Each group of four strain gauges is placed around a square membrane with a size of 2.5  ×  2.5 mm2. Unlike most common tactile sensors based on silicon substrates, we used 3D-printed polylactic acid as a substrate, because it is not brittle, and under local extremes, it would prevent the catastrophic failure of all cells. The strain gauges were fabricated by depositing and patterning a 50 nm thick aluminum (Al) film on a polyimide sheet with a thickness of 0.125 mm. Polydimethylsiloxane (PDMS) elastomer was bonded on the top surface of the PI membrane. The PDMS layer was prepared in two different thicknesses, 1.2 and 1.7 mm, to investigate its effect on the static response of the sensor. The sensitivity and the maximum allowable force, corresponding to the maximum deformation of 0.9 mm at the center of each cell, changed based on the thickness of the PDMS layer. Sensor cells operated linearly up to 3 N with an average sensitivity of 200 mΩ N‑1 (0.7 Ω mm‑1) for 1.2 mm thick PDMS. These values changed to 4 N and 70 mΩ N‑1 (0.3 Ω mm‑1), respectively, for 1.7 mm thick PDMS. The nonlinearity was less than 3%. The cells had low cross-talk (~5 mΩ N‑1 and 0.02 Ω mm‑1) relative to the average sensitivity. Additionally, the dynamic response of the sensor was characterized at several frequencies by using a vibrotactile stimulation system previously designed for psychophysics experiments. The sensor was also tested inside the rat conditioning chamber to demonstrate the relevant signals in a tactile neuroprosthesis.

  2. Fiber Bragg Gratings, IT techniques and strain gauge validation for strain calculation on aged metal specimens.

    PubMed

    Montero, Ander; de Ocariz, Idurre Saez; Lopez, Ion; Venegas, Pablo; Gomez, Javier; Zubia, Joseba

    2011-01-01

    This paper studies the feasibility of calculating strains in aged F114 steel specimens with Fiber Bragg Grating (FBG) sensors and infrared thermography (IT) techniques. Two specimens have been conditioned under extreme temperature and relative humidity conditions making comparative tests of stress before and after aging using different adhesives. Moreover, a comparison has been made with IT techniques and conventional methods for calculating stresses in F114 steel. Implementation of Structural Health Monitoring techniques on real aircraft during their life cycle requires a study of the behaviour of FBG sensors and their wiring under real conditions, before using them for a long time. To simulate aging, specimens were stored in a climate chamber at 70 °C and 90% RH for 60 days. This study is framed within the Structural Health Monitoring (SHM) and Non Destructuve Evaluation (NDE) research lines, integrated into the avionics area maintained by the Aeronautical Technologies Centre (CTA) and the University of the Basque Country (UPV/EHU).

  3. Suggested Procedures for Installing Strain Gauges on Langley Research Center Wind Tunnel Balances, Custom Force Measuring Transducers, Metallic and Composite Structural Test Articles

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    2004-01-01

    The character of force and strain measurement testing at LaRC is such that the types of strain gauge installations, the materials upon which the strain gauges are applied, and the test environments encountered, require many varied approaches. In 1997, a NASA Technical Memorandum (NASA TM 110327) was generated to provide the strain gauge application specialist with a listing of recommended procedures for strain gauging various transducers and test articles at LaRC. The technical memorandum offered here is an effort to keep the strain gauge user informed of new technological enhancements in strain-gauging methodology while preserving the strain-gauging guidelines set forth in the 1997 TM. This document provides detailed recommendations for strain gauging LaRC-designed balances and custom transducers, composite materials, cryogenic and high-temperature test articles, and selected non-typical or unique materials or test conditions. Additionally, one section offers details for installing Bragg-Grating type fiber-optic strain sensors for non-typical test scenarios.

  4. The implanted electrical resistance strain gauge: in vitro studies on data integrity.

    PubMed

    Crawshaw, A H; Hastings, G W; Dove, J

    1991-01-01

    The aim of this research is to investigate, and thus counter, the adverse effects of tissue fluid ingress on the performance of the electrical resistance strain gauge when used in ascertaining in vivo loading on a spinal implant. Moisture absorption has been minimized by adopting maximum metallic coverage in a package comprising stainless steel foil on vacuum-injected pacemaker grade epoxide. In a simulation of the implanted environment, cyclic strain wet endurance testing in saline suggests that, in the body, the fall in indicated quasi-dynamic strain would be less than 1.5% at 24 weeks post-operation (the longevity needed to span adequately the bony fusion phase). This implies that stiffening of the fusion mass will be deducible to a similar accuracy (from stepped-load exercises), in which creep is a secondary effect. However, crucial information (from quasi-static (passive) studies) regarding remodelling and load-sharing processes would be subject to a total signal error (primarily due to grid corrosion) in excess of 16% by 24 weeks, since long-term drifts are not inherently cancelled. Signal compensation is therefore additionally required, and an approximate empirical characterization of total error versus time has been derived. PMID:1875386

  5. Characterization of zeolite-trench-embedded microcantilevers with CMOS strain gauge for integrated gas sensor applications

    NASA Astrophysics Data System (ADS)

    Inoue, Shu; Denoual, Matthieu; Awala, Hussein; Grand, Julien; Mintova, Sveltana; Tixier-Mita, Agnès; Mita, Yoshio

    2016-04-01

    Custom-synthesized zeolite is coated and fixed into microcantilevers with microtrenches of 1 to 5 µm width. Zeolite is a porous material that absorbs chemical substances; thus, it is expected to work as a sensitive chemical-sensing head. The total mass increases with gas absorption, and the cantilever resonance frequency decreases accordingly. In this paper, a thick zeolite cantilever sensor array system for high sensitivity and selectivity is proposed. The system is composed of an array of microcantilevers with silicon deep trenches. The cantilevers are integrated with CMOS-made polysilicon strain gauges for frequency response electrical measurement. The post-process fabrication of such an integrated array out of a foundry-made CMOS chip is successful. On the cantilevers, three types of custom zeolite (FAU-X, LTL, and MFI) are integrated by dip and heating methods. The preliminary measurement has shown a clear shift of resonance frequency by the chemical absorbance of ethanol gas.

  6. Package analysis of 3D-printed piezoresistive strain gauge sensors

    NASA Astrophysics Data System (ADS)

    Das, Sumit Kumar; Baptist, Joshua R.; Sahasrabuddhe, Ritvij; Lee, Woo H.; Popa, Dan O.

    2016-05-01

    Poly(3,4-ethyle- nedioxythiophene)-poly(styrenesulfonate) or PEDOT:PSS is a flexible polymer which exhibits piezo-resistive properties when subjected to structural deformation. PEDOT:PSS has a high conductivity and thermal stability which makes it an ideal candidate for use as a pressure sensor. Applications of this technology includes whole body robot skin that can increase the safety and physical collaboration of robots in close proximity to humans. In this paper, we present a finite element model of strain gauge touch sensors which have been 3D-printed onto Kapton and silicone substrates using Electro-Hydro-Dynamic ink-jetting. Simulations of the piezoresistive and structural model for the entire packaged sensor was carried out using COMSOLR , and compared with experimental results for validation. The model will be useful in designing future robot skin with predictable performances.

  7. Fiber Bragg Gratings, IT Techniques and Strain Gauge Validation for Strain Calculation on Aged Metal Specimens

    PubMed Central

    Montero, Ander; de Ocariz, Idurre Saez; Lopez, Ion; Venegas, Pablo; Gomez, Javier; Zubia, Joseba

    2011-01-01

    This paper studies the feasibility of calculating strains in aged F114 steel specimens with Fiber Bragg Grating (FBG) sensors and infrared thermography (IT) techniques. Two specimens have been conditioned under extreme temperature and relative humidity conditions making comparative tests of stress before and after aging using different adhesives. Moreover, a comparison has been made with IT techniques and conventional methods for calculating stresses in F114 steel. Implementation of Structural Health Monitoring techniques on real aircraft during their life cycle requires a study of the behaviour of FBG sensors and their wiring under real conditions, before using them for a long time. To simulate aging, specimens were stored in a climate chamber at 70 °C and 90% RH for 60 days. This study is framed within the Structural Health Monitoring (SHM) and Non Destructuve Evaluation (NDE) research lines, integrated into the avionics area maintained by the Aeronautical Technologies Centre (CTA) and the University of the Basque Country (UPV/EHU). PMID:22346619

  8. Thermal characterization of FBG strain gauges for the monitoring of the cupola of Duomo di Milano

    NASA Astrophysics Data System (ADS)

    Cigada, Alfredo; Comolli, Lorenzo; Giussani, Alberto; Roncoroni, Fabio; Zenucchi, Fabio

    2011-05-01

    The incoming restoration works of Duomo di Milano main spire requires a continuous structural health monitoring of the cupola supporting it. For reasons mainly connected to the lightning hazard, fiber optic sensors have been selected, based on FBG technology. Strain of the lower part of the vaulting-rigs inside the octagonal cupola is the measurement of interest. Being the expected signals very small and the thermal disturbances very important, a thermal characterization of two types of commercial strain gauges was carried out in laboratory with a thermal chamber and a block of the same marble used for the Duomo construction. This allowed to find a relationship later used to compensate any thermal effects, leading to the extraction of the mechanical load contribution only. An uncertainty analysis gave a result of 5 to 10 μm/m in the tested temperature range -5 °C to +40 °C. The future work will expand the monitoring system to more measurement points and it is expected this can provide an important diagnostic tool during restoration operations.

  9. Field monitoring of the ice load of an icebreaker propeller blade using fiber optic strain gauges

    NASA Astrophysics Data System (ADS)

    Morin, Andre; Caron, Serge; Van Neste, Richard; Edgecombe, Merv H.

    1996-05-01

    Navigation in polar waters presents a formidable challenge to ships' propulsion systems as large ice pieces impinging on their propeller blades sometimes result in stresses exceeding the yield strength of the blade material. Damage to propellers is costly and can also spell disaster if a ship becomes disabled in a remote area. To prevent such situations, design practice must be improved and theoretical models of propeller/ice interaction must be validated against experimental data. The blade shape requires that the load be monitored at many locations in order to obtain an accurate picture of the stress and load distribution. Fiber optic sensors are ideally suited for such an application, owing to their small size, stability over time, immunity to electro-magnetic interference, resistance to corrosion and chemical attack by sea water and hydraulic oil. We report the full-scale instrumentation of an icebreaker propeller blade with 54 Fabry-Perot based fiber optic strain gauges and shaft-mounted electronics. The instrumentation design and installation procedures are described. Additional data gathered from the propulsion control system and the ship's navigation equipment is presented and the data fusion performed with underwater video imagery of the instrumented blade is also discussed. An overview of the noise-free data obtained during the Antarctic trials is given. We finally discuss the sensors behavior and long term response, presenting their applicability to smart structures.

  10. Mechanical stress measurement by an achromatic optical digital speckle pattern interferometry strain sensor with radial in-plane sensitivity: experimental comparison with electrical strain gauges.

    PubMed

    Viotti, Matias R; Albertazzi G, Armando; Kapp, Walter A

    2011-03-01

    This paper shows the optical setup of a radial in-plane digital speckle pattern interferometer which uses an axis-symmetrical diffractive optical element (DOE) to obtain double illumination. The application of the DOE gives in-plane sensitivity which only depends on the grating period of the DOE instead of the wavelength of the laser used as illumination source. A compact optical layout was built in order to have a portable optical strain sensor with a circular measurement area of about 5 mm in diameter. In order to compare its performance with electrical strain sensors (strain gauges), mechanical loading was generated by a four-point bending device and simultaneously monitored by the optical strain sensor and by two-element strain gauge rosettes. Several mechanical stress levels were measured showing a good agreement between both sensors. Results showed that the optical sensor could measure applied mechanical strains with a mean uncertainty of about 5% and 4% for the maximum and minimum principal strains, respectively. PMID:21364725

  11. The value of combined strain gauge plethysmography and radioactive iodine fibrinogen scan of the leg in the diagnosis of deep vein thrombosis

    SciTech Connect

    AbuRahma, A.F.; Lawton, W.E. Jr.; Osborne, L.

    1983-05-01

    The fallibility of the clinical diagnosis of deep venous thrombosis has led to a variety of noninvasive diagnostic methods, for example, Doppler ultrasound, plethysmography, /sup 125/I fibrinogen and radionuclide phlebography. This study was undertaken to analyze the value of combined strain gauge plethysmography and /sup 125/I fibrinogen scan of the leg in the diagnosis of deep venous thrombosis. The study was carried out upon 368 patients with suggestive findings of venous thrombosis. Four hundred and fifty strain gauge plethysmograms were reviewed. Venograms were done upon 106 limbs and /sup 125/I fibrinogen leg scans, on 136 limbs. Of the 64 limbs with normal strain gauge plethysmograms which had venograms, 58 were normal, five had incompetent perforators and one limb had deep venous thrombosis. Of the 42 legs with abnormal strain gauge plethysmograms which had venograms, 25 had deep venous thrombosis, 15 had incompetent perforators and two were normal. Twenty-three of 24 legs having both abnormal strain gauge plethysmograms and leg scans were confirmed to have deep venous thrombosis at venography. Fourteen of 18 legs with abnormal strain gauge plethysmograms but normal scans were found to have incompetent perforators. We conclude, that the strain gauge plethysmogram is a reliable test in excluding deep venous thrombosis and, when combined with the fibrinogen leg scan, is reliable in its diagnosis.

  12. Range-resolved signal processing for fibre segment interferometry applied to dynamic long-gauge length strain sensing

    NASA Astrophysics Data System (ADS)

    Kissinger, Thomas; Correia, Ricardo; Charrett, Thomas O. H.; James, Stephen W.; Tatam, Ralph P.

    2015-09-01

    A range-resolved interferometric signal processing technique using sinusoidal optical frequency modulation is applied to fibre segment interferometry. Here, six optical fibre segments of gauge length 12.5 cm are used as interferometric strain sensors and are formed between seven weak, broadband fibre Bragg gratings, acting as in-fibre partial reflectors. In a very simple and cost-effective optical setup using injection current modulation of a laser diode source, interferometric measurement of acoustic wave propagation in a metal rod is used to demonstrate the capabilities of the technique.

  13. GaAs-based resonant tunneling diode (RTD) epitaxy on Si for highly sensitive strain gauge applications.

    PubMed

    Li, Jie; Guo, Hao; Liu, Jun; Tang, Jun; Ni, Haiqiao; Shi, Yunbo; Xue, Chenyang; Niu, Zhichuan; Zhang, Wendong; Li, Mifeng; Yu, Ying

    2013-01-01

    As a highly sensitive strain gauge element, GaAs-based resonant tunneling diode (RTD) has already been applied in microelectromechanical system (MEMS) sensors. Due to poor mechanical properties and high cost, GaAs-based material has been limited in applications as the substrate for MEMS. In this work, we present a method to fabricate the GaAs-based RTD on Si substrate. From the experimental results, it can be concluded that the piezoresistive coefficient achieved with this method reached 3.42 × 10-9 m2/N, which is about an order of magnitude higher than the Si-based semiconductor piezoresistors. PMID:23651496

  14. New bridge-circuit-type detector to measure precise resistance change of strain gauge at low temperature and magnetic field

    NASA Astrophysics Data System (ADS)

    Ohashi, Masashi; Kishii, Nobuya; Tateno, Shota

    2016-04-01

    We report a new highly accurate and versatile bridge-circuit-type detector that has a simple structure and demonstrates a low degree of error for measurements of thermal expansion and magnetostriction by the strain gauge method. As an example, a commercial physical property measurement system (PPMS) is combined with a compact bridge-circuit box. Thermal expansion and magnetostriction are calculated from the resistance of the bridge and bridge voltage, measured by the operation of a standard PPMS resistivity option. The performance of the new detector is demonstrated by measuring the temperature and magnetic field dependences of the strain to obtain the thermal expansion coefficient and magnetostriction of the single crystals of rare-earth compounds RAl2 (R = Dy, Tb).

  15. Thermal Output of WK-Type Strain Gauges on Various Materials at Cryogenic and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Kowalkowski, Matthew K.; Rivers, H. Kevin; Smith, Russell W.

    1998-01-01

    Strain gage apparent strain (thermal output) is one of the largest sources of error associated with the measurement of strain when temperatures and mechanical loads are varied. In this paper, experimentally determined apparent strains of WK-type strain gages, installed on both metallic and composite-laminate materials of various lay-ups and resin systems for temperatures ranging from -450 F to 230 F are presented. For the composite materials apparent strain in both the 0 ply orientation angle and the 90 ply orientation angle were measured. Metal specimens tested included: aluminum-lithium alloy (Al-LI 2195-T87), aluminum alloy (Al 2219-T87), and titanium alloy. Composite materials tested include: graphite-toughened-epoxy (IM7/997- 2), graphite-bismaleimide (IM7/5260), and graphite-K3 (IM7/K3B). The experimentally determined apparent strain data are curve fit with a fourth-order polynomial for each of the materials studied. The apparent strain data and the polynomials that are fit to the data are compared with those produced by the strain gage manufacturer, and the results and comparisons are presented. Unacceptably high errors between the manufacture's data and the experimentally determined data were observed (especially at temperatures below - 270-F).

  16. New accelerometers under development

    NASA Technical Reports Server (NTRS)

    Wald, Jerry; Tehrani, M.

    1990-01-01

    The commercial viability of the Space Station requires that it provide a micro-g, or submicro-g environment to users. This represents significant improvement over existing systems. Attainment of the lowest micro-g levels requires isolation systems. Passive and active systems have been evaluated. Best performance is achieved using active approaches where accelerometer sensors close feedback loops. Two emerging accelerometer technologies are presented that have promise for meeting performance goals while achieving reductions of package size, weight, and power. The technologies addressed are Honeywell's design concept for an optical cavity locking accelerometer and the recent development of an integrated silicon accelerometer for government applications.

  17. Ultracold-Atom Accelerometers

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1995-01-01

    Proposed class of accelerometers and related motion sensors based on use of ultracold atoms as inertial components of motion transducers. Ultracold atoms supplant spring-and-mass components of older accelerometers. As used here, "ultracold atoms" means atoms with kinetic energies equivalent to temperatures equal to or less than 20 mK. Acclerometers essentially frictionless. Primary advantage high sensitivity.

  18. A practical monitoring system for the structural safety of mega-trusses using wireless vibrating wire strain gauges.

    PubMed

    Park, Hyo Seon; Lee, Hwan Young; Choi, Se Woon; Kim, Yousok

    2013-12-16

    Sensor technologies have been actively employed in structural health monitoring (SHM) to evaluate structural safety. To provide stable and real-time monitoring, a practical wireless sensor network system (WSNS) based on vibrating wire strain gauges (VWSGs) is proposed and applied to a building under construction. In this WSNS, the data measured from each VWSG are transmitted to the sensor node via a signal line and then transmitted to the master node through a short-range wireless communication module (operating on the Industrial, Scientific, and Medical (ISM) band). The master node also employs a long-range wireless communication module (Code Division Multiple Access-CDMA) to transmit the received data from the sensor node to a server located in a remote area, which enables a manager to examine the measured data in real time without any time or location restrictions. In this study, a total of 48 VWSGs, 14 sensor nodes, and seven master nodes were implemented to measure long-term strain variations of mega-trusses in an irregular large-scale building under construction. Based on strain data collected over a 16-month period, a quantitative evaluation of the construction process was performed to determine the aspects that exhibit the greatest influence on member behavior and to conduct a comparison with numerical simulation results. The effect of temperature stress on the structural elements was also analyzed. From these observations, the feasibility of a long-term WSNS based on VWSGs to evaluate the structural safety of an irregular building under construction was confirmed.

  19. A Practical Monitoring System for the Structural Safety of Mega-Trusses Using Wireless Vibrating Wire Strain Gauges

    PubMed Central

    Park, Hyo Seon; Lee, Hwan Young; Choi, Se Woon; Kim, Yousok

    2013-01-01

    Sensor technologies have been actively employed in structural health monitoring (SHM) to evaluate structural safety. To provide stable and real-time monitoring, a practical wireless sensor network system (WSNS) based on vibrating wire strain gauges (VWSGs) is proposed and applied to a building under construction. In this WSNS, the data measured from each VWSG are transmitted to the sensor node via a signal line and then transmitted to the master node through a short-range wireless communication module (operating on the Industrial, Scientific, and Medical (ISM) band). The master node also employs a long-range wireless communication module (Code Division Multiple Access—CDMA) to transmit the received data from the sensor node to a server located in a remote area, which enables a manager to examine the measured data in real time without any time or location restrictions. In this study, a total of 48 VWSGs, 14 sensor nodes, and seven master nodes were implemented to measure long-term strain variations of mega-trusses in an irregular large-scale building under construction. Based on strain data collected over a 16-month period, a quantitative evaluation of the construction process was performed to determine the aspects that exhibit the greatest influence on member behavior and to conduct a comparison with numerical simulation results. The effect of temperature stress on the structural elements was also analyzed. From these observations, the feasibility of a long-term WSNS based on VWSGs to evaluate the structural safety of an irregular building under construction was confirmed. PMID:24351640

  20. On the use of optical fiber Bragg grating (FBG) sensor technology for strain modal analysis

    NASA Astrophysics Data System (ADS)

    Peeters, Bart; dos Santos, Fábio Luis Marques; Pereira, Andreia; Araujo, Francisco

    2014-05-01

    This paper discusses the use of optical fiber Bragg grating (FBG) strain sensors for structural dynamics measurements. For certain industrial applications, there is an interest to use strain sensors rather than or in combination with accelerometers for experimental modal analysis. Classical electrical strain gauges can be used hereto, but optical strain sensors are an interesting alternative with some very specific advantages. This paper gives an overview of dynamic strain measurements in industrial applications, discusses the benefits of FBG sensors and reviews their measurement principle. Finally, the concept of strain modal analysis is introduced and a helicopter main rotor blade vibration testing and analysis case study is presented.

  1. A comparison of methods for calibration and use of multi-component strain gauge wind tunnel balances

    NASA Astrophysics Data System (ADS)

    Galway, R. D.

    1980-03-01

    A method is presented for calibration of strain-gauge balances which does not require that the components can be loaded independently. Applicable to both 'internal' and 'external' types of balance, the procedure uses a single varying calibration load to determine all linear and non-linear calibration coefficients. Constant 'secondary' loads on one or more components are unnecessary, although they may be used if desired. The usual iterative solution of the second order balance equations is outlined, and an approximate non-iterative scheme is included for completeness, though not recommended. Two methods of accounting for dependency of the calibration coefficients on the signs of the component loads are presented. A concept of 'buoyancy' is introduced to simplify the application of force balance tares, and a procedure for determining the component outputs for absolute zero load (the 'buoyant' offsets) is given. Balance data at a series of model attitudes are used to define these offsets, and also the coefficients in the equations defining the component load distribution of the tare weight at any attitude. The topics covered are ideally suited to formulation and solution by matrix methods, which have been used throughout.

  2. Streicker Bridge: a comparison between Bragg-grating long-gauge strain and temperature sensors and Brillouin scattering-based distributed strain and temperature sensors

    NASA Astrophysics Data System (ADS)

    Glisic, Branko; Chen, Jeremy; Hubbell, David

    2011-04-01

    The Streicker Bridge at Princeton University campus has been equipped with two fiber-optic sensing technologies: discrete long-gauge sensing, based on Fiber Bragg-Gratings (FBG), and truly-distributed sensing, based on Brillouin Optical Time Domain Analysis (BOTDA). The sensors were embedded in concrete during the construction. The early age measurements, including hydration swelling and contraction, and post-tensioning of concrete were registered by both systems and placed side by side in order to compare their performances. Aside from the usual behavior, an unusual increase in strain was detected by several sensors in various cross-sections. The nature of this event is still under investigation, but preliminary study indicates early-age cracking as the cause. The comparison between the two monitoring systems shows good agreement in the areas where no unusual behavior was detected, but some discrepancies are noticed at locations where unusual behavior occurred and during the early age of concrete. These discrepancies are attributed to the spatial resolution of the distributed monitoring system and the temperature influences at early age. In this paper, general information concerning the Streicker Bridge project is given. The monitoring systems and their specifications are briefly presented. The monitoring data are analyzed and a comparison between the two systems is performed.

  3. Design of a pulse-type strain gauge balance for a long-test-duration hypersonic shock tunnel

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Liu, Y.; Jiang, Z.

    2016-01-01

    When the measurement of aerodynamic forces is conducted in a hypersonic shock tunnel, the inertial forces lead to low-frequency vibrations of the model, and its motion cannot be addressed through digital filtering because a sufficient number of cycles cannot be obtained during a tunnel run. This finding implies restrictions on the model size and mass as the natural frequencies are inversely proportional to the length scale of the model. Therefore, the force measurement still has many problems, particularly for large and heavy models. Different structures of a strain gauge balance (SGB) are proposed and designed, and the measurement element is further optimized to overcome the difficulties encountered during the measurement of aerodynamic forces in a shock tunnel. The motivation for this study is to assess the structural performance of the SGB used in a long-test-duration JF12 hypersonic shock tunnel, which has more than 100 ms of test time. Force tests were conducted for a large-scale cone with a 10° semivertex angle and a length of 0.75 m in the JF12 long-test-duration shock tunnel. The finite element method was used for the analysis of the vibrational characteristics of the Model-Balance-Sting System (MBSS) to ensure a sufficient number of cycles, particularly for the axial force signal during a shock tunnel run. The higher-stiffness SGB used in the test shows good performance, wherein the frequency of the MBSS increases because of the stiff construction of the balance. The experimental results are compared with the data obtained in another wind tunnel and exhibit good agreement at M = 7 and α =5°.

  4. Compact Circuit Preprocesses Accelerometer Output

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1993-01-01

    Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.

  5. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, Dale R.

    1984-01-01

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  6. Double resonator cantilever accelerometer

    DOEpatents

    Koehler, D.R.

    1982-09-23

    A digital quartz accelerometer includes a pair of spaced double-ended tuning forks fastened at one end to a base and at the other end through a spacer mass. Transverse movement of the resonator members stresses one and compresses the other, providing a differential frequency output which is indicative of acceleration.

  7. Superconducting Rebalance Accelerometer

    NASA Technical Reports Server (NTRS)

    Torti, R. P.; Gerver, M.; Leary, K. J.; Jagannathan, S.; Dozer, D. M.

    1996-01-01

    A multi-axis accelerometer which utilizes a magnetically-suspended, high-TC proof mass is under development. The design and performance of a single axis device which is stabilized actively in the axial direction but which utilizes ring magnets for passive radial stabilization is discussed. The design of a full six degree-of-freedom device version is also described.

  8. Low G accelerometer testing

    NASA Technical Reports Server (NTRS)

    Vaughan, M. S.

    1972-01-01

    Eight different types of low-g accelerometer tests are covered on the Bell miniature electrostatically suspended accelerometer (MESA) which is known to be sensitive to less than 10 to the minus 7th power earth's gravity. These tests include a mass attracting scheme, Leitz dividing head, Wild theodolite, precision gage blocks, precision tiltmeters, Hilger Watts autocollimator, Razdow Mark 2 autocollimator, and laser interferometer measuring system. Each test is described and a comparison of the results is presented. The output of the MESA was as linear and consistent as any of the available devices were capable of measuring. Although the extent of agreement varied with the test equipment used, it can only be concluded that the indicated errors were attributable to the test equipment coupled with the environmental conditions.

  9. Python microgravity accelerometer system

    NASA Astrophysics Data System (ADS)

    Nijhawan, V.; Arrott, A. P.; Grimes, R. S.

    1989-01-01

    A microgravity accelerometer system developed for use in the Space Shuttle middeck locker is described. The system, known as PYTHON, is a microcomputer-based digital acceleration-measurement system that uses primarily off-the-shelf qualified space hardware and modular software. It can be operated on-board in real time and on the ground either during the flight or post-flight. The sensor head consists of an accelerometer, which measures acceleration in three orthogonal axes, and an internal thermister for temperature compensation; threshold and resolution are better than 0.000001 g. The results of acceleration measurements with PYTHON carried out during parabolic maneuvers aboard the NASA's KC-135 aircraft are presented.

  10. ATS-6 - Flight accelerometers

    NASA Technical Reports Server (NTRS)

    Mattson, R.; Honeycutt, G.; Lindner, F.

    1975-01-01

    The Applications Technology Satellite-6 (ATS-6) flight accelerometers were designed to provide data for verifying the basic spacecraft vibration modes during launch, to update the analytical model of the ATA structure, and to provide a capability for detection and diagnosis of inflight and anomalies. The experiment showed accelerations less than 2.5 g during liftoff and 1.1 g or less during staging with frequencies below 80 Hz. Measured values were generally within 1 g of predicted.

  11. Fiber optic micro accelerometer

    SciTech Connect

    Swierkowski, Steve P.

    2005-07-26

    An accelerometer includes a wafer, a proof mass integrated into the wafer, at least one spring member connected to the proof mass, and an optical fiber. A Fabry-Perot cavity is formed by a partially reflective surface on the proof mass and a partially reflective surface on the end of the optical fiber. The two partially reflective surfaces are used to detect movement of the proof mass through the optical fiber, using an optical detection system.

  12. Levitated micro-accelerometer.

    SciTech Connect

    Warne, Larry Kevin; Schmidt, Carrie Frances; Peterson, Kenneth Allen; Kravitz, Stanley H.; Renn, Rosemarie A.; Peter, Frank J.; Kinney, Ragon D.; Gilkey, Jeffrey C.

    2004-06-01

    The objective is a significant advancement in the state-of-the-art of accelerometer design for tactical grade (or better) applications. The design goals are <1 milli-G bias stability across environments and $200 cost. This quantum leap in performance improvement and cost reduction can only be achieved by a radical new approach, not incremental improvements to existing concepts. This novel levitated closed-loop accelerometer is implemented as a hybrid micromachine. The hybrid approach frees the designer from the limitations of any given monolithic process and dramatically expands the available design space. The design can be tailored to the dynamic range, resolution, bandwidth, and environmental requirements of the application while still preserving all of the benefits of monolithic MEMS fabrication - extreme precision, small size, low cost, and low power. An accelerometer was designed and prototype hardware was built, driving the successful development and refinement of several 'never been done before' fabrication processes. Many of these process developments are commercially valuable and are key enablers for the realization of a wide variety of useful micro-devices. While controlled levitation of a proof mass has yet to be realized, the overall design concept remains sound. This was clearly demonstrated by the stable and reliable closed-loop control of a proof mass at the test structure level. Furthermore, the hybrid MEMS implementation is the most promising approach for achieving the ambitious cost and performance targets. It is strongly recommended that Sandia remain committed to the original goal.

  13. A Simple Accelerometer Calibrator

    NASA Astrophysics Data System (ADS)

    Salam, R. A.; Islamy, M. R. F.; Munir, M. M.; Latief, H.; Irsyam, M.; Khairurrijal

    2016-08-01

    High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM.

  14. Combined study of the strain gauge plethysmography and I-125 fibrinogen leg scan in the differentiation of deep vein thrombosis and postphlebitic syndrome

    SciTech Connect

    AbuRahma, A.F.; Osborne, L.

    1984-11-01

    The fallibility of the clinical diagnosis of deep venous thrombosis (DVT) and postphlebitic syndrome has led to a variety of noninvasive diagnostic modalities, e.g, Doppler ultrasound, plethysmography, and radionuclide phlebography. The purpose of this study is to analyze the value of combined strain gauge plethysmography (SPG) and I-125 fibrinogen leg scanning in the differentiation of DVT and postphlebitic syndrome. Using strain gauge plethysmograph, 600 studies were performed on 502 patients. The maximum venous outflow (MVO) was calculated. An MVO of 20 cm3/100 cm3 of tissue/min or above was considered normal, and MVO of less than 20 cm3 was abnormal. Of those, 150 limbs had I-125 fibrinogen leg scan and venograms. Of 82 normal SPG, when compared with venograms, 75 were normal, five had postphlebitic syndrome, and two had DVT (97.6% true-negative). Sixty-eight legs had positive SPG, 46 of which had DVT (67.6% true-positive), 21 had postphlebitic syndrome (30.9%), and one was normal (1.5% false-positive). When rubber tourniquets were placed lightly on each leg between the strain gauge and the thigh cuff, 12 legs changed from positive SPG to negative SPG; 56 legs only had positive SPG. Forty-six of these had DVT (82.1% true-positive), nine had postphlebitic syndrome, and one was normal. When positive SPG was combined with positive leg scan, the accuracy raised to 95.6% (44 of 46 legs). If the SPG was positive but the leg scan was negative, the possibility of postphlebitic syndrome was most likely (8 of 10, i.e., 80%).

  15. In-Axis and Cross-Axid Accelerometer Response in Shock Environments

    SciTech Connect

    Bateman, V.I.; Brown, F.A.

    1999-03-10

    The characteristics of a piezoresistive accelerometer in shock environments have been studied at Sandia National Laboratories (SNL) in the Mechanical Shock Testing Laboratory for ten years The SNL Shock Laboratory has developed a capability to characterize accelerometers and other transducers with shocks aligned with the transducer's sensing axis and perpendicular to the transducer's sensing axis. This unique capability includes Hopkinson bars made of aluminum, steel, titanium, and beryllium. The bars are configured as both single and split Hopkinson bars. Four different areas that conclude this study are summarized in this paper: characterization of the cross-axis response of the accelerometer in the four environments of static compression, static strain on a beam, dynamic strain, and mechanical shock, the accelerometer's response on a titanium Hopkinson bar with two 45{degree} flats on the end of the bar; failure analysis of the accelerometer; and measurement of the accelerometer's self-generating cable response in a shock environment.

  16. Capacitive Position Sensor For Accelerometer

    NASA Technical Reports Server (NTRS)

    Vanzandt, Thomas R.; Kaiser, William J.; Kenny, Thomas W.

    1995-01-01

    Capacitive position sensor measures displacement of proof mass in prototype accelerometer described in "Single-Crystal Springs for Accelerometers" (NPO-18795). Sensor is ultrasensitive, miniature device operating at ultra-high frequency and described in more detail in "Ultra-High-Frequency Capacitive Displacement Sensor," (NPO-18675). Advances in design and fabrication of prototype accelerometer also applicable to magnetometers and other sensors in which sensed quantities measured in terms of deflections of small springs.

  17. Summary Report of the First International Symposium on Strain Gauge Balances and Workshop on AoA/Model Deformation Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping; Burner, Alpheus W.; Finley, Tom D.

    1999-01-01

    The first International Symposium on Strain Gauge Balances was sponsored under the auspices of the NASA Langley Research Center (LaRC), Hampton, Virginia during October 22-25, 1996. Held at the LaRC Reid Conference Center, the Symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. The program included a panel discussion, technical paper sessions, tours of local facilities, and vendor exhibits. Over 130 delegates were in attendance from 15 countries. A steering committee was formed to plan a second international balance symposium tentatively scheduled to be hosted in the United Kingdom in 1998 or 1999. The Balance Symposium was followed by the half-day Workshop on Angle of Attack and Model Deformation on the afternoon of October 25. The thrust of the Workshop was to assess the state of the art in angle of attack (AoA) and model deformation measurement techniques and to discuss future developments.

  18. Experiments and analysis of lateral piezoresistance gauges

    SciTech Connect

    Wong, M.K.W.

    1993-07-01

    The response of lateral piezoresistance gauges to shock wave uniaxial strain loading has been examined in a combined experimental and calculational effort. Plate impact experiments provided lateral gauge data which were analyzed using quasi-static and dynamic inclusion analyses. Experimental data showed that the response of the lateral gauge output depended upon the matrix material and gauge emplacement method. The calculations indicated that these differences were due to complex gauge-matrix interactions. These interactions were influenced by the stress and strain distributions in and around the gauge, plasticity effects, properties of the gauge and matrix materials, and emplacement conditions.

  19. Development of a strain/temperature gauge and attachment system for use on carbon composites at elevated temperature

    NASA Astrophysics Data System (ADS)

    Lanius, S. J.; Brasfield, R. G.; Wnuk, S. P.

    1987-03-01

    The difficulties encountered when instrumenting solid rocket motors for acquiring strain data are reviewed, emphasizing the strong temperature dependence due to apparent strain effects. The development of a strain/temperature gage to overcome some of these problems is discussed. This gage is designed to produce low apparent strain when attached to a carbon-carbon substrate. Characterization and performance data for gages attached with ceramic cement to carbon-carbon tensile coupons are presented, and the effect of a flame-sprayed installation process is discussed.

  20. Single-Axis Accelerometer

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis Stephen (Inventor); Capo-Lugo, Pedro A. (Inventor)

    2016-01-01

    A single-axis accelerometer includes a housing defining a sleeve. An object/mass is disposed in the sleeve for sliding movement therein in a direction aligned with the sleeve's longitudinal axis. A first piezoelectric strip, attached to a first side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The first piezoelectric strip includes a first strip of a piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A second piezoelectric strip, attached to a second side of the object and to the housing, is longitudinally aligned with the sleeve's longitudinal axis. The second piezoelectric strip includes a second strip of the piezoelectric material with carbon nanotubes substantially aligned along a length thereof. A voltage sensor is electrically coupled to at least one of the first and second piezoelectric strips.

  1. A novel differential optical fiber accelerometer

    NASA Astrophysics Data System (ADS)

    Pi, Shaohua; Zhao, Jiang; Hong, Guangwei; Jia, Bo

    2013-08-01

    The development of sensitive fiber-optic accelerometers is a subject of continuing interest. To acquire high resolution, Michelson phase interferometric techniques are widely adopted. Among the variety structures, the compliant cylinder approach is particularly attractive due to its high sensitivity that is defined as the induced phase shift per applied acceleration. While the two arms of Michelson interferometer should be at the same optical path, it is inconvenient to adjust the two arms' length to equal, also the polarization instability and phase random drift will cause a signal decline. To overcome these limitations, a novel optical fiber accelerometer based on differential interferometric techniques is proposed and investigated. The interferometer is a Sagnac-like white light interferometer, which means the bandwidth of laser spectrum can be as wide as tens nanometers. This interferometer was firstly reported by Levin in 1990s. Lights are divided to two paths before entering the coupler. To induce time difference, one passes through a delay arm and another goes a direct arm. After modulated by the sensing component, they reflect to opposite arm. The sensing part is formed by a seismic mass that is held to only one compliant cylinder, where the single-mode optical fiber is wrapped tightly. When sticking to vibrations, the cylinder compresses or stretches as a spring. The corresponding changes in cylinder circumference lead to strain in the sensing fibers, which is detected as an optical phase shift by the interferometer. The lights from two arms reach the vibration source at different time, sensing a different accelerate speed; produce a different optic path difference. Integrating the dissimilarity of the accelerated speed by time can obtain the total acceleration graph. A shaker's vibration has been tested by the proposed accelerometer referring to a standard piezoelectric accelerometer. A 99.8% linearity of the optical phase shift to the ground acceleration

  2. Fiber optic gap gauge

    DOEpatents

    Wood, Billy E.; Groves, Scott E.; Larsen, Greg J.; Sanchez, Roberto J.

    2006-11-14

    A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.

  3. Ultraminiature resonator accelerometer

    SciTech Connect

    Koehler, D.R.; Kravitz, S.H.; Vianco, P.T.

    1996-04-01

    A new family of microminiature sensors and clocks is being developed with widespread application potential for missile and weapons applications, as biomedical sensors, as vehicle status monitors, and as high-volume animal identification and health sensors. To satisfy fundamental technology development needs, a micromachined clock and an accelerometer have initially been undertaken as development projects. A thickness-mode quartz resonator housed in a micromachined silicon package is used as the frequency-modulated basic component of the sensor family. Resonator design philosophy follows trapped energy principles and temperature compensation methodology through crystal orientation control, with operation in the 20--100 MHz range, corresponding to quartz wafer thicknesses in the 75--15 micron range. High-volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Chemical etching of quartz, as well as micromachining of silicon, achieves the surface and volume mechanical features necessary to fashion the resonating element and the mating package. Integration of the associated oscillator and signal analysis circuitry into the silicon package is inherent to the realization of a size reduction requirement. A low temperature In and In/Sn bonding technology allows assembly of the dissimilar quartz and silicon materials, an otherwise challenging task. Unique design features include robust vibration and shock performance, capacitance sensing with micromachined diaphragms, circuit integration, capacitance-to-frequency transduction, and extremely small dimensioning. Accelerometer sensitivities were measured in the 1--3 ppm/g range for the milligram proof-mass structures employed in the prototypes evaluated to date.

  4. An ultra-linear piezo-floating-gate strain-gauge for self-powered measurement of quasi-static-strain.

    PubMed

    Sarkar, Pikul; Huang, Chenling; Chakrabartty, Shantanu

    2013-08-01

    In this paper we describe a self-powered sensor that can be used for in-vivo measurement of the quasi-static-strain and also for in-vivo measurement of the L1 norm of the strain signal. At the core of the proposed design is a linear floating-gate injector that can achieve more than 13 bits of precision in sensing, signal integration and non-volatile storage. The injectors are self-powered by the piezoelectric transducers that convert mechanical energy from strain-variations into electrical energy. A differential injector topology is used to measure the quasi-static strain by integrating the difference between the L1 norm of the piezoelectric signal generated during the positive and negative strain-cycles. The linear floating-gate injectors are integrated with charge-pumps, digital calibration circuits and digital programming circuits to form a system-on-chip solution that can interface with a standard bio-telemetry platform. We demonstrate the proof-of-concept self-powered measurement of quasi-static strain and L1 norm of the strain signal using sensor prototypes fabricated in a 0.5- μm standard CMOS process and validated using a bench-top biomechanical test setup.

  5. Ultra-Precision Measurement and Control of Angle Motion in Piezo-Based Platforms Using Strain Gauge Sensors and a Robust Composite Controller

    PubMed Central

    Liu, Lei; Bai, Yu-Guang; Zhang, Da-Li; Wu, Zhi-Gang

    2013-01-01

    The measurement and control strategy of a piezo-based platform by using strain gauge sensors (SGS) and a robust composite controller is investigated in this paper. First, the experimental setup is constructed by using a piezo-based platform, SGS sensors, an AD5435 platform and two voltage amplifiers. Then, the measurement strategy to measure the tip/tilt angles accurately in the order of sub-μrad is presented. A comprehensive composite control strategy design to enhance the tracking accuracy with a novel driving principle is also proposed. Finally, an experiment is presented to validate the measurement and control strategy. The experimental results demonstrate that the proposed measurement and control strategy provides accurate angle motion with a root mean square (RMS) error of 0.21 μrad, which is approximately equal to the noise level. PMID:23860316

  6. Ultra-precision measurement and control of angle motion in piezo-based platforms using strain gauge sensors and a robust composite controller.

    PubMed

    Liu, Lei; Bai, Yu-Guang; Zhang, Da-Li; Wu, Zhi-Gang

    2013-07-15

    The measurement and control strategy of a piezo-based platform by using strain gauge sensors (SGS) and a robust composite controller is investigated in this paper. First, the experimental setup is constructed by using a piezo-based platform, SGS sensors, an AD5435 platform and two voltage amplifiers. Then, the measurement strategy to measure the tip/tilt angles accurately in the order of sub-μrad is presented. A comprehensive composite control strategy design to enhance the tracking accuracy with a novel driving principle is also proposed. Finally, an experiment is presented to validate the measurement and control strategy. The experimental results demonstrate that the proposed measurement and control strategy provides accurate angle motion with a root mean square (RMS) error of 0.21 μrad, which is approximately equal to the noise level.

  7. [The effects on upper first molars by the face-bow construction. Consideration of utilizing the strain gauge method and the computer method of structural analysis].

    PubMed

    Nakamura, R

    1989-04-01

    The present study was undertaken for the purpose of detecting the influence on upper first molars by the dynamic behavior originated in face-bow construction. Tests were made at occipital pull and cervical pull face-bows utilizing strain gauge method and the computer method of structural analysis. As for the occipital pull face-bow, a short outer-bow 35 mm frontward of a tube was bent 30 degrees upward and be pulled in that direction. As for the cervical pull face-bow, a medium outer-bow flash to tube, parallel to the inner-bow was pulled from 20 degrees downward. These two types of face-bows were divided into 4 types, those with loops at the back end (WL) and to those without loops (NL). In the strain gauge method, the force and moment to tubes was measured and compared with the values obtained from theoretical analysis. And in the structural analysis, the data of deflection was compared with each other. Those results indicated that 1. face-bow shows a different force to the molars and a different phase of deflection, according to the difference of it's force concentrative section. 2. the larger the deflection, the larger the deviation of forces on molars from theoretical values. 3. the way of setting loops against the direction of pull alters the phase of deflection of face-bow and the force on molars. 4. existance of loops at inner-bow affects as follows: (1) Reduction of moment of each type of face-bow. (2) Reduction of vertical force at occipital pull face-bow and it's increase at cervical pull face-bow. (3) Resistance for deflection of face-bows in the case of tractive force for closing loops.

  8. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor.

    PubMed

    Kuang, Jun; Liu, Luqi; Gao, Yun; Zhou, Ding; Chen, Zhuo; Han, Baohang; Zhang, Zhong

    2013-12-21

    A hierarchically structured thermal-reduced graphene (ReG) foam with 0.5 S cm(-1) electrical conductivity is fabricated from a well-dispersed graphene oxide suspension via a directional freezing method followed by high-temperature thermal treatment. The as-prepared three-dimensional ReG foam has an ordered macroporous honeycomb-like structure with straight and parallel voids in the range of 30 μm to 75 μm separated by cell walls of several tens of nanometers thick. Despite its ultra-low density, the ReG foam has an excellent compression recovery along its in-plane direction. This property of the ReG foam can be attributed to its hierarchically porous structure, as demonstrated by the compression test. The excellent compression recovery and high conductivity provide the ReG foam with exceptional piezoresistive capabilities. The electrical resistance of the ReG foam shows a linearly decreasing trend with compressive strain increments of up to 60%, which cannot be observed in conventional rigid material-based sensors and carbon nanotube-based polymer sensors. Such intriguing linear strain-responsive behavior, along with the fast response time and high thermal stability, makes the ReG foam a promising candidate for strain sensing. We demonstrated that it could be used as a wearable device for real-time monitoring of human health. PMID:24142261

  9. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor.

    PubMed

    Kuang, Jun; Liu, Luqi; Gao, Yun; Zhou, Ding; Chen, Zhuo; Han, Baohang; Zhang, Zhong

    2013-12-21

    A hierarchically structured thermal-reduced graphene (ReG) foam with 0.5 S cm(-1) electrical conductivity is fabricated from a well-dispersed graphene oxide suspension via a directional freezing method followed by high-temperature thermal treatment. The as-prepared three-dimensional ReG foam has an ordered macroporous honeycomb-like structure with straight and parallel voids in the range of 30 μm to 75 μm separated by cell walls of several tens of nanometers thick. Despite its ultra-low density, the ReG foam has an excellent compression recovery along its in-plane direction. This property of the ReG foam can be attributed to its hierarchically porous structure, as demonstrated by the compression test. The excellent compression recovery and high conductivity provide the ReG foam with exceptional piezoresistive capabilities. The electrical resistance of the ReG foam shows a linearly decreasing trend with compressive strain increments of up to 60%, which cannot be observed in conventional rigid material-based sensors and carbon nanotube-based polymer sensors. Such intriguing linear strain-responsive behavior, along with the fast response time and high thermal stability, makes the ReG foam a promising candidate for strain sensing. We demonstrated that it could be used as a wearable device for real-time monitoring of human health.

  10. Non-invasive timing of gas gun-launched projectiles using external surface-mounted optical fiber-Bragg grating strain gauges

    NASA Astrophysics Data System (ADS)

    Goodwin, Peter M.; Marshall, Bruce R.; Stevens, Gerald D.; Dattelbaum, Dana M.

    2013-03-01

    Non-invasive detection methods for tracking gun-launched projectiles are important not only for assessment of gun performance but are also essential for timing a variety of diagnostics, for example, to investigate plate-impact events for shock compression experiments. Measurement of the time of passage of a projectile moving inside of the gun barrel can be achieved by detection of the transient hoop strain induced in the barrel of a light-gas gun by the passage of the projectile using external, barrel surface-mounted optical fiber-Bragg grating strain gauges. Optical fiber-Bragg gratings have been implemented and their response characterized on single-stage and two-stage light gas guns routinely used for dynamic experimentation at Los Alamos National Laboratory. Two approaches, using either broadband or narrowband illumination, were used to monitor changes in the Bragg wavelength of the fiber-Bragg gratings. The second approach, using narrowband laser illumination, offered the highest sensitivity. The feasibility of using these techniques to generate early, pre-event signals useful for triggering high-latency diagnostics was demonstrated.

  11. Non-invasive timing of gas gun-launched projectiles using external surface-mounted optical fiber-Bragg grating strain gauges.

    PubMed

    Goodwin, Peter M; Marshall, Bruce R; Stevens, Gerald D; Dattelbaum, Dana M

    2013-03-01

    Non-invasive detection methods for tracking gun-launched projectiles are important not only for assessment of gun performance but are also essential for timing a variety of diagnostics, for example, to investigate plate-impact events for shock compression experiments. Measurement of the time of passage of a projectile moving inside of the gun barrel can be achieved by detection of the transient hoop strain induced in the barrel of a light-gas gun by the passage of the projectile using external, barrel surface-mounted optical fiber-Bragg grating strain gauges. Optical fiber-Bragg gratings have been implemented and their response characterized on single-stage and two-stage light gas guns routinely used for dynamic experimentation at Los Alamos National Laboratory. Two approaches, using either broadband or narrowband illumination, were used to monitor changes in the Bragg wavelength of the fiber-Bragg gratings. The second approach, using narrowband laser illumination, offered the highest sensitivity. The feasibility of using these techniques to generate early, pre-event signals useful for triggering high-latency diagnostics was demonstrated.

  12. The LISA accelerometer

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Touboul, P.

    2003-10-01

    In the frame of investigating the fundamental nature of gravity, the Laser Interferometer Space Antenna (LISA) mission could open the way to a new kind of observations unreachable from ground. The experiment, based on a V-formation of six drag-free spacecraft, uses the cubic proof masses of inertial sensors to reflect the laser light, acting as reference mirrors of a 5 × 10 9 m arm length interferometer. The proof masses are also used as inertial references for the drag-free control of the spacecraft which constitute in return a shield against external forces. Derived from space electrostatic accelerometers developed at ONERA, such as GRADIO for the ESA ARISTOTELES and now GOCE mission (Bernard and Touboul, 1991), the proposed LISA sensor should shield its proof mass from any accelerometric disturbance at a level of 10 -15ms-2Hz- 1/2. The accurate capacitive sensing of the mass provides its position relative to the satellite with a resolution better than 10 -9m Hz- 1/2 in order to control the satellite orbit and to minimise the disturbances induced by the satellite self gravity or by the proof mass charge. The sensor configuration and accomodation has to be specifically optimised for the mission requirements. Fortunately, the sensor will benefit from the thermal stability of the LISA optical bench environment, i.e. 10 -6K Hz- 1/2, and of the selected materials that exhibit a very low coefficient of thermal expansion (CTE), ensuring a high geometrical stability. Apart from the modeling and the evaluation of the flight characteristics, the necessary indirect ground demonstration of the performance and the interfaces with the drag-free control will have to be considered in detail in the future.

  13. A method for the on-site determination of prestressing forces using long-gauge fiber optic strain sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, H.; Glisic, B.

    2014-07-01

    Structural health monitoring (SHM) consists of the continuous or periodic measurement of structural parameters and their analysis with the aim of deducing information about the performance and health condition of a structure. The significant increase in the construction of prestressed concrete bridges motivated this research on an SHM method for the on-site determination of the distribution of prestressing forces along prestressed concrete beam structures. The estimation of the distribution of forces is important as it can give information regarding the overall performance and structural integrity of the bridge. An inadequate transfer of the designed prestressing forces to the concrete cross-section can lead to a reduced capacity of the bridge and consequently malfunction or failure at lower loads than predicted by design. This paper researches a universal method for the determination of the distribution of prestressing forces along concrete beam structures at the time of transfer of the prestressing force (e.g., at the time of prestressing or post-tensioning). The method is based on the use of long-gauge fiber optic sensors, and the sensor network is similar (practically identical) to the one used for damage identification. The method encompasses the determination of prestressing forces at both healthy and cracked cross-sections, and for the latter it can yield information about the condition of the cracks. The method is validated on-site by comparison to design forces through the application to two structures: (1) a deck-stiffened arch and (2) a curved continuous girder. The uncertainty in the determination of prestressing forces was calculated and the comparison with the design forces has shown very good agreement in most of the structures’ cross-sections, but also helped identify some unusual behaviors. The method and its validation are presented in this paper.

  14. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor

    NASA Astrophysics Data System (ADS)

    Kuang, Jun; Liu, Luqi; Gao, Yun; Zhou, Ding; Chen, Zhuo; Han, Baohang; Zhang, Zhong

    2013-11-01

    A hierarchically structured thermal-reduced graphene (ReG) foam with 0.5 S cm-1 electrical conductivity is fabricated from a well-dispersed graphene oxide suspension via a directional freezing method followed by high-temperature thermal treatment. The as-prepared three-dimensional ReG foam has an ordered macroporous honeycomb-like structure with straight and parallel voids in the range of 30 μm to 75 μm separated by cell walls of several tens of nanometers thick. Despite its ultra-low density, the ReG foam has an excellent compression recovery along its in-plane direction. This property of the ReG foam can be attributed to its hierarchically porous structure, as demonstrated by the compression test. The excellent compression recovery and high conductivity provide the ReG foam with exceptional piezoresistive capabilities. The electrical resistance of the ReG foam shows a linearly decreasing trend with compressive strain increments of up to 60%, which cannot be observed in conventional rigid material-based sensors and carbon nanotube-based polymer sensors. Such intriguing linear strain-responsive behavior, along with the fast response time and high thermal stability, makes the ReG foam a promising candidate for strain sensing. We demonstrated that it could be used as a wearable device for real-time monitoring of human health.A hierarchically structured thermal-reduced graphene (ReG) foam with 0.5 S cm-1 electrical conductivity is fabricated from a well-dispersed graphene oxide suspension via a directional freezing method followed by high-temperature thermal treatment. The as-prepared three-dimensional ReG foam has an ordered macroporous honeycomb-like structure with straight and parallel voids in the range of 30 μm to 75 μm separated by cell walls of several tens of nanometers thick. Despite its ultra-low density, the ReG foam has an excellent compression recovery along its in-plane direction. This property of the ReG foam can be attributed to its hierarchically

  15. Measurement of Impact Acceleration: Mouthpiece Accelerometer Versus Helmet Accelerometer

    PubMed Central

    Higgins, Michael; Halstead, P. David; Snyder-Mackler, Lynn; Barlow, David

    2007-01-01

    Context: Instrumented helmets have been used to estimate impact acceleration imparted to the head during helmet impacts. These instrumented helmets may not accurately measure the actual amount of acceleration experienced by the head due to factors such as helmet-to-head fit. Objective: To determine if an accelerometer attached to a mouthpiece (MP) provides a more accurate representation of headform center of gravity (HFCOG) acceleration during impact than does an accelerometer attached to a helmet fitted on the headform. Design: Single-factor research design in which the independent variable was accelerometer position (HFCOG, helmet, MP) and the dependent variables were g and Severity Index (SI). Setting: Independent impact research laboratory. Intervention(s): The helmeted headform was dropped (n = 168) using a National Operating Committee on Standards for Athletic Equipment (NOCSAE) drop system from the standard heights and impact sites according to NOCSAE test standards. Peak g and SI were measured for each accelerometer position during impact. Main Outcome Measures: Upon impact, the peak g and SI were recorded for each accelerometer location. Results: Strong relationships were noted for HFCOG and MP measures, and significant differences were seen between HFCOG and helmet g measures and HFCOG and helmet SI measures. No statistically significant differences were noted between HFCOG and MP g and SI measures. Regression analyses showed a significant relationship between HFCOG and MP measures but not between HFCOG and helmet measures. Conclusions: Upon impact, MP acceleration (g) and SI measurements were closely related to and more accurate in measuring HFCOG g and SI than helmet measurements. The MP accelerometer is a valid method for measuring head acceleration. PMID:17597937

  16. A preliminary study of using a strain-gauged balance and parameter estimation techniques for the determination of aerodynamic forces on a model in a very short duration wind tunnel

    NASA Astrophysics Data System (ADS)

    Brown, A. P.; Feik, R. A.

    1983-12-01

    This memo presents a preliminary study of a proposed method of measuring the aerodynamic forces on a supported model in an intermittent very short duration wind tunnel with a relatively high airflow dynamic pressure (of the orders of 200 microsec and 1/3 atmosphere respectively). A semiconductor strain gauged cantilever beam balance is used to record strain time histories associated with model displacement in response to aerodynamic force. The practical feasibility of obtaining sufficiently resolvable strains for the prescribed tunnel conditions with the given strain gauge configuration is established. The proposed method uses a system identification procedure to determine the system dynamic response characteristics using a known calibration force input. Subsequently, aerodynamic forces during a tunnel run follow from the recorded strain gauge time histories. The procedure has been demonstrated successfully using simulated data. However, the experimental situation did not lead to a successful analysis in the way proposed. Reasons for this are discussed and recommendations made for improvements. A brief series of shots in the ANU free piston shock tunnel also highlights the need to isolate as much as possible the model/balance from external vibrations.

  17. Wearable accelerometer in clinical use.

    PubMed

    Tamura, Toshiyo

    2005-01-01

    To improve the equality of life, we must prevent the falls in both healthy elderly and patients with the cerebrovascular diseases. Wearable accelerometer was applied to monitor. In this paper, we introduced two different clinical applications. On is fall detector and the other is monitoring device for screening test. 1) We have developed body-worn accelerometer with data loggers and monitored the daily of life in patient with Parkinson disease. The patients wore the device and monitored falls while walking and standing. As a result, we could obtain fall times for a long period. 2) The ability of walking and standing have been evaluated by Timed up & go test. We used telemetry with accelerometer. The stability of walking could be evaluated by the acceleration signals. The simple body-won device can be useful for fall study.

  18. Dual-Element Tunneling Accelerometer

    NASA Technical Reports Server (NTRS)

    Kaiser, William J.; Kenny, Thomas W.; Rockstad, Howard K.; Reynolds, Joseph K.

    1994-01-01

    Improved micromachined tunneling accelerometer contains two deflecting transducer elements: One an elastically supported proof mass having relatively low resonant frequency; other cantilever tunneling transducer that tracks displacement of proof mass and has relatively high resonant frequency ({sup a} 10 kHz). Deflection voltage generated by circuit like described in "Wideband Feedback Circuit for Tunneling Sensor" (NPO-18866). Accelerometers of this type suited for underwater acoustic measurements, detecting vibrations associated with malfunctions in vehicles, detecting seismic signals, monitoring and controlling vibrations in structures, and other applications.

  19. Accelerometer having integral fault null

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1995-01-01

    An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.

  20. An Ultra-Low Voltage Analog Front End for Strain Gauge Sensory System Application in 0.18µm CMOS

    NASA Astrophysics Data System (ADS)

    Edward, Alexander; Chan, Pak Kwong

    This paper presents analysis and design of a new ultra-low voltage analog front end (AFE) dedicated to strain sensor applications. The AFE, designed in 0.18µm CMOS process, features a chopper-stabilized instrumentation amplifier (IA), a balanced active MOSFET-C 2nd order low pass filter (LPF), a clock generator and a voltage booster which operate at supply voltage (Vdd) of 0.6V. The designed IA achieves 30dB of closed-loop gain, 101dB of common-mode rejection ratio (CMRR) at 50Hz, 80dB of power-supply rejection ratio (PSRR) at 50Hz, thermal noise floor of 53.4 nV/√Hz, current consumption of 14µA, and noise efficiency factor (NEF) of 9.7. The high CMRR and rail-to-rail output swing capability is attributed to a new low voltage realization of the active-bootstrapped technique using a pseudo-differential gain-boosting operational transconductance amplifier (OTA) and proposed current-driven bulk (CDB) biasing technique. An output capacitor-less low-dropout regulator (LDO), with a new fast start-up LPF technique, is used to regulate this 0.6V supply from a 0.8-1.0V energy harvesting power source. It achieves power supply rejection (PSR) of 42dB at frequency of 1MHz. A cascode compensated pseudo differential amplifier is used as the filter's building block for low power design. The filter's single-ended-to-balanced converter is implemented using a new low voltage amplifier with two-stage common-mode cancellation. The overall AFE was simulated to have 65.6dB of signal-to-noise ratio (SNR), total harmonic distortion (THD) of less than 0.9% for a 100Hz sinusoidal maximum input signal, bandwidth of 2kHz, and power consumption of 51.2µW. Spectre RF simulations were performed to validate the design using BSIM3V3 transistor models provided by GLOBALFOUNDRIES 0.18µm CMOS process.

  1. Multiple-stage integrating accelerometer

    DOEpatents

    Devaney, Howard F.

    1986-01-01

    An accelerometer assembly is provided for use in activating a switch in response to multiple acceleration pulses in series. The accelerometer includes a housing forming a chamber. An inertial mass or piston is slidably disposed in the chamber and spring biased toward a first or reset position. A damping system is also provided to damp piston movement in response to first and subsequent acceleration pulses. Additionally, a cam, including a Z-shaped slot, and cooperating follower pin slidably received therein are mounted to the piston and the housing. The middle or cross-over leg of the Z-shaped slot cooperates with the follower pin to block or limit piston movement and prevent switch activation in response to a lone acceleration pulse. The switch of the assembly is only activated after two or more separate acceleration pulses are sensed and the piston reaches the end of the chamber opposite the reset position.

  2. Multiple-stage integrating accelerometer

    DOEpatents

    Devaney, H.F.

    1984-06-27

    An accelerometer assembly is provided for use in activating a switch in response to multiple acceleration pulses in series. The accelerometer includes a housing forming a chamber. An inertial mass or piston is slidably disposed in the chamber and spring biased toward a first or reset position. A damping system is also provided to damp piston movement in response to first and subsequent acceleration pulses. Additionally, a cam, including a Z-shaped slot, and cooperating follower pin slidably received therein are mounted to the piston and the housing. The middle or cross-over leg of the Z-shaped slot cooperates with the follower pin to block or limit piston movement and prevent switch activation in response to a lone acceleration pulse. The switch of the assembly is only activated after two or more separate acceleration pulses are sensed and the piston reaches the end of the chamber opposite the reset position.

  3. Aging gauge

    DOEpatents

    Betts, Robert E.; Crawford, John F.

    1989-01-01

    An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.

  4. Aging gauge

    DOEpatents

    Betts, Robert E.; Crawford, John F.

    1989-04-04

    An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.

  5. Speech activity detection using accelerometer.

    PubMed

    Matic, Aleksandar; Osmani, Venet; Mayora, Oscar

    2012-01-01

    The level of social activity is linked to the overall wellbeing and to various disorders, including stress. In this regard, a myriad of automatic solutions for monitoring social interactions have been proposed, usually including audio data analysis. Such approaches often face legal and ethical issues and they may also raise privacy concerns in monitored subjects thus affecting their natural behaviour. In this paper we present an accelerometer-based speech detection which does not require capturing sensitive data while being an easily applicable and a cost-effective solution.

  6. Superconducting six-axis accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  7. The development of an optical fiber accelerometer

    NASA Astrophysics Data System (ADS)

    Casalnuovo, S. A.; Sleefe, G. E.; James, C. E.

    1992-01-01

    We describe the design and operation of an optical fiber accelerometer intended for environments inhospitable to electronic components. An overview of the device is presented along with descriptions of the optical, electronic, and mechanical components. The performance of the current prototype is equivalent to state of the art piezoelectric accelerometers. Improvements to the current design are discussed.

  8. Display-And-Alarm Circuit For Accelerometer

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Compact accelerometer assembly consists of commercial accelerometer retrofit with display-and-alarm circuit. Provides simple means for technician attending machine to monitor vibrations. Also simpifies automatic safety shutdown by providing local alarm or shutdown signal when vibration exceeds preset level.

  9. Interinstrument Reliability of the RT3 Accelerometer

    ERIC Educational Resources Information Center

    Reneman, Michiel

    2010-01-01

    The objective of this study was to assess the interinstrument reliability of six RT3 accelerometers for measuring physical activities. Each of the six healthy participants, mean age 36.1 years (SD 9.4), carried six RT3 accelerometers (same type and same producer) simultaneously placed ventrally at the waist belt. The participants performed three…

  10. An electrostatically rebalanced micromechanical accelerometer

    NASA Astrophysics Data System (ADS)

    Boxenhorn, Burton; Greiff, Paul

    The design and test performance of a low-cost micromechanical accelerometer (MA) with integral electrodes, developed for use with the vibratory micromechanical gyro described by Boxenhorn and Greiff (1988), are reported. The MA is a monolithic Si device of size 300 x 600 microns and comprises a torsional pendulum with capacitive readout and an electrostatic torquer. Data from 360-deg sweep tests performed in a g-field are presented in tables and graphs and discussed in detail. Results include bandwidth about 1 Hz, scale-factor error 480 ppm, stable bias of 260 microg over 203 min, and temperature effect 2100 microg/C on bias and -123 ppm/C on scale factor.

  11. Technique for Determining Bridge Displacement Response Using MEMS Accelerometers.

    PubMed

    Sekiya, Hidehiko; Kimura, Kentaro; Miki, Chitoshi

    2016-01-01

    In bridge maintenance, particularly with regard to fatigue damage in steel bridges, it is important to determine the displacement response of the entire bridge under a live load as well as that of each member. Knowing the displacement response enables the identification of dynamic deformations that can cause stresses and ultimately lead to damage and thus also allows the undertaking of appropriate countermeasures. In theory, the displacement response can be calculated from the double integration of the measured acceleration. However, data measured by an accelerometer include measurement errors caused by the limitations of the analog-to-digital conversion process and sensor noise. These errors distort the double integration results. Furthermore, as bridges in service are constantly vibrating because of passing vehicles, estimating the boundary conditions for the numerical integration is difficult. To address these problems, this paper proposes a method for determining the displacement of a bridge in service from its acceleration based on its free vibration. To verify the effectiveness of the proposed method, field measurements were conducted using nine different accelerometers. Based on the results of these measurements, the proposed method was found to be highly accurate in comparison with the reference displacement obtained using a contact displacement gauge. PMID:26907287

  12. Technique for Determining Bridge Displacement Response Using MEMS Accelerometers

    PubMed Central

    Sekiya, Hidehiko; Kimura, Kentaro; Miki, Chitoshi

    2016-01-01

    In bridge maintenance, particularly with regard to fatigue damage in steel bridges, it is important to determine the displacement response of the entire bridge under a live load as well as that of each member. Knowing the displacement response enables the identification of dynamic deformations that can cause stresses and ultimately lead to damage and thus also allows the undertaking of appropriate countermeasures. In theory, the displacement response can be calculated from the double integration of the measured acceleration. However, data measured by an accelerometer include measurement errors caused by the limitations of the analog-to-digital conversion process and sensor noise. These errors distort the double integration results. Furthermore, as bridges in service are constantly vibrating because of passing vehicles, estimating the boundary conditions for the numerical integration is difficult. To address these problems, this paper proposes a method for determining the displacement of a bridge in service from its acceleration based on its free vibration. To verify the effectiveness of the proposed method, field measurements were conducted using nine different accelerometers. Based on the results of these measurements, the proposed method was found to be highly accurate in comparison with the reference displacement obtained using a contact displacement gauge. PMID:26907287

  13. Technique for Determining Bridge Displacement Response Using MEMS Accelerometers.

    PubMed

    Sekiya, Hidehiko; Kimura, Kentaro; Miki, Chitoshi

    2016-02-19

    In bridge maintenance, particularly with regard to fatigue damage in steel bridges, it is important to determine the displacement response of the entire bridge under a live load as well as that of each member. Knowing the displacement response enables the identification of dynamic deformations that can cause stresses and ultimately lead to damage and thus also allows the undertaking of appropriate countermeasures. In theory, the displacement response can be calculated from the double integration of the measured acceleration. However, data measured by an accelerometer include measurement errors caused by the limitations of the analog-to-digital conversion process and sensor noise. These errors distort the double integration results. Furthermore, as bridges in service are constantly vibrating because of passing vehicles, estimating the boundary conditions for the numerical integration is difficult. To address these problems, this paper proposes a method for determining the displacement of a bridge in service from its acceleration based on its free vibration. To verify the effectiveness of the proposed method, field measurements were conducted using nine different accelerometers. Based on the results of these measurements, the proposed method was found to be highly accurate in comparison with the reference displacement obtained using a contact displacement gauge.

  14. Hybridizing matter-wave and classical accelerometers

    SciTech Connect

    Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A.

    2014-10-06

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.

  15. GRADIO three-axis electrostatic accelerometers

    NASA Technical Reports Server (NTRS)

    Bernard, A.

    1987-01-01

    Dedicated accelerometers for satellite gravity gradiometry (GRADIO project) are described. The design profits from experience acquired with the CACTUS accelerometer payload of the satellite CASTOR-D5B and studies of highly accurate accelerometers for inertial navigation. The principle of operation, based on a three-axis electrostatic suspension of a cubic proof mass, is well suited for the measurements of accelerations less than 0.0001 m/sec/sec. A resolution better than 10 to the minus 11th power m/sec/sec/sq root Hz is expected.

  16. Single-Crystal Springs For Accelerometers

    NASA Technical Reports Server (NTRS)

    Vanzandt, Thomas R.; Kaiser, William J.; Kenny, Thomas W.

    1995-01-01

    Thermal noise reduced, enabling use of smaller proof masses. Spring-and-mass accelerometers in which springs made of single-crystal material being developed. In spring-and-mass accelerometer, proof mass attached to one end of spring, and acceleration of object at other end of spring measured in terms of deflection of spring, provided frequency spectrum of acceleration lies well below resonant frequency of spring-and-proof-mass system. Use of single-crystal spring materials instead of such polycrystalline spring materials as ordinary metals makes possible to construct highly sensitive accelerometers (including seismometers) with small proof masses.

  17. Hybridizing matter-wave and classical accelerometers

    NASA Astrophysics Data System (ADS)

    Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A.

    2014-10-01

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.

  18. High sensitivity cymbal-based accelerometer

    SciTech Connect

    Sun Chengliang; Lam, K.H.; Choy, S.H.; Chan, H.L. W.; Zhao, X.-Z.; Choy, C.L.

    2006-03-15

    A high sensitivity piezoelectric accelerometer has been developed by replacing the conventional piezoelectric rings with a cymbal transducer. The sensitivity of the cymbal-based accelerometers containing cymbal transducers with different endcap thicknesses and different seismic masses has been measured as a function of driving frequency. Due to the high d{sub 33}{sup '} coefficient of the cymbal transducers, the cymbal-based accelerometers have a high sensitivity of {approx}97 pC/ms{sup -2} with the amplitude rise of 2.85% (<1 dB) at one-third of the mounted resonance frequency (3.38 kHz). The effect of the seismic mass, the resonance frequency, and d{sub 33}{sup '} coefficient of the cymbal transducers on the sensitivity and the frequency range of the cymbal-based accelerometers are reported.

  19. Accelerometer Measurements in the Amusement Park.

    ERIC Educational Resources Information Center

    Reno, Charles; Speers, Robert R.

    1995-01-01

    Describes the use of the Texas Instruments' calculator-based laboratory (CBL) and Vernier accelerometer for measuring the vector sum of the gravitational field and the acceleration of amusement park rides. (JRH)

  20. Accelerometers for Precise GNSS Orbit Determination

    NASA Astrophysics Data System (ADS)

    Hugentobler, Urs; Schlicht, Anja

    2016-07-01

    The solar radiation pressure is the largest non-gravitational acceleration on GNSS satellites limiting the accuracy of precise orbit models. Other non-gravitational accelerations may be thrusts for station keeping maneuvers. Accelerometers measure the motion of a test mass that is shielded against satellite surface forces with respect to a cage that is rigidly connected to the satellite. They can thus be used to measure these difficult-to-model non-gravitational accelerations. Accelerometers however typically show correlated noise as well as a drift of the scaling factors converting measured voltages to accelerations. The scaling thus needs to be regularly calibrated. The presented study is based on several simulated scenarios including orbit determination of accelerometer-equipped Galileo satellites. It shall evaluate different options on how to accommodate accelerometer measurements in the orbit integrator, indicate to what extent currently available accelerometers can be used to improve the modeling of non-gravitational accelerations on GNSS satellites for precise orbit determination, and assess the necessary requirements for an accelerometer that can serve this purpose.

  1. Detecting gunshots using wearable accelerometers.

    PubMed

    Loeffler, Charles E

    2014-01-01

    Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm discharges.

  2. Variometric Tests for Accelerometer Sensors

    NASA Astrophysics Data System (ADS)

    D'Urso, M. G.; Barbati, N.

    2012-08-01

    We present a comprehensive review of several variometric tests recently carried out on a home-made measurement system composed of a tern of low-cost accelerometer sensors of MEMS (Micro-Electro-Mechanical Systems) type equipped with autonomous electric supply and wireless transmission. The most important parameters characterizing the systematic errors, i.e. bias, scale factor and thermal correction factor, have been evaluated by calibration tests based upon the so-called "six -positions" static test proposed by the IEEE 517 Standard. In this way the system optimal configuration has been defined in terms of data acquisition frequency and of scale factor. In addition to such tests, partly documented elsewhere, the results of some sensitivity tests on the influence of external environmental factors are also presented. With the aim of employing the proposed MEMS-based system as a device for monitoring the onset of slope landslides, some further tests have been carried out in order to measure the inclination of rigid objects which the sensors have been fixed to. The most significant results of the tests are illustrated and discussed.

  3. Optomechanical accelerometers and gravity gradiometers

    NASA Astrophysics Data System (ADS)

    Guzman, Felipe

    2016-04-01

    Compact optical cavities can be combined with highly stable mechanical oscillators to yield accelerometers and gravity gradiometers of exquisite sensitivity, which are also traceable to the SI. We have incorporated Fabry-Pérot fiber-optic micro-cavities onto low-loss monolithic fused-silica mechanical oscillators for gradiometry, acceleration, and force sensing. These devices consist solely of a glass oscillator and fiber optics to inject and read out the coherent optical signal, making them very simple and compatible with space applications. We have demonstrated displacement sensitivities better than 200 am/√Hz with these fiber-optic micro-sensors. This translates into broadband acceleration noise floors below 100 nano-g/√Hz over a 10kHz, when combined with compact high frequency mechanical oscillators. Similarly, we have developed monolithic oscillators with resonance frequencies near and below 10 Hz, yielding measurement sensitivities better than 10-9 m/s2. We will introduce our sensor concepts and present results on our fiber-optic displacement sensors and novel optomechanical devices.

  4. Detecting Gunshots Using Wearable Accelerometers

    PubMed Central

    Loeffler, Charles E.

    2014-01-01

    Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm discharges. PMID:25184416

  5. High G MEMS integrated accelerometer

    SciTech Connect

    Davies, B.R.; Barron, C.C.; Montague, S.; Smith, J.H.; Murray, J.R.; Christenson, T.R.; Bateman, V.I.

    1996-12-31

    This paper describes the design and implementation of a surface micromachined accelerometer for measuring very high levels of acceleration (up to 50,000 G). Both the mechanical and electronic portions of the sensor were integrated on a single substrate using a process developed at Sandia National Laboratories. In this process, the mechanical components of the sensor were first fabricated at the bottom of a trench etched into the water substrate. The trench was then filled with oxide and sealed to protect the mechanical components during subsequent microelectronics processing. The wafer surface was then planarized in preparation for CMOS processing using Chemical Mechanical Polishing (CMP). Next, the CMOS electronics were fabricated on areas of the wafer adjacent to the embedded structures. Finally, the mechanical structures were released and the sensor tested. The mechanical structure of the sensor consisted of two polysilicon plate masses suspended by multiple springs (cantilevered beam structures) over corresponding polysilicon plates fixed to the substrate to form two parallel plate capacitors. The first polysilicon plate mass was suspended using compliant springs (cantilever beams) and acted as a variable capacitor during sensor acceleration. The second polysilicon plate mass was suspended using very stiff springs and acted as a fixed capacitor during acceleration. Acceleration was measured by comparing the capacitance of the variable capacitor (compliant suspension) with the fixed capacitance (stiff suspension).

  6. Control Law Synthesis for Vertical Fin Buffeting Alleviation Using Strain Actuation

    NASA Technical Reports Server (NTRS)

    Nitzsche, F.; Zimcik, D. G.; Ryall, T. G.; Moses, R. W.; Henderson, D. A.

    1999-01-01

    In the present investigation, the results obtained during the ground test of a closed-loop control system conducted on a full-scale fighter to attenuate vertical fin buffeting response using strain actuation are presented. Two groups of actuators consisting of piezoelectric elements distributed over the structure were designed to achieve authority over the first and second modes of the vertical fin. The control laws were synthesized using the Linear Quadratic Gaussian (LQG) method for a time-invariant control system. Three different pairs of sensors including strain gauges and accelerometers at different locations were used to close the feedback loop. The results demonstrated that measurable reductions in the root-mean-square (RMS) values of the fin dynamic response identified by the strain transducer at the critical point for fatigue at the root were achieved under the most severe buffet condition. For less severe buffet conditions, reductions of up to 58% were achieved.

  7. ISA accelerometer and Moon science

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Peron, Roberto; Santoli, Francesco; Fiorenza, Emiliano; Lefevre, Carlo; Nozzoli, Sergio; Reale, Andrea

    2010-05-01

    In recent years the Moon has become again a target for exploration activities, as shown by many performed, ongoing or foreseen missions. The reason for this new wave are manifold. The knowledge of formation and evolution of the Moon to current state is important in order to trace the overall history of Solar System. An effective driving factor is the possibility of building a human settlement on its surface, with all the related issues of environment characterization, safety, resources, communication and navigation. Our natural satellite is also an important laboratory for fundamental physics: Lunar Laser Ranging is continuing to provide important data that constrain possible theories of gravitation. All these topics are providing stimulus and inspirations for new experiments. ISA (Italian Spring Accelerometer) can provide an important tool for lunar studies. Thanks to its structure (three one-dimensional sensors assembled in a composite structure) it works both in-orbit and on-ground, with the same configuration. It therefore can be used onboard a spacecraft, as a support to a radio science mission, and on the surface of the Moon, as a seismometer. The first option has been explorated in the context of MAGIA (Missione Altimetrica Gravimetrica geochImica lunAre), a proposal for an exploration mission with a noteworthy part dedicated to gravimetry and fundamental physics. The second option is candidate to be hosted on NASA ILN (International Lunar Network) and ESA First Lunar Lander. After a description of the instrument, both of them will be described and discussed, giving emphasis on the integration of the instrument with the other components of the respective experiments.

  8. CHAMP Tracking and Accelerometer Data Analysis Results

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Luthcke, S. B.; Rowlands, D. D.; Pavlis, D. E.; Colombo, O. L.; Ray, Richard D.; Thompson, B.; Nerem, R. S.; Williams, Teresa A.; Smith, David E. (Technical Monitor)

    2002-01-01

    The CHAMP (Challenging Minisatellite Payload) mission's unique combination of sensors and orbit configuration will enable unprecedented improvements in modeling and understanding the Earth's static gravity field and its temporal variations. CHAMP is the first of two missions (GRACE (Gravity Recovery and Climate Experiment) to be launched in the later part of '01) that combine a new generation of GPS (Global Positioning System) receivers, a high precision three axis accelerometer, and star cameras for the precision attitude determination. In order to isolate the gravity signal for science investigations, it is necessary to perform a detailed reduction and analysis of the GPS and SLR tracking data in conjunction with the accelerometer and attitude data. Precision orbit determination based on the GPS and SLR (Satellite Laser Ranging) tracking data will isolate the orbit perturbations, while the accelerometer data will be used to distinguish the surface forces from those due to the geopotential (static, and time varying). In preparation for the CHAMP and GRACE missions, extensive modifications have been made to NASA/GSFC's GEODYN orbit determination software to enable the simultaneous reduction of spacecraft tracking (e.g. GPS and SLR), three axis accelerometer and precise attitude data. Several weeks of CHAMP tracking and accelerometer data have been analyzed and the results will be presented. Precision orbit determination analysis based on tracking data alone in addition to results based on the simultaneous reduction of tracking and accelerometer data will be discussed. Results from a calibration of the accelerometer will be presented along with the results from various orbit determination strategies. Gravity field modeling status and plans will be discussed.

  9. Characterizing performance of ultra-sensitive accelerometers

    NASA Technical Reports Server (NTRS)

    Sebesta, Henry

    1990-01-01

    An overview is given of methodology and test results pertaining to the characterization of ultra sensitive accelerometers. Two issues are of primary concern. The terminology ultra sensitive accelerometer is used to imply instruments whose noise floors and resolution are at the state of the art. Hence, the typical approach of verifying an instrument's performance by measuring it with a yet higher quality instrument (or standard) is not practical. Secondly, it is difficult to find or create an environment with sufficiently low background acceleration. The typical laboratory acceleration levels will be at several orders of magnitude above the noise floor of the most sensitive accelerometers. Furthermore, this background must be treated as unknown since the best instrument available is the one to be tested. A test methodology was developed in which two or more like instruments are subjected to the same but unknown background acceleration. Appropriately selected spectral analysis techniques were used to separate the sensors' output spectra into coherent components and incoherent components. The coherent part corresponds to the background acceleration being measured by the sensors being tested. The incoherent part is attributed to sensor noise and data acquisition and processing noise. The method works well for estimating noise floors that are 40 to 50 dB below the motion applied to the test accelerometers. The accelerometers being tested are intended for use as feedback sensors in a system to actively stabilize an inertial guidance component test platform.

  10. Piezoelectric accelerometers for ultrahigh temperature application

    NASA Astrophysics Data System (ADS)

    Zhang, Shujun; Jiang, Xiaoning; Lapsley, Michael; Moses, Paul; Shrout, Thomas R.

    2010-01-01

    High temperature sensors are of major importance to aerospace and energy related industries. In this letter, a high temperature monolithic compression-mode piezoelectric accelerometer was fabricated using YCa4O(BO3)3 (YCOB) single crystals. The performance of the sensor was tested as function of temperature up to 1000 °C and over a frequency range of 100-600 Hz. The accelerometer prototype was found to possess sensitivity of 2.4±0.4 pC/g, across the measured temperature and frequency range, indicating a low temperature coefficient. Furthermore, the sensor exhibited good stability over an extended dwell time at 900 °C, demonstrating that YCOB piezoelectric accelerometers are promising candidates for high temperature sensing applications.

  11. Piezoelectric accelerometers for ultrahigh temperature application

    SciTech Connect

    Zhang Shujun; Moses, Paul; Shrout, Thomas R.; Jiang Xiaoning; Lapsley, Michael

    2010-01-04

    High temperature sensors are of major importance to aerospace and energy related industries. In this letter, a high temperature monolithic compression-mode piezoelectric accelerometer was fabricated using YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) single crystals. The performance of the sensor was tested as function of temperature up to 1000 deg. C and over a frequency range of 100-600 Hz. The accelerometer prototype was found to possess sensitivity of 2.4+-0.4 pC/g, across the measured temperature and frequency range, indicating a low temperature coefficient. Furthermore, the sensor exhibited good stability over an extended dwell time at 900 deg. C, demonstrating that YCOB piezoelectric accelerometers are promising candidates for high temperature sensing applications.

  12. Fiber optic accelerometer based on clamped beam

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Li, Fang

    2013-01-01

    In this paper a fiber optic accelerometer (FOA) based on camped beam is proposed. The clamped beam is used as the elastic element and a mass installed on the clamped beam is used as the inertial element. The accelerometer is based on a fiber optic Michelson interferometer and has a sensing arm and a reference arm. The optical fiber of the sensing arm is wrapped on the clamped beam and the mass, which are both cylinder shaped. The sensitivity of the FOA is analyzed based on the theory of elasticity; the frequency response is analyzed based on the theory of vibration. Experiment is carried out to test the performance of the fiber optic accelerometer. The experiment results show a high sensitivity and a flat frequency response within the low frequency range of 5-250 Hz, which agrees well with the theoretical result.

  13. Designing Electrostatic Accelerometers for Next Gravity Missions

    NASA Astrophysics Data System (ADS)

    Huynh, Phuong-Anh; Foulon, Bernard; Christophe, Bruno; Liorzou, Françoise; Boulanger, Damien; Lebat, Vincent

    2016-04-01

    Square cuboid electrostatic accelerometers sensor core have been used in various combinations in recent and still flying missions (CHAMP, GRACE, GOCE). ONERA is now in the process of delivering such accelerometers for the GRACE Follow-On mission. The goal is to demonstrate the performance benefits of an interferometry laser ranging method for future low-low satellite to satellite missions. The electrostatic accelerometer becoming thus the system main performance limiter, we propose for future missions a new symmetry which will allow for three ultrasensitive axes instead of two. This implies no performance ground testing, as the now cubic proof-mass will be too heavy, but only free fall tests in catapult mode, taking advantage of the additional microgravity testing time offered by the updated ZARM tower. The updated mission will be in better adequacy with the requirements of a next generation of smaller and drag compensated micro-satellites. In addition to the measurement of the surface forces exerted on the spacecraft by the atmospheric drag and by radiation pressures, the accelerometer will become a major part of the attitude and orbit control system by acting as drag free sensor and by accurately measuring the angular accelerations. ONERA also works on a hybridization of the electrostatic accelerometer with an atomic interferometer to take advantage of the absolute nature of the atomic interferometer acceleration measurement and its great accuracy in the [5-100] mHz bandwidth. After a description of the improvement of the GRACE-FO accelerometer with respect to the still in-orbit previous models and a status of its development, the presentation will describe the new cubic configuration and how its operations and performances can be verified in the Bremen drop tower.

  14. Passive Accelerometer System Measurements on MIR

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1997-01-01

    The Passive Accelerometer System (PAS) is a simple moving ball accelerometer capable of measuring the small magnitude steady relative acceleration that occurs in a low earth orbit spacecraft due to atmospheric drag and the earth's gravity gradient. The acceleration is measured by recording the average velocity of the spherical ball over a suitable time increment. A modified form of Stokes law is used to convert the average velocity into an acceleration. PAS was used to measure acceleration on the MIR space station and on the first United States Microgravity Laboratory (USML-1). The PAS measurement on MIR revealed remarkably low acceleration levels in the SPEKTR module.

  15. A Self-Diagnostic System for the M6 Accelerometer

    NASA Technical Reports Server (NTRS)

    Flanagan, Patrick M.; Lekki, John

    2001-01-01

    The design of a Self-Diagnostic (SD) accelerometer system for the Space Shuttle Main Engine is presented. This retrofit system connects diagnostic electronic hardware and software to the current M6 accelerometer system. This paper discusses the general operation of the M6 accelerometer SD system and procedures for developing and evaluating the SD system. Signal processing techniques using M6 accelerometer diagnostic data are explained. Test results include diagnostic data responding to changing ambient temperature, mounting torque and base mounting impedance.

  16. Dual Accelerometer Usage Strategy for Onboard Space Navigation

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; D'Souza, Chris

    2012-01-01

    This work introduces a dual accelerometer usage strategy for onboard space navigation. In the proposed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it is used to estimate its errors otherwise. Numerical examples and comparison to other accelerometer usage schemes are presented to validate the proposed approach.

  17. Three-axis MEMS Accelerometer for Structural Inspection

    NASA Astrophysics Data System (ADS)

    Barbin, E.; Koleda, A.; Nesterenko, T.; Vtorushin, S.

    2016-01-01

    Microelectromechanical system accelerometers are widely used for metrological measurements of acceleration, tilt, vibration, and shock in moving objects. The paper presents the analysis of MEMS accelerometer that can be used for the structural inspection. ANSYS Multiphysics platform is used to simulate the behavior of MEMS accelerometer by employing a finite element model and MATLAB/Simulink tools for modeling nonlinear dynamic systems.

  18. Assessment of Differing Definitions of Accelerometer Nonwear Time

    ERIC Educational Resources Information Center

    Evenson, Kelly R.; Terry, James W., Jr.

    2009-01-01

    Measuring physical activity with objective tools, such as accelerometers, is becoming more common. Accelerometers measure acceleration multiple times within a given frequency and summarize this as a count over a pre-specified time period or epoch. The resultant count represents acceleration over the epoch length. Accelerometers eliminate biases…

  19. Low-Cost Accelerometers for Physics Experiments

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Straulino, Samuele

    2007-01-01

    The implementation of a modern game-console controller as a data acquisition interface for physics experiments is discussed. The investigated controller is equipped with three perpendicular accelerometers and a built-in infrared camera to evaluate its own relative position. A pendulum experiment is realized as a demonstration of the proposed…

  20. Smartphone MEMS accelerometers and earthquake early warning

    NASA Astrophysics Data System (ADS)

    Kong, Q.; Allen, R. M.; Schreier, L.; Kwon, Y. W.

    2015-12-01

    The low cost MEMS accelerometers in the smartphones are attracting more and more attentions from the science community due to the vast number and potential applications in various areas. We are using the accelerometers inside the smartphones to detect the earthquakes. We did shake table tests to show these accelerometers are also suitable to record large shakings caused by earthquakes. We developed an android app - MyShake, which can even distinguish earthquake movements from daily human activities from the recordings recorded by the accelerometers in personal smartphones and upload trigger information/waveform to our server for further analysis. The data from these smartphones forms a unique datasets for seismological applications, such as earthquake early warning. In this talk I will layout the method we used to recognize earthquake-like movement from single smartphone, and the overview of the whole system that harness the information from a network of smartphones for rapid earthquake detection. This type of system can be easily deployed and scaled up around the global and provides additional insights of the earthquake hazards.

  1. Intermonitor variability of GT3X accelerometer.

    PubMed

    Santos-Lozano, A; Torres-Luque, G; Marín, P J; Ruiz, J R; Lucia, A; Garatachea, N

    2012-12-01

    The main purpose of this study was to assess the inter-monitor reliability of the tri-axial GT3X Actigraph accelerometer over a range of physical activities (PA). This device collects motion data on each of the vertical (Y), horizontal right-left (X), and horizontal front-back (Z) axes and also calculates the vector summed value √X(2)+Y(2)+Z(2) known as 'vector magnitude' (VM). 8 GT3X accelerometers were worn at the same time by the same participant. Accelerometers were placed back-to-front, all facing forward and in sets of 4 securely taped together, attached to a belt and allocating each block above either left or right hip at waist level. Inter-monitor reliability was assessed during 6 conditions: rest, walking (4 and 6 km·h(-1)), running (8 and 10 km·h(-1)) and repeated sit-to-stand (40 times·min(-1)). The intra-class correlation coefficients were high for X, Y and Z axes (i.e., all ≥ 0.925) and for VM (≥ 0.946). In conclusion, we found good inter-instrument reliability of the GT3X accelerometer across all planes, yet our results also suggest that the X and Z axes do not provide further benefits over the 'traditional' Y-axis to assess the movement in typical PA.

  2. Micro-Accelerometers Monitor Equipment Health

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Glenn Research Center awarded SBIR funding to Ann Arbor, Michigan-based Evigia Systems to develop a miniaturized accelerometer to account for gravitational effects in space experiments. The company has gone on to implement the technology in its suite of prognostic sensors, which are used to monitor the integrity of industrial machinery. As a result, five employees have been hired.

  3. Miniature piezoelectric triaxial accelerometer measures cranial accelerations

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.; Rogallo, V. L.

    1966-01-01

    Tiny triaxial accelerometer whose sensing elements are piezoelectric ceramic beams measures human cranial accelerations when a subject is exposed to a centrifuge or other simulators of g environments. This device could be considered for application in dental, medical, and automotive safety research.

  4. A general procedure for estimating dynamic displacements using strain measurements and operational modal analysis

    NASA Astrophysics Data System (ADS)

    Skafte, Anders; Aenlle, Manuel L.; Brincker, Rune

    2016-02-01

    Measurement systems are being installed in more and more civil structures with the purpose of monitoring the general dynamic behavior of the structure. The instrumentation is typically done with accelerometers, where experimental frequencies and mode shapes can be identified using modal analysis and used in health monitoring algorithms. But the use of accelerometers is not suitable for all structures. Structures like wind turbine blades and wings on airplanes can be exposed to lightning, which can cause the measurement systems to fail. Structures like these are often equipped with fiber sensors measuring the in-plane deformation. This paper proposes a method in which the displacement mode shapes and responses can be predicted using only strain measurements. The method relies on the newly discovered principle of local correspondence, which states that each experimental mode can be expressed as a unique subset of finite element modes. In this paper the technique is further developed to predict the mode shapes in different states of the structure. Once an estimate of the modes is found, responses can be predicted using the superposition of the modal coordinates weighted by the mode shapes. The method is validated with experimental tests on a scaled model of a two-span bridge installed with strain gauges. Random load was applied to simulate a civil structure under operating condition, and strain mode shapes were identified using operational modal analysis.

  5. The Kirchhoff gauge

    SciTech Connect

    Heras, Jose A. . E-mail: heras@phys.lsu.edu

    2006-05-15

    We discuss the Kirchhoff gauge in classical electrodynamics. In this gauge, the scalar potential satisfies an elliptical equation and the vector potential satisfies a wave equation with a nonlocal source. We find the solutions of both equations and show that, despite of the unphysical character of the scalar potential, the electric and magnetic fields obtained from the scalar and vector potentials are given by their well-known retarded expressions. We note that the Kirchhoff gauge pertains to the class of gauges known as the velocity gauge.

  6. MGRA: Motion Gesture Recognition via Accelerometer

    PubMed Central

    Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen

    2016-01-01

    Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods. PMID:27089336

  7. Characterization of accelerometer mountings in shock environments

    SciTech Connect

    Boatman, V.I.; Solomon, O.M. Jr.

    1986-08-01

    This report describes the shock test characterization of four accelerometer mounting techniques which are: adiprene and wax, polysulfide rubber and wax, restrained adiprene, and hard mount. The mountings have all been used in field tests, and the shock testing provides some simulation of the field test environments. The characteristics of these mountings are analyzed in the time-domain and in the frequency-domain and are compared to the response of a reference accelerometer at two different shock levels, approximately 2 kg and 7 kg. While soft mounting techniques can be used to guarantee acceleratometers survival in severe mechanical environments, this report documents the tested mounting materials to be highly nonlinear. These nonlinearities result in significant data distortion at frequencies above a few hundred hertz.

  8. Multi-Axis Accelerometer Calibration System

    NASA Technical Reports Server (NTRS)

    Finley, Tom; Parker, Peter

    2010-01-01

    A low-cost, portable, and simplified system has been developed that is suitable for in-situ calibration and/or evaluation of multi-axis inertial measurement instruments. This system overcomes facility restrictions and maintains or improves the calibration quality for users of accelerometer-based instruments with applications in avionics, experimental wind tunnel research, and force balance calibration applications. The apparatus quickly and easily positions a multi-axis accelerometer system into a precisely known orientation suitable for in-situ quality checks and calibration. In addition, the system incorporates powerful and sophisticated statistical methods, known as response surface methodology and statistical quality control. These methods improve calibration quality, reduce calibration time, and allow for increased calibration frequency, which enables the monitoring of instrument stability over time.

  9. MGRA: Motion Gesture Recognition via Accelerometer.

    PubMed

    Hong, Feng; You, Shujuan; Wei, Meiyu; Zhang, Yongtuo; Guo, Zhongwen

    2016-01-01

    Accelerometers have been widely embedded in most current mobile devices, enabling easy and intuitive operations. This paper proposes a Motion Gesture Recognition system (MGRA) based on accelerometer data only, which is entirely implemented on mobile devices and can provide users with real-time interactions. A robust and unique feature set is enumerated through the time domain, the frequency domain and singular value decomposition analysis using our motion gesture set containing 11,110 traces. The best feature vector for classification is selected, taking both static and mobile scenarios into consideration. MGRA exploits support vector machine as the classifier with the best feature vector. Evaluations confirm that MGRA can accommodate a broad set of gesture variations within each class, including execution time, amplitude and non-gestural movement. Extensive evaluations confirm that MGRA achieves higher accuracy under both static and mobile scenarios and costs less computation time and energy on an LG Nexus 5 than previous methods. PMID:27089336

  10. Accurate Telescope Mount Positioning with MEMS Accelerometers

    NASA Astrophysics Data System (ADS)

    Mészáros, L.; Jaskó, A.; Pál, A.; Csépány, G.

    2014-08-01

    This paper describes the advantages and challenges of applying microelectromechanical accelerometer systems (MEMS accelerometers) in order to attain precise, accurate, and stateless positioning of telescope mounts. This provides a completely independent method from other forms of electronic, optical, mechanical or magnetic feedback or real-time astrometry. Our goal is to reach the subarcminute range which is considerably smaller than the field-of-view of conventional imaging telescope systems. Here we present how this subarcminute accuracy can be achieved with very cheap MEMS sensors and we also detail how our procedures can be extended in order to attain even finer measurements. In addition, our paper discusses how can a complete system design be implemented in order to be a part of a telescope control system.

  11. The MESA accelerometer for space application

    NASA Technical Reports Server (NTRS)

    Lange, William G.; Dietrich, Robert W.

    1990-01-01

    An electrostatically suspended proof mass in the Miniature Electrostatic Accelerometer (MESA) is used to measure acceleration in the submicro-g range. Since no fixed mechanical suspension (such as springs or strings) is used, the constrainment scaling can be changed electrically after being placed in orbit. A single proof mass can sense accelerations in three axes simultaneously. It can survive high-g pyrotechnic-generated shocks and launch environments while unpowered.

  12. The GRADIO accelerometer - Design and development status

    NASA Astrophysics Data System (ADS)

    Bernard, A.; Touboul, P.

    The concept of Satellite Gravity Gradiometry based on differential microaccelerometry has been proposed by ONERA in the early eighties. Since 1986, an important effort is devoted to the development of the GRADIO accelerometers. Their configuration has been optimized for the ARISTOTELES mission with the objective of 0.01 Eotvos resolution for an integrating time of 4 s. The achieved resolution, better than 10 exp -9 G, is limited by the actual stability of alignments on the testing equipment.

  13. Micromachined accelerometer design, modeling and validation

    SciTech Connect

    Davies, B.R.; Bateman, V.I.; Brown, F.A.; Montague, S.; Murray, J.R.; Rey, D.; Smith, J.H.

    1998-04-01

    Micromachining technologies enable the development of low-cost devices capable of sensing motion in a reliable and accurate manner. The development of various surface micromachined accelerometers and gyroscopes to sense motion is an ongoing activity at Sandia National Laboratories. In addition, Sandia has developed a fabrication process for integrating both the micromechanical structures and microelectronics circuitry of Micro-Electro-Mechanical Systems (MEMS) on the same chip. This integrated surface micromachining process provides substantial performance and reliability advantages in the development of MEMS accelerometers and gyros. A Sandia MEMS team developed a single-axis, micromachined silicon accelerometer capable of surviving and measuring very high accelerations, up to 50,000 times the acceleration due to gravity or 50 k-G (actually measured to 46,000 G). The Sandia integrated surface micromachining process was selected for fabrication of the sensor due to the extreme measurement sensitivity potential associated with integrated microelectronics. Measurement electronics capable of measuring at to Farad (10{sup {minus}18} Farad) changes in capacitance were required due to the very small accelerometer proof mass (< 200 {times} 10{sup {minus}9} gram) used in this surface micromachining process. The small proof mass corresponded to small sensor deflections which in turn required very sensitive electronics to enable accurate acceleration measurement over a range of 1 to 50 k-G. A prototype sensor, based on a suspended plate mass configuration, was developed and the details of the design, modeling, and validation of the device will be presented in this paper. The device was analyzed using both conventional lumped parameter modeling techniques and finite element analysis tools. The device was tested and performed well over its design range.

  14. High performance MEMS accelerometers for concrete SHM applications and comparison with COTS accelerometers

    NASA Astrophysics Data System (ADS)

    Kavitha, S.; Joseph Daniel, R.; Sumangala, K.

    2016-01-01

    Accelerometers used for civil and huge mechanical structural health monitoring intend to measure the shift in the natural frequency of the monitored structures (<100 Hz) and such sensors should have large sensitivity and extremely low noise floor. Sensitivity of accelerometers is inversely proportional to the frequency squared. Commercial MEMS (Micro Electro-Mechanical System) accelerometers that are generally designed for large bandwidth (e.g 25 kHz in ADXL150) have poor sensor level sensitivity and therefore uses complex signal conditioning electronics to achieve large sensitivity and low noise floor which in turn results in higher cost. In this work, an attempt has been made to design MEMS capacitive and piezoresistive accelerometers for smaller bandwidth using IntelliSuite and CoventorWare MEMS tools respectively. The various performance metrics have been obtained using simulation experiments and the results show that these sensors have excellent voltage sensitivity, noise performance and high resolution at sensor level and are even superior to commercial MEMS accelerometers.

  15. Accelerometer Data Analysis and Presentation Techniques

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; Moskowitz, Milton E.; Reckart, Timothy

    1997-01-01

    The NASA Lewis Research Center's Principal Investigator Microgravity Services project analyzes Orbital Acceleration Research Experiment and Space Acceleration Measurement System data for principal investigators of microgravity experiments. Principal investigators need a thorough understanding of data analysis techniques so that they can request appropriate analyses to best interpret accelerometer data. Accelerometer data sampling and filtering is introduced along with the related topics of resolution and aliasing. Specific information about the Orbital Acceleration Research Experiment and Space Acceleration Measurement System data sampling and filtering is given. Time domain data analysis techniques are discussed and example environment interpretations are made using plots of acceleration versus time, interval average acceleration versus time, interval root-mean-square acceleration versus time, trimmean acceleration versus time, quasi-steady three dimensional histograms, and prediction of quasi-steady levels at different locations. An introduction to Fourier transform theory and windowing is provided along with specific analysis techniques and data interpretations. The frequency domain analyses discussed are power spectral density versus frequency, cumulative root-mean-square acceleration versus frequency, root-mean-square acceleration versus frequency, one-third octave band root-mean-square acceleration versus frequency, and power spectral density versus frequency versus time (spectrogram). Instructions for accessing NASA Lewis Research Center accelerometer data and related information using the internet are provided.

  16. NASA Ultra-Sensitive Miniature Accelerometer

    NASA Technical Reports Server (NTRS)

    Zavracky, Paul M.; Hartley, Frank T.

    1994-01-01

    Using micro-machined silicon technology, an ultra-sensitive miniature acce.,rometer can be constructed which meets the requirements for microgravity experiments in the space environment.Such an accelerometer will have a full scale sensitivity of 1C2 g a resolution of lC8 g, low cross axis sensitivity, and low temperature sensitivity. Mass of the device is approximately five grams and its footprint is 2 cm x 2 cm. Innovative features of the accelerometer, which are patented, are: electrostatic caging to withstand handling shock up to 150 g, in-situ calibration, in situ performance characterization, and both static and dynamic compensation. The transducer operates on a force balance principle wherein the displacement of the proof mass is monitored by measuring tunneling electron current flow between a conductive tip, and a fixed platen. The four major parts of the accelerometer are tip die, incorporating the tunneling tip and four field plates for controlling pitch and roll of the proof mass; two proof mass dies, attached to the surrounding frame by sets of four leg" springs; and a force plate die. The four parts are fuse-bonded into a complete assembly. External electrical connections are made at bond pads on the front surface of the force plate die. Materials and processes used in the construction of the transducer are compatible with volume production.

  17. MEMS accelerometers in accurate mount positioning systems

    NASA Astrophysics Data System (ADS)

    Mészáros, László; Pál, András.; Jaskó, Attila

    2014-07-01

    In order to attain precise, accurate and stateless positioning of telescope mounts we apply microelectromechanical accelerometer systems (also known as MEMS accelerometers). In common practice, feedback from the mount position is provided by electronic, optical or magneto-mechanical systems or via real-time astrometric solution based on the acquired images. Hence, MEMS-based systems are completely independent from these mechanisms. Our goal is to investigate the advantages and challenges of applying such devices and to reach the sub-arcminute range { that is well smaller than the field-of-view of conventional imaging telescope systems. We present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors. Basically, these sensors yield raw output within an accuracy of a few degrees. We show what kind of calibration procedures could exploit spherical and cylindrical constraints between accelerometer output channels in order to achieve the previously mentioned accuracy level. We also demonstrate how can our implementation be inserted in a telescope control system. Although this attainable precision is less than both the resolution of telescope mount drive mechanics and the accuracy of astrometric solutions, the independent nature of attitude determination could significantly increase the reliability of autonomous or remotely operated astronomical observations.

  18. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  19. A biomimetic accelerometer inspired by the cricket's clavate hair.

    PubMed

    Droogendijk, H; de Boer, M J; Sanders, R G P; Krijnen, G J M

    2014-08-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model is presented for the design of the accelerometer, and guidelines are derived to reduce responsivity due to flow-induced contributions to the accelerometer's output. Measurements show that this microelectromechanical systems (MEMS) hair-based accelerometer has a resonance frequency of 320 Hz, a detection threshold of 0.10 ms(-2) and a dynamic range of more than 35 dB. The accelerometer exhibits a clear directional response to external accelerations and a low responsivity to airflow. Further, the accelerometer's physical limits with respect to noise levels are addressed and the possibility for short-term adaptation of the sensor to the environment is discussed. PMID:24920115

  20. A biomimetic accelerometer inspired by the cricket's clavate hair

    PubMed Central

    Droogendijk, H.; de Boer, M. J.; Sanders, R. G. P.; Krijnen, G. J. M.

    2014-01-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model is presented for the design of the accelerometer, and guidelines are derived to reduce responsivity due to flow-induced contributions to the accelerometer's output. Measurements show that this microelectromechanical systems (MEMS) hair-based accelerometer has a resonance frequency of 320 Hz, a detection threshold of 0.10 ms−2 and a dynamic range of more than 35 dB. The accelerometer exhibits a clear directional response to external accelerations and a low responsivity to airflow. Further, the accelerometer's physical limits with respect to noise levels are addressed and the possibility for short-term adaptation of the sensor to the environment is discussed. PMID:24920115

  1. A new accelerometer recording system for shuttle use

    NASA Technical Reports Server (NTRS)

    Lichtenberg, Byron

    1990-01-01

    Microgravity investigators are interested in enhancing the capabilities and improving the information return from accelerometers used in microgravity research. In addition to improving the accelerometer sensor, efforts should be directed towards using recent advances in microprocessor technology and system design techniques to improve sensor calibration and temperature compensation, online data display and analysis, and data reduction and information storage. Results from the above areas of investigation should be combined in an integrated design for a spaceflight microgravity accelerometer package.

  2. Plastic latching accelerometer based on bistable compliant mechanisms

    NASA Astrophysics Data System (ADS)

    Hansen, B. J.; Carron, C. J.; Jensen, B. D.; Hawkins, A. R.; Schultz, S. M.

    2007-10-01

    This paper presents the design, fabrication, and testing of a miniature latching accelerometer that does not require electrical power. Latching is attained by using a bistable compliant mechanism that switches from one mechanical position to another when the force on the accelerometer exceeds a threshold value. Accelerometers were fabricated by laser cutting the compliant mechanism switch out of both ABS and Delrin plastic sheets. Packaging consisted of gluing the single compliant layer to a supporting substrate. The switching thresholds of the accelerometers were varied from 10g to 800g by varying the surface area of the free moving section between 100 and 500 mm2.

  3. A three-axis ultrasensitive accelerometer for space

    NASA Astrophysics Data System (ADS)

    Bernard, A.

    A three-axis ultrasensitive accelerometer ASTRE (Accelerometre Spatial Triaxial Electrostatique) is a simplified version of the GRADIO accelerometer designed for the ARISTOTELES mission, which operates by measuring the force provided by a three-axis electrostatic suspension of the proof-mass. It covers the g-spectrum from 10 exp -8 to 10 exp -4 in the frequency range dc to 5 Hz. A dedicated test bench was developed in order to preserve the accelerometer from the seismic noise. The paper presents the performance parameters of the ASTRE accelerometer and some of the design schemes.

  4. Design and Implementation of a Micromechanical Silicon Resonant Accelerometer

    PubMed Central

    Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing

    2013-01-01

    The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C. PMID:24256978

  5. Measurement of sensor axis misalignment in fibre-optic accelerometers

    NASA Astrophysics Data System (ADS)

    DeFreitas, J. M.; Wooler, J. P. F.; Nash, P. J.

    2006-07-01

    A method is described for the measurement of sensor axis misalignment relative to its mounting can for a fibre-optic accelerometer. The accelerometers investigated were based on the common cylindrical compliant mandrel design and mounted accelerometers showed typical angular misalignments of 2°. The influence of the misalignment on cross-axis sensitivity is also described for accelerometers orthogonally mounted in a three-component package. This paper was presented at the 13th International Conference on Sensors and Their Applications, held in Chatham, Kent, on 6-7 September 2005.

  6. Design and implementation of a micromechanical silicon resonant accelerometer.

    PubMed

    Huang, Libin; Yang, Hui; Gao, Yang; Zhao, Liye; Liang, Jinxing

    2013-01-01

    The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG) technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C.

  7. Microcantilevers with embedded accelerometers for dynamic atomic force microscopy

    SciTech Connect

    Shaik, Nurul Huda; Raman, Arvind; Reifenberger, Ronald G.

    2014-02-24

    The measurement of the intermittent interaction between an oscillating nanotip and the sample surface is a key challenge in dynamic Atomic Force Microscopy (AFM). Accelerometers integrated onto AFM cantilevers can directly measure this interaction with minimal cantilever modification but have been difficult to realize. Here, we design and fabricate high frequency bandwidth accelerometers on AFM cantilevers to directly measure the tip acceleration in commercial AFM systems. We demonstrate a simple way of calibrating such accelerometers and present experiments using amplitude modulated AFM on freshly cleaved mica samples in water to study the response of the accelerometer.

  8. A high-resolution fiber optic accelerometer based on intracavity phase-generated carrier (PGC) modulation

    NASA Astrophysics Data System (ADS)

    Lin, Qiao; Chen, Liuhua; Li, Shu; Wu, X.

    2011-01-01

    A compact-size fiber optic accelerometer was designed to achieve both high resolution and wide dynamic range concurrently. An optical cavity, with its length modulated by a piezoelectric oscillator at audio frequency, is utilized to resolve the nanometer-level displacement of a silicon micro-mirror which serves as an inertial mass for acceleration sensing. Strain analysis of the proof-mass flexure structure by Cosmosworks was carried out to calculate responsivity and resonance frequency for a comparison with experimental measurement. The responsivity below the structural resonance frequency of 160 Hz reaches 36 dB re 1 rad/g. Performance measurement demonstrated that the accelerometer was able to resolve an acceleration of 48 ng Hz-1/2 with a dynamic range of 2 × 107.

  9. The GRADIO accelerometer: Design and development status

    NASA Astrophysics Data System (ADS)

    Bernard, Alain; Touboul, M. P.

    1991-12-01

    The concept of Satellite Gravity Gradiometry (SGG) based on differential microaccelerometry as proposed in the early eighties is summarized. Work devoted to the development of the GRADIO accelerometers is described. The configuration was optimized for the Aristoteles mission with the objective of increasing resolution for an integrating time of 4 s. Thanks to the selected three axis configuration, very sensitive differential tests were carried out between two very representative laboratory models, in directions perpendicular to gravity. The resolution of these tests, limited by the actual stability of alignments of the testing equipment is described.

  10. Rain Gauges Handbook

    SciTech Connect

    Bartholomew, M. J.

    2016-01-01

    To improve the quantitative description of precipitation processes in climate models, the Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed rain gauges located near disdrometers (DISD and VDIS data streams). This handbook deals specifically with the rain gauges that make the observations for the RAIN data stream. Other precipitation observations are made by the surface meteorology instrument suite (i.e., MET data stream).

  11. Calibrating Accelerometers Using an Electromagnetic Launcher

    SciTech Connect

    Erik Timpson

    2012-05-13

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering a desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  12. Classification of sporting activities using smartphone accelerometers.

    PubMed

    Mitchell, Edmond; Monaghan, David; O'Connor, Noel E

    2013-04-19

    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today's society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach.

  13. Assessment of gait kinetics using triaxial accelerometers.

    PubMed

    Fortune, Emma; Morrow, Melissa M; Kaufman, Kenton R

    2014-10-01

    Repeated durations of dynamic activity with high ground reaction forces (GRFs) and loading rates (LRs) can be beneficial to bone health. To fully characterize dynamic activity in relation to bone health, field-based measurements of gait kinetics are desirable to assess free-living lower-extremity loading. The study aims were to determine correlations of peak vertical GRF and peak vertical LR with ankle peak vertical accelerations, and of peak resultant GRF and peak resultant LR with ankle peak resultant accelerations, and to compare them to correlations with tibia, thigh, and waist accelerations. GRF data were collected as ten healthy subjects (26 [19-34] years) performed 8-10 walking trials at velocities ranging from 0.19 to 3.05 m/s while wearing ankle, tibia, thigh, and waist accelerometers. While peak vertical accelerations of all locations were positively correlated with peak vertical GRF and LR (r² > .53, P < .001), ankle peak vertical accelerations were the most correlated (r² > .75, P < .001). All peak resultant accelerations were positively correlated with peak resultant GRF and LR (r² > .57, P < .001), with waist peak resultant acceleration being the most correlated (r² > .70, P < .001). The results suggest that ankle or waist accelerometers give the most accurate peak GRF and LR estimates and could be useful tools in relating physical activity to bone health.

  14. Classification of Sporting Activities Using Smartphone Accelerometers

    PubMed Central

    Mitchell, Edmond; Monaghan, David; O'Connor, Noel E.

    2013-01-01

    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today's society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach. PMID:23604031

  15. Assessment of gait kinetics using triaxial accelerometers.

    PubMed

    Fortune, Emma; Morrow, Melissa M; Kaufman, Kenton R

    2014-10-01

    Repeated durations of dynamic activity with high ground reaction forces (GRFs) and loading rates (LRs) can be beneficial to bone health. To fully characterize dynamic activity in relation to bone health, field-based measurements of gait kinetics are desirable to assess free-living lower-extremity loading. The study aims were to determine correlations of peak vertical GRF and peak vertical LR with ankle peak vertical accelerations, and of peak resultant GRF and peak resultant LR with ankle peak resultant accelerations, and to compare them to correlations with tibia, thigh, and waist accelerations. GRF data were collected as ten healthy subjects (26 [19-34] years) performed 8-10 walking trials at velocities ranging from 0.19 to 3.05 m/s while wearing ankle, tibia, thigh, and waist accelerometers. While peak vertical accelerations of all locations were positively correlated with peak vertical GRF and LR (r² > .53, P < .001), ankle peak vertical accelerations were the most correlated (r² > .75, P < .001). All peak resultant accelerations were positively correlated with peak resultant GRF and LR (r² > .57, P < .001), with waist peak resultant acceleration being the most correlated (r² > .70, P < .001). The results suggest that ankle or waist accelerometers give the most accurate peak GRF and LR estimates and could be useful tools in relating physical activity to bone health. PMID:25010675

  16. Technical Reliability Assessment of the Actigraph GT1M Accelerometer

    ERIC Educational Resources Information Center

    Silva, Pedro; Mota, Jorge; Esliger, Dale; Welk, Gregory

    2010-01-01

    The purpose of this study was to determine the reliability of the Actigraph GT1M (Pensacola, FL, USA) accelerometer activity count and step functions. Fifty GT1M accelerometers were initialized to collect simultaneous acceleration counts and steps data using 15-sec epochs. All reliability testing was completed using a mechanical shaker plate to…

  17. Identification of Accelerometer Nonwear Time and Sedentary Behavior

    ERIC Educational Resources Information Center

    Oliver, Melody; Badland, Hannah M.; Schofield, Grant M.; Shepherd, Janine

    2011-01-01

    The primary aim of the current study was to investigate the accuracy of various automated rules for determining accelerometer nonwear time in a sample of predominantly desk-based office workers (using their self-reported nonwear times as a criterion). Second, the authors examined the effect of applying these rules to accelerometer data retention…

  18. Validation of a wireless accelerometer network for energy expenditure measurement.

    PubMed

    Montoye, Alexander H K; Dong, Bo; Biswas, Subir; Pfeiffer, Karin A

    2016-11-01

    The purpose of this study was to validate a wireless network of accelerometers and compare it to a hip-mounted accelerometer for predicting energy expenditure in a semi-structured environment. Adults (n = 25) aged 18-30 engaged in 14 sedentary, ambulatory, exercise, and lifestyle activities over a 60-min protocol while wearing a portable metabolic analyser, hip-mounted accelerometer, and wireless network of three accelerometers worn on the right wrist, thigh, and ankle. Participants chose the order and duration of activities. Artificial neural networks were created separately for the wireless network and hip accelerometer for energy expenditure prediction. The wireless network had higher correlations (r = 0.79 vs. r = 0.72, P < 0.01) but similar root mean square error (2.16 vs. 2.09 METs, P > 0.05) to the hip accelerometer. Measured (from metabolic analyser) and predicted energy expenditure from the hip accelerometer were significantly different for the 3 of the 14 activities (lying down, sweeping, and cycle fast); conversely, measured and predicted energy expenditure from the wireless network were not significantly different for any activity. In conclusion, the wireless network yielded a small improvement over the hip accelerometer, providing evidence that the wireless network can produce accurate estimates of energy expenditure in adults participating in a range of activities.

  19. High sensitivity optical waveguide accelerometer based on Fano resonance.

    PubMed

    Wan, Fenghua; Qian, Guang; Li, Ruozhou; Tang, Jie; Zhang, Tong

    2016-08-20

    An optical waveguide accelerometer based on tunable asymmetrical Fano resonance in a ring-resonator-coupled Mach-Zehnder interferometer (MZI) is proposed and analyzed. A Fano resonance accelerometer has a relatively large workspace of coupling coefficients with high sensitivity, which has potential application in inertial navigation, missile guidance, and attitude control of satellites. Due to the interference between a high-Q resonance pathway and a coherent background pathway, a steep asymmetric line shape is generated, which greatly improves the sensitivity of this accelerometer. The sensitivity of the accelerometer is about 111.75 mW/g. A 393-fold increase in sensitivity is achieved compared with a conventional MZI accelerometer and is approximately equal to the single ring structure.

  20. High sensitivity optical waveguide accelerometer based on Fano resonance.

    PubMed

    Wan, Fenghua; Qian, Guang; Li, Ruozhou; Tang, Jie; Zhang, Tong

    2016-08-20

    An optical waveguide accelerometer based on tunable asymmetrical Fano resonance in a ring-resonator-coupled Mach-Zehnder interferometer (MZI) is proposed and analyzed. A Fano resonance accelerometer has a relatively large workspace of coupling coefficients with high sensitivity, which has potential application in inertial navigation, missile guidance, and attitude control of satellites. Due to the interference between a high-Q resonance pathway and a coherent background pathway, a steep asymmetric line shape is generated, which greatly improves the sensitivity of this accelerometer. The sensitivity of the accelerometer is about 111.75 mW/g. A 393-fold increase in sensitivity is achieved compared with a conventional MZI accelerometer and is approximately equal to the single ring structure. PMID:27556984

  1. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MaCarthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  2. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises a plurality of respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  3. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  4. Rod examination gauge

    SciTech Connect

    Bacvinskas, W.S.; Bayer, J.E.; Davis, W.W.; Fodor, G.; Kikta, T.J.; Matchett, R.L.; Nilsen, R.J.; Wilczynski, R.

    1991-12-31

    The present invention is directed to a semi-automatic rod examination gauge for performing a large number of exacting measurements on radioactive fuel rods. The rod examination gauge performs various measurements underwater with remote controlled machinery of high reliability. The rod examination gauge includes instruments and a closed circuit television camera for measuring fuel rod length, free hanging bow measurement, diameter measurement, oxide thickness measurement, cladding defect examination, rod ovality measurement, wear mark depth and volume measurement, as well as visual examination. A control system is provided including a programmable logic controller and a computer for providing a programmed sequence of operations for the rod examination and collection of data.

  5. Mars Reconnaissance Orbiter Accelerometer Experiment Results

    NASA Astrophysics Data System (ADS)

    Keating, G. M.; Bougher, S. W.; Theriot, M. E.; Zurek, R. W.; Blanchard, R. C.; Tolson, R. H.; Murphy, J. R.

    2007-05-01

    The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005, designed for aerobraking, achieved Mars Orbital Insertion (MOI), March 10, 2006. Atmospheric density decreases exponentially with increasing height. By small propulsive adjustments of the apoapsis orbital velocity, periapsis altitude is fine tuned to the density surface that safely used the atmosphere of Mars to aerobrake over 400 orbits. MRO periapsis precessed from the South Pole at 6pm LST to near the equator at 3am LST. Meanwhile, apoapsis was brought dramatically from 40,000km at MOI to 460 km at aerobraking completion (ABX) August 30, 2006. After ABX, a few small propulsive maneuvers established the Primary Science Orbit (PSO), which without aerobraking would have required an additional 400 kg of fuel. Each of the 400 plus aerobraking orbits provided a vertical structure and distribution of density, scale heights, and temperatures, along the orbital path, providing key in situ insight into various upper atmosphere (greater than 100 km) processes. One of the major questions for scientists studying Mars is: "Where did the water go?" Honeywell's substantially improved electronics package for its IMU (QA-2000 accelerometer, gyro, electronics) maximized accelerometer sensitivities at the requests of The George Washington University, JPL, and Lockheed Martin. The improved accelerometer sensitivities allowed density measurements to exceed 200km, at least 40 km higher than with Mars Odyssey (MO). This extended vertical structures from MRO into the neutral lower exosphere, a region where various processes may allow atmospheric gasses to escape. Over the eons, water may have been lost in both near the surface and in the upper atmosphere. Thus the water balance throughout the entire atmosphere from subsurface to exosphere may both be critical. Comparisons of data from Mars Global Surveyor (MGS), MO and MRO help characterize key temporal and spatial cycles including: winter polar warming, planetary scale

  6. Gauge coupling unification in gauge-Higgs grand unification

    NASA Astrophysics Data System (ADS)

    Yamatsu, Naoki

    2016-04-01

    We discuss renormalization group equations for gauge coupling constants in gauge-Higgs grand unification on five-dimensional Randall-Sundrum warped space. We show that all four-dimensional Standard Model gauge coupling constants are asymptotically free and are effectively unified in SO(11) gauge-Higgs grand unified theories on 5D Randall-Sundrum warped space.

  7. Motion analysis of sun salutation using magnetometer and accelerometer

    PubMed Central

    Omkar, SN; Mour, Meenakshi; Das, Debarun

    2009-01-01

    Background: Sun salutation is a part of yoga. It consists of a sequence of postures done with synchronized breathing. The practice of few cycles of sun salutation is known to help in maintaining good health and vigor. The practice of sun salutation does not need any extra gadgets. Also it is very much aerobic and invigorates the body and the mind. sun salutation, which comprises 10 postures, involves most of the joints of the body. Understanding the transition phase during motion is a challenging task, and thus, new convenient methods need to be employed. Aims: The purpose of this study was to get an insight into the motion analysis of sun salutation during the transition from each of the 10 postures. Materials and Methods: A device MicroStrain sensor 3DM-GX1, which is a combination of magnetometers, accelerometers, and gyroscopes was used to measure the inclination and the acceleration of the body along the three axes. The acceleration obtained was then separated into gravitational and kinematic components. Results and Conclusions: The value of the gravitational component helps us to understand the position of the body and the kinematic component helps us to analyze the grace of the motion. PMID:20842266

  8. Natural Poincare gauge model

    SciTech Connect

    Aldrovandi, R.; Pereira, J.G.

    1986-05-15

    Because it acts on space-time and is not semisimple, the Poincare group cannot lead to a gauge theory of the usual kind. A candidate model is discussed which keeps itself as close as possible to the typical gauge scheme. Its field equations are the Yang-Mills equations for the Poincare group. It is shown that there exists no Lagrangian for these equations.

  9. A high performance, variable capacitance accelerometer

    NASA Astrophysics Data System (ADS)

    Wilner, L. Bruce

    1988-12-01

    A variable capacitance acceleration sensor is described. Manufactured using silicon microfabrication techniques, the sensor uses a midplane, flat plate suspension, gas damping, and overrange stops. The sensor is assembled from three silicon wafers, using anodic bonds to inlays of borosilicate glass. Typical sensor properties are 7-pF active capacitance, 3-pF tare capacitance, a response of 0.05 pF/G, a resonance frequency of 3.4 kHz, and damping 0.7 critical. It is concluded that this sensor, with appropriate electronics, forms an accelerometer with an order-of-magnitude greater sensitivity-bandwidth product than a comparable piezoresistive acclerometer, and with extraordinary shock resistance.

  10. A Small Range Six-Axis Accelerometer Designed with High Sensitivity DCB Elastic Element

    PubMed Central

    Sun, Zhibo; Liu, Jinhao; Yu, Chunzhan; Zheng, Yili

    2016-01-01

    This paper describes a small range six-axis accelerometer (the measurement range of the sensor is ±g) with high sensitivity DCB (Double Cantilever Beam) elastic element. This sensor is developed based on a parallel mechanism because of the reliability. The accuracy of sensors is affected by its sensitivity characteristics. To improve the sensitivity, a DCB structure is applied as the elastic element. Through dynamic analysis, the dynamic model of the accelerometer is established using the Lagrange equation, and the mass matrix and stiffness matrix are obtained by a partial derivative calculation and a conservative congruence transformation, respectively. By simplifying the structure of the accelerometer, a model of the free vibration is achieved, and the parameters of the sensor are designed based on the model. Through stiffness analysis of the DCB structure, the deflection curve of the beam is calculated. Compared with the result obtained using a finite element analysis simulation in ANSYS Workbench, the coincidence rate of the maximum deflection is 89.0% along the x-axis, 88.3% along the y-axis and 87.5% along the z-axis. Through strain analysis of the DCB elastic element, the sensitivity of the beam is obtained. According to the experimental result, the accuracy of the theoretical analysis is found to be 90.4% along the x-axis, 74.9% along the y-axis and 78.9% along the z-axis. The measurement errors of linear accelerations ax, ay and az in the experiments are 2.6%, 0.6% and 1.31%, respectively. The experiments prove that accelerometer with DCB elastic element performs great sensitive and precision characteristics. PMID:27657089

  11. Validation study of Polar V800 accelerometer

    PubMed Central

    Hernández-Vicente, Adrián; De Cocker, Katrien; Garatachea, Nuria

    2016-01-01

    Background The correct quantification of physical activity (PA) and energy expenditure (EE) in daily life is an important target for researchers and professionals. The objective of this paper is to study the validity of the Polar V800 for the quantification of PA and the estimation of EE against the ActiGraph (ActiTrainer) in healthy young adults. Methods Eighteen Caucasian active people (50% women) aged between 19–23 years wore an ActiTrainer on the right hip and a Polar V800 on the preferred wrist during 7 days. Paired samples t-tests were used to analyze differences in outcomes between devices, and Pearson’s correlation coefficients to examine the correlation between outcomes. The agreement was studied using the Bland-Altman method. Also, the association between the difference and the magnitude of the measurement (heteroscedasticity) was examined. Sensitivity, specificity and area under the receiver operating characteristic curve (ROC-AUC value) were calculated to evaluate the ability of the devices to accurately define a person who fulfills the recommendation of 10,000 daily steps. Results The devices significantly differed from each other on all outcomes (P<0.05), except for Polar V800’s alerts vs. ActiTrainer’s 1 hour sedentary bouts (P=0.595) and Polar V800’s walking time vs. ActiTrainer’s lifestyle time (P=0.484). Heteroscedasticity analyses were significant for all outcomes, except for Kcal and sitting time. The ROC-AUC value was fair (0.781±0.048) and the sensitivity and specificity was 98% and 58%, respectively. Conclusions The Polar V800 accelerometer has a comparable validity to the accelerometer in free-living conditions, regarding “1 hour sedentary bouts” and “V800’s walking time vs. ActiTrainer’s lifestyle time” in young adults. PMID:27570772

  12. Self Diagnostic Accelerometer Testing on the C-17 Aircraft

    NASA Technical Reports Server (NTRS)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. To demonstrate the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The SDA attachment conditions were varied from fully tight to loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first.

  13. Vibration sensing in smart machine rotors using internal MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Jiménez, Samuel; Cole, Matthew O. T.; Keogh, Patrick S.

    2016-09-01

    This paper presents a novel topology for enhanced vibration sensing in which wireless MEMS accelerometers embedded within a hollow rotor measure vibration in a synchronously rotating frame of reference. Theoretical relations between rotor-embedded accelerometer signals and the vibration of the rotor in an inertial reference frame are derived. It is thereby shown that functionality as a virtual stator-mounted displacement transducer can be achieved through appropriate signal processing. Experimental tests on a prototype rotor confirm that both magnitude and phase information of synchronous vibration can be measured directly without additional stator-mounted key-phasor sensors. Displacement amplitudes calculated from accelerometer signals will become erroneous at low rotational speeds due to accelerometer zero-g offsets, hence a corrective procedure is introduced. Impact tests are also undertaken to examine the ability of the internal accelerometers to measure transient vibration. A further capability is demonstrated, whereby the accelerometer signals are used to measure rotational speed of the rotor by analysing the signal component due to gravity. The study highlights the extended functionality afforded by internal accelerometers and demonstrates the feasibility of internal sensor topologies, which can provide improved observability of rotor vibration at externally inaccessible rotor locations.

  14. Recent Results from CHAMP Tracking and Accelerometer Data Analysis

    NASA Technical Reports Server (NTRS)

    Luthcke, S. B.; Rowlands, D. D.; Lemoine, F. G.; Nerem, R. S.; Thompson, B.; Pavlis, E.; Williams, T. A.; Colombo, O. L.; Chao, Benjamin F. (Technical Monitor)

    2002-01-01

    The CHAMP mission's unique combination of sensors and orbit configuration will enable unprecedented improvements in modeling and understanding the Earth's static gravity field and its temporal variations. CHAMP is the first of two missions (GRACE to be launched in the early part of 02') that combine a new generation of Global Positioning System (GPS) receivers, a high precision three-axis accelerometer, and star cameras for the precision attitude determination. In order to isolate the gravity signal for science investigations, it is necessary to perform a detailed reduction and analysis of the GPS and Satellite Laser Ranging (SLR) tracking data in conjunction with the accelerometer and attitude data. Precision orbit determination based on the GPS and SLR tracking data will isolate the orbit perturbations, while the accelerometer data will be used to distinguish the non-gravitational forces from those due to the geopotential (static, and time varying). In preparation for the CHAMP and GRACE missions, extensive modifications have been made to NASA/GSFC's GEODYN orbit determination software to enable the simultaneous reduction of spacecraft tracking (e.g. GPS and SLR), three-axis accelerometer and precise attitude data. Several weeks of CHAMP tracking and accelerometer data have been analyzed and the results will be presented. Precision orbit determination analysis based on tracking data alone in addition to results based on the simultaneous reduction of tracking and accelerometer data will be discussed. Results from a calibration of the accelerometer will be presented along with the results from various orbit determination strategies.

  15. Predicting Human Movement with Multiple Accelerometers Using Movelets

    PubMed Central

    He, Bing; Bai, Jiawei; Zipunnikov, Vadim V.; Koster, Annemarie; Caserotti, Paolo; Lange-Maia, Brittney; Glynn, Nancy W.; Harris, Tamara B.; Crainiceanu, Ciprian M.

    2014-01-01

    Purpose The study aims were: 1) to develop transparent algorithms that use short segments of training data for predicting activity types; and 2) to compare prediction performance of proposed algorithms using single accelerometers and multiple accelerometers. Methods Sixteen participants (age, 80.6 yr (4.8 yr); BMI, 26.1 kg·m−2 (2.5 kg·m−2)) performed fifteen life-style activities in the laboratory, each wearing three accelerometers at the right hip, left and right wrists. Triaxial accelerometry data were collected at 80 Hz using Actigraph GT3X+. Prediction algorithms were developed, which, instead of extracting features, build activity specific dictionaries composed of short signal segments called movelets. Three alternative approaches were proposed to integrate the information from the multiple accelerometers. Results With at most several seconds of training data per activity, the prediction accuracy at the second-level temporal resolution was very high for lying, standing, normal/fast walking, and standing up from a chair (the median prediction accuracy ranged from 88.2% to 99.9% based on the single-accelerometer movelet approach). For these activities wrist-worn accelerometers performed almost as well as hip-worn accelerometers (the median difference in accuracy between wrist and hip ranged from −2.7% to 5.8%). Modest improvements in prediction accuracy were achieved by integrating information from multiple accelerometers. Discussion and conclusions It is possible to achieve high prediction accuracy at the secondlevel temporal resolution with very limited training data. To increase prediction accuracy from the simultaneous use of multiple accelerometers, a careful selection of integrative approaches is required. PMID:25134005

  16. Type of development and application of integrating accelerometer

    NASA Astrophysics Data System (ADS)

    Pan, Hongxia; Li, Ting; Liu, Guangpu; Yu, Hongying

    2000-05-01

    In this paper a new technique is suggested to solve the problem of measuring the vibration parameters in bad conditions with strong shock, that is, using integrating accelerometers repacked with normal inertial accelerometers to measure vibration acceleration signal of rocket launcher and then integrating velocity and displacement parameters. After the problems of integral accuracy have been solved, various vibration parameters are obtained to meet the needs of a certain project. By analysis, this integrating accelerometer has been testified to be a very practical sensor with surplus value in measuring vibration parameters in bad condition with strong shock.

  17. USML-1 microgravity glovebox experiment no. 1 Passive Accelerometer System

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Rogers, Melissa J. B.

    1995-01-01

    The passive accelerometer system (PAS) is a simple moving ball accelerometer capable of measuring the small magnitude steady relative acceleration that occurs in a low earth orbit spacecraft due to atmospheric drag and the earth's gravity gradient. The accelerometer can be used when the spacecraft continuously rotates during the orbit such that some line of reference in the craft always points along the vector connecting the earth's mass center with the spacecraft mass center. PAS was used successfully on the first United States Microgravity Laboratory (USML-1).

  18. The Use of a Beryllium Hopkinson Bar to Characterize In-Axis and Cross-Axis Accelerometer Response in Shock Environments

    SciTech Connect

    Bateman, V.I.; Brown, F.A.

    1999-01-01

    The characteristics of a piezoresistive accelerometer in shock environments have been studied at Sandia National Laboratories in the Mechanical Shock Laboratory. A beryllium Hopkinson bar capability with diameters of 0.75 in. and 2.0 in has been developed to extend our understanding of the piezoresistive accelerometer, in two mechanical configurations, in the high frequency, high shock environments where measurements are being made. The in-axis performance of the piezoresistive accelerometer determined from measurements with a beryllium Hopkinson bar and a certified laser doppler vibrometer as the reference measurement is presented. The cross-axis performance of the accelerometer subjected to static compression on a beryllium cylinder, static strain on a steel beam, dynamic strain on a steel beam (ISA-RP 37.2, Paragraph 6.6), and compressive shocks in a split beryllium Hopkinson bar configuration is also presented. The performance of the accelerometer in a combined in-axis and cross-axis shock environment is shown for one configuration. Finally, a failure analysis conducted in cooperation with ENDEVCO gives a cause for the occasional unexplained failures that have occurred in some applications.

  19. Gauge/Gravity Duality (Gauge Gravity Duality)

    SciTech Connect

    Polchinski, Joseph

    2010-02-24

    Gauge theories, which describe the particle interactions, are well understood, while quantum gravity leads to many puzzles. Remarkably, in recent years we have learned that these are actually dual, the same system written in different variables. On the one hand, this provides our most precise description of quantum gravity, resolves some long-standing paradoxes, and points to new principles. On the other, it gives a new perspective on strong interactions, with surprising connections to other areas of physics. I describe these ideas, and discuss current and future directions.

  20. Axisymmetric magnetic gauges

    SciTech Connect

    Wright, B.L.; Alrick, K.R.; Fritz, J.N.

    1994-05-01

    Axisymmetric magnetic (ASM) gauges are useful diagnostic tools in the study of the conversion of energy from underground explosions to distant seismic signals. Requiring no external power, they measure the strength (particle velocity) of the emerging shock wave under conditions that would destroy most instrumentation. Shock pins are included with each gauge to determine the angle of the shock front. For the Non-Proliferation Experiment, two ASM gauges were installed in the ANFO mixture to monitor the detonation wave and 10 were grouted into boreholes at various ranges in the surrounding rock (10 to 64 m from the center of explosion). These gauges were of a standard 3.8-inch-diameter design. In addition, two unique Jumbo ASM gauges (3-ft by 3-ft in cross section) were grouted to the wall of a drift at a range of 65 m. We discuss issues encountered in data analysis, present the results of our measurements, and compare these results with those of model simulations of the experiment.

  1. Diagrammatic analysis of QCD gauge transformations and gauge cancellations

    NASA Astrophysics Data System (ADS)

    Feng, Y. J.; Lam, C. S.

    1996-02-01

    Diagrammatic techniques are invented to implement QCD gauge transformations. These techniques can be used to discover how gauge-dependent terms are canceled among diagrams to yield gauge-invariant results in the sum. In this way a multiloop pinching technique can be developed to change ordinary vertices into background-gauge vertices. The techniques can also be used to design new gauges to simplify calculations by reducing the number of gauge-dependent terms present in the intermediate steps. Two examples are discussed to illustrate this aspect of the applications. ¢ 1996 The American Physical Society.

  2. Optical heat flux gauge

    DOEpatents

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  3. The vertical accelerometer, a new instrument for air navigation

    NASA Technical Reports Server (NTRS)

    Laboccetta, Letterio

    1923-01-01

    This report endeavors to show the possibility of determining the rate of acceleration and the advantage of having such an accelerometer in addition to other aviation instruments. Most of the discussions concern balloons.

  4. SEMICONDUCTOR DEVICES: Characteristics of a novel biaxial capacitive MEMS accelerometer

    NASA Astrophysics Data System (ADS)

    Linxi, Dong; Yongjie, Li; Haixia, Yan; Lingling, Sun

    2010-05-01

    A novel MEMS accelerometer with grid strip capacitors is developed. The mechanical and electrical noise can be reduced greatly for the novel structure design. ANSOFT-Maxwell software was used to analyze the fringing electric field of the grid strip structure and its effects on the designed accelerometer. The effects of the width, thickness and overlapping width of the grid strip on the sensing capacitance are analyzed by using the ANSOFT-Maxwell software. The results show that the parameters have little effect on the characteristics of the presented accelerometer. The designed accelerometer was fabricated based on deep RIE and silicon-glass bonding processes. The preliminary tested sensitivities are 0.53 pF/g and 0.49 pF/g in the x and y axis directions, respectively. A resonator with grid strip structure was also fabricated whose tested quality factor is 514 in air, which proves that the grid strip structure can reduce mechanical noise.

  5. Instrument sequentially samples ac signals from several accelerometers

    NASA Technical Reports Server (NTRS)

    Chapman, C. P.

    1967-01-01

    Scanner circuit sequentially samples the ac signals from accelerometers used in conducting noise vibration tests, and provides a time-averaged output signal. The scanner is used in conjunction with other devices for random noise vibration tests.

  6. Development of an accelerometer-based underwater acoustic intensity sensor.

    PubMed

    Kim, Kang; Gabrielson, Thomas B; Lauchle, Gerald C

    2004-12-01

    An underwater acoustic intensity sensor is described. This sensor derives acoustic intensity from simultaneous, co-located measurement of the acoustic pressure and one component of the acoustic particle acceleration vector. The sensor consists of a pressure transducer in the form of a hollow piezoceramic cylinder and a pair of miniature accelerometers mounted inside the cylinder. Since this sensor derives acoustic intensity from measurement of acoustic pressure and acoustic particle acceleration, it is called a p-a intensity probe. The sensor is ballasted to be nearly neutrally buoyant. It is desirable for the accelerometers to measure only the rigid body motion of the assembled probe and for the effective centers of the pressure sensor and accelerometer to be coincident. This is achieved by symmetric disposition of a pair of accelerometers inside the ceramic cylinder. The response of the intensity probe is determined by comparison with a reference hydrophone in a predominantly reactive acoustic field.

  7. Input-output stability for accelerometer control systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Morris, K. A.

    1991-01-01

    It is shown that, although accelerometer control systems are not well-posed in the sense of Salamon, a well-defined input-output relation exists. It is established that the output of an accelerometer control system can be described by the convolution of the input and a distribution. This distribution is Laplace transformable, and the Laplace transform of the distribution is the transfer function of the system.

  8. Design, Simulation and Fabrication of Triaxial MEMS High Shock Accelerometer.

    PubMed

    Zhang, Zhenhai; Shi, Zhiguo; Yang, Zhan; Xie, Zhihong; Zhang, Donghong; Cai, De; Li, Kejie; Shen, Yajing

    2015-04-01

    On the basis of analyzing the disadvantage of other structural accelerometer, three-axis high g MEMS piezoresistive accelerometer was put forward in order to apply to the high-shock test field. The accelerometer's structure and working principle were discussed in details. The simulation results show that three-axis high shock MEMS accelerometer can bear high shock. After bearing high shock impact in high-shock shooting test, three-axis high shock MEMS accelerometer can obtain the intact metrical information of the penetration process and still guarantee the accurate precision of measurement in high shock load range, so we can not only analyze the law of stress wave spreading and the penetration rule of the penetration process of the body of the missile, but also furnish the testing technology of the burst point controlling. The accelerometer has far-ranging application in recording the typical data that projectile penetrating hard target and furnish both technology guarantees for penetration rule and defend engineering.

  9. Factors associated with participant compliance in studies using accelerometers.

    PubMed

    Lee, Paul H; Macfarlane, Duncan J; Lam, T H

    2013-09-01

    Participant compliance is an important issue in studies using accelerometers. Some participants wear the accelerometer for the duration specified by the researchers but many do not. We investigated a range of demographic factors associated with participant compliance in obtaining analyzable accelerometer data. A total of 3601 participants (aged 47.6±13.1 years, 44.6% male) were included. They were asked to wear an accelerometer (ActiGraph) for four consecutive days after completing a household survey during March 2009-January 2011 in Hong Kong. Participants wore the accelerometer on average for 13.9h in a 24-h day. No significant difference was found between males and females (p=0.38). Using log-linear regression, it was found that older participants (0.5% more wearing hours for each year of age, p<0.001), those with full-time job (p<0.01), with tertiary education (p<0.01), non-smokers (p<0.01) and with high self-reported health (p<0.05) wore the accelerometer for more hours. These results provide details for estimating compliance rates for samples with different characteristics and thus sample size calculation to account for participant compliance. PMID:23688408

  10. Full and partial gauge fixing

    SciTech Connect

    Shirzad, A.

    2007-08-15

    Gauge fixing may be done in different ways. We show that using the chain structure to describe a constrained system enables us to use either a full gauge, in which all gauged degrees of freedom are determined, or a partial gauge, in which some first class constraints remain as subsidiary conditions to be imposed on the solutions of the equations of motion. We also show that the number of constants of motion depends on the level in a constraint chain in which the gauge fixing condition is imposed. The relativistic point particle, electromagnetism, and the Polyakov string are discussed as examples and full or partial gauges are distinguished.

  11. Performance of several low-cost accelerometers

    USGS Publications Warehouse

    Evans, J.R.; Allen, R.M.; Chung, A. I.; Cochran, E.S.; Guy, R.; Hellweg, M.; Lawrence, J. F.

    2014-01-01

    Several groups are implementing low‐cost host‐operated systems of strong‐motion accelerographs to support the somewhat divergent needs of seismologists and earthquake engineers. The Advanced National Seismic System Technical Implementation Committee (ANSS TIC, 2002), managed by the U.S. Geological Survey (USGS) in cooperation with other network operators, is exploring the efficacy of such systems if used in ANSS networks. To this end, ANSS convened a working group to explore available Class C strong‐motion accelerometers (defined later), and to consider operational and quality control issues, and the means of annotating, storing, and using such data in ANSS networks. The working group members are largely coincident with our author list, and this report informs instrument‐performance matters in the working group’s report to ANSS. Present examples of operational networks of such devices are the Community Seismic Network (CSN; csn.caltech.edu), operated by the California Institute of Technology, and Quake‐Catcher Network (QCN; Cochran et al., 2009; qcn.stanford.edu; November 2013), jointly operated by Stanford University and the USGS. Several similar efforts are in development at other institutions. The overarching goals of such efforts are to add spatial density to existing Class‐A and Class‐B (see next paragraph) networks at low cost, and to include many additional people so they become invested in the issues of earthquakes, their measurement, and the damage they cause.

  12. Pendulous assembly for use in an accelerometer

    SciTech Connect

    Hanson, R.A.

    1991-08-27

    This patent describes a pendulous assembly for use in an accelerometer or other such device which senses forces acting on the device in a particular direction. It comprises a proofmass; and means supporting one end of the proofmass for pivotal movement about a given axis back and forth through a resting plane which contains the proofmass when the proofmass is at rest in the absence of any of the forces, the supporting means including: a frame and means for mounting the frame to a main support forming part of the force sensing device, an isolation bridge; isolation bridge flexure means connecting the isolation bridge with a section of the frame for pivotal movement of the isolation bridge back and forth about the given axis; and proofmass flexure means separate from and substantially unconnected with the isolation bridge flexure means, the proofmass flexure means comprising a pair of proofmass flexures connecting the proofmass with the isolation bridge for pivotal movement of the proofmass back and forth about the given axis; the isolation bridge flexure means and the proofmass flexure means being aligned along the given axis with the isolation bridge flexure means positioned between the proofmass flexures.

  13. Quantitative evaluation of gait ataxia by accelerometers.

    PubMed

    Shirai, Shinichi; Yabe, Ichiro; Matsushima, Masaaki; Ito, Yoichi M; Yoneyama, Mitsuru; Sasaki, Hidenao

    2015-11-15

    An appropriate biomarker for spinocerebellar degeneration (SCD) has not been identified. Here, we performed gait analysis on patients with pure cerebellar type SCD and assessed whether the obtained data could be used as a neurophysiological biomarker for cerebellar ataxia. We analyzed 25 SCD patients, 25 patients with Parkinson's disease as a disease control, and 25 healthy control individuals. Acceleration signals during 6 min of walking and 1 min of standing were measured by two sets of triaxial accelerometers that were secured with a fixation vest to the middle of the lower and upper back of each subject. We extracted two gait parameters, the average and the coefficient of variation of motion trajectory amplitude, from each acceleration component. Then, each component was analyzed by correlation with the Scale for the Assessment and Rating of Ataxia (SARA) and the Berg Balance Scale (BBS). Compared with the gait control of healthy subjects and concerning correlation with severity and disease specificity, our results suggest that the average amplitude of medial-lateral (upper back) of straight gait is a physiological biomarker for cerebellar ataxia. Our results suggest that gait analysis is a quantitative and concise evaluation scale for the severity of cerebellar ataxia.

  14. Nanoparticle-Structured Highly Sensitive and Anisotropic Gauge Sensors.

    PubMed

    Zhao, Wei; Luo, Jin; Shan, Shiyao; Lombardi, Jack P; Xu, Yvonne; Cartwright, Kelly; Lu, Susan; Poliks, Mark; Zhong, Chuan-Jian

    2015-09-16

    The ability to tune gauge factors in terms of magnitude and orientation is important for wearable and conformal electronics. Herein, a sensor device is described which is fabricated by assembling and printing molecularly linked thin films of gold nanoparticles on flexible microelectrodes with unusually high and anisotropic gauge factors. A sharp difference in gauge factors up to two to three orders of magnitude between bending perpendicular (B(⊥)) and parallel (B(||)) to the current flow directions is observed. The origin of the unusual high and anisotropic gauge factors is analyzed in terms of nanoparticle size, interparticle spacing, interparticle structure, and other parameters, and by considering the theoretical aspects of electron conduction mechanism and percolation pathway. A critical range of resistivity where a very small change in strain and the strain orientation is identified to impact the percolation pathway in a significant way, leading to the high and anisotropic gauge factors. The gauge anisotropy stems from molecular and nanoscale fine tuning of interparticle properties of molecularly linked nanoparticle assembly on flexible microelectrodes, which has important implication for the design of gauge sensors for highly sensitive detection of deformation in complex sensing environment or on complex curved surfaces such as wearable electronics and skin sensors.

  15. A review on lateral stress measurements with piezoresistance gauges

    NASA Astrophysics Data System (ADS)

    Rosenberg, Zvi

    1999-06-01

    One of the most important issues in the study of material behavior under dynamic loading is the accurate determination of lateral stresses behind shock fronts. The only direct way to measure these stresses is to embedd thin gauges in the specimen, in a plane perpendicular to the shock front. This technique attracted much attention since we first showed that Manganin foil gauges have different resistive response in the lateral orientation, as compared with the longitudinal one. Various analytical approaches, as well as numerical simulations, show that this difference can be explained by the different stress-strain loading paths which these gauges experience in the two configurations. Particularly, the respective volumetric strains of these gauges can be different if the yield strength of gauge material is not negligible. We discuss here the various approaches to lateral stress calibration, the uniqueness of gauge response, it's resistive hystresis upon unloading, etc. We also review some of the important results which were recently obtained for brittle materials using lateral stress gauges. note

  16. Extended gauge sectors

    SciTech Connect

    Rizzo, T.G.

    1995-02-01

    Present and future prospects for the discovery of new gauge bosons, Z{prime} and W{prime}, are reviewed. Particular attention is paid to hadron and e{sup +}e{sup {minus}} collider searches for the W{prime} of the Left-Right Symmetric Model.

  17. Finite quantum gauge theories

    NASA Astrophysics Data System (ADS)

    Modesto, Leonardo; Piva, Marco; Rachwał, Lesław

    2016-07-01

    We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge theory, in particular, Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local potential of the gauge field, is unitary (ghost-free) and perturbatively super-renormalizable. Moreover, in the action we can always choose the potential (consisting of one "killer operator") to make zero the beta function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge interaction. Our calculations are done in D =4 , but the results can be generalized to even or odd spacetime dimensions. We compute the contribution to the beta function from two different killer operators by using two independent techniques, namely, the Feynman diagrams and the Barvinsky-Vilkovisky traces. By making the theories finite, we are able to solve also the Landau pole problems, in particular, in QED. Without any potential, the beta function of the one-loop super-renormalizable theory shows a universal Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV nor the singularities in the infrared regime (IR).

  18. Global Equity Gauge Alliance.

    PubMed

    Ntuli, Antoinette

    2007-01-01

    The lack of attention to equity in health, health care and determinants of health is a burden to the attainment of good health in many countries. With this underlying problem as a basis, a series of meetings took place between 1999 and 2000, culminating in the creation the Global Equity Gauge Alliance (GEGA). G EGA is an international network of groups in developing countries, mainly Asia, Africa and Latin America, which develop projects designed to confront and mitigate inequities in health, know as Equity Gauges. Equity Gauges aim to contribute towards the sustained decline in inequities in both the broad sociopolitical determinants of health, as well as inequities in the health system. Their approach is based on three broad spheres of action, known as "pillars": 1) measurement and monitoring, 2) advocacy, and 3) community empowerment. Through a series of examples from local or national level gauges, this paper showcases their work promoting the interaction between research and evidence-based policy formulation and implementation, and the interaction between the community and policy makers. PMID:17665716

  19. Italian spring accelerometer (ISA) a high sensitive accelerometer for ``BepiColombo'' ESA CORNERSTONE

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Nozzoli, S.

    2001-12-01

    The targets of the ESA CORNERSTONE mission to Mercury "BepiColombo" are concerned with both planetary and magnetospheric physics and to test some aspects of the general relativity. A payload devoted to a set of experiments named radio science is located within one of the three proposed modules, the Mercury Planetary Orbiter (MPO). In particular, a high sensitivity accelerometer ( a min<10 -9√g/ Hz in the range 10 -4- 10 -1 Hz) will measure the inertial acceleration acting on the MPO. Such data, together with tracking data are used to evaluate the purely gravitational trajectory of the MPO, transforming it to a virtual drag-free satellite system. The ISA accelerometer, considered for this mission, is a well-studied instrument developed at the Istituto di Fisica dello Spazio Interplanetario (IFSI), with the financial support of the Agenzia Spaziale Italiana (ASI). A prototype of such an instrument was constructed, matching the requirements of the radio science experiment. Results of the study concerning the use of ISA in the BepiColombo mission are reported here, particular care being devoted to the description of the instrument and to its sensitivity and thermal stabilisation.

  20. Some comments on unitarity gauge

    NASA Astrophysics Data System (ADS)

    Lopez-Osorio, M. A.; Martinez-Pascual, E.; Toscano, J. J.

    2004-04-01

    A pedagogical discussion on the unitarity gauge within the context of Hamiltonian path integral formalism is presented. A model based on the group O(N), spontaneously broken down to the subgroup O(N - 1), is used to illustrate the main aspects of this gauge-fixing procedure. Among the issues, discussed with some extent, are: (1) the structure of model's constraints following the Dirac's method, (2) the gauge-fixing procedure, using the unitarity gauge for the massive gauge fields and the Coulomb one for the massless gauge fields, (3) the absence of BRST symmetry in this gauge-fixing procedure and its implications on the renormalizability of the theory, and (4) the static role of the ghost and anti-ghost fields associated with the massive gauge fields and how their contributions can be eliminated by using the dimensional regularization scheme.

  1. Relative performance of several inexpensive accelerometers

    USGS Publications Warehouse

    Evans, John R.; Rogers, John A.

    1995-01-01

    We examined the performance of several low-cost accelerometers for highly cost-driven applications in recording earthquake strong motion. We anticipate applications for such sensors in providing the lifeline and emergency-response communities with an immediate, comprehensive picture of the extent and characteristics of likely damage. We also foresee their use as 'filler' instruments sited between research-grade instruments to provide spatially detailed and near-field records of large earthquakes (on the order of 1000 stations at 600-m intervals in San Fernando Valley, population 1.2 million, for example). The latter applications would provide greatly improved attenuation relationships for building codes and design, the first examples of mainshock information (that is, potentially nonlinear regime) for microzonation, and a suite of records for structural engineers. We also foresee possible applications in monitoring structural inter-story drift during earthquakes, possibly leading to local and remote alarm functions as well as design criteria. This effort appears to be the first of its type at the USGS. It is spurred by rapid advances in sensor technology and the recognition of potential non-classical applications. In this report, we estimate sensor noise spectra, relative transfer functions and cross-axis sensitivity of six inexpensive sensors. We tested three micromachined ('silicon-chip') sensors in addition to classical force-balance and piezoelectric examples. This sample of devices is meant to be representative, not comprehensive. Sensor noise spectra were estimated by recording system output with the sensor mounted on a pneumatically supported 545-kg optical-bench isolation table. This isolation table appears to limit ground motion to below our system noise level. These noise estimates include noise introduced by signal-conditioning circuitry, the analog-to-digital converter (ADC), and noise induced in connecting wiring by ambient electromagnetic fields in

  2. Strong Motion Seismograph Based On MEMS Accelerometer

    NASA Astrophysics Data System (ADS)

    Teng, Y.; Hu, X.

    2013-12-01

    The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The

  3. Calorimetric validation of the Caltrac accelerometer during level walking.

    PubMed

    Balogun, J A; Martin, D A; Clendenin, M A

    1989-06-01

    The primary purpose of this study was to compare the Caltrac accelerometer output with measured energy expenditure (Ee). Twenty-five volunteers (10 men, 15 women) walked on a level motor-driven treadmill at four different speeds (54, 81, 104, and 130 m.min-1) with the Caltrac device affixed to the waistline. Each of the four experimental trials lasted eight minutes, and the testing was completed within an hour. During the test, oxygen consumption (VO2) (in L.min-1 and in mL.kg-1.min-1) and nonprotein respiratory exchange ratio were monitored by the Beckman Horizon metabolic cart. The accelerometer output at the end of each exercise bout was also monitored and subsequently divided by 8 to convert the readings to counts.min-1. The mean VO2 (L.min-1) at steady state (ie, 6th-8th minutes of exercise) was converted to a caloric value. We obtained a moderate correlation coefficient (r) of .76 between the accelerometer output and the VO2 (mL.kg-1.min-1) and a high correlation coefficient of .92 between the Ee and the accelerometer readings. The Caltrac accelerometer output (counts.min-1) was significantly higher (p less than .01) than the Ee (kcal.min-1) at the four walking speeds. The difference between the accelerometer output and the Ee ranged from 13.3% to 52.9%. The data were further analyzed with linear, polynomial, multiple, and stepwise regression models. The results of the analyses revealed that the Caltrac accelerometer output is a valid predictor of Ee during level walking when the appropriate regression equation is used to adjust the values.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Research on measurement and control of helicopter rotor response using blade-mounted accelerometers 1991-92

    NASA Technical Reports Server (NTRS)

    Ham, Norman D.; Mckillip, Robert M., Jr.

    1992-01-01

    Preliminary wind tunnel tests of the hill-size Model 412/IBC rotor at the Ames Research Center, NASA, are described. Blade flapping motion was excited by swash plate oscillation, and the flapping response was measured using blade-mounted accelerometers and compared with flapping motion inferred form blade strain measurements. The recorded open-loop accelerometer signals were used as input to the flapping-IBC system in the laboratory. The resulting controller cyclic pitch outputs are compared with the original cyclic pitch excitation inputs, and the potential effectiveness of the controller in suppressing the original excitation is evaluated. Control of blade flapping excites blade lagging, and vice versa; the paper describes a theoretical investigation of these coupling effects.

  5. Evaluation of shock isolation techniques for a piezoresistive accelerometer

    SciTech Connect

    Bateman, V.I.; Bell, R.G.; Davie, N.T. )

    1989-06-01

    Sandia conducts impact testing for a variety of structures. In this slapdown test, one end of the cask impacts the hard concrete target, then the structure rotates so that the other end of the cask impacts the target. During an impact test, metal to metal contact may occur within the structure and produce high frequency, high amplitude shock inputs. The high frequency portion of this transient vibration has been observed to excite the accelerometer resonance even though this resonance exceeds 350 kHz. The amplitude of the resonating accelerometer response can be so large that the data are clipped and are rendered useless. If the data are not clipped, a digital filter must be applied to eliminate the undesired accelerometer resonant response. If possible, it is more desirable to prevent excitation of the accelerometer resonance, This may be accomplished by mechanically isolating the accelerometer from the high frequency excitation without degrading the transducer response in the bandwidth of interest which is usually 10 kHz or less. To achieve this desirable isolation, two mounting configurations were designed and characterized. The objective of this paper is to describe the evaluation technique and to discuss the shock isolation properties of each mounting configuration. One configuration was actually used in a field test of bomb impacting a target. 4 figs.

  6. Characterization of a MEMS Accelerometer for Inertial Navigating Applications

    SciTech Connect

    Kinney, R.D.

    1999-02-12

    Inertial MEMS sensors such as accelerometers and angular rotation sensing devices continue to improve in performance as advances in design and processing are made. Present state-of-the-art accelerometers have achieved performance levels in the laboratory that are consistent with requirements for successful application in tactical weapon navigation systems. However, sensor performance parameters that are of interest to the designer of inertial navigation systems are frequently not adequately addressed by the MEMS manufacturer. This paper addresses the testing and characterization of a MEMS accelerometer from an inertial navigation perspective. The paper discusses test objectives, data reduction techniques and presents results from the test of a three-axis MEMS accelerometer conducted at Sandia National Laboratories during 1997. The test was structured to achieve visibility and characterization of the accelerometer bias and scale factor stability overtime and temperature. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94AL85000.

  7. Optimal Placement of Accelerometers for the Detection of Everyday Activities

    PubMed Central

    Cleland, Ian; Kikhia, Basel; Nugent, Chris; Boytsov, Andrey; Hallberg, Josef; Synnes, Kåre; McClean, Sally; Finlay, Dewar

    2013-01-01

    This article describes an investigation to determine the optimal placement of accelerometers for the purpose of detecting a range of everyday activities. The paper investigates the effect of combining data from accelerometers placed at various bodily locations on the accuracy of activity detection. Eight healthy males participated within the study. Data were collected from six wireless tri-axial accelerometers placed at the chest, wrist, lower back, hip, thigh and foot. Activities included walking, running on a motorized treadmill, sitting, lying, standing and walking up and down stairs. The Support Vector Machine provided the most accurate detection of activities of all the machine learning algorithms investigated. Although data from all locations provided similar levels of accuracy, the hip was the best single location to record data for activity detection using a Support Vector Machine, providing small but significantly better accuracy than the other investigated locations. Increasing the number of sensing locations from one to two or more statistically increased the accuracy of classification. There was no significant difference in accuracy when using two or more sensors. It was noted, however, that the difference in activity detection using single or multiple accelerometers may be more pronounced when trying to detect finer grain activities. Future work shall therefore investigate the effects of accelerometer placement on a larger range of these activities. PMID:23867744

  8. Infrared Maximally Abelian Gauge

    SciTech Connect

    Mendes, Tereza; Cucchieri, Attilio; Mihara, Antonio

    2007-02-27

    The confinement scenario in Maximally Abelian gauge (MAG) is based on the concepts of Abelian dominance and of dual superconductivity. Recently, several groups pointed out the possible existence in MAG of ghost and gluon condensates with mass dimension 2, which in turn should influence the infrared behavior of ghost and gluon propagators. We present preliminary results for the first lattice numerical study of the ghost propagator and of ghost condensation for pure SU(2) theory in the MAG.

  9. 27 CFR 19.289 - Production gauge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Production gauge. 19.289... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Gauging Rules for Gauging § 19.289 Production gauge. (a) General requirements for production gauges. A proprietor must gauge all spirits by...

  10. Terrestrial Applications of a Nano-g Accelerometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    1996-01-01

    The ultra-sensitive accelerometer, developed for NASA to monitor the microgravity environments of Space Shuttle, five orbiters and Space Station, needed to measure accelerations up to 10 mg with an absolute accuracy of 10 nano-g (10(exp -8)g) for at least two orbits (10(exp 4) seconds) to resolve accelerations associated with orbital drag. Also, the accelerometers needed to have less than 10(exp -9) F.S. off-axis sensitivity; to be thermally and magnetically inert; to be immune to quiescent shock, and to have an in-situ calibration capability. Multi-axis compact seismometers, designs that have twelve decades of dynamic range will be described. Density profilometers, precision gradiometers, gyros and vibration isolation designs and applications will be discussed. Finally, examples of transformations of the accelerometer into sensitive anemometers and imaging spectrometers will be presented.

  11. Description of the three axis low-g accelerometer package

    NASA Technical Reports Server (NTRS)

    Amalavage, A. J.; Fikes, E. H.; Berry, E. H.

    1978-01-01

    The three axis low-g accelerometer package designed for use on the Space Processing Application Rocket (SPAR) Program is described. The package consists of the following major sections: (1) three Kearfott model 2412 accelerometers mounted in an orthogonal triad configuration on a temperature controlled, thermally isolated cube, (2) the accelerometer servoelectronics (printed circuit cards PC-6 through PC-12), and (3) the signal conditioner (printed circuit cards PC-15 and PC-16). The measurement range is 0 + or - 0.031 g with a quantization of 1.1 x 10 to the 7th power g. The package was flown successfully on six SPAR launches with the Black Brant booster. These flights provide approximately 300 s of free fall or zero-g environment.

  12. The ISA accelerometer for BepiColombo mission .

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Fiorenza, E.; Lefevre, C.; Nozzoli, S.; Peron, R.; Reale, A.; Santoli, F.

    The Italian Spring Accelerometer (ISA) will give a fundamental contribution to the Radio Science Experiments of BepiColombo mission, enabling substantial improvement of the knowledge of Mercury's orbit and rotation, and of the relativistic dynamics in the solar system. ISA is a three-axis accelerometer devoted to the measurement of the non-gravitational acceleration of Mercury Planetary Orbiter (MPO), whose knowledge is important in order to fully exploit the quality of the tracking data. ISA shall have an intrinsic noise level of (10^{-9} m/s^2/&sqrt;{Hz}) in the (3 \\cdot 10^{-5}) Hz to (10^{-1}) Hz frequency range, to guarantee the fulfilment of the RSE scientific goals. A comprehensive presentation of ISA accelerometer is given, including details about its scientific and technological features, the updated measurement error budget, the ongoing experimental activities and foreseen calibration and science operations strategies.

  13. Accelerometer Method and Apparatus for Integral Display and Control Functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1996-01-01

    Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. Art accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.

  14. Accelerometer Method and Apparatus for Integral Display and Control Functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1998-01-01

    Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto is discussed. An accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.

  15. Design and Process Considerations for a Tunneling Tip Accelerometer

    NASA Technical Reports Server (NTRS)

    Paul M. Zavracky, Bob McClelland, Keith Warner, Neil Sherman, Frank Hartley

    1995-01-01

    In this paper, we discuss issues related to the fabrication of a bulk micromachined single axis accelerometer. The accelerometer is designed to have a full scale range of ten millig and a sensitivity of tens of nanog. During the process, three distinctly different die are fabricated. These are subsequently assembled using an ally bonding technique. During the bonding operation, electrical contacts are made between layers. The accelerometer is controlled by electrostatic force plates above and below the proof mass. The lower electrode has a dual role. In operation, it provides a necessary control electrode. When not in operation, it is used to clamp the proof mass and prevents its motion. Results of the fabrication process and initial testing of the clamping function are reported.

  16. Adapting MCM-D technology to a piezoresistive accelerometer packaging

    NASA Astrophysics Data System (ADS)

    Collado, A.; Plaza, J. A.; Cabruja, E.; Esteve, J.

    2003-07-01

    A silicon-on-silicon multichip module for a piezoresistive accelerometer is presented in this paper. This packaging technology, a type of wafer level packaging, offers fully complementary metal-oxide semiconductor compatible silicon substrates, so a pre-amplification stage can be included at substrate level. The electrical contacts and a partial sealing of the sensor mobile structures are performed at the same step using flip-chip technology, so the cost is reduced. As accelerometers are stress-sensitive devices, great care must be taken in the fabrication process and materials. Thus, test structures have been included to study the packaging effects. In this paper we report on the compatibility of accelerometer and wafer level packaging technologies.

  17. Micromachined force-balance feedback accelerometer with optical displacement detection

    SciTech Connect

    Nielson, Gregory N.; Langlois, Eric; Baker, Michael; Okandan, Murat; Anderson, Robert

    2014-07-22

    An accelerometer includes a proof mass and a frame that are formed in a handle layer of a silicon-on-an-insulator (SOI). The proof mass is separated from the frame by a back-side trench that defines a boundary of the proof mass. The accelerometer also includes a reflector coupled to a top surface of the proof mass. An optical detector is located above the reflector at the device side. The accelerometer further includes at least one suspension spring. The suspension spring has a handle anchor that extends downwards from the device side to the handle layer to mechanically support upward and downward movement of the proof mass relative to a top surface of the proof mass.

  18. Optical accelerometer design based on laser self-mixing interference

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Li, Xingfei; Kou, Ke; Zhang, Limin

    2015-03-01

    A novel optical accelerometer based on laser self-mixing effect is presented and experimentally demonstrated, which consists of a mass-loaded elastic-beam assembly and laser self-mixing interferometer. Under external acceleration, an inertial force is applied to the mass, flexible beams deflect from their equilibrium position. The deflection can be read out by the self-mixing interferometer. In order to reduce the impact of higher harmonic, wavelet analysis is introduced to remove singular points. Preliminary results indicate that the resolution is 0.19μg/Hz1/2 within a bandwidth of 100Hz. The optical accelerometer has the potential to achieve high-precision, compact accelerometers.

  19. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to

  20. A bimorph flexural-disk accelerometer for underwater use

    SciTech Connect

    Moffett, M.B.; Powers, J.M.

    1996-04-01

    Design equations, based on Ralph Woollett{close_quote}s 1960 report [{open_quote}{open_quote}The Flexural Disk Transducer,{close_quote}{close_quote} U.S. Navy Underwater Sound Laboratory Research Report No. 490], are presented for a bimorph accelerometer. Figures-of-merit are compared for PZT-4, PZT-5A, PZT-5H, PZT-8 piezoceramics, and PVDF-TrFE copolymer. Neutrally buoyant, spherical and cylindrical accelerometer configurations can be designed to meet bandwidth, sensitivity, and depth requirements. Experimental results for PZT-8 bimorphs indicate that simply-supported edge conditions are easily achievable. {copyright} {ital 1996 American Institute of Physics.}

  1. Monitoring the Dynamic Deformation of the Bridge Structures by Accelerometers

    NASA Astrophysics Data System (ADS)

    Lipták, Imrich

    2013-10-01

    The paper presents current trends in determining the dynamic deformations of bridge structures through the exploitation of geodetic measurements by accelerometers. The main aim of the paper is to demonstrate the practical application of these measurements on the cycling bridge over the river Morava in Devínska Nová Ves. Possibilities for the processing and analysis of accelerometer measurements by spectral analysis are described. An evaluation of the results is realized based on the modal characteristics from a numerical model designed by the finite element method.

  2. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests.

    PubMed

    Kim, Hyun Chan; Song, Sangho; Kim, Jaehwan

    2016-01-01

    This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO) nanowire (NW) grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm², thus fitting the 1.8 × 1.8 mm² haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices. PMID:27649184

  3. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests

    PubMed Central

    Kim, Hyun Chan; Song, Sangho; Kim, Jaehwan

    2016-01-01

    This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO) nanowire (NW) grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices. PMID:27649184

  4. Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.

    2010-01-01

    The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.

  5. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests.

    PubMed

    Kim, Hyun Chan; Song, Sangho; Kim, Jaehwan

    2016-01-01

    This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO) nanowire (NW) grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm², thus fitting the 1.8 × 1.8 mm² haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices.

  6. Ballistic impulse gauge

    DOEpatents

    Ault, S.K.

    1993-12-21

    A gauge for detecting the impulse generated in sample materials by X-rays or other impulse producing mechanisms utilizes a pair of flat annular springs to support a plunger relative to a housing which may itself be supported by a pair of flat annular springs in a second housing. The plunger has a mounting plate mounted on one end and at the other, a position or velocity transducer is mounted. The annular springs consist of an outer ring and an inner ring with at least three arcuate members connecting the outer ring with the inner ring. 4 figures.

  7. Ballistic impulse gauge

    DOEpatents

    Ault, Stanley K.

    1993-01-01

    A gauge for detecting the impulse generated in sample materials by X-rays or other impulse producing mechanisms utilizes a pair of flat annular springs to support a plunger relative to a housing which may itself be supported by a pair of flat annular springs in a second housing. The plunger has a mounting plate mounted on one end and at the other, a position or velocity transducer is mounted. The annular springs consist of an outer ring and an inner ring with at least three arcuate members connecting the outer ring with the inner ring.

  8. Precision manometer gauge

    DOEpatents

    McPherson, Malcolm J.; Bellman, Robert A.

    1984-01-01

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  9. Precision manometer gauge

    DOEpatents

    McPherson, M.J.; Bellman, R.A.

    1982-09-27

    A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.

  10. Anomalous gauge boson interactions

    SciTech Connect

    Aihara, H.; Barklow, T.; Baur, U. |

    1995-03-01

    We discuss the direct measurement of the trilinear vector boson couplings in present and future collider experiments. The major goals of such experiments will be the confirmation of the Standard Model (SM) predictions and the search for signals of new physics. We review our current theoretical understanding of anomalous trilinear gauge-boson self interactions. If the energy scale of the new physics is {approximately} 1 TeV, these low energy anomalous couplings are expected to be no larger than {Omicron}(10{sup {minus}2}). Constraints from high precision measurements at LEP and low energy charged and neutral current processes are critically reviewed.

  11. Gauge/Gravity Duality

    ScienceCinema

    Polchinski, Joseph [Kavli Institute for Theoretical Physics

    2016-07-12

    Gauge theories, which describe the particle interactions, are well understood, while quantum gravity leads to many puzzles. Remarkably, in recent years we have learned that these are actually dual, the same system written in different variables. On the one hand, this provides our most precise description of quantum gravity, resolves some long-standing paradoxes, and points to new principles. On the other, it gives a new perspective on strong interactions, with surprising connections to other areas of physics. I describe these ideas, and discuss current and future directions.

  12. Gauge Blocks - A Zombie Technology.

    PubMed

    Doiron, Ted

    2008-01-01

    Gauge blocks have been the primary method for disseminating length traceability for over 100 years. Their longevity was based on two things: the relatively low cost of delivering very high accuracy to users, and the technical limitation that the range of high precision gauging systems was very small. While the first reason is still true, the second factor is being displaced by changes in measurement technology since the 1980s. New long range sensors do not require master gauges that are nearly the same length as the part being inspected, and thus one of the primary attributes of gauge blocks, wringing stacks to match the part, is no longer needed. Relaxing the requirement that gauges wring presents an opportunity to develop new types of end standards that would increase the accuracy and usefulness of gauging systems. PMID:27096119

  13. Self-noise models of five commercial strong-motion accelerometers

    USGS Publications Warehouse

    Ringler, Adam; Evans, John R.; Hutt, Charles R.

    2015-01-01

    To better characterize the noise of a number of commonly deployed accelerometers in a standardized way, we conducted noise measurements on five different models of strong‐motion accelerometers. Our study was limited to traditional accelerometers (Fig. 1) and is in no way exhaustive.

  14. Massive gauge-flation

    NASA Astrophysics Data System (ADS)

    Nieto, Carlos M.; Rodríguez, Yeinzon

    2016-06-01

    Gauge-flation model at zeroth-order in cosmological perturbation theory offers an interesting scenario for realizing inflation within a particle physics context, allowing us to investigate interesting possible connections between inflation and the subsequent evolution of the Universe. Difficulties, however, arise at the perturbative level, thus motivating a modification of the original model. In order to agree with the latest Planck observations, we modify the model such that the new dynamics can produce a relation between the spectral index ns and the tensor-to-scalar ratio r allowed by the data. By including an identical mass term for each of the fields of the system, we find interesting dynamics leading to slow-roll inflation of the right length. The presence of the mass term has the potential to modify the ns versus r relation so as to agree with the data. As a first step, we study the model at zeroth-order in cosmological perturbation theory, finding the conditions required for slow-roll inflation and the number of e-foldings of inflation. Numerical solutions are used to explore the impact of the mass term. We conclude that the massive version of gauge-flation offers a viable inflationary model.

  15. Methods of Contemporary Gauge Theory

    NASA Astrophysics Data System (ADS)

    Makeenko, Yuri

    2002-08-01

    Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.

  16. Methods of Contemporary Gauge Theory

    NASA Astrophysics Data System (ADS)

    Makeenko, Yuri

    2005-11-01

    Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.

  17. Improved assembly processes for the Quartz Digital Accelerometer cantilever

    SciTech Connect

    Romero, A.M.; Gebert, C.T.

    1990-07-01

    This report covers the development of improved assembly processes for the Quartz Digital Accelerometer cantilever. In this report we discuss improved single-assembly tooling, the development of tooling and processes for precision application of polyimide adhesive, the development of the wafer scale assembly procedure, and the application of eutectic bonding to cantilever assembly. 2 refs., 17 figs.

  18. Validation of an accelerometer for measuring sport performance.

    PubMed

    Sato, Kimitake; Smith, Sarah L; Sands, William A

    2009-01-01

    Weightlifting technique is a well-studied subject with regard to standard biomechanical analysis that includes barbell velocity as well as barbell trajectory, but kinematic data such as barbell acceleration have not often been reported. Real-time or near-real-time feedback can be more helpful to coaches and athletes than delayed feedback. The purpose of this study was to validate measures obtained by a commercially available accelerometer in comparison with kinematic data derived from video. The hypothesis was that there would be a high positive relationship between accelerometer data and acceleration measures derived from video records of a barbell high-pull movement. Accelerometer values and kinematic data from high-speed video were obtained from 7 volunteers performing 2 trials each of a barbell high-pull. The results showed that the accelerometer measures were highly correlated with derived acceleration data from video (r = 0.94-0.99). On the basis of these results, the device was considered to be validated; thus, the unit may be a useful tool to measure acceleration during real-time training sessions rather than only reserved for collecting data in a laboratory setting. This device can be a valuable tool to provide instant feedback to coaches and athletes to assess individual barbell acceleration performance.

  19. Silicon-micromachined accelerometers for space inertial systems

    NASA Astrophysics Data System (ADS)

    Saha, I.; Islam, R.; Kanakaraju, K.; Jain, Yashwant K.; Alex, T. K.

    1999-11-01

    Accelerometers are key components of various motion control systems ranging in use from inertial guidance of rockets and satellite launch vehicles to safety applications in the automotive industry. The accelerometers that are used for spare inertial systems are characterized by high resolution, small bandwidth, large working range and excellent linearity. Current advances in this field are based on silicon micromachining. Silicon bulk and surface micromachined accelerometers offer advantages of reduced size and weight, less power consumption and the use of a fabrication process derived form an already well established semiconductor fab technology. Of the various approaches to silicon micromachined accelerometers, two are in a well advanced state of development. The first is the capacitive force balanced type and the second the piezoresistive type. The capacitive approach has the advantage of higher stability and resolution and lower temperature coefficients. But it requires proximal detection circuitry to prevent parasitics to overwhelm the circuit. A new approach reported recently uses a silicon micromachined cantilever beam which acts as a Fabry Perot interferometer when light form an optical fiber is impinged on it. In this paper we overview all the approaches and try to select a suitable candidate for use in space borne inertial systems.

  20. Standardizing accelerometer-based activity monitor calibration and output reporting.

    PubMed

    Coolbaugh, Crystal L; Hawkins, David A

    2014-08-01

    Wearable accelerometer-based activity monitors (AMs) are used to estimate energy expenditure and ground reaction forces in free-living environments, but a lack of standardized calibration and data reporting methods limits their utility. The objectives of this study were to (1) design an inexpensive and easily reproducible AM testing system, (2) develop a standardized calibration method for accelerometer-based AMs, and (3) evaluate the utility of the system and accuracy of the calibration method. A centrifuge-type device was constructed to apply known accelerations (0-8g) to each sensitive axis of 30 custom and two commercial AMs. Accelerometer data were recorded and matrix algebra and a least squares solution were then used to determine a calibration matrix for the custom AMs to convert raw accelerometer output to units of g's. Accuracy was tested by comparing applied and calculated accelerations for custom and commercial AMs. AMs were accurate to within 4% of applied accelerations. The relatively inexpensive AM testing system (< $100) and calibration method has the potential to improve the sharing of AM data, the ability to compare data from different studies, and the accuracy of AM-based models to estimate various physiological and biomechanical quantities of interest in field-based assessments of physical activity.

  1. Estimating Energy Expenditure with the RT3 Triaxial Accelerometer

    ERIC Educational Resources Information Center

    Maddison, Ralph; Jiang, Yannan; Vander Hoorn, Stephen; Mhurchu, Cliona Ni; Lawes, Carlene M. M.; Rodgers, Anthony; Rush, Elaine

    2009-01-01

    The RT3 is a relatively new triaxial accelerometer that has replaced the TriTrac. The aim of this study was to validate the RT3 against doubly labeled water (DLW) in a free-living, mixed weight sample of adults. Total energy expenditure (TEE) was measured over a 15-day period using DLW. Activity-related energy expenditure (AEE) was estimated by…

  2. Diurnal Cycles of Tree Mass Obtained Using Accelerometers

    NASA Astrophysics Data System (ADS)

    Llamas, R. A.; Niemeier, J. J.; Kruger, A.; Lintz, H. E.; Kleinknecht, G. J.; Miller, R. A.

    2013-12-01

    We used a non-invasive technique to estimate the mass of trees using accelerometers. The technique was inspired by Selker et al., 2011 who performed experiments with an oak tree to estimate the time-varying canopy mass. The technique consists of placing an accelerometer on the trunk of a live tree. The resonance frequency is related to the mass of the tree. Wind drives the tree and the accelerometer data are analyzed to obtain estimates of the resonance frequency and mass of the tree. In addition to wind speed and direction, we also collected ambient temperature and rain accumulation using co-located instruments. We collected data for 3 months using several accelerometers configured for different sampling rates. Analysis of the data revealed diurnal cycles in temperature, wind speed, and tree mass derived from the tree resonance frequency. We used the Welch method for power spectral density estimation to obtain hourly estimates of the tree resonance frequency. Our hypothesis is that the mass diurnal cycle is related to the tree water content.

  3. Joint angle estimation with accelerometers for dynamic postural analysis.

    PubMed

    Ma, Jianting; Kharboutly, Haissam; Benali, Abderraouf; Benamar, Faïz; Bouzit, Mourad

    2015-10-15

    This paper presents a new accelerometer based method for estimating the posture of a subject standing on a dynamic perturbation platform. The induced perturbation is used to study the control mechanisms as well as the balance requirements that regulate the upright standing. These perturbations are translated into different intensity levels of speed and acceleration along longitudinal and lateral directions of motion. In our method, the human posture is modeled by a tridimensional, three-segment inverted pendulum which simultaneously takes into account both the anterior-posterior and medio-lateral strategies of hip and ankle. Four tri-axial accelerometers are used her, one accelerometer is placed on the platform, and the other three are attached to a human subject. Based on the results, the joint angle estimated compare closely to measurements from magnetic encoders placed on an articulated arm joint. The results were also comparable to those found when using a high-end optical motion capture system coupled with advanced biomechanical simulation software. This paper presents the comparisons of our accelerometer-based method with encoder and optical marker based method of the estimated joint angles under different dynamics perturbations. PMID:26338097

  4. Integrated smart actuator containing a monolithic coformed accelerometer

    NASA Astrophysics Data System (ADS)

    Corsaro, Robert D.; Houston, Brian H.; Klunder, Joseph D.

    1997-05-01

    A general need exists for inexpensive finite-area transducer arrays which intrinsically combine acoustic or vibration sensing with area actuation. Such combination transducers are particularly needed in active sound and vibration control and smart-materials applications. Commercial areas of interest include advanced underwater, aerospace or robotic-sensing applications. To be economically attractive they must be relatively simple to manufacture from reasonable cost materials. One promising new technology for such applications is injection-molded 1-3 composite piezo- ceramics, pioneered by Material Systems Inc. This transducer material is well suited for use as the low-cost actuator component of such a smart actuator. The challenge of this study was to design an inexpensive accelerometer which could be injection molded along with the actuator as an interspersed array. This paper describes a monolithic accelerometer which is suitable for fabrication by injection-molding as an integrated co-formed actuator component. Experimental results are presented for actuator/accelerometer arrays and issues related to the design and use of accelerometers in close proximity to an actuator are discussed.

  5. Micromachined low frequency rocking accelerometer with capacitive pickoff

    DOEpatents

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  6. Joint angle estimation with accelerometers for dynamic postural analysis.

    PubMed

    Ma, Jianting; Kharboutly, Haissam; Benali, Abderraouf; Benamar, Faïz; Bouzit, Mourad

    2015-10-15

    This paper presents a new accelerometer based method for estimating the posture of a subject standing on a dynamic perturbation platform. The induced perturbation is used to study the control mechanisms as well as the balance requirements that regulate the upright standing. These perturbations are translated into different intensity levels of speed and acceleration along longitudinal and lateral directions of motion. In our method, the human posture is modeled by a tridimensional, three-segment inverted pendulum which simultaneously takes into account both the anterior-posterior and medio-lateral strategies of hip and ankle. Four tri-axial accelerometers are used her, one accelerometer is placed on the platform, and the other three are attached to a human subject. Based on the results, the joint angle estimated compare closely to measurements from magnetic encoders placed on an articulated arm joint. The results were also comparable to those found when using a high-end optical motion capture system coupled with advanced biomechanical simulation software. This paper presents the comparisons of our accelerometer-based method with encoder and optical marker based method of the estimated joint angles under different dynamics perturbations.

  7. GPS-Based Reduced Dynamic Orbit Determination Using Accelerometer Data

    NASA Technical Reports Server (NTRS)

    VanHelleputte, Tom; Visser, Pieter

    2007-01-01

    Currently two gravity field satellite missions, CHAMP and GRACE, are equipped with high sensitivity electrostatic accelerometers, measuring the non-conservative forces acting on the spacecraft in three orthogonal directions. During the gravity field recovery these measurements help to separate gravitational and non-gravitational contributions in the observed orbit perturbations. For precise orbit determination purposes all these missions have a dual-frequency GPS receiver on board. The reduced dynamic technique combines the dense and accurate GPS observations with physical models of the forces acting on the spacecraft, complemented by empirical accelerations, which are stochastic parameters adjusted in the orbit determination process. When the spacecraft carries an accelerometer, these measured accelerations can be used to replace the models of the non-conservative forces, such as air drag and solar radiation pressure. This approach is implemented in a batch least-squares estimator of the GPS High Precision Orbit Determination Software Tools (GHOST), developed at DLR/GSOC and DEOS. It is extensively tested with data of the CHAMP and GRACE satellites. As accelerometer observations typically can be affected by an unknown scale factor and bias in each measurement direction, they require calibration during processing. Therefore the estimated state vector is augmented with six parameters: a scale and bias factor for the three axes. In order to converge efficiently to a good solution, reasonable a priori values for the bias factor are necessary. These are calculated by combining the mean value of the accelerometer observations with the mean value of the non-conservative force models and empirical accelerations, estimated when using these models. When replacing the non-conservative force models with accelerometer observations and still estimating empirical accelerations, a good orbit precision is achieved. 100 days of GRACE B data processing results in a mean orbit fit of

  8. Accelerometer method and apparatus for integral display and control functions

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1992-01-01

    Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily

  9. Geometry from Gauge Theory

    SciTech Connect

    Correa, Diego H.; Silva, Guillermo A.

    2008-07-28

    We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.

  10. Anomalous gauge boson couplings

    SciTech Connect

    Barklow, T.; Rizzo, T.; Baur, U.

    1997-01-13

    The measurement of anomalous gauge boson self couplings is reviewed for a variety of present and planned accelerators. Sensitivities are compared for these accelerators using models based on the effective Lagrangian approach. The sensitivities described here are for measurement of {open_quotes}generic{close_quotes} parameters {kappa}{sub V}, {lambda}{sub V}, etc., defined in the text. Pre-LHC measurements will not probe these coupling parameters to precision better than O(10{sup -1}). The LHC should be sensitive to better than O(10{sup -2}), while a future NLC should achieve sensitivity of O(10{sup -3}) to O(10{sup -4}) for center of mass energies ranging from 0.5 to 1.5 TeV.

  11. Quartic gauge boson couplings

    NASA Astrophysics Data System (ADS)

    He, Hong-Jian

    1998-08-01

    We review the recent progress in studying the anomalous electroweak quartic gauge boson couplings (QGBCs) at the LHC and the next generation high energy e±e- linear colliders (LCs). The main focus is put onto the strong electroweak symmetry breaking scenario in which the non-decoupling guarantees sizable new physics effects for the QGBCs. After commenting upon the current low energy indirect bounds and summarizing the theoretical patterns of QGBCs predicted by the typical resonance/non-resonance models, we review our systematic model-independent analysis on bounding them via WW-fusion and WWZ/ZZZ-production. The interplay of the two production mechanisms and the important role of the beam-polarization at the LCs are emphasized. The same physics may be similarly and better studied at a multi-TeV muon collider with high luminosity.

  12. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  13. String Theory and Gauge Theories

    SciTech Connect

    Maldacena, Juan

    2009-02-20

    We will see how gauge theories, in the limit that the number of colors is large, give string theories. We will discuss some examples of particular gauge theories where the corresponding string theory is known precisely, starting with the case of the maximally supersymmetric theory in four dimensions which corresponds to ten dimensional string theory. We will discuss recent developments in this area.

  14. Porous reduced graphene oxide membrane with enhanced gauge factor

    NASA Astrophysics Data System (ADS)

    Li, Jen-Chieh; Weng, Cheng-Hsi; Tsai, Fu-Cheng; Shih, Wen-Pin; Chang, Pei-Zen

    2016-01-01

    This paper shows that a porous structure for a reduced graphene oxide (rGO) membrane effectively enhances its gauge factor. A porous graphene-based membrane was synthesized in a liquid phase by combining a GO sheet with copper hydroxide nanostrands (CHNs). A chemical reduction treatment using L-ascorbic acid was utilized to simultaneously improve the conductivity of GO and remove the CHNs from each GO sheet. The intrinsic gauge factors of the porous rGO membrane with varying applied tensile strains were obtained and found to increase monotonically with the increased porosity of the rGO membrane. For a membrane porosity of 15.78%, the maximum gauge factor is 46.1 under an applied strain of less than 1%. The main mechanism behind the enhanced gauge factor is attributed to the structure of the porous rGO membrane. The relationships between the initial electrical resistance, tunneling distance, and gauge factor of the rGO membrane were found by adjusting the membrane porosity and the results completely confirmed the physical phenomena.

  15. Electroweak Vortices and Gauge Equivalence

    NASA Astrophysics Data System (ADS)

    MacDowell, Samuel W.; Törnkvist, Ola

    Vortex configurations in the electroweak gauge theory are investigated. Two gauge-inequivalent solutions of the field equations, the Z and W vortices, have previously been found. They correspond to embeddings of the Abelian Nielsen-Olesen vortex solution into a U(1) subgroup of SU(2)×U(1). It is shown here that any electroweak vortex solution can be mapped into a solution of the same energy with a vanishing upper component of the Higgs field. The correspondence is a gauge equivalence for all vortex solutions except those for which the winding numbers of the upper and lower Higgs components add to zero. This class of solutions, which includes the W vortex, corresponds to a singular solution in the one-component gauge. The results, combined with numerical investigations, provide an argument against the existence of other vortex solutions in the gauge-Higgs sector of the Standard Model.

  16. Otoconia as test masses in biological accelerometers: what can we learn about their formation from evolutionary studies and from work in microgravity?

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Donovan, K. M.

    1986-01-01

    This paper reviews previous findings and introduces new material about otolith end organs that help us to understand their functioning and development. In particular, we consider the end organs as biological accelerometers. The otoconia are dealt with as test masses whose substructure and evolutionary trend toward calcite may prove significant in understanding formation requirements. Space-flight helps illuminate the influence of gravity, while right-left asymmetry is suggested by study of certain rat strains.

  17. On recording sea surface elevation with accelerometer buoys: lessons from ITOP (2010)

    NASA Astrophysics Data System (ADS)

    Collins, Clarence O.; Lund, Björn; Waseda, Takuji; Graber, Hans C.

    2014-06-01

    Measurements of significant wave height are made routinely throughout the world's oceans, but a record of the sea surface elevation ( η) is rarely kept. This is mostly due to memory limitations on data, but also, it is thought that buoy measurements of sea surface elevation are not as accurate as wave gauges mounted on stationary platforms. Accurate records of η which contain rogue waves (defined here as an individual wave at least twice the significant wave height) are of great interest to scientists and engineers. Using field data, procedures for tilt correcting and double integrating accelerometer data to produce a consistent record of η are given in this study. The data in this study are from experimental buoys deployed in the recent Impact of Typhoons on the Ocean in the Pacific (ITOP) field experiment which occurred in 2010. The statistics from the ITOP buoys is under that predicted by Rayleigh theory, but matches the distributions of Boccotti and others (Tayfun and Fedele) (Ocean Eng 34:1631-1649, 2007). Rogue waves were recorded throughout the experiment under various sea state conditions. Recommendations, as a result of lessons learned during ITOP, are made for the routine recording of η which may not add significantly to the existing data burden. The hope is that we might one day collect a worldwide database of rogue waves from the existing buoy network, which would progress our understanding of the rogue wave phenomenon and make work at sea safer.

  18. Optical Abelian lattice gauge theories

    SciTech Connect

    Tagliacozzo, L.; Celi, A.; Zamora, A.; Lewenstein, M.

    2013-03-15

    We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4 Multiplication-Sign 4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. - Highlights: Black-Right-Pointing-Pointer We study the quantum simulation of dynamical gauge theories in optical lattices. Black-Right-Pointing-Pointer We focus on digital simulation of abelian lattice gauge theory. Black-Right-Pointing-Pointer We rediscover and discuss the puzzling phase diagram of gauge magnets. Black-Right-Pointing-Pointer We detail the protocol for time evolution and ground-state preparation in any phase. Black-Right-Pointing-Pointer We provide two experimental tests to validate gauge theory quantum simulators.

  19. A high and low noise model for strong motion accelerometers

    NASA Astrophysics Data System (ADS)

    Clinton, J. F.; Cauzzi, C.; Olivieri, M.

    2010-12-01

    We present reference noise models for high-quality strong motion accelerometer installations. We use continuous accelerometer data acquired by the Swiss Seismological Service (SED) since 2006 and other international high-quality accelerometer network data to derive very broadband (50Hz-100s) high and low noise models. The proposed noise models are compared to the Peterson (1993) low and high noise models designed for broadband seismometers; the datalogger self-noise; background noise levels at existing Swiss strong motion stations; and typical earthquake signals recorded in Switzerland and worldwide. The standard strong motion station operated by the SED consists of a Kinemetrics Episensor (2g clip level; flat acceleration response from 200 Hz to DC; <155dB dynamic range) coupled with a 24-bit Nanometrics Taurus datalogger. The proposed noise models are based on power spectral density (PSD) noise levels for each strong motion station computed via PQLX (McNamara and Buland, 2004) from several years of continuous recording. The 'Accelerometer Low Noise Model', ALNM, is dominated by instrument noise from the sensor and datalogger. The 'Accelerometer High Noise Model', AHNM, reflects 1) at high frequencies the acceptable site noise in urban areas, 2) at mid-periods the peak microseismal energy, as determined by the Peterson High Noise Model and 3) at long periods the maximum noise observed from well insulated sensor / datalogger systems placed in vault quality sites. At all frequencies, there is at least one order of magnitude between the ALNM and the AHNM; at high frequencies (> 1Hz) this extends to 2 orders of magnitude. This study provides remarkable confirmation of the capability of modern strong motion accelerometers to record low-amplitude ground motions with seismic observation quality. In particular, an accelerometric station operating at the ALNM is capable of recording the full spectrum of near source earthquakes, out to 100 km, down to M2. Of particular

  20. Gauge fields and inflation

    NASA Astrophysics Data System (ADS)

    Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.

    2013-07-01

    The isotropy and homogeneity of the cosmic microwave background (CMB) favors “scalar driven” early Universe inflationary models. However, gauge fields and other non-scalar fields are far more common at all energy scales, in particular at high energies seemingly relevant to inflation models. Hence, in this review we consider the role and consequences, theoretical and observational, that gauge fields can have during the inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main classes of models with gauge fields in the background, models which show violation of the cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of these models on the CMB and/or the primordial cosmic magnetic fields. Our discussions will be mainly focused on the inflation period, with only a brief discussion on the post inflationary (p)reheating era. Large field models: The initial value of the inflaton field is large, generically super-Planckian, and it rolls slowly down toward the potential minimum at smaller φ values. For instance, chaotic inflation is one of the representative models of this class. The typical potential of large-field models has a monomial form as V(φ)=V0φn. A simple analysis using the dynamical equations reveals that for number of e-folds Ne larger than 60, we require super-Planckian initial field values,5φ0>3M. For these models typically ɛ˜η˜Ne-1. Small field models: Inflaton field is initially small and slowly evolves toward the potential minimum at larger φ values. The small field models are characterized by the following potential V(φ)=V0(1-(), which corresponds to a Taylor expansion about the origin, but more realistic

  1. Gauge fields and inflation

    NASA Astrophysics Data System (ADS)

    Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.

    2013-07-01

    The isotropy and homogeneity of the cosmic microwave background (CMB) favors “scalar driven” early Universe inflationary models. However, gauge fields and other non-scalar fields are far more common at all energy scales, in particular at high energies seemingly relevant to inflation models. Hence, in this review we consider the role and consequences, theoretical and observational, that gauge fields can have during the inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main classes of models with gauge fields in the background, models which show violation of the cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of these models on the CMB and/or the primordial cosmic magnetic fields. Our discussions will be mainly focused on the inflation period, with only a brief discussion on the post inflationary (p)reheating era. Large field models: The initial value of the inflaton field is large, generically super-Planckian, and it rolls slowly down toward the potential minimum at smaller φ values. For instance, chaotic inflation is one of the representative models of this class. The typical potential of large-field models has a monomial form as V(φ)=V0φn. A simple analysis using the dynamical equations reveals that for number of e-folds Ne larger than 60, we require super-Planckian initial field values,5φ0>3M. For these models typically ɛ˜η˜Ne-1. Small field models: Inflaton field is initially small and slowly evolves toward the potential minimum at larger φ values. The small field models are characterized by the following potential V(φ)=V0(1-(), which corresponds to a Taylor expansion about the origin, but more realistic

  2. Gauge invariants and correlators in flavoured quiver gauge theories

    NASA Astrophysics Data System (ADS)

    Mattioli, Paolo; Ramgoolam, Sanjaye

    2016-10-01

    In this paper we study the construction of holomorphic gauge invariant operators for general quiver gauge theories with flavour symmetries. Using a characterisation of the gauge invariants in terms of equivalence classes generated by permutation actions, along with representation theory results in symmetric groups and unitary groups, we give a diagonal basis for the 2-point functions of holomorphic and anti-holomorphic operators. This involves a generalisation of the previously constructed Quiver Restricted Schur operators to the flavoured case. The 3-point functions are derived and shown to be given in terms of networks of symmetric group branching coefficients. The networks are constructed through cutting and gluing operations on the quivers.

  3. Optical accelerometer based on grating interferometer with phase modulation technique.

    PubMed

    Zhao, Shuangshuang; Zhang, Juan; Hou, Changlun; Bai, Jian; Yang, Guoguang

    2012-10-10

    In this paper, an optical accelerometer based on grating interferometer with phase modulation technique is proposed. This device architecture consists of a laser diode, a sensing chip and an optoelectronic processing circuit. The sensing chip is a sandwich structure, which is composed of a grating, a piezoelectric translator and a micromachined silicon structure consisting of a proof mass and four cantilevers. The detected signal is intensity-modulated with phase modulation technique and processed with a lock-in amplifier for demodulation. Experimental results show that this optical accelerometer has acceleration sensitivity of 619 V/g and high-resolution acceleration detection of 3 μg in the linear region. PMID:23052079

  4. Guidelines for Standardized Testing of Broadband Seismometers and Accelerometers

    USGS Publications Warehouse

    Hutt, Charles R.; Evans, John R.; Followill, Fred; Nigbor, Robert L.; Wielandt, Erhard

    2010-01-01

    Testing and specification of seismic and earthquake-engineering sensors and recorders has been marked by significant variations in procedures and selected parameters. These variations cause difficulty in comparing such specifications and test results. In July 1989, and again in May 2005, the U.S. Geological Survey hosted international pub-lic/private workshops with the goal of defining widely accepted guidelines for the testing of seismological inertial sensors, seismometers, and accelerometers. The Proceedings of the 2005 workshop have been published and include as appendix 6 the report of the 1989 workshop. This document represents a collation and rationalization of a single set of formal guidelines for testing and specifying broadband seismometers and accelerometers.

  5. A simple intensity modulation based fiber-optic accelerometer

    NASA Astrophysics Data System (ADS)

    Guozhen, Yao; Yongqian, Li; Zhi, Yang

    2016-05-01

    A fiber-optic accelerometer with simple structure and high performance based on intensity modulation is proposed. Using only a length of single mode fiber compressed by a cantilever, the intensity of reflected light is modulated by the vibration acceleration applied to it. The effects of the fiber location, the dimension parameters of the cantilever on frequency response and sensitivity are investigated. The experimental results demonstrate that the accelerometer has a flat frequency response over a 4700 Hz bandwidth and a sensitivity of 21.24 mV/g with a cantilever dimension of 30 × 8 × 1.6 mm3 and a distance of 5 mm between the fiber location and the suspended cantilever end; the coefficient of determination is better than 0.999. In addition, the effect of temperature and the stability of the sensing system are investigated.

  6. Magnetic torquer induced disturbing signals within GRACE accelerometer data

    NASA Astrophysics Data System (ADS)

    Peterseim, Nadja; Flury, Jakob; Schlicht, Anja

    2012-05-01

    The GRACE (Gravity Recovery And Climate Experiment) gravity field satellite mission was launched in 2002. Although many investigations have been carried out, not all disturbances and perturbations upon satellite instruments and sensors are resolved yet. In this work the issue of acceleration disturbances onboard of GRACE due to magnetic torquers is investigated and discussed. Each of the GRACE satellites is equipped with a three-axes capacitive accelerometer to measure non-gravitational forces acting on the spacecraft. We used 10 Hz Level 1a raw accelerometer data in order to determine the impact of electric current changes on the accelerometer. After reducing signals which are induced by highly dominating processes in the low frequency range, such as thermospheric drag and solar radiation pressure, which can easily be done by applying a high-pass filter, disturbing signals from onboard instruments such as thruster firing events or heater switch events need to be removed from the previously filtered data. Afterwards the spikes which are induced by the torquers can be very well observed. Spikes vary in amplitude with respect to an increasing or decreasing current used for magnetic torquers, and can be as large as 20 nm/s2. Furthermore, we were able to set up a model for the spikes of each scenario with which we were able to compute model spike time series. With these time series the spikes can successfully be removed from the 10 Hz raw accelerometer data. Spectral analysis of the time series reveal that an influence onto gravity field determination due to these effects is very unlikely, but can theoretically not be excluded.

  7. A New Force Balanced Accelerometer Using Tunneling Tip Position Sensing

    NASA Technical Reports Server (NTRS)

    Zavracky, P.; Hartley, F.; Sherman, N.; Warner, K.

    1993-01-01

    In this paper, we report the initial development of a single-axis bulk micromachined accelerometer. The device employs an electron tunneling tip as a position detector in a force feedback control system. Control electrodes are placed above and below the proof mass and act as electrostatic force plates. Using the force plates, the position of the proof mass relative to the tunneling tip can be controlled.

  8. Teaching elementary mechanics using a simple 'bubble tube' accelerometer

    NASA Astrophysics Data System (ADS)

    Bunker, C. A.

    1986-09-01

    Most people would probably like a direct-reading accelerometer which will give acceleration immediately and which may be used to confirm Newton's second law quickly and simply without the need for the excessive use of ticker timers. The article describes such an instrument for use in these experiments and in many others too: in particular, it enables what might be thought of as a revolutionary approach to circular motion.

  9. Use of three-dimensional accelerometers to evaluate behavioral changes in cattle experimentally infected with bovine viral diarrhea virus.

    PubMed

    Bayne, Jenna E; Walz, Paul H; Passler, Thomas; White, Brad J; Theurer, Miles E; van Santen, Edzard

    2016-06-01

    OBJECTIVE To assess the use of 3-D accelerometers to evaluate behavioral changes in cattle experimentally infected with a low-virulent strain of bovine viral diarrhea virus (BVDV). ANIMALS 20 beef steers (mean weight, 238 kg). PROCEDURES Calves were allocated to a BVDV (n = 10) or control (10) group. On day 0, calves in the BVDV group were inoculated with a low-virulent strain of BVDV (4 × 10(6) TCID50, intranasally), and calves in the control group were sham inoculated with BVDV-free medium (4 mL; intranasally). An accelerometer was affixed to the right hind limb of each calf on day -7 to record activity (lying, walking, and standing) continuously until 35 days after inoculation. Baseline was defined as days -7 to -1. Blood samples were collected at predetermined times for CBC, serum biochemical analysis, virus isolation, and determination of anti-BVDV antibody titers. RESULTS All calves in the BVDV group developed viremia and anti-BVDV antibodies but developed only subclinical or mild disease. Calves in the control group did not develop viremia or anti-BVDV antibodies. Mean time allocated to each activity did not differ significantly between the BVDV and control groups on any day except day 8, when calves in the BVDV group spent less time standing than the calves in the control group. Following inoculation, calves in both groups tended to spend more time lying and less time walking and standing than they did during baseline. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that behavioral data obtained by accelerometers could not distinguish calves subclinically infected with BVDV from healthy control calves. However, subtle changes in the behavior of the BVDV-infected calves were detected and warrant further investigation. PMID:27227496

  10. Dynamical Messengers for Gauge Mediation

    SciTech Connect

    Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2011-08-17

    We construct models of indirect gauge mediation where the dynamics responsible for breaking supersymmetry simultaneously generates a weakly coupled subsector of messengers. This provides a microscopic realization of messenger gauge mediation where the messenger and hidden sector fields are unified into a single sector. The UV theory is SQCD with massless and massive quarks plus singlets, and at low energies it flows to a weakly coupled quiver gauge theory. One node provides the primary source of supersymmetry breaking, which is then transmitted to the node giving rise to the messenger fields. These models break R-symmetry spontaneously, produce realistic gaugino and sfermion masses, and give a heavy gravitino.

  11. Gauge unification of fundamental forces

    NASA Astrophysics Data System (ADS)

    Salam, Abdus

    The following sections are included: * I. Fundamental Particles, Fundamental Forces, and Gauge Unification * II. The Emergence of Spontaneously Broken SU(2)×U(1) Gauge Theory * III. The Present and Its Problems * IV. Direct Extrapolation from the Electroweak to the Electronuclear * A. The three ideas * B. Tests of electronuclear grand unification * V. Elementarity: Unification with Gravity and Nature of Charge * A. The quest for elementarity, prequarks (preons and pre-preons * B. Post-Planck physics, supergravity, and Einstein's dreams * C. Extended supergravity, SU(8) preons, and composite gauge fields * Appendix A: Examples of Grand Unifying Groups * Appendix B: Does the Grand Plateau really exist * References

  12. Determination of gait events using an externally mounted shank accelerometer.

    PubMed

    Sinclair, Jonathan; Hobbs, Sarah J; Protheroe, Laurence; Edmundson, Christopher J; Greenhalgh, Andrew

    2013-02-01

    Biomechanical analysis requires the determination of specific foot contact events. This is typically achieved using force platform information; however, when force platforms are unavailable, alternative methods are necessary. A method was developed for the determination of gait events using an accelerometer mounted to the distal tibia, measuring axial accelerations. The aim of the investigation was to determine the efficacy of this method. Sixteen participants ran at 4.0 m/s ± 5%. Synchronized tibial accelerations and vertical ground reaction forces were sampled at 1000 Hz as participants struck a force platform with their dominant foot. Events determined using the accelerometer, were compared with the corresponding events determined using the force platform. Mean errors of 1.68 and 5.46 ms for average and absolute errors were observed for heel strike and of -3.59 and 5.00 ms for toe-off. Mean and absolute errors of 5.18 and 11.47 ms were also found for the duration of the stance phase. Strong correlations (r = .96) were also observed between duration of stance obtained using the two different methods. The error values compare favorably to other alternative methods of predicting gait events. This suggests that shank-mounted accelerometers can be used to accurately and reliably detect gait events.

  13. Huygens HASI servo accelerometer: A review and lessons learned

    NASA Astrophysics Data System (ADS)

    Hathi, B.; Ball, A. J.; Colombatti, G.; Ferri, F.; Leese, M. R.; Towner, M. C.; Withers, P.; Fulchigioni, M.; Zarnecki, J. C.

    2009-10-01

    The servo accelerometer constituted a vital part of the Huygens Atmospheric Structure Instrument (HASI): flown aboard the Huygens probe, it operated successfully during the probe's entry, descent, and landing on Titan, on 14th January 2005. This paper reviews the Servo accelerometer, starting from its development/assembly in the mid-1990s, to monitoring its technical performance through its seven-year long in-flight (or cruise) journey, and finally its performance in measuring acceleration (or deceleration) upon encountering Titan's atmosphere. The aim of this article is to review the design, ground tests, in-flight tests and operational performance of the Huygens servo accelerometer. Techniques used for data analysis and lessons learned that may be useful for accelerometry payloads on future planetary missions are also addressed. The main finding of this review is that the conventional approach of having multiple channels to cover a very broad measurement range: from 10 -6g to the order of 10 g (where g=Earth's surface gravity, 9.8 m/s 2), with on-board software deciding which of the channels to telemeter depending on the magnitude of the measured acceleration, works well. However, improvements in understanding the potential effects of the sensor drifts and ageing on the measurements can be achieved in future missions by monitoring the 'scale factor' - a measure of such sensors' sensitivity, along with the already implemented monitoring of the sensor's offset during the in-flight phase.

  14. Determination of gait events using an externally mounted shank accelerometer.

    PubMed

    Sinclair, Jonathan; Hobbs, Sarah J; Protheroe, Laurence; Edmundson, Christopher J; Greenhalgh, Andrew

    2013-02-01

    Biomechanical analysis requires the determination of specific foot contact events. This is typically achieved using force platform information; however, when force platforms are unavailable, alternative methods are necessary. A method was developed for the determination of gait events using an accelerometer mounted to the distal tibia, measuring axial accelerations. The aim of the investigation was to determine the efficacy of this method. Sixteen participants ran at 4.0 m/s ± 5%. Synchronized tibial accelerations and vertical ground reaction forces were sampled at 1000 Hz as participants struck a force platform with their dominant foot. Events determined using the accelerometer, were compared with the corresponding events determined using the force platform. Mean errors of 1.68 and 5.46 ms for average and absolute errors were observed for heel strike and of -3.59 and 5.00 ms for toe-off. Mean and absolute errors of 5.18 and 11.47 ms were also found for the duration of the stance phase. Strong correlations (r = .96) were also observed between duration of stance obtained using the two different methods. The error values compare favorably to other alternative methods of predicting gait events. This suggests that shank-mounted accelerometers can be used to accurately and reliably detect gait events. PMID:23462448

  15. Citizen sensors for SHM: use of accelerometer data from smartphones.

    PubMed

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-01

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications.

  16. Citizen sensors for SHM: use of accelerometer data from smartphones.

    PubMed

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-01

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications. PMID:25643056

  17. Optical Readout of Micro-Accelerometer Code Features

    SciTech Connect

    Dickey, Fred M.; Holswade, Scott C.; Polosky, Marc A.; Shagam, Richard N.; Sullivan, Charles T.

    1999-07-08

    Micromachine accelerometers offer a way to enable critical functions only when a system encounters a particular acceleration environment. This paper describes the optical readout of a surface micromachine accelerometer containing a unique 24-bit code. The readout uses waveguide-based optics, which are implemented as a photonic integrated circuit (PIC). The PIC is flip-chip bonded over the micromachine, for a compact package. The shuttle moves 500 {micro}m during readout, and each code element is 17 {micro}m wide. The particular readout scheme makes use of backscattered radiation from etched features in the accelerometer shuttle. The features are etched to create corner reflectors that return radiation back toward the source for a one bit. For a zero bit, the shuttle is not etched, and the radiation scatters forward, away from the detector. This arrangement provides a large signal difference between a one and zero signal, since the zero signal returns virtually no signal to the detector. It is thus superior to schemes that interrogate the code vertically, which have a limited contrast between a one and a zero. Experimental results are presented for mock shuttle features etched into a silicon substrate. To simulate the shuttle moving under a fixed PIC, a commercially available waveguide source was scanned over the mock code.

  18. Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones

    PubMed Central

    Feng, Maria; Fukuda, Yoshio; Mizuta, Masato; Ozer, Ekin

    2015-01-01

    Ubiquitous smartphones have created a significant opportunity to form a low-cost wireless Citizen Sensor network and produce big data for monitoring structural integrity and safety under operational and extreme loads. Such data are particularly useful for rapid assessment of structural damage in a large urban setting after a major event such as an earthquake. This study explores the utilization of smartphone accelerometers for measuring structural vibration, from which structural health and post-event damage can be diagnosed. Widely available smartphones are tested under sinusoidal wave excitations with frequencies in the range relevant to civil engineering structures. Large-scale seismic shaking table tests, observing input ground motion and response of a structural model, are carried out to evaluate the accuracy of smartphone accelerometers under operational, white-noise and earthquake excitations of different intensity. Finally, the smartphone accelerometers are tested on a dynamically loaded bridge. The extensive experiments show satisfactory agreements between the reference and smartphone sensor measurements in both time and frequency domains, demonstrating the capability of the smartphone sensors to measure structural responses ranging from low-amplitude ambient vibration to high-amplitude seismic response. Encouraged by the results of this study, the authors are developing a citizen-engaging and data-analytics crowdsourcing platform towards a smartphone-based Citizen Sensor network for structural health monitoring and post-event damage assessment applications. PMID:25643056

  19. Beyond the standard gauging: gauge symmetries of Dirac sigma models

    NASA Astrophysics Data System (ADS)

    Chatzistavrakidis, Athanasios; Deser, Andreas; Jonke, Larisa; Strobl, Thomas

    2016-08-01

    In this paper we study the general conditions that have to be met for a gauged extension of a two-dimensional bosonic σ-model to exist. In an inversion of the usual approach of identifying a global symmetry and then promoting it to a local one, we focus directly on the gauge symmetries of the theory. This allows for action functionals which are gauge invariant for rather general background fields in the sense that their invariance conditions are milder than the usual case. In particular, the vector fields that control the gauging need not be Killing. The relaxation of isometry for the background fields is controlled by two connections on a Lie algebroid L in which the gauge fields take values, in a generalization of the common Lie-algebraic picture. Here we show that these connections can always be determined when L is a Dirac structure in the H-twisted Courant algebroid. This also leads us to a derivation of the general form for the gauge symmetries of a wide class of two-dimensional topological field theories called Dirac σ-models, which interpolate between the G/G Wess-Zumino-Witten model and the (Wess-Zumino-term twisted) Poisson sigma model.

  20. A simple accurate chest-compression depth gauge using magnetic coils during cardiopulmonary resuscitation

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Sano, Yuko; Zhang, Yuhua; Tsuji, Toshio

    2015-12-01

    This paper describes a new method for calculating chest compression depth and a simple chest-compression gauge for validating the accuracy of the method. The chest-compression gauge has two plates incorporating two magnetic coils, a spring, and an accelerometer. The coils are located at both ends of the spring, and the accelerometer is set on the bottom plate. Waveforms obtained using the magnetic coils (hereafter, "magnetic waveforms"), which are proportional to compression-force waveforms and the acceleration waveforms were measured at the same time. The weight factor expressing the relationship between the second derivatives of the magnetic waveforms and the measured acceleration waveforms was calculated. An estimated-compression-displacement (depth) waveform was obtained by multiplying the weight factor and the magnetic waveforms. Displacements of two large springs (with similar spring constants) within a thorax and displacements of a cardiopulmonary resuscitation training manikin were measured using the gauge to validate the accuracy of the calculated waveform. A laser-displacement detection system was used to compare the real displacement waveform and the estimated waveform. Intraclass correlation coefficients (ICCs) between the real displacement using the laser system and the estimated displacement waveforms were calculated. The estimated displacement error of the compression depth was within 2 mm (<1 standard deviation). All ICCs (two springs and a manikin) were above 0.85 (0.99 in the case of one of the springs). The developed simple chest-compression gauge, based on a new calculation method, provides an accurate compression depth (estimation error < 2 mm).

  1. A simple accurate chest-compression depth gauge using magnetic coils during cardiopulmonary resuscitation.

    PubMed

    Kandori, Akihiko; Sano, Yuko; Zhang, Yuhua; Tsuji, Toshio

    2015-12-01

    This paper describes a new method for calculating chest compression depth and a simple chest-compression gauge for validating the accuracy of the method. The chest-compression gauge has two plates incorporating two magnetic coils, a spring, and an accelerometer. The coils are located at both ends of the spring, and the accelerometer is set on the bottom plate. Waveforms obtained using the magnetic coils (hereafter, "magnetic waveforms"), which are proportional to compression-force waveforms and the acceleration waveforms were measured at the same time. The weight factor expressing the relationship between the second derivatives of the magnetic waveforms and the measured acceleration waveforms was calculated. An estimated-compression-displacement (depth) waveform was obtained by multiplying the weight factor and the magnetic waveforms. Displacements of two large springs (with similar spring constants) within a thorax and displacements of a cardiopulmonary resuscitation training manikin were measured using the gauge to validate the accuracy of the calculated waveform. A laser-displacement detection system was used to compare the real displacement waveform and the estimated waveform. Intraclass correlation coefficients (ICCs) between the real displacement using the laser system and the estimated displacement waveforms were calculated. The estimated displacement error of the compression depth was within 2 mm (<1 standard deviation). All ICCs (two springs and a manikin) were above 0.85 (0.99 in the case of one of the springs). The developed simple chest-compression gauge, based on a new calculation method, provides an accurate compression depth (estimation error < 2 mm).

  2. Fractal calculus involving gauge function

    NASA Astrophysics Data System (ADS)

    Golmankhaneh, Alireza K.; Baleanu, Dumitru

    2016-08-01

    Henstock-Kurzweil integral or gauge integral is the generalization of the Riemann integral. The functions which are not integrable because of singularity in the senses of Lebesgue or Riemann are gauge integrable. In this manuscript, we have generalized Fα-calculus using the gauge integral method for the integrating of the functions on fractal set subset of real-line where they have singularities. The suggested new method leads to the wider class of functions on the fractal subset of real-line that are *Fα-integrable. Using gauge function we define *Fα-derivative of functions their Fα-derivative is not exist. The reported results can be used for generalizing the fundamental theorem of Fα-calculus.

  3. Sequestered gravity in gauge mediation

    NASA Astrophysics Data System (ADS)

    Antoniadis, Ignatios; Benakli, Karim; Quiros, Mariano

    2016-07-01

    We present a novel mechanism of supersymmetry breaking embeddable in string theory and simultaneously sharing the main advantages of (sequestered) gravity and gauge mediation. It is driven by a Scherk-Schwarz deformation along a compact extra dimension, transverse to a brane stack supporting the supersymmetric extension of the Standard Model. This fixes the magnitude of the gravitino mass, together with that of the gauginos of a bulk gauge group, at a scale as high as 10^{10} GeV. Supersymmetry breaking is mediated to the observable sector dominantly by gauge interactions using massive messengers transforming non-trivially under the bulk and Standard Model gauge groups and leading to a neutralino LSP as dark matter candidate. The Higgsino mass μ and soft Higgs-bilinear B_μ term could be generated at the same order of magnitude as the other soft terms by effective supergravity couplings as in the Giudice-Masiero mechanism.

  4. Comparison of Four Actigraph Accelerometers During Walking and Running

    PubMed Central

    John, Dinesh; Tyo, Brian; Bassett, David R.

    2009-01-01

    Currently, researchers can use the Actigraph 7164 or one of three different versions of the Actigraph GT1M to objectively measure physical activity. Purpose To determine if differences exist between activity counts from the Actigraph 7164 and the three versions of the GT1M at given walking and running speeds. Methods Ten male participants (23.6 ± 2.7 yrs) completed treadmill walking and running at ten different speeds (3-minute stages) while wearing either the Actigraph 7164 and the latest GT1M (GT1M-V3) or GT1M version one (GT1M-V1) and GT1M version two (GT1M-V2). Participants walked at 3, 5, and at 7 km˙hr−1 followed by running at 8, 10, 12, 14, 16, 18, and 20 km˙hr−1. The accelerometers were worn on an elastic belt around the waist over the left and right hips. Testing was performed on different days using a counterbalanced within-subjects design to account for potential differences attributable to accelerometer placement. At each speed, a one-way repeated measures ANOVA was used to examine differences between activity counts in counts˙min−1(cpm). Post-hoc pairwise comparisons with Bonferroni adjustments were used where appropriate. Results There were no significant differences between activity counts at any given walking or running speed (p<0.05). At all running speeds, activity counts from the Actigraph 7164 and GT1M-V2 displayed the lowest and highest values, respectively. Output from all accelerometers peaked at 14 km˙hr−1 (mean range: 8974 ± 677 to 9412 ± 982 cpm) and then gradually declined at higher speeds. The mean difference score at peak output between the Actigraph 7164 and GT1M-V2 was 439 ± 565 cpm. Conclusions There were no statistically significant differences between outputs from all the accelerometers indicating that researchers can select any of the four Actigraph accelerometers to do research. PMID:19927022

  5. Hard amplitudes in gauge theories

    SciTech Connect

    Parke, S.J.

    1991-03-01

    In this lecture series 1 presents recent developments in perturbation theory methods for gauge theories for processes with many partons. These techniques and results are useful in the calculation of cross sections for processes with many final state partons which have applications in the study of multi-jet phenomena in high-energy colliders. The results illuminate many important and interesting properties of non-abelian gauge theories. 30 refs., 9 figs.

  6. Very small ionization pressure gauge

    SciTech Connect

    Edwards, D. Jr.

    1982-01-01

    A very small ionization pressure gauge has been developed to operate in the pressure range 10/sup -6/ Torr to 100..mu... A metal construction and external cooling fins result in a very rugged device with exceptionally small outgassing properties. The gauge also incorporates a replaceable filament-grid assembly on a single plug which allows the simple replacement of both the filament and the grid when needed.

  7. 49 CFR 229.107 - Pressure gauge.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Pressure gauge. 229.107 Section 229.107....107 Pressure gauge. (a) Each steam generator shall have an illuminated steam gauge that correctly indicates the pressure. The steam pressure gauge shall be graduated to not less than one and one-half...

  8. 49 CFR 229.107 - Pressure gauge.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Pressure gauge. 229.107 Section 229.107....107 Pressure gauge. (a) Each steam generator shall have an illuminated steam gauge that correctly indicates the pressure. The steam pressure gauge shall be graduated to not less than one and one-half...

  9. 49 CFR 229.107 - Pressure gauge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Pressure gauge. 229.107 Section 229.107....107 Pressure gauge. (a) Each steam generator shall have an illuminated steam gauge that correctly indicates the pressure. The steam pressure gauge shall be graduated to not less than one and one-half...

  10. 49 CFR 229.107 - Pressure gauge.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Pressure gauge. 229.107 Section 229.107....107 Pressure gauge. (a) Each steam generator shall have an illuminated steam gauge that correctly indicates the pressure. The steam pressure gauge shall be graduated to not less than one and one-half...

  11. 49 CFR 229.107 - Pressure gauge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Pressure gauge. 229.107 Section 229.107....107 Pressure gauge. (a) Each steam generator shall have an illuminated steam gauge that correctly indicates the pressure. The steam pressure gauge shall be graduated to not less than one and one-half...

  12. 49 CFR 230.73 - Air gauges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Air gauges. 230.73 Section 230.73 Transportation... Signal Equipment § 230.73 Air gauges. (a) Location. Air gauges shall be so located that they may be conveniently read by the engineer from his or her usual position in the cab. No air gauge may be more than...

  13. 49 CFR 230.73 - Air gauges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Air gauges. 230.73 Section 230.73 Transportation... Signal Equipment § 230.73 Air gauges. (a) Location. Air gauges shall be so located that they may be conveniently read by the engineer from his or her usual position in the cab. No air gauge may be more than...

  14. 27 CFR 19.91 - Gauging.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., or wine shall be made in accordance with 27 CFR part 30 and as provided in this part. However, the... alcoholic flavoring materials be gauged by the methods provided in 27 CFR part 30. (Sec. 201, Pub. L. 85-859..., Wines Or Alcoholic Flavoring Materials § 19.91 Gauging. (a) Gauging of spirits and wine. Gauges shall...

  15. 49 CFR 230.73 - Air gauges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Air gauges. 230.73 Section 230.73 Transportation... Signal Equipment § 230.73 Air gauges. (a) Location. Air gauges shall be so located that they may be conveniently read by the engineer from his or her usual position in the cab. No air gauge may be more than...

  16. 49 CFR 230.43 - Gauge siphon.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.43 Gauge siphon. The steam gauge supply pipe shall have a siphon on it of ample capacity to prevent steam from entering the gauge. The supply pipe shall directly enter the boiler and be maintained...

  17. 49 CFR 230.43 - Gauge siphon.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.43 Gauge siphon. The steam gauge supply pipe shall have a siphon on it of ample capacity to prevent steam from entering the gauge. The supply pipe shall directly enter the boiler and be maintained...

  18. 49 CFR 230.43 - Gauge siphon.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.43 Gauge siphon. The steam gauge supply pipe shall have a siphon on it of ample capacity to prevent steam from entering the gauge. The supply pipe shall directly enter the boiler and be maintained...

  19. 49 CFR 230.43 - Gauge siphon.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.43 Gauge siphon. The steam gauge supply pipe shall have a siphon on it of ample capacity to prevent steam from entering the gauge. The supply pipe shall directly enter the boiler and be maintained...

  20. 49 CFR 230.43 - Gauge siphon.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.43 Gauge siphon. The steam gauge supply pipe shall have a siphon on it of ample capacity to prevent steam from entering the gauge. The supply pipe shall directly enter the boiler and be maintained...

  1. Accelerometer Adherence and Performance in a Cohort Study of US Hispanic Adults

    PubMed Central

    Evenson, Kelly R.; Sotres-Alvarez, Daniela; Deng, Yu; Marshall, Simon J.; Isasi, Carmen R.; Esliger, Dale W.; Davis, Sonia

    2014-01-01

    Purpose This study described participant adherence to wearing the accelerometer and accelerometer performance in a cohort study of adults. Methods From 2008-2011, 16,415 United States (US) Hispanic/Latino adults age 18-74 years enrolled in the Hispanic Community Health Study/Study of Latinos. Immediately following the baseline visit, participants wore an Actical accelerometer for one week. This study explored correlates of accelerometer participation and adherence, defined as wearing it for at least 3 of a possible days for >=10 hours/day. Accelerometer performance was assessed by exploring the number of different values of accelerometer counts/minute for each participant. Results Overall, 92.3% (n=15,153) had at least one day with accelerometer data and 77.7% (n=12,750) were adherent. Both accelerometer participation and adherence were higher among participants who were married or partnered, reported a higher household income, were first generation immigrants, or reported lower sitting time. Participation was also higher among those with no stair limitations. Adherence was higher among participants who were male, older, employed or retired, not US born, preferred Spanish over English, reported higher work activity or lower recreational activity, and those with a lower body mass index. Among the sample that met the adherence definition, the maximum recorded count/minute was 12,000, and there were a total of 5,846 different counts/minute. On average, participants had 112.5 different counts/minute over 6 days (median 106, interquartile range 91-122). The number of different counts/minute were higher among men, younger ages, normal weight, and those with higher accelerometer assessed physical activity. Conclusion Several correlates differed between accelerometer participation and adherence. These characteristics could be targeted in future studies to improve accelerometer wear. The performance of the accelerometer provided insight into creating a more accurate non

  2. Development of a quartz digital accelerometer for environmental sensing and navigation applications

    SciTech Connect

    Kass, W.J.; Vianco, P.T.

    1993-03-01

    A quartz digital accelerometer has been developed which uses double ended tuning forks as the active sensing elements. The authors have demonstrated the ability of this accelerometer to be capable of acceleration measurements between {+-}150G with {+-}0.5G accuracy. They have further refined the original design and assembly processes to produce accelerometers with < 1mG stability in inertial measurement applications. This report covers the development, design, processing, assembly, and testing of these devices.

  3. 46 CFR 154.1370 - Pressure gauge and vacuum gauge marking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Pressure gauge and vacuum gauge marking. 154.1370 Section 154.1370 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Instrumentation § 154.1370 Pressure gauge and vacuum gauge marking. Each pressure gauge and...

  4. 46 CFR 154.1370 - Pressure gauge and vacuum gauge marking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Pressure gauge and vacuum gauge marking. 154.1370 Section 154.1370 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Instrumentation § 154.1370 Pressure gauge and vacuum gauge marking. Each pressure gauge and...

  5. 46 CFR 154.1370 - Pressure gauge and vacuum gauge marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Pressure gauge and vacuum gauge marking. 154.1370 Section 154.1370 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Instrumentation § 154.1370 Pressure gauge and vacuum gauge marking. Each pressure gauge and...

  6. 46 CFR 154.1370 - Pressure gauge and vacuum gauge marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Pressure gauge and vacuum gauge marking. 154.1370 Section 154.1370 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Instrumentation § 154.1370 Pressure gauge and vacuum gauge marking. Each pressure gauge and...

  7. 46 CFR 154.1370 - Pressure gauge and vacuum gauge marking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pressure gauge and vacuum gauge marking. 154.1370 Section 154.1370 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Instrumentation § 154.1370 Pressure gauge and vacuum gauge marking. Each pressure gauge and...

  8. Development of inkjet printed strain sensors

    NASA Astrophysics Data System (ADS)

    Correia, V.; Caparros, C.; Casellas, C.; Francesch, L.; Rocha, J. G.; Lanceros-Mendez, S.

    2013-10-01

    Strain sensors with different architectures, such as single sensors, sensor arrays and a sensor matrix have been developed by inkjet printing technology. Sensors with gauge factors up to 2.48, dimensions of 1.5 mm × 1.8 mm and interdigitated structures with a distance of 30 μm between the finger lines have been achieved based on PeDOT (poly(3,4-ethylenedioxythiophene) and conductive ink. Strain gauges based on silver ink have also been achieved with a gauge factor of 0.35. Performance tests including 1000 mechanical cycles have been successfully carried out for the development of smart prosthesis applications.

  9. System Wide Joint Position Sensor Fault Tolerance in Robot Systems Using Cartesian Accelerometers

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    Joint position sensors are necessary for most robot control systems. A single position sensor failure in a normal robot system can greatly degrade performance. This paper presents a method to obtain position information from Cartesian accelerometers without integration. Depending on the number and location of the accelerometers. the proposed system can tolerate the loss of multiple position sensors. A solution technique suitable for real-time implementation is presented. Simulations were conducted using 5 triaxial accelerometers to recover from the loss of up to 4 joint position sensors on a 7 degree of freedom robot moving in general three dimensional space. The simulations show good estimation performance using non-ideal accelerometer measurements.

  10. Luminescent nanocrystal stress gauge

    PubMed Central

    Choi, Charina L.; Koski, Kristie J.; Olson, Andrew C. K.; Alivisatos, A. Paul

    2010-01-01

    Microscale mechanical forces can determine important outcomes ranging from the site of material fracture to stem cell fate. However, local stresses in a vast majority of systems cannot be measured due to the limitations of current techniques. In this work, we present the design and implementation of the CdSe-CdS core-shell tetrapod nanocrystal, a local stress sensor with bright luminescence readout. We calibrate the tetrapod luminescence response to stress and use the luminescence signal to report the spatial distribution of local stresses in single polyester fibers under uniaxial strain. The bright stress-dependent emission of the tetrapod, its nanoscale size, and its colloidal nature provide a unique tool that may be incorporated into a variety of micromechanical systems including materials and biological samples to quantify local stresses with high spatial resolution. PMID:21098301

  11. Interest of the MICROSTAR Accelerometer to improve the GRASP Mission.

    NASA Astrophysics Data System (ADS)

    Perrot, E.; Lebat, V.; Foulon, B.; Christophe, B.; Liorzou, F.; Huynh, P. A.

    2015-12-01

    The Geodetic Reference Antenna in Space (GRASP) is a micro satellite mission concept proposed by JPL to improve the definition of the Terrestrial Reference Frame (TRF). GRASP collocates GPS, SLR, VLBI, and DORIS sensors on a dedicated spacecraft in order to establish precise and stable ties between the key geodetic techniques used to define and disseminate the TRF. GRASP also offers a space-based reference antenna for the present and future Global Navigation Satellite Systems (GNSS). By taking advantage of the new testing possibilities offer by the catapult facility at the ZARM drop tower, the ONERA's space accelerometer team proposes an up-dated version, called MICROSTAR, of its ultra sensitive electrostatic accelerometers which have contributed to the success of the last Earth's gravity missions GRACE and GOCE. Built around a cubic proof-mass, it provides the 3 linear accelerations with a resolution better than 10-11 ms-2/Hz1/2 into a measurement bandwidth between 10-3 Hz and 0.1 Hz and the 3 angular accelerations about its 3 orthogonal axes with 5´10-10 rad.s-2/Hz1/2 resolution. Integrated at the centre of mass of the satellite, MICROSTAR improves the Precise Orbit Determination (POD) by accurate measurement of the non-gravitational force acting on the satellite. It offers also the possibility to calibrate the change in the position of the satellite center of mass with an accuracy better than 100 μm as demonstrated in the GRACE mission. Assuming a sufficiently rigid structure between the antennas and the accelerometer, its data can participate to reach the mission objective of 1 mm precision for the TRF position.

  12. Microgravity accelerometer characterization on Columbia STS-32 mission

    NASA Astrophysics Data System (ADS)

    Schoess, Jeff; Thomas, Don; Dunbar, Bonnie

    1992-05-01

    The Honeywell In-Space Accelerometer (HISA) is a three-axis microgravity accelerometer instrument package recently developed by Honeywell Systems and Research Center (SRC) to monitor oscillatory and transient accelerations onboard spacecraft and spaceborne structures. The HISA was designed to be co-located with materials and life sciences experiments to record real-time accelerometer event data, sampling time, and temperature. The HISA was originally developed to monitor the microgravity disturbances associated with a polymer morphology experiment developed by 3M Company in Minneapolis, Minnesota. The HISA was first flight tested with the 3M experiment on the Space Shuttle Atlantis STS-34 in October 1989. The HISA was successfully flown on a second shuttle mission (Columbia STS-32 in January 1990) in support of the NASA JSC-sponsored Microgravity Disturbances Experiment (MDE), which focused on the effects of microgravity disturbances on the growth of high-quality Indium crystals. The primary objective of the STS-32 MDE experiment was to investigate the effects of crew-induced gravity disturbances on the microstructure (crystal defects and uniformity of impurity distribution) of float-zone-grown crystals. The float-zone technique involves establishing a suspended molten zone between two cylindrical samples a pure, single-crystal sample and an impure, polycrystalline sample. Microgravity disturbances due to crew treadmill activity and orbiter maneuvering system thruster firings were sensed and recorded by the HISA to understand their effects on the stability of the float zone. The principle of operation of the HISA, the flight configuration of the HISA supporting the MDE experiment, and the characterization of STS-32 treadmill disturbance data are summarized.

  13. MEMS capacitive accelerometer-based middle ear microphone.

    PubMed

    Young, Darrin J; Zurcher, Mark A; Semaan, Maroun; Megerian, Cliff A; Ko, Wen H

    2012-12-01

    The design, implementation, and characterization of a microelectromechanical systems (MEMS) capacitive accelerometer-based middle ear microphone are presented in this paper. The microphone is intended for middle ear hearing aids as well as future fully implantable cochlear prosthesis. Human temporal bones acoustic response characterization results are used to derive the accelerometer design requirements. The prototype accelerometer is fabricated in a commercial silicon-on-insulator (SOI) MEMS process. The sensor occupies a sensing area of 1 mm × 1 mm with a chip area of 2 mm × 2.4 mm and is interfaced with a custom-designed low-noise electronic IC chip over a flexible substrate. The packaged sensor unit occupies an area of 2.5 mm × 6.2 mm with a weight of 25 mg. The sensor unit attached to umbo can detect a sound pressure level (SPL) of 60 dB at 500 Hz, 35 dB at 2 kHz, and 57 dB at 8 kHz. An improved sound detection limit of 34-dB SPL at 150 Hz and 24-dB SPL at 500 Hz can be expected by employing start-of-the-art MEMS fabrication technology, which results in an articulation index of approximately 0.76. Further micro/nanofabrication technology advancement is needed to enhance the microphone sensitivity for improved understanding of normal conversational speech.

  14. Distributed Computing and MEMS Accelerometers: The Quake Catcher Network

    NASA Astrophysics Data System (ADS)

    Lawrence, J. F.; Cochran, E. S.; Christensen, C.; Jakka, R. S.

    2008-12-01

    Recent advances in distributed computing provide exciting opportunities for seismic data collection. We are in the early stages of implementing a high density, low cost strong-motion network for rapid response and early warning by placing accelerometers in schools, homes, offices, government buildings, fire houses and more. The Quake Catcher Network (QCN) employs existing networked laptops and desktops to form a dense, distributed computing seismic network. Costs for this network are minimal because the QCN uses 1) strong motion sensors (accelerometers) already internal to many laptops and 2) low-cost universal serial bus (USB) accelerometers for use with desktops. The Berkeley Open Infrastructure for Network Computing (BOINC!) provides a free, proven paradigm for involving the public in large-scale computational research projects. The QCN leverages public participation to fully implement the seismic network. As such engaging the public to participate in seismic data collection is not only an integral part of the project, but an added value to the QCN. The software provides the client-user with a screen-saver displaying seismic data recorded on their laptop or recently detected earthquakes. Furthermore, this project installs sensors in K-12 classrooms as an educational tool for teaching science. Through a variety of interactive experiments students can learn about earthquakes and the hazards earthquakes pose. In the first six months of limited release of the QCN software, we successfully received triggers and waveforms from laptops near the M 4.7 April 25, 2008 earthquake in Reno, Nevada and the M 5.4 July 29, 2008 earthquake in Chino, California (as well as a few 3.6 and higher events). This fall we continued to expand the network further by installing seismometers in K-12 schools, museums, and government buildings in the greater Los Angeles basin and the San Francisco Bay Area. By summer 2009 we expect to have 1000 USB sensors deployed in California, in addition

  15. Piezoelectric Shaker Development for High Frequency Calibration of Accelerometers

    SciTech Connect

    Payne, Bev; Harper, Kari K.; Vogl, Gregory W.

    2010-05-28

    Calibration of vibration transducers requires sinusoidal motion over a wide frequency range with low distortion and low cross-axial motion. Piezoelectric shakers are well suited to generate such motion and are suitable for use with laser interferometric methods at frequencies of 3 kHz and above. An advantage of piezoelectric shakers is the higher achievable accelerations and displacement amplitudes as compared to electro-dynamic (ED) shakers. Typical commercial ED calibration shakers produce maximum accelerations from 100 m/s{sup 2} to 500 m/s{sup 2}. Very large ED shakers may produce somewhat higher accelerations but require large amplifiers and expensive cooling systems to dissipate heat. Due to the limitations in maximum accelerations by ED shakers at frequencies above 5 kHz, the amplitudes of the generated sinusoidal displacement are frequently below the resolution of laser interferometers used in primary calibration methods. This limits the usefulness of ED shakers in interferometric based calibrations at higher frequencies.Small piezoelectric shakers provide much higher acceleration and displacement amplitudes for frequencies above 5 kHz, making these shakers very useful for accelerometer calibrations employing laser interferometric measurements, as will be shown in this paper. These piezoelectric shakers have been developed and used at NIST for many years for high frequency calibration of accelerometers. This paper documents the construction and performance of a new version of these shakers developed at NIST for the calibration of accelerometers over the range of 3 kHz to 30 kHz and possibly higher. Examples of typical calibration results are also given.

  16. Microgravity accelerometer characterization on Columbia STS-32 mission

    NASA Technical Reports Server (NTRS)

    Schoess, Jeff; Thomas, Don; Dunbar, Bonnie

    1992-01-01

    The Honeywell In-Space Accelerometer (HISA) is a three-axis microgravity accelerometer instrument package recently developed by Honeywell Systems and Research Center (SRC) to monitor oscillatory and transient accelerations onboard spacecraft and spaceborne structures. The HISA was designed to be co-located with materials and life sciences experiments to record real-time accelerometer event data, sampling time, and temperature. The HISA was originally developed to monitor the microgravity disturbances associated with a polymer morphology experiment developed by 3M Company in Minneapolis, Minnesota. The HISA was first flight tested with the 3M experiment on the Space Shuttle Atlantis STS-34 in October 1989. The HISA was successfully flown on a second shuttle mission (Columbia STS-32 in January 1990) in support of the NASA JSC-sponsored Microgravity Disturbances Experiment (MDE), which focused on the effects of microgravity disturbances on the growth of high-quality Indium crystals. The primary objective of the STS-32 MDE experiment was to investigate the effects of crew-induced gravity disturbances on the microstructure (crystal defects and uniformity of impurity distribution) of float-zone-grown crystals. The float-zone technique involves establishing a suspended molten zone between two cylindrical samples a pure, single-crystal sample and an impure, polycrystalline sample. Microgravity disturbances due to crew treadmill activity and orbiter maneuvering system thruster firings were sensed and recorded by the HISA to understand their effects on the stability of the float zone. The principle of operation of the HISA, the flight configuration of the HISA supporting the MDE experiment, and the characterization of STS-32 treadmill disturbance data are summarized.

  17. ISA accelerometer onboard the Mercury Planetary Orbiter: error budget

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Lucchesi, David M.; Nozzoli, Sergio; Santoli, Francesco

    2007-03-01

    We have estimated a preliminary error budget for the Italian Spring Accelerometer (ISA) that will be allocated onboard the Mercury Planetary Orbiter (MPO) of the European Space Agency (ESA) space mission to Mercury named BepiColombo. The role of the accelerometer is to remove from the list of unknowns the non-gravitational accelerations that perturb the gravitational trajectory followed by the MPO in the strong radiation environment that characterises the orbit of Mercury around the Sun. Such a role is of fundamental importance in the context of the very ambitious goals of the Radio Science Experiments (RSE) of the BepiColombo mission. We have subdivided the errors on the accelerometer measurements into two main families: (i) the pseudo-sinusoidal errors and (ii) the random errors. The former are characterised by a periodic behaviour with the frequency of the satellite mean anomaly and its higher order harmonic components, i.e., they are deterministic errors. The latter are characterised by an unknown frequency distribution and we assumed for them a noise-like spectrum, i.e., they are stochastic errors. Among the pseudo-sinusoidal errors, the main contribution is due to the effects of the gravity gradients and the inertial forces, while among the random-like errors the main disturbing effect is due to the MPO centre-of-mass displacements produced by the onboard High Gain Antenna (HGA) movements and by the fuel consumption and sloshing. Very subtle to be considered are also the random errors produced by the MPO attitude corrections necessary to guarantee the nadir pointing of the spacecraft. We have therefore formulated the ISA error budget and the requirements for the satellite in order to guarantee an orbit reconstruction for the MPO spacecraft with an along-track accuracy of about 1 m over the orbital period of the satellite around Mercury in such a way to satisfy the RSE requirements.

  18. Highly stretchable miniature strain sensor for large dynamic strain measurement

    DOE PAGES

    Song, Bo; Yao, Shurong; Nie, Xu; Yu, Xun; Blecke, Jill

    2016-01-01

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages,more » as its gauge factor is 500 times of that of the conventional foil strain gages.« less

  19. Highly stretchable miniature strain sensor for large dynamic strain measurement

    SciTech Connect

    Song, Bo; Yao, Shurong; Nie, Xu; Yu, Xun; Blecke, Jill

    2016-01-01

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages, as its gauge factor is 500 times of that of the conventional foil strain gages.

  20. Rapid tremor frequency assessment with the iPhone accelerometer.

    PubMed

    Joundi, Raed A; Brittain, John-Stuart; Jenkinson, Ned; Green, Alexander L; Aziz, Tipu

    2011-05-01

    The physician is often seeking more efficient ways of performing patient assessments. Currently, measuring tremor frequency requires expensive and bulky equipment. We propose the use of the in-built accelerometer of the iPhone via the iSeismo application for rapid measurement of tremor frequency. We use this device in a series of 7 different tremor cases, and show that the frequency measurements on the iSeismo graph closely match the more sophisticated EMG analysis during tremor. This is a preliminary confirmation of the usefulness of this device in the clinical setting for quick assessment of the dominant frequency component in a variety of tremors. PMID:21300563

  1. Accelerometer Placement for the International Space Station Node Modal Test

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.

    1998-01-01

    Accelerometer location analysis for the modal survey test of the International Space Station Node is described. Three different approaches were utilized: (1) Guyan reduction; (2) Iterative Guyan reduction; and (3) The average driving point residue (ADPR) method. Both Guyan approaches worked well, but poor results were observed for the ADPR method. Although the iterative Guyan approach appears to provide the best set of sensor locations, it is intensive computationally, becoming impractical for large initial location sets. While this is computer dependent, it appears that initial sets larger than about 1500 degrees of freedom are impractical for the iterative technique.

  2. Quantum gauge theories from geometry

    NASA Astrophysics Data System (ADS)

    Galehouse, Daniel C.

    2006-03-01

    Geometrical theories have been developed to describe quantum interacting particles with full mathematical covariance. They possess a sophisticated gauge structure that derives from the fundamental properties of the geometry. These theories are all implicitly quantized and come in three known types: Weyl, non-compactified Kaluza-Klein, and, as presented here, Dirac. The spin one-half particle is a conformal wave in an eight dimensional Riemannian space. The coordinates transform locally as spinors and project into space time to give the known gravitational and electromagnetic forces. The gauge structure of the weak interactions appears as well, as in this space the electron transforms into a neutrino under hyper-rotations. The possibility of including the strong interactions and the corresponding gauge system is discussed.

  3. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  4. Self-modulating pressure gauge

    DOEpatents

    Edwards, D. Jr.; Lanni, C.P.

    1979-08-07

    An ion gauge is disclosed having a reduced x-ray limit and means for measuring that limit. The gauge comprises an ion gauge of the Bayard-Alpert type having a short collector and having means for varying the grid-collector voltage. The x-ray limit (i.e. the collector current resulting from x-rays striking the collector) may then be determined by the formula: I/sub x/ = ..cap alpha..I/sub l/ - I/sub h//..cap alpha.. - l where: I/sub x/ = x-ray limit, I/sub l/ and I/sub h/ = the collector current at the lower and higher grid voltage respectively; and, ..cap alpha.. = the ratio of the collector current due to positive ions at the higher voltage to that at the lower voltage.

  5. Dark coupling and gauge invariance

    SciTech Connect

    Gavela, M.B.; Honorez, L. Lopez; Rigolin, S. E-mail: llopezho@ulb.ac.be E-mail: stefano.rigolin@pd.infn.it

    2010-11-01

    We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.

  6. Interferometry with synthetic gauge fields

    SciTech Connect

    Anderson, Brandon M.; Taylor, Jacob M.; Galitski, Victor M.

    2011-03-15

    We propose a compact atom interferometry scheme for measuring weak, time-dependent accelerations. Our proposal uses an ensemble of dilute trapped bosons with two internal states that couple to a synthetic gauge field with opposite charges. The trapped gauge field couples spin to momentum to allow time-dependent accelerations to be continuously imparted on the internal states. We generalize this system to reduce noise and estimate the sensitivity of such a system to be S{approx}10{sup -7}(m/s{sup 2}/{radical}(Hz)).

  7. Machines for lattice gauge theory

    SciTech Connect

    Mackenzie, P.B.

    1989-05-01

    The most promising approach to the solution of the theory of strong interactions is large scale numerical simulation using the techniques of lattice gauge theory. At the present time, computing requirements for convincing calculations of the properties of hadrons exceed the capabilities of even the most powerful commercial supercomputers. This has led to the development of massively parallel computers dedicated to lattice gauge theory. This talk will discuss the computing requirements behind these machines, and general features of the components and architectures of the half dozen major projects now in existence. 20 refs., 1 fig.

  8. Renormalization in Coulomb gauge QCD

    SciTech Connect

    Andrasi, A.; Taylor, John C.

    2011-04-15

    Research Highlights: > The Hamiltonian in the Coulomb gauge of QCD contains a non-linear Christ-Lee term. > We investigate the UV divergences from higher order graphs. > We find that they cannot be absorbed by renormalization of the Christ-Lee term. - Abstract: In the Coulomb gauge of QCD, the Hamiltonian contains a non-linear Christ-Lee term, which may alternatively be derived from a careful treatment of ambiguous Feynman integrals at 2-loop order. We investigate how and if UV divergences from higher order graphs can be consistently absorbed by renormalization of the Christ-Lee term. We find that they cannot.

  9. Dynamics of gauge field inflation

    SciTech Connect

    Alexander, Stephon; Jyoti, Dhrubo; Kosowsky, Arthur; Marcianò, Antonino

    2015-05-05

    We analyze the existence and stability of dynamical attractor solutions for cosmological inflation driven by the coupling between fermions and a gauge field. Assuming a spatially homogeneous and isotropic gauge field and fermion current, the interacting fermion equation of motion reduces to that of a free fermion up to a phase shift. Consistency of the model is ensured via the Stückelberg mechanism. We prove the existence of exactly one stable solution, and demonstrate the stability numerically. Inflation arises without fine tuning, and does not require postulating any effective potential or non-standard coupling.

  10. Stream Gauges and Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Alsdorf, D. E.

    2010-12-01

    Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries

  11. Supersymmetric N=2 gauge theory with arbitrary gauge group

    NASA Astrophysics Data System (ADS)

    Kuchiev, Michael Yu.

    2010-10-01

    A new universal model to implement the Seiberg-Witten approach to low-energy properties of the supersymmetric N=2 gauge theory with an arbitrary compact simple gauge group, classical or exceptional, is suggested. It is based on the hyperelliptic curve, whose genus equals the rank of the gauge group. The weak and strong coupling limits are reproduced. The magnetic and electric charges of light dyons, which are present in the proposed model comply with recent predictions derived from the general properties of the theory. The discrete chiral symmetry is implemented, the duality condition is reproduced, and connections between monodromies at weak and strong coupling are established. It is found that the spectra of monopoles and dyons are greatly simplified when vectors representing the scalar and dual fields in the Cartan algebra are aligned along the Weyl vector. This general feature of the theory is used for an additional verification of the model. The model predicts the identical analytic structures of the coupling constants for the theories based on the SU(r+1) and Sp(2r) gauge groups.

  12. Improvement of the Gyocenter-Gauge (G-Gauge) algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Zhi; Qin, Hong

    2011-10-01

    The gyrocenter-gauge (g-gauge) algorithm was improved to simulate rf waves propagating in the three-dimensional sheared magnetic field. The conventional local gyro-center coordinate system (X , Y , Z , μ , θ , u) is constructed on the local magnetic field. When particle travel in a sheared magnetic field, the coordinates of particles must be transformed between different local coordinate systems. To avoid these transformation, a new geometric approach is developed to construct a global Cartesian gyro-center coordinate system (X , Y , Z ,vx ,vy ,vz) , where (X , Y , Z) is the coordinate of the gyro-center, and (vx ,vy ,vz) is the velocity of particle. In the g-gauge theory, the perturbation of distribution function, is obtained from the Lie derivative of gyro-center distribution function F along the perturbing vector field G. The evolution of the first order perturbed distribution contains a term LτLG F =L[τ, G] F , where τ is the Hamilton vector field of unperturbed world-line of particles. It is proved that vector field [τ , G] may be directly solved from the electromagnetic fields. In the improved algorithm, LG F is calculated by integrating along the unperturbed world-line. The improved g-gauge algorithm has been successfully applied to study the propagation and evolution of rf waves in three-dimensional inhomogeneous magnetic field.

  13. Assessment of Gait Kinetics Using Tri-Axial Accelerometers

    PubMed Central

    Fortune, Emma; Morrow, Melissa M. B.; Kaufman, Kenton R.

    2015-01-01

    Repeated durations of dynamic activity with high ground reaction forces (GRFs) and loading rates (LRs) can be beneficial to bone health. To fully characterize dynamic activity in relation to bone health, field-based measurements of gait kinetics are desirable to assess free-living lower-extremity loading. The study aims were to determine correlations of peak vertical GRF and peak vertical LR with ankle peak vertical accelerations, and of peak resultant GRF and peak resultant LR with ankle peak resultant accelerations and to compare them to correlations with tibia, thigh, and waist accelerations. GRF data were collected as ten healthy subjects (26 (19–34) years) performed 8–10 walking trials at velocities ranging from 0.19–3.05 m/s, wearing ankle, tibia, thigh, and waist accelerometers. While peak vertical accelerations of all locations were positively correlated with peak vertical GRF and LR (r2>0.53, P<0.001), ankle peak vertical accelerations were the most correlated (r2>0.75, P<0.001). All peak resultant accelerations were positively correlated with peak resultant GRF and LR (r2>0.57, P<0.001) with waist peak resultant acceleration being the most correlated (r2>0.70, P<0.001). The results suggest that ankle or waist accelerometers give the most accurate peak GRF and LR estimates and could be useful tools in relating physical activity to bone health. PMID:25010675

  14. Airbag accelerometer with a simple switched-capacitor readout ASIC

    NASA Astrophysics Data System (ADS)

    Tsugai, Masahiro; Hirata, Yoshiaki; Tanimoto, Koji; Usami, Teruo; Araki, Toru; Otani, Hiroshi

    1997-09-01

    A bulk micromachined capacitive accelerometer for airbag applications based on (110) silicon anisotropic KOH etching is presented. The sensor is a two-chip accelerometer that consists of a glass-silicon-glass stacked sense element and an interface ASIC containing an impedance converter for capacitance detection, an EPROM and DACs for digital trimming, and a self-test feature for diagnosis. A simple switched-capacitor readout circuit with DC offset error cancellation scheme is proposed as the impedance converter. The dependence of narrow gap etching, surface roughness, and uniformity of the groove depth on the KOH concentration are also investigated for the fabrication of the device, and it is shown that the etch rate of the plane intrinsically controls the depth of the narrow gap with a KOH concentration of over 30 wt. percent, and smooth surface and uniformity of groove depth are obtained at 40 wt. percent KOH. The nonlinearity of the output is about 1.5 percent FS. The temperature coefficient of sensitivity and the off-axis sensitivity are 150 ppm/degree C and 2 percent respectively. The dimensions of the sensor are 10.3 X 10.3 X 3 mm.

  15. Microelectromechanical Resonant Accelerometer Designed with a High Sensitivity.

    PubMed

    Zhang, Jing; Su, Yan; Shi, Qin; Qiu, An-Ping

    2015-01-01

    This paper describes the design and experimental evaluation of a silicon micro-machined resonant accelerometer (SMRA). This type of accelerometer works on the principle that a proof mass under acceleration applies force to two double-ended tuning fork (DETF) resonators, and the frequency output of two DETFs exhibits a differential shift. The dies of an SMRA are fabricated using silicon-on-insulator (SOI) processing and wafer-level vacuum packaging. This research aims to design a high-sensitivity SMRA because a high sensitivity allows for the acceleration signal to be easily demodulated by frequency counting techniques and decreases the noise level. This study applies the energy-consumed concept and the Nelder-Mead algorithm in the SMRA to address the design issues and further increase its sensitivity. Using this novel method, the sensitivity of the SMRA has been increased by 66.1%, which attributes to both the re-designed DETF and the reduced energy loss on the micro-lever. The results of both the closed-form and finite-element analyses are described and are in agreement with one another. A resonant frequency of approximately 22 kHz, a frequency sensitivity of over 250 Hz per g, a one-hour bias stability of 55 μg, a bias repeatability (1σ) of 48 μg and the bias-instability of 4.8 μg have been achieved. PMID:26633425

  16. Evolution of accelerometer methods for physical activity research.

    PubMed

    Troiano, Richard P; McClain, James J; Brychta, Robert J; Chen, Kong Y

    2014-07-01

    The technology and application of current accelerometer-based devices in physical activity (PA) research allow the capture and storage or transmission of large volumes of raw acceleration signal data. These rich data not only provide opportunities to improve PA characterisation, but also bring logistical and analytic challenges. We discuss how researchers and developers from multiple disciplines are responding to the analytic challenges and how advances in data storage, transmission and big data computing will minimise logistical challenges. These new approaches also bring the need for several paradigm shifts for PA researchers, including a shift from count-based approaches and regression calibrations for PA energy expenditure (PAEE) estimation to activity characterisation and EE estimation based on features extracted from raw acceleration signals. Furthermore, a collaborative approach towards analytic methods is proposed to facilitate PA research, which requires a shift away from multiple independent calibration studies. Finally, we make the case for a distinction between PA represented by accelerometer-based devices and PA assessed by self-report.

  17. GRACE KBR and Accelerometer Data Reduction and Calibration

    NASA Astrophysics Data System (ADS)

    Rowlands, D. D.; Luthcke, S. B.; Klosko, S. M.; Lemoine, F. G.; Williams, T. A.

    2004-12-01

    The Gravity Recovery And Climate Experiment (GRACE), launched on March 17, 2002, represents the state-of-the-art in geodetic observations of the static and time varying components of the Earth's geopotential field. The fundamental measurement used to observe gravity is the inter-satellite range and range rate between two coplanar, low altitude satellites obtained from a K-band ranging (KBR) system. In addition to the K-band ranging system, each satellite possess a SuperSTAR Accelerometer, a GPS receiver/antenna package, Star Cameras and a Laser Retro Reflector (LRR) to complete the compliment of science instruments. The GRACE project has now released two years of Level 1B data derived from the science instruments and sensors. An integral component of our time variable gravity research is the reduction, calibration and analyses of these Level 1B data. In particular we have analyzed several months of K-band ranging (KBR1B), accelerometry (ACC1B) and GPS navigation (GNAV1B) data. Accelerometer calibration and KBR data reduction methodology and results will be presented. We discuss the impact of these analyses on the recovery of time variable gravity.

  18. Applications of the ISA accelerometer for Moon exploration

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Peron, Roberto; Carmisciano, Cosmo

    2012-07-01

    The recent years have seen again the Moon as a target for exploration activities. The reasons for this new wave are manifold, from the knowledge of formation and evolution of the Moon towards its current state to the possibility of building a human settlement on its surface, with all the related issues of environment characterization, safety, resources, communication and navigation. The space agencies are planning future missions for Moon exploration, in particular they are defining the main science objectives and the core instruments to be used in the nodes intended for a future lunar network. The International Lunar Network (ILN) Core Instruments Working Group identified these core instruments, recommending a broadband seismometer as one of the most important. It will be presented a broadband seismometer that can be a suitable candidate for this purpose. The seismometer is based on the heritage experience from IAPS made in the ongoing development of the ISA (Italian Spring Accelerometer) accelerometer, for the ESA BepiColombo mission to Mercury, and in the know-how in the production of geophysical instrument owned by AGI srl, plus the experience of the INGV in the use of such instruments. The proposed instrument can be considered a possible candidate to be hosted both in NASA ILN and in ESA First Lunar Lander. The concept underlying this new instrument and its principal characteristics will be described, giving emphasis on the possible science return and operational scenarios.

  19. Surface Micromachined Silicon Carbide Accelerometers for Gas Turbine Applications

    NASA Technical Reports Server (NTRS)

    DeAnna, Russell G.

    1998-01-01

    A finite-element analysis of possible silicon carbide (SIC) folded-beam, lateral-resonating accelerometers is presented. Results include stiffness coefficients, acceleration sensitivities, resonant frequency versus temperature, and proof-mass displacements due to centripetal acceleration of a blade-mounted sensor. The surface micromachined devices, which are similar to the Analog Devices Inc., (Norwood, MA) air-bag crash detector, are etched from 2-pm thick, 3C-SiC films grown at 1600 K using atmospheric pressure chemical vapor deposition (APCVD). The substrate is a 500 gm-thick, (100) silicon wafer. Polysilicon or silicon dioxide is used as a sacrificial layer. The finite element analysis includes temperature-dependent properties, shape change due to volume expansion, and thermal stress caused by differential thermal expansion of the materials. The finite-element results are compared to experimental results for a SiC device of similar, but not identical, geometry. Along with changes in mechanical design, blade-mounted sensors would require on-chip circuitry to cancel displacements due to centripetal acceleration and improve sensitivity and bandwidth. These findings may result in better accelerometer designs for this application.

  20. Noise power spectral density of the Sundstrand QA-2000 accelerometer

    NASA Technical Reports Server (NTRS)

    Peters, Rex; Grindeland, David; Baugher, Charles R. (Editor)

    1990-01-01

    There are no good data on low frequency (less than 0.1 Hz) power spectral density (PSD) for the Q-Flex accelerometer. However, some preliminary stability measurements were made over periods of 12 to 24 hours and demonstrated stability less than 0.5 micro-g over greater than 12 hours. The test data appear to contain significant contributions from temperature variations at that level, so the true sensor contribution may be less than that. If what was seen could be construed as a true random process, it would correspond to about 0.1 micro-g rms over a bandwidth from 10(exp -5) Hz to about 1 Hz. Other studies of low frequency PSD in flexure accelerometers have indicated that material aging effects tend to approximate a first order Markhov process. If we combine such a model with the spectrum obtained at higher frequencies, it suggests the spectrum shown here as a conservative estimate of Q-Flex noise performance.

  1. A miniature high-resolution accelerometer utilizing electron tunneling

    NASA Technical Reports Server (NTRS)

    Rockstad, Howard K.; Kenny, T. W.; Reynolds, J. K.; Kaiser, W. J.; Vanzandt, T. R.; Gabrielson, Thomas B.

    1992-01-01

    New methods have been developed to implement high-resolution position sensors based on electron tunneling. These methods allow miniaturization while utilizing the position sensitivity of electron tunneling to give high resolution. A single-element tunneling accelerometer giving a displacement resolution of 0.002 A/sq rt Hz at 10 Hz, corresponding to an acceleration resolution of 5 x 10 exp -8 g/sq rt Hz, is described. A new dual-element tunneling structure which overcomes the narrow bandwidth limitations of a single-element structure is described. A sensor with an operating range of 5 Hz to 10 kHz, which can have applications as an acoustic sensor, is discussed. Noise is analyzed for fundamental thermal vibration of the suspended masses and is compared to electronic noise. It is shown that miniature tunnel accelerometers can achieve resolution such that thermal noise in the suspended masses is the dominant cause of the resolution limit. With a proof mass of order 100 mg, noise analysis predicts limiting resolutions approaching 10 exp -9 g/sq rt Hz in a 300 Hz band and 10 exp -8 g/sq rt Hz at 1 kHz.

  2. GRACE KBR and Accelerometer Data Reduction and Calibration

    NASA Technical Reports Server (NTRS)

    Rowlands, David D.; Lutheke, Scott B.; Klosko, Steven M.; Lemoine, Frank G.; Williams, Terry A.

    2004-01-01

    The Gravity Recovery and Climate Experiment (GRACE), launched on March 17, 2002, represents the state-of-the-art in geodetic observations of the static and time varying components of the Earth's geopotential field. The fundamental measurement used to observe gravity is the inter-satellite range and range rate between two coplanar, low altitude satellites obtained from a K-band ranging (KBR) system. In addition to the K-band ranging system, each satellite possess a Super-STAR Accelerometer, a GPS receiver/antenna package, Star Cameras and a Laser Retro Reflector (LRR) to complete the compliment of science instruments. The GRACE project has now released two years of Level 1B data derived from the science instruments and sensors. An integral component of our time variable gravity research is the reduction, calibration and analyses of these Level 1B data. In particular we have analyzed several months of K-band ranging (KBR1B), accelerometry (ACC1B) and GPS navigation (GNAV1B) data. Accelerometer calibration and KBR data reduction methodology and results will be presented. We discuss the impact of these analyses on the recovery of time variable gravity.

  3. Use of accelerometers to measure stress levels in shelter dogs.

    PubMed

    Jones, Sarah; Dowling-Guyer, Seana; Patronek, Gary J; Marder, Amy R; Segurson D'Arpino, Sheila; McCobb, Emily

    2014-01-01

    Stress can compromise welfare in any confined group of nonhuman animals, including those in shelters. However, an objective and practical method for assessing the stress levels of individual dogs housed in a shelter does not exist. Such a method would be useful for monitoring animal welfare and would allow shelters to measure the effectiveness of specific interventions for stress reduction. In this pilot study, activity levels were studied in 13 dogs using accelerometers attached to their collars. Behavioral stress scores as well as urinary and salivary cortisol levels were measured to determine if the dogs' activity levels while confined in the kennel correlated with behavioral and physiological indicators of stress in this population. The results indicated that the accelerometer could be a useful tool to study stress-related activity levels in dogs. Specific findings included a correlation between the salivary cortisol and maximum activity level (r = .62, p = .025) and a correlation between the urine cortisol-to-creatinine ratio and average activity level (r = .61, p = .028) among the study dogs. Further research is needed to better understand the complex relationship between stress and activity level among dogs in a kennel environment. PMID:24484308

  4. Microelectromechanical Resonant Accelerometer Designed with a High Sensitivity

    PubMed Central

    Zhang, Jing; Su, Yan; Shi, Qin; Qiu, An-Ping

    2015-01-01

    This paper describes the design and experimental evaluation of a silicon micro-machined resonant accelerometer (SMRA). This type of accelerometer works on the principle that a proof mass under acceleration applies force to two double-ended tuning fork (DETF) resonators, and the frequency output of two DETFs exhibits a differential shift. The dies of an SMRA are fabricated using silicon-on-insulator (SOI) processing and wafer-level vacuum packaging. This research aims to design a high-sensitivity SMRA because a high sensitivity allows for the acceleration signal to be easily demodulated by frequency counting techniques and decreases the noise level. This study applies the energy-consumed concept and the Nelder-Mead algorithm in the SMRA to address the design issues and further increase its sensitivity. Using this novel method, the sensitivity of the SMRA has been increased by 66.1%, which attributes to both the re-designed DETF and the reduced energy loss on the micro-lever. The results of both the closed-form and finite-element analyses are described and are in agreement with one another. A resonant frequency of approximately 22 kHz, a frequency sensitivity of over 250 Hz per g, a one-hour bias stability of 55 μg, a bias repeatability (1σ) of 48 μg and the bias-instability of 4.8 μg have been achieved. PMID:26633425

  5. High-Resolution Analysis and Modeling of GRACE Accelerometer Observations

    NASA Astrophysics Data System (ADS)

    Flury, J.; Bettadpur, S.; Tapley, B. D.

    2007-12-01

    A better understanding and modeling of high-resolution GRACE accelerometer data serves three purposes: (1) to ensure that the best possible data are used in the GRACE gravity field processing, (2) to obtain precise and clean non-gravitational accelerations for aeronomy research, and (3) to understand and quantify disturbances which may play a role for future space-borne accelerometry. The external non-gravitational forces acting on the twin GRACE satellites are superimposed by a complex signal pattern of satellite-induced effects, originating from switching events in electrical circuits of on-board heaters and magnetic torquers, from vibrations and thruster accelerations. For each of these processes, we compared and averaged 10 Hz acceleration signals from a large number of events from long accelerometer time series. The analysis results provide constraints, e.g., on thrust accuracy, misalignments, and vibration frequencies. These constraints may help to understand the underlying physics. We modeled and reduced acceleration signals due to thrusters and heater switching and obtained considerably smoother and cleaner signals of external non-gravitational accelerations which may be useful for applications in aeronomy research.

  6. Shock margin testing of a one-axis MEMS accelerometer.

    SciTech Connect

    Parson, Ted Blair; Tanner, Danelle Mary; Buchheit, Thomas Edward

    2008-07-01

    Shock testing was performed on a selected commercial-off-the-shelf - MicroElectroMechanical System (COTS-MEMS) accelerometer to determine the margin between the published absolute maximum rating for shock and the 'measured' level where failures are observed. The purpose of this testing is to provide baseline data for isolating failure mechanisms under shock and environmental loading in a representative device used or under consideration for use within systems and assemblies of the DOD/DOE weapons complex. The specific device chosen for this study was the AD22280 model of the ADXL78 MEMS Accelerometer manufactured by Analog Devices Inc. This study focuses only on the shock loading response of the device and provides the necessary data for adding influence of environmental exposure to the reliability of this class of devices. The published absolute maximum rating for acceleration in any axis was 4000 G for this device powered or unpowered. Results from this study showed first failures at 8000 G indicating a margin of error of two. Higher shock level testing indicated that an in-plane, but off-axis acceleration was more damaging than one in the sense direction.

  7. Applying macro design tools to the design of MEMS accelerometers

    SciTech Connect

    Davies, B.R.; Rodgers, M.S.; Montague, S.

    1998-02-01

    This paper describes the design of two different surface micromachined (MEMS) accelerometers and the use of design and analysis tools intended for macro sized devices. This work leverages a process for integrating both the micromechanical structures and microelectronics circuitry of a MEMS accelerometer on the same chip. In this process, the mechanical components of the sensor are first fabricated at the bottom of a trench etched into the wafer substrate. The trench is then filled with oxide and sealed to protect the mechanical components during subsequent microelectronics processing. The wafer surface is then planarized in preparation for CMOS processing. Next, the CMOS electronics are fabricated and the mechanical structures are released. The mechanical structure of each sensor consists of two polysilicon plate masses suspended by multiple springs (cantilevered beam structures) over corresponding polysilicon plates fixed to the substrate to form two parallel plate capacitors. One polysilicon plate mass is suspended using compliant springs forming a variable capacitor. The other polysilicon plate mass is suspended using very stiff springs acting as a fixed capacitor. Acceleration is measured by comparing the variable capacitance with the fixed capacitance during acceleration.

  8. A statistical test to determine the quality of accelerometer data.

    PubMed

    Slaven, J E; Andrew, M E; Violanti, J M; Burchfiel, C M; Vila, B J

    2006-04-01

    Accelerometer data quality can be inadequate due to data corruption or to non-compliance of the subject with regard to study protocols. We propose a simple statistical test to determine if accelerometer data are of good quality and can be used for analysis or if the data are of poor quality and should be discarded. We tested several data evaluation methods using a group of 105 subjects who wore Motionlogger actigraphs (Ambulatory Monitoring, Inc.) over a 15 day period to assess sleep quality in a study of health outcomes associated with stress among police officers. Using leave-one-out cross-validation and calibration-testing methods of discrimination statistics, error rates for the methods ranged from 0.0167 to 0.4046. We found that the best method was to use the overall average distance between consecutive time points and the overall average mean amplitude of consecutive time points. These values gave us a classification error rate of 0.0167. The average distance between points is a measure of smoothness in the data, and the average mean amplitude between points gave an average reading. Both of these values were then normed to determine a final statistic, K, which was then compared to a cut-off value, K(C), to determine data quality.

  9. Free fall tests of the accelerometers of the MICROSCOPE mission

    NASA Astrophysics Data System (ADS)

    Liorzou, F.; Boulanger, D.; Rodrigues, M.; Touboul, P.; Selig, H.

    2014-09-01

    The MICROSCOPE mission is fully dedicated to the in-orbit test of the Universality of free fall, the so-called Weak Equivalence Principle (WEP), with an expected accuracy better than 10-15. The test principle consists in comparing the accelerations of two proof masses of different composition in the Earth gravitational field. The payload embarks two pairs of test-masses made of Platinum Rhodium and Titanium alloys at the core of two dedicated coaxial electrostatic accelerometers. These instruments are under qualification for a launch in 2016. Their operations are only possible in microgravity environment which makes its validation on ground a real issue. In Europe, only the drop tower of the ZARM Institute provides a facility for experiments under conditions of weightlessness and offers the experimental conditions to verify the correct functioning of the MICROSCOPE payload. The height of the tower limits the “free fall” experiment period to 4.72 s. Under this strong constraint, the demonstration of the capability to control the test masses of the two coaxial electrostatic accelerometers is challenging. This paper describes the complete experimental set up and in which condition the test has been performed, then an analysis of a drop result is given with its interpretations.

  10. A new z-axis resonant micro-accelerometer based on electrostatic stiffness.

    PubMed

    Yang, Bo; Wang, Xingjun; Dai, Bo; Liu, Xiaojun

    2015-01-05

    Presented in the paper is the design, the simulation, the fabrication and the experiment of a new z-axis resonant accelerometer based on the electrostatic stiffness. The new z-axis resonant micro-accelerometer, which consists of a torsional accelerometer and two plane resonators, decouples the sensing movement of the accelerometer from the oscillation of the plane resonators by electrostatic stiffness, which will improve the performance. The new structure and the sensitive theory of the acceleration are illuminated, and the equation of the scale factor is deduced under ideal conditions firstly. The Ansys simulation is implemented to verify the basic principle of the torsional accelerometer and the plane resonator individually. The structure simulation results prove that the effective frequency of the torsional accelerometer and the plane resonator are 0.66 kHz and 13.3 kHz, respectively. Then, the new structure is fabricated by the standard three-mask deep dry silicon on glass (DDSOG) process and encapsulated by parallel seam welding. Finally, the detecting and control circuits are designed to achieve the closed-loop self-oscillation, to trace the natural frequency of resonator and to measure the system frequency. Experimental results show that the new z-axis resonant accelerometer has a scale factor of 31.65 Hz/g, a bias stability of 727 µg and a dynamic range of over 10 g, which proves that the new z-axis resonant micro-accelerometer is practicable.

  11. Low Frequency Noise Measurement and Analysis of Capacitive Micro-Accelerometers: Temperature Effect

    NASA Astrophysics Data System (ADS)

    Mohd-Yasin, Faisal; Nagel, David J.; Ong, D. S.; Korman, Can E.; Chuah, H. T.

    2008-06-01

    A noise measurements of micro-accelerometers were performed using a special measurement system. A common spectral behavior of noise is found, with 1/ f noise dominating at low frequencies and white thermal noise being the limiting factor at higher frequencies. A temperature dependent and an acceleration dependant of the noise are found in the accelerometers, in agreement and contract of the theories, respectively.

  12. Optimal GPS/accelerometer integration algorithm for monitoring the vertical structural dynamics

    NASA Astrophysics Data System (ADS)

    Meng, Xiaolin; Wang, Jian; Han, Houzeng

    2014-11-01

    The vertical structural dynamics is a crucial factor for structural health monitoring (SHM) of civil structures such as high-rise buildings, suspension bridges and towers. This paper presents an optimal GPS/accelerometer integration algorithm for an automated multi-sensor monitoring system. The closed loop feedback algorithm for integrating the vertical GPS and accelerometer measurements is proposed based on a 5 state extended KALMAN filter (EKF) and then the narrow moving window Fast Fourier Transform (FFT) analysis is applied to extract structural dynamics. A civil structural vibration is simulated and the analysed result shows the proposed algorithm can effectively integrate the online vertical measurements produced by GPS and accelerometer. Furthermore, the accelerometer bias and scale factor can also be estimated which is impossible with traditional integration algorithms. Further analysis shows the vibration frequencies detected in GPS or accelerometer are all included in the integrated vertical defection time series and the accelerometer can effectively compensate the short-term GPS outages with high quality. Finally, the data set collected with a time synchronised and integrated GPS/accelerometer monitoring system installed on the Nottingham Wilford Bridge when excited by 15 people jumping together at its mid-span are utilised to verify the effectiveness of this proposed algorithm. Its implementations are satisfactory and the detected vibration frequencies are 1.720 Hz, 1.870 Hz, 2.104 Hz, 2.905 Hz and also 10.050 Hz, which is not found in GPS or accelerometer only measurements.

  13. Assessing Physical Activity in Children with Asthma: Convergent Validity between Accelerometer and Electronic Diary Data

    ERIC Educational Resources Information Center

    Floro, Josh N.; Dunton, Genevieve F.; Delfino, Ralph J.

    2009-01-01

    Convergent validity of accelerometer and electronic diary physical activity data was assessed in children with asthma. Sixty-two participants, ages 9-18 years, wore an accelerometer and reported their physical activity level in quarter-hour segments every 2 hr using the Ambulatory Diary Assessment (ADA). Moderate validity was found between…

  14. Decision boundaries and receiver operating characteristic curves: New methods for determining accelerometer cutpoints

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We propose and evaluate the utility of an alternative method (decision boundaries) for establishing physical activity intensity-related accelerometer cutpoints. Accelerometer data collected from 76 11- to 14-year-old boys during controlled bouts of moderate- and vigorous-intensity field physical act...

  15. Meteorology Gauges for Spatial Interferometry

    NASA Technical Reports Server (NTRS)

    Gursel, Y.

    1996-01-01

    Heterodyne interferometers have been commercially available for many years. In addition, many versions have been built at JPL for various projects. This activity is aimed at improving the accuracy of such interferometers from the 1-30 nanometer level to the picometer level for use in the proposes Stellar Interferometry Mission (SIM) as metrology gauges.

  16. Gauge fields, nonlinear realizations, supersymmetry

    NASA Astrophysics Data System (ADS)

    Ivanov, E. A.

    2016-07-01

    This is a brief survey of the all-years research activity in the Sector "Supersymmetry" (the former Markov Group) at the Bogoliubov Laboratory of Theoretical Physics. The focus is on the issues related to gauge fields, spontaneously broken symmetries in the nonlinear realizations approach, and diverse aspects of supersymmetry.

  17. Bakeable McLeod gauge

    NASA Technical Reports Server (NTRS)

    Kreisman, W. S. (Inventor)

    1965-01-01

    A low pressure gauge of the McLeod type demonstrating superior performance and measuring characteristics is described. A mercury reservoir which is kept in a vacuum at all times as well as bakeable glass components to reduce contamination are featured.

  18. Gauged multisoliton baby Skyrme model

    NASA Astrophysics Data System (ADS)

    Samoilenka, A.; Shnir, Ya.

    2016-03-01

    We present a study of U (1 ) gauged modification of the 2 +1 -dimensional planar Skyrme model with a particular choice of the symmetry breaking potential term which combines a short-range repulsion and a long-range attraction. In the absence of the gauge interaction, the multisolitons of the model are aloof, as they consist of the individual constituents which are well separated. A peculiar feature of the model is that there are usually several different stable static multisoliton solutions of rather similar energy in a topological sector of given degree. We investigate the pattern of the solutions and find new previously unknown local minima. It is shown that coupling of the aloof planar multi-Skyrmions to the magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, their energies, and magnetic fluxes on the strength of the gauge coupling. It is found that, generically, in the strong coupling limit, the coupling to the gauge field results in effective recovery of the rotational invariance of the configuration.

  19. High shock, high frequency characteristics of a mechanical isolator for a piezoresistive accelerometer

    SciTech Connect

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1995-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories. An Extended Technical Assistance Program with the accelerometer manufacturer has resulted in a commercial isolator that will be available to the general public. This mechanical isolator has ten times the bandwidth of any other commercial isolator and has acceptable frequency domain performance from DC to 10 kHz ({plus_minus} 10%) over a temperature range of -65{degrees}F to +185{degrees}F as demonstrated in this paper.

  20. Physiological acoustic sensing based on accelerometers: a survey for mobile healthcare.

    PubMed

    Hu, Yating; Kim, Eric Guorui; Cao, Gang; Liu, Sheng; Xu, Yong

    2014-11-01

    This paper reviews the applications of accelerometers on the detection of physiological acoustic signals such as heart sounds, respiratory sounds, and gastrointestinal sounds. These acoustic signals contain a rich reservoir of vital physiological and pathological information. Accelerometer-based systems enable continuous, mobile, low-cost, and unobtrusive monitoring of physiological acoustic signals and thus can play significant roles in the emerging mobile healthcare. In this review, we first briefly explain the operation principle of accelerometers and specifications that are important for mobile healthcare. Applications of accelerometer-based monitoring systems are then presented. Next, we review a variety of accelerometers which have been reported in literatures for physiological acoustic sensing, including both commercial products and research prototypes. Finally, we discuss some challenges and our vision for future development. PMID:25234130

  1. Supersymmetric composite gauge fields with compensators

    NASA Astrophysics Data System (ADS)

    Nishino, Hitoshi; Rajpoot, Subhash

    2016-06-01

    We study supersymmetric composite gauge theory, supplemented with compensator mechanism. As our first example, we give the formulation of N = 1 supersymmetric non-Abelian composite gauge theory without the kinetic term of a non-Abelian gauge field. The important ingredient is the Proca-Stueckelberg-type compensator scalar field that makes the gauge-boson field equation non-singular, i.e., the field equation can be solved for the gauge field algebraically as a perturbative expansion. As our second example, we perform the gauging of chiral-symmetry for N = 1 supersymmetry in four dimensions by a composite gauge field. These results provide supporting evidence for the consistency of the mechanism that combines the composite gauge field formulations and compensator formulations, all unified under supersymmetry.

  2. Inter-comparison of automatic rain gauges

    NASA Technical Reports Server (NTRS)

    Nystuen, Jeffrey A.

    1994-01-01

    The Ocean Acoustics Division (OAD) of the Atlantic Oceanographic and Meteorological Laboratory (AOML), in cooperation with NOAA/NESDIS and NASA, has deployed six rain gauges for calibration and intercomparison purposes. These instruments include: (1) a weighing rain gauge, (2) a RM Young Model 50202 capacitance rain gauge, (3) a ScTI ORG-705 (long path) optical rain gauge, (4) a ScTI ORG-105 (mini-ORG) optical rain gauge, (5) a Belfort Model 382 tipping bucket rain gauge, and (6) a Distromet RD-69 disdrometer. The system has been running continuously since July 1993. During this time period, roughly 150 events with maximum rainfall rate over 10 mm/hr and 25 events with maximum rainfall rates over 100 mm/hr have been recorded. All rain gauge types have performed well, with intercorrelations 0.9 or higher. However, limitations for each type of rain gauge have been observed.

  3. Multi-step contrast sensitivity gauge

    SciTech Connect

    Quintana, Enrico C; Thompson, Kyle R; Moore, David G; Heister, Jack D; Poland, Richard W; Ellegood, John P; Hodges, George K; Prindville, James E

    2014-10-14

    An X-ray contrast sensitivity gauge is described herein. The contrast sensitivity gauge comprises a plurality of steps of varying thicknesses. Each step in the gauge includes a plurality of recesses of differing depths, wherein the depths are a function of the thickness of their respective step. An X-ray image of the gauge is analyzed to determine a contrast-to-noise ratio of a detector employed to generate the image.

  4. Development of a long-gauge vibration sensor

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.; Li, Qian; Zhang, Yiwei

    2014-11-01

    Recently, we found that by terminating a long length of fiber of up to 1 km with an in-fiber cavity structure, the entire structure can detect vibrations over a frequency range from 5 Hz to 100 Hz. We want to determine whether the structure (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to the maintenance cost. Similarly, it will help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that will require the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Then, at even higher frequencies, the structure can be useful to detect acoustic vibrations (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large reenforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed long-gauge vibration sensor depends on packaging.

  5. Development of a long-gauge vibration sensor

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Recently, we found that by terminating a long length of fiber of up to 2 km with an in-fiber cavity structure, the entire structure can detect vibrations over a frequency range from 5 Hz to 100 Hz. We want to determine whether the structure (including packaging) can be optimized to detect vibrations at even higher frequencies. The structure can be used as a distributed vibration sensor mounted on large motors and other rotating machines to capture the entire frequency spectrum of the associated vibration signals, and therefore, replace the many accelerometers, which add to the maintenance cost. Similarly, it will help detect in-slot vibrations which cause intermittent contact leading to sparking under high voltages inside air-cooled generators. However, that will require the sensor to detect frequencies associated with vibration sparking, ranging from 6 kHz to 15 kHz. Then, at even higher frequencies, the structure can be useful to detect acoustic vibrations (30 kHz to 150 kHz) associated with partial discharge (PD) in generators and transformers. Detecting lower frequencies in the range 2 Hz to 200 Hz makes the sensor suitable for seismic studies and falls well into the vibrations associated with rotating machines. Another application of interest is corrosion detection in large re-enforced concrete structures by inserting the sensor along a long hole drilled around structures showing signs of corrosion. The frequency response for the proposed long-gauge vibration sensor depends on packaging.

  6. Gauge Configurations for Lattice QCD from The Gauge Connection

    DOE Data Explorer

    The Gauge Connection is an experimental archive for lattice QCD and a repository of gauge configurations made freely available to the community. Contributors to the archive include the Columbia QCDSP collaboration, the MILC collaboration, and others. Configurations are stored in QCD archive format, consisting of an ASCII header which defines various parameters, followed by binary data. NERSC has also provided some utilities and examples that will aid users in handling the data. Users may browse the archive, but are required to register for a password in order to download data. Contents of the archive are organized under four broad headings: Quenched (more than 1200 configurations); Dynamical, Zero Temperature (more than 300 configurations); MILC Improved Staggered Asqtad Lattices (more than 7000 configurations); and Dynamical, Finite Temperature (more than 1200 configurations)

  7. 27 CFR 19.768 - Gauge record.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... proprietor shall prepare a gauge record to show: (a) Serial number, commencing with “1” at the start of each calendar or fiscal year; (b) Reason for making the gauge: (1) Production gauge and entry for deposit in the... the production account for redistillation; (4) Repackaging of spirits of 190 degrees or more of...

  8. 27 CFR 19.304 - Production gauge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... OF THE TREASURY ALCOHOL DISTILLED SPIRITS PLANTS Production of Distilled Spirits Rules for Production of Spirits § 19.304 Production gauge. A proprietor must gauge all spirits by determining the quantity... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Production gauge....

  9. 27 CFR 19.304 - Production gauge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Production gauge. 19.304... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production of Distilled Spirits Rules for Production of Spirits § 19.304 Production gauge. A proprietor must gauge all spirits by determining the...

  10. Interferometric readout of a monolithic accelerometer, towards the fm /√{ Hz } resolution

    NASA Astrophysics Data System (ADS)

    van Heijningen, J. V.; Bertolini, A.; van den Brand, J. F. J.

    2016-07-01

    The European Gravitational wave Observatory Virgo is undergoing an upgrade to increase its strain sensitivity to about 3 ×10-24 1 /√{ Hz } in the detection band of 10 Hz-10 kHz. The upgrade for this detector necessitates seismically isolating sensing optics in a vacuum environment that were on an optical bench outside vacuum in previous Virgo configurations. For this purpose, Nikhef has designed and built the five compact isolators, called MultiSAS. To measure the residual motion of the optical components and the transfer function of the isolator in full assembly, no (commercial) sensor is available that has sufficient sensitivity. A novel vibration sensor has been built at Nikhef that features an interferometric readout for a horizontal monolithic accelerometer. It will be able to measure in the vicinity of the fm/Hz regime from 10 Hz onwards. Current results show unprecedented (self) noise levels around 35 fm/Hz from 25 Hz onwards. In spite of these excellent results, it is still higher than the modeled noises. Several possible unmodeled noise sources and possible solutions have been identified.

  11. Geometrical gauge factor of directional electric potential drop sensors for creep monitoring

    SciTech Connect

    Madhi, E.; Nagy, P. B.

    2011-06-23

    Directional electric potential drop measurements can be exploited for in-situ monitoring of creep in metals. The sensor monitors the variation in the ratio of the resistances measured simultaneously in the axial and lateral directions using a square-electrode configuration. This technique can efficiently separate the mostly isotropic common part of the resistivity variation caused by reversible temperature variations from the mostly anisotropic differential part caused by direct geometrical and indirect material effects of creep. Initially, this ratio is roughly proportional to the axial creep strain, while at later stages, the resistance ratio increases even faster with creep strain because of the formation of directional discontinuities such as preferentially oriented grain boundary cavities and multiple-site cracks in the material. Similarly to ordinary strain gauges, the relative sensitivity of the sensor is defined as a gauge factor that can be approximated as a sum of geometrical and material parts. This work investigated the geometrical gauge factor by analytical and experimental means. We found that under uniaxial stress square-electrode sensors exhibit geometrical gauge factors of about 4 and 5 in the elastic and plastic regimes, respectively, i.e., more than twice those of conventional strain gauges. Experimental results obtained on 304 stainless steel using a square-electrode electric potential drop creep sensor agree well with our theoretical predictions.

  12. Geometrical Gauge Factor of Directional Electric Potential Drop Sensors for Creep Monitoring

    NASA Astrophysics Data System (ADS)

    Madhi, E.; Nagy, P. B.

    2011-06-01

    Directional electric potential drop measurements can be exploited for in-situ monitoring of creep in metals. The sensor monitors the variation in the ratio of the resistances measured simultaneously in the axial and lateral directions using a square-electrode configuration. This technique can efficiently separate the mostly isotropic common part of the resistivity variation caused by reversible temperature variations from the mostly anisotropic differential part caused by direct geometrical and indirect material effects of creep. Initially, this ratio is roughly proportional to the axial creep strain, while at later stages, the resistance ratio increases even faster with creep strain because of the formation of directional discontinuities such as preferentially oriented grain boundary cavities and multiple-site cracks in the material. Similarly to ordinary strain gauges, the relative sensitivity of the sensor is defined as a gauge factor that can be approximated as a sum of geometrical and material parts. This work investigated the geometrical gauge factor by analytical and experimental means. We found that under uniaxial stress square-electrode sensors exhibit geometrical gauge factors of about 4 and 5 in the elastic and plastic regimes, respectively, i.e., more than twice those of conventional strain gauges. Experimental results obtained on 304 stainless steel using a square-electrode electric potential drop creep sensor agree well with our theoretical predictions.

  13. Inflation in maximal gauged supergravities

    SciTech Connect

    Kodama, Hideo; Nozawa, Masato

    2015-05-18

    We discuss the dynamics of multiple scalar fields and the possibility of realistic inflation in the maximal gauged supergravity. In this paper, we address this problem in the framework of recently discovered 1-parameter deformation of SO(4,4) and SO(5,3) dyonic gaugings, for which the base point of the scalar manifold corresponds to an unstable de Sitter critical point. In the gauge-field frame where the embedding tensor takes the value in the sum of the 36 and 36’ representations of SL(8), we present a scheme that allows us to derive an analytic expression for the scalar potential. With the help of this formalism, we derive the full potential and gauge coupling functions in analytic forms for the SO(3)×SO(3)-invariant subsectors of SO(4,4) and SO(5,3) gaugings, and argue that there exist no new critical points in addition to those discovered so far. For the SO(4,4) gauging, we also study the behavior of 6-dimensional scalar fields in this sector near the Dall’Agata-Inverso de Sitter critical point at which the negative eigenvalue of the scalar mass square with the largest modulus goes to zero as the deformation parameter s approaches a critical value s{sub c}. We find that when the deformation parameter s is taken sufficiently close to the critical value, inflation lasts more than 60 e-folds even if the initial point of the inflaton allows an O(0.1) deviation in Planck units from the Dall’Agata-Inverso critical point. It turns out that the spectral index n{sub s} of the curvature perturbation at the time of the 60 e-folding number is always about 0.96 and within the 1σ range n{sub s}=0.9639±0.0047 obtained by Planck, irrespective of the value of the η parameter at the critical saddle point. The tensor-scalar ratio predicted by this model is around 10{sup −3} and is close to the value in the Starobinsky model.

  14. Slice&Dice: Recognizing Food Preparation Activities Using Embedded Accelerometers

    NASA Astrophysics Data System (ADS)

    Pham, Cuong; Olivier, Patrick

    Within the context of an endeavor to provide situated support for people with cognitive impairments in the kitchen, we developed and evaluated classifiers for recognizing 11 actions involved in food preparation. Data was collected from 20 lay subjects using four specially designed kitchen utensils incorporating embedded 3-axis accelerometers. Subjects were asked to prepare a mixed salad in our laboratory-based instrumented kitchen environment. Video of each subject's food preparation activities were independently annotated by three different coders. Several classifiers were trained and tested using these features. With an overall accuracy of 82.9% our investigation demonstrated that a broad set of food preparation actions can be reliably recognized using sensors embedded in kitchen utensils.

  15. Estimation of METs by Accelerometers while Walking and Running

    NASA Astrophysics Data System (ADS)

    Kurihara, Yosuke; Watanabe, Kajiro; Yoneyama, Mitsuru

    It is quite important for Japan to maintain or promote the health condition of elderly citizens. Given the circumstances, the Ministry of Health, Labour and Welfare has established the standards for the activities and exercises for promoting the health, and quantitatively determined the exercise intensity on 107 items of activities. This exercise intensity, however, requires recording the type and the duration of the activity to be calculated. In this paper, the exercise intensities are surmised using 3D accelerometer while the subjects are walking and running. As the result, the exercise intensities were surmised to be within the root mean square error of 1.2[METs] for walking and 3.2[METs] for running respectively.

  16. ISLES: Probing Extra Dimensions Using a Superconducting Accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung; Moody, M. Vol; Prieto-Gortcheva, Violeta A.

    2003-01-01

    In string theories, extra dimensions must be compactified. The possibility that gravity can have large radii of compactification leads to a violation of the inverse square law at submillimeter distances. The objective of ISLES is to perform a null test of Newton s law in space with a resolution of one part in 10(exp 5) or better at 100 microns. The experiment will be cooled to less than or equal to 2 K, which permits superconducting magnetic levitation of the test masses. To minimize Newtonian errors, ISLES employs a near null source, a circular disk of large diameter-to-thickness ratio. Two test masses, also disk-shaped, are suspended on the two sides of the source mass at a nominal distance of 100 microns. The signal is detected by a superconducting differential accelerometer. A ground test apparatus is under construction.

  17. Flight calibration assessment of HiRAP accelerometer data

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Larman, Kevin T.; Moast, Christina D.

    1993-01-01

    A flight derived method of calibrating the High Resolution Accelerometer Package (HiRAP) flight data has been developed and is discussed for Shuttle Orbiter missions STS-35 and STS-40. These two mission data sets have been analyzed using ground calibration factors and flight derived calibration factors. This flight technique evolved early in the flight program when it was recognized that ground calibration factors are insufficient to determine absolute low-acceleration levels. The application of flight calibration factors to the data sets from these missions produced calibrated acceleration levels within an accuracy of less than +/- 1.5 microgravity of zero during a time in the flight when the acceleration level was known to be less than 1.0 microgravity. This analysis further confirms the theory that flight calibrations are required in order to obtain the absolute measurement of low-frequency, low-acceleration flight signals.

  18. GOCE Accelerometers Data Revisited: Stability And Detector Noise

    NASA Astrophysics Data System (ADS)

    Berge, J.; Christophe, B.; Foulon, B.

    2013-12-01

    We report on our analyses of Gravity field and steady- state Ocean Circulation Explorer (GOCE) data aiming to characterize the stability and the noise of GOCE's ac- celerometers. We first measure science and detector co- herence signals, which allow us to infer the role of the accelerometers Digital Voltage Amplifiers and measure- ment chanel in the overall quadratic factor and scale fac- tor; we show that their temporal stability is as low as ex- pected. We then investigate the effect of the aliasing of high frequency detector's noise on the measured noise, in an attempt to explain why the measured noise is higher than originally expected. We find that although this alias- ing explains part of the higher noise, it does not account for the total of the difference seen between the expected and the measured noise.

  19. Accelerometer recorder and display system for ambulatory patients

    NASA Astrophysics Data System (ADS)

    Berka, Martin; Żyliński, Marek; Niewiadomski, Wiktor; Cybulski, Gerard

    2015-09-01

    This paper presents the design of a compact, wearable, rechargeable acceleration recorder to support long-term monitoring of ambulatory patients with motor disorders, and of software to display and analyze its output. The device consists of a microcontroller, operational amplifier, accelerometer, SD card, indicator LED, rechargeable battery, and associated minor components. It can operate for over a day without charging and can continuously collect data for three weeks without downloading to an outside system, as currently configured. With slight modifications, this period could be extended to several months. The accompanying software provides flexible visualization of the acceleration data over long periods, basic file operations and compression for easier archiving, annotation of segments of interest, and functions for calculation of various parameters and detection of immobility and vibration frequencies. Applications in analysis of gait and other movements are discussed.

  20. A naive accelerometer acting in the continuum range.

    PubMed

    Peluso, F; Castagnolo, D; Albanese, C

    2002-01-01

    The space experiment TRAMP (Thermal Radiation Aspects of Migrating Particles) flown in 1999 onboard the mission Foton 12 sponsored by the European Space Agency (ESA), was conceived to reveal and measure a new kind of forces, named Thermal Radiation Forces (TRF). The experiment was dramatically disturbed by the occurrence of undesired convective motions due to the rotation of the spacecraft. Apart from that, corrosion occurred in some parts of the flight apparatus, resulting in the presence of gas bubbles inside the experimental liquid, completely compromising the results. Consequently, the experiment did not allow to reveal and/or to measure TRF, but it turned out to be useful in another way, as a very sensitive accelerometer, since the accelerations deduced from velocity measurements concurred with those measured by the Quasi-Steady Acceleration Measurement (QSAM) system.

  1. Estimating Physical Activity in Youth Using a Wrist Accelerometer

    PubMed Central

    Crouter, Scott E.; Flynn, Jennifer I.; Bassett, David R.

    2014-01-01

    PURPOSE The purpose of this study was to develop and validate methods for analyzing wrist accelerometer data in youth. METHODS 181 youth (mean±SD; age, 12.0±1.5 yrs) completed 30-min of supine rest and 8-min each of 2 to 7 structured activities (selected from a list of 25). Receiver Operator Characteristic (ROC) curves and regression analyses were used to develop prediction equations for energy expenditure (child-METs; measured activity VO2 divided by measured resting VO2) and cut-points for computing time spent in sedentary behaviors (SB), light (LPA), moderate (MPA), and vigorous (VPA) physical activity. Both vertical axis (VA) and vector magnitude (VM) counts per 5 seconds were used for this purpose. The validation study included 42 youth (age, 12.6±0.8 yrs) who completed approximately 2-hrs of unstructured PA. During all measurements, activity data were collected using an ActiGraph GT3X or GT3X+, positioned on the dominant wrist. Oxygen consumption was measured using a Cosmed K4b2. Repeated measures ANOVAs were used to compare measured vs predicted child-METs (regression only), and time spent in SB, LPA, MPA, and VPA. RESULTS All ROC cut-points were similar for area under the curve (≥0.825), sensitivity (≥0.756), and specificity (≥0.634) and they significantly underestimated LPA and overestimated VPA (P<0.05). The VA and VM regression models were within ±0.21 child-METs of mean measured child-METs and ±2.5 minutes of measured time spent in SB, LPA, MPA, and VPA, respectively (P>0.05). CONCLUSION Compared to measured values, the VA and VM regression models developed on wrist accelerometer data had insignificant mean bias for child-METs and time spent in SB, LPA, MPA, and VPA; however they had large individual errors. PMID:25207928

  2. Accelerometer Use in a Physical Activity Intervention Trial

    PubMed Central

    Borradaile, Kelley E.; Lewis, Beth A.; Whiteley, Jessica A.; Longval, Jaime L.; Parisi, Alfred F.; Albrecht, Anna E.; Sciamanna, Christopher N.; Jakicic, John M.; Papandonatos, George D.; Marcus, Bess H.

    2010-01-01

    This paper describes the application of best practice recommendations for using accelerometers in a physical activity (PA) intervention trial, and the concordance of different methods for measuring PA. A subsample (n=63; 26%) of the 239 healthy, sedentary adults participating in a PA trial (mean age=47.5; 82% women) wore the ActiGraph monitor at all 3 assessment time points. ActiGraph data were compared with self-report (i.e., PA weekly recall and monthly log) and fitness variables. Correlations between the PA recall and ActiGraph for moderate intensity activity ranged from 0.16–0.48 and from 0.28–0.42 for vigorous intensity activity. ActiGraph and fitness [estimated VO2(ml/kg/min)] had correlations of 0.15–0.45. The ActiGraph and weekly self-report were significantly correlated at all time points (correlations ranged from 0.23–0.44). In terms of detecting intervention effects, intervention groups recorded more minutes of at least moderate-intensity PA on the ActiGraph than the control group at 6 months (min=46.47, 95% CI=14.36–78.58), but not at 12 months. Limitations of the study include a small sample size and only 3 days of ActiGraph monitoring. To obtain optimal results with accelerometers in clinical trials, the authors recommend following best practice recommendations: detailed protocols for monitor use, calibration of monitors and validation of data quality, and use of validated equations for analysis. The ActiGraph has modest concordance with other assessment tools and is sensitive to change over time. However, until more information validating the use of accelerometry in clinical trials becomes available, properly administered self-report measures of PA should remain part of the assessment battery. PMID:20723619

  3. Accelerometer use in a physical activity intervention trial.

    PubMed

    Napolitano, Melissa A; Borradaile, Kelley E; Lewis, Beth A; Whiteley, Jessica A; Longval, Jaime L; Parisi, Alfred F; Albrecht, Anna E; Sciamanna, Christopher N; Jakicic, John M; Papandonatos, George D; Marcus, Bess H

    2010-11-01

    This paper describes the application of best practice recommendations for using accelerometers in a physical activity (PA) intervention trial, and the concordance of different methods for measuring PA. A subsample (n = 63; 26%) of the 239 healthy, sedentary adults participating in a PA trial (mean age = 47.5; 82% women) wore the ActiGraph monitor at all 3 assessment time points. ActiGraph data were compared with self-report (i.e., PA weekly recall and monthly log) and fitness variables. Correlations between the PA recall and ActiGraph for moderate intensity activity ranged from 0.16-0.48 and from 0.28-0.42 for vigorous intensity activity. ActiGraph and fitness [estimated VO(2)(ml/kg/min)] had correlations of 0.15-0.45. The ActiGraph and weekly self-report were significantly correlated at all time points (correlations ranged from 0.23 to 0.44). In terms of detecting intervention effects, intervention groups recorded more minutes of at least moderate-intensity PA on the ActiGraph than the control group at 6 months (min = 46.47, 95% CI = 14.36-78.58), but not at 12 months. Limitations of the study include a small sample size and only 3 days of ActiGraph monitoring. To obtain optimal results with accelerometers in clinical trials, the authors recommend following best practice recommendations: detailed protocols for monitor use, calibration of monitors and validation of data quality, and use of validated equations for analysis. The ActiGraph has modest concordance with other assessment tools and is sensitive to change over time. However, until more information validating the use of accelerometry in clinical trials becomes available, properly administered self-report measures of PA should remain part of the assessment battery.

  4. Gauge Adjusted Global Satellite Mapping of Precipitation (GSMAP_GAUGE)

    NASA Astrophysics Data System (ADS)

    Mega, T.; Ushio, T.; Yoshida, S.; Kawasaki, Z.; Kubota, T.; Kachi, M.; Aonashi, K.; Shige, S.

    2013-12-01

    precipitation instantaneously, while the ground based rain gauges collects precipitation particles for one hour at a certain point. This discrepancy can cause the mismatch between the two estimates, and we need to fill the gap of the precipitation estimates between the satellite and rain gauge attributable to the spatial and temporal resolution difference. To that end, the gauge adjusted product named as GSMaP_Gauge has been developed. In this product, the CPC global gauge data analysis by Xie et al. (2007) and Chen et al. (2008) is used for the adjustment of the GSMaP_MVK data. In this presentation, the algorithm concept, examples of the product, and some validation results are presented.

  5. General gauge mediation and deconstruction

    NASA Astrophysics Data System (ADS)

    McGarrie, Moritz

    2010-11-01

    We locate a supersymmetry breaking hidden sector and supersymmetric standard model on different lattice points of an orbifold moose. The hidden sector is encoded in a set of current correlators and the effects of the current correlators are mediated by the lattice site gauge groups with "lattice hopping" functions and through the bifundamental matter that links the lattice sites together. We show how the gaugino mass, scalar mass and Casimir energy of the lattice can be computed for a general set of current correlators and then give specific formulas when the hidden sector is specified to be a generalised messenger sector. The results reproduce the effect of five dimensional gauge mediation from a purely four dimensional construction.

  6. Towards a Neuronal Gauge Theory

    PubMed Central

    Sengupta, Biswa; Tozzi, Arturo; Cooray, Gerald K.; Douglas, Pamela K.; Friston, Karl J.

    2016-01-01

    Given the amount of knowledge and data accruing in the neurosciences, is it time to formulate a general principle for neuronal dynamics that holds at evolutionary, developmental, and perceptual timescales? In this paper, we propose that the brain (and other self-organised biological systems) can be characterised via the mathematical apparatus of a gauge theory. The picture that emerges from this approach suggests that any biological system (from a neuron to an organism) can be cast as resolving uncertainty about its external milieu, either by changing its internal states or its relationship to the environment. Using formal arguments, we show that a gauge theory for neuronal dynamics—based on approximate Bayesian inference—has the potential to shed new light on phenomena that have thus far eluded a formal description, such as attention and the link between action and perception. PMID:26953636

  7. Gauge mediated mini-split

    NASA Astrophysics Data System (ADS)

    Cohen, Timothy; Craig, Nathaniel; Knapen, Simon

    2016-03-01

    We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ- b μ problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 105 to 108 GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.

  8. Towards a Neuronal Gauge Theory.

    PubMed

    Sengupta, Biswa; Tozzi, Arturo; Cooray, Gerald K; Douglas, Pamela K; Friston, Karl J

    2016-03-01

    Given the amount of knowledge and data accruing in the neurosciences, is it time to formulate a general principle for neuronal dynamics that holds at evolutionary, developmental, and perceptual timescales? In this paper, we propose that the brain (and other self-organised biological systems) can be characterised via the mathematical apparatus of a gauge theory. The picture that emerges from this approach suggests that any biological system (from a neuron to an organism) can be cast as resolving uncertainty about its external milieu, either by changing its internal states or its relationship to the environment. Using formal arguments, we show that a gauge theory for neuronal dynamics--based on approximate Bayesian inference--has the potential to shed new light on phenomena that have thus far eluded a formal description, such as attention and the link between action and perception. PMID:26953636

  9. On lattice chiral gauge theories

    NASA Technical Reports Server (NTRS)

    Maiani, L.; Rossi, G. C.; Testa, M.

    1991-01-01

    The Smit-Swift-Aoki formulation of a lattice chiral gauge theory is presented. In this formulation the Wilson and other non invariant terms in the action are made gauge invariant by the coupling with a nonlinear auxilary scalar field, omega. It is shown that omega decouples from the physical states only if appropriate parameters are tuned so as to satisfy a set of BRST identities. In addition, explicit ghost fields are necessary to ensure decoupling. These theories can give rise to the correct continuum limit. Similar considerations apply to schemes with mirror fermions. Simpler cases with a global chiral symmetry are discussed and it is shown that the theory becomes free at decoupling. Recent numerical simulations agree with those considerations.

  10. Towards a Neuronal Gauge Theory.

    PubMed

    Sengupta, Biswa; Tozzi, Arturo; Cooray, Gerald K; Douglas, Pamela K; Friston, Karl J

    2016-03-01

    Given the amount of knowledge and data accruing in the neurosciences, is it time to formulate a general principle for neuronal dynamics that holds at evolutionary, developmental, and perceptual timescales? In this paper, we propose that the brain (and other self-organised biological systems) can be characterised via the mathematical apparatus of a gauge theory. The picture that emerges from this approach suggests that any biological system (from a neuron to an organism) can be cast as resolving uncertainty about its external milieu, either by changing its internal states or its relationship to the environment. Using formal arguments, we show that a gauge theory for neuronal dynamics--based on approximate Bayesian inference--has the potential to shed new light on phenomena that have thus far eluded a formal description, such as attention and the link between action and perception.

  11. A brief test of the Hewlett-Packard MEMS seismic accelerometer

    USGS Publications Warehouse

    Homeijer, Brian D.; Milligan, Donald J.; Hutt, Charles R.

    2014-01-01

    Testing was performed on a prototype of Hewlett-Packard (HP) Micro-Electro-Mechanical Systems (MEMS) seismic accelerometer at the U.S. Geological Survey’s Albuquerque Seismological Laboratory. This prototype was built using discrete electronic components. The self-noise level was measured during low seismic background conditions and found to be 9.8 ng/√Hz at periods below 0.2 s (frequencies above 5 Hz). The six-second microseism noise was also discernible. The HP MEMS accelerometer was compared to a Geotech Model GS-13 reference seismometer during seismic noise and signal levels well above the self-noise of the accelerometer. Matching power spectral densities (corrected for accelerometer and seismometer responses to represent true ground motion) indicated that the HP MEMS accelerometer has a flat (constant) response to acceleration from 0.0125 Hz to at least 62.5 Hz. Tilt calibrations of the HP MEMS accelerometer verified that the flat response to acceleration extends to 0 Hz. Future development of the HP MEMS accelerometer includes replacing the discreet electronic boards with a low power application-specific integrated circuit (ASIC) and increasing the dynamic range of the sensor to detect strong motion signals above one gravitational acceleration, while maintaining the self-noise observed during these tests.

  12. Comparison of Self-Reported and Accelerometer-Assessed Physical Activity in Older Women

    PubMed Central

    Shiroma, Eric J.; Cook, Nancy R.; Manson, JoAnn E.; Buring, Julie E.; Rimm, Eric B.; Lee, I-Min

    2015-01-01

    Background Self-reported physical activity measures continue to be validated against accelerometers; however, the absence of standardized, accelerometer moderate-to-vigorous physical activity (MVPA) definitions has made comparisons across studies difficult. Furthermore, recent accelerometer models assess accelerations in three axes, instead of only the vertical axis, but validation studies have yet to take incorporate triaxial data. Methods Participants (n = 10 115) from the Women’s Health Study wore a hip-worn accelerometer (ActiGraph GT3X+) for seven days during waking hours (2011–2014). Women then completed a physical activity questionnaire. We compared self-reported with accelerometer-assessed MVPA, using four established cutpoints for MVPA: three using only vertical axis data (760, 1041 and 1952 counts per minute (cpm)) and one using triaxial data (2690 cpm). Results According to self-reported physical activity, 66.6% of women met the US federal physical activity guidelines, engaging in ≥150 minutes per week of MVPA. The percent of women who met guidelines varied widely depending on the accelerometer MVPA definition (760 cpm: 50.0%, 1041 cpm: 33.0%, 1952 cpm: 13.4%, and 2690 cpm: 19.3%). Conclusions Triaxial count data do not substantially reduce the difference between self-reported and accelerometer-assessed MVPA. PMID:26713857

  13. A triaxial accelerometer monkey algorithm for optimal sensor placement in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Jia, Jingqing; Feng, Shuo; Liu, Wei

    2015-06-01

    Optimal sensor placement (OSP) technique is a vital part of the field of structural health monitoring (SHM). Triaxial accelerometers have been widely used in the SHM of large-scale structures in recent years. Triaxial accelerometers must be placed in such a way that all of the important dynamic information is obtained. At the same time, the sensor configuration must be optimal, so that the test resources are conserved. The recommended practice is to select proper degrees of freedom (DOF) based upon several criteria and the triaxial accelerometers are placed at the nodes corresponding to these DOFs. This results in non-optimal placement of many accelerometers. A ‘triaxial accelerometer monkey algorithm’ (TAMA) is presented in this paper to solve OSP problems of triaxial accelerometers. The EFI3 measurement theory is modified and involved in the objective function to make it more adaptable in the OSP technique of triaxial accelerometers. A method of calculating the threshold value based on probability theory is proposed to improve the healthy rate of monkeys in a troop generation process. Meanwhile, the processes of harmony ladder climb and scanning watch jump are proposed and given in detail. Finally, Xinghai NO.1 Bridge in Dalian is implemented to demonstrate the effectiveness of TAMA. The final results obtained by TAMA are compared with those of the original monkey algorithm and EFI3 measurement, which show that TAMA can improve computational efficiency and get a better sensor configuration.

  14. Non-Abelian gauge fields

    NASA Astrophysics Data System (ADS)

    Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus

    2013-07-01

    Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another

  15. Novel Principle of Contactless Gauge Block Calibration

    PubMed Central

    Buchta, Zdeněk; Řeřucha, Šimon; Mikel, Břetislav; Čížek, Martin; Lazar, Josef; Číp, Ondřej

    2012-01-01

    In this paper, a novel principle of contactless gauge block calibration is presented. The principle of contactless gauge block calibration combines low-coherence interferometry and laser interferometry. An experimental setup combines Dowell interferometer and Michelson interferometer to ensure a gauge block length determination with direct traceability to the primary length standard. By monitoring both gauge block sides with a digital camera gauge block 3D surface measurements are possible too. The principle presented is protected by the Czech national patent No. 302948. PMID:22737012

  16. Small neutrino masses and gauge coupling unification

    NASA Astrophysics Data System (ADS)

    Boucenna, Sofiane M.; Fonseca, Renato M.; González-Canales, Félix; Valle, José W. F.

    2015-02-01

    The physics responsible for gauge coupling unification may also induce small neutrino masses. We propose a novel gauge-mediated radiative seesaw mechanism for calculable neutrino masses. These arise from quantum corrections mediated by new S U (3 )C⊗S U (3 )L⊗U (1 )X (3-3-1) gauge bosons and the physics driving gauge coupling unification. Gauge couplings unify for a 3-3-1 scale in the TeV range, making the model directly testable at the LHC.

  17. Selected topics in gauge theories

    SciTech Connect

    Beg, M.A.G.; Hernandez Galeana, A.

    1986-06-20

    Developments in gauge field theory in the past fourteen years are discussed. The canonical description of electroweak and strong interactions is described including the role played by QCD and QFD. The Salam-Weinberg theory of electroweak interactions is reviewed with emphasis on Higgs mass and renormalization group analysis. Implications of hyper-color theories are discussed. Composite models of quarks and leptons are considered including hyperfermions as part of a subquark multiplet. (AIP)

  18. PVT gauging with liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Van Dresar, Neil T.

    2006-02-01

    Experimental results are presented for pressure-volume-temperature (PVT) liquid quantity gauging of a 0.17 m 3 liquid nitrogen tank pressured with ambient temperature helium in the normal gravity environment. A previously reported PVT measurement procedure has been improved to include helium solubility in liquid nitrogen. Gauging data was collected at nominal tank fill levels of 80%, 50% and 20% and at nominal tank pressures of 0.3, 1.0, and 1.7 MPa. The test tank was equipped with a liquid pump and spray manifold to circulate and mix the fluid contents and therefore create near-isothermal conditions throughout the tank. Silicon diode sensors were distributed throughout the tank to monitor temperatures. Close-spaced arrays of silicon diode point sensors were utilized to precisely detect the liquid level at the nominal 80%, 50%, and 20% fill levels. The tests simulated the cryogenic tank-side conditions only; helium mass added to the tank was measured by gas flowmeters rather than using pressure and temperature measurements from a dedicated helium supply bottle. Equilibrium data for cryogenic nitrogen and helium mixtures from numerous sources was correlated to predict soluble helium mole fractions. Results show that solubility should be accounted for in the PVT gauging calculations. Mole fractions predicted by Dalton's Law were found to be in good agreement with the compiled equilibrium data within the temperature-pressure range of interest. Therefore, Dalton's Law was deemed suitable for calculating ullage composition. Gauging results from the PVT method agreed with the reference liquid level measurements to within 3%.

  19. Asymptotically Free Gauge Theories. I

    DOE R&D Accomplishments Database

    Wilczek, Frank; Gross, David J.

    1973-07-01

    Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.

  20. Rain gauge calibration and testing

    NASA Technical Reports Server (NTRS)

    Wilkerson, John

    1994-01-01

    Prior to the Tropical Oceans Global Atmosphere-Coupled Ocean Atmosphere Response Experiment (TOGA-COARE), 42 Model 100 series optical gauges were tested in the rain simulator facility at Wallops Island before shipment to the field. Baseline measurements at several rain rates were made simultaneously with collector cans, tipping bucket, and a precision weighing gauge and held for post-COARE evaluation with a repeat set of measurements that were to be recorded after the instruments were returned. This was done as a means of detecting any calibration changes that might have occurred while deployed. Although it was known that the artificial rain in the simulator did not contain the required exponential distribution for accurate optical rain gauge rate measurements, use of the facility was necessary because it was the only means available for taking controlled observations with instruments that were received, tested, and shipped out in groups over a period of months. At that point, it was believed that these measurements would be adequately precise for detecting performance changes over time. However, analysis of the data by STI now indicates that this may not be true. Further study of the data will be undertaken to resolve this.

  1. Tensor gauge condition and tensor field decomposition

    NASA Astrophysics Data System (ADS)

    Zhu, Ben-Chao; Chen, Xiang-Song

    2015-10-01

    We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.

  2. The development of a parachute strain measurement technique

    NASA Astrophysics Data System (ADS)

    Render, A. B.; Bradley, P. D.

    This paper reports come aspects of work carried out to develop a strain measurement technique suitable for use on parachutes. Details of a strain gauge employing piezoelectric plastic film are given. Laboratory tests to determine the biaxial stress/strain characteristics of the trials parachute material are presented, which are used in conjunction with an elementary mathematical model, to construct a carpet graph depicting the stress/strain relationship of the material. The performance and reliability of the strain gauges were tested in a series of wind tunnel deployments at airspeeds up to 49 m/s. Selected results are discussed.

  3. Self Diagnostic Accelerometer for Mission Critical Health Monitoring of Aircraft and Spacecraft Engines

    NASA Technical Reports Server (NTRS)

    Lekki, John; Tokars, Roger; Jaros, Dave; Riggs, M. Terrence; Evans, Kenneth P.; Gyekenyesi, Andrew

    2009-01-01

    A self diagnostic accelerometer system has been shown to be sensitive to multiple failure modes of charge mode accelerometers. These failures include sensor structural damage, an electrical open circuit and most importantly sensor detachment. In this paper, experimental work that was performed to determine the capabilities of a self diagnostic accelerometer system while operating in the presence of various levels of mechanical noise, emulating real world conditions, is presented. The results show that the system can successfully conduct a self diagnostic routine under these conditions.

  4. MEMS accelerometer embedded in a self-mixing displacement sensor for parasitic vibration compensation.

    PubMed

    Zabit, Usman; Bernal, Olivier D; Bosch, Thierry; Bony, Francis

    2011-03-01

    A self-mixing (SM) laser displacement sensor coupled with a microelectromechanical system (MEMS) accelerometer is presented that enables reliable displacement measurements even in the case of a nonstationary laser head. The proposed technique allows the use of SM-based sensors for embedded applications. The system resolution is currently limited to approximately 300 nm due to the noise characteristics of the currently used accelerometer. It is shown that this resolution can be greatly improved by the use of a low noise accelerometer.

  5. Use of a laser doppler vibrometer for high frequency accelerometer characterizations

    SciTech Connect

    Bateman, V.I.; Hansche, B.D.; Solomon, O.M.

    1995-12-31

    A laser doppler vibrometer (LDV) is being used for high frequency characterizations of accelerometers at Sandia National Laboratories (SNL). A LDV with high frequency (up to 1.5 MHz) and high velocity (10 M/s) capability was purchased from a commercial source and has been certified by the Primary Electrical Standards Department at SNL. The method used for this certification and the certification results are presented. Use of the LDV for characterization of accelerometers at high frequencies and of accelerometer sensitivity to cross-axis shocks on a Hopkinson bar apparatus is discussed.

  6. A Novel Digital Closed Loop MEMS Accelerometer Utilizing a Charge Pump.

    PubMed

    Chu, Yixing; Dong, Jingxin; Chi, Baoyong; Liu, Yunfeng

    2016-01-01

    This paper presents a novel digital closed loop microelectromechanical system (MEMS) accelerometer with the architecture and experimental evaluation. The complicated timing diagram or complex power supply in published articles are circumvented by using a charge pump system of adjustable output voltage fabricated in a 2P4M 0.35 µm complementary metal-oxide semiconductor (CMOS) process, therefore making it possible for interface circuits of MEMS accelerometers to be integrated on a single die on a large scale. The output bitstream of the sigma delta modulator is boosted by the charge pump system and then applied on the feedback comb fingers to form electrostatic forces so that the MEMS accelerometer can operate in a closed loop state. Test results agree with the theoretical formula nicely. The nonlinearity of the accelerometer within ±1 g is 0.222% and the long-term stability is about 774 µg.

  7. Bulk Micromachined 6H-SiC High-g Piezoresistive Accelerometer Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.

    2002-01-01

    High-g accelerometers are needed in certain applications, such as in the study and analysis of high-g impact landings and projectiles. Also, these accelerometers must survive the high electromagnetic fields associated with the all-electric vehicle technology needed for aerospace applications. The choice of SiC is largely due to its excellent thermomechanical properties over conventional silicon-based accelerometers, whose material properties inhibit applicability in high electromagnetic radiation and high temperatures (>150 C) unless more complex and sometimes costly packaging schemes are adopted. This work was the outcome of a NASA Glenn Research Center summer internship program, in collaboration with Cornell University and the Munitions Directorate of the U.S. Air Force in Eglin, Florida. It aimed to provide the enabling technology infrastructure (modeling, fabrication, and validation) for the implementation of SiC accelerometers designed specifically for harsh environments.

  8. Validation of uniaxial and triaxial accelerometers for the assessment of physical activity in preschool children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Given the unique physical activity patterns of preschoolers, wearable electronic devices for quantitative assessment of physical activity require validation in this population. Study objective was to validate uniaxial and triaxial accelerometers in preschoolers. Room calorimetry was performed over 3...

  9. Proposed ground-based control of accelerometer on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Delombard, Richard

    1993-01-01

    This paper describes the innovative control of an accelerometer to support the needs of the scientists operating science experiments that are on-board Space Station Freedom (SSF). Accelerometers in support of science experiments on the shuttle have typically been passive, record-only devices that present data only after the mission or that present limited data to the crew or ground operators during the mission. With the advent of science experiment operations on SSF, the principal investigators will need microgravity acceleration data during, as well as after, experiment operations. Because their data requirements may change during the experiment operations, the principal investigators will be allocated some control of accelerometer parameters. This paper summarizes the general-purpose Space Acceleration Measurement System (SAMS) operation that supports experiments on the shuttle and describes the control of the SAMS for Space Station Freedom. Emphasis is placed on the proposed ground-based control of the accelerometer by the principal investigators.

  10. A Miniature High-Sensitivity Braodband Accelerometer Based on Electron Tunneling Transducers

    NASA Technical Reports Server (NTRS)

    Rockstad, H.; Kenny, T.; Reynolds, J.; Kaiser, W.; Gabrielson, T.

    1993-01-01

    This paper describes the successful fabrication and demonstration of a new dual-element micromachined silicon tunnel accelerometer that extends the operational bandwidth beyond the resonant frequency of the proof mass.

  11. A Novel Digital Closed Loop MEMS Accelerometer Utilizing a Charge Pump

    PubMed Central

    Chu, Yixing; Dong, Jingxin; Chi, Baoyong; Liu, Yunfeng

    2016-01-01

    This paper presents a novel digital closed loop microelectromechanical system (MEMS) accelerometer with the architecture and experimental evaluation. The complicated timing diagram or complex power supply in published articles are circumvented by using a charge pump system of adjustable output voltage fabricated in a 2P4M 0.35 µm complementary metal-oxide semiconductor (CMOS) process, therefore making it possible for interface circuits of MEMS accelerometers to be integrated on a single die on a large scale. The output bitstream of the sigma delta modulator is boosted by the charge pump system and then applied on the feedback comb fingers to form electrostatic forces so that the MEMS accelerometer can operate in a closed loop state. Test results agree with the theoretical formula nicely. The nonlinearity of the accelerometer within ±1 g is 0.222% and the long-term stability is about 774 µg. PMID:26999157

  12. Characteristics of a piezoresistive accelerometer in shock environments up to 150,000 G

    SciTech Connect

    Bateman, V.I.; Davie, N.T.; Brown, F.A.

    1995-03-01

    The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A Hopkinson bar capability has been developed to extend our undemanding of the piezoresistive accelerometer, in two mechanical configurations, in the high frequency, high shock environments where measurements are being made. Two different Hopkinson bar materials are being used: Titanium and beryllium The in-axis performance of the piezoresistive accelerometer for frequencies of dc-10 kHz and shock magnitudes of up to 150,000 g as determined from measurements with a titanium Hopkinson bar are presented. The beryllium Hopkinson bar configuration is described. Preliminary in-axis characteristics of the piezoresistive accelerometer at a nominal shock level of 50,000 g for a frequency range of DC-30 kHz determined from the beryllium bar are presented.

  13. The use of a beryllium Hopkinson bar to characterize a piezoresistive accelerometer in shock environments

    SciTech Connect

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1996-03-01

    The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A Hopkinson bar capability has been developed to extend our understanding of the piezoresistive accelerometer, in two mechanical configurations, in the high frequency, high shock environments where measurements are being made. In this paper, the beryllium Hopkinson bar configuration with a laser doppler vibrometer as the reference measurement is described. The in-axis performance of the piezoresistive accelerometer for frequencies of dc-50 kHz and shock magnitudes of up to 70,000 g as determined from measurements with a beryllium Hopkinson bar are presented. Preliminary results of characterizations of the accelerometers subjected to cross-axis shocks in a split beryllium Hopkinson bar configuration are presented.

  14. Dynamical symmetry breaking in chiral gauge theories with direct-product gauge groups

    NASA Astrophysics Data System (ADS)

    Shi, Yan-Liang; Shrock, Robert

    2016-09-01

    We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups G . If the gauge coupling for a factor group Gi⊂G becomes sufficiently strong, it can produce bilinear fermion condensates that break the Gi symmetry itself and/or break other gauge symmetries Gj⊂G . Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of G and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.

  15. Unitary Representations of Gauge Groups

    NASA Astrophysics Data System (ADS)

    Huerfano, Ruth Stella

    I generalize to the case of gauge groups over non-trivial principal bundles representations that I. M. Gelfand, M. I. Graev and A. M. Versik constructed for current groups. The gauge group of the principal G-bundle P over M, (G a Lie group with an euclidean structure, M a compact, connected and oriented manifold), as the smooth sections of the associated group bundle is presented and studied in chapter I. Chapter II describes the symmetric algebra associated to a Hilbert space, its Hilbert structure, a convenient exponential and a total set that later play a key role in the construction of the representation. Chapter III is concerned with the calculus needed to make the space of Lie algebra valued 1-forms a Gaussian L^2-space. This is accomplished by studying general projective systems of finitely measurable spaces and the corresponding systems of sigma -additive measures, all of these leading to the description of a promeasure, a concept modeled after Bourbaki and classical measure theory. In the case of a locally convex vector space E, the corresponding Fourier transform, family of characters and the existence of a promeasure for every quadratic form on E^' are established, so the Gaussian L^2-space associated to a real Hilbert space is constructed. Chapter III finishes by exhibiting the explicit Hilbert space isomorphism between the Gaussian L ^2-space associated to a real Hilbert space and the complexification of its symmetric algebra. In chapter IV taking as a Hilbert space H the L^2-space of the Lie algebra valued 1-forms on P, the gauge group acts on the motion group of H defining in an straight forward fashion the representation desired.

  16. Introduction to lattice gauge theory

    SciTech Connect

    Gupta, R.

    1987-01-01

    The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off approx. = 1/..cap alpha.., where ..cap alpha.. is the lattice spacing. The continuum (physical) behavior is recovered in the limit ..cap alpha.. ..-->.. 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics. This will be the emphasis of the first lecture. In the second lecture, the author reviews the essential ingredients of formulating QCD on the lattice and discusses scaling and the continuum limit. In the last lecture the author summarizes the status of some of the main results. He also mentions the bottlenecks and possible directions for research. 88 refs.

  17. Spacelab-3 low-g accelerometer data from the fluid experiments system (FES)

    NASA Technical Reports Server (NTRS)

    Arnett, Gary

    1990-01-01

    The Fluids Experiment System (FES) flown aboard Spacelab 3 contained a Miniature Electrostatic Accelerometer (MESA). This accelerometer was purchased from Bell Aerospace, Textron and had three range (auto switching), bidirectional, three orthogonal axis capability. BGB, Inc. is in the process of examining the total mission data from this instrument. From these data, areas of interest are identified and related back to mission events. The basic format of the data for the total mission is root mean square (RMS), with two hours per plot.

  18. Interaction between body weight status and walking speed in steps monitoring by GT3X accelerometer.

    PubMed

    Bélanger, Marie-Lyse; Kestens, Yan; Gilbert, Jo-Anne; Tremblay, Angelo; Mathieu, Marie-Eve

    2014-08-01

    The measurement error of the step count function of the ActiGraph GT3X accelerometer was assessed at different walking speeds in 12 obese and 16 nonobese individuals. In comparison with visual verification, the accelerometer step count function measurement error was larger for obese individuals walking at low speeds (2.5 km·h(-1)). This error equated to an approximate 50% underestimation at these speeds.

  19. Anatomy of a gauge theory

    SciTech Connect

    Kreimer, Dirk . E-mail: kreimer@ihes.fr

    2006-12-15

    We exhibit the role of Hochschild cohomology in quantum field theory with particular emphasis on gauge theory and Dyson-Schwinger equations, the quantum equations of motion. These equations emerge from Hopf- and Lie algebra theory and free quantum field theory only. In the course of our analysis, we exhibit an intimate relation between the Slavnov-Taylor identities for the couplings and the existence of Hopf sub-algebras defined on the sum of all graphs at a given loop order, surpassing the need to work on single diagrams.

  20. Superpotentials for Quiver Gauge Theories

    SciTech Connect

    Aspinwall, Paul S.; Fidkowski, Lukasz M.; /Stanford U., Phys. Dept.

    2005-06-10

    We compute superpotentials for quiver gauge theories arising from marginal D-Brane decay on collapsed del Pezzo cycles S in a Calabi-Yau X. This is done using the machinery of A{sub {infinity}} products in the derived category of coherent sheaves of X, which in turn is related to the derived category of S and quiver path algebras. We confirm that the superpotential is what one might have guessed from analyzing the moduli space, i.e., it is linear in the fields corresponding to the Exts of the quiver and that each such Ext multiplies a polynomial in Exts equal to precisely the relation represented by the Ext.

  1. Three-axis accelerometer package for slimhole and microhole seismic monitoring and surveys

    SciTech Connect

    Hunter, S.L.; Harben, P.E.

    1997-01-07

    The development of microdrilling technology, nominally defined as drilling technology for 1-in.-diameter boreholes, shows potential for reducing the cost of drilling monitoring wells. A major question that arises in drilling microholes is if downhole logging and monitoring in general--and downhole seismic surveying in particular--can be conducted in such small holes since the inner working diameter of such a seismic tool could be as small as 0.31 in. A downhole three-component accelerometer package that fits within a 031-in. inner diameter tube has been designed, built, and tested. The package consists of three orthogonally mounted Entran EGA-125-5g piezoresistive silicon micromachined accelerometers with temperature compensation circuitry, downhole amplification, and line drivers mounted in a thin-walled aluminum tube. Accelerometers are commercially available in much smaller package sizes than conventional geophones, but the noise floor is significantly higher than that for the geophones. Cross-well tests using small explosives showed good signal-to-noise ratio in the recorded waveform at various receiver depths with a 1,50-ft source-receiver well separation. For some active downhole surveys, the accelerometer unit would clearly be adequate. It can be reasonably assumed, however, that for less energetic sources and for greater well separations, the high accelerometer noise floor is not acceptable. By expanding the inner working diameter of a microhole seismic tool to 0.5 in., other commercial accelerometers can be used with substantially lower noise floors.

  2. Linearity enhancement of scale factor in an optical interrogated micromechanical accelerometer.

    PubMed

    Zhang, Yu; Feng, Lishuang; Wang, Xiao; Wang, Yang

    2016-08-01

    A method to reduce the residual stress of support arms in an optical interrogated micromechanical accelerometer is proposed in order to enhance the linearity of the scale factor of the accelerometer. First, the behavior of residual stress in support arms is analyzed in detail, and the simulation of shape curvature caused by residual stress in aluminum-made support arms is completed using finite element analysis. Then, by comparing two different materials of support arms (aluminum-made and silicon-made support arms), a modified fabrication is introduced in order to reduce the unexpected residual stress in support arms. Finally, based on contrast experiments, the linearity of the scale factor of accelerometers with aluminum-made and silicon-made support arms is measured using the force feedback test system, respectively. Results show that the linearity of the scale factor of the accelerometer with silicon-made support arms is 0.85%, which is reduced about an order of magnitude compared to that of the accelerometer with aluminum-made support arms with the linearity of scale factor of 7.48%; linearity enhancement of the scale factor is validated. This allows accuracy improvement of the optical interrogated micromechanical accelerometer in the application of inertial navigation and positioning. PMID:27505396

  3. Using accelerometers to remotely and automatically characterize behavior in small animals.

    PubMed

    Hammond, Talisin T; Springthorpe, Dwight; Walsh, Rachel E; Berg-Kirkpatrick, Taylor

    2016-06-01

    Activity budgets in wild animals are challenging to measure via direct observation because data collection is time consuming and observer effects are potentially confounding. Although tri-axial accelerometers are increasingly employed for this purpose, their application in small-bodied animals has been limited by weight restrictions. Additionally, accelerometers engender novel complications, as a system is needed to reliably map acceleration to behaviors. In this study, we describe newly developed, tiny acceleration-logging devices (1.5-2.5 g) and use them to characterize behavior in two chipmunk species. We collected paired accelerometer readings and behavioral observations from captive individuals. We then employed techniques from machine learning to develop an automatic system for coding accelerometer readings into behavioral categories. Finally, we deployed and recovered accelerometers from free-living, wild chipmunks. This is the first time to our knowledge that accelerometers have been used to generate behavioral data for small-bodied (<100 g), free-living mammals. PMID:26994177

  4. Evaluation of a novel accelerometer for kinetic gait analysis in dogs.

    PubMed

    Clark, Kyle; Caraguel, Charles; Leahey, Lorne; Béraud, Romain

    2014-07-01

    The objective of this study was to evaluate a novel accelerometer-based sensor system, the Walkabout Portable Gait Monitor (WPGM), for use in kinetic gait analysis of dogs. The accelerometer was compared to the common reference standard of force platform analysis. Fifteen client-owned, orthopedically sound dogs of various breeds underwent simultaneous force platform and accelerometer gait trials to measure peak vertical forces (PVFs). The agreement between PVF for the accelerometer and force platform was measured using concordance correlation coefficient (CCC) and was found, overall, to be moderate [CCC = 0.51; 95% confidence interval (CI): 0.46 to 0.56]. The agreement between PVF for the accelerometer and force platform for the forelimbs was positive and substantial (CCC = 0.79; 95% CI: 0.74 to 0.84) and for the hind limbs was positive and low (CCC = 0.34; 95% CI: 0.29 to 0.38). As measured by the accelerometer, PVF was systematically higher than as measured by the force platform (forelimbs 55.3 N, hind limbs 144.3 N). It was also found that, when positioned over the lumbar spine, the WPGM cannot measure PVF of the individual forelimbs and hind limbs, which limits its use as a clinical tool to measure kinetic variables in dogs. PMID:24982555

  5. Valid detection of self-propelled wheelchair driving with two accelerometers.

    PubMed

    Kooijmans, H; Horemans, H L D; Stam, H J; Bussmann, J B J

    2014-11-01

    This study assessed whether self-propelled wheelchair driving can be validly detected by a new method using a set of two commonly used accelerometers.In a rehabilitation centre, 10 wheelchair-bound persons with spinal cord injury (SCI) (aged 29-63 years) performed a series of representative daily activities according to a protocol including self-propelled wheelchair driving and other activities. Two ActiGraph GT3X+ accelerometers were used; one was attached at the wrist, the other to the spokes of the wheelchair wheel. Based on the movement intensity of the two accelerometers, a custom-made algorithm in MatLab differentiated between self-propelled wheelchair driving and other activities (e.g. being pushed or arm movements not related to wheelchair driving). Video recordings were used for reference. Validity scores between the accelerometer output and the video analyses were expressed in terms of agreement, sensitivity and specificity scores.Overall agreement for the detection of self-propelled wheelchair driving was 85%; sensitivity was 88% and specificity 83%. Disagreement between accelerometer output and video analysis was largest for wheelchair driving at very low speed on a treadmill, wheelchair driving on a slope on a treadmill, and being pushed in the wheelchair whilst making excessive arm movements.Valid detection of self-propelled wheelchair driving is provided by two accelerometers and a simple algorithm. Disagreement with the video analysis was largest during three atypical daily activities.

  6. Performance of a single reflective grating-based fiber optic accelerometer

    NASA Astrophysics Data System (ADS)

    Lee, Yeon-Gwan; Kim, Dae-Hyun; Kim, Chun-Gon

    2012-04-01

    This paper presents a single reflective grating-based fiber optic accelerometer that can monitor the low-frequency acceleration of civil engineering structures. A simpler sensor structure was realized by employing a single reflective grating panel and two optical fibers as transceivers rather than the moiré fringe fiber optic accelerometer, which is composed of two gratings and four optical fibers. The simplified layout contributes to resolving the issues of space restraints during installation and complex cabling problems in transmission of fiber optic accelerometers. The measured oscillated displacement and sinusoidal acceleration from the proposed fiber optic sensor demonstrated good agreement with those of a commercial laser displacement sensor and an accelerometer without electromagnetic interference. The developed fiber optic accelerometer can be used in frequency ranges below 4 Hz within a 5% error margin and high sensitivity of 33.33 rad G-1. Furthermore, in comparison with the conventional transmission fiber optic accelerometer design, the proposed scheme's cable design is simplified by 50%.

  7. Validity of a trunk-mounted accelerometer to assess peak accelerations during walking, jogging and running.

    PubMed

    Wundersitz, Daniel W T; Gastin, Paul B; Richter, Chris; Robertson, Samuel J; Netto, Kevin J

    2015-01-01

    The purpose of this study was to validate peak acceleration data from an accelerometer contained within a wearable tracking device while walking, jogging and running. Thirty-nine participants walked, jogged and ran on a treadmill while 10 peak accelerations per movement were obtained (n = 390). A single triaxial accelerometer measured resultant acceleration during all movements. To provide a criterion measure of acceleration, a 12-camera motion analysis (MA) system tracked the position of a retro-reflective marker affixed to the wearable tracking device. Peak raw acceleration recorded by the accelerometer significantly overestimated peak MA acceleration (P < 0.01). Filtering accelerometer data improved the relationship with the MA system (P < 0.01). However, only the 10 Hz and 8 Hz cut-off frequencies significantly reduced the errors found. The walk movement demonstrated the highest accuracy, agreement and precision and the lowest relative errors. Linear increases in error were observed for jog compared with walk and for run compared to both other movements. As the magnitude of acceleration increased, the strength of the relationship between the accelerometer and the criterion measure decreased. These results indicate that filtered accelerometer data provide an acceptable means of assessing peak accelerations, in particular for walking and jogging.

  8. Altered Maxwell equations in the length gauge

    NASA Astrophysics Data System (ADS)

    Reiss, H. R.

    2013-09-01

    The length gauge uses a scalar potential to describe a laser field, thus treating it as a longitudinal field rather than as a transverse field. This distinction is manifested by the fact that the Maxwell equations that relate to the length gauge are not the same as those for transverse fields. In particular, a source term is necessary in the length-gauge Maxwell equations, whereas the Coulomb-gauge description of plane waves possesses the basic property of transverse fields that they propagate with no source terms at all. This difference is shown to be importantly consequential in some previously unremarked circumstances; and it explains why the Göppert-Mayer gauge transformation does not provide the security that might be expected of full gauge equivalence.

  9. Entanglement of Distillation for Lattice Gauge Theories

    NASA Astrophysics Data System (ADS)

    Van Acoleyen, Karel; Bultinck, Nick; Haegeman, Jutho; Marien, Michael; Scholz, Volkher B.; Verstraete, Frank

    2016-09-01

    We study the entanglement structure of lattice gauge theories from the local operational point of view, and, similar to Soni and Trivedi [J. High Energy Phys. 1 (2016) 1], we show that the usual entanglement entropy for a spatial bipartition can be written as the sum of an undistillable gauge part and of another part corresponding to the local operations and classical communication distillable entanglement, which is obtained by depolarizing the local superselection sectors. We demonstrate that the distillable entanglement is zero for pure Abelian gauge theories at zero gauge coupling, while it is in general nonzero for the non-Abelian case. We also consider gauge theories with matter, and show in a perturbative approach how area laws—including a topological correction—emerge for the distillable entanglement. Finally, we also discuss the entanglement entropy of gauge fixed states and show that it has no relation to the physical distillable entropy.

  10. Design and implementation of an intelligent belt system using accelerometer.

    PubMed

    Liu, Botong; Wang, Duo; Li, Sha; Nie, Xuhui; Xu, Shan; Jiao, Bingli; Duan, Xiaohui; Huang, Anpeng

    2015-01-01

    Activity monitor systems are increasing used recently. They are important for athletes and casual users to manage physical activity during daily exercises. In this paper, we use a triaxial accelerometer to design and implement an intelligent belt system, which can detect the user's step and flapping motion. In our system, a wearable intelligent belt is worn on the user's waist to collect activity acceleration signals. We present a step detection algorithm to detect real-time human step, which has high accuracy and low complexity. In our system, an Android App is developed to manage the intelligent belt. We also propose a protocol, which can guarantee data transmission between smartphones and wearable belt effectively and efficiently. In addition, when users flap the belt in emergency, the smartphone will receive alarm signal sending by the belt, and then notifies the emergency contact person, which can be really helpful for users in danger. Our experiment results show our system can detect physical activities with high accuracy (overall accuracy of our algorithm is above 95%) and has an effective alarm subsystem, which is significant for the practical use.

  11. A piezoelectric, flexural-disk, neutrally buoyant, underwater accelerometer.

    PubMed

    Moffett, M B; Trivett, D H; Klippel, P J; Baird, P D

    1998-01-01

    A piezoelectric, flexural-disk accelerometer for underwater use is composed of two PZT-5A lead zirconate-titanate disks that are bonded to an aluminum substrate. The substrate is edge-supported inside an aluminum housing. The housing is enclosed in syntactic foam so that the sensor is neutrally buoyant. The overall height is 1.0 in. (26 mm), the overall diameter is 1.9 in. (49 mm), and the total mass is 0.054 kg. With 25 ft (7.6 m) of (230 pF/m) cable attached, the sensitivity is -42 dB re 1 V-s(2)/m (-22 dB re 1 V/g), the capacitance is 5.0 nF, and the resonance frequency is 11 kHz. When used in conjuction with a Micro Networks MN3210 preamplifier, the spectral noise-equivalent acceleration floor is approximately -171 dB re 1 m/s(2)- radicalHz (-151 dB re 1 g/ radicalHz) at 5 kHz.

  12. Ambulatory respiratory rate detection using ECG and a triaxial accelerometer.

    PubMed

    Chan, Alexander M; Ferdosi, Nima; Narasimhan, Ravi

    2013-01-01

    Continuous monitoring of respiratory rate in ambulatory conditions has widespread applications for screening of respiratory diseases and remote patient monitoring. Unfortunately, minimally obtrusive techniques often suffer from low accuracy. In this paper, we describe an algorithm with low computational complexity for combining multiple respiratory measurements to estimate breathing rate from an unobtrusive chest patch sensor. Respiratory rates derived from the respiratory sinus arrhythmia (RSA) and modulation of the QRS amplitude of electrocardiography (ECG) are combined with a respiratory rate derived from tri-axial accelerometer data. The three respiration rates are combined by a weighted average using weights based on quality metrics for each signal. The algorithm was evaluated on 15 elderly subjects who performed spontaneous and metronome breathing as well as a variety of activities of daily living (ADLs). When compared to a reference device, the mean absolute error was 1.02 breaths per minute (BrPM) during metronome breathing, 1.67 BrPM during spontaneous breathing, and 2.03 BrPM during ADLs.

  13. Movement Prediction Using Accelerometers in a Human Population

    PubMed Central

    Xiao, Luo; He, Bing; Koster, Annemarie; Caserotti, Paolo; Lange-Maia, Brittney; Glynn, Nancy W.; Harris, Tamara B.; Crainiceanu, Ciprian M.

    2015-01-01

    Summary We introduce statistical methods for predicting the types of human activity at sub-second resolution using triaxial accelerometry data. The major innovation is that we use labeled activity data from some subjects to predict the activity labels of other subjects. To achieve this, we normalize the data across subjects by matching the standing up and lying down portions of triaxial accelerometry data. This is necessary to account for differences between the variability in the position of the device relative to gravity, which are induced by body shape and size as well as by the ambiguous definition of device placement. We also normalize the data at the device level to ensure that the magnitude of the signal at rest is similar across devices. After normalization we use overlapping movelets (segments of triaxial accelerometry time series) extracted from some of the subjects to predict the movement type of the other subjects. The problem was motivated by and is applied to a laboratory study of 20 older participants who performed different activities while wearing accelerometers at the hip. Prediction results based on other people’s labeled dictionaries of activity performed almost as well as those obtained using their own labeled dictionaries. These findings indicate that prediction of activity types for data collected during natural activities of daily living may actually be possible. PMID:26288278

  14. Applications of ISA accelerometer for the exploration of the Moon

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Peron, Roberto; Nozzoli, Sergio; Santoli, Francesco; Fiorenza, Emiliano; Lefevre, Carlo; Reale, Andrea

    The recent years have seen again the Moon as a target for exploration activities. The reasons for this new wave are manifold, from the knowledge of formation and evolution of the Moon towards its current state to the possibility of building a human settlement on its surface, with all the related issues of environment characterization, safety, resources, communication and navigation. Our natural satellite is also an important laboratory for fundamental physics: Lunar Laser Ranging is continuing to provide important data that constrain possible theories of gravitation. ISA (Italian Spring Accelerometer) can provide an important tool in this respect. Thanks to its concept it works both in-orbit and on-ground, with essentially the same configuration. It therefore can be used onboard a spacecraft, as a support to a radio science mission, and on the surface of the Moon, as a seismometer. Two options have been considered. The first one is the support to space gravimetric measurements to be performed in the context of the proposed MAGIA (Missione Altimetrica Gravimetrica geochImica lunAre) mission. The second one concerns ISA as a candidate seismometer to be hosted on NASA ILN (International Lunar Network) and ESA First Lunar Lander. Both options will be discussed, giving emphasis on the integration of the instrument in the overall mission scenarios.

  15. Micromachined silicon cantilever beam accelerometer incorporating an integrated optical waveguide

    NASA Technical Reports Server (NTRS)

    Burcham, Kevin E.; De Brabander, Gregory N.; Boyd, Joseph T.

    1993-01-01

    A micromachined cantilever beam accelerometer is described in which beam deflection is determined optically. A diving board structure is anisotropically etched into a silicon wafer. This diving board structure is patterned from the wafer backside so as to leave a small gap between the tip of the diving board and the opposite fixed edge on the front side of the wafer. In order to sense a realistic range of accelerations, a foot mass incorporated onto the end of the beam is found to provide design flexibility. A silicon nitride optical waveguide is then deposited by low pressure chemical vapor deposition (LPCVD) onto the sample. Beam deflection is measured by the decrease of light coupled across the gap between the waveguide sections. In order to investigate sensor response and simulate deflection of the beam, we utilized a separate beam and waveguide section which could be displaced from one another in a precisely controlled manner. Measurements were performed on samples with gaps of 4.0, 6.0, and 8.0 micron and the variation of the fraction of light coupled across the gap as a function of displacement and gap spacing was found to agree with overlap integral calculations.

  16. Reliability issues of an accelerometer under environmental stresses

    NASA Astrophysics Data System (ADS)

    Schmitt, Petra; Pressecq, Francis; Perez, Guy; Lafontan, Xavier; Nicot, Jean Marc; Esteve, Daniel; Fourniols, Jean Yves; Camon, Henri; Oudea, Coumar

    2003-12-01

    COTS (Commercial-off-the-shelf) MEMS components are very interesting for space applications because they are lightweight, small, economic in energy, cheap and available in short delays. The reliability of MEMS COTS that are used out of their intended domain of operation (such as a space application) might be assured by a reliability methodology derived from the Physics of Failure approach. In order to use this approach it is necessary to create models of MEMS components that take into consideration environmental stresses and thus can be used for lifetime prediction. Unfortunately, today MEMS failure mechanisms are not well understood today and therefore a preliminary work is necessary to determine influent factors and physical phenomena. The model development is based on a good knowledge of the process parameters (Young"s modulus, stress…), environmental tests and appropriated modeling approaches, such a finite element analysis (FEA) and behavioural modeling. In order to do the environmental tests and to analyse MEMS behaviour, we have developed the Environmental MEMS Analyzer EMA 3D. The described methodology has been applied to a Commercial-off-the-shelf (COTS) accelerometer, the ADXL150. A first level behavioral model was created and then refined in the following steps by the enrichment with experimental results and finite element simulations.

  17. Reliability issues of an accelerometer under environmental stresses

    NASA Astrophysics Data System (ADS)

    Schmitt, Petra; Pressecq, Francis; Perez, Guy; Lafontan, Xavier; Nicot, Jean Marc; Esteve, Daniel; Fourniols, Jean Yves; Camon, Henri; Oudea, Coumar

    2004-01-01

    COTS (Commercial-off-the-shelf) MEMS components are very interesting for space applications because they are lightweight, small, economic in energy, cheap and available in short delays. The reliability of MEMS COTS that are used out of their intended domain of operation (such as a space application) might be assured by a reliability methodology derived from the Physics of Failure approach. In order to use this approach it is necessary to create models of MEMS components that take into consideration environmental stresses and thus can be used for lifetime prediction. Unfortunately, today MEMS failure mechanisms are not well understood today and therefore a preliminary work is necessary to determine influent factors and physical phenomena. The model development is based on a good knowledge of the process parameters (Young"s modulus, stress...), environmental tests and appropriated modeling approaches, such a finite element analysis (FEA) and behavioural modeling. In order to do the environmental tests and to analyse MEMS behaviour, we have developed the Environmental MEMS Analyzer EMA 3D. The described methodology has been applied to a Commercial-off-the-shelf (COTS) accelerometer, the ADXL150. A first level behavioral model was created and then refined in the following steps by the enrichment with experimental results and finite element simulations.

  18. (abstract) A Miniature, High-Sensitivity, Electron-Tunneling Accelerometer

    NASA Technical Reports Server (NTRS)

    Gabrielson, Thomas B.; Rockstad, Howard K.; Tang, Tony K.

    1994-01-01

    A prototype low-noise accelerometer has been fabricated with an electron-tunneling transducer. By measuring the tunneling current between an electrode on the proof mass and a feedback-controlled monitor electrode, very small accelerations can be detected with high responsivity. This particular prototype (10x10x1.5 mm) was designed for underwater acoustic measurement from a few hertz to 1 kHz. The measured responsivity below the fundamental device resonance at 100 Hz is roughly 1500 volts per m/s(sup 2) with a measured noise spectral density of 10(sup -6) m/s(sup 2) per root hertz or less between 30 and 300 Hz. The noise floor is controlled primarily by 1/f noise in the tunneling current although the noise floor reaches the theoretical molecular-agitation limit at 100 hertz. The responsivity and directivity of the device were measured in a standard gradient-hydrophone calibrator; the noise floor was determined in a vacuum-ionization chamber assembled from commercial off-the-shelf components; and the detailed dynamics of the proof-mass motion were examined using a heterodyne laser interferometer that was scanned across the surface and synchronously detected with respect to the excitation.

  19. Detection of rail corrugation based on fiber laser accelerometers

    NASA Astrophysics Data System (ADS)

    Huang, Wenzhu; Zhang, Wentao; Du, Yanliang; Sun, Baochen; Ma, Huaixiang; Li, Fang

    2013-09-01

    Efficient inspection methods are necessary for detection of rail corrugation to improve the safety and ride quality of railway operations. This paper presents a novel fiber optic technology for detection of rail corrugation based on fiber laser accelerometers (FLAs), tailored to the measurement of surface damage on rail structures. The principle of detection of rail corrugation using double integration of axle-box acceleration is presented. Then we present the theoretical model and test results of FLAs which are installed on the bogie to detect the vertical axle-box acceleration of the train. Characteristics of high sensitivity and large dynamic range are achieved when using fiber optic interferometric demodulation. A flexible inertial algorithm based on double integration and the wavelet denoising method is proposed to accurately estimate the rail corrugation. A field test is carried out on the Datong-Qinhuangdao Railway in north China. The test results are compared with the results of a rail inspection car, which shows that the fiber laser sensing system has a good performance in monitoring rail corrugation.

  20. Improving energy expenditure estimation by using a triaxial accelerometer.

    PubMed

    Chen, K Y; Sun, M

    1997-12-01

    In our study of 125 subjects (53 men and 72 women) for two 24-h periods, we validated energy expenditure (EE), estimated by a triaxial accelerometer (Tritrac-R3D), by using a whole-room indirect calorimeter under close-to-normal living conditions. The estimated EE was correlated with the measured total EE for the 2 days (r = 0. 925 and r = 0.855; P < 0.001) and in minute-by-minute EE (P < 0.01). Resting EE formulated by the Tritrac was found to be similar to the measured values [standard errors of estimation (SEE) = 0.112 W/kg; P = 0.822]. The Tritrac significantly underestimated total EE, EE for physical activities, EE of sedentary and light-intensity activities, and EE for exercise such as stepping (all P < 0.001). We developed a linear and a nonlinear model to predict EE by using the acceleration components from the Tritrac. Predicted EE was significantly improved with both models in estimating total EE, total EE for physical activities, EE in low-intensity activities, minute-by-minute averaged relative difference, and minute-by-minute SEE (all P < 0. 05). Furthermore, with our generalized models and by using subjects' physical characteristics and body acceleration, EE can be estimated with higher accuracy (averaged SEE = 0.418 W/kg) than with the Tritrac model.