Sample records for acceptable dose distribution

  1. Comparative dosimetry of diode and diamond detectors in electron beams for intraoperative radiation therapy.

    PubMed

    Björk, P; Knöös, T; Nilsson, P

    2000-11-01

    The aim of the present study is to examine the validity of using silicon semiconductor detectors in degraded electron beams with a broad energy spectrum and a wide angular distribution. A comparison is made with diamond detector measurements, which is the dosimeter considered to give the best results provided that dose rate effects are corrected for. Two-dimensional relative absorbed dose distributions in electron beams (6-20 MeV) for intraoperative radiation therapy (IORT) are measured in a water phantom. To quantify deviations between the detectors, a dose comparison tool that simultaneously examines the dose difference and distance to agreement (DTA) is used to evaluate the results in low- and high-dose gradient regions, respectively. Uncertainties of the experimental measurement setup (+/- 1% and +/- 0.5 mm) are taken into account by calculating a composite distribution that fails this dose-difference and DTA acceptance limit. Thus, the resulting area of disagreement should be related to differences in detector performance. The dose distributions obtained with the diode are generally in very good agreement with diamond detector measurements. The buildup region and the dose falloff region show good agreement with increasing electron energy, while the region outside the radiation field close to the water surface shows an increased difference with energy. The small discrepancies in the composite distributions are due to several factors: (a) variation of the silicon-to-water collision stopping-power ratio with electron energy, (b) a more pronounced directional dependence for diodes than for diamonds, and (c) variation of the electron fluence perturbation correction factor with depth. For all investigated treatment cones and energies, the deviation is within dose-difference and DTA acceptance criteria of +/- 3% and +/- 1 mm, respectively. Therefore, p-type silicon diodes are well suited, in the sense that they give results in close agreement with diamond detectors, for practical measurements of relative absorbed dose distributions in degraded electron beams used for IORT.

  2. [The dose estimation to the population as a result of radioactive contamination of the Semipalatinsk Test area].

    PubMed

    Spiridonova, S I; Mukusheva, M K; Shubina, O A; Solomatin, V M; Epifanova, I E

    2008-01-01

    The results are presented from estimation of spatial distribution of 137Cs and 90Sr contamination densities in the areas of horses and sheep grazing within the Semipalatinsk Test Site. Dose burdens to various cohorts of the population living within the STS and consuming contaminated animal products are predicted. Doses of shepherds in the most contaminated pasture areas have been found to exceed the accepted limit (1 mSv/y). The conclusion is made about the need for further studies on the risk assessment of the STS population exposure above the accepted limits.

  3. Poster - Thur Eve - 06: Comparison of an open source genetic algorithm to the commercially used IPSA for generation of seed distributions in LDR prostate brachytherapy.

    PubMed

    McGeachy, P; Khan, R

    2012-07-01

    In early stage prostate cancer, low dose rate (LDR) prostate brachytherapy is a favorable treatment modality, where small radioactive seeds are permanently implanted throughout the prostate. Treatment centres currently rely on a commercial optimization algorithm, IPSA, to generate seed distributions for treatment plans. However, commercial software does not allow the user access to the source code, thus reducing the flexibility for treatment planning and impeding any implementation of new and, perhaps, improved clinical techniques. An open source genetic algorithm (GA) has been encoded in MATLAB to generate seed distributions for a simplified prostate and urethra model. To assess the quality of the seed distributions created by the GA, both the GA and IPSA were used to generate seed distributions for two clinically relevant scenarios and the quality of the GA distributions relative to IPSA distributions and clinically accepted standards for seed distributions was investigated. The first clinically relevant scenario involved generating seed distributions for three different prostate volumes (19.2 cc, 32.4 cc, and 54.7 cc). The second scenario involved generating distributions for three separate seed activities (0.397 mCi, 0.455 mCi, and 0.5 mCi). Both GA and IPSA met the clinically accepted criteria for the two scenarios, where distributions produced by the GA were comparable to IPSA in terms of full coverage of the prostate by the prescribed dose, and minimized dose to the urethra, which passed straight through the prostate. Further, the GA offered improved reduction of high dose regions (i.e hot spots) within the planned target volume. © 2012 American Association of Physicists in Medicine.

  4. SU-F-T-538: CyberKnife with MLC for Treatment of Large Volume Tumors: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bichay, T; Mayville, A

    2016-06-15

    Purpose: CyberKnife is a well-documented modality for SRS and SBRT treatments. Typical tumors are small and 1–5 fractions are usually used. We determined the feasibility of using CyberKnife, with an InCise multileaf collimator option, for larger tumors undergoing standard dose and fractionation. The intent was to understand the limitation of using this modality for other external beam radiation treatments. Methods: Five tumors from different anatomical sites with volumes from 127.8 cc to 1,320.5 cc were contoured and planned on a Multiplan V5.1 workstation. The target average diameter ranged from 7 cm to 13 cm. The dose fractionation was 1.8–2.0 Gy/fractionmore » and 25–45 fractions for total doses of 45–81 Gy. The sites planned were: pancreas, head and neck, prostate, anal, and esophagus. The plans were optimized to meet conventional dose constraints based on various RTOG protocols for conventional fractionation. Results: The Multiplan treatment planning system successfully generated clinically acceptable plans for all sites studied. The resulting dose distributions achieved reasonable target coverage, all greater than 95%, and satisfactory normal tissue sparing. Treatment times ranged from 9 minutes to 38 minutes, the longest being a head and neck plan with dual targets receiving different doses and with multiple adjacent critical structures. Conclusion: CyberKnife, with the InCise multileaf collimation option, can achieve acceptable dose distributions in large volume tumors treated with conventional dose and fractionation. Although treatment times are greater than conventional accelerator time; target coverage and dose to critical structures can be kept within a clinically acceptable range. While time limitations exist, when necessary CyberKnife can provide an alternative to traditional treatment modalities for large volume tumors.« less

  5. SU-F-T-168: Development and Implementation of An Anthropomorphic Head & Neck Phantom for the Assessment of Proton Therapy Treatment Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branco, D; Taylor, P; Frank, S

    2016-06-15

    Purpose: To design a Head and Neck (H&N) anthropomorphic QA phantom that the Imaging and Radiation Oncology Core Houston (IROC-H) can use to verify the quality of intensity modulated proton therapy (IMPT) H&N treatments for institutions participating in NCI clinical trials. Methods: The phantom was created to serve as a remote auditing tool for IROC-H to evaluate an institution’s IMPT planning and delivery abilities. The design was based on the composition, size, and geometry of a generalized oropharyngeal tumor and contains critical structures (parotids and spinal cord). Radiochromic film in the axial and sagittal planes and thermoluminescent dosimeters (TLD)-100 capsulesmore » were embedded in the phantom and used to perform the dose delivery evaluation. A CT simulation was used to create a passive scatter and a spot scanning treatment plan with typical clinical constraints for H&N cancer. The IMPT plan was approved by a radiation oncologist and the phantom was irradiated multiple times. The measured dose distribution using a 7%/4mm gamma analysis (85% of pixels passing) and point doses were compared with the treatment planning system calculations. Results: The designed phantom could not achieve the target dose prescription and organ at risk dose constraints with the passive scatter treatment plan. The target prescription dose could be met but not the parotid dose constraint. The average TLD point dose ratio in the target was 0.975, well within the 5% acceptance criterion. The dose distribution analysis using various acceptance criteria, 5%/4mm, 5%/3mm, 7%/4mm and 7%/5mm, had average pixel passing rates of 85.9%, 81.8%, 89.6% and 91.6%, and respectively. Conclusion: An anthropomorphic IMPT H&N phantom was designed that can assess the dose delivery of proton sites wishing to participate in clinical trials using a 5% TLD dose and 7%/4mm gamma analysis acceptance criteria.« less

  6. SU-F-T-383: Robustness for Patient Setup Error in Total Body Irradiation Using Volumetric Modulated Arc Therapy (VMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Y; National Cancer Center, Kashiwa, Chiba; Tachibana, H

    Purpose: Total body irradiation (TBI) and total marrow irradiation (TMI) using Tomotherapy have been reported. A gantry-based linear accelerator uses one isocenter during one rotational irradiation. Thus, 3–5 isocenter points should be used for a whole plan of TBI-VMAT during smoothing out the junctional dose distribution. IGRT provides accurate and precise patient setup for the multiple junctions, however it is evident that some setup errors should occur and affect accuracy of dose distribution in the area. In this study, we evaluated the robustness for patient’s setup error in VMAT-TBI. Methods: VMAT-TBI Planning was performed in an adult whole-body human phantommore » using Eclipse. Eight full arcs with four isocenter points using 6MV-X were used to cover the entire whole body. Dose distribution was optimized using two structures of patient’s body as PTV and lung. The two arcs were shared with one isocenter and the two arcs were 5 cm-overlapped with the other two arcs. Point absolute dose using ionization-chamber and planer relative dose distribution using film in the junctional regions were performed using water-equivalent slab phantom. In the measurements, several setup errors of (+5∼−5mm) were added. Results: The result of the chamber measurement shows the deviations were within ±3% when the setup errors were within ±3 mm. In the planer evaluation, the pass ratio of gamma evaluation (3%/2mm) shows more than 90% if the errors within ±3 mm. However, there were hot/cold areas in the edge of the junction even with acceptable gamma pass ratio. 5 mm setup error caused larger hot and cold areas and the dosimetric acceptable areas were decreased in the overlapped areas. Conclusion: It can be clinically acceptable for VMAT-TBI when patient setup error is within ±3mm. Averaging effects from patient random error would be helpful to blur the hot/cold area in the junction.« less

  7. SU-E-T-60: A Plan Quality Index in IMRT QA That Is Independent of the Acceptance Criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D; Kang, S; Kim, T

    2015-06-15

    Purpose: In IMRT QA, plan quality evaluation is made based on pass rate under preset acceptance criteria, mostly using gamma-values. This method is convenient but, its Result highly depends on what the acceptance criteria are and suffers from the lack of sensitivity in judging how good the plan is. In this study, we introduced a simple but effective plan quality index of IMRT QA based on dose difference only to supplement such shortcomings, and investigated its validity. Methods: The proposed index is a single value which is calculated mainly based on point-by-point comparison between planned and measured dose distributions, andmore » it becomes “1” in an ideal case. A systematic evaluation was performed with one-dimensional test dose distributions. For 3 hypothetical dose profiles, various displacements (in both dose and space) were introduced, the proposed index was calculated for each case, and the behavior of obtained indices was analyzed and compared with that of gamma evaluation. In addition, the feasibility of the index was assessed with clinical IMRT/VMAT/SBRT QA cases for different sites (prostate, head & neck, liver, lung, spine, and abdomen). Results: The proposed index showed more robust correlation with the amount of induced displacement compared to the gamma evaluation method. No matter what the acceptance criteria are (e.g., whether 3%/3mm or 2%/2mm), it was possible to clearly rank every case with the proposed index while it was difficult to do with the gamma evaluation method. Conclusion: IMRT plan quality can be evaluated quantitatively by the proposed index. It is considered that the proposed index would provide useful information for better judging the level of goodness of each plan and its Result is independent of the acceptance criteria. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less

  8. Total body irradiation, toward optimal individual delivery: dose evaluation with metal oxide field effect transistors, thermoluminescence detectors, and a treatment planning system.

    PubMed

    Bloemen-van Gurp, Esther J; Mijnheer, Ben J; Verschueren, Tom A M; Lambin, Philippe

    2007-11-15

    To predict the three-dimensional dose distribution of our total body irradiation technique, using a commercial treatment planning system (TPS). In vivo dosimetry, using metal oxide field effect transistors (MOSFETs) and thermoluminescence detectors (TLDs), was used to verify the calculated dose distributions. A total body computed tomography scan was performed and loaded into our TPS, and a three-dimensional-dose distribution was generated. In vivo dosimetry was performed at five locations on the patient. Entrance and exit dose values were converted to midline doses using conversion factors, previously determined with phantom measurements. The TPS-predicted dose values were compared with the MOSFET and TLD in vivo dose values. The MOSFET and TLD dose values agreed within 3.0% and the MOSFET and TPS data within 0.5%. The convolution algorithm of the TPS, which is routinely applied in the clinic, overestimated the dose in the lung region. Using a superposition algorithm reduced the calculated lung dose by approximately 3%. The dose inhomogeneity, as predicted by the TPS, can be reduced using a simple intensity-modulated radiotherapy technique. The use of a TPS to calculate the dose distributions in individual patients during total body irradiation is strongly recommended. Using a TPS gives good insight of the over- and underdosage in a patient and the influence of patient positioning on dose homogeneity. MOSFETs are suitable for in vivo dosimetry purposes during total body irradiation, when using appropriate conversion factors. The MOSFET, TLD, and TPS results agreed within acceptable margins.

  9. A revision of the gamma-evaluation concept for the comparison of dose distributions.

    PubMed

    Bakai, Annemarie; Alber, Markus; Nüsslin, Fridtjof

    2003-11-07

    A method for the quantitative four-dimensional (4D) evaluation of discrete dose data based on gradient-dependent local acceptance thresholds is presented. The method takes into account the local dose gradients of a reference distribution for critical appraisal of misalignment and collimation errors. These contribute to the maximum tolerable dose error at each evaluation point to which the local dose differences between comparison and reference data are compared. As shown, the presented concept is analogous to the gamma-concept of Low et al (1998a Med. Phys. 25 656-61) if extended to (3+1) dimensions. The pointwise dose comparisons of the reformulated concept are easier to perform and speed up the evaluation process considerably, especially for fine-grid evaluations of 3D dose distributions. The occurrences of false negative indications due to the discrete nature of the data are reduced with the method. The presented method was applied to film-measured, clinical data and compared with gamma-evaluations. 4D and 3D evaluations were performed. Comparisons prove that 4D evaluations have to be given priority, especially if complex treatment situations are verified, e.g., non-coplanar beam configurations.

  10. SU-F-P-21: Study of Dosimetry Accuracy of Small Passively Scattered Proton Beam Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Gautam, A; Kerr, M

    2016-06-15

    Purpose: To study the accuracy of the dose distribution of very small irregular fields of passively scattered proton beams calculated by the analytical pencil beam model of the Eclipse treatment planning system (TPS). Methods: An irregular field with a narrow region (width < 1 cm) that was used for the treatment of a small volume adjacent to a previously treated area were chosen for this investigation. Point doses at different locations inside the field were measured with a small volume ion chamber (A26, Standard Imaging). 2-D dose distributions were measured using a 2-D ion chamber array (MatriXX, IBA). All themore » measurements were done in plastic water phantom. The measured dose distributions were compared with the verification plan dose calculated in a water like phantom for the patient treatment field without the use of the compensator. Results: Point doses measured with the ion chamber in the narrowest section of the field were found to differ as much as 10% from the Eclipse calculated dose at some of the points. The 2-D dose distribution measured with the MatriXX which was validated by comparison with limited film measurement, at the proximal 95%, center of the spread out Bragg Peak and distal 90% depths agreed reasonably well with the TPS calculated dose distribution with more than 92% of the pixels passing the 2% / 2 mm dose distance agreement. Conclusion: The dose calculated by the pencil beam model of the Eclipse TPS for narrow irregular fields may not be accurate within 5% at some locations of the field, especially at the points close to the field edge due to the limitation of the dose calculation model. Overall accuracy of the calculated 2-D dose distribution was found to be acceptable for the 2%/2 mm dose/distance agreement with the measurement.« less

  11. Agreement between gamma passing rates using computed tomography in radiotherapy and secondary cancer risk prediction from more advanced dose calculated models

    PubMed Central

    Balosso, Jacques

    2017-01-01

    Background During the past decades, in radiotherapy, the dose distributions were calculated using density correction methods with pencil beam as type ‘a’ algorithm. The objectives of this study are to assess and evaluate the impact of dose distribution shift on the predicted secondary cancer risk (SCR), using modern advanced dose calculation algorithms, point kernel, as type ‘b’, which consider change in lateral electrons transport. Methods Clinical examples of pediatric cranio-spinal irradiation patients were evaluated. For each case, two radiotherapy treatment plans with were generated using the same prescribed dose to the target resulting in different number of monitor units (MUs) per field. The dose distributions were calculated, respectively, using both algorithms types. A gamma index (γ) analysis was used to compare dose distribution in the lung. The organ equivalent dose (OED) has been calculated with three different models, the linear, the linear-exponential and the plateau dose response curves. The excess absolute risk ratio (EAR) was also evaluated as (EAR = OED type ‘b’ / OED type ‘a’). Results The γ analysis results indicated an acceptable dose distribution agreement of 95% with 3%/3 mm. Although, the γ-maps displayed dose displacement >1 mm around the healthy lungs. Compared to type ‘a’, the OED values from type ‘b’ dose distributions’ were about 8% to 16% higher, leading to an EAR ratio >1, ranged from 1.08 to 1.13 depending on SCR models. Conclusions The shift of dose calculation in radiotherapy, according to the algorithm, can significantly influence the SCR prediction and the plan optimization, since OEDs are calculated from DVH for a specific treatment. The agreement between dose distribution and SCR prediction depends on dose response models and epidemiological data. In addition, the γ passing rates of 3%/3 mm does not translate the difference, up to 15%, in the predictions of SCR resulting from alternative algorithms. Considering that modern algorithms are more accurate, showing more precisely the dose distributions, but that the prediction of absolute SCR is still very imprecise, only the EAR ratio could be used to rank radiotherapy plans. PMID:28811995

  12. SU-F-T-450: The Investigation of Radiotherapy Quality Assurance and Automatic Treatment Planning Based On the Kernel Density Estimation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, J; Fan, J; Hu, W

    Purpose: To develop a fast automatic algorithm based on the two dimensional kernel density estimation (2D KDE) to predict the dose-volume histogram (DVH) which can be employed for the investigation of radiotherapy quality assurance and automatic treatment planning. Methods: We propose a machine learning method that uses previous treatment plans to predict the DVH. The key to the approach is the framing of DVH in a probabilistic setting. The training consists of estimating, from the patients in the training set, the joint probability distribution of the dose and the predictive features. The joint distribution provides an estimation of the conditionalmore » probability of the dose given the values of the predictive features. For the new patient, the prediction consists of estimating the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimation of the DVH. The 2D KDE is implemented to predict the joint probability distribution of the training set and the distribution of the predictive features for the new patient. Two variables, including the signed minimal distance from each OAR (organs at risk) voxel to the target boundary and its opening angle with respect to the origin of voxel coordinate, are considered as the predictive features to represent the OAR-target spatial relationship. The feasibility of our method has been demonstrated with the rectum, breast and head-and-neck cancer cases by comparing the predicted DVHs with the planned ones. Results: The consistent result has been found between these two DVHs for each cancer and the average of relative point-wise differences is about 5% within the clinical acceptable extent. Conclusion: According to the result of this study, our method can be used to predict the clinical acceptable DVH and has ability to evaluate the quality and consistency of the treatment planning.« less

  13. Quantitative assessment of the accuracy of dose calculation using pencil beam and Monte Carlo algorithms and requirements for clinical quality assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Imad, E-mail: iali@ouhsc.edu; Ahmad, Salahuddin

    2013-10-01

    To compare the doses calculated using the BrainLAB pencil beam (PB) and Monte Carlo (MC) algorithms for tumors located in various sites including the lung and evaluate quality assurance procedures required for the verification of the accuracy of dose calculation. The dose-calculation accuracy of PB and MC was also assessed quantitatively with measurement using ionization chamber and Gafchromic films placed in solid water and heterogeneous phantoms. The dose was calculated using PB convolution and MC algorithms in the iPlan treatment planning system from BrainLAB. The dose calculation was performed on the patient's computed tomography images with lesions in various treatmentmore » sites including 5 lungs, 5 prostates, 4 brains, 2 head and necks, and 2 paraspinal tissues. A combination of conventional, conformal, and intensity-modulated radiation therapy plans was used in dose calculation. The leaf sequence from intensity-modulated radiation therapy plans or beam shapes from conformal plans and monitor units and other planning parameters calculated by the PB were identical for calculating dose with MC. Heterogeneity correction was considered in both PB and MC dose calculations. Dose-volume parameters such as V95 (volume covered by 95% of prescription dose), dose distributions, and gamma analysis were used to evaluate the calculated dose by PB and MC. The measured doses by ionization chamber and EBT GAFCHROMIC film in solid water and heterogeneous phantoms were used to quantitatively asses the accuracy of dose calculated by PB and MC. The dose-volume histograms and dose distributions calculated by PB and MC in the brain, prostate, paraspinal, and head and neck were in good agreement with one another (within 5%) and provided acceptable planning target volume coverage. However, dose distributions of the patients with lung cancer had large discrepancies. For a plan optimized with PB, the dose coverage was shown as clinically acceptable, whereas in reality, the MC showed a systematic lack of dose coverage. The dose calculated by PB for lung tumors was overestimated by up to 40%. An interesting feature that was observed is that despite large discrepancies in dose-volume histogram coverage of the planning target volume between PB and MC, the point doses at the isocenter (center of the lesions) calculated by both algorithms were within 7% even for lung cases. The dose distributions measured with EBT GAFCHROMIC films in heterogeneous phantoms showed large discrepancies of nearly 15% lower than PB at interfaces between heterogeneous media, where these lower doses measured by the film were in agreement with those by MC. The doses (V95) calculated by MC and PB agreed within 5% for treatment sites with small tissue heterogeneities such as the prostate, brain, head and neck, and paraspinal tumors. Considerable discrepancies, up to 40%, were observed in the dose-volume coverage between MC and PB in lung tumors, which may affect clinical outcomes. The discrepancies between MC and PB increased for 15 MV compared with 6 MV indicating the importance of implementation of accurate clinical treatment planning such as MC. The comparison of point doses is not representative of the discrepancies in dose coverage and might be misleading in evaluating the accuracy of dose calculation between PB and MC. Thus, the clinical quality assurance procedures required to verify the accuracy of dose calculation using PB and MC need to consider measurements of 2- and 3-dimensional dose distributions rather than a single point measurement using heterogeneous phantoms instead of homogenous water-equivalent phantoms.« less

  14. SU-F-SPS-11: The Dosimetric Comparison of Truebeam 2.0 and Cyberknife M6 Treatment Plans for Brain SRS Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mabhouti, H; Sanli, E; Cebe, M

    Purpose: Brain stereotactic radiosurgery involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of Truebeam 2.0 and Cyberknife M6 treatment plans were made. Methods: For Truebeam 2.0 machine, treatment planning were done using 2 full arc VMAT technique with 6 FFF beam on the CT scan of Randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using Eclipse treatment planning system with Acuros XB algorithm. The treatment planningmore » of the same target were also done for Cyberknife M6 machine with Multiplan treatment planning system using Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For Truebeam plans, the gamma analysis passing rates were 99.1% and 95.5% for target and peripheral region of target respectively. Conclusion: Although, target dose distribution calculated accurately by Acuros XB and Monte Carlo algorithms, Monte carlo calculation algorithm predicts dose distribution around the peripheral region of target more accurately than Acuros algorithm.« less

  15. Irradiate-anneal screening of total dose effects in semiconductor devices. [radiation hardening of spacecraft components of Mariner spacecraft

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Price, W. E.

    1976-01-01

    An extensive investigation of irradiate-anneal (IRAN) screening against total dose radiation effects was carried out as part of a program to harden the Mariner Jupiter/Saturn 1977 (MJS'77) spacecraft to survive the Jupiter radiation belts. The method consists of irradiating semiconductor devices with Cobalt-60 to a suitable total dose under representative bias conditions and of separating the parts in the undesired tail of the distribution from the bulk of the parts by means of a predetermined acceptance limit. The acceptable devices are then restored close to their preirradiation condition by annealing them at an elevated temperature. IRAN was used when lot screen methods were impracticable due to lack of time, and when members of a lot showed a diversity of radiation response. The feasibility of the technique was determined by testing of a number of types of linear bipolar integrated circuits, analog switches, n-channel JFETS and bipolar transistors. Based on the results of these experiments a number of device types were selected for IRAN of flight parts in the MJS'77 spacecraft systems. The part types, screening doses, acceptance criteria, number of parts tested and rejected as well as the program steps are detailed.

  16. Evaluation of the respiratory motion influence in the 3D dose distribution of IMRT breast radiation therapy treatments

    NASA Astrophysics Data System (ADS)

    Lizar, J. C.; Santos, L. F.; Brandão, F. C.; Volpato, K. C.; Guimarães, F. S.; Pavoni, J. F.

    2017-05-01

    This study aims to evaluate the motion influence in the tridimensional dose distribution due to respiratory for IMRT breast planning technique. To simulate the breathing movement an oscillating platform was used. To simulate the breast, MAGIC-f phantoms were used. CT images of a static phantom were obtained and the IMRT treatment was planned based on them. One phantom was irradiated static in the platform and two other phantoms were irradiated while oscillating in the platform with amplitudes of 0.34 cm and 1.22 cm, the fourth phantom was used as reference in the MRI acquisition. The percentage of points approved in the 3D global gamma analyses (3%/3mm) when comparing the dose distribution of the static phantom with the oscillating ones was 91% for the 0.34cm amplitude and 62% for the 1.22 cm amplitude. Considering this result, the differences found in the dosimetric analyses for the oscillating amplitude of 0.34cm could be considered acceptable in a real treatment. The isodose distribution analyses showed a decrease of dose in the anterior breast region and an increase of dose on the posterior breast region, being these differences most pronounced for large amplitude motion.

  17. SU-F-T-62: Three-Dimensional Dosimetric Gamma Analysis for Impacts of Tissue Inhomogeneity Using Monte Carlo Simulation in Intracavitary Brachytheray for Cervix Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Tran Thi Thao; Nakamoto, Takahiro; Shibayama, Yusuke

    Purpose: The aim of this study was to investigate the impacts of tissue inhomogeneity on dose distributions using a three-dimensional (3D) gamma analysis in cervical intracavitary brachytherapy using Monte Carlo (MC) simulations. Methods: MC simulations for comparison of dose calculations were performed in a water phantom and a series of CT images of a cervical cancer patient (stage: Ib; age: 27) by employing a MC code, Particle and Heavy Ion Transport Code System (PHIT) version 2.73. The {sup 192}Ir source was set at fifteen dwell positions, according to clinical practice, in an applicator consisting of a tandem and two ovoids.more » Dosimetric comparisons were performed for the dose distributions in the water phantom and CT images by using gamma index image and gamma pass rate (%). The gamma index is the minimum Euclidean distance between two 3D spatial dose distributions of the water phantom and CT images in a same space. The gamma pass rates (%) indicate the percentage of agreement points, which mean that two dose distributions are similar, within an acceptance criteria (3 mm/3%). The volumes of physical and clinical interests for the gamma analysis were a whole calculated volume and a region larger than t% of a dose (close to a target), respectively. Results: The gamma pass rates were 77.1% for a whole calculated volume and 92.1% for a region within 1% dose region. The differences of 7.7% to 22.9 % between two dose distributions in the water phantom and CT images were found around the applicator region and near the target. Conclusion: This work revealed the large difference on the dose distributions near the target in the presence of the tissue inhomogeneity. Therefore, the tissue inhomogeneity should be corrected in the dose calculation for clinical treatment.« less

  18. Dose calculation accuracy of the Monte Carlo algorithm for CyberKnife compared with other commercially available dose calculation algorithms.

    PubMed

    Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny

    2011-01-01

    Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  19. Study on the Dose Uncertainties in the Lung during Passive Proton Irradiation with a Proton Beam Range Compensator

    NASA Astrophysics Data System (ADS)

    Yoo, Seung Hoon; Son, Jae Man; Yoon, Myonggeun; Park, Sung Yong; Shin, Dongho; Min, Byung Jun

    2018-06-01

    A moving phantom is manufactured for mimicking lung model to study the dose uncertainty from CT number-stopping power conversion and dose calculation in the soft tissue, light lung tissue and bone regions during passive proton irradiation with compensator smearing value. The phantom is scanned with a CT system, and a proton beam irradiation plan is carried out with the use of a treatment planning system (Eclipse). In the case of the moving phantom, a RPM system is used for respiratory gating. The uncertainties in the dose distribution between the measured data and the planned data are investigated by a gamma analysis with 3%-3 mm acceptance criteria. To investigate smearing effect, three smearing values (0.3 cm, 0.7 cm, 1.2 cm) are used to for fixed and moving phantom system. For both fixed and moving phantom, uncertainties in the light lung tissue are severe than those in soft tissue region in which the dose uncertainties are within clinically tolerable ranges. As the smearing value increases, the uncertainty in the proton dose distribution decreases.

  20. SU-E-T-02: 90Y Microspheres Dosimetry Calculation with Voxel-S-Value Method: A Simple Use in the Clinic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maneru, F; Gracia, M; Gallardo, N

    2015-06-15

    Purpose: To present a simple and feasible method of voxel-S-value (VSV) dosimetry calculation for daily clinical use in radioembolization (RE) with {sup 90}Y microspheres. Dose distributions are obtained and visualized over CT images. Methods: Spatial dose distributions and dose in liver and tumor are calculated for RE patients treated with Sirtex Medical miscrospheres at our center. Data obtained from the previous simulation of treatment were the basis for calculations: Tc-99m maggregated albumin SPECT-CT study in a gammacamera (Infinia, General Electric Healthcare.). Attenuation correction and ordered-subsets expectation maximization (OSEM) algorithm were applied.For VSV calculations, both SPECT and CT were exported frommore » the gammacamera workstation and registered with the radiotherapy treatment planning system (Eclipse, Varian Medical systems). Convolution of activity matrix and local dose deposition kernel (S values) was implemented with an in-house developed software based on Python code. The kernel was downloaded from www.medphys.it. Final dose distribution was evaluated with the free software Dicompyler. Results: Liver mean dose is consistent with Partition method calculations (accepted as a good standard). Tumor dose has not been evaluated due to the high dependence on its contouring. Small lesion size, hot spots in health tissue and blurred limits can affect a lot the dose distribution in tumors. Extra work includes: export and import of images and other dicom files, create and calculate a dummy plan of external radiotherapy, convolution calculation and evaluation of the dose distribution with dicompyler. Total time spent is less than 2 hours. Conclusion: VSV calculations do not require any extra appointment or any uncomfortable process for patient. The total process is short enough to carry it out the same day of simulation and to contribute to prescription decisions prior to treatment. Three-dimensional dose knowledge provides much more information than other methods of dose calculation usually applied in the clinic.« less

  1. Tissue Expanders and Proton Beam Radiotherapy: What You Need to Know

    PubMed Central

    Howarth, Ashley L.; Niska, Joshua R.; Brooks, Kenneth; Anand, Aman; Bues, Martin; Vargas, Carlos E.

    2017-01-01

    Summary: Proton beam radiotherapy (PBR) has gained acceptance for the treatment of breast cancer because of unique beam characteristics that allow superior dose distributions with optimal dose to the target and limited collateral damage to adjacent normal tissue, especially to the heart and lungs. To determine the compatibility of breast tissue expanders (TEs) with PBR, we evaluated the structural and dosimetric properties of 2 ex vivo models: 1 model with internal struts and another model without an internal structure. Although the struts appeared to have minimal impact, we found that the metal TE port alters PBR dynamics, which may increase proton beam range uncertainty. Therefore, submuscular TE placement may be preferable to subcutaneous TE placement to reduce the interaction of the TE and proton beam. This will reduce range uncertainty and allow for more ideal radiation dose distribution. PMID:28740794

  2. Improved neutron activation prediction code system development

    NASA Technical Reports Server (NTRS)

    Saqui, R. M.

    1971-01-01

    Two integrated neutron activation prediction code systems have been developed by modifying and integrating existing computer programs to perform the necessary computations to determine neutron induced activation gamma ray doses and dose rates in complex geometries. Each of the two systems is comprised of three computational modules. The first program module computes the spatial and energy distribution of the neutron flux from an input source and prepares input data for the second program which performs the reaction rate, decay chain and activation gamma source calculations. A third module then accepts input prepared by the second program to compute the cumulative gamma doses and/or dose rates at specified detector locations in complex, three-dimensional geometries.

  3. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Herrera, María S.; González, Sara J.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  4. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Maria S.; Gonzalez, Sara J.; Minsky, Daniel M.

    2010-08-04

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a realmore » patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.« less

  5. Comparison of treatment plans: a retrospective study by the method of radiobiological evaluation

    NASA Astrophysics Data System (ADS)

    Puzhakkal, Niyas; Kallikuzhiyil Kochunny, Abdullah; Manthala Padannayil, Noufal; Singh, Navin; Elavan Chalil, Jumanath; Kulangarakath Umer, Jamshad

    2016-09-01

    There are many situations in radiotherapy where multiple treatment plans need to be compared for selection of an optimal plan. In this study we performed the radiobiological method of plan evaluation to verify the treatment plan comparison procedure of our clinical practice. We estimated and correlated various radiobiological dose indices with physical dose metrics for a total of 30 patients representing typical cases of head and neck, prostate and brain tumors. Three sets of plans along with a clinically approved plan (final plan) treated by either Intensity Modulated Radiation Therapy (IMRT) or Rapid Arc (RA) techniques were considered. The study yielded improved target coverage for final plans, however, no appreciable differences in doses and the complication probabilities of organs at risk were noticed. Even though all four plans showed adequate dose distributions, from dosimetric point of view, the final plan had more acceptable dose distribution. The estimated biological outcome and dose volume histogram data showed least differences between plans for IMRT when compared to RA. Our retrospective study based on 120 plans, validated the radiobiological method of plan evaluation. The tumor cure or normal tissue complication probabilities were found to be correlated with the corresponding physical dose indices.

  6. A detailed dosimetric comparison between manual and inverse plans in HDR intracavitary/interstitial cervical cancer brachytherapy.

    PubMed

    Trnková, Petra; Baltas, Dimos; Karabis, Andreas; Stock, Markus; Dimopoulos, Johannes; Georg, Dietmar; Pötter, Richard; Kirisits, Christian

    2010-12-01

    The purpose of this study was to compare two inverse planning algorithms for cervical cancer brachytherapy and a conventional manual treatment planning according to the MUW (Medical University of Vienna) protocol. For 20 patients, manually optimized, and, inversely optimized treatment plans with Hybrid Inverse treatment Planning and Optimization (HIPO) and with Inverse Planning Simulated Annealing (IPSA) were created. Dosimetric parameters, absolute volumes of normal tissue receiving reference doses, absolute loading times of tandem, ring and interstitial needles, Paddick and COIN conformity indices were evaluated. HIPO was able to achieve a similar dose distribution to manual planning with the restriction of high dose regions. It reduced the loading time of needles and the overall treatment time. The values of both conformity indices were the lowest. IPSA was able to achieve acceptable dosimetric results. However, it overloaded the needles. This resulted in high dose regions located in the normal tissue. The Paddick index for the volume of two times prescribed dose was outstandingly low. HIPO can produce clinically acceptable treatment plans with the elimination of high dose regions in normal tissue. Compared to IPSA, it is an inverse optimization method which takes into account current clinical experience gained from manual treatment planning.

  7. A detailed dosimetric comparison between manual and inverse plans in HDR intracavitary/interstitial cervical cancer brachytherapy

    PubMed Central

    Baltas, Dimos; Karabis, Andreas; Stock, Markus; Dimopoulos, Johannes; Georg, Dietmar; Pötter, Richard; Kirisits, Christian

    2011-01-01

    Purpose The purpose of this study was to compare two inverse planning algorithms for cervical cancer brachytherapy and a conventional manual treatment planning according to the MUW (Medical University of Vienna) protocol. Material and methods For 20 patients, manually optimized, and, inversely optimized treatment plans with Hybrid Inverse treatment Planning and Optimization (HIPO) and with Inverse Planning Simulated Annealing (IPSA) were created. Dosimetric parameters, absolute volumes of normal tissue receiving reference doses, absolute loading times of tandem, ring and interstitial needles, Paddick and COIN conformity indices were evaluated. Results HIPO was able to achieve a similar dose distribution to manual planning with the restriction of high dose regions. It reduced the loading time of needles and the overall treatment time. The values of both conformity indices were the lowest. IPSA was able to achieve acceptable dosimetric results. However, it overloaded the needles. This resulted in high dose regions located in the normal tissue. The Paddick index for the volume of two times prescribed dose was outstandingly low. Conclusions HIPO can produce clinically acceptable treatment plans with the elimination of high dose regions in normal tissue. Compared to IPSA, it is an inverse optimization method which takes into account current clinical experience gained from manual treatment planning. PMID:27853479

  8. SU-E-T-50: Automatic Validation of Megavoltage Beams Modeled for Clinical Use in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melchior, M; Salinas Aranda, F; 21st Century Oncology, Ft. Myers, FL

    2014-06-01

    Purpose: To automatically validate megavoltage beams modeled in XiO™ 4.50 (Elekta, Stockholm, Sweden) and Varian Eclipse™ Treatment Planning Systems (TPS) (Varian Associates, Palo Alto, CA, USA), reducing validation time before beam-on for clinical use. Methods: A software application that can automatically read and analyze DICOM RT Dose and W2CAD files was developed using MatLab integrated development environment.TPS calculated dose distributions, in DICOM RT Dose format, and dose values measured in different Varian Clinac beams, in W2CAD format, were compared. Experimental beam data used were those acquired for beam commissioning, collected on a water phantom with a 2D automatic beam scanningmore » system.Two methods were chosen to evaluate dose distributions fitting: gamma analysis and point tests described in Appendix E of IAEA TECDOC-1583. Depth dose curves and beam profiles were evaluated for both open and wedged beams. Tolerance parameters chosen for gamma analysis are 3% and 3 mm dose and distance, respectively.Absolute dose was measured independently at points proposed in Appendix E of TECDOC-1583 to validate software results. Results: TPS calculated depth dose distributions agree with measured beam data under fixed precision values at all depths analyzed. Measured beam dose profiles match TPS calculated doses with high accuracy in both open and wedged beams. Depth and profile dose distributions fitting analysis show gamma values < 1. Relative errors at points proposed in Appendix E of TECDOC-1583 meet therein recommended tolerances.Independent absolute dose measurements at points proposed in Appendix E of TECDOC-1583 confirm software results. Conclusion: Automatic validation of megavoltage beams modeled for their use in the clinic was accomplished. The software tool developed proved efficient, giving users a convenient and reliable environment to decide whether to accept or not a beam model for clinical use. Validation time before beam-on for clinical use was reduced to a few hours.« less

  9. Multivariable normal tissue complication probability model-based treatment plan optimization for grade 2-4 dysphagia and tube feeding dependence in head and neck radiotherapy.

    PubMed

    Kierkels, Roel G J; Wopken, Kim; Visser, Ruurd; Korevaar, Erik W; van der Schaaf, Arjen; Bijl, Hendrik P; Langendijk, Johannes A

    2016-12-01

    Radiotherapy of the head and neck is challenged by the relatively large number of organs-at-risk close to the tumor. Biologically-oriented objective functions (OF) could optimally distribute the dose among the organs-at-risk. We aimed to explore OFs based on multivariable normal tissue complication probability (NTCP) models for grade 2-4 dysphagia (DYS) and tube feeding dependence (TFD). One hundred head and neck cancer patients were studied. Additional to the clinical plan, two more plans (an OF DYS and OF TFD -plan) were optimized per patient. The NTCP models included up to four dose-volume parameters and other non-dosimetric factors. A fully automatic plan optimization framework was used to optimize the OF NTCP -based plans. All OF NTCP -based plans were reviewed and classified as clinically acceptable. On average, the Δdose and ΔNTCP were small comparing the OF DYS -plan, OF TFD -plan, and clinical plan. For 5% of patients NTCP TFD reduced >5% using OF TFD -based planning compared to the OF DYS -plans. Plan optimization using NTCP DYS - and NTCP TFD -based objective functions resulted in clinically acceptable plans. For patients with considerable risk factors of TFD, the OF TFD steered the optimizer to dose distributions which directly led to slightly lower predicted NTCP TFD values as compared to the other studied plans. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. SU-F-P-37: Implementation of An End-To-End QA Test of the Radiation Therapy Imaging, Planning and Delivery Process to Identify and Correct Possible Sources of Deviation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salinas Aranda, F; Suarez, V; Arbiser, S

    2016-06-15

    Purpose: To implement an end-to-end QA test of the radiation therapy imaging, planning and delivery process, aimed to assess the dosimetric agreement accuracy between planned and delivered treatment, in order to identify and correct possible sources of deviation. To establish an internal standard for machine commissioning acceptance. Methods: A test involving all steps of the radiation therapy: imaging, planning and delivery process was designed. The test includes analysis of point dose and planar dose distributions agreement between TPS calculated and measured dose. An ad hoc 16 cm diameter PMMA phantom was constructed with one central and four peripheral bores thatmore » can accommodate calibrated electron density inserts. Using Varian Eclipse 10.0 and Elekta XiO 4.50 planning systems, IMRT, RapidArc and 3DCRT with hard and dynamic wedges plans were planned on the phantom and tested. An Exradin A1SL chamber is used with a Keithley 35617EBS electrometer for point dose measurements in the phantom. 2D dose distributions were acquired using MapCheck and Varian aS1000 EPID.Gamma analysis was performed for evaluation of 2D dose distribution agreement using MapCheck software and Varian Portal Dosimetry Application.Varian high energy Clinacs Trilogy, 2100C/CD, 2000CR and low energy 6X/EX where tested.TPS-CT# vs. electron density table were checked for CT-scanners used. Results: Calculated point doses were accurate to 0.127% SD: 0.93%, 0.507% SD: 0.82%, 0.246% SD: 1.39% and 0.012% SD: 0.01% for LoX-3DCRT, HiX-3DCRT, IMRT and RapidArc plans respectively. Planar doses pass gamma 3% 3mm in all cases and 2% 2mm for VMAT plans. Conclusion: Implementation of a simple and reliable quality assurance tool was accomplished. The end-to-end proved efficient, showing excellent agreement between planned and delivered dose evidencing strong consistency of the whole process from imaging through planning to delivery. This test can be used as a first step in beam model acceptance for clinical use.« less

  11. A comparison of the convolution and TMR10 treatment planning algorithms for Gamma Knife® radiosurgery

    PubMed Central

    Wright, Gavin; Harrold, Natalie; Bownes, Peter

    2018-01-01

    Aims To compare the accuracies of the convolution and TMR10 Gamma Knife treatment planning algorithms, and assess the impact upon clinical practice of implementing convolution-based treatment planning. Methods Doses calculated by both algorithms were compared against ionisation chamber measurements in homogeneous and heterogeneous phantoms. Relative dose distributions calculated by both algorithms were compared against film-derived 2D isodose plots in a heterogeneous phantom, with distance-to-agreement (DTA) measured at the 80%, 50% and 20% isodose levels. A retrospective planning study compared 19 clinically acceptable metastasis convolution plans against TMR10 plans with matched shot times, allowing novel comparison of true dosimetric parameters rather than total beam-on-time. Gamma analysis and dose-difference analysis were performed on each pair of dose distributions. Results Both algorithms matched point dose measurement within ±1.1% in homogeneous conditions. Convolution provided superior point-dose accuracy in the heterogeneous phantom (-1.1% v 4.0%), with no discernible differences in relative dose distribution accuracy. In our study convolution-calculated plans yielded D99% 6.4% (95% CI:5.5%-7.3%,p<0.001) less than shot matched TMR10 plans. For gamma passing criteria 1%/1mm, 16% of targets had passing rates >95%. The range of dose differences in the targets was 0.2-4.6Gy. Conclusions Convolution provides superior accuracy versus TMR10 in heterogeneous conditions. Implementing convolution would result in increased target doses therefore its implementation may require a revaluation of prescription doses. PMID:29657896

  12. SU-E-T-178: Experimental Study of Acceptable Movement Conditions for SBRT Lung Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco de Fez, P; Ruiz-Martinez, A; Jornet, N

    2014-06-01

    Purpose: To experimentally study the acceptable movement conditions for SBRT lung treatments we quantified with film dosimetry the change in dose distributions due to periodic movements of 5 different amplitudes and 4 respiratory gating duty cycles on a SBRT treatment plan. Methods: We planned a SBRT treatment plan for the QUASAR™ (Modus Medical) phantom equipped with the respiratory motion device. We placed a 3 mm water-equivalent sphere simulating a tumour inside the lung-equivalent insert. This sphere is divided in two hemispheres that allow placing films in between. We used radiochromic EBT2™ (Ashland) films. We oriented the lung insert in suchmore » a way that sagittal dose distributions could be measured. We applied a sinusoidal movement with 3 s period for 5 different amplitudes of 0(static), 5, 7, 10, 15 and 20 mm without gating. For the 20 mm amplitude we studied the gating technique with 4 duty cycles of 20, 40, 60 and 80% of the respiratory cycle. Each situation was irradiated in a Clinac 2100 linac (Varian) equipped with the RPM™ system. FilmQA Pro™ (Ashland) software together with an Expression 10000XL scanner (EPSON) were used to analyze and compare the measured dose distributions with those planned by the Eclipse™ TPS v. 8.9 (Varian) by means of gamma analysis with 6 criteria: 5%/3mm, 5%/2mm, 5%/1mm, 3%/3mm, 3%/2mm and 2%/2mm (threshold of 10%). Results: Movements with amplitude of less than 7mm do not significantly modified the dosimetry. Gating duty cycles of less than 40% yielded also acceptable results for a 2 cm amplitude movement. Conclusion: To safely perform daily accurate SBRT treatments, movements have to be restricted to 7 mm amplitude (±3.5 mm). Otherwise, a gating strategy should be considered.« less

  13. Matching Electron Beams Without Secondary Collimation for Treatment of Extensive Recurrent Chest-Wall Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feygelman, Vladimir; Department of Physics, University of Manitoba, Winnipeg, MB; Mandelzweig, Yuri

    2015-01-15

    Matching electron beams without secondary collimators (applicators) were used for treatment of extensive, recurrent chest-wall carcinoma. Due to the wide penumbra of such beams, the homogeneity of the dose distribution at and around the junction point is clinically acceptable and relatively insensitive to positional errors. Specifically, dose around the junction point is homogeneous to within ±4% as calculated from beam profiles, while the positional error of 1 cm leaves this number essentially unchanged. The experimental isodose distribution in an anthropomorphic phantom supports this conclusion. Two electron beams with wide penumbra were used to cover the desired treatment area with satisfactorymore » dose homogeneity. The technique is relatively simple yet clinically useful and can be considered a viable alternative for treatment of extensive chest-wall disease. The steps are suggested to make this technique more universal.« less

  14. A method to determine the planar dose distributions in patient undergone radiotherapy

    NASA Astrophysics Data System (ADS)

    Cilla, S.; Viola, P.; Augelli, B. G.; D'Onofrio, G.; Grimaldi, L.; Craus, M.; Digesù, C.; Deodato, F.; Macchia, G.; Morganti, A. G.; Fidanzio, A.; Azario, L.; Piermattei, A.

    2008-06-01

    A 2D-array equipped with 729 vented plane parallel ion-chambers has been calibrated as a portal dose detector for radiotherapy in vivo measurements. The array has been positioned by a radiographic film stand at 120 cm from the source orthogonal to the radiotherapy beam delivered with the gantry angle at 180°. The collision between the 2D-array and the patient's couch have been avoided. In this work, using the measurements of the portal detector, we present a method to reconstruct the dose variations in the patient treated with step and shoot intensity-modulated beams (IMRT) for head-neck tumours. For this treatment morphological changes often occur during the fractionated therapy. In a first step an in-house software supplied the comparison between the measured portal dose and the one computed by a commercial treatment planning system within the field of view of the computed tomography (CT) scanner. For each patient, the percentage Pγ of chambers, where the comparison is in agreement within a selected acceptance criteria, was determined 8 times. At the first radiotherapy fraction the γ-index analysis supplied Pγ values of about 95%, within acceptance criteria in terms of dose-difference, ΔD, and distance-agreement, Δd, that was equal to 5% and 4 mm, respectively. These acceptance criteria were taken into account for small errors in the patient's set-up reproducibility and for the accuracy of the portal dose calculated by the treatment planning system (TPS) in particular when the beam was attenuated by inhomogeneous tissues and the shape of the head-neck body contours were irregular. During the treatment, some patients showed a reduction of the Pγ below 90% because due to radiotherapy treatment there was a change of the patient's morphology. In a second step a method, based on dosimetric measurements that used standard phantoms, supplied the percentage dose variations in a coronal plane of the patient using the percentage dose variations measured by the 2D-array portal detector. The results showed that the dose variations due to the change of the patient's morphology reached 15% and such discrepancies were displayed on the digitally reconstructed radiography of the patient. The dose discrepancies were confirmed by the hybrid plan obtained by the treatment planning system. The good results here reported show that once it is possible to have the portal dose distributions even for other gantry angles, these tests could be introduced in the clinical protocol to have major support to decide when to repeat the patient's CT scan and to re-plan the new IMRT dose calculation.

  15. Linear energy transfer incorporated intensity modulated proton therapy optimization

    NASA Astrophysics Data System (ADS)

    Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe

    2018-01-01

    The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the inclusion of LET-dependent criteria in the IMPT optimization could lead to similar dose distributions as the conventional optimization but superior LET distributions in target volumes and normal tissues. This may have substantial advantages in improving tumor control and reducing normal tissue toxicities.

  16. Characteristics and verification of a car-borne survey system for dose rates in air: KURAMA-II.

    PubMed

    Tsuda, S; Yoshida, T; Tsutsumi, M; Saito, K

    2015-01-01

    The car-borne survey system KURAMA-II, developed by the Kyoto University Research Reactor Institute, has been used for air dose rate mapping after the Fukushima Dai-ichi Nuclear Power Plant accident. KURAMA-II consists of a CsI(Tl) scintillation detector, a GPS device, and a control device for data processing. The dose rates monitored by KURAMA-II are based on the G(E) function (spectrum-dose conversion operator), which can precisely calculate dose rates from measured pulse-height distribution even if the energy spectrum changes significantly. The characteristics of KURAMA-II have been investigated with particular consideration to the reliability of the calculated G(E) function, dose rate dependence, statistical fluctuation, angular dependence, and energy dependence. The results indicate that 100 units of KURAMA-II systems have acceptable quality for mass monitoring of dose rates in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. New method for generating breast models featuring glandular tissue spatial distribution

    NASA Astrophysics Data System (ADS)

    Paixão, L.; Oliveira, B. B.; Oliveira, M. A.; Teixeira, M. H. A.; Fonseca, T. C. F.; Nogueira, M. S.

    2016-02-01

    Mammography is the main radiographic technique used for breast imaging. A major concern with mammographic imaging is the risk of radiation-induced breast cancer due to the high sensitivity of breast tissue. The mean glandular dose (DG) is the dosimetric quantity widely accepted to characterize the risk of radiation induced cancer. Previous studies have concluded that DG depends not only on the breast glandular content but also on the spatial distribution of glandular tissue within the breast. In this work, a new method for generating computational breast models featuring skin composition and glandular tissue distribution from patients undergoing digital mammography is proposed. Such models allow a more accurate way of calculating individualized breast glandular doses taking into consideration the glandular tissue fraction. Sixteen breast models of four patients with different glandularity breasts were simulated and the results were compared with those obtained from recommended DG conversion factors. The results show that the internationally recommended conversion factors may be overestimating the mean glandular dose to less dense breasts and underestimating the mean glandular dose for denser breasts. The methodology described in this work constitutes a powerful tool for breast dosimetry, especially for risk studies.

  18. The validation of tomotherapy dose calculations in low-density lung media

    NASA Astrophysics Data System (ADS)

    Chaudhari, Summer R.; Pechenaya, Olga L.; Goddu, S. Murty; Mutic, Sasa; Rangaraj, Dharanipathy; Bradley, Jeffrey D.; Low, Daniel

    2009-04-01

    The dose-calculation accuracy of the tomotherapy Hi-Art II® (Tomotherapy, Inc., Madison, WI) treatment planning system (TPS) in the presence of low-density lung media was investigated. In this evaluation, a custom-designed heterogeneous phantom mimicking the mediastinum geometry was used. Gammex LN300 and balsa wood were selected as two lung-equivalent materials with different densities. Film analysis and ionization chamber measurements were performed. Treatment plans for esophageal cancers were used in the evaluation. The agreement between the dose calculated by the TPS and the dose measured via ionization chambers was, in most cases, within 0.8%. Gamma analysis using 3% and 3 mm criteria for radiochromic film dosimetry showed that 98% and 95% of the measured dose distribution had passing gamma values <=1 for LN300 and balsa wood, respectively. For a homogeneous water-equivalent phantom, 95% of the points passed the gamma test. It was found that for the interface between the low-density medium and water-equivalent medium, the TPS calculated the dose distribution within acceptable limits. The phantom developed for this work enabled detailed quality-assurance testing under realistic conditions with heterogeneous media.

  19. The validation of tomotherapy dose calculations in low-density lung media.

    PubMed

    Chaudhari, Summer R; Pechenaya, Olga L; Goddu, S Murty; Mutic, Sasa; Rangaraj, Dharanipathy; Bradley, Jeffrey D; Low, Daniel

    2009-04-21

    The dose-calculation accuracy of the tomotherapy Hi-Art II(R) (Tomotherapy, Inc., Madison, WI) treatment planning system (TPS) in the presence of low-density lung media was investigated. In this evaluation, a custom-designed heterogeneous phantom mimicking the mediastinum geometry was used. Gammex LN300 and balsa wood were selected as two lung-equivalent materials with different densities. Film analysis and ionization chamber measurements were performed. Treatment plans for esophageal cancers were used in the evaluation. The agreement between the dose calculated by the TPS and the dose measured via ionization chambers was, in most cases, within 0.8%. Gamma analysis using 3% and 3 mm criteria for radiochromic film dosimetry showed that 98% and 95% of the measured dose distribution had passing gamma values < or =1 for LN300 and balsa wood, respectively. For a homogeneous water-equivalent phantom, 95% of the points passed the gamma test. It was found that for the interface between the low-density medium and water-equivalent medium, the TPS calculated the dose distribution within acceptable limits. The phantom developed for this work enabled detailed quality-assurance testing under realistic conditions with heterogeneous media.

  20. Optimization of light source parameters in the photodynamic therapy of heterogeneous prostate

    NASA Astrophysics Data System (ADS)

    Li, Jun; Altschuler, Martin D.; Hahn, Stephen M.; Zhu, Timothy C.

    2008-08-01

    The three-dimensional (3D) heterogeneous distributions of optical properties in a patient prostate can now be measured in vivo. Such data can be used to obtain a more accurate light-fluence kernel. (For specified sources and points, the kernel gives the fluence delivered to a point by a source of unit strength.) In turn, the kernel can be used to solve the inverse problem that determines the source strengths needed to deliver a prescribed photodynamic therapy (PDT) dose (or light-fluence) distribution within the prostate (assuming uniform drug concentration). We have developed and tested computational procedures to use the new heterogeneous data to optimize delivered light-fluence. New problems arise, however, in quickly obtaining an accurate kernel following the insertion of interstitial light sources and data acquisition. (1) The light-fluence kernel must be calculated in 3D and separately for each light source, which increases kernel size. (2) An accurate kernel for light scattering in a heterogeneous medium requires ray tracing and volume partitioning, thus significant calculation time. To address these problems, two different kernels were examined and compared for speed of creation and accuracy of dose. Kernels derived more quickly involve simpler algorithms. Our goal is to achieve optimal dose planning with patient-specific heterogeneous optical data applied through accurate kernels, all within clinical times. The optimization process is restricted to accepting the given (interstitially inserted) sources, and determining the best source strengths with which to obtain a prescribed dose. The Cimmino feasibility algorithm is used for this purpose. The dose distribution and source weights obtained for each kernel are analyzed. In clinical use, optimization will also be performed prior to source insertion to obtain initial source positions, source lengths and source weights, but with the assumption of homogeneous optical properties. For this reason, we compare the results from heterogeneous optical data with those obtained from average homogeneous optical properties. The optimized treatment plans are also compared with the reference clinical plan, defined as the plan with sources of equal strength, distributed regularly in space, which delivers a mean value of prescribed fluence at detector locations within the treatment region. The study suggests that comprehensive optimization of source parameters (i.e. strengths, lengths and locations) is feasible, thus allowing acceptable dose coverage in a heterogeneous prostate PDT within the time constraints of the PDT procedure.

  1. Evaluation of effective dose with chest digital tomosynthesis system using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Kim, Dohyeon; Jo, Byungdu; Lee, Youngjin; Park, Su-Jin; Lee, Dong-Hoon; Kim, Hee-Joung

    2015-03-01

    Chest digital tomosynthesis (CDT) system has recently been introduced and studied. This system offers the potential to be a substantial improvement over conventional chest radiography for the lung nodule detection and reduces the radiation dose with limited angles. PC-based Monte Carlo program (PCXMC) simulation toolkit (STUK, Helsinki, Finland) is widely used to evaluate radiation dose in CDT system. However, this toolkit has two significant limits. Although PCXMC is not possible to describe a model for every individual patient and does not describe the accurate X-ray beam spectrum, Geant4 Application for Tomographic Emission (GATE) simulation describes the various size of phantom for individual patient and proper X-ray spectrum. However, few studies have been conducted to evaluate effective dose in CDT system with the Monte Carlo simulation toolkit using GATE. The purpose of this study was to evaluate effective dose in virtual infant chest phantom of posterior-anterior (PA) view in CDT system using GATE simulation. We obtained the effective dose at different tube angles by applying dose actor function in GATE simulation which was commonly used to obtain the medical radiation dosimetry. The results indicated that GATE simulation was useful to estimate distribution of absorbed dose. Consequently, we obtained the acceptable distribution of effective dose at each projection. These results indicated that GATE simulation can be alternative method of calculating effective dose in CDT applications.

  2. Coplanar intensity-modulated radiotherapy class solution for patients with prostate cancer with bilateral hip prostheses with and without nodal involvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young K., E-mail: Young.Lee@rmh.nhs.uk; McVey, Gerard P.; South, Chris P.

    2013-07-01

    Dose distributions for prostate radiotherapy are difficult to predict in patients with bilateral hip prostheses in situ, due to image distortions and difficulty in dose calculation. The feasibility of delivering curative doses to prostate using intensity-modulated radiotherapy (IMRT) in patients with bilateral hip prostheses was evaluated. Planning target volumes for prostate only (PTV1) and pelvic nodes (PTV2) were generated from data on 5 patients. PTV1 and PTV2 dose prescriptions were 70 Gy and 60 Gy, respectively, in 35 fractions, and an additional nodal boost of 65 Gy was added for 1 plan. Rectum, bladder, and bowel were also delineated. Beammore » angles and segments were chosen to best avoid entering through the prostheses. Dose-volume data were assessed with respect to clinical objectives. The plans achieved the required prescription doses to the PTVs. Five-field IMRT plans were adequate for patients with relatively small prostheses (head volumes<60 cm{sup 3}) but 7-field plans were required for patients with larger prostheses. Bowel and bladder doses were clinically acceptable for all patients. Rectal doses were deemed clinically acceptable, although the V{sub 50} {sub Gy} objective was not met for 4/5 patients. We describe an IMRT solution for patients with bilateral hip prostheses of varying size and shape, requiring either localized or whole pelvic radiotherapy for prostate cancer.« less

  3. Community-based distribution of misoprostol to prevent postpartum haemorrhage at home births: results from operations research in rural Ghana.

    PubMed

    Geller, S; Carnahan, L; Akosah, E; Asare, G; Agyemang, R; Dickson, R; Kapungu, C; Owusu-Ansah, L; Robinson, N; Mensah-Homiah, J

    2014-02-01

    To report on a rigorous distribution and monitoring plan to track misoprostol for community-based distribution to reduce postpartum haemorrhage (PPH) in rural Ghana. Operations research. Rural Ghana. Women in third trimester of pregnancy presenting to primary health centres (PHCs) for antenatal care (ANC). Ghana Health Service (GHS), Millennium Village Projects, and the University of Illinois at Chicago conducted an operations research study designed to assess the safety, feasibility, and acceptability of community-based distribution of misoprostol to prevent PPH at home deliveries in rural Ghana. One thousand doses (3000 tablets, 200 μg each) were obtained from the Family Health Division of GHS. Three 200-μg tablets of misoprostol (600 μg) in foil packets were packaged together in secured transparent plastic packets labelled with pictorial messages and distributed to midwives at seven PHCs for distribution to pregnant women. Correct use of misoprostol in home deliveries and retrieval of unused misoprostol doses, PPH rates and maternal mortality. Of the 999 doses distributed to midwives, 982 (98.3%) were successfully tracked, with a 1.7% lost to follow-up rate. Midwives distributed 654 doses to women at third-trimester ANC visits. Of women who had misoprostol to use at home, 81% had an institutional delivery and were able to return the misoprostol safely to the midwife. Of the women that used misoprostol, 99% used the misoprostol correctly. This study clearly demonstrates that misoprostol distributed antenatally to pregnant women can be used accurately and reliably by rural Ghanaian women, and should be considered for policy implementation across Ghana and other countries with high home birth rates and maternal mortality ratios. © 2013 Royal College of Obstetricians and Gynaecologists.

  4. Combining uncertainty factors in deriving human exposure levels of noncarcinogenic toxicants.

    PubMed

    Kodell, R L; Gaylor, D W

    1999-01-01

    Acceptable levels of human exposure to noncarcinogenic toxicants in environmental and occupational settings generally are derived by reducing experimental no-observed-adverse-effect levels (NOAELs) or benchmark doses (BDs) by a product of uncertainty factors (Barnes and Dourson, Ref. 1). These factors are presumed to ensure safety by accounting for uncertainty in dose extrapolation, uncertainty in duration extrapolation, differential sensitivity between humans and animals, and differential sensitivity among humans. The common default value for each uncertainty factor is 10. This paper shows how estimates of means and standard deviations of the approximately log-normal distributions of individual uncertainty factors can be used to estimate percentiles of the distribution of the product of uncertainty factors. An appropriately selected upper percentile, for example, 95th or 99th, of the distribution of the product can be used as a combined uncertainty factor to replace the conventional product of default factors.

  5. SU-F-SPS-10: The Dosimetric Comparison of GammaKnife and Cyberknife Treatment Plans for Brain SRS Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanli, E; Mabhouti, H; Cebe, M

    Purpose: Brain stereotactic radiosurgery (SRS) involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of GammaKnife perfection and Cyberknife M6 treatment plans were made. Methods: Treatment plannings were done for GammaKnife perfection unit using Gammaplan treatment planning system (TPS) on the CT scan of head and neck randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using TMR 10 algorithm. The treatment planning for the same target weremore » also done for Cyberknife M6 machine using Multiplan (TPS) with Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife treatment plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For gammaknife treatment plans, the gamma analysis passing rates were 98.9% and 93.2% for target and peripheral region of target respectively. Conclusion: The study shows that dosimetrically comparable plans are achievable with Cyberknife and GammaKnife. Although TMR 10 algorithm predicts the target dose.« less

  6. Organochlorines in urban soils from Central India: probabilistic health hazard and risk implications to human population.

    PubMed

    Kumar, Bhupander; Mishra, Meenu; Verma, V K; Rai, Premanjali; Kumar, Sanjay

    2018-04-21

    This study presents distribution of organochlorines (OCs) including HCH, DDT and PCBs in urban soils, and their environmental and human health risk. Forty-eight soil samples were extracted using ultrasonication, cleaned with modified silica gel chromatography and analyzed by GC-ECD. The observed concentrations of ∑HCH, ∑DDT and ∑PCBs in soils ranged between < 0.01-2.54, 1.30-27.41 and < 0.01-62.8 µg kg -1 , respectively, which were lower than the recommended soil quality guidelines. Human health risk was estimated following recommended guidelines. Lifetime average daily dose (LADD), non-cancer risk or hazard quotient (HQ) and incremental lifetime cancer risk (ILCR) for humans due to individual and total OCs were estimated and presented. Estimated LADD were lower than acceptable daily intake and reference dose. Human health risk estimates were lower than safe limit of non-cancer risk (HQ < 1.0) and the acceptable distribution range of ILCR (10 -6 -10 -4 ). Therefore, this study concluded that present levels of OCs (HCH, DDT and PCBs) in studied soils were low, and subsequently posed low health risk to human population in the study area.

  7. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors

    NASA Astrophysics Data System (ADS)

    Garnica-Garza, H. M.

    2009-09-01

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360° arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  8. SU-F-T-24: Impact of Source Position and Dose Distribution Due to Curvature of HDR Transfer Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, A; Yue, N

    2016-06-15

    Purpose: Brachytherapy is a highly targeted from of radiotherapy. While this may lead to ideal dose distributions on the treatment planning system, a small error in source location can lead to change in the dose distribution. The purpose of this study is to quantify the impact on source position error due to curvature of the transfer tubes and the impact this may have on the dose distribution. Methods: Since the source travels along the midline of the tube, an estimate of the positioning error for various angles of curvature was determined using geometric properties of the tube. Based on themore » range of values a specific shift was chosen to alter the treatment plans for a number of cervical cancer patients who had undergone HDR brachytherapy boost using tandem and ovoids. Impact of dose to target and organs at risk were determined and checked against guidelines outlined by radiation oncologist. Results: The estimate of the positioning error was 2mm short of the expected position (the curved tube can only cause the source to not reach as far as with a flat tube). Quantitative impact on the dose distribution is still in the process of being analyzed. Conclusion: The accepted positioning tolerance for the source position of a HDR brachytherapy unit is plus or minus 1mm. If there is an additional 2mm discrepancy due to tube curvature, this can result in a source being 1mm to 3mm short of the expected location. While we do always attempt to keep the tubes straight, in some cases such as with tandem and ovoids, the tandem connector does not extend as far out from the patient so the ovoid tubes always contain some degree of curvature. The dose impact of this may be significant.« less

  9. Repeatability of dose painting by numbers treatment planning in prostate cancer radiotherapy based on multiparametric magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    van Schie, Marcel A.; Steenbergen, Peter; Viet Dinh, Cuong; Ghobadi, Ghazaleh; van Houdt, Petra J.; Pos, Floris J.; Heijmink, Stijn W. T. J. P.; van der Poel, Henk G.; Renisch, Steffen; Vik, Torbjørn; van der Heide, Uulke A.

    2017-07-01

    Dose painting by numbers (DPBN) refers to a voxel-wise prescription of radiation dose modelled from functional image characteristics, in contrast to dose painting by contours which requires delineations to define the target for dose escalation. The direct relation between functional imaging characteristics and DPBN implies that random variations in images may propagate into the dose distribution. The stability of MR-only prostate cancer treatment planning based on DPBN with respect to these variations is as yet unknown. We conducted a test-retest study to investigate the stability of DPBN for prostate cancer in a semi-automated MR-only treatment planning workflow. Twelve patients received a multiparametric MRI on two separate days prior to prostatectomy. The tumor probability (TP) within the prostate was derived from image features with a logistic regression model. Dose mapping functions were applied to acquire a DPBN prescription map that served to generate an intensity modulated radiation therapy (IMRT) treatment plan. Dose calculations were done on a pseudo-CT derived from the MRI. The TP and DPBN map and the IMRT dose distribution were compared between both MRI sessions, using the intraclass correlation coefficient (ICC) to quantify repeatability of the planning pipeline. The quality of each treatment plan was measured with a quality factor (QF). Median ICC values for the TP and DPBN map and the IMRT dose distribution were 0.82, 0.82 and 0.88, respectively, for linear dose mapping and 0.82, 0.84 and 0.94 for square root dose mapping. A median QF of 3.4% was found among all treatment plans. We demonstrated the stability of DPBN radiotherapy treatment planning in prostate cancer, with excellent overall repeatability and acceptable treatment plan quality. Using validated tumor probability modelling and simple dose mapping techniques it was shown that despite day-to-day variations in imaging data still consistent treatment plans were obtained.

  10. Helical Tomotherapy for Whole-Brain Irradiation With Integrated Boost to Multiple Brain Metastases: Evaluation of Dose Distribution Characteristics and Comparison With Alternative Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levegrün, Sabine, E-mail: sabine.levegruen@uni-due.de; Pöttgen, Christoph; Wittig, Andrea

    2013-07-15

    Purpose: To quantitatively evaluate dose distribution characteristics achieved with helical tomotherapy (HT) for whole-brain irradiation (WBRT) with integrated boost (IB) to multiple brain metastases in comparison with alternative techniques. Methods and Materials: Dose distributions for 23 patients with 81 metastases treated with WBRT (30 Gy/10 fractions) and IB (50 Gy) were analyzed. The median number of metastases per patient (N{sub mets}) was 3 (range, 2-8). Mean values of the composite planning target volume of all metastases per patient (PTV{sub mets}) and of the individual metastasis planning target volume (PTV{sub ind} {sub met}) were 8.7 ± 8.9 cm{sup 3} (range, 1.3-35.5more » cm{sup 3}) and 2.5 ± 4.5 cm{sup 3} (range, 0.19-24.7 cm{sup 3}), respectively. Dose distributions in PTV{sub mets} and PTV{sub ind} {sub met} were evaluated with respect to dose conformity (conformation number [CN], RTOG conformity index [PITV]), target coverage (TC), and homogeneity (homogeneity index [HI], ratio of maximum dose to prescription dose [MDPD]). The dependence of dose conformity on target size and N{sub mets} was investigated. The dose distribution characteristics were benchmarked against alternative irradiation techniques identified in a systematic literature review. Results: Mean ± standard deviation of dose distribution characteristics derived for PTV{sub mets} amounted to CN = 0.790 ± 0.101, PITV = 1.161 ± 0.154, TC = 0.95 ± 0.01, HI = 0.142 ± 0.022, and MDPD = 1.147 ± 0.029, respectively, demonstrating high dose conformity with acceptable homogeneity. Corresponding numbers for PTV{sub ind} {sub met} were CN = 0.708 ± 0.128, PITV = 1.174 ± 0.237, TC = 0.90 ± 0.10, HI = 0.140 ± 0.027, and MDPD = 1.129 ± 0.030, respectively. The target size had a statistically significant influence on dose conformity to PTV{sub mets} (CN = 0.737 for PTV{sub mets} ≤4.32 cm{sup 3} vs CN = 0.848 for PTV{sub mets} >4.32 cm{sup 3}, P=.006), in contrast to N{sub mets}. The achieved dose conformity to PTV{sub mets}, assessed by both CN and PITV, was in all investigated volume strata well within the best quartile of the values reported for alternative irradiation techniques. Conclusions: HT is a well-suited technique to deliver WBRT with IB to multiple brain metastases, yielding high-quality dose distributions. A multi-institutional prospective randomized phase 2 clinical trial to exploit efficacy and safety of the treatment concept is currently under way.« less

  11. Real-time intraoperative evaluation of implant quality and dose correction during prostate brachytherapy consistently improves target coverage using a novel image fusion and optimization program.

    PubMed

    Zelefsky, Michael J; Cohen, Gilad N; Taggar, Amandeep S; Kollmeier, Marisa; McBride, Sean; Mageras, Gig; Zaider, Marco

    Our purpose was to describe the process and outcome of performing postimplantation dosimetric assessment and intraoperative dose correction during prostate brachytherapy using a novel image fusion-based treatment-planning program. Twenty-six consecutive patients underwent intraoperative real-time corrections of their dose distributions at the end of their permanent seed interstitial procedures. After intraoperatively planned seeds were implanted and while the patient remained in the lithotomy position, a cone beam computed tomography scan was obtained to assess adequacy of the prescription dose coverage. The implanted seed positions were automatically segmented from the cone-beam images, fused onto a new set of acquired ultrasound images, reimported into the planning system, and recontoured. Dose distributions were recalculated based upon actual implanted seed coordinates and recontoured ultrasound images and were reviewed. If any dose deficiencies within the prostate target were identified, additional needles and seeds were added. Once an implant was deemed acceptable, the procedure was completed, and anesthesia was reversed. When the intraoperative ultrasound-based quality assurance assessment was performed after seed placement, the median volume receiving 100% of the dose (V100) was 93% (range, 74% to 98%). Before seed correction, 23% (6/26) of cases were noted to have V100 <90%. Based on this intraoperative assessment and replanning, additional seeds were placed into dose-deficient regions within the target to improve target dose distributions. Postcorrection, the median V100 was 97% (range, 93% to 99%). Following intraoperative dose corrections, all implants achieved V100 >90%. In these patients, postimplantation evaluation during the actual prostate seed implant procedure was successfully applied to determine the need for additional seeds to correct dose deficiencies before anesthesia reversal. When applied, this approach should significantly reduce intraoperative errors and chances for suboptimal dose delivery during prostate brachytherapy. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  12. TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J; Wu, Q.J.; Yin, F

    2014-06-15

    Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into fivemore » groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH/NCI under grant #R21CA161389 and a master research grant by Varian Medical System.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Raef S.; Shen, Sui; Ove, Roger

    We wanted to describe a technique for the implementation of intensity-modulated radiotherapy (IMRT) with a real-time position monitor (RPM) respiratory gating system for the treatment of pleural space with intact lung. The technique is illustrated by a case of pediatric osteosarcoma, metastatic to the pleura of the right lung. The patient was simulated in the supine position where a breathing tracer and computed tomography (CT) scans synchronized at end expiration were acquired using the RPM system. The gated CT images were used to define target volumes and critical structures. Right pleural gated IMRT delivered at end expiration was prescribed tomore » a dose of 44 Gy, with 55 Gy delivered to areas of higher risk via simultaneous integrated boost (SIB) technique. IMRT was necessary to avoid exceeding the tolerance of intact lung. Although very good coverage of the target volume was achieved with a shell-shaped dose distribution, dose over the targets was relatively inhomogeneous. Portions of target volumes necessarily intruded into the right lung, the liver, and right kidney, limiting the degree of normal tissue sparing that could be achieved. The radiation doses to critical structures were acceptable and well tolerated. With intact lung, delivering a relatively high dose to the pleura with acceptable doses to surrounding normal tissues using respiratory gated pleural IMRT is feasible. Treatment delivery during a limited part of the respiratory cycle allows for reduced CT target volume motion errors, with reduction in the portion of the planning margin that accounts for respiratory motion, and subsequent increase in the therapeutic ratio.« less

  14. "Like Holding an Umbrella Before It Rains": Acceptability of Future Rectal Microbicides Among Men Who Have Sex With Men in India-A Modified Technology Acceptance Model.

    PubMed

    Chakrapani, Venkatesan; Newman, Peter A; Shunmugam, Murali; Mengle, Shruta; Nelson, Ruban; Rubincam, Clara; Kumar, Pushpesh

    2017-07-01

    Topical rectal microbicides (RMs) are a new prevention technology in development that aims to reduce the risk of HIV acquisition from anal sex. We examined RM acceptability among men who have sex with men (MSM) in India. We conducted a qualitative exploratory study guided by a modified Technology Acceptance Model, with 10 focus groups ( n = 61) of MSM and 10 key informant interviews. Data were explored using framework analysis. RM acceptability was influenced by technological contexts: perceived usefulness of RMs, perceived ease of use of RM and applicator, and habits around condom and lubricant use; individual and interpersonal contexts: perceived relevance and preferences for product formulation and dosing frequency; and MSM community/social contexts: perceived social approval, RM-related stigma, social support. Implementation of RMs for MSM in India may be supported by multi-level interventions that engage community-based organizations in destigmatizing and distributing RMs, ideally gel-based products that enable on-demand use before sex.

  15. Early experience in using and 18 Me V linear accelerator for mycosis fungoides at Howard University Hospital.

    PubMed

    Kumar, P P; Henschke, K; Mandal, K P; Nibhanupudy, J R; Patel, I S

    1977-04-01

    This paper describes the problems and solutions in using 18 MeV linear accelerator, with minimum 6 MeV electron capability, for total skin irradiation for mycosis fungoides. The 6 MeV electron energy can be degraded to acceptable electron energy of 3.2 MeV by interposing a plexiglass sheet of 9.6 mm in the beam. To minimize the bremsstrahlung, the degrading plexiglass should be kept away from the machine head. A wide area with uniform dose distribution over single plane can be achieved by using dual fields but homogenous dose distribution over irregular body surface cannot be achieved mainly because of self-shielding. The nails and the ocular lens can be easily shielded from the low energy electrons with 1.5 mm lead shield.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Zhang, W; Lu, J

    Purpose: To investigate the accuracy and feasibility of dose calculations using kilovoltage cone beam computed tomography in cervical cancer radiotherapy using a correction algorithm. Methods: The Hounsfield units (HU) and electron density (HU-density) curve was obtained for both planning CT (pCT) and kilovoltage cone beam CT (CBCT) using a CIRS-062 calibration phantom. The pCT and kV-CBCT images have different HU values, and if the HU-density curve of CBCT was directly used to calculate dose in CBCT images may have a deviation on dose distribution. It is necessary to normalize the different HU values between pCT and CBCT. A HU correctionmore » algorithm was used for CBCT images (cCBCT). Fifteen intensity-modulated radiation therapy (IMRT) plans of cervical cancer were chosen, and the plans were transferred to the pCT and cCBCT data sets without any changes for dose calculations. Phantom and patient studies were carried out. The dose differences and dose distributions were compared between cCBCT plan and pCT plan. Results: The HU number of CBCT was measured by several times, and the maximum change was less than 2%. To compare with pCT, the CBCT and cCBCT has a discrepancy, the dose differences in CBCT and cCBCT images were 2.48%±0.65% (range: 1.3%∼3.8%) and 0.48%±0.21% (range: 0.1%∼0.82%) for phantom study, respectively. For dose calculation in patient images, the dose differences were 2.25%±0.43% (range: 1.4%∼3.4%) and 0.63%±0.35% (range: 0.13%∼0.97%), respectively. And for the dose distributions, the passing rate of cCBCT was higher than the CBCTs. Conclusion: The CBCT image for dose calculation is feasible in cervical cancer radiotherapy, and the correction algorithm offers acceptable accuracy. It will become a useful tool for adaptive radiation therapy.« less

  17. An FDA oncology analysis of CD3 bispecific constructs and first-in-human dose selection.

    PubMed

    Saber, Haleh; Del Valle, Pedro; Ricks, Tiffany K; Leighton, John K

    2017-11-01

    We retrospectively examined the nonclinical studies conducted with 17 CD3 bispecific constructs in support of first-in-human (FIH) trials in oncology. We also collected information on the design of dose-finding clinical trials. Sponsors have used different MABEL approaches for FIH dose selection. To better assess acceptable approaches, FIH doses were computed from nonclinical studies and compared to the maximum tolerated doses (MTDs) in patients, to the highest human doses (HHDs) when an MTD was not identified, or to the recommended human dose (RHD) for blinatumomab. We concluded that approaches based on receptor occupancy, highest non-severely toxic dose, or no-observed adverse effect level are not acceptable for selecting the FIH dose as they resulted in doses close to or above the MTDs, HHDs, or the RHD. A FIH dose corresponding to 10%-30% pharmacologic activity (PA) was an acceptable approach. A FIH dose corresponding to 50% PA was acceptable for all except one construct, potentially due to its biological or structural properties. The most common toxicities in animals and patients were those related to cytokine release. Doses were better tolerated when intra-animal or intra-patient dose escalation was used. Exposing naïve patients to an MTD achieved with intra-patient dose escalation design may be unsafe. Published by Elsevier Inc.

  18. Dose computation for therapeutic electron beams

    NASA Astrophysics Data System (ADS)

    Glegg, Martin Mackenzie

    The accuracy of electron dose calculations performed by two commercially available treatment planning computers, Varian Cadplan and Helax TMS, has been assessed. Measured values of absorbed dose delivered by a Varian 2100C linear accelerator, under a wide variety of irradiation conditions, were compared with doses calculated by the treatment planning computers. Much of the motivation for this work was provided by a requirement to verify the accuracy of calculated electron dose distributions in situations encountered clinically at Glasgow's Beatson Oncology Centre. Calculated dose distributions are required in a significant minority of electron treatments, usually in cases involving treatment to the head and neck. Here, therapeutic electron beams are subject to factors which may cause non-uniformity in the distribution of dose, and which may complicate the calculation of dose. The beam shape is often irregular, the beam may enter the patient at an oblique angle or at an extended source to skin distance (SSD), tissue inhomogeneities can alter the dose distribution, and tissue equivalent material (such as wax) may be added to reduce dose to critical organs. Technological advances have allowed the current generation of treatment planning computers to implement dose calculation algorithms with the ability to model electron beams in these complex situations. These calculations have, however, yet to be verified by measurement. This work has assessed the accuracy of calculations in a number of specific instances. Chapter two contains a comparison of measured and calculated planar electron isodose distributions. Three situations were considered: oblique incidence, incidence on an irregular surface (such as that which would be arise from the use of wax to reduce dose to spinal cord), and incidence on a phantom containing a small air cavity. Calculations were compared with measurements made by thermoluminescent dosimetry (TLD) in a WTe electron solid water phantom. Chapter three assesses the planning computers' ability to model electron beam penumbra at extended SSD. Calculations were compared with diode measurements in a water phantom. Further measurements assessed doses in the junction region produced by abutting an extended SSD electron field with opposed photon fields. Chapter four describes an investigation of the size and shape of the region enclosed by the 90% isodose line when produced by limiting the electron beam with square and elliptical apertures. The 90% isodose line was chosen because clinical treatments are often prescribed such that a given volume receives at least 90% dose. Calculated and measured dose distributions were compared in a plane normal to the beam central axis. Measurements were made by film dosimetry. While chapters two to four examine relative doses, chapter five assesses the accuracy of absolute dose (or output) calculations performed by the planning computers. Output variation with SSD and field size was examined. Two further situations already assessed for the distribution of relative dose were also considered: an obliquely incident field, and a field incident on an irregular surface. The accuracy of calculations was assessed against criteria stipulated by the International Commission on Radiation Units and Measurement (ICRU). The Varian Cadplan and Helax TMS treatment planning systems produce acceptable accuracy in the calculation of relative dose from therapeutic electron beams in most commonly encountered situations. When interpreting clinical dose distributions, however, knowledge of the limitations of the calculation algorithm employed by each system is required in order to identify the minority of situations where results are not accurate. The calculation of absolute dose is too inaccurate to implement in a clinical environment. (Abstract shortened by ProQuest.).

  19. Establishment of the central radiation dose registration system for decontamination work involving radioactive fallout emitted by the Fukushima Daiichi APP accident.

    PubMed

    Yasui, Shojiro

    2016-10-01

    With respect to radiation protection for decontamination efforts involving radioactive fallout emitted by the accident at the Fukushima Daiichi Atomic Power Plant, new regulations were established and obligated employers to monitor, record, and store of workers' dose records, and to check their past dose records at the time of employment. However, cumulative doses may not be properly maintained if a worker declares incorrect values for past doses. In response, with facilitation from the Ministry of Health, Labour and Welfare, primary contractors of decontamination works decided to establish a central dose registration system. There are four major issues in the design of the system to be resolved, included the following: primary contractors (a) do not have a legal responsibility to perform dose control for subcontractors, (b) do not have the right to control decontamination sites, (c) often organize joint ventures, and (d) correspond to a wide range of ambient dose rates. To resolve the issues, requirements of the system included the following: (a) centralize the operation of radiation passbooks, which records past doses and the results of medical examinations to each worker; (b) develop a database system that could register all dose data and accept inquiry from primary contractors; (c) establish a permanent data storage system for transferred records; and (d) provide graded type of services that are appropriate to the risk of radiation exposure. The system started its operation in December 2013 and provided dose distributions in April and July 2015. The average yearly dose in 2014 was 0.7 mSv, which increased by 0.2 mSv from 0.5 mSv in 2012 and 2013. However, no cumulative dose from 2012-2014 exceeded 20 mSv, which was far below than the dose limits (100 mSv/5 years and 50 mSv/year). Although current dose distributions of decontamination workers were within appropriate levels, careful monitoring of dose distribution is necessary for preserving the proper implementation of radiation protection prescribed in the regulations.

  20. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakhalkar, H. S.; Oldham, M.

    2008-01-15

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of {approx}5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 {mu}m) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout frommore » the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the 'gold standard' technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few millimeters of the edge of the dosimeter, where edge artifact is predominant. Agreement of line profiles was observed, even along steep dose gradients. Dose difference plots indicated that the CCD scanner dose readout differed from the OCTOPUSscanner readout and ECLIPSE calculations by {approx}10% along steep dose gradients and by {approx}5% along moderate dose gradients. Gamma maps (3% dose-difference and 3 mm distance-to-agreement acceptance criteria) revealed agreement, except for regions within 5 mm of the edge of the dosimeter where the edge artifact occurs. In summary, the data demonstrate feasibility of using the fast, high-resolution CCD scanner for comprehensive 3D dosimetry in all applications, except where dose readout is required close to the edges of the dosimeter. Further work is ongoing to reduce this artifact.« less

  1. SU-E-T-580: Comparison of Cervical Carcinoma IMRT Plans From Four Commercial Treatment Planning Systems (TPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Y; Li, R; Chi, Z

    2014-06-01

    Purpose: Different treatment planning systems (TPS) use different treatment optimization and leaf sequencing algorithms. This work compares cervical carcinoma IMRT plans optimized with four commercial TPSs to investigate the plan quality in terms of target conformity and delivery efficiency. Methods: Five cervical carcinoma cases were planned with the Corvus, Monaco, Pinnacle and Xio TPSs by experienced planners using appropriate optimization parameters and dose constraints to meet the clinical acceptance criteria. Plans were normalized for at least 95% of PTV to receive the prescription dose (Dp). Dose-volume histograms and isodose distributions were compared. Other quantities such as Dmin(the minimum dose receivedmore » by 99% of GTV/PTV), Dmax(the maximum dose received by 1% of GTV/PTV), D100, D95, D90, V110%, V105%, V100% (the volume of GTV/PTV receiving 110%, 105%, 100% of Dp), conformity index(CI), homogeneity index (HI), the volume of receiving 40Gy and 50 Gy to rectum (V40,V50) ; the volume of receiving 30Gy and 50 Gy to bladder (V30,V50) were evaluated. Total segments and MUs were also compared. Results: While all plans meet target dose specifications and normal tissue constraints, the maximum GTVCI of Pinnacle plans was up to 0.74 and the minimum of Corvus plans was only 0.21, these four TPSs PTVCI had significant difference. The GTVHI and PTVHI of Pinnacle plans are all very low and show a very good dose distribution. Corvus plans received the higer dose of normal tissue. The Monaco plans require significantly less segments and MUs to deliver than the other plans. Conclusion: To deliver on a Varian linear-accelerator, the Pinnacle plans show a very good dose distribution. Corvus plans received the higer dose of normal tissue. The Monaco plans have faster beam delivery.« less

  2. Dose to the metaphyseal growth complexes in children undergoing /sup 99m/Tc-EHDP bone scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, S.R.; Gelfand, M.J.; Kerelakes, J.G.

    1978-01-01

    The spatial and temporal distribution of radionuclides in children may differ greatly from that accepted for adults. Following injection of a bone-seeking agent (/sup 99m/Tc-EHDP), radioactivity in the metaphyseal growth complexes of the distal femur and proximal tibia was quantitated in a series of children 4 to 16 years of age, using a gamma camera/computer system. The dose to the growth plate was found to range from 0.8 to 4.7 rads when adjusted to an administered activity of 200 ..mu..ci/kg, compared to approximately 0.6 rad to the adult skeleton for a corresponding study.

  3. Radiation leakage dose from Elekta electron collimation system

    PubMed Central

    Hogstrom, Kenneth R.; Carver, Robert L.

    2016-01-01

    This study provided baseline data required for a greater project, whose objective was to design a new Elekta electron collimation system having significantly lighter electron applicators with equally low out‐of field leakage dose. Specifically, off‐axis dose profiles for the electron collimation system of our uniquely configured Elekta Infinity accelerator with the MLCi2 treatment head were measured and calculated for two primary purposes: 1) to evaluate and document the out‐of‐field leakage dose in the patient plane and 2) to validate the dose distributions calculated using a BEAMnrc Monte Carlo (MC) model for out‐of‐field dose profiles. Off‐axis dose profiles were measured in a water phantom at 100 cm SSD for 1 and 2 cm depths along the in‐plane, cross‐plane, and both diagonal axes using a cylindrical ionization chamber with the 10×10 and 20×20 cm2 applicators and 7, 13, and 20 MeV beams. Dose distributions were calculated using a previously developed BEAMnrc MC model of the Elekta Infinity accelerator for the same beam energies and applicator sizes and compared with measurements. Measured results showed that the in‐field beam flatness met our acceptance criteria (±3% on major and ±4% on diagonal axes) and that out‐of‐field mean and maximum percent leakage doses in the patient plane met acceptance criteria as specified by the International Electrotechnical Commission (IEC). Cross‐plane out‐of‐field dose profiles showed greater leakage dose than in‐plane profiles, attributed to the curved edges of the upper X‐ray jaws and multileaf collimator. Mean leakage doses increased with beam energy, being 0.93% and 0.85% of maximum central axis dose for the 10×10 and 20×20 cm2 applicators, respectively, at 20 MeV. MC calculations predicted the measured dose to within 0.1% in most profiles outside the radiation field; however, excluding modeling of nontrimmer applicator components led to calculations exceeding measured data by as much as 0.2% for some regions along the in‐plane axis. Using EGSnrc LATCH bit filtering to separately calculate out‐of‐field leakage dose components (photon dose, primary electron dose, and electron dose arising from interactions in various collimating components), MC calculations revealed that the primary electron dose in the out‐of‐field leakage region was small and decreased as beam energy increased. Also, both the photon dose component and electron dose component resulting from collimator scatter dominated the leakage dose, increasing with increasing beam energy. We concluded that our custom Elekta Infinity with the MLCi2 treatment head met IEC leakage dose criteria in the patient plane. Also, accuracy of our MC model should be sufficient for our use in the design of a new, improved electron collimation system. PACS number(s): 87.56.nk, 87.10.Rt, 87.56.J PMID:27685101

  4. SU-E-T-616: Plan Quality Assessment of Both Treatment Planning System Dose and Measurement-Based 3D Reconstructed Dose in the Patient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olch, A

    2015-06-15

    Purpose: Systematic radiotherapy plan quality assessment promotes quality improvement. Software tools can perform this analysis by applying site-specific structure dose metrics. The next step is to similarly evaluate the quality of the dose delivery. This study defines metrics for acceptable doses to targets and normal organs for a particular treatment site and scores each plan accordingly. The input can be the TPS or the measurement-based 3D patient dose. From this analysis, one can determine whether the delivered dose distribution to the patient receives a score which is comparable to the TPS plan score, otherwise replanning may be indicated. Methods: Elevenmore » neuroblastoma patient plans were exported from Eclipse to the Quality Reports program. A scoring algorithm defined a score for each normal and target structure based on dose-volume parameters. Each plan was scored by this algorithm and the percentage of total possible points was obtained. Each plan also underwent IMRT QA measurements with a Mapcheck2 or ArcCheck. These measurements were input into the 3DVH program to compute the patient 3D dose distribution which was analyzed using the same scoring algorithm as the TPS plan. Results: The mean quality score for the TPS plans was 75.37% (std dev=14.15%) compared to 71.95% (std dev=13.45%) for the 3DVH dose distribution. For 3/11 plans, the 3DVH-based quality score was higher than the TPS score, by between 0.5 to 8.4 percentage points. Eight/11 plans scores decreased based on IMRT QA measurements by 1.2 to 18.6 points. Conclusion: Software was used to determine the degree to which the plan quality score differed between the TPS and measurement-based dose. Although the delivery score was generally in good agreement with the planned dose score, there were some that improved while there was one plan whose delivered dose quality was significantly less than planned. This methodology helps evaluate both planned and delivered dose quality. Sun Nuclear Corporation has provded a license for the software described.« less

  5. TL and OSL dose response of LiF:Mg,Ti and Al2O3:C dosimeters using a PMMA phantom for IMRT technique quality assurance.

    PubMed

    Matsushima, Luciana C; Veneziani, Glauco R; Sakuraba, Roberto K; Cruz, José C; Campos, Letícia L

    2015-06-01

    The principle of IMRT is to treat a patient from a number of different directions (or continuous arcs) with beams of nonuniform fluences, which have been optimized to deliver a high dose to the target volume and an acceptably low dose to the surrounding normal structures (Khan, 2010). This study intends to provide information to the physicist regarding the application of different dosimeters type, phantoms and analysis technique for Intensity Modulated Radiation Therapy (IMRT) dose distributions evaluation. The measures were performed using dosimeters of LiF:Mg,Ti and Al2O3:C evaluated by techniques of thermoluminescent (TL) and Optically Stimulated Luminescence (OSL). A polymethylmethacrylate (PMMA) phantom with five cavities, two principal target volumes considered like tumours to be treated and other three cavities to measure the scattered radiation dose was developed to carried out the measures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Influence of CT contrast agent on dose calculation of intensity modulated radiation therapy plan for nasopharyngeal carcinoma.

    PubMed

    Lee, F K-H; Chan, C C-L; Law, C-K

    2009-02-01

    Contrast enhanced computed tomography (CECT) has been used for delineation of treatment target in radiotherapy. The different Hounsfield unit due to the injected contrast agent may affect radiation dose calculation. We investigated this effect on intensity modulated radiotherapy (IMRT) of nasopharyngeal carcinoma (NPC). Dose distributions of 15 IMRT plans were recalculated on CECT. Dose statistics for organs at risk (OAR) and treatment targets were recorded for the plain CT-calculated and CECT-calculated plans. Statistical significance of the differences was evaluated. Correlations were also tested, among magnitude of calculated dose difference, tumor size and level of enhancement contrast. Differences in nodal mean/median dose were statistically significant, but small (approximately 0.15 Gy for a 66 Gy prescription). In the vicinity of the carotid arteries, the difference in calculated dose was also statistically significant, but only with a mean of approximately 0.2 Gy. We did not observe any significant correlation between the difference in the calculated dose and the tumor size or level of enhancement. The results implied that the calculated dose difference was clinically insignificant and may be acceptable for IMRT planning.

  7. Radiation Parameters of High Dose Rate Iridium -192 Sources

    NASA Astrophysics Data System (ADS)

    Podgorsak, Matthew B.

    A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.

  8. WE-B-304-02: Treatment Planning Evaluation and Optimization Should Be Biologically and Not Dose/volume Based

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deasy, J.

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning bymore » the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations.« less

  9. WE-B-304-01: Treatment Planning Evaluation and Optimization Should Be Dose/volume and Not Biologically Based

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, C.

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning bymore » the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations.« less

  10. Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data

    EPA Science Inventory

    The benchmark dose (BMD) approach has gained acceptance as a valuable risk assessment tool, but risk assessors still face significant challenges associated with selecting an appropriate BMD/BMDL estimate from the results of a set of acceptable dose-response models. Current approa...

  11. Analysis of measurement deviations for the patient-specific quality assurance using intensity-modulated spot-scanning particle beams

    NASA Astrophysics Data System (ADS)

    Li, Yongqiang; Hsi, Wen C.

    2017-04-01

    To analyze measurement deviations of patient-specific quality assurance (QA) using intensity-modulated spot-scanning particle beams, a commercial radiation dosimeter using 24 pinpoint ionization chambers was utilized. Before the clinical trial, validations of the radiation dosimeter and treatment planning system were conducted. During the clinical trial 165 measurements were performed on 36 enrolled patients. Two or three fields of particle beam were used for each patient. Measurements were typically performed with the dosimeter placed at special regions of dose distribution along depth and lateral profiles. In order to investigate the dosimeter accuracy, repeated measurements with uniform dose irradiations were also carried out. A two-step approach was proposed to analyze 24 sampling points over a 3D treatment volume. The mean value and the standard deviation of each measurement did not exceed 5% for all measurements performed on patients with various diseases. According to the defined intervention thresholds of mean deviation and the distance-to-agreement concept with a Gamma index analysis using criteria of 3.0% and 2 mm, a decision could be made regarding whether the dose distribution was acceptable for the patient. Based measurement results, deviation analysis was carried out. In this study, the dosimeter was used for dose verification and provided a safety guard to assure precise dose delivery of highly modulated particle therapy. Patient-specific QA will be investigated in future clinical operations.

  12. Electronic compensation technique to deliver a total body dose

    NASA Astrophysics Data System (ADS)

    Lakeman, Tara E.

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been conventionally used to compensate for the varying thickness throughout the body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the electronic compensation to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Each treatment plan includes two pair of parallel opposed fields. One pair of large fields is used to encompass the majority of the patient's anatomy. The other pair are very small open fields focused only on the thin bottom portion of the patient's anatomy, which requires much less radiation than the rest of the body to reach 100% of the prescribed dose. A desirable fluence pattern was manually painted within each of the larger fields for each patient to provide a more uniform distribution. Results: Dose-volume histograms (DVH) were calculated for evaluating the electronic compensation technique. In the electronically compensated plans, the maximum body doses calculated from the DVH were reduced from the conventionally-compensated plans by an average of 15%, indicating a more uniform dose. The mean body doses calculated from the electronically compensated DVH remained comparable to that of the conventionally-compensated plans, indicating an accurate delivery of the prescription dose using electronic compensation. All calculated monitor units were within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not increase the beam on time beyond clinically acceptable limits while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.

  13. Energetic properties' investigation of removing flattening filter at phantom surface: Monte Carlo study using BEAMnrc code, DOSXYZnrc code and BEAMDP code

    NASA Astrophysics Data System (ADS)

    Bencheikh, Mohamed; Maghnouj, Abdelmajid; Tajmouati, Jaouad

    2017-11-01

    The Monte Carlo calculation method is considered to be the most accurate method for dose calculation in radiotherapy and beam characterization investigation, in this study, the Varian Clinac 2100 medical linear accelerator with and without flattening filter (FF) was modelled. The objective of this study was to determine flattening filter impact on particles' energy properties at phantom surface in terms of energy fluence, mean energy, and energy fluence distribution. The Monte Carlo codes used in this study were BEAMnrc code for simulating linac head, DOSXYZnrc code for simulating the absorbed dose in a water phantom, and BEAMDP for extracting energy properties. Field size was 10 × 10 cm2, simulated photon beam energy was 6 MV and SSD was 100 cm. The Monte Carlo geometry was validated by a gamma index acceptance rate of 99% in PDD and 98% in dose profiles, gamma criteria was 3% for dose difference and 3mm for distance to agreement. In without-FF, the energetic properties was as following: electron contribution was increased by more than 300% in energy fluence, almost 14% in mean energy and 1900% in energy fluence distribution, however, photon contribution was increased 50% in energy fluence, and almost 18% in mean energy and almost 35% in energy fluence distribution. The removing flattening filter promotes the increasing of electron contamination energy versus photon energy; our study can contribute in the evolution of removing flattening filter configuration in future linac.

  14. SU-F-BRD-08: A Novel Technique to Derive a Clinically-Acceptable Beam Model for Proton Pencil-Beam Scanning in a Commercial Treatment Planning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholey, J. E.; Lin, L.; Ainsley, C. G.

    2015-06-15

    Purpose: To evaluate the accuracy and limitations of a commercially-available treatment planning system’s (TPS’s) dose calculation algorithm for proton pencil-beam scanning (PBS) and present a novel technique to efficiently derive a clinically-acceptable beam model. Methods: In-air fluence profiles of PBS spots were modeled in the TPS alternately as single-(SG) and double-Gaussian (DG) functions, based on fits to commissioning data. Uniform-fluence, single-energy-layer square fields of various sizes and energies were calculated with both beam models and delivered to water. Dose was measured at several depths. Motivated by observed discrepancies in measured-versus-calculated dose comparisons, a third model was constructed based on double-Gaussianmore » parameters contrived through a novel technique developed to minimize these differences (DGC). Eleven cuboid-dose-distribution-shaped fields with varying range/modulation and field size were subsequently generated in the TPS, using each of the three beam models described, and delivered to water. Dose was measured at the middle of each spread-out Bragg peak. Results: For energies <160 MeV, the DG model fit square-field measurements to <2% at all depths, while the SG model could disagree by >6%. For energies >160 MeV, both SG and DG models fit square-field measurements to <1% at <4 cm depth, but could exceed 6% deeper. By comparison, disagreement with the DGC model was always <3%. For the cuboid plans, calculation-versus-measured percent dose differences exceeded 7% for the SG model, being larger for smaller fields. The DG model showed <3% disagreement for all field sizes in shorter-range beams, although >5% differences for smaller fields persisted in longer-range beams. In contrast, the DGC model predicted measurements to <2% for all beams. Conclusion: Neither the TPS’s SG nor DG models, employed as intended, are ideally suited for routine clinical use. However, via a novel technique to be presented, its DG model can be tuned judiciously to yield acceptable results.« less

  15. Dosimetric evaluation of high-dose-rate interstitial brachytherapy boost treatments for localized prostate cancer.

    PubMed

    Fröhlich, Georgina; Agoston, Péter; Lövey, József; Somogyi, András; Fodor, János; Polgár, Csaba; Major, Tibor

    2010-07-01

    To quantitatively evaluate the dose distributions of high-dose-rate (HDR) prostate implants regarding target coverage, dose homogeneity, and dose to organs at risk. Treatment plans of 174 implants were evaluated using cumulative dose-volume histograms (DVHs). The planning was based on transrectal ultrasound (US) imaging, and the prescribed dose (100%) was 10 Gy. The tolerance doses to rectum and urethra were 80% and 120%, respectively. Dose-volume parameters for target (V90, V100, V150, V200, D90, D(min)) and quality indices (DNR [dose nonuniformity ratio], DHI [dose homogeneity index], CI [coverage index], COIN [conformal index]) were calculated. Maximum dose in reference points of rectum (D(r)) and urethra (D(u)), dose to volume of 2 cm(3) of the rectum (D(2ccm)), and 0.1 cm(3) and 1% of the urethra (D(0.1ccm) and D1) were determined. Nonparametric correlation analysis was performed between these parameters. The median number of needles was 16, the mean prostate volume (V(p)) was 27.1 cm(3). The mean V90, V100, V150, and V200 were 99%, 97%, 39%, and 13%, respectively. The mean D90 was 109%, and the D(min) was 87%. The mean doses in rectum and urethra reference points were 75% and 119%, respectively. The mean volumetric doses were D(2ccm) = 49% for the rectum, D(0.1ccm) = 126%, and D1 = 140% for the urethra. The mean DNR was 0.37, while the DHI was 0.60. The mean COIN was 0.66. The Spearman rank order correlation coefficients for volume doses to rectum and urethra were R(D(r),D(2ccm)) = 0.69, R(D(u),D0.(1ccm)) = 0.64, R(D(u),D1) = 0.23. US-based treatment plans for HDR prostate implants based on the real positions of catheters provided acceptable dose distributions. In the majority of the cases, the doses to urethra and rectum were kept below the defined tolerance levels. For rectum, the dose in reference points correlated well with dose-volume parameters. For urethra dose characterization, the use of D1 volumetric parameter is recommended.

  16. Dosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcsDosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcs.

    PubMed

    Liu, Haisong; Li, Jun; Pappas, Evangelos; Andrews, David; Evans, James; Werner-Wasik, Maria; Yu, Yan; Dicker, Adam; Shi, Wenyin

    2016-09-08

    An automatic brain-metastases planning (ABMP) software has been installed in our institution. It is dedicated for treating multiple brain metastases with radiosurgery on linear accelerators (linacs) using a single-setup isocenter with noncoplanar dynamic conformal arcs. This study is to validate the calculated absolute dose and dose distribution of ABMP. Three types of measurements were performed to validate the planning software: 1, dual micro ion chambers were used with an acrylic phantom to measure the absolute dose; 2, a 3D cylindrical phantom with dual diode array was used to evaluate 2D dose distribution and point dose for smaller targets; and 3, a 3D pseudo-in vivo patient-specific phantom filled with polymer gels was used to evaluate the accuracy of 3D dose distribution and radia-tion delivery. Micro chamber measurement of two targets (volumes of 1.2 cc and 0.9 cc, respectively) showed that the percentage differences of the absolute dose at both targets were less than 1%. Averaged GI passing rate of five different plans measured with the diode array phantom was above 98%, using criteria of 3% dose difference, 1 mm distance to agreement (DTA), and 10% low-dose threshold. 3D gel phantom measurement results demonstrated a 3D displacement of nine targets of 0.7 ± 0.4 mm (range 0.2 ~ 1.1 mm). The averaged two-dimensional (2D) GI passing rate for several region of interests (ROI) on axial slices that encompass each one of the nine targets was above 98% (5% dose difference, 2 mm DTA, and 10% low-dose threshold). Measured D95, the minimum dose that covers 95% of the target volume, of the nine targets was 0.7% less than the calculated D95. Three different types of dosimetric verification methods were used and proved the dose calculation of the new automatic brain metastases planning (ABMP) software was clinical acceptable. The 3D pseudo-in vivo patient-specific gel phantom test also served as an end-to-end test for validating not only the dose calculation, but the treatment delivery accuracy as well. © 2016 The Authors.

  17. SU-F-T-87: Comparison of Advanced Radiotherapy Techniques for Post- Mastectomy Breast Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heins, D; Zhang, R; Hogstrom, K

    2016-06-15

    Purpose: To determine if bolus electron conformal therapy (Bolus-ECT) combined with intensity modulated x-ray therapy (IMXT) and flattening filter free volumetric modulated arc therapy (FFF-VMAT (6x and 10x)) can maintain equal or better dose coverage than standard volumetric modulated arc therapy (Std-VMAT) while reducing doses to organs at risk (OARs). Methods: Bolus-ECT with IMXT, FFF-VMAT, and Std-VMAT treatment plans were produced for ten post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic. The treatment plans were created on commercially available treatment planning system (TPS) and all completed treatment plans were reviewed and approved by a radiation oncologist. The plans weremore » evaluated based on planning target volume (PTV) coverage, tumor control probability (TCP), dose homogeneity index (DHI), conformity index (CI), and dose to organs at risk (OAR). Results: All techniques produced clinically acceptable PMRT plans. Overall, Bolus-ECT with IMXT exhibited higher maximum dose compared to all VMAT techniques. Bolus-ECT with IMXT and FFF-VMAT10x had slightly improved TCP over FFF-VMAT6x and Std-VMAT. However, all VMAT techniques showed improved CI and DHI over Bolus-ECT with IMXT. All techniques showed very similar mean lung dose. Bolus-ECT with IMXT exhibited a reduced mean heart dose over Std-VMAT. Both FFF-VMAT techniques had higher mean heart dose compared to Std-VMAT. In addition, Bolus-ECT with IMXT was able to reduce mean dose to the contralateral breast compared to Std-VMAT and both FFF-VMAT techniques had comparable but slightly reduced dose compared to Std-VMAT. Conclusion: This work has shown that Bolus-ECT with IMXT produces clinically acceptable plans while reducing OAR doses. Both FFF-VMAT techniques are comparable to Std-VMAT with slight improvements. Even though all VMAT techniques produce more homogenous and conformal dose distributions, Bolus-ECT with IMXT is a viable option for treating post-mastectomy patients possibly leading to reduced risks of normal tissue complications.« less

  18. A study of optimization techniques in HDR brachytherapy for the prostate

    NASA Astrophysics Data System (ADS)

    Pokharel, Ghana Shyam

    Several studies carried out thus far are in favor of dose escalation to the prostate gland to have better local control of the disease. But optimal way of delivery of higher doses of radiation therapy to the prostate without hurting neighboring critical structures is still debatable. In this study, we proposed that real time high dose rate (HDR) brachytherapy with highly efficient and effective optimization could be an alternative means of precise delivery of such higher doses. This approach of delivery eliminates the critical issues such as treatment setup uncertainties and target localization as in external beam radiation therapy. Likewise, dosimetry in HDR brachytherapy is not influenced by organ edema and potential source migration as in permanent interstitial implants. Moreover, the recent report of radiobiological parameters further strengthen the argument of using hypofractionated HDR brachytherapy for the management of prostate cancer. Firstly, we studied the essential features and requirements of real time HDR brachytherapy treatment planning system. Automating catheter reconstruction with fast editing tools, fast yet accurate dose engine, robust and fast optimization and evaluation engine are some of the essential requirements for such procedures. Moreover, in most of the cases we performed, treatment plan optimization took significant amount of time of overall procedure. So, making treatment plan optimization automatic or semi-automatic with sufficient speed and accuracy was the goal of the remaining part of the project. Secondly, we studied the role of optimization function and constraints in overall quality of optimized plan. We have studied the gradient based deterministic algorithm with dose volume histogram (DVH) and more conventional variance based objective functions for optimization. In this optimization strategy, the relative weight of particular objective in aggregate objective function signifies its importance with respect to other objectives. Based on our study, DVH based objective function performed better than traditional variance based objective function in creating a clinically acceptable plan when executed under identical conditions. Thirdly, we studied the multiobjective optimization strategy using both DVH and variance based objective functions. The optimization strategy was to create several Pareto optimal solutions by scanning the clinically relevant part of the Pareto front. This strategy was adopted to decouple optimization from decision such that user could select final solution from the pool of alternative solutions based on his/her clinical goals. The overall quality of treatment plan improved using this approach compared to traditional class solution approach. In fact, the final optimized plan selected using decision engine with DVH based objective was comparable to typical clinical plan created by an experienced physicist. Next, we studied the hybrid technique comprising both stochastic and deterministic algorithm to optimize both dwell positions and dwell times. The simulated annealing algorithm was used to find optimal catheter distribution and the DVH based algorithm was used to optimize 3D dose distribution for given catheter distribution. This unique treatment planning and optimization tool was capable of producing clinically acceptable highly reproducible treatment plans in clinically reasonable time. As this algorithm was able to create clinically acceptable plans within clinically reasonable time automatically, it is really appealing for real time procedures. Next, we studied the feasibility of multiobjective optimization using evolutionary algorithm for real time HDR brachytherapy for the prostate. The algorithm with properly tuned algorithm specific parameters was able to create clinically acceptable plans within clinically reasonable time. However, the algorithm was let to run just for limited number of generations not considered optimal, in general, for such algorithms. This was done to keep time window desirable for real time procedures. Therefore, it requires further study with improved conditions to realize the full potential of the algorithm.

  19. Leaf position optimization for step-and-shoot IMRT.

    PubMed

    De Gersem, W; Claus, F; De Wagter, C; Van Duyse, B; De Neve, W

    2001-12-01

    To describe the theoretical basis, the algorithm, and implementation of a tool that optimizes segment shapes and weights for step-and-shoot intensity-modulated radiation therapy delivered by multileaf collimators. The tool, called SOWAT (Segment Outline and Weight Adapting Tool) is applied to a set of segments, segment weights, and corresponding dose distribution, computed by an external dose computation engine. SOWAT evaluates the effects of changing the position of each collimating leaf of each segment on an objective function, as follows. Changing a leaf position causes a change in the segment-specific dose matrix, which is calculated by a fast dose computation algorithm. A weighted sum of all segment-specific dose matrices provides the dose distribution and allows computation of the value of the objective function. Only leaf position changes that comply with the multileaf collimator constraints are evaluated. Leaf position changes that tend to decrease the value of the objective function are retained. After several possible positions have been evaluated for all collimating leaves of all segments, an external dose engine recomputes the dose distribution, based on the adapted leaf positions and weights. The plan is evaluated. If the plan is accepted, a segment sequencer is used to make the prescription files for the treatment machine. Otherwise, the user can restart SOWAT using the new set of segments, segment weights, and corresponding dose distribution. The implementation was illustrated using two example cases. The first example is a T1N0M0 supraglottic cancer case that was distributed as a multicenter planning exercise by investigators from Rotterdam, The Netherlands. The exercise involved a two-phase plan. Phase 1 involved the delivery of 46 Gy to a concave-shaped planning target volume (PTV) consisting of the primary tumor volume and the elective lymph nodal regions II-IV on both sides of the neck. Phase 2 involved a boost of 24 Gy to the primary tumor region only. SOWAT was applied to the Phase 1 plan. Parotid sparing was a planning goal. The second implementation example is an ethmoid sinus cancer case, planned with the intent of bilateral visus sparing. The median PTV prescription dose was 70 Gy with a maximum dose constraint to the optic pathway structures of 60 Gy. The initial set of segments, segment weights, and corresponding dose distribution were obtained, respectively, by an anatomy-based segmentation tool, a segment weight optimization tool, and a differential scatter-air ratio dose computation algorithm as external dose engine. For the supraglottic case, this resulted in a plan that proved to be comparable to the plans obtained at the other institutes by forward or inverse planning techniques. After using SOWAT, the minimum PTV dose and PTV dose homogeneity increased; the maximum dose to the spinal cord decreased from 38 Gy to 32 Gy. The left parotid mean dose decreased from 22 Gy to 19 Gy and the right parotid mean dose from 20 to 18 Gy. For the ethmoid sinus case, the target homogeneity increased by leaf position optimization, together with a better sparing of the optical tracts. By using SOWAT, the plans improved with respect to all plan evaluation end points. Compliance with the multileaf collimator constraints is guaranteed. The treatment delivery time remains almost unchanged, because no additional segments are created.

  20. The feasibility assessment of radiation dose of movement 3D NIPAM gel by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Ming; Leung, Joseph Hang; Ng, Yu-Bun; Cheng, Chih-Wu; Sun, Jung-Chang; Lin, Ping-Chin; Hsieh, Bor-Tsung

    2015-11-01

    NIPAM dosimeter is widely accepted and recommended for its 3D distribution and accuracy in dose absorption. Up to the moment, most research works on dose measurement are based on a fixed irradiation target without the consideration of the effect from physiological motion. We present a study to construct a respiratory motion simulating patient anatomical and dosimetry model for the study of dosimetic effect of organ motion. The dose on fixed and motion targets was measured by MRI after a dose adminstration of 1, 2, 5, 8, and 10 Gy from linear accelerator. Comparison of two situations is made. The average sensitivity of fixed NIPAM was 0.1356 s-1/Gy with linearity R2=0.998. The average sensitivity of movement NIPAM was 0.1366 s-1/Gy with linearity R2=0.998 both having only 0.001 of the sensitivity difference. The difference between the two based on dose rate dependency, position and depth was not significant. There was thus no apparent impact on NIPAM dosimeter from physiological motion. The high sensitivity, linearity and stability of NIPAM dosimeter proved to be an ideal apparatus in the dose measurement in these circumstances.

  1. Charging for hospital pharmaceutical services: flat free based on the medication record.

    PubMed

    Wyatt, B K

    1979-03-01

    A 200-bed hospital's change in pricing drug products from a cost-plus-fee system to a flat fee per dose based on the medication administration record (MAR) is described. With the flat-fee system, drug charges are not recorded when the drug is dispensed by the pharmacy; data for charging doses are obtained directly from the MAR forms generated by the nursing staff. Charges are 55 cents per oral or suppository dose and $3.00 per injection dose. Drugs administered intravenously, topical drugs, injections costing more than $10.00 per dose, and miscellaneous nondrug items are still charged on a cost-plus-fee basis. Man-hours are saved in the pharmacy department because of the elimination of the pricing function and maintenance of price lists. The need for nursing staff to charge for any doses administered from emergency or Schedule II floor-stock supplies is eliminated. The workload for business office personnel is reduced because the number of individual charges is less than with the cost-plus charging system. The system is accepted by patients and third-party payers and has made a complete unit dose drug distribution system possible at lower cost.

  2. Pharmacokinetic and safety profile of tofacitinib in children with polyarticular course juvenile idiopathic arthritis: results of a phase 1, open-label, multicenter study.

    PubMed

    Ruperto, Nicolino; Brunner, Hermine I; Zuber, Zbigniew; Tzaribachev, Nikolay; Kingsbury, Daniel J; Foeldvari, Ivan; Horneff, Gerd; Smolewska, Elzbieta; Vehe, Richard K; Hazra, Anasuya; Wang, Rong; Mebus, Charles A; Alvey, Christine; Lamba, Manisha; Krishnaswami, Sriram; Stock, Thomas C; Wang, Min; Suehiro, Ricardo; Martini, Alberto; Lovell, Daniel J

    2017-12-28

    Juvenile idiopathic arthritis (JIA) is the most common pediatric rheumatic disease and a leading cause of childhood disability. The objective of this study was to characterize the PK, safety, and taste acceptability of tofacitinib in patients with JIA. This Phase 1, open-label, multiple-dose (twice daily [BID] for 5 days) study of tofacitinib in patients with active (≥ 5 joints) polyarticular course JIA was conducted from March 2013-December 2015. Patients were allocated to one of three age-based cohorts: Cohort 1, 12 to < 18 years; Cohort 2, 6 to < 12 years; and Cohort 3, 2 to < 6 years. Tofacitinib was administered according to age and body weight as tablets or oral solution (grape flavor). PK were assessed on Day 5; safety was assessed at screening, Day 1, and Day 5. Taste acceptability of the oral solution was evaluated. Twenty-six patients (age range 2-17 years) were enrolled: Cohort 1, N = 8; Cohort 2, N = 9; Cohort 3, N = 9; median tofacitinib doses were 5.0, 2.5, and 3.0 mg BID, respectively. The higher median tofacitinib dose in Cohort 3 versus Cohort 2 reflected implementation of an amended dosing scheme following an interim PK analysis after Cohort 2 recruitment. Geometric mean AUC at steady state (AUC tau ) was 156.6 ng•h/mL in Cohort 1, 118.8 ng•h/mL in Cohort 2, and 142.5 ng•h/mL in Cohort 3; C max (ng/mL) was 47.0, 41.7, and 66.2, respectively. C trough , C min , and t 1/2 were similar in Cohorts 2 and 3, but higher in Cohort 1. Median time to C max (T max ) was similar between cohorts. Apparent clearance and volume of distribution decreased with decreasing age. Tofacitinib was well tolerated, with no serious adverse events or discontinuations due to adverse events reported. Taste acceptability was confirmed. PK findings from this study in children with polyarticular course JIA established dosing regimens and acceptable taste for use in subsequent studies within the tofacitinib pediatric development program. ClinicalTrials.gov: NCT01513902 .

  3. MO-FG-204-08: Optimization-Based Image Reconstruction From Unevenly Distributed Sparse Projection Views

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Huiqiao; Yang, Yi; Tang, Xiangyang

    2015-06-15

    Purpose: Optimization-based reconstruction has been proposed and investigated for reconstructing CT images from sparse views, as such the radiation dose can be substantially reduced while maintaining acceptable image quality. The investigation has so far focused on reconstruction from evenly distributed sparse views. Recognizing the clinical situations wherein only unevenly sparse views are available, e.g., image guided radiation therapy, CT perfusion and multi-cycle cardiovascular imaging, we investigate the performance of optimization-based image reconstruction from unevenly sparse projection views in this work. Methods: The investigation is carried out using the FORBILD and an anthropomorphic head phantoms. In the study, 82 views, whichmore » are evenly sorted out from a full (360°) axial CT scan consisting of 984 views, form sub-scan I. Another 82 views are sorted out in a similar manner to form sub-scan II. As such, a CT scan with sparse (164) views at 1:6 ratio are formed. By shifting the two sub-scans relatively in view angulation, a CT scan with unevenly distributed sparse (164) views at 1:6 ratio are formed. An optimization-based method is implemented to reconstruct images from the unevenly distributed views. By taking the FBP reconstruction from the full scan (984 views) as the reference, the root mean square (RMS) between the reference and the optimization-based reconstruction is used to evaluate the performance quantitatively. Results: In visual inspection, the optimization-based method outperforms the FBP substantially in the reconstruction from unevenly distributed, which are quantitatively verified by the RMS gauged globally and in ROIs in both the FORBILD and anthropomorphic head phantoms. The RMS increases with increasing severity in the uneven angular distribution, especially in the case of anthropomorphic head phantom. Conclusion: The optimization-based image reconstruction can save radiation dose up to 12-fold while providing acceptable image quality for advanced clinical applications wherein only unevenly distributed sparse views are available. Research Grants: W81XWH-12-1-0138 (DoD), Sinovision Technologies.« less

  4. Utilization of cone-beam CT for offline evaluation of target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment.

    PubMed

    Paluska, Petr; Hanus, Josef; Sefrova, Jana; Rouskova, Lucie; Grepl, Jakub; Jansa, Jan; Kasaova, Linda; Hodek, Miroslav; Zouhar, Milan; Vosmik, Milan; Petera, Jiri

    2012-01-01

    To assess target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment and to assess possibility of safety margin reduction. Implementation of IGRT should influence safety margins. Utilization of cone-beam CT provides current 3D anatomic information directly in irradiation position. Such information enables reconstruction of the actual dose distribution. Seventeen prostate patients were treated with daily bony anatomy image-guidance. Cone-beam CT (CBCT) scans were acquired once a week immediately after bony anatomy alignment. After the prostate, seminal vesicles, rectum and bladder were contoured, the delivered dose distribution was reconstructed. Target dose coverage was evaluated by the proportion of the CTV encompassed by the 95% isodose. Original plans employed a 1 cm safety margin. Alternative plans assuming a smaller 7 mm margin between CTV and PTV were evaluated in the same way. Rectal and bladder volumes were compared with the initial ones. Rectal and bladder volumes irradiated with doses higher than 75 Gy, 70 Gy, 60 Gy, 50 Gy and 40 Gy were analyzed. In 12% of reconstructed plans the prostate coverage was not sufficient. The prostate underdosage was observed in 5 patients. Coverage of seminal vesicles was not satisfactory in 3% of plans. Most of the target underdosage corresponded to excessive rectal or bladder filling. Evaluation of alternative plans assuming a smaller 7 mm margin revealed 22% and 11% of plans where prostate and seminal vesicles coverage, respectively, was compromised. These were distributed over 8 and 7 patients, respectively. Sufficient dose coverage of target volumes was not achieved for all patients. Reducing of safety margin is not acceptable. Initial rectal and bladder volumes cannot be considered representative for subsequent treatment.

  5. Probabilistic objective functions for margin-less IMRT planning

    NASA Astrophysics Data System (ADS)

    Bohoslavsky, Román; Witte, Marnix G.; Janssen, Tomas M.; van Herk, Marcel

    2013-06-01

    We present a method to implement probabilistic treatment planning of intensity-modulated radiation therapy using custom software plugins in a commercial treatment planning system. Our method avoids the definition of safety-margins by directly including the effect of geometrical uncertainties during optimization when objective functions are evaluated. Because the shape of the resulting dose distribution implicitly defines the robustness of the plan, the optimizer has much more flexibility than with a margin-based approach. We expect that this added flexibility helps to automatically strike a better balance between target coverage and dose reduction for surrounding healthy tissue, especially for cases where the planning target volume overlaps organs at risk. Prostate cancer treatment planning was chosen to develop our method, including a novel technique to include rotational uncertainties. Based on population statistics, translations and rotations are simulated independently following a marker-based IGRT correction strategy. The effects of random and systematic errors are incorporated by first blurring and then shifting the dose distribution with respect to the clinical target volume. For simplicity and efficiency, dose-shift invariance and a rigid-body approximation are assumed. Three prostate cases were replanned using our probabilistic objective functions. To compare clinical and probabilistic plans, an evaluation tool was used that explicitly incorporates geometric uncertainties using Monte-Carlo methods. The new plans achieved similar or better dose distributions than the original clinical plans in terms of expected target coverage and rectum wall sparing. Plan optimization times were only about a factor of two higher than in the original clinical system. In conclusion, we have developed a practical planning tool that enables margin-less probability-based treatment planning with acceptable planning times, achieving the first system that is feasible for clinical implementation.

  6. Thermal Characteristics of ThermoBrachytherapy Surface Applicators (TBSA) for Treating Chestwall Recurrence

    PubMed Central

    Arunachalam, K.; Maccarini, P. F.; Craciunescu, O. I.; Schlorff, J. L.; Stauffer, P. R.

    2010-01-01

    Purpose To study temperature and thermal dose distributions of ThermoBrachytherapy Surface Applicators (TBSA) developed for concurrent or sequential high dose rate (HDR) brachytherapy and microwave hyperthermia treatment of chest wall recurrence and other superficial disease. Methods A steady state thermodynamics model coupled with the fluid dynamics of water bolus and electromagnetic radiation of hyperthermia applicator is used to characterize the temperature distributions achievable with TBSA applicators in an elliptical phantom model of the human torso. Power deposited by 915 MHz conformal microwave array (CMA) applicators is used to assess the specific absorption rate (SAR) distributions of rectangular (500 cm2) and L-shaped (875 cm2) TBSA. The SAR distribution in tissue and fluid flow distribution inside the Dual-Input Dual-Output (DIDO) water bolus are coupled to solve the steady state temperature and thermal dose distributions of rectangular TBSA (R-TBSA) for superficial tumor targets extending 10–15 mm beneath the skin surface. Thermal simulations are carried out for a range of bolus inlet temperature (Tb=38–43°C), water flow rate (Qb=2–4 L/min) and tumor blood perfusion (ωb=2–5 kg/m3/s) to characterize their influence on thermal dosimetry. Results Steady state SAR patterns of R- and L-TBSA demonstrate the ability to produce conformal and localized power deposition inside tumor target sparing surrounding normal tissues and nearby critical organs. Acceptably low variation in tissue surface cooling and surface temperature homogeneity was observed for the new DIDO bolus at 2 L/min water flow rate. Temperature depth profiles and thermal dose volume histograms indicate bolus inlet temperature (Tb) to be the most influential factor on thermal dosimetry. A 42 °C water bolus was observed to be the optimal choice for superficial tumors extending 10–15 mm from the surface even under significant blood perfusion. Lower bolus temperature may be chosen to reduce thermal enhancement ratio (TER) in the most sensitive skin where maximum radiation dose is delivered and to extend thermal enhancement of radiation dose deeper. Conclusion This computational study indicates that well-localized elevation of tumor target temperature to 40–44 °C can be accomplished by large surface-conforming TBSA applicators using appropriate selection of coupling bolus temperature. PMID:20224154

  7. An MCNP-based model of a medical linear accelerator x-ray photon beam.

    PubMed

    Ajaj, F A; Ghassal, N M

    2003-09-01

    The major components in the x-ray photon beam path of the treatment head of the VARIAN Clinac 2300 EX medical linear accelerator were modeled and simulated using the Monte Carlo N-Particle radiation transport computer code (MCNP). Simulated components include x-ray target, primary conical collimator, x-ray beam flattening filter and secondary collimators. X-ray photon energy spectra and angular distributions were calculated using the model. The x-ray beam emerging from the secondary collimators were scored by considering the total x-ray spectra from the target as the source of x-rays at the target position. The depth dose distribution and dose profiles at different depths and field sizes have been calculated at a nominal operating potential of 6 MV and found to be within acceptable limits. It is concluded that accurate specification of the component dimensions, composition and nominal accelerating potential gives a good assessment of the x-ray energy spectra.

  8. MAGAT gel and EBT2 film‐based dosimetry for evaluating source plugging‐based treatment plan in Gamma Knife stereotactic radiosurgery

    PubMed Central

    Vivekanandhan, S.; Kale, S.S.; Rath, G.K.; Senthilkumaran, S.; Thulkar, S.; Subramani, V.; Laviraj, M.A.; Bisht, R.K.; Mahapatra, A.K.

    2012-01-01

    This work illustrates a procedure to assess the overall accuracy associated with Gamma Knife treatment planning using plugging. The main role of source plugging or blocking is to create dose falloff in the junction between a target and a critical structure. We report the use of MAGAT gel dosimeter for verification of an experimental treatment plan based on plugging. The polymer gel contained in a head‐sized glass container simulated all major aspects of the treatment process of Gamma Knife radiosurgery. The 3D dose distribution recorded in the gel dosimeter was read using a 1.5T MRI scanner. Scanning protocol was: CPMG pulse sequence with 8 equidistant echoes, TR=7 s, echo step=14 ms, pixel size=0.5 mm x 0.5 mm, and slice thickness of 2 mm. Using a calibration relationship between absorbed dose and spin‐spin relaxation rate (R2), we converted R2 images to dose images. Volumetric dose comparison between treatment planning system (TPS) and gel measurement was accomplished using an in‐house MATLAB‐based program. The isodose overlay of the measured and computed dose distribution on axial planes was in close agreement. Gamma index analysis of 3D data showed more than 94% voxel pass rate for different tolerance criteria of 3%/2 mm, 3%/1 mm and 2%/2 mm. Film dosimetry with GAFCHROMIC EBT 2 film was also performed to compare the results with the calculated TPS dose. Gamma index analysis of film measurement for the same tolerance criteria used for gel measurement evaluation showed more than 95% voxel pass rate. Verification of gamma plan calculated dose on account of shield is not part of acceptance testing of Leksell Gamma Knife (LGK). Through this study we accomplished a volumetric comparison of dose distributions measured with a polymer gel dosimeter and Leksell GammaPlan (LGP) calculations for plans using plugging. We propose gel dosimeter as a quality assurance (QA) tool for verification of plug‐based planning. PACS number: 87.53.Ly, 87.55.‐x, 87.56.N‐ PMID:23149780

  9. Dosimetric comparison between VMAT with different dose calculation algorithms and protons for soft-tissue sarcoma radiotherapy.

    PubMed

    Fogliata, Antonella; Scorsetti, Marta; Navarria, Piera; Catalano, Maddalena; Clivio, Alessandro; Cozzi, Luca; Lobefalo, Francesca; Nicolini, Giorgia; Palumbo, Valentina; Pellegrini, Chiara; Reggiori, Giacomo; Roggio, Antonella; Vanetti, Eugenio; Alongi, Filippo; Pentimalli, Sara; Mancosu, Pietro

    2013-04-01

    To appraise the potential of volumetric modulated arc therapy (VMAT, RapidArc) and proton beams to simultaneously achieve target coverage and enhanced sparing of bone tissue in the treatment of soft-tissue sarcoma with adequate target coverage. Ten patients presenting with soft-tissue sarcoma of the leg were collected for the study. Dose was prescribed to 66.5 Gy in 25 fractions to the planning target volume (PTV) while significant maximum dose to the bone was constrained to 50 Gy. Plans were optimised according to the RapidArc technique with 6 MV photon beams or for intensity modulated protons. RapidArc photon plans were computed with: 1) AAA; 2) Acuros XB as dose to medium; and 3) Acuros XB as dose to water. All plans acceptably met the criteria of target coverage (V95% >90-95%) and bone sparing (D(1 cm3) <50 Gy). Significantly higher PTV dose homogeneity was found for proton plans. Near-to-maximum dose to bone was similar for RapidArc and protons, while volume receiving medium/low dose levels was minimised with protons. Similar results were obtained for the remaining normal tissue. Dose distributions calculated with the dose to water option resulted ~5% higher than corresponding ones computed as dose to medium. High plan quality was demonstrated for both VMAT and proton techniques when applied to soft-tissue sarcoma.

  10. Acceptance Probability (P a) Analysis for Process Validation Lifecycle Stages.

    PubMed

    Alsmeyer, Daniel; Pazhayattil, Ajay; Chen, Shu; Munaretto, Francesco; Hye, Maksuda; Sanghvi, Pradeep

    2016-04-01

    This paper introduces an innovative statistical approach towards understanding how variation impacts the acceptance criteria of quality attributes. Because of more complex stage-wise acceptance criteria, traditional process capability measures are inadequate for general application in the pharmaceutical industry. The probability of acceptance concept provides a clear measure, derived from specific acceptance criteria for each quality attribute. In line with the 2011 FDA Guidance, this approach systematically evaluates data and scientifically establishes evidence that a process is capable of consistently delivering quality product. The probability of acceptance provides a direct and readily understandable indication of product risk. As with traditional capability indices, the acceptance probability approach assumes that underlying data distributions are normal. The computational solutions for dosage uniformity and dissolution acceptance criteria are readily applicable. For dosage uniformity, the expected AV range may be determined using the s lo and s hi values along with the worst case estimates of the mean. This approach permits a risk-based assessment of future batch performance of the critical quality attributes. The concept is also readily applicable to sterile/non sterile liquid dose products. Quality attributes such as deliverable volume and assay per spray have stage-wise acceptance that can be converted into an acceptance probability. Accepted statistical guidelines indicate processes with C pk > 1.33 as performing well within statistical control and those with C pk < 1.0 as "incapable" (1). A C pk > 1.33 is associated with a centered process that will statistically produce less than 63 defective units per million. This is equivalent to an acceptance probability of >99.99%.

  11. Prevention of Transfusion-Associated Graft-versus-Host Disease by Irradiation: Technical Aspect of a New Ferrous Sulphate Dosimetric System

    PubMed Central

    Del Lama, Lucas Sacchini; de Góes, Evamberto Garcia; Petchevist, Paulo César Dias; Moretto, Edson Lara; Borges, José Carlos; Covas, Dimas Tadeu; de Almeida, Adelaide

    2013-01-01

    Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs. PMID:23762345

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning bymore » the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations.« less

  13. WE-B-304-03: Biological Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orton, C.

    The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor control probability (TCP) with an acceptable normal tissue complication probability (NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. It has been suggested that treatment planning evaluation and optimization would be more effective if they were biologically and not dose/volume based, and this is the claim debated in this month’s Point/Counterpoint. After a brief overview of biologically and DVH based treatment planning bymore » the Moderator Colin Orton, Joseph Deasy (for biological planning) and Charles Mayo (against biological planning) will begin the debate. Some of the arguments in support of biological planning include: this will result in more effective dose distributions for many patients DVH-based measures of plan quality are known to have little predictive value there is little evidence that either D95 or D98 of the PTV is a good predictor of tumor control sufficient validated outcome prediction models are now becoming available and should be used to drive planning and optimization Some of the arguments against biological planning include: several decades of experience with DVH-based planning should not be discarded we do not know enough about the reliability and errors associated with biological models the radiotherapy community in general has little direct experience with side by side comparisons of DVH vs biological metrics and outcomes it is unlikely that a clinician would accept extremely cold regions in a CTV or hot regions in a PTV, despite having acceptable TCP values Learning Objectives: To understand dose/volume based treatment planning and its potential limitations To understand biological metrics such as EUD, TCP, and NTCP To understand biologically based treatment planning and its potential limitations.« less

  14. Monte Carlo based, patient-specific RapidArc QA using Linac log files.

    PubMed

    Teke, Tony; Bergman, Alanah M; Kwa, William; Gill, Bradford; Duzenli, Cheryl; Popescu, I Antoniu

    2010-01-01

    A Monte Carlo (MC) based QA process to validate the dynamic beam delivery accuracy for Varian RapidArc (Varian Medical Systems, Palo Alto, CA) using Linac delivery log files (DynaLog) is presented. Using DynaLog file analysis and MC simulations, the goal of this article is to (a) confirm that adequate sampling is used in the RapidArc optimization algorithm (177 static gantry angles) and (b) to assess the physical machine performance [gantry angle and monitor unit (MU) delivery accuracy]. Ten clinically acceptable RapidArc treatment plans were generated for various tumor sites and delivered to a water-equivalent cylindrical phantom on the treatment unit. Three Monte Carlo simulations were performed to calculate dose to the CT phantom image set: (a) One using a series of static gantry angles defined by 177 control points with treatment planning system (TPS) MLC control files (planning files), (b) one using continuous gantry rotation with TPS generated MLC control files, and (c) one using continuous gantry rotation with actual Linac delivery log files. Monte Carlo simulated dose distributions are compared to both ionization chamber point measurements and with RapidArc TPS calculated doses. The 3D dose distributions were compared using a 3D gamma-factor analysis, employing a 3%/3 mm distance-to-agreement criterion. The dose difference between MC simulations, TPS, and ionization chamber point measurements was less than 2.1%. For all plans, the MC calculated 3D dose distributions agreed well with the TPS calculated doses (gamma-factor values were less than 1 for more than 95% of the points considered). Machine performance QA was supplemented with an extensive DynaLog file analysis. A DynaLog file analysis showed that leaf position errors were less than 1 mm for 94% of the time and there were no leaf errors greater than 2.5 mm. The mean standard deviation in MU and gantry angle were 0.052 MU and 0.355 degrees, respectively, for the ten cases analyzed. The accuracy and flexibility of the Monte Carlo based RapidArc QA system were demonstrated. Good machine performance and accurate dose distribution delivery of RapidArc plans were observed. The sampling used in the TPS optimization algorithm was found to be adequate.

  15. New antiarrhythmic agents for atrial fibrillation and atrial flutter: United States drug market response as an indicator of acceptance.

    PubMed

    LaPointe, Nancy M Allen; Pamer, Carol A; Kramer, Judith M

    2003-10-01

    To determine how well dofetilide and Betapace AF (sotalol, approved solely for atrial fibrillation and atrial flutter), with their detailed dosing and monitoring guidelines for safety, were accepted into clinical practice during the 2 calendar years after their introduction. We reviewed the number of new, refill, and total prescriptions of all antiarrhythmic agents in the United States from April 2000-December 2001 to assess use of dofetilide and Betapace AF in the drug market. Both were prescribed very infrequently throughout the study period. In addition, the infrequent reported use of these drugs for patients with atrial fibrillation and flutter indicated poor acceptance of these agents by prescribing physicians. We speculated that the restricted distribution and required educational program for dofetilide, as well as the availability of generic sotalol products, may have discouraged physicians from prescribing both dofetilide and Betapace AE CONCLUSION: A common goal for both the dofetilide risk-management program and the creation of a sotalol product indicated solely for atrial fibrillation and atrial flutter was to provide safer treatment for patients with these arrhythmias. Unfortunately, limited penetration of dofetilide and Betapace AF into the U.S. market suggests that drugs without a risk-management program or detailed dosing guidelines were more likely than dofetilide or Betapace AF to be selected for treatment of atrial fibrillation and atrial flutter.

  16. Interpretation of Gamma Index for Quality Assurance of Simultaneously Integrated Boost (SIB) IMRT Plans for Head and Neck Carcinoma

    NASA Astrophysics Data System (ADS)

    Atiq, Maria; Atiq, Atia; Iqbal, Khalid; Shamsi, Quratul ain; Andleeb, Farah; Buzdar, Saeed Ahmad

    2017-12-01

    Objective: The Gamma Index is prerequisite to estimate point-by-point difference between measured and calculated dose distribution in terms of both Distance to Agreement (DTA) and Dose Difference (DD). This study aims to inquire what percentage of pixels passing a certain criteria assure a good quality plan and suggest gamma index as efficient mechanism for dose verification of Simultaneous Integrated Boost Intensity Modulated Radiotherapy plans. Method: In this study, dose was calculated for 14 head and neck patients and IMRT Quality Assurance was performed with portal dosimetry using the Eclipse treatment planning system. Eclipse software has a Gamma analysis function to compare measured and calculated dose distribution. Plans of this study were deemed acceptable when passing rate was 95% using tolerance for Distance to agreement (DTA) as 3mm and Dose Difference (DD) as 5%. Result and Conclusion: Thirteen cases pass tolerance criteria of 95% set by our institution. Confidence Limit for DD is 9.3% and for gamma criteria our local CL came out to be 2.0% (i.e., 98.0% passing). Lack of correlation was found between DD and γ passing rate with R2 of 0.0509. Our findings underline the importance of gamma analysis method to predict the quality of dose calculation. Passing rate of 95% is achieved in 93% of cases which is adequate level of accuracy for analyzed plans thus assuring the robustness of SIB IMRT treatment technique. This study can be extended to investigate gamma criteria of 5%/3mm for different tumor localities and to explore confidence limit on target volumes of small extent and simple geometry.

  17. TU-H-CAMPUS-JeP3-05: Adaptive Determination of Needle Sequence HDR Prostate Brachytherapy with Divergent Needle-By-Needle Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borot de Battisti, M; Maenhout, M; Lagendijk, J J W

    Purpose: To develop a new method which adaptively determines the optimal needle insertion sequence for HDR prostate brachytherapy involving divergent needle-by-needle dose delivery by e.g. a robotic device. A needle insertion sequence is calculated at the beginning of the intervention and updated after each needle insertion with feedback on needle positioning errors. Methods: Needle positioning errors and anatomy changes may occur during HDR brachytherapy which can lead to errors in the delivered dose. A novel strategy was developed to calculate and update the needle sequence and the dose plan after each needle insertion with feedback on needle positioning errors. Themore » dose plan optimization was performed by numerical simulations. The proposed needle sequence determination optimizes the final dose distribution based on the dose coverage impact of each needle. This impact is predicted stochastically by needle insertion simulations. HDR procedures were simulated with varying number of needle insertions (4 to 12) using 11 patient MR data-sets with PTV, prostate, urethra, bladder and rectum delineated. Needle positioning errors were modeled by random normally distributed angulation errors (standard deviation of 3 mm at the needle’s tip). The final dose parameters were compared in the situations where the needle with the largest vs. the smallest dose coverage impact was selected at each insertion. Results: Over all scenarios, the percentage of clinically acceptable final dose distribution improved when the needle selected had the largest dose coverage impact (91%) compared to the smallest (88%). The differences were larger for few (4 to 6) needle insertions (maximum difference scenario: 79% vs. 60%). The computation time of the needle sequence optimization was below 60s. Conclusion: A new adaptive needle sequence determination for HDR prostate brachytherapy was developed. Coupled to adaptive planning, the selection of the needle with the largest dose coverage impact increases chances of reaching the clinical constraints. M. Borot de Battisti is funded by Philips Medical Systems Nederland B.V.; M. Moerland is principal investigator on a contract funded by Philips Medical Systems Nederland B.V.; G. Hautvast and D. Binnekamp are fulltime employees of Philips Medical Systems Nederland B.V.« less

  18. Accounting for the economic risk caused by variation in disease severity in fungicide dose decisions, exemplified for Mycosphaerella graminicola on winter wheat.

    PubMed

    Te Beest, D E; Paveley, N D; Shaw, M W; van den Bosch, F

    2013-07-01

    A method is presented to calculate economic optimum fungicide doses accounting for the risk aversion of growers responding to variability in disease severity between crops. Simple dose-response and disease-yield loss functions are used to estimate net disease-related costs (fungicide cost plus disease-induced yield loss) as a function of dose and untreated severity. With fairly general assumptions about the shapes of the probability distribution of disease severity and the other functions involved, we show that a choice of fungicide dose which minimizes net costs, on average, across seasons results in occasional large net costs caused by inadequate control in high disease seasons. This may be unacceptable to a grower with limited capital. A risk-averse grower can choose to reduce the size and frequency of such losses by applying a higher dose as insurance. For example, a grower may decide to accept "high-loss" years 1 year in 10 or 1 year in 20 (i.e., specifying a proportion of years in which disease severity and net costs will be above a specified level). Our analysis shows that taking into account disease severity variation and risk aversion will usually increase the dose applied by an economically rational grower. The analysis is illustrated with data on Septoria tritici leaf blotch of wheat caused by Mycosphaerella graminicola. Observations from untreated field plots at sites across England over 3 years were used to estimate the probability distribution of disease severities at mid-grain filling. In the absence of a fully reliable disease forecasting scheme, reducing the frequency of high-loss years requires substantially higher doses to be applied to all crops. Disease-resistant cultivars reduce both the optimal dose at all levels of risk and the disease-related costs at all doses.

  19. A simplified technique for delivering total body irradiation (TBI) with improved dose homogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao Rui; Bernard, Damian; Turian, Julius

    2012-04-15

    Purpose: Total body irradiation (TBI) with megavoltage photon beams has been accepted as an important component of management for a number of hematologic malignancies, generally as part of bone marrow conditioning regimens. The purpose of this paper is to present and discuss the authors' TBI technique, which both simplifies the treatment process and improves the treatment quality. Methods: An AP/PA TBI treatment technique to produce uniform dose distributions using sequential collimator reductions during each fraction was implemented, and a sample calculation worksheet is presented. Using this methodology, the dosimetric characteristics of both 6 and 18 MV photon beams, including lungmore » dose under cerrobend blocks was investigated. A method of estimating midplane lung doses based on measured entrance and exit doses was proposed, and the estimated results were compared with measurements. Results: Whole body midplane dose uniformity of {+-}10% was achieved with no more than two collimator-based beam modulations. The proposed model predicted midplane lung doses 5% to 10% higher than the measured doses for 6 and 18 MV beams. The estimated total midplane doses were within {+-}5% of the prescribed midplane dose on average except for the lungs where the doses were 6% to 10% lower than the prescribed dose on average. Conclusions: The proposed TBI technique can achieve dose uniformity within {+-}10%. This technique is easy to implement and does not require complicated dosimetry and/or compensators.« less

  20. WE-G-17A-07: Investigation of the Influence of the Electron Return Effect (ERE) On the Dose Distribution in Rectal Cancer Patients On a 1.5T MR-Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uilkema, S; Heide, U; Nijkamp, J

    Purpose: The purpose of this planning study is to investigate the influence of the ERE on the day-to-day dose distribution in rectal cancer patients, where changes in gas-pockets frequently occur. Methods: Daily CT scans of 5 patients treated neo-adjuvant with 5x5Gy for rectal cancer were used. We optimized two plans on the planning CT (Monaco, 1 mm3 dosegrid), a conventional 7-field 6MV IMRT plan (Dconv) and a plan in the presence of a 1.5T field (Dmrl). We recalculated the plans on all repeat-CT scans and evaluated under/over-dosage of the daily CTVs. Changes of more than 1% were considered significant. Inmore » the bowel area, we investigated the relative dose changes due to the ERE, where the contribution of the ERE was separated from other effects such as attenuation. Results: Both plans were comparable and compliant with ICRU 62 for all patients. For 2 fractions in one patient under-dosage in the CTV was significant, due to a disappearing gas-pocket. Here the V95 was 96.82 and 97.36% in in Dmrl compared to 98.85 and 98.66% in Dconv, respectively. For 3 fractions in another patient appearing gas-pockets resulted in significant over-dosage of the CTV. In these fractions the V107 was 1.88–2.68% in Dmrl compared to 0.33–1.27% in Dconv. In the bowel area the dose changes attributable to the ERE were approximately ± 5% in 1cc, at low dose levels. Conclusion: We were able to calculate acceptable treatment plans with and without a magnetic field. The ERE was present in the Dmrl, but the volumetric effect within the CTV was limited. Outside the CTV relative dose differences were similar, but on small volumes at lower, less relevant dose levels. This suggests that there is no clinical relevant ERE on dose distributions in rectal cancer patients on a 1.5T MR-Linac.« less

  1. A study to establish reasonable action limits for patient-specific quality assurance in intensity-modulated radiation therapy.

    PubMed

    Both, Stefan; Alecu, Ionut M; Stan, Andrada R; Alecu, Marius; Ciura, Andrei; Hansen, Jeremy M; Alecu, Rodica

    2007-03-07

    An effective patient quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) requires accurate and realistic plan acceptance criteria--that is, action limits. Based on dose measurements performed with a commercially available two-dimensional (2D) diode array, we analyzed 747 fluence maps resulting from a routine patient QA program for IMRT plans. The fluence maps were calculated by three different commercially available (ADAC, CMS, Eclipse) treatment planning systems (TPSs) and were delivered using 6-MV X-ray beams produced by linear accelerators. To establish reasonably achievable and clinically acceptable limits for the dose deviations, the agreement between the measured and calculated fluence maps was evaluated in terms of percent dose error (PDE) for a few points and percent of passing points (PPP) for the isodose distribution. The analysis was conducted for each TPS used in the study (365 ADAC, 162 CMS,220 Eclipse), for multiple treatment sites (prostate, pelvis, head and neck, spine, rectum, anus, lung, brain), at the normalization point for 3% percentage difference (%Diff) and 3-mm distance to agreement (DTA) criteria. We investigated the treatment-site dependency of PPP and PDE. The results show that, at 3% and 3-mm criteria, a 95% PPP and 3% PDE can be achieved for prostate treatments and a 90% PPP and 5% PDE are attainable for any treatment site.

  2. YouTube Video Educational Package Increased Acceptance of Antibiotic Clinical Decision Support System Recommendations

    PubMed Central

    Heng, Shi Thong; Tan, Michelle; Young, Barnaby; Lye, David; Ng, Tat Ming

    2017-01-01

    Abstract Background Antibiotic clinical decision support systems (CDSS) were implemented to provide stewardship at the point of ordering of broad-spectrum antibiotics (piperacillin-tazobactam and carbapenems). We postulated that a YouTube based educational video package (EP) with quizzes can help to improve CDSS acceptance. Methods A before-after study was conducted in general wards at Tan Tock Seng Hospital from April 2016 to March 2017. Baseline data were collected for 6 months before EP was implemented and during the next 6 months with EP dissemination to all doctors. Acceptance of CDSS recommendations between both phases were compared. Independent factors associated with acceptance of specific CDSS recommendations were identified by logistic regression. Results Patients recruited before and after EP was 1642 and 1313 respectively. Overall CDSS acceptance rate was similar before and after EP. There was improved acceptance for recommendations for dose optimizaton, antibiotic optimization and set duration (Figures 1 and 2). Independent factors of CDSS acceptance for dose optimizaton, antibiotic optimization and set duration are shown in Table 1. EP implementation was independently associated with acceptance of recommendations to set duration and optimize antibiotics. Conclusion EP was independently associated with increased CDSS acceptance on antibiotic duration and antibiotic optimization. Although acceptance of dose optimization was improved, EP was not associated independently with acceptance of the recommendations. Figure 2 Acceptance of CDSS recommendations by classifications of recommendations Table 1 3 multivariate models of acceptance of CDSS recommendations on antibiotic optimization, dose optimization and duration setting Set duration Antibiotic optimization Dose optimization Factor Odds ratio [95% CI] Lung infection 2.71[2.13–3.45] 2.08[1.71–2.52] 2.79[2.19-3.55] Unknown sepsis source 1.73[1.27–2.35] – 1.44[1.05-1.96] Piperacillin-tazobactam use 3.02[2.17–4.19] – – Temperature during initiation of antibiotics 0.86[0.79–0.94] – – The presence of oxygen supplementation during initiation of antibiotics – 0.76[0.64–0.91] 0.76[0.64–0.91] EP implementation 1.38[1.18–1.62] 1.21[1.02–1.43] - Disclosures All authors: No reported disclosures.

  3. Uncertainty reduction in intensity modulated proton therapy by inverse Monte Carlo treatment planning

    NASA Astrophysics Data System (ADS)

    Morávek, Zdenek; Rickhey, Mark; Hartmann, Matthias; Bogner, Ludwig

    2009-08-01

    Treatment plans for intensity-modulated proton therapy may be sensitive to some sources of uncertainty. One source is correlated with approximations of the algorithms applied in the treatment planning system and another one depends on how robust the optimization is with regard to intra-fractional tissue movements. The irradiated dose distribution may substantially deteriorate from the planning when systematic errors occur in the dose algorithm. This can influence proton ranges and lead to improper modeling of the Braggpeak degradation in heterogeneous structures or particle scatter or the nuclear interaction part. Additionally, systematic errors influence the optimization process, which leads to the convergence error. Uncertainties with regard to organ movements are related to the robustness of a chosen beam setup to tissue movements on irradiation. We present the inverse Monte Carlo treatment planning system IKO for protons (IKO-P), which tries to minimize the errors described above to a large extent. Additionally, robust planning is introduced by beam angle optimization according to an objective function penalizing paths representing strongly longitudinal and transversal tissue heterogeneities. The same score function is applied to optimize spot planning by the selection of a robust choice of spots. As spots can be positioned on different energy grids or on geometric grids with different space filling factors, a variety of grids were used to investigate the influence on the spot-weight distribution as a result of optimization. A tighter distribution of spot weights was assumed to result in a more robust plan with respect to movements. IKO-P is described in detail and demonstrated on a test case and a lung cancer case as well. Different options of spot planning and grid types are evaluated, yielding a superior plan quality with dose delivery to the spots from all beam directions over optimized beam directions. This option shows a tighter spot-weight distribution and should therefore be less sensitive to movements compared to optimized directions. But accepting a slight loss in plan quality, the latter choice could potentially improve robustness even further by accepting only spots from the most proper direction. The choice of a geometric grid instead of an energy grid for spot positioning has only a minor influence on the plan quality, at least for the investigated lung case.

  4. Adaptation of the CVT algorithm for catheter optimization in high dose rate brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulin, Eric; Fekete, Charles-Antoine Collins; Beaulieu, Luc

    2013-11-15

    Purpose: An innovative, simple, and fast method to optimize the number and position of catheters is presented for prostate and breast high dose rate (HDR) brachytherapy, both for arbitrary templates or template-free implants (such as robotic templates).Methods: Eight clinical cases were chosen randomly from a bank of patients, previously treated in our clinic to test our method. The 2D Centroidal Voronoi Tessellations (CVT) algorithm was adapted to distribute catheters uniformly in space, within the maximum external contour of the planning target volume. The catheters optimization procedure includes the inverse planning simulated annealing algorithm (IPSA). Complete treatment plans can then bemore » generated from the algorithm for different number of catheters. The best plan is chosen from different dosimetry criteria and will automatically provide the number of catheters and their positions. After the CVT algorithm parameters were optimized for speed and dosimetric results, it was validated against prostate clinical cases, using clinically relevant dose parameters. The robustness to implantation error was also evaluated. Finally, the efficiency of the method was tested in breast interstitial HDR brachytherapy cases.Results: The effect of the number and locations of the catheters on prostate cancer patients was studied. Treatment plans with a better or equivalent dose distributions could be obtained with fewer catheters. A better or equal prostate V100 was obtained down to 12 catheters. Plans with nine or less catheters would not be clinically acceptable in terms of prostate V100 and D90. Implantation errors up to 3 mm were acceptable since no statistical difference was found when compared to 0 mm error (p > 0.05). No significant difference in dosimetric indices was observed for the different combination of parameters within the CVT algorithm. A linear relation was found between the number of random points and the optimization time of the CVT algorithm. Because the computation time decrease with the number of points and that no effects were observed on the dosimetric indices when varying the number of sampling points and the number of iterations, they were respectively fixed to 2500 and to 100. The computation time to obtain ten complete treatments plans ranging from 9 to 18 catheters, with the corresponding dosimetric indices, was 90 s. However, 93% of the computation time is used by a research version of IPSA. For the breast, on average, the Radiation Therapy Oncology Group recommendations would be satisfied down to 12 catheters. Plans with nine or less catheters would not be clinically acceptable in terms of V100, dose homogeneity index, and D90.Conclusions: The authors have devised a simple, fast and efficient method to optimize the number and position of catheters in interstitial HDR brachytherapy. The method was shown to be robust for both prostate and breast HDR brachytherapy. More importantly, the computation time of the algorithm is acceptable for clinical use. Ultimately, this catheter optimization algorithm could be coupled with a 3D ultrasound system to allow real-time guidance and planning in HDR brachytherapy.« less

  5. Safe days in space with acceptable uncertainty from space radiation exposure.

    PubMed

    Cucinotta, Francis A; Alp, Murat; Rowedder, Blake; Kim, Myung-Hee Y

    2015-04-01

    The prediction of the risks of cancer and other late effects from space radiation exposure carries large uncertainties mostly due to the lack of information on the risks from high charge and energy (HZE) particles and other high linear energy transfer (LET) radiation. In our recent work new methods were used to consider NASA's requirement to protect against the acceptable risk of no more than 3% probability of cancer fatality estimated at the 95% confidence level. Because it is not possible that a zero-level of uncertainty could be achieved, we suggest that an acceptable uncertainty level should be defined in relationship to a probability distribution function (PDF) that only suffers from modest skewness with higher uncertainty allowed for a normal PDF. In this paper, we evaluate PDFs and the number or "safe days" in space, which are defined as the mission length where risk limits are not exceeded, for several mission scenarios at different acceptable levels of uncertainty. In addition, we briefly discuss several important issues in risk assessment including non-cancer effects, the distinct tumor spectra and lethality found in animal experiments for HZE particles compared to background or low LET radiation associated tumors, and the possibility of non-targeted effects (NTE) modifying low dose responses and increasing relative biological effectiveness (RBE) factors for tumor induction. Each of these issues skew uncertainty distributions to higher fatality probabilities with the potential to increase central values of risk estimates in the future. Therefore they will require significant research efforts to support space exploration within acceptable levels of risk and uncertainty. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  6. On the new metrics for IMRT QA verification.

    PubMed

    Garcia-Romero, Alejandro; Hernandez-Vitoria, Araceli; Millan-Cebrian, Esther; Alba-Escorihuela, Veronica; Serrano-Zabaleta, Sonia; Ortega-Pardina, Pablo

    2016-11-01

    The aim of this work is to search for new metrics that could give more reliable acceptance/rejection criteria on the IMRT verification process and to offer solutions to the discrepancies found among different conventional metrics. Therefore, besides conventional metrics, new ones are proposed and evaluated with new tools to find correlations among them. These new metrics are based on the processing of the dose-volume histogram information, evaluating the absorbed dose differences, the dose constraint fulfillment, or modified biomathematical treatment outcome models such as tumor control probability (TCP) and normal tissue complication probability (NTCP). An additional purpose is to establish whether the new metrics yield the same acceptance/rejection plan distribution as the conventional ones. Fifty eight treatment plans concerning several patient locations are analyzed. All of them were verified prior to the treatment, using conventional metrics, and retrospectively after the treatment with the new metrics. These new metrics include the definition of three continuous functions, based on dose-volume histograms resulting from measurements evaluated with a reconstructed dose system and also with a Monte Carlo redundant calculation. The 3D gamma function for every volume of interest is also calculated. The information is also processed to obtain ΔTCP or ΔNTCP for the considered volumes of interest. These biomathematical treatment outcome models have been modified to increase their sensitivity to dose changes. A robustness index from a radiobiological point of view is defined to classify plans in robustness against dose changes. Dose difference metrics can be condensed in a single parameter: the dose difference global function, with an optimal cutoff that can be determined from a receiver operating characteristics (ROC) analysis of the metric. It is not always possible to correlate differences in biomathematical treatment outcome models with dose difference metrics. This is due to the fact that the dose constraint is often far from the dose that has an actual impact on the radiobiological model, and therefore, biomathematical treatment outcome models are insensitive to big dose differences between the verification system and the treatment planning system. As an alternative, the use of modified radiobiological models which provides a better correlation is proposed. In any case, it is better to choose robust plans from a radiobiological point of view. The robustness index defined in this work is a good predictor of the plan rejection probability according to metrics derived from modified radiobiological models. The global 3D gamma-based metric calculated for each plan volume shows a good correlation with the dose difference metrics and presents a good performance in the acceptance/rejection process. Some discrepancies have been found in dose reconstruction depending on the algorithm employed. Significant and unavoidable discrepancies were found between the conventional metrics and the new ones. The dose difference global function and the 3D gamma for each plan volume are good classifiers regarding dose difference metrics. ROC analysis is useful to evaluate the predictive power of the new metrics. The correlation between biomathematical treatment outcome models and the dose difference-based metrics is enhanced by using modified TCP and NTCP functions that take into account the dose constraints for each plan. The robustness index is useful to evaluate if a plan is likely to be rejected. Conventional verification should be replaced by the new metrics, which are clinically more relevant.

  7. Evaluation of the Eclipse eMC algorithm for bolus electron conformal therapy using a standard verification dataset.

    PubMed

    Carver, Robert L; Sprunger, Conrad P; Hogstrom, Kenneth R; Popple, Richard A; Antolak, John A

    2016-05-08

    The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and < 0.2% statistical uncertainties. The accuracy of the dose calculations using moderate smoothing and no smooth-ing were evaluated. Dose differences (eMC-calculated less measured dose) were evaluated in terms of absolute dose difference, where 100% equals the given dose, as well as distance to agreement (DTA). Dose calculations were also evaluated for calculation speed. Results from the eMC for the retromolar trigone phantom using 1% statistical uncertainty without smoothing showed calculated dose at 89% (41/46) of the measured TLD-dose points was within 3% dose difference or 3 mm DTA of the measured value. The average dose difference was -0.21%, and the net standard deviation was 2.32%. Differences as large as 3.7% occurred immediately distal to the mandible bone. Results for the nose phantom, using 1% statistical uncertainty without smoothing, showed calculated dose at 93% (53/57) of the measured TLD-dose points within 3% dose difference or 3 mm DTA. The average dose difference was 1.08%, and the net standard deviation was 3.17%. Differences as large as 10% occurred lateral to the nasal air cavities. Including smoothing had insignificant effects on the accuracy of the retromolar trigone phantom calculations, but reduced the accuracy of the nose phantom calculations in the high-gradient dose areas. Dose calculation times with 1% statistical uncertainty for the retromolar trigone and nose treatment plans were 30 s and 24 s, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a framework agent server (FAS). In comparison, the eMC was significantly more accurate than the pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.

  8. Dose escalation of the hypoxic cell sensitizer etanidazole combined with ifosfamide, carboplatin, etoposide, and autologous hematopoietic stem cell support.

    PubMed

    Elias, A D; Wheeler, C; Ayash, L J; Schwartz, G; Ibrahim, J; Mills, L; McCauley, M; Coleman, N; Warren, D; Schnipper, L; Antman, K H; Teicher, B A; Frei, E

    1998-06-01

    Multiple mechanisms of drug resistance contribute to treatment failure. Although high-dose therapy attempts to overwhelm these defenses pharmacologically, this approach is only successful in a fraction of treated patients. Many drug resistance mechanisms are shared between malignant and normal cells, but the expression of various drug resistance mechanisms associated with hypoxia is largely confined to tumor tissue. Thus, reversal of this mechanism is likely to provide a therapeutic advantage to the host. This study was designed to define the dose-limiting toxicities and maximum tolerated dose of etanidazole when it is given concurrently with high-dose ifosfamide, carboplatin, and etoposide (ICE), with hematopoietic stem cell support. The maximum tolerated doses of high-dose ICE were administered concurrently with dose escalations of etanidazole, a hypoxic cell sensitizer. All agents were given by 96-h continuous i.v. infusion beginning on day -7. Mesna uroprotection was provided. Autologous marrow and cytokine mobilized peripheral blood progenitor cells were reinfused on day 0. Granulocyte colony-stimulating factor was administered following reinfusion until the granulocytes recovered to > 1000/microliter. Fifty-five adults with advanced malignancies were enrolled in cohorts of five to nine patients. Four dose levels of etanidazole between 3 and 5.5 g/m2/day (12, 16, 20, and 22 g/m2 total doses) and two doses of carboplatin (1600 and 1800 mg/m2 total doses) were evaluated. Seven patients died of organ toxicity (13%); two each from veno-occlusive disease of liver and sepsis; and one each from sudden death, renal failure, and refractory thrombocytopenic hemorrhage. Five deaths occurred at the top dose level. One additional patient suffered a witnessed cardiorespiratory arrest from ventricular fibrillation and was resuscitated. Dose-dependent and largely reversible peripheral neuropathy was observed consisting of two syndromes: severe cramping myalgic/neuralgic pain, predominantly in stocking glove distribution, occurring between day -3 and day 0, and a sensory peripheral neuropathy with similar distribution peaking around day +60. The maximal achievable dose of etanidazole (16 g/m2 dose level) resulted in a mean serum level of 38 micrograms/ml (25-55 micrograms/ml). Etanidazole significantly enhanced host toxicity of high-dose ICE. Effective modulatory doses of etanidazole could not be given with acceptable toxicity using this schedule.

  9. Comparison of virtual unenhanced CT images of the abdomen under different iodine flow rates.

    PubMed

    Li, Yongrui; Li, Ye; Jackson, Alan; Li, Xiaodong; Huang, Ning; Guo, Chunjie; Zhang, Huimao

    2017-01-01

    To assess the effect of varying iodine flow rate (IFR) and iodine concentration on the quality of virtual unenhanced (VUE) images of the abdomen obtained with dual-energy CT. 94 subjects underwent unenhanced and triphasic contrast-enhanced CT scan of the abdomen, including arterial phase, portal venous phase, and delayed phase using dual-energy CT. Patients were randomized into 4 groups with different IFRs or iodine concentrations. VUE images were generated at 70 keV. The CT values, image noise, SNR and CNR of aorta, portal vein, liver, liver lesion, pancreatic parenchyma, spleen, erector spinae, and retroperitoneal fat were recorded. Dose-length product and effective dose for an examination with and without plain phase scan were calculated to assess the potential dose savings. Two radiologists independently assessed subjective image quality using a five-point scale. The Kolmogorov-Smirnov test was used first to test for normal distribution. Where data conformed to a normal distribution, analysis of variance was used to compare mean HU values, image noise, SNRs and CNRs for the 4 image sets. Where data distribution was not normal, a nonparametric test (Kruskal-Wallis test followed by stepwise step-down comparisons) was used. The significance level for all tests was 0.01 (two-sided) to allow for type 2 errors due to multiple testing. The CT numbers (HU) of VUE images showed no significant differences between the 4 groups (p > 0.05) or between different phases within the same group (p > 0.05). VUE images had equal or higher SNR and CNR than true unenhanced images. VUE images received equal or lower subjective image quality scores than unenhanced images but were of acceptable quality for diagnostic use. Calculated dose-length product and estimated dose showed that the use of VUE images in place of unenhanced images would be associated with a dose saving of 25%. VUE images can replace conventional unenhanced images. VUE images are not affected by varying iodine flow rates and iodine concentrations, and diagnostic examinations could be acquired with a potential dose saving of 25%.

  10. A fast three-dimensional gamma evaluation using a GPU utilizing texture memory for on-the-fly interpolations.

    PubMed

    Persoon, Lucas C G G; Podesta, Mark; van Elmpt, Wouter J C; Nijsten, Sebastiaan M J J G; Verhaegen, Frank

    2011-07-01

    A widely accepted method to quantify differences in dose distributions is the gamma (gamma) evaluation. Currently, almost all gamma implementations utilize the central processing unit (CPU). Recently, the graphics processing unit (GPU) has become a powerful platform for specific computing tasks. In this study, we describe the implementation of a 3D gamma evaluation using a GPU to improve calculation time. The gamma evaluation algorithm was implemented on an NVIDIA Tesla C2050 GPU using the compute unified device architecture (CUDA). First, several cubic virtual phantoms were simulated. These phantoms were tested with varying dose cube sizes and set-ups, introducing artificial dose differences. Second, to show applicability in clinical practice, five patient cases have been evaluated using the 3D dose distribution from a treatment planning system as the reference and the delivered dose determined during treatment as the comparison. A calculation time comparison between the CPU and GPU was made with varying thread-block sizes including the option of using texture or global memory. A GPU over CPU speed-up of 66 +/- 12 was achieved for the virtual phantoms. For the patient cases, a speed-up of 57 +/- 15 using the GPU was obtained. A thread-block size of 16 x 16 performed best in all cases. The use of texture memory improved the total calculation time, especially when interpolation was applied. Differences between the CPU and GPU gammas were negligible. The GPU and its features, such as texture memory, decreased the calculation time for gamma evaluations considerably without loss of accuracy.

  11. Image quality evaluation and patient dose assessment of medical fluoroscopic X-ray systems: a national study.

    PubMed

    Economides, S; Hourdakis, C J; Kalivas, N; Kalathaki, M; Simantirakis, G; Tritakis, P; Manousaridis, G; Vogiatzi, S; Kipouros, P; Boziari, A; Kamenopoulou, V

    2008-01-01

    This study presents the results from a survey conducted by the Greek Atomic Energy Commission (GAEC), during the period 1998-2003, in 530 public and private owned fluoroscopic X-ray systems in Greece. Certain operational parameters for conventional and remote control systems were assessed, according to a quality control protocol developed by GAEC on the basis of the current literature. Public (91.5%) and private (81.5%) owned fluoroscopic units exhibit high-contrast resolution values over 1 lp mm(-1). Moreover, 88.5 and 87.1% of the fluoroscopic units installed in the public and private sector, respectively, present Maximum Patient Entrance Kerma Rate values lower than 100 mGy min(-1). Additionally, 68.3% of the units assessed were found to perform within the acceptance limits. Finally, the third quartile of the Entrance Surface Dose Rate distribution was estimated according to the Dose Reference Level definition and found equal to 35 mGy min(-1).

  12. SU-E-T-09: A Clinical Implementation and Optimized Dosimetry Study of Freiberg Flap Skin Surface Treatment in High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syh, J; Syh, J; Patel, B

    Purpose: This case study was designated to confirm the optimized plan was used to treat skin surface of left leg in three stages. 1. To evaluate dose distribution and plan quality by alternating of the source loading catheters pattern in flexible Freiberg Flap skin surface (FFSS) applicator. 2. To investigate any impact on Dose Volume Histogram (DVH) of large superficial surface target volume coverage. 3. To compare the dose distribution if it was treated with electron beam. Methods: The Freiburg Flap is a flexible mesh style surface mold for skin radiation or intraoperative surface treatments. The Freiburg Flap consists ofmore » multiple spheres that are attached to each other, holding and guiding up to 18 treatment catheters. The Freiburg Flap also ensures a constant distance of 5mm from the treatment catheter to the surface. Three treatment trials with individual planning optimization were employed: 18 channels, 9 channels of FF and 6 MeV electron beam. The comparisons were highlighted in target coverage, dose conformity and dose sparing of surrounding tissues. Results: The first 18 channels brachytherapy plan was generated with 18 catheters inside the skin-wrapped up flap (Figure 1A). A second 9 catheters plan was generated associated with the same calculation points which were assigned to match prescription for target coverage as 18 catheters plan (Figure 1B). The optimized inverse plan was employed to reduce the dose to adjacent structures such as tibia or fibula. The comparison of DVH’s was depicted on Figure 2. External beam of electron RT plan was depicted in Figure 3. Overcall comparisons among these three were illustrated in Conclusion: The 9-channel Freiburg flap flexible skin applicator offers a reasonably acceptable plan without compromising the coverage. Electron beam was discouraged to use to treat curved skin surface because of low target coverage and high dose in adjacent tissues.« less

  13. Quality assurance of proton beams using a multilayer ionization chamber system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhanesar, Sandeep; Sahoo, Narayan; Kerr, Matthew

    2013-09-15

    Purpose: The measurement of percentage depth-dose (PDD) distributions for the quality assurance of clinical proton beams is most commonly performed with a computerized water tank dosimetry system with ionization chamber, commonly referred to as water tank. Although the accuracy and reproducibility of this method is well established, it can be time-consuming if a large number of measurements are required. In this work the authors evaluate the linearity, reproducibility, sensitivity to field size, accuracy, and time-savings of another system: the Zebra, a multilayer ionization chamber system.Methods: The Zebra, consisting of 180 parallel-plate ionization chambers with 2 mm resolution, was used tomore » measure depth-dose distributions. The measurements were performed for scattered and scanned proton pencil beams of multiple energies delivered by the Hitachi PROBEAT synchrotron-based delivery system. For scattered beams, the Zebra-measured depth-dose distributions were compared with those measured with the water tank. The principal descriptors extracted for comparisons were: range, the depth of the distal 90% dose; spread-out Bragg peak (SOBP) length, the region between the proximal 95% and distal 90% dose; and distal-dose fall off (DDF), the region between the distal 80% and 20% dose. For scanned beams, the Zebra-measured ranges were compared with those acquired using a Bragg peak chamber during commissioning.Results: The Zebra demonstrated better than 1% reproducibility and monitor unit linearity. The response of the Zebra was found to be sensitive to radiation field sizes greater than 12.5 × 12.5 cm; hence, the measurements used to determine accuracy were performed using a field size of 10 × 10 cm. For the scattered proton beams, PDD distributions showed 1.5% agreement within the SOBP, and 3.8% outside. Range values agreed within −0.1 ± 0.4 mm, with a maximum deviation of 1.2 mm. SOBP length values agreed within 0 ± 2 mm, with a maximum deviation of 6 mm. DDF values agreed within 0.3 ± 0.1 mm, with a maximum deviation of 0.6 mm. For the scanned proton pencil beams, Zebra and Bragg peak chamber range values demonstrated agreement of 0.0 ± 0.3 mm with a maximum deviation of 1.3 mm. The setup and measurement time for all Zebra measurements was 3 and 20 times less, respectively, compared to the water tank measurements.Conclusions: Our investigation shows that the Zebra can be useful not only for fast but also for accurate measurements of the depth-dose distributions of both scattered and scanned proton beams. The analysis of a large set of measurements shows that the commonly assessed beam quality parameters obtained with the Zebra are within the acceptable variations specified by the manufacturer for our delivery system.« less

  14. Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy.

    PubMed

    Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe

    2015-07-07

    The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were obtained in 30 s or less for 1 × 1 × 1 mm(3) calculation grids. Dosimetric indices were very similar (within 2.7%) to those obtained with a validated, independent Monte Carlo code (Geant4) performing the calculations for the same cases in a much longer time (tens of minutes to more than a hour). bGPUMCD is a promising code that lets envision the use of Monte Carlo techniques in a clinical environment, with sub-minute execution times on a standard workstation. Future work will explore the use of this code with an inverse planning method to provide a complete Monte Carlo-based planning solution.

  15. Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe

    2015-07-01

    The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were obtained in 30 s or less for 1 × 1 × 1 mm3 calculation grids. Dosimetric indices were very similar (within 2.7%) to those obtained with a validated, independent Monte Carlo code (Geant4) performing the calculations for the same cases in a much longer time (tens of minutes to more than a hour). bGPUMCD is a promising code that lets envision the use of Monte Carlo techniques in a clinical environment, with sub-minute execution times on a standard workstation. Future work will explore the use of this code with an inverse planning method to provide a complete Monte Carlo-based planning solution.

  16. Dose properties of a laser accelerated electron beam and prospects for clinical application.

    PubMed

    Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D; Chiu, C; Fomytskyi, M; Raischel, F; Downer, M; Tajima, T

    2004-07-01

    Laser wakefield acceleration (LWFA) technology has evolved to where it should be evaluated for its potential as a future competitor to existing technology that produces electron and x-ray beams. The purpose of the present work is to investigate the dosimetric properties of an electron beam that should be achievable using existing LWFA technology, and to document the necessary improvements to make radiotherapy application for LWFA viable. This paper first qualitatively reviews the fundamental principles of LWFA and describes a potential design for a 30 cm accelerator chamber containing a gas target. Electron beam energy spectra, upon which our dose calculations are based, were obtained from a uniform energy distribution and from two-dimensional particle-in-cell (2D PIC) simulations. The 2D PIC simulation parameters are consistent with those reported by a previous LWFA experiment. According to the 2D PIC simulations, only approximately 0.3% of the LWFA electrons are emitted with an energy greater than 1 MeV. We studied only the high-energy electrons to determine their potential for clinical electron beams of central energy from 9 to 21 MeV. Each electron beam was broadened and flattened by designing a dual scattering foil system to produce a uniform beam (103%>off-axis ratio>95%) over a 25 x 25 cm2 field. An energy window (deltaE) ranging from 0.5 to 6.5 MeV was selected to study central-axis depth dose, beam flatness, and dose rate. Dose was calculated in water at a 100 cm source-to-surface distance using the EGS/BEAM Monte Carlo algorithm. Calculations showed that the beam flatness was fairly insensitive to deltaE. However, since the falloff of the depth-dose curve (R10-R90) and the dose rate both increase with deltaE, a tradeoff between minimizing (R10-R90) and maximizing dose rate is implied. If deltaE is constrained so that R10-R90 is within 0.5 cm of its value for a monoenergetic beam, the maximum practical dose rate based on 2D PIC is approximately 0.1 Gy min(-1) for a 9 MeV beam and 0.03 Gy min(-1) for a 15 MeV beam. It was concluded that current LWFA technology should allow a table-top terawatt (T3) laser to produce therapeutic electron beams that have acceptable flatness, penetration, and falloff of depth dose; however, the dose rate is still 1%-3% of that which would be acceptable, especially for higher-energy electron beams. Further progress in laser technology, e.g., increasing the pulse repetition rate or number of high energy electrons generated per pulse, is necessary to give dose rates acceptable for electron beams. Future measurements confirming dosimetric calculations are required to substantiate our results. In addition to achieving adequate dose rate, significant engineering developments are needed for this technology to compete with current electron acceleration technology. Also, the functional benefits of LWFA electron beams require further study and evaluation.

  17. Mediate gamma radiation effects on some packaged food items

    NASA Astrophysics Data System (ADS)

    Inamura, Patricia Y.; Uehara, Vanessa B.; Teixeira, Christian A. H. M.; del Mastro, Nelida L.

    2012-08-01

    For most of prepackaged foods a 10 kGy radiation dose is considered the maximum dose needed; however, the commercially available and practically accepted packaging materials must be suitable for such application. This work describes the application of ionizing radiation on several packaged food items, using 5 dehydrated food items, 5 ready-to-eat meals and 5 ready-to-eat food items irradiated in a 60Co gamma source with a 3 kGy dose. The quality evaluation of the irradiated samples was performed 2 and 8 months after irradiation. Microbiological analysis (bacteria, fungus and yeast load) was performed. The sensory characteristics were established for appearance, aroma, texture and flavor attributes were also established. From these data, the acceptability of all irradiated items was obtained. All ready-to-eat food items assayed like manioc flour, some pâtés and blocks of raw brown sugar and most of ready-to-eat meals like sausages and chicken with legumes were considered acceptable for microbial and sensory characteristics. On the other hand, the dehydrated food items chosen for this study, such as dehydrated bacon potatoes or pea soups were not accepted by the sensory analysis. A careful dose choice and special irradiation conditions must be used in order to achieve sensory acceptability needed for the commercialization of specific irradiated food items.

  18. A study to establish reasonable action limits for patient‐specific quality assurance in intensity‐modulated radiation therapy

    PubMed Central

    Alecu, Ionut M.; Stan, Andrada R.; Alecu, Marius; Ciura, Andrei; Hansen, Jeremy M.; Alecu, Rodica

    2007-01-01

    An effective patient quality assurance (QA) program for intensity‐modulated radiation therapy (IMRT) requires accurate and realistic plan acceptance criteria—that is, action limits. Based on dose measurements performed with a commercially available two‐dimensional (2D) diode array, we analyzed 747 fluence maps resulting from a routine patient QA program for IMRT plans. The fluence maps were calculated by three different commercially available (ADAC, CMS, Eclipse) treatment planning systems (TPSs) and were delivered using 6‐MV X‐ray beams produced by linear accelerators. To establish reasonably achievable and clinically acceptable limits for the dose deviations, the agreement between the measured and calculated fluence maps was evaluated in terms of percent dose error (PDE) for a few points and percent of passing points (PPP) for the isodose distribution. The analysis was conducted for each TPS used in the study (365 ADAC, 162 CMS, 220 Eclipse), for multiple treatment sites (prostate, pelvis, head and neck, spine, rectum, anus, lung, brain), at the normalization point for 3% percentage difference (%Diff) and 3‐mm distance to agreement (DTA) criteria. We investigated the treatment‐site dependency of PPP and PDE. The results show that, at 3% and 3‐mm criteria, a 95% PPP and 3% PDE can be achieved for prostate treatments and a 90% PPP and 5% PDE are attainable for any treatment site. PACS Numbers: 87.53Dq, 87.53Tf, 87.53Xd, 87.56Fc PMID:17592459

  19. Spatial Prediction of Coxiella burnetii Outbreak Exposure via Notified Case Counts in a Dose-Response Model.

    PubMed

    Brooke, Russell J; Kretzschmar, Mirjam E E; Hackert, Volker; Hoebe, Christian J P A; Teunis, Peter F M; Waller, Lance A

    2017-01-01

    We develop a novel approach to study an outbreak of Q fever in 2009 in the Netherlands by combining a human dose-response model with geostatistics prediction to relate probability of infection and associated probability of illness to an effective dose of Coxiella burnetii. The spatial distribution of the 220 notified cases in the at-risk population are translated into a smooth spatial field of dose. Based on these symptomatic cases, the dose-response model predicts a median of 611 asymptomatic infections (95% range: 410, 1,084) for the 220 reported symptomatic cases in the at-risk population; 2.78 (95% range: 1.86, 4.93) asymptomatic infections for each reported case. The low attack rates observed during the outbreak range from (Equation is included in full-text article.)to (Equation is included in full-text article.). The estimated peak levels of exposure extend to the north-east from the point source with an increasing proportion of asymptomatic infections further from the source. Our work combines established methodology from model-based geostatistics and dose-response modeling allowing for a novel approach to study outbreaks. Unobserved infections and the spatially varying effective dose can be predicted using the flexible framework without assuming any underlying spatial structure of the outbreak process. Such predictions are important for targeting interventions during an outbreak, estimating future disease burden, and determining acceptable risk levels.

  20. The measurement of radiation dose profiles for electron-beam computed tomography using film dosimetry.

    PubMed

    Zink, F E; McCollough, C H

    1994-08-01

    The unique geometry of electron-beam CT (EBCT) scanners produces radiation dose profiles with widths which can be considerably different from the corresponding nominal scan width. Additionally, EBCT scanners produce both complex (multiple-slice) and narrow (3 mm) radiation profiles. This work describes the measurement of the axial dose distribution from EBCT within a scattering phantom using film dosimetry methods, which offer increased convenience and spatial resolution compared to thermoluminescent dosimetry (TLD) techniques. Therapy localization film was cut into 8 x 220 mm strips and placed within specially constructed light-tight holders for placement within the cavities of a CT Dose Index (CTDI) phantom. The film was calibrated using a conventional overhead x-ray tube with spectral characteristics matched to the EBCT scanner (130 kVp, 10 mm A1 HVL). The films were digitized at five samples per mm and calibrated dose profiles plotted as a function of z-axis position. Errors due to angle-of-incidence and beam hardening were estimated to be less than 5% and 10%, respectively. The integral exposure under film dose profiles agreed with ion-chamber measurements to within 15%. Exposures measured along the radiation profile differed from TLD measurements by an average of 5%. The film technique provided acceptable accuracy and convenience in comparison to conventional TLD methods, and allowed high spatial-resolution measurement of EBCT radiation dose profiles.

  1. Dosing Accuracy of Insulin Aspart FlexPens After Transport Through the Pneumatic Tube System.

    PubMed

    Ward, Leah G; Heckman, Michael G; Warren, Amy I; Tran, Kimberly

    2013-01-01

    The purpose of this study was to evaluate whether transporting insulin aspart FlexPens via a pneumatic tube system affects the dosing accuracy of the pens. A total of 115 Novo Nordisk FlexPens containing insulin aspart were randomly assigned to be transported via a pneumatic tube system (n = 92) or to serve as the control (n = 23). Each pen was then randomized to 10 international unit (IU) doses (n = 25) or 30 IU doses (n = 67), providing 600 and 603 doses, respectively, for the pneumatic tube group. The control group also received random assignment to 10 IU doses (n = 6) or 30 IU doses (n = 17), providing 144 and 153 doses, respectively. Each dose was expelled using manufacturer instructions. Weights were recorded, corrected for specific gravity, and evaluated based on acceptable International Organization for Standardization (ISO) dosing limits. In the group of pens transported through the pneumatic tube system, none of the 600 doses of 10 IU (0.0%; 95% CI, 0.0 to 0.6) and none of the 603 doses of 30 IU (0.0%; 95% CI, 0.0 to 0.6) fell outside of the range of acceptable weights. Correspondingly, in the control group, none of the 144 doses at 10 IU (0.0%; 95% CI, 0.0 to 2.5) and none of the 153 doses at 30 IU (0.0%; 95% CI, 0.0 to 2.4) were outside of acceptable ISO limits. Transportation via pneumatic tube system does not appear to compromise dosing accuracy. Hospital pharmacies may rely on the pneumatic tube system for timely and accurate transport of insulin aspart FlexPens.

  2. [The reentrant binomial model of nuclear anomalies growth in rhabdomyosarcoma RA-23 cell populations under increasing doze of rare ionizing radiation].

    PubMed

    Alekseeva, N P; Alekseev, A O; Vakhtin, Iu B; Kravtsov, V Iu; Kuzovatov, S N; Skorikova, T I

    2008-01-01

    Distributions of nuclear morphology anomalies in transplantable rabdomiosarcoma RA-23 cell populations were investigated under effect of ionizing radiation from 0 to 45 Gy. Internuclear bridges, nuclear protrusions and dumbbell-shaped nuclei were accepted for morphological anomalies. Empirical distributions of the number of anomalies per 100 nuclei were used. The adequate model of reentrant binomial distribution has been found. The sum of binomial random variables with binomial number of summands has such distribution. Averages of these random variables were named, accordingly, internal and external average reentrant components. Their maximum likelihood estimations were received. Statistical properties of these estimations were investigated by means of statistical modeling. It has been received that at equally significant correlation between the radiation dose and the average of nuclear anomalies in cell populations after two-three cellular cycles from the moment of irradiation in vivo the irradiation doze significantly correlates with internal average reentrant component, and in remote descendants of cell transplants irradiated in vitro - with external one.

  3. Can body composition be used to optimize the dose of platinum chemotherapy in lung cancer? A feasibility study.

    PubMed

    Crosby, Vincent; D'Souza, Catherine; Bristow, Carina; Proffitt, Amy; Hussain, Asmah; Potter, Vanessa; Hennig, Ivo; O'Connor, Richard; Baracos, Vickie; Wilcock, Andrew

    2017-04-01

    Current methods of dosing platinum-based chemotherapy are suboptimal. Potentially, taking lean body mass into account may help. To inform the design of a future study, we first examined the feasibility and acceptability of such an approach using dual-energy X-ray absorptiometry (DEXA) and explored aspects suggestive of over- and under-dosing. Patients with lung cancer offered platinum-based chemotherapy over 1 year were identified and, if eligible, invited to take part in a prospective feasibility study. Questionnaires examined acceptability of the DEXA scan and of a future study that randomized between traditional dosing and one adjusted according to body composition. Dose-limiting toxicity (DLT) and a lack of neutropenia explored potential over- and under-dosing, respectively. Of the 173 patients offered chemotherapy, 123 (71%) were ineligible, mostly because of failing entry criteria (84, 49%). Of the 50 approached, 18 (36%) participated, most receiving carboplatin, with 17 providing data. All found a DEXA scan acceptable; other assessments were fully completed, except nadir and pre-chemotherapy blood counts. Most (94%) were prepared to take part in a future study, although the additional hospital visits for a nadir blood count were unpopular with some. Five (29%) patients experienced six episodes of DLT which resulted in discontinuation (3), dose reduction (2) or change to a less toxic regimen (1). Nine (60%) patients experienced either no (2) or inconsistent (7) neutropenia. A randomized trial appears acceptable and feasible in patients receiving carboplatin. Adjustment of our entry criteria and avoiding a hospital visit for a nadir blood count should aid recruitment.

  4. Design study of an in situ PET scanner for use in proton beam therapy

    NASA Astrophysics Data System (ADS)

    Surti, S.; Zou, W.; Daube-Witherspoon, M. E.; McDonough, J.; Karp, J. S.

    2011-05-01

    Proton beam therapy can deliver a high radiation dose to a tumor without significant damage to surrounding healthy tissue or organs. One way of verifying the delivered dose distribution is to image the short-lived positron emitters produced by the proton beam as it travels through the patient. A potential solution to the limitations of PET imaging in proton beam therapy is the development of a high sensitivity, in situ PET scanner that starts PET imaging almost immediately after patient irradiation while the patient is still lying on the treatment bed. A partial ring PET design is needed for this application in order to avoid interference between the PET detectors and the proton beam, as well as restrictions on patient positioning on the couch. A partial ring also allows us to optimize the detector separation (and hence the sensitivity) for different patient sizes. Our goal in this investigation is to evaluate an in situ PET scanner design for use in proton therapy that provides tomographic imaging in a partial ring scanner design using time-of-flight (TOF) information and an iterative reconstruction algorithm. GEANT4 simulation of an incident proton beam was used to produce a positron emitter distribution, which was parameterized and then used as the source distribution inside a water-filled cylinder for EGS4 simulations of a PET system. Design optimization studies were performed as a function of crystal type and size, system timing resolution, scanner angular coverage and number of positron emitter decays. Data analysis was performed to measure the accuracy of the reconstructed positron emitter distribution as well as the range of the positron emitter distribution. We simulated scanners with varying crystal sizes (2-4 mm) and type (LYSO and LaBr3) and our results indicate that 4 mm wide LYSO or LaBr3 crystals (resulting in 4-5 mm spatial resolution) are adequate; for a full-ring, non-TOF scanner we predict a low bias (<0.6 mm) and a good precision (<1 mm) in the estimated range relative to the simulated positron distribution. We then varied the angular acceptance of the scanner ranging from 1/2 to 2/3 of 2π a partial ring TOF imaging with good timing resolution (<=600 ps) is necessary to produce accurate tomographic images. A two-third ring scanner with 300 ps timing resolution leads to a bias of 1.0 mm and a precision of 1.4 mm in the range estimate. With a timing resolution of 600 ps, the bias increases to 2.0 mm while the precision in the range estimate is similar. For a half-ring scanner design, more distortions are present in the image, which is characterized by the increased error in the profile difference estimate. We varied the number of positron decays imaged by the PET scanner by an order of magnitude and we observe some decrease in the precision of the range estimate for lower number of decays, but all partial ring scanner designs studied have a precision <=1.5 mm. The largest number tested, 150 M total positron decays, is considered realistic for a clinical fraction of delivered dose, while the range of positron decays investigated in this work covers a variable number of situations corresponding to delays in scan start time and the total scan time. Thus, we conclude that for partial ring systems, an angular acceptance of at least 1/2 (of 2π) together with timing resolution of 300 ps is needed to achieve accurate and precise range estimates. With 600 ps timing resolution an angular acceptance of 2/3 (of 2π) is required to achieve satisfactory range estimates. These results indicate that it would be feasible to develop a partial-ring dedicated PET scanner based on either LaBr3 or LYSO to accurately characterize the proton dose for therapy planning.

  5. SU-F-T-586: Pre-Treatment QA of InCise2 MLC Plans On a Cyberknife-M6 Using the Delta4 System in SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidhalter, D; Henzen, D; Malthaner, M

    Purpose: Performing pre-treatment quality assurance (QA) with the Delta4 system (ScandiDos Inc., Madison, WI) is well established for linac-based radiotherapy. This is not true when using a Cyberknife (Accuray Inc., Sunnyvale, CA) where, typically film-based QA is applied. The goal of this work was to test the feasibility to use the Delta4 system for pre-treatment QA for stereotactic body radiation therapy (SBRT) using a Cyberknife-M6 equipped with the InCise2 multileaf collimator (MLC). Methods: In order to perform measurements without accelerator pulse signal, the Tomotherapy option within the Delta4 software was used. Absolute calibration of the Delta4 phantom was performed usingmore » a 10×10 cm{sup 2} field shaped by the InCise2 MLC of the Cyberknife-M6. Five fiducials were attached to the Delta4 phantom in order to be able to track the phantom before and during measurements. For eight SBRT treatment plans (two liver, two prostate, one lung, three bone metastases) additional verification plans were recalculated on the Delta4 phantom using MultiPlan. Dicom data was exported from MultiPlan and was adapted in order to be compatible with the Delta4 software. The measured and calculated dose distributions were compared using the gamma analysis of the Delta4 system. Results: All eight SBRT plans were successfully measured with the aid of the Delta4 system. In the mean, 98.0±1.9%, 95.8±4.1% and 88.40±11.4% of measured dose points passed the gamma analysis using a global dose deviation criterion of 3% (100% corresponds to the dose maximum) and a distance-to-agreement criterion of 3 mm, 2 mm and 1 mm, respectively, and a threshold of 20%. Conclusion: Pre-treatment QA of SBRT plans using the Delta4 system on a Cyberknife-M6 is feasible. Measured dose distributions of SBRT plans showed clinically acceptable agreement with the corresponding calculated dose distributions.« less

  6. A calibration method for patient specific IMRT QA using a single therapy verification film

    PubMed Central

    Shukla, Arvind Kumar; Oinam, Arun S.; Kumar, Sanjeev; Sandhu, I.S.; Sharma, S.C.

    2013-01-01

    Aim The aim of the present study is to develop and verify the single film calibration procedure used in intensity-modulated radiation therapy (IMRT) quality assurance. Background Radiographic films have been regularly used in routine commissioning of treatment modalities and verification of treatment planning system (TPS). The radiation dosimetery based on radiographic films has ability to give absolute two-dimension dose distribution and prefer for the IMRT quality assurance. However, the single therapy verification film gives a quick and significant reliable method for IMRT verification. Materials and methods A single extended dose rate (EDR 2) film was used to generate the sensitometric curve of film optical density and radiation dose. EDR 2 film was exposed with nine 6 cm × 6 cm fields of 6 MV photon beam obtained from a medical linear accelerator at 5-cm depth in solid water phantom. The nine regions of single film were exposed with radiation doses raging from 10 to 362 cGy. The actual dose measurements inside the field regions were performed using 0.6 cm3 ionization chamber. The exposed film was processed after irradiation using a VIDAR film scanner and the value of optical density was noted for each region. Ten IMRT plans of head and neck carcinoma were used for verification using a dynamic IMRT technique, and evaluated using the gamma index method with TPS calculated dose distribution. Results Sensitometric curve has been generated using a single film exposed at nine field region to check quantitative dose verifications of IMRT treatments. The radiation scattered factor was observed to decrease exponentially with the increase in the distance from the centre of each field region. The IMRT plans based on calibration curve were verified using the gamma index method and found to be within acceptable criteria. Conclusion The single film method proved to be superior to the traditional calibration method and produce fast daily film calibration for highly accurate IMRT verification. PMID:24416558

  7. Establishment of quality assurance for respiratory-gated radiotherapy using a respiration-simulating phantom and gamma index: Evaluation of accuracy taking into account tumor motion and respiratory cycle

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Baek, Seong-Min

    2013-11-01

    The purpose of this study is to present a new method of quality assurance (QA) in order to ensure effective evaluation of the accuracy of respiratory-gated radiotherapy (RGR). This would help in quantitatively analyzing the patient's respiratory cycle and respiration-induced tumor motion and in performing a subsequent comparative analysis of dose distributions, using the gamma-index method, as reproduced in our in-house developed respiration-simulating phantom. Therefore, we designed a respiration-simulating phantom capable of reproducing the patient's respiratory cycle and respiration-induced tumor motion and evaluated the accuracy of RGR by estimating its pass rates. We applied the gamma index passing criteria of accepted error ranges of 3% and 3 mm for the dose distribution calculated by using the treatment planning system (TPS) and the actual dose distribution of RGR. The pass rate clearly increased inversely to the gating width chosen. When respiration-induced tumor motion was 12 mm or less, pass rates of 85% and above were achieved for the 30-70% respiratory phase, and pass rates of 90% and above were achieved for the 40-60% respiratory phase. However, a respiratory cycle with a very small fluctuation range of pass rates failed to prove reliable in evaluating the accuracy of RGR. Therefore, accurate and reliable outcomes of radiotherapy will be obtainable only by establishing a novel QA system using the respiration-simulating phantom, the gamma-index analysis, and a quantitative analysis of diaphragmatic motion, enabling an indirect measurement of tumor motion.

  8. Evaluation of dose delivery accuracy of gamma knife using MRI polymer gel dosimeter in an inhomogeneous phantom

    NASA Astrophysics Data System (ADS)

    Pourfallah T, A.; Alam N, Riahi; M, Allahverdi; M, Ay; M, Zahmatkesh

    2009-05-01

    Polymer gel dosimetry is still the only dosimetry method for directly measuring three-dimensional dose distributions. MRI Polymer gel dosimeters are tissue equivalent and can act as a phantom material. Because of high dose response sensitivity, the MRI was chosen as readout device. In this study dose profiles calculated with treatment-planning software (LGP) and measurements with the MR polymer gel dosimeter for single-shot irradiations were compared. A custom-built 16 cm diameter spherical plexiglas head phantom was used in this study. Inside the phantom, there is a cubic cutout for insertion of gel phantoms and another cutout for inserting the inhomogeneities. The phantoms were scanned with a 1.5T MRI (Siemens syngo MR 2004A 4VA25A) scanner. The multiple spin-echo sequence with 32 echoes was used for the MRI scans. Calibration relations between the spin-spin relaxation rate and the absorbed dose were obtained by using small cylindrical vials, which were filled with the PAGAT polymer gel from the same batch as for the spherical phantom. 1D and 2D data obtained using gel dosimeter for homogeneous and inhomogeneous phantoms were compared with dose obtained using LGP calculation. The distance between relative isodose curves obtained for homogeneous phantom and heterogeneous phantoms exceed the accepted total positioning error (>±2mm). The findings of this study indicate that dose measurement using PAGAT gel dosimeter can be used for verifying dose delivering accuracy in GK unit in presence of inhomogeneities.

  9. Food deserts in Leon County, FL: disparate distribution of Supplemental Nutrition Assistance Program-accepting stores by neighborhood characteristics.

    PubMed

    Rigby, Samantha; Leone, Angela F; Kim, Hwahwan; Betterley, Connie; Johnson, Mary Ann; Kurtz, Hilda; Lee, Jung Sun

    2012-01-01

    Examine whether neighborhood characteristics of racial composition, income, and rurality were related to distribution of Supplemental Nutrition Assistance Program (SNAP)-accepting stores in Leon County, Florida. Cross-sectional; neighborhood and food store data collected in 2008. Forty-eight census tracts as proxy of neighborhoods in Leon County, Florida. All stores and SNAP-accepting stores were identified from a commercial business directory and a United States Department of Agriculture SNAP-accepting store list, respectively (n = 288). Proportion of SNAP-accepting stores across neighborhoods. Descriptive statistics to describe distribution of SNAP-accepting stores by neighborhood characteristics. Proportions of SNAP-accepting stores were compared by neighborhood characteristics with Wilcoxon-Mann-Whitney and Kruskal-Wallis tests. Of 288 available stores, 45.1% accepted SNAP benefits. Of the 48 neighborhoods, 16.7% had no SNAP-accepting stores. Proportions of SNAP-accepting grocery stores were significantly different by neighborhood racial composition and income. Primarily black neighborhoods did not have any supermarkets. Results were mixed with regard to distribution of food stores and SNAP-accepting stores by neighborhood racial composition, income, and rurality. This study suggests disparities in distribution of SNAP-accepting stores across neighborhood characteristics of racial composition, income, and rurality. Copyright © 2012 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  10. Evaluation of dose variation during total skin electron irradiation using thermoluminescent dosimeters.

    PubMed

    Weaver, R D; Gerbi, B J; Dusenbery, K E

    1995-09-30

    To determine acceptable dose variation using thermoluminescent dosimeters (TLD) in the treatment of Mycosis Fungoides with total skin electron beam (TSEB) irradiation. From 1983 to 1993, 22 patients were treated with total skin electron beam therapy in the standing position. A six-field technique was used to deliver 2 Gy in two days, treating 4 days per week, to a total dose of 35 to 40 Gy using a degraded 9 MeV electron beam. Thermoluminescent dosimeters were placed on several locations of the body and the results recorded. The variations in these readings were analyzed to determine normal dose variation for various body locations during TSEB. The dose to flat surfaces of the body was essentially the same as the dose to the prescription point. The dose to tangential surfaces was within +/- 10% of the prescription dose, but the readings showed much more variation (up to 24%). Thin areas of the body showed large deviations from the prescription dose along with a large amount of variation in the readings (up to 22%). Special areas of the body, such as the perineum and eyelid, showed large deviations from the prescription dose with very large (up to 40%) variations in the readings. The TLD results of this study will be used as a quality assurance check for all new patients treated with TSEB. The results of the TLDs will be compared with this baseline study to determine if the delivered dose is within acceptable ranges. If the TLD results fall outside the acceptable limits established above, then the patient position can be modified or the technique itself evaluated.

  11. Retrospective evaluation of pediatric cranio-spinal axis irradiation plans with the Hi-ART tomotherapy system.

    PubMed

    Penagaricano, José A; Yan, Yulong; Corry, Peter; Moros, Eduardo; Ratanatharathorn, Vaneerat

    2007-08-01

    Helical tomotherapy (HT) can be used for the delivery of cranio-spinal axis irradiation (CSAI) without the need for beam matching of conventional linac-based external beam irradiation. The aim of this study is to retrospectively evaluate HT plans used for treatment in nine patients treated with CSAI. Helical tomotherapy cranio-spinal axis irradiation (HT-CSAI) plans were created for each patient. Average length along the cranio-spinal axis of the PTV was 65.6 cm with a range between 53 and 74 cm. Treatment planning optimization and plan evaluation parameters were obtained from the HT planning station for each of the nine patients. PTV coverage by the 95% isodose surface ranged between 98.0 to 100.0% for all nine patients. The clinically acceptable dose variation within the PTV or tolerance range was between 0.7 and 2.5% for all nine patients. Doses to the organs at risk were clinically acceptable. An increasing length along the longitudinal axis of the PTV did not consistently increase the beam-on time indicating that using a larger jaw width had a greater impact on treatment time. With a larger jaw width it is possible to substantially reduce the normalized beam-on treatment time without compromising plan quality and sparing of organs at risk. By using a larger jaw width or lower modulation factor or both, normalized beam-on times were decreased by up to 61% as compared to the other evaluated treatment plans. From the nine cases reported in this study the minimum beam-on time was achieved with a jaw width of 5.0 cm, pitch of 0.287 and a modulation factor of 2.0. Large and long cylindrical volumes can be effectively treated with helical tomotherapy with both clinically acceptable dose distribution and beam-on time.

  12. Validation of a pretreatment delivery quality assurance method for the CyberKnife Synchrony system.

    PubMed

    Mastella, E; Vigorito, S; Rondi, E; Piperno, G; Ferrari, A; Strata, E; Rozza, D; Jereczek-Fossa, B A; Cattani, F

    2016-08-01

    To evaluate the geometric and dosimetric accuracies of the CyberKnife Synchrony respiratory tracking system (RTS) and to validate a method for pretreatment patient-specific delivery quality assurance (DQA). An EasyCube phantom was mounted on the ExacTrac gating phantom, which can move along the superior-inferior (SI) axis of a patient to simulate a moving target. The authors compared dynamic and static measurements. For each case, a Gafchromic EBT3 film was positioned between two slabs of the EasyCube, while a PinPoint ionization chamber was placed in the appropriate space. There were three steps to their evaluation: (1) the field size, the penumbra, and the symmetry of six secondary collimators were measured along the two main orthogonal axes. Dynamic measurements with deliberately simulated errors were also taken. (2) The delivered dose distributions (from step 1) were compared with the planned ones, using the gamma analysis method. The local gamma passing rates were evaluated using three acceptance criteria: 3% local dose difference (LDD)/3 mm, 2%LDD/2 mm, and 3%LDD/1 mm. (3) The DQA plans for six clinical patients were irradiated in different dynamic conditions, to give a total of 19 cases. The measured and planned dose distributions were evaluated with the same gamma-index criteria used in step 2 and the measured chamber doses were compared with the planned mean doses in the sensitive volume of the chamber. (1) A very slight enlargement of the field size and of the penumbra was observed in the SI direction (on average <1 mm), in line with the overall average CyberKnife system error for tracking treatments. (2) Comparison between the planned and the correctly delivered dose distributions confirmed the dosimetric accuracy of the RTS for simple plans. The multicriteria gamma analysis was able to detect the simulated errors, proving the robustness of their method of analysis. (3) All of the DQA clinical plans passed the tests, both in static and dynamic conditions. No statistically significant differences were found between static and dynamic cases, confirming the high degree of accuracy of the Synchrony RTS. The presented methods and measurements verified the mechanical and dosimetric accuracy of the Synchrony RTS. Their method confirms the fact that the RTS, if used properly, is able to treat a moving target with great precision. By combining PinPoint ion chamber, EBT3 films, and gamma evaluation of dose distributions, their DQA method robustly validated the effectiveness of CyberKnife and Synchrony system.

  13. Inclusion of a variable RBE into proton and photon plan comparison for various fractionation schedules in prostate radiation therapy.

    PubMed

    Ödén, Jakob; Eriksson, Kjell; Toma-Dasu, Iuliana

    2017-03-01

    A constant relative biological effectiveness (RBE) of 1.1 is currently used in proton radiation therapy to account for the increased biological effectiveness compared to photon therapy. However, there is increasing evidence that proton RBE vary with the linear energy transfer (LET), the dose per fraction, and the type of the tissue. Therefore, this study aims to evaluate the impact of disregarding variations in RBE when comparing proton and photon dose plans for prostate treatments for various fractionation schedules using published RBE models and several α/β assumptions. Photon and proton dose plans were created for three generic prostate cancer cases. Three BED 3Gy equivalent schedules were studied, 78, 57.2, and 42.8 Gy in 39, 15, and 7 fractions, respectively. The proton plans were optimized assuming a constant RBE of 1.1. By using the Monte Carlo calculated dose-averaged LET (LET d ) distribution and assuming α/β values on voxel level, three variable RBE models were applied to the proton dose plans. The impact of the variable RBE was studied in the plan comparison, which was based on the dose distribution, DVHs, and normal tissue complication probabilities (NTCP) for the rectum. Subsequently, the physical proton dose was reoptimized for each proton plan based on the LET d distribution, to achieve a homogeneous RBE-weighted target dose when applying a specific RBE model and still fulfill the clinical goals for the rectum and bladder. All the photon and proton plans assuming RBE = 1.1 met the clinical goals with similar target coverage. The proton plans fulfilled the robustness criteria in terms of range and setup uncertainty. Applying the variable RBE models generally resulted in higher target doses and rectum NTCP compared to the photon plans. The increase was most pronounced for the fractionation dose of 2 Gy(RBE), whereas it was of less magnitude and more dependent on model and α/β assumption for the hypofractionated schedules. The reoptimized proton plans proved to be robust and showed similar target coverage and doses to the organs at risk as the proton plans optimized with a constant RBE. Model predicted RBE values may differ substantially from 1.1. This is most pronounced for fractionation doses of around 2 Gy(RBE) with higher doses to the target and the OARs, whereas the effect seems to be of less importance for the hypofractionated schedules. This could result in misleading conclusions when comparing proton plans to photon plans. By accounting for a variable RBE in the optimization process, robust and clinically acceptable dose plans, with the potential of lowering rectal NTCP, may be generated by reoptimizing the physical dose. However, the direction and magnitude of the changes in the physical proton dose to the prostate are dependent on RBE model and α/β assumptions and should therefore be used conservatively. © 2017 American Association of Physicists in Medicine.

  14. SU-F-T-569: Implementation of a Patient Specific QA Method Using EBT-XD for CyberKnife SRS/SBRT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zerouali, K; Aubry, J; Doucet, R

    2016-06-15

    Purpose: To implement the new EBT-XD Gafchromic films for accurate dosimetric and geometric validation of stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) CyberKnife (CK) patient specific QA. Methods: Film calibration was performed using a triplechannel film analysis on an Epson 10000XL scanner. Calibration films were irradiated using a Varian Clinac 21EX flattened beam (0 to 20 Gy), to ensure sufficient dose homogeneity. Films were scanned to a resolution of 0.3 mm, 24 hours post irradiation following a well-defined protocol. A set of 12 QA was performed for several types of CK plans: trigeminal neuralgia, brain metastasis, prostate andmore » lung tumors. A custom made insert for the CK head phantom has been manufactured to yield an accurate measured to calculated dose registration. When the high dose region was large enough, absolute dose was also measured with an ionization chamber. Dose calculation is performed using MultiPlan Ray-tracing algorithm for all cases since the phantom is mostly made from near water-equivalent plastic. Results: Good agreement (<2%) was found between the dose to the chamber and the film, when a chamber measurement was possible The average dose difference and standard deviations between film measurements and TPS calculations were respectively 1.75% and 3%. The geometric accuracy has been estimated to be <1 mm, combining robot positioning uncertainty and film registration to calculated dose. Conclusion: Patient specific QA measurements using EBT-XD films yielded a full 2D dose plane with high spatial resolution and acceptable dose accuracy. This method is particularly promising for trigeminal neuralgia plan QA, where the positioning of the spatial dose distribution is equally or more important than the absolute delivered dose to achieve clinical goals.« less

  15. A retrospective study on annual evaluation of radiation processing for frozen bone allografts complying to quality system requirements.

    PubMed

    Ramalingam, Saravana; Mohd, Suhaili; Samsuddin, Sharifah Mazni; Min, N G Wuey; Yusof, Norimah; Mansor, Azura

    2015-12-01

    Bone allografts have been used widely to fill up essential void in orthopaedic surgeries. The benefit of using allografts to replace and reconstruct musculoskeletal injuries, fractures or disease has obtained overwhelming acceptance from orthopaedic surgeons worldwide. However, bacterial infection and disease transmission through bone allograft transplantation have always been a significant issue. Sterilization by radiation is an effective method to eliminate unwanted microorganisms thus assist in preventing life threatening allograft associated infections. Femoral heads procured from living donors and long bones (femur and tibia) procured from cadaveric donors were sterilized at 25 kGy in compliance with international standard ISO 11137. According to quality requirements, all records of bone banking were evaluated annually. This retrospective study was carried out on annual evaluation of radiation records from 1998 until 2012. The minimum doses absorbed by the bones were ranging from 25.3 to 38.2 kGy while the absorbed maximum doses were from 25.4 to 42.3 kGy. All the bones supplied by our UMMC Bone Bank were sterile at the required minimum dose of 25 kGy. Our analysis on dose variation showed that the dose uniformity ratios in 37 irradiated boxes of 31 radiation batches were in the range of 1.003-1.251, which indicated the doses were well distributed.

  16. Initial experience of ArcCHECK and 3DVH software for RapidArc treatment plan verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Infusino, Erminia; Mameli, Alessandra, E-mail: e.infusino@unicampus.it; Conti, Roberto

    2014-10-01

    The purpose of this study was to perform delivery quality assurance with ArcCHECK and 3DVH system (Sun Nuclear, FL) and to evaluate the suitability of this system for volumetric-modulated arc therapy (VMAT) (RapidArc [RA]) verification. This software calculates the delivered dose distributions in patients by perturbing the calculated dose using errors detected in fluence or planar dose measurements. The device is tested to correlate the gamma passing rate (%GP) and the composite dose predicted by 3DVH software. A total of 28 patients with prostate cancer who were treated with RA were analyzed. RA treatments were delivered to a diode arraymore » phantom (ArcCHECK), which was used to create a planned dose perturbation (PDP) file. The 3DVH analysis used the dose differences derived from comparing the measured dose with the treatment planning system (TPS)-calculated doses to perturb the initial TPS-calculated dose. The 3DVH then overlays the resultant dose on the patient's structures using the resultant “PDP” beams. Measured dose distributions were compared with the calculated ones using the gamma index (GI) method by applying the global (Van Dyk) normalization and acceptance criteria, i.e., 3%/3 mm. Paired differences tests were used to estimate statistical significance of the differences between the composite dose calculated using 3DVH and %GP. Also, statistical correlation by means of logistic regression analysis has been analyzed. Dose-volume histogram (DVH) analysis for patient plans revealed small differences between treatment plan calculations and 3DVH results for organ at risk (OAR), whereas planning target volume (PTV) of the measured plan was systematically higher than that predicted by the TPS. The t-test results between the planned and the estimated DVH values showed that mean values were incomparable (p < 0.05). The quality assurance (QA) gamma analysis 3%/3 mm showed that in all cases there were only weak-to-moderate correlations (Pearson r: 0.12 to 0.74). Moreover, clinically relevant differences increased with increasing QA passing rate, indicating that some of the largest dose differences occurred in the cases of high QA passing rates, which may be called “false negatives.” The clinical importance of any disagreement between the measured and the calculated dose is often difficult to interpret; however, beam errors (either in delivery or in TPS calculation) can affect the effectiveness of the patient dose. Further research is needed to determinate the role of a PDP-type algorithm to accurately estimate patient dose effect.« less

  17. Dose of rocuronium for rapid tracheal intubation following remifentanil 2 μg kg-1 and propofol 2 mg kg-1.

    PubMed

    Oh, Ah-Young; Cho, Suk-Ju; Seo, Kwang-Suk; Ryu, Jung-Hee; Han, Sung-Hee; Hwang, Jung-Won

    2013-09-01

    Full relaxation is not mandatory for successful tracheal intubation. We tried to find the dose of rocuronium that gave acceptable intubation conditions in a rapid sequence intubation with remifentanil and propofol. A dose-finding study of rocuronium using a modified Dixon's up-and-down method. A single tertiary care teaching hospital. Patients undergoing elective surgery under general anaesthesia. After premedication with midazolam and glycopyrrolate, anaesthesia was induced using remifentanil 2 μg kg and propofol 2 mg kg, and a predetermined dose of rocuronium was administered. The dose of rocuronium was determined by a modified Dixon's up-and-down method starting from 0.8 mg kg with an interval of 0.1 or 0.05 mg kg. Intubation was performed 60 s after the start of the rocuronium injection. Intubation conditions were graded as excellent, good or poor. Excellent or good were regarded as clinically acceptable. A dose of rocuronium needed for acceptable intubation condition in 50% of patients (ED50) during rapid tracheal intubation after induction of anaesthesia with remifentanil and propofol. Twenty-eight patients were enrolled to obtain six crossovers. The ED50 of rocuronium was 0.20 mg kg (95% confidence interval, CI 0.17 to 0.23 mg kg) by a modified Dixon's up-and-down method. After induction of anaesthesia with remifentanil 2 μg kg and propofol 2 mg kg, the ED50 of rocuronium for acceptable intubation condition was 0.20 mg kg (95% CI, 0.17 to 0.23 mg kg) for rapid sequence intubation. Thus, we recommend that the intubation dose should be 0.8 mg kg. Clinical trial registration KCT0000094.

  18. An approach to assessing stochastic radiogenic risk in medical imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolbarst, Anthony B.; Hendee, William R.; Department of Radiology, Mayo Clinic, Rochester, Minnesota 55901

    2011-12-15

    Purpose: This letter suggests a formalism, the medical effective dose (MED), that is suitable for assessing stochastic radiogenic risks in diagnostic medical procedures. Methods: The MED is derived from radiobiological and probabilistic first principals, including: (1) The independence of radiation-induced biological effects in neighboring voxels at low doses; (2) the linear no-threshold assumption for stochastic radiation injury (although other dose-response relationships could be incorporated, instead); (3) the best human radiation dose-response data currently available; and (4) the built-in possibility that the carcinogenic risk to an irradiated organ may depend on its volume. The MED involves a dose-risk summation over irradiatedmore » voxels at high spatial resolution; it reduces to the traditional effective dose when every organ is irradiated uniformly and when the dependence of risk on organ volumes is ignored. Standard relative-risk tissue weighting factors can be used with the MED approach until more refined data become available. Results: The MED is intended for clinical and phantom dosimetry, and it provides an estimate of overall relative radiogenic stochastic risk for any given dose distribution. A result of the MED derivation is that the stochastic risk may increase with the volume of tissue (i.e., the number of cells) irradiated, a feature that can be activated when forthcoming radiobiological research warrants it. In this regard, the MED resembles neither the standard effective dose (E) nor the CT dose index (CTDI), but it is somewhat like the CT dose-length product (DLP). Conclusions: The MED is a novel, probabilistically and biologically based means of estimating stochastic-risk-weighted doses associated with medical imaging. Built in, ab initio, is the ability to link radiogenic risk to organ volume and other clinical factors. It is straightforward to implement when medical dose distributions are available, provided that one is content, for the time being, to accept the relative tissue weighting factors published by the International Commission of Radiological Protection (ICRP). It requires no new radiobiological data and avoids major problems encountered by the E, CTDI, and CT-E formalisms. It makes possible relative inter-patient dosimetry, and also realistic intercomparisons of stochastic risks from different protocols that yield images of comparable quality.« less

  19. Schedule for CT image guidance in treating prostate cancer with helical tomotherapy

    PubMed Central

    Beldjoudi, G; Yartsev, S; Bauman, G; Battista, J; Van Dyk, J

    2010-01-01

    The aim of this study was to determine the effect of reducing the number of image guidance sessions and patient-specific target margins on the dose distribution in the treatment of prostate cancer with helical tomotherapy. 20 patients with prostate cancer who were treated with helical tomotherapy using daily megavoltage CT (MVCT) imaging before treatment served as the study population. The average geometric shifts applied for set-up corrections, as a result of co-registration of MVCT and planning kilovoltage CT studies over an increasing number of image guidance sessions, were determined. Simulation of the consequences of various imaging scenarios on the dose distribution was performed for two patients with different patterns of interfraction changes in anatomy. Our analysis of the daily set-up correction shifts for 20 prostate cancer patients suggests that the use of four fractions would result in a population average shift that was within 1 mm of the average obtained from the data accumulated over all daily MVCT sessions. Simulation of a scenario in which imaging sessions are performed at a reduced frequency and the planning target volume margin is adapted provided significantly better sparing of organs at risk, with acceptable reproducibility of dose delivery to the clinical target volume. Our results indicate that four MVCT sessions on helical tomotherapy are sufficient to provide information for the creation of personalised target margins and the establishment of the new reference position that accounts for the systematic error. This simplified approach reduces overall treatment session time and decreases the imaging dose to the patient. PMID:19505966

  20. Role of step size and max dwell time in anatomy based inverse optimization for prostate implants

    PubMed Central

    Manikandan, Arjunan; Sarkar, Biplab; Rajendran, Vivek Thirupathur; King, Paul R.; Sresty, N.V. Madhusudhana; Holla, Ragavendra; Kotur, Sachin; Nadendla, Sujatha

    2013-01-01

    In high dose rate (HDR) brachytherapy, the source dwell times and dwell positions are vital parameters in achieving a desirable implant dose distribution. Inverse treatment planning requires an optimal choice of these parameters to achieve the desired target coverage with the lowest achievable dose to the organs at risk (OAR). This study was designed to evaluate the optimum source step size and maximum source dwell time for prostate brachytherapy implants using an Ir-192 source. In total, one hundred inverse treatment plans were generated for the four patients included in this study. Twenty-five treatment plans were created for each patient by varying the step size and maximum source dwell time during anatomy-based, inverse-planned optimization. Other relevant treatment planning parameters were kept constant, including the dose constraints and source dwell positions. Each plan was evaluated for target coverage, urethral and rectal dose sparing, treatment time, relative target dose homogeneity, and nonuniformity ratio. The plans with 0.5 cm step size were seen to have clinically acceptable tumor coverage, minimal normal structure doses, and minimum treatment time as compared with the other step sizes. The target coverage for this step size is 87% of the prescription dose, while the urethral and maximum rectal doses were 107.3 and 68.7%, respectively. No appreciable difference in plan quality was observed with variation in maximum source dwell time. The step size plays a significant role in plan optimization for prostate implants. Our study supports use of a 0.5 cm step size for prostate implants. PMID:24049323

  1. SU-E-T-190: First Integration of Steriotactic Radiotherapy Planning System Iplan with Elekta Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biplab, S; Soumya, R; Paul, S

    2014-06-01

    Purpose: For the first time in the world, BrainLAB has integrated its iPlan treatment planning system for clinical use with Elekta linear accelerator (Axesse with a Beam Modulator). The purpose of this study was to compare the calculated and measured doses with different chambers to establish the calculation accuracy of iPlan system. Methods: The iPlan has both Pencil beam (PB) and Monte Carlo (MC) calculation algorithms. Beam data include depth doses, profiles and output measurements for different field sizes. Collected data was verified by vendor and beam modelling was done. Further QA tests were carried out in our clinic. Dosemore » calculation accuracy verified point, volumetric dose measurement using ion chambers of different volumes (0.01cc and 0.125cc). Planner dose verification was done using diode array. Plans were generated in iPlan and irradiated in Elekta Axesse linear accelerator. Results: Dose calculation accuracies verified using ion chamber for 6 and 10 MV beam were 3.5+/-0.33(PB), 1.7%+/-0.7(MC) and 3.9%+/-0.6(PB), 3.4%+/-0.6(MC) respectively. Using a pin point chamber, dose calculation accuracy for 6MV and 10MV was 3.8%+/-0.06(PB), 1.21%+/-0.2(MC) and 4.2%+/-0.6(PB), 3.1%+/-0.7(MC) respectively. The calculated planar dose distribution for 10.4×10.4 cm2 was verified using a diode array and the gamma analysis for 2%-2mm criteria yielded pass rates of 88 %(PB) and 98.8%(MC) respectively. 3mm-3% yields 100% passing for both MC and PB algorithm. Conclusion: Dose calculation accuracy was found to be within acceptable limits for MC for 6MV beam. PB for both beams and MC for 10 MV beam were found to be outside acceptable limits. The output measurements were done twice for conformation. The lower gamma matching was attributed to meager number of measured profiles (only two profiles for PB) and coarse measurement resolution for diagonal profile measurement (5mm). Based on these measurements we concluded that 6 MV MC algorithm is suitable for patient treatment.« less

  2. Three-dimensional radiation dosimetry using polymer gel and solid radiochromic polymer: From basics to clinical applications

    PubMed Central

    Watanabe, Yoichi; Warmington, Leighton; Gopishankar, N

    2017-01-01

    Accurate dose measurement tools are needed to evaluate the radiation dose delivered to patients by using modern and sophisticated radiation therapy techniques. However, the adequate tools which enable us to directly measure the dose distributions in three-dimensional (3D) space are not commonly available. One such 3D dose measurement device is the polymer-based dosimeter, which changes the material property in response to radiation. These are available in the gel form as polymer gel dosimeter (PGD) and ferrous gel dosimeter (FGD) and in the solid form as solid plastic dosimeter (SPD). Those are made of a continuous uniform medium which polymerizes upon irradiation. Hence, the intrinsic spatial resolution of those dosimeters is very high, and it is only limited by the method by which one converts the dose information recorded by the medium to the absorbed dose. The current standard methods of the dose quantification are magnetic resonance imaging, optical computed tomography, and X-ray computed tomography. In particular, magnetic resonance imaging is well established as a method for obtaining clinically relevant dosimetric data by PGD and FGD. Despite the likely possibility of doing 3D dosimetry by PGD, FGD or SPD, the tools are still lacking wider usages for clinical applications. In this review article, we summarize the current status of PGD, FGD, and SPD and discuss the issue faced by these for wider acceptance in radiation oncology clinic and propose some directions for future development. PMID:28396725

  3. SU-E-T-405: Evaluation of the Raystation Electron Monte Carlo Algorithm for Varian Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sansourekidou, P; Allen, C

    2015-06-15

    Purpose: To evaluate the Raystation v4.51 Electron Monte Carlo algorithm for Varian Trilogy, IX and 2100 series linear accelerators and commission for clinical use. Methods: Seventy two water and forty air scans were acquired with a water tank in the form of profiles and depth doses, as requested by vendor. Data was imported into Rayphysics beam modeling module. Energy spectrum was modeled using seven parameters. Contamination photons were modeled using five parameters. Source phase space was modeled using six parameters. Calculations were performed in clinical version 4.51 and percent depth dose curves and profiles were extracted to be compared tomore » water tank measurements. Sensitivity tests were performed for all parameters. Grid size and particle histories were evaluated per energy for statistical uncertainty performance. Results: Model accuracy for air profiles is poor in the shoulder and penumbra region. However, model accuracy for water scans is acceptable. All energies and cones are within 2%/2mm for 90% of the points evaluated. Source phase space parameters have a cumulative effect. To achieve distributions with satisfactory smoothness level a 0.1cm grid and 3,000,000 particle histories were used for commissioning calculations. Calculation time was approximately 3 hours per energy. Conclusion: Raystation electron Monte Carlo is acceptable for clinical use for the Varian accelerators listed. Results are inferior to Elekta Electron Monte Carlo modeling. Known issues were reported to Raysearch and will be resolved in upcoming releases. Auto-modeling is limited to open cone depth dose curves and needs expansion.« less

  4. Mouse bioassay for palytoxin. Specific symptoms and dose-response against dose-death time relationships.

    PubMed

    Riobó, P; Paz, B; Franco, J M; Vázquez, J A; Murado, M A; Cacho, E

    2008-08-01

    Nowadays, a variety of protocols are applied to quantitate palytoxin. However, there is not desirable agreement among them, the confidence intervals of the basic toxicological parameters are too wide and the formal descriptions lack the necessary generality to establish comparisons. Currently, the mouse bioassay is the most accepted one to categorize marine toxins and it must constitute the reference for other methods. In the present work, the mouse bioassay for palytoxin is deeply analyzed and carefully described showing the initial symptoms of injected mice which are presented here in the first time. These symptoms clearly differ from the more common marine toxins described up to now. Regarding to the toxicological aspects two considerations are taking into account: (i) the empiric models based in the dose-death time relationships cause serious ambiguities and (ii) the traditional moving average method contains in its regular use any inaccuracy elements. Herein is demonstrated that the logistic equation and the accumulative function of Weibull's distribution (with the modifications proposed) generate satisfactory toxicological descriptions in all the respects.

  5. Acceptability of minimally processed and irradiated pineapple and watermelon among Brazilian consumers

    NASA Astrophysics Data System (ADS)

    Martins, Cecília Geraldes; Aragon-Alegro, Lina Casale; Behrens, Jorge Herman; Oliveira Souza, Kátia Leani; Martins Vizeu, Dirceu; Hutzler, Beatriz Weltman; Teresa Destro, Maria; Landgraf, Mariza

    2008-06-01

    This study aimed at evaluating the acceptance of MP watermelon and pineapple exposed to 1.0 and 2.5 kGy compared to non-irradiated samples. No significant differences were observed in liking between irradiated and non-irradiated samples, and also between doses of 1.0 and 2.5 kGy. Significant differences in sourness (pineapple) or sweetness (watermelon) and between intention of purchase of irradiated and non-irradiated fruits were not observed as well. Results showed that MP watermelon and pineapple could be irradiated with doses up to 2.5 kGy without significant changes in acceptability.

  6. SU-F-J-156: The Feasibility of MR-Only IMRT Planning for Prostate Anatomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaitheeswaran, R; Sivaramakrishnan, KR; Kumar, Prashant

    Purpose: For prostate anatomy, previous investigations have shown that simulated CT (sCT) generated from MR images can be used for accurate dose computation. In this study, we demonstrate the feasibility of MR-only IMRT planning for prostate case. Methods: Regular CT (rCT) and MR images of the same patient were acquired for prostate anatomy. Regions-of-interest (ROIs) i.e. target and risk structures are delineated on the rCT. A simulated CT (sCT) is generated from the MR image using the method described by Schadewaldt N et al. Their work establishes the clinical acceptability of dose calculation results on the sCT when compared tomore » rCT. rCT and sCT are rigidly registered to ensure proper alignment between the two images. rCT and sCT are overlaid on each other and slice-wise visual inspection confirms excellent agreement between the two images. ROIs on the rCT are copied over to sCT. Philips AutoPlanning solution is used for generating treatment plans. The same treatment technique protocol (plan parameters and clinical goals) is used to generate AutoPlan-rCT and AutoPlan-sCT respectively for rCT and and sCT. DVH comparison on ROIs and slice-wise evaluation of dose is performed between AutoPlan-rCT and AutoPlan-sCT. Delivery parameters i.e. beam and corresponding segments from the AutoPlan-sCT are copied over to rCT and dose is computed to get AutoPlan-sCT-on-rCT. Results: Plan evaluation is done based on Dose Volume Histogram (DVH) of ROIs and manual slice-wise inspection of dose distribution. Both AutoPlan-rCT and AutoPlan-sCT provide a clinically acceptable plan. Also, AutoPlan-sCT-on-rCT shows excellent agreement with AutoPlan-sCT. Conclusion: The study demonstrates that it is feasible to do IMRT planning on the simulated CT image obtained from MR image for prostate anatomy. The research is supported by Philips India Ltd.« less

  7. Advantages and limitations of navigation-based multicriteria optimization (MCO) for localized prostate cancer IMRT planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGarry, Conor K., E-mail: conor.mcgarry@belfasttrust.hscni.net; Bokrantz, Rasmus; RaySearch Laboratories, Stockholm

    2014-10-01

    Efficacy of inverse planning is becoming increasingly important for advanced radiotherapy techniques. This study’s aims were to validate multicriteria optimization (MCO) in RayStation (v2.4, RaySearch Laboratories, Sweden) against standard intensity-modulated radiation therapy (IMRT) optimization in Oncentra (v4.1, Nucletron BV, the Netherlands) and characterize dose differences due to conversion of navigated MCO plans into deliverable multileaf collimator apertures. Step-and-shoot IMRT plans were created for 10 patients with localized prostate cancer using both standard optimization and MCO. Acceptable standard IMRT plans with minimal average rectal dose were chosen for comparison with deliverable MCO plans. The trade-off was, for the MCO plans, managedmore » through a user interface that permits continuous navigation between fluence-based plans. Navigated MCO plans were made deliverable at incremental steps along a trajectory between maximal target homogeneity and maximal rectal sparing. Dosimetric differences between navigated and deliverable MCO plans were also quantified. MCO plans, chosen as acceptable under navigated and deliverable conditions resulted in similar rectal sparing compared with standard optimization (33.7 ± 1.8 Gy vs 35.5 ± 4.2 Gy, p = 0.117). The dose differences between navigated and deliverable MCO plans increased as higher priority was placed on rectal avoidance. If the best possible deliverable MCO was chosen, a significant reduction in rectal dose was observed in comparison with standard optimization (30.6 ± 1.4 Gy vs 35.5 ± 4.2 Gy, p = 0.047). Improvements were, however, to some extent, at the expense of less conformal dose distributions, which resulted in significantly higher doses to the bladder for 2 of the 3 tolerance levels. In conclusion, similar IMRT plans can be created for patients with prostate cancer using MCO compared with standard optimization. Limitations exist within MCO regarding conversion of navigated plans to deliverable apertures, particularly for plans that emphasize avoidance of critical structures. Minimizing these differences would result in better quality treatments for patients with prostate cancer who were treated with radiotherapy using MCO plans.« less

  8. Sensory evaluation by gamma radiation effect on protein allergen of laying hen eggs

    NASA Astrophysics Data System (ADS)

    Harder, M. N. C.; Arthur, V.; Perina, V. C. S.; Silva, L. C. A. S.; Bortoleto, G. G.

    2012-08-01

    Although considered the most complete food and nutritionally shown to be part of a healthy diet, the egg is the source of many eating disorders, especially for infants. Irradiation has been used in studies not only as a means of microbiological control, but also on its structural action in the substances molecules and has been used to reduce the allergenic effects. The aim of this study was to evaluate the sensory effects of Co60 gamma radiation on proteins, enabling the acceptability of allergy food for genetically intolerant people. Eggs commercial fresh and freeze-dried and subjected to gamma irradiation by Co60 source at doses 0 (control), 10 kGy; 20 kGy and 30 kGy and rates of doses of 19.4 kGy/h and 31.8 kGy/h. Acceptability test was used by the hedonic scale, since it is necessary to know the "affective status" of consumers for the product, implying a preference, i.e. the most preferred samples are the most accepted and vice versa. The samples were presented as the habit of consumption (cooked) to a group of 41 adults panelists of both gender, aged from 21 to 40 years, and served under complete block design balanced with respect to the order of presentation. The evaluated attributes was flavor, appearance and overall acceptability. In general, for boiled eggs and freeze-dried, it was observed that the control sample was the most acceptable, followed by the sample irradiated with 10 kGy in both dose rates. In addition, panelists presented in testimony that they found interesting changes due to irradiation; also said they would not buy the product because of the marked change in appearance and smell, which at one point he ended up in disgust and detract from sales of the product, but they would buy irradiated with 10 kGy in both dose rate and dose of 20 kGy at a dose rate of 19.4 kGy/h.

  9. Outbreak of mumps in a school setting, United Kingdom, 2013.

    PubMed

    Aasheim, Erlend T; Inns, Thomas; Trindall, Amy; Emmett, Lynsey; Brown, Kevin E; Williams, Chris J; Reacher, Mark

    2014-01-01

    Effective protection against mumps can be achieved through 2 doses of the measles-mumps-rubella (MMR) vaccine. However, outbreaks of mumps have recently been described among populations with high vaccination coverage, including 2 doses of MMR. Here we describe an outbreak at a school in the East of England, UK. The school was attended by 540 pupils aged 10-19 years and had 170 staff. In total, 28 cases of mumps (24 pupils and 4 staff) were identified during 10 January to 16 March 2013. Vaccination status was known in 25 of the cases, and among these 21 (84.0%) had a documented history of 2 doses of MMR while the remaining had a history of one dose (2/25 cases, 8.0%) or no doses (2/25, 8.0%) of MMR. An outbreak control team recommended that MMR vaccine should be offered to all pupils whose parents consented to it, regardless of previous vaccination status. Additional MMR vaccines were administered to 103 pupils, including 76 (73.8%) third doses of MMR. Offering an additional dose of MMR appeared to be acceptable to parents, and we found it feasible to administer the intervention in a timely manner with resources from the local Public Health Centre (Primary Care Trust). An additional dose of MMR to all individuals at risk can be considered as an acceptable control measure for mumps outbreaks in schools even if the vaccination coverage is high. However, further evidence on the effectiveness, acceptability, and safety of this intervention is needed.

  10. Dosimetric and radiobiological consequences of computed tomography-guided adaptive strategies for intensity modulated radiation therapy of the prostate.

    PubMed

    Battista, Jerry J; Johnson, Carol; Turnbull, David; Kempe, Jeff; Bzdusek, Karl; Van Dyk, Jacob; Bauman, Glenn

    2013-12-01

    To examine a range of scenarios for image-guided adaptive radiation therapy of prostate cancer, including different schedules for megavoltage CT imaging, patient repositioning, and dose replanning. We simulated multifraction dose distributions with deformable registration using 35 sets of megavoltage CT scans of 13 patients. We computed cumulative dose-volume histograms, from which tumor control probabilities and normal tissue complication probabilities (NTCPs) for rectum were calculated. Five-field intensity modulated radiation therapy (IMRT) with 18-MV x-rays was planned to achieve an isocentric dose of 76 Gy to the clinical target volume (CTV). The differences between D95, tumor control probability, V70Gy, and NTCP for rectum, for accumulated versus planned dose distributions, were compared for different target volume sizes, margins, and adaptive strategies. The CTV D95 for IMRT treatment plans, averaged over 13 patients, was 75.2 Gy. Using the largest CTV margins (10/7 mm), the D95 values accumulated over 35 fractions were within 2% of the planned value, regardless of the adaptive strategy used. For tighter margins (5 mm), the average D95 values dropped to approximately 73.0 Gy even with frequent repositioning, and daily replanning was necessary to correct this deficit. When personalized margins were applied to an adaptive CTV derived from the first 6 treatment fractions using the STAPLE (Simultaneous Truth and Performance Level Estimation) algorithm, target coverage could be maintained using a single replan 1 week into therapy. For all approaches, normal tissue parameters (rectum V(70Gy) and NTCP) remained within acceptable limits. The frequency of adaptive interventions depends on the size of the CTV combined with target margins used during IMRT optimization. The application of adaptive target margins (<5 mm) to an adaptive CTV determined 1 week into therapy minimizes the need for subsequent dose replanning. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. SU-E-T-551: PTV Is the Worst-Case of CTV in Photon Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, D; Liu, W; Park, P

    2014-06-01

    Purpose: To examine the supposition of the static dose cloud and adequacy of the planning target volume (PTV) dose distribution as the worst-case representation of clinical target volume (CTV) dose distribution for photon therapy in head and neck (H and N) plans. Methods: Five diverse H and N plans clinically delivered at our institution were selected. Isocenter for each plan was shifted positively and negatively in the three cardinal directions by a displacement equal to the PTV expansion on the CTV (3 mm) for a total of six shifted plans per original plan. The perturbed plan dose was recalculated inmore » Eclipse (AAA v11.0.30) using the same, fixed fluence map as the original plan. The dose distributions for all plans were exported from the treatment planning system to determine the worst-case CTV dose distributions for each nominal plan. Two worst-case distributions, cold and hot, were defined by selecting the minimum or maximum dose per voxel from all the perturbed plans. The resulting dose volume histograms (DVH) were examined to evaluate the worst-case CTV and nominal PTV dose distributions. Results: Inspection demonstrates that the CTV DVH in the nominal dose distribution is indeed bounded by the CTV DVHs in the worst-case dose distributions. Furthermore, comparison of the D95% for the worst-case (cold) CTV and nominal PTV distributions by Pearson's chi-square test shows excellent agreement for all plans. Conclusion: The assumption that the nominal dose distribution for PTV represents the worst-case dose distribution for CTV appears valid for the five plans under examination. Although the worst-case dose distributions are unphysical since the dose per voxel is chosen independently, the cold worst-case distribution serves as a lower bound for the worst-case possible CTV coverage. Minor discrepancies between the nominal PTV dose distribution and worst-case CTV dose distribution are expected since the dose cloud is not strictly static. This research was supported by the NCI through grant K25CA168984, by The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research, and by the Fraternal Order of Eagles Cancer Research Fund, the Career Development Award Program at Mayo Clinic.« less

  12. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, I; Algan, O; Ahmad, S

    Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for themore » stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management techniques such as beam-gating or breath-holding and has potential applications in adaptive radiation therapy.« less

  13. Stimulation of colonic motility by oral PEG electrolyte bowel preparation assessed by MRI: comparison of split vs single dose

    PubMed Central

    Marciani, L; Garsed, K C; Hoad, C L; Fields, A; Fordham, I; Pritchard, S E; Placidi, E; Murray, K; Chaddock, G; Costigan, C; Lam, C; Jalanka-Tuovinen, J; De Vos, W M; Gowland, P A; Spiller, R C

    2014-01-01

    Background Most methods of assessing colonic motility are poorly acceptable to patients. Magnetic resonance imaging (MRI) can monitor gastrointestinal motility and fluid distributions. We predicted that a dose of oral polyethylene glycol (PEG) and electrolyte solution would increase ileo-colonic inflow and stimulate colonic motility. We aimed to investigate the colonic response to distension by oral PEG electrolyte in healthy volunteers (HVs) and to evaluate the effect of single 2 L vs split (2 × 1 L) dosing. Methods Twelve HVs received a split dose (1 L the evening before and 1 L on the study day) and another 12 HVs a single dose (2 L on the main study day) of PEG electrolyte. They underwent MRI scans, completed symptom questionnaires, and provided stool samples. Outcomes included small bowel water content, ascending colon motility index, and regional colonic volumes. Key Results Small bowel water content increased fourfold from baseline after ingesting both split (p = 0.0010) and single dose (p = 0.0005). The total colonic volume increase from baseline was smaller for the split dose at 35 ± 8% than for the single dose at 102 ± 27%, p = 0.0332. The ascending colon motility index after treatment was twofold higher for the single dose group (p = 0.0103). Conclusions & Inferences Ingestion of 1 and 2 L PEG electrolyte solution caused a rapid increase in the small bowel and colonic volumes and a robust rise in colonic motility. The increase in both volumes and motility was dose dependent. Such a challenge, being well-tolerated, could be a useful way of assessing colonic motility in future studies. PMID:25060551

  14. Influence of source batch S{sub K} dispersion on dosimetry for prostate cancer treatment with permanent implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuñez-Cumplido, E., E-mail: ejnc-mccg@hotmail.com; Hernandez-Armas, J.; Perez-Calatayud, J.

    2015-08-15

    Purpose: In clinical practice, specific air kerma strength (S{sub K}) value is used in treatment planning system (TPS) permanent brachytherapy implant calculations with {sup 125}I and {sup 103}Pd sources; in fact, commercial TPS provide only one S{sub K} input value for all implanted sources and the certified shipment average is typically used. However, the value for S{sub K} is dispersed: this dispersion is not only due to the manufacturing process and variation between different source batches but also due to the classification of sources into different classes according to their S{sub K} values. The purpose of this work is tomore » examine the impact of S{sub K} dispersion on typical implant parameters that are used to evaluate the dose volume histogram (DVH) for both planning target volume (PTV) and organs at risk (OARs). Methods: The authors have developed a new algorithm to compute dose distributions with different S{sub K} values for each source. Three different prostate volumes (20, 30, and 40 cm{sup 3}) were considered and two typical commercial sources of different radionuclides were used. Using a conventional TPS, clinically accepted calculations were made for {sup 125}I sources; for the palladium, typical implants were simulated. To assess the many different possible S{sub K} values for each source belonging to a class, the authors assigned an S{sub K} value to each source in a randomized process 1000 times for each source and volume. All the dose distributions generated for each set of simulations were assessed through the DVH distributions comparing with dose distributions obtained using a uniform S{sub K} value for all the implanted sources. The authors analyzed several dose coverage (V{sub 100} and D{sub 90}) and overdosage parameters for prostate and PTV and also the limiting and overdosage parameters for OARs, urethra and rectum. Results: The parameters analyzed followed a Gaussian distribution for the entire set of computed dosimetries. PTV and prostate V{sub 100} and D{sub 90} variations ranged between 0.2% and 1.78% for both sources. Variations for the overdosage parameters V{sub 150} and V{sub 200} compared to dose coverage parameters were observed and, in general, variations were larger for parameters related to {sup 125}I sources than {sup 103}Pd sources. For OAR dosimetry, variations with respect to the reference D{sub 0.1cm{sup 3}} were observed for rectum values, ranging from 2% to 3%, compared with urethra values, which ranged from 1% to 2%. Conclusions: Dose coverage for prostate and PTV was practically unaffected by S{sub K} dispersion, as was the maximum dose deposited in the urethra due to the implant technique geometry. However, the authors observed larger variations for the PTV V{sub 150}, rectum V{sub 100}, and rectum D{sub 0.1cm{sup 3}} values. The variations in rectum parameters were caused by the specific location of sources with S{sub K} value that differed from the average in the vicinity. Finally, on comparing the two sources, variations were larger for {sup 125}I than for {sup 103}Pd. This is because for {sup 103}Pd, a greater number of sources were used to obtain a valid dose distribution than for {sup 125}I, resulting in a lower variation for each S{sub K} value for each source (because the variations become averaged out statistically speaking)« less

  15. Two years experience with quality assurance protocol for patient related Rapid Arc treatment plan verification using a two dimensional ionization chamber array

    PubMed Central

    2011-01-01

    Purpose To verify the dose distribution and number of monitor units (MU) for dynamic treatment techniques like volumetric modulated single arc radiation therapy - Rapid Arc - each patient treatment plan has to be verified prior to the first treatment. The purpose of this study was to develop a patient related treatment plan verification protocol using a two dimensional ionization chamber array (MatriXX, IBA, Schwarzenbruck, Germany). Method Measurements were done to determine the dependence between response of 2D ionization chamber array, beam direction, and field size. Also the reproducibility of the measurements was checked. For the patient related verifications the original patient Rapid Arc treatment plan was projected on CT dataset of the MatriXX and the dose distribution was calculated. After irradiation of the Rapid Arc verification plans measured and calculated 2D dose distributions were compared using the gamma evaluation method implemented in the measuring software OmniPro (version 1.5, IBA, Schwarzenbruck, Germany). Results The dependence between response of 2D ionization chamber array, field size and beam direction has shown a passing rate of 99% for field sizes between 7 cm × 7 cm and 24 cm × 24 cm for measurements of single arc. For smaller and larger field sizes than 7 cm × 7 cm and 24 cm × 24 cm the passing rate was less than 99%. The reproducibility was within a passing rate of 99% and 100%. The accuracy of the whole process including the uncertainty of the measuring system, treatment planning system, linear accelerator and isocentric laser system in the treatment room was acceptable for treatment plan verification using gamma criteria of 3% and 3 mm, 2D global gamma index. Conclusion It was possible to verify the 2D dose distribution and MU of Rapid Arc treatment plans using the MatriXX. The use of the MatriXX for Rapid Arc treatment plan verification in clinical routine is reasonable. The passing rate should be 99% than the verification protocol is able to detect clinically significant errors. PMID:21342509

  16. Evaluation of a mixed beam therapy for post-mastectomy breast cancer patients: bolus electron conformal therapy combined with intensity modulated photon radiotherapy and volumetric modulated photon arc therapy.

    PubMed

    Zhang, Rui; Heins, David; Sanders, Mary; Guo, Beibei; Hogstrom, Kenneth

    2018-05-10

    The purpose of this study was to assess the potential benefits and limitations of a mixed beam therapy, which combined bolus electron conformal therapy (BECT) with intensity modulated photon radiotherapy (IMRT) and volumetric modulated photon arc therapy (VMAT), for left-sided post-mastectomy breast cancer patients. Mixed beam treatment plans were produced for nine post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic with VMAT alone. The mixed beam plans consisted of 40 Gy to the chest wall area using BECT, 40 Gy to the supraclavicular area using parallel opposed IMRT, and 10 Gy to the total planning target volume (PTV) by optimizing VMAT on top of the BECT+IMRT dose distribution. The treatment plans were created in a commercial treatment planning system (TPS), and all plans were evaluated based on PTV coverage, dose homogeneity index (DHI), conformity index (CI), dose to organs at risk (OARs), normal tissue complication probability (NTCP), and secondary cancer complication probability (SCCP). The standard VMAT alone planning technique was used as the reference for comparison. Both techniques produced clinically acceptable PMRT plans but with a few significant differences: VMAT showed significantly better CI (0.70 vs. 0.53, p < 0.001) and DHI (0.12 vs. 0.20, p < 0.001) over mixed beam therapy. For normal tissues, mixed beam therapy showed better OAR sparing and significantly reduced NTCP for cardiac mortality (0.23% vs. 0.80%, p = 0.01) and SCCP for contralateral breast (1.7% vs. 3.1% based on linear model, and 1.2% vs. 1.9% based on linear-exponential model, p < 0.001 in both cases), but showed significantly higher mean (50.8 Gy vs. 49.3 Gy, p < 0.001) and maximum skin doses (59.7 Gy vs. 53.3 Gy, p < 0.001) compared with VMAT. Patients with more tissue (minimum distance between the distal PTV surface and lung approximately > 0.5 cm and volume of tissue between the distal PTV surface and heart or lung approximately > 250 cm 3 ) between distal PTV surface and lung may benefit the most from mixed beam therapy. This work has demonstrated that mixed beam therapy (BECT+IMRT : VMAT = 4 : 1) produces clinically acceptable plans having reduced OAR doses and risks of side effects compared with VMAT. Even though VMAT alone produces more homogenous and conformal dose distributions, mixed beam therapy remains as a viable option for treating post-mastectomy patients, possibly leading to reduced normal tissue complications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Adverse event reports following yellow fever vaccination, 2007-13.

    PubMed

    Lindsey, Nicole P; Rabe, Ingrid B; Miller, Elaine R; Fischer, Marc; Staples, J Erin

    2016-05-01

    Yellow fever (YF) vaccines have been available since the 1930s and are generally considered safe and effective. However, rare reports of serious adverse events (SAE) following vaccination have prompted the Advisory Committee for Immunization Practices to periodically expand the list of conditions considered contraindications and precautions to vaccination. We describe adverse events following YF vaccination reported to the U.S. Vaccine Adverse Event Reporting System (VAERS) from 2007 through 2013 and calculate age- and sex-specific reporting rates of all SAE, anaphylaxis, YF vaccine-associated neurologic disease (YEL-AND) and YF vaccine-associated viscerotropic disease (YEL-AVD). There were 938 adverse events following YF vaccination reported to VAERS from 2007 through 2013. Of these, 84 (9%) were classified as SAEs for a rate of 3.8 per 100 000 doses distributed. Reporting rates of SAEs increased with increasing age with a rate of 6.5 per 100 000 in persons aged 60-69 years and 10.3 for ≥70 years. The reporting rate for anaphylaxis was 1.3 per 100 000 doses distributed and was highest in persons ≤18 years (2.7 per 100 000). Reporting rates of YEL-AND and YEL-AVD were 0.8 and 0.3 per 100 000 doses distributed, respectively; both rates increased with increasing age. These findings reinforce the generally acceptable safety profile of YF vaccine, but highlight the importance of continued physician and traveller education regarding the risks and benefits of YF vaccination, particularly for older travellers. Published by Oxford University Press on behalf of the International Society of Travel Medicine, 2016. This work is written by US Government employees and is in the public domain in the United States.

  18. Method for calculation of light field characteristics in optical diagnosis problems and personalized laser treatment of biological tissues

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2013-05-01

    We have developed a simple method for solving the radiation transport equation, permitting us to rapidly calculate (with accuracy acceptable in practice) the diffuse reflection coeffi cient for a broad class of biological tissues in the spectral region of strong and weak absorption of light, and also the light flux distribution over the depth of the tissue. We show that it is feasible to use the proposed method for quantitative estimates of tissue parameters from its diffuse reflectance spectrum and also for selecting the irradiation dose which is optimal for a specifi c patient in laser therapy for various diseases.

  19. Comparison of anatomy-based, fluence-based and aperture-based treatment planning approaches for VMAT

    NASA Astrophysics Data System (ADS)

    Rao, Min; Cao, Daliang; Chen, Fan; Ye, Jinsong; Mehta, Vivek; Wong, Tony; Shepard, David

    2010-11-01

    Volumetric modulated arc therapy (VMAT) has the potential to reduce treatment times while producing comparable or improved dose distributions relative to fixed-field intensity-modulated radiation therapy. In order to take full advantage of the VMAT delivery technique, one must select a robust inverse planning tool. The purpose of this study was to evaluate the effectiveness and efficiency of VMAT planning techniques of three categories: anatomy-based, fluence-based and aperture-based inverse planning. We have compared these techniques in terms of the plan quality, planning efficiency and delivery efficiency. Fourteen patients were selected for this study including six head-and-neck (HN) cases, and two cases each of prostate, pancreas, lung and partial brain. For each case, three VMAT plans were created. The first VMAT plan was generated based on the anatomical geometry. In the Elekta ERGO++ treatment planning system (TPS), segments were generated based on the beam's eye view (BEV) of the target and the organs at risk. The segment shapes were then exported to Pinnacle3 TPS followed by segment weight optimization and final dose calculation. The second VMAT plan was generated by converting optimized fluence maps (calculated by the Pinnacle3 TPS) into deliverable arcs using an in-house arc sequencer. The third VMAT plan was generated using the Pinnacle3 SmartArc IMRT module which is an aperture-based optimization method. All VMAT plans were delivered using an Elekta Synergy linear accelerator and the plan comparisons were made in terms of plan quality and delivery efficiency. The results show that for cases of little or modest complexity such as prostate, pancreas, lung and brain, the anatomy-based approach provides similar target coverage and critical structure sparing, but less conformal dose distributions as compared to the other two approaches. For more complex HN cases, the anatomy-based approach is not able to provide clinically acceptable VMAT plans while highly conformal dose distributions were obtained using both aperture-based and fluence-based inverse planning techniques. The aperture-based approach provides improved dose conformity than the fluence-based technique in complex cases.

  20. Field-size dependence of doses of therapeutic carbon beams.

    PubMed

    Kusano, Yohsuke; Kanai, Tatsuaki; Yonai, Shunsuke; Komori, Masataka; Ikeda, Noritoshi; Tachikawa, Yuji; Ito, Atsushi; Uchida, Hirohisa

    2007-10-01

    To estimate the physical dose at the center of spread-out Bragg peaks (SOBP) for various conditions of the irradiation system, a semiempirical approach was applied. The dose at the center of the SOBP depends on the field size because of large-angle scattering particles in the water phantom. For a small field of 5 x 5 cm2, the dose was reduced to 99.2%, 97.5%, and 96.5% of the dose used for the open field in the case of 290, 350, and 400 MeV/n carbon beams, respectively. Based on the three-Gaussian form of the lateral dose distributions of the carbon pencil beam, which has previously been shown to be effective for describing scattered carbon beams, we reconstructed the dose distributions of the SOBP beam. The reconstructed lateral dose distribution reproduced the measured lateral dose distributions very well. The field-size dependencies calculated using the reconstructed lateral dose distribution of the therapeutic carbon beam agreed with the measured dose dependency very well. The reconstructed beam was also used for irregularly shaped fields. The resultant dose distribution agreed with the measured dose distribution. The reconstructed beams were found to be applicable to the treatment-planning system.

  1. Keeping an eye on the ring: COMS plaque loading optimization for improved dose conformity and homogeneity.

    PubMed

    Gagne, Nolan L; Cutright, Daniel R; Rivard, Mark J

    2012-09-01

    To improve tumor dose conformity and homogeneity for COMS plaque brachytherapy by investigating the dosimetric effects of varying component source ring radionuclides and source strengths. The MCNP5 Monte Carlo (MC) radiation transport code was used to simulate plaque heterogeneity-corrected dose distributions for individually-activated source rings of 14, 16 and 18 mm diameter COMS plaques, populated with (103)Pd, (125)I and (131)Cs sources. Ellipsoidal tumors were contoured for each plaque size and MATLAB programming was developed to generate tumor dose distributions for all possible ring weighting and radionuclide permutations for a given plaque size and source strength resolution, assuming a 75 Gy apical prescription dose. These dose distributions were analyzed for conformity and homogeneity and compared to reference dose distributions from uniformly-loaded (125)I plaques. The most conformal and homogeneous dose distributions were reproduced within a reference eye environment to assess organ-at-risk (OAR) doses in the Pinnacle(3) treatment planning system (TPS). The gamma-index analysis method was used to quantitatively compare MC and TPS-generated dose distributions. Concentrating > 97% of the total source strength in a single or pair of central (103)Pd seeds produced the most conformal dose distributions, with tumor basal doses a factor of 2-3 higher and OAR doses a factor of 2-3 lower than those of corresponding uniformly-loaded (125)I plaques. Concentrating 82-86% of the total source strength in peripherally-loaded (131)Cs seeds produced the most homogeneous dose distributions, with tumor basal doses 17-25% lower and OAR doses typically 20% higher than those of corresponding uniformly-loaded (125)I plaques. Gamma-index analysis found > 99% agreement between MC and TPS dose distributions. A method was developed to select intra-plaque ring radionuclide compositions and source strengths to deliver more conformal and homogeneous tumor dose distributions than uniformly-loaded (125)I plaques. This method may support coordinated investigations of an appropriate clinical target for eye plaque brachytherapy.

  2. Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, X. R.; Poenisch, F.; Lii, M.

    2013-04-15

    Purpose: To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). Methods: The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm{sup 2}/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateralmore » dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. Results: We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012 with acceptable agreement between TPS calculated and measured dose distributions. However, the current dose model still has limitations in predicting field size dependence of doses at some intermediate depths of proton beams with high energies. Conclusions: We have commissioned a DG fluence model for clinical use. It is demonstrated that the DG fluence model is significantly more accurate than the SG fluence model. However, some deficiencies in modeling the low-dose envelope in the current dose algorithm still exist. Further improvements to the current dose algorithm are needed. The method presented here should be useful for commissioning pencil beam dose algorithms in new versions of TPS in the future.« less

  3. Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system

    PubMed Central

    Zhu, X. R.; Poenisch, F.; Lii, M.; Sawakuchi, G. O.; Titt, U.; Bues, M.; Song, X.; Zhang, X.; Li, Y.; Ciangaru, G.; Li, H.; Taylor, M. B.; Suzuki, K.; Mohan, R.; Gillin, M. T.; Sahoo, N.

    2013-01-01

    Purpose: To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). Methods: The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm2/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateral dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. Results: We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012 with acceptable agreement between TPS calculated and measured dose distributions. However, the current dose model still has limitations in predicting field size dependence of doses at some intermediate depths of proton beams with high energies. Conclusions: We have commissioned a DG fluence model for clinical use. It is demonstrated that the DG fluence model is significantly more accurate than the SG fluence model. However, some deficiencies in modeling the low-dose envelope in the current dose algorithm still exist. Further improvements to the current dose algorithm are needed. The method presented here should be useful for commissioning pencil beam dose algorithms in new versions of TPS in the future. PMID:23556893

  4. Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system.

    PubMed

    Zhu, X R; Poenisch, F; Lii, M; Sawakuchi, G O; Titt, U; Bues, M; Song, X; Zhang, X; Li, Y; Ciangaru, G; Li, H; Taylor, M B; Suzuki, K; Mohan, R; Gillin, M T; Sahoo, N

    2013-04-01

    To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm(2)/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateral dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012 with acceptable agreement between TPS calculated and measured dose distributions. However, the current dose model still has limitations in predicting field size dependence of doses at some intermediate depths of proton beams with high energies. We have commissioned a DG fluence model for clinical use. It is demonstrated that the DG fluence model is significantly more accurate than the SG fluence model. However, some deficiencies in modeling the low-dose envelope in the current dose algorithm still exist. Further improvements to the current dose algorithm are needed. The method presented here should be useful for commissioning pencil beam dose algorithms in new versions of TPS in the future.

  5. A Web-based Tool to Aid the Identification of Chemicals Potentially Posing a Health Risk through Percutaneous Exposure.

    PubMed

    Gorman Ng, Melanie; Milon, Antoine; Vernez, David; Lavoué, Jérôme

    2016-04-01

    Occupational hygiene practitioners typically assess the risk posed by occupational exposure by comparing exposure measurements to regulatory occupational exposure limits (OELs). In most jurisdictions, OELs are only available for exposure by the inhalation pathway. Skin notations are used to indicate substances for which dermal exposure may lead to health effects. However, these notations are either present or absent and provide no indication of acceptable levels of exposure. Furthermore, the methodology and framework for assigning skin notation differ widely across jurisdictions resulting in inconsistencies in the substances that carry notations. The UPERCUT tool was developed in response to these limitations. It helps occupational health stakeholders to assess the hazard associated with dermal exposure to chemicals. UPERCUT integrates dermal quantitative structure-activity relationships (QSARs) and toxicological data to provide users with a skin hazard index called the dermal hazard ratio (DHR) for the substance and scenario of interest. The DHR is the ratio between the estimated 'received' dose and the 'acceptable' dose. The 'received' dose is estimated using physico-chemical data and information on the exposure scenario provided by the user (body parts exposure and exposure duration), and the 'acceptable' dose is estimated using inhalation OELs and toxicological data. The uncertainty surrounding the DHR is estimated with Monte Carlo simulation. Additional information on the selected substances includes intrinsic skin permeation potential of the substance and the existence of skin notations. UPERCUT is the only available tool that estimates the absorbed dose and compares this to an acceptable dose. In the absence of dermal OELs it provides a systematic and simple approach for screening dermal exposure scenarios for 1686 substances. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  6. A Review of Update Clinical Results of Carbon Ion Radiotherapy

    PubMed Central

    Tsujii, Hirohiko; Kamada, Tadashi

    2012-01-01

    Among various types of ion species, carbon ions are considered to have the most balanced, optimal properties in terms of possessing physically and biologically effective dose localization in the body. This is due to the fact that when compared with photon beams, carbon ion beams offer improved dose distribution, leading to the concentration of the sufficient dose within a target volume while minimizing the dose in the surrounding normal tissues. In addition, carbon ions, being heavier than protons, provide a higher biological effectiveness, which increases with depth, reaching the maximum at the end of the beam's range. This is practically an ideal property from the standpoint of cancer radiotherapy. Clinical studies have been carried out in the world to confirm the efficacy of carbon ions against a variety of tumors as well as to develop effective techniques for delivering an efficient dose to the tumor. Through clinical experiences of carbon ion radiotherapy at the National Institute of Radiological Sciences and Gesellschaft für Schwerionenforschung, a significant reduction in the overall treatment time with acceptable toxicities has been obtained in almost all types of tumors. This means that carbon ion radiotherapy has meanwhile achieved for itself a solid place in general practice. This review describes clinical results of carbon ion radiotherapy together with physical, biological and technological aspects of carbon ions. PMID:22798685

  7. SU-F-I-46: Optimizing Dose Reduction in Adult Head CT Protocols While Maintaining Image Quality in Postmortem Head Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnharski, I; Carranza, C; Quails, N

    Purpose: To optimize adult head CT protocol by reducing dose to an appropriate level while providing CT images of diagnostic quality. Methods: Five cadavers were scanned from the skull base to the vertex using a routine adult head CT protocol (120 kVp, 270 mA, 0.75 s rotation, 0.5 mm × 32 detectors, 70.8 mGy CTDIvol) followed by seven reduced-dose protocols with varying combinations of reduced tube current, reduced rotation time, and increased detectors with CTDIvol ranging from 38.2 to 65.6 mGy. Organ doses were directly measured with 21 OSL dosimeters placed on the surface and implanted in the head bymore » a neurosurgeon. Two neuroradiologists assessed grey-white matter differentiation, fluid space, ventricular size, midline shift, brain mass, edema, ischemia, and skull fractures on a three point scale: (1) Unacceptable, (2) Borderline Acceptable, and (3) Acceptable. Results: For the standard scan, doses to the skin, lens of the eye, salivary glands, thyroid, and brain were 37.55 mGy, 49.65 mGy, 40.67 mGy, 4.63 mGy, and 27.33 mGy, respectively. Two cadavers had cerebral edema due to changing dynamics of postmortem effects, causing the grey-white matter differentiation to appear less distinct. Two cadavers with preserved grey-white matter received acceptable scores for all image quality features for the protocol with a CTDIvol of 57.3 mGy, allowing organ dose savings ranging from 34% to 45%. One cadaver allowed for greater dose reduction for the protocol with a CTDIvol of 42 mGy. Conclusion: Efforts to optimize scan protocol should consider both dose and clinical image quality. This is made possible with postmortem subjects, whose brains are similar to patients, allowing for an investigation of ideal scan parameters. Radiologists at our institution accepted scan protocols acquired with lower scan parameters, with CTDIvol values closer to the American College of Radiology’s (ACR) Achievable Dose level of 57 mGy.« less

  8. Uncertainties in Assesment of the Vaginal Dose for Intracavitary Brachytherapy of Cervical Cancer using a Tandem-ring Applicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Daniel; Dimopoulos, Johannes; Georg, Petra

    2007-04-01

    Purpose: The vagina has not been widely recognized as organ at risk in brachytherapy for cervical cancer. No widely accepted dose parameters are available. This study analyzes the uncertainties in dose reporting for the vaginal wall using tandem-ring applicators. Methods and Materials: Organ wall contours were delineated on axial magnetic resonance (MR) slices to perform dose-volume histogram (DVH) analysis. Different DVH parameters were used in a feasibility study based on 40 magnetic resonance imaging (MRI)-based treatment plans of different cervical cancer patients. Dose to the most irradiated, 0.1 cm{sup 3}, 1 cm{sup 3}, 2 cm{sup 3}, and at defined pointsmore » on the ring surface and at 5-mm tissue depth were reported. Treatment-planning systems allow different methods of dose point definition. Film dosimetry was used to verify the maximum dose at the surface of the ring applicator in an experimental setup. Results: Dose reporting for the vagina is extremely sensitive to geometrical uncertainties with variations of 25% for 1 mm shifts. Accurate delineation of the vaginal wall is limited by the finite pixel size of MRI and available treatment-planning systems. No significant correlation was found between dose-point and dose-volume parameters. The DVH parameters were often related to noncontiguous volumes and were not able to detect very different situations of spatial dose distributions inside the vaginal wall. Deviations between measured and calculated doses were up to 21%. Conclusions: Reporting either point dose values or DVH parameters for the vaginal wall is based on high inaccuracies because of contouring and geometric positioning. Therefore, the use of prospective dose constraints for individual treatment plans is not to be recommended at present. However, for large patient groups treated within one protocol correlation with vaginal morbidity can be evaluated.« less

  9. Characterisation of mega-voltage electron pencil beam dose distributions: viability of a measurement-based approach.

    PubMed

    Barnes, M P; Ebert, M A

    2008-03-01

    The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.

  10. Evaluation of the radiobiological gamma index with motion interplay in tangential IMRT breast treatment

    PubMed Central

    Sumida, Iori; Yamaguchi, Hajime; Das, Indra J.; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yamada, Yuji; Tamari, Kiesuke; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko

    2016-01-01

    The purpose of this study was to evaluate the impact of the motion interplay effect in early-stage left-sided breast cancer intensity-modulated radiation therapy (IMRT), incorporating the radiobiological gamma index (RGI). The IMRT dosimetry for various breathing amplitudes and cycles was investigated in 10 patients. The predicted dose was calculated using the convolution of segmented measured doses. The physical gamma index (PGI) of the planning target volume (PTV) and the organs at risk (OAR) was calculated by comparing the original with the predicted dose distributions. The RGI was calculated from the PGI using the tumor control probability (TCP) and the normal tissue complication probability (NTCP). The predicted mean dose and the generalized equivalent uniform dose (gEUD) to the target with various breathing amplitudes were lower than the original dose (P < 0.01). The predicted mean dose and gEUD to the OARs with motion were higher than for the original dose to the OARs (P < 0.01). However, the predicted data did not differ significantly between the various breathing cycles for either the PTV or the OARs. The mean RGI gamma passing rate for the PTV was higher than that for the PGI (P < 0.01), and for OARs, the RGI values were higher than those for the PGI (P < 0.01). The gamma passing rates of the RGI for the target and the OARs other than the contralateral lung differed significantly from those of the PGI under organ motion. Provided an NTCP value <0.05 is considered acceptable, it may be possible, by taking breathing motion into consideration, to escalate the dose to achieve the PTV coverage without compromising the TCP. PMID:27534793

  11. Evaluation of effective dose for a patient under Ga-67 nuclear examination using TLD, water phantom and a simplified model

    PubMed Central

    Chu, Kuang Hua; Lin, Yu Ting; Hsu, Chia Chun; Chen, Chien Yi; Pan, Lung Kwang

    2012-01-01

    This study evaluated the effective dose of Ga-67 for a patient undergoing Ga-67 citrate nuclear examination by applying thermoluminescent dosimeter (TLD) technique and an indigenous water phantom. The Ga-67 radionuclide remaining in the body inevitably generated a measurable internal dose even though gamma camera scanning took only minutes to complete the clinical examination. For effective simulation of the cumulated effective dose for a patient undergoing examination, 150 TLDs were placed inside the water phantom for 6 days to monitor the gamma ray dose from the distributed Ga-67 citrate solution. The inserted TLDs represented internal organs, and the effective dose was calculated according to data in the ICRP-60 report. The water phantom was designed to model the body of a healthy human weighing 70 kg, and the water that was mixed with Ga-67 citrate solution was slowly replaced with fresh feed water to yield the required biological half life of the phantom. After continuously feeding in fresh water throughout the 6 days of TLD exposure, the TLDs were analyzed to determine the effective doses from the various biological half lives of the phantom. The derived effective dose of 185 MBq Ga-67 citrate solution for male/female (M/F) was 10.7/12.2, 10.7/12.0, 8.7/9.9 and 6.0/6.8 mSv, of biological half lives of 6.0, 4.5, 3.0 and 1.5 days, respectively. Although these experimental results correlated well with earlier empirical studies, they were lower than most calculated values. The cumulated uncertainty in the effective dose was 12.5–19.4%, which was acceptable in terms of both TLD counting statistic and reproducibility. PMID:22915780

  12. Improving target coverage and organ-at-risk sparing in intensity-modulated radiotherapy for cervical oesophageal cancer using a simple optimisation method.

    PubMed

    Lu, Jia-Yang; Cheung, Michael Lok-Man; Huang, Bao-Tian; Wu, Li-Li; Xie, Wen-Jia; Chen, Zhi-Jian; Li, De-Rui; Xie, Liang-Xi

    2015-01-01

    To assess the performance of a simple optimisation method for improving target coverage and organ-at-risk (OAR) sparing in intensity-modulated radiotherapy (IMRT) for cervical oesophageal cancer. For 20 selected patients, clinically acceptable original IMRT plans (Original plans) were created, and two optimisation methods were adopted to improve the plans: 1) a base dose function (BDF)-based method, in which the treatment plans were re-optimised based on the original plans, and 2) a dose-controlling structure (DCS)-based method, in which the original plans were re-optimised by assigning additional constraints for hot and cold spots. The Original, BDF-based and DCS-based plans were compared with regard to target dose homogeneity, conformity, OAR sparing, planning time and monitor units (MUs). Dosimetric verifications were performed and delivery times were recorded for the BDF-based and DCS-based plans. The BDF-based plans provided significantly superior dose homogeneity and conformity compared with both the DCS-based and Original plans. The BDF-based method further reduced the doses delivered to the OARs by approximately 1-3%. The re-optimisation time was reduced by approximately 28%, but the MUs and delivery time were slightly increased. All verification tests were passed and no significant differences were found. The BDF-based method for the optimisation of IMRT for cervical oesophageal cancer can achieve significantly better dose distributions with better planning efficiency at the expense of slightly more MUs.

  13. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation

    NASA Astrophysics Data System (ADS)

    Magro, G.; Molinelli, S.; Mairani, A.; Mirandola, A.; Panizza, D.; Russo, S.; Ferrari, A.; Valvo, F.; Fossati, P.; Ciocca, M.

    2015-09-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus® chamber. An EBT3® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.

  14. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation.

    PubMed

    Magro, G; Molinelli, S; Mairani, A; Mirandola, A; Panizza, D; Russo, S; Ferrari, A; Valvo, F; Fossati, P; Ciocca, M

    2015-09-07

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo(®) TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus(®) chamber. An EBT3(®) film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.

  15. Statistical control process to compare and rank treatment plans in radiation oncology: impact of heterogeneity correction on treatment planning in lung cancer.

    PubMed

    Chaikh, Abdulhamid; Balosso, Jacques

    2016-12-01

    This study proposes a statistical process to compare different treatment plans issued from different irradiation techniques or different treatment phases. This approach aims to provide arguments for discussion about the impact on clinical results of any condition able to significantly alter dosimetric or ballistic related data. The principles of the statistical investigation are presented in the framework of a clinical example based on 40 fields of radiotherapy for lung cancers. Two treatment plans were generated for each patient making a change of dose distribution due to variation of lung density correction. The data from 2D gamma index (γ) including the pixels having γ≤1 were used to determine the capability index (Cp) and the acceptability index (Cpk) of the process. To measure the strength of the relationship between the γ passing rates and the Cp and Cpk indices, the Spearman's rank non-parametric test was used to calculate P values. The comparison between reference and tested plans showed that 95% of pixels have γ≤1 with criteria (6%, 6 mm). The values of the Cp and Cpk indices were lower than one showing a significant dose difference. The data showed a strong correlation between γ passing rates and the indices with P>0.8. The statistical analysis using Cp and Cpk, show the significance of dose differences resulting from two plans in radiotherapy. These indices can be used for adaptive radiotherapy to measure the difference between initial plan and daily delivered plan. The significant changes of dose distribution could raise the question about the continuity to treat the patient with the initial plan or the need for adjustments.

  16. Revision of gonadal radiation dose to man from thallium-201

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosain, P.; Hosain, F.

    1981-06-01

    Thallium-201 as thallous chloride is now routinely used for myocardial imaging. We observed a biological translocation of T1-201 leading to a gradual increase in the concentration of radioactivity in the testes which facilitated testicular imaging. The initial distribution of intravenously injected tracer dose is greatly dependent on the distribution of cardiac output, but its metabolic fate is analogous to the potassium ion. We have extensively studied the kinetics of thallium in rats, and also carried out limited comparative studies in different species. An attempt was also made to compare the uptake values that could be obtained in dogs by quantitativemore » imaging and by autopsy. Separation of scrotum, epididymis and testes revealed that the increase in uptake occurred predominantly in the testes. The uptake increased with time for about 1 day, and after 2 days it declined with a biological half-life of approximately 2 days. The later phase of testicular clearance was similar to the rate of clearance from other organs. The testicular uptake of T1-201 was highest in rats: the initial value at 10 to 15 min was 0.48 +- 0.09% of the injected dose which increased to 1.77 +- 0.20% by 1 day. The initial uptake in mice was low (0.18 +- 0.06%) but it increased to about 4 folds by 1 day. Values in human, extrapolated from limited quantitative imaging, was similar to mice. These studies indicated the need for the revision of the gonadal radiation dose to man. Calculations show, contrary to the accepted value of about 0.5 rads/mCi, an approximate value of 1.5 rads/mCi is more realistic.« less

  17. Dosimetric and Clinical Analysis of Spatial Distribution of the Radiation Dose in Gamma Knife Radiosurgery for Vestibular Schwannoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massager, Nicolas, E-mail: nmassage@ulb.ac.be; Neurosurgery-Department, Hospital Erasme, Brussels; Lonneville, Sarah

    2011-11-15

    Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose-volume histograms: Paddick conformity index (PI), gradientmore » index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Amy T.Y., E-mail: changty@ha.org.hk; Hung, Albert W.M.; Cheung, Fion W.K.

    Purpose: Intensity modulated radiation therapy (IMRT) is widely used to achieve a highly conformal dose and improve treatment outcome. However, plan quality and planning time are institute and planner dependent, and no standardized tool exists to recognize an optimal plan. RapidPlan, a knowledge-based algorithm, can generate constraints to assist optimization and produce high-quality IMRT plans. This report evaluated the quality and efficiency of using RapidPlan in nasopharyngeal carcinoma (NPC) IMRT planning. Methods and Materials: RapidPlan was configured using 79 radical IMRT plans for NPC; 20 consecutive NPC patients indicated for radical radiation therapy between October 2014 and May 2015 weremore » then recruited to assess its performance. The ability of RapidPlan to produce acceptable plans was evaluated. For plans that could not achieve clinical acceptance, manual touch-up was performed. The IMRT plans produced without RapidPlan (manual plans) and with RapidPlan (RP-2 plans, including those with manual touch-up) were compared in terms of dosimetric quality and planning efficiency. Results: RapidPlan by itself could produce clinically acceptable plans for 9 of the 20 patients; manual touch-up increased the number of acceptable plans (RP-2 plans) to 19. The target dose coverage and conformity were very similar. No difference was found in the maximum dose to the brainstem and optic chiasm. RP-2 plans delivered a higher maximum dose to the spinal cord (46.4 Gy vs 43.9 Gy, P=.002) but a lower dose to the parotid (mean dose to right parotid, 37.3 Gy vs 45.4 Gy; left, 34.4 Gy vs 43.1 Gy; P<.001) and the right cochlea (mean dose, 48.6 Gy vs 52.6 Gy; P=.02). The total planning time for RP-2 plans was significantly less than that for manual plans (64 minutes vs 295 minutes, P<.001). Conclusions: This study shows that RapidPlan can significantly improve planning efficiency and produce quality IMRT plans for NPC patients.« less

  19. An automatic dose verification system for adaptive radiotherapy for helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Mo, Xiaohu; Chen, Mingli; Parnell, Donald; Olivera, Gustavo; Galmarini, Daniel; Lu, Weiguo

    2014-03-01

    Purpose: During a typical 5-7 week treatment of external beam radiotherapy, there are potential differences between planned patient's anatomy and positioning, such as patient weight loss, or treatment setup. The discrepancies between planned and delivered doses resulting from these differences could be significant, especially in IMRT where dose distributions tightly conforms to target volumes while avoiding organs-at-risk. We developed an automatic system to monitor delivered dose using daily imaging. Methods: For each treatment, a merged image is generated by registering the daily pre-treatment setup image and planning CT using treatment position information extracted from the Tomotherapy archive. The treatment dose is then computed on this merged image using our in-house convolution-superposition based dose calculator implemented on GPU. The deformation field between merged and planning CT is computed using the Morphon algorithm. The planning structures and treatment doses are subsequently warped for analysis and dose accumulation. All results are saved in DICOM format with private tags and organized in a database. Due to the overwhelming amount of information generated, a customizable tolerance system is used to flag potential treatment errors or significant anatomical changes. A web-based system and a DICOM-RT viewer were developed for reporting and reviewing the results. Results: More than 30 patients were analysed retrospectively. Our in-house dose calculator passed 97% gamma test evaluated with 2% dose difference and 2mm distance-to-agreement compared with Tomotherapy calculated dose, which is considered sufficient for adaptive radiotherapy purposes. Evaluation of the deformable registration through visual inspection showed acceptable and consistent results, except for cases with large or unrealistic deformation. Our automatic flagging system was able to catch significant patient setup errors or anatomical changes. Conclusions: We developed an automatic dose verification system that quantifies treatment doses, and provides necessary information for adaptive planning without impeding clinical workflows.

  20. Nonclinical dose formulation analysis method validation and sample analysis.

    PubMed

    Whitmire, Monica Lee; Bryan, Peter; Henry, Teresa R; Holbrook, John; Lehmann, Paul; Mollitor, Thomas; Ohorodnik, Susan; Reed, David; Wietgrefe, Holly D

    2010-12-01

    Nonclinical dose formulation analysis methods are used to confirm test article concentration and homogeneity in formulations and determine formulation stability in support of regulated nonclinical studies. There is currently no regulatory guidance for nonclinical dose formulation analysis method validation or sample analysis. Regulatory guidance for the validation of analytical procedures has been developed for drug product/formulation testing; however, verification of the formulation concentrations falls under the framework of GLP regulations (not GMP). The only current related regulatory guidance is the bioanalytical guidance for method validation. The fundamental parameters for bioanalysis and formulation analysis validations that overlap include: recovery, accuracy, precision, specificity, selectivity, carryover, sensitivity, and stability. Divergence in bioanalytical and drug product validations typically center around the acceptance criteria used. As the dose formulation samples are not true "unknowns", the concept of quality control samples that cover the entire range of the standard curve serving as the indication for the confidence in the data generated from the "unknown" study samples may not always be necessary. Also, the standard bioanalytical acceptance criteria may not be directly applicable, especially when the determined concentration does not match the target concentration. This paper attempts to reconcile the different practices being performed in the community and to provide recommendations of best practices and proposed acceptance criteria for nonclinical dose formulation method validation and sample analysis.

  1. QMRA for Drinking Water: 2. The Effect of Pathogen Clustering in Single-Hit Dose-Response Models.

    PubMed

    Nilsen, Vegard; Wyller, John

    2016-01-01

    Spatial and/or temporal clustering of pathogens will invalidate the commonly used assumption of Poisson-distributed pathogen counts (doses) in quantitative microbial risk assessment. In this work, the theoretically predicted effect of spatial clustering in conventional "single-hit" dose-response models is investigated by employing the stuttering Poisson distribution, a very general family of count distributions that naturally models pathogen clustering and contains the Poisson and negative binomial distributions as special cases. The analysis is facilitated by formulating the dose-response models in terms of probability generating functions. It is shown formally that the theoretical single-hit risk obtained with a stuttering Poisson distribution is lower than that obtained with a Poisson distribution, assuming identical mean doses. A similar result holds for mixed Poisson distributions. Numerical examples indicate that the theoretical single-hit risk is fairly insensitive to moderate clustering, though the effect tends to be more pronounced for low mean doses. Furthermore, using Jensen's inequality, an upper bound on risk is derived that tends to better approximate the exact theoretical single-hit risk for highly overdispersed dose distributions. The bound holds with any dose distribution (characterized by its mean and zero inflation index) and any conditional dose-response model that is concave in the dose variable. Its application is exemplified with published data from Norovirus feeding trials, for which some of the administered doses were prepared from an inoculum of aggregated viruses. The potential implications of clustering for dose-response assessment as well as practical risk characterization are discussed. © 2016 Society for Risk Analysis.

  2. Quantifying the effect of air gap, depth, and range shifter thickness on TPS dosimetric accuracy in superficial PBS proton therapy.

    PubMed

    Shirey, Robert J; Wu, Hsinshun Terry

    2018-01-01

    This study quantifies the dosimetric accuracy of a commercial treatment planning system as functions of treatment depth, air gap, and range shifter thickness for superficial pencil beam scanning proton therapy treatments. The RayStation 6 pencil beam and Monte Carlo dose engines were each used to calculate the dose distributions for a single treatment plan with varying range shifter air gaps. Central axis dose values extracted from each of the calculated plans were compared to dose values measured with a calibrated PTW Markus chamber at various depths in RW3 solid water. Dose was measured at 12 depths, ranging from the surface to 5 cm, for each of the 18 different air gaps, which ranged from 0.5 to 28 cm. TPS dosimetric accuracy, defined as the ratio of calculated dose relative to the measured dose, was plotted as functions of depth and air gap for the pencil beam and Monte Carlo dose algorithms. The accuracy of the TPS pencil beam dose algorithm was found to be clinically unacceptable at depths shallower than 3 cm with air gaps wider than 10 cm, and increased range shifter thickness only added to the dosimetric inaccuracy of the pencil beam algorithm. Each configuration calculated with Monte Carlo was determined to be clinically acceptable. Further comparisons of the Monte Carlo dose algorithm to the measured spread-out Bragg Peaks of multiple fields used during machine commissioning verified the dosimetric accuracy of Monte Carlo in a variety of beam energies and field sizes. Discrepancies between measured and TPS calculated dose values can mainly be attributed to the ability (or lack thereof) of the TPS pencil beam dose algorithm to properly model secondary proton scatter generated in the range shifter. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  3. A Generalized QMRA Beta-Poisson Dose-Response Model.

    PubMed

    Xie, Gang; Roiko, Anne; Stratton, Helen; Lemckert, Charles; Dunn, Peter K; Mengersen, Kerrie

    2016-10-01

    Quantitative microbial risk assessment (QMRA) is widely accepted for characterizing the microbial risks associated with food, water, and wastewater. Single-hit dose-response models are the most commonly used dose-response models in QMRA. Denoting PI(d) as the probability of infection at a given mean dose d, a three-parameter generalized QMRA beta-Poisson dose-response model, PI(d|α,β,r*), is proposed in which the minimum number of organisms required for causing infection, K min , is not fixed, but a random variable following a geometric distribution with parameter 0

  4. Experimental verification of the Acuros XB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharygeal carcinoma.

    PubMed

    Kan, Monica W K; Leung, Lucullus H T; So, Ronald W K; Yu, Peter K N

    2013-03-01

    To compare the doses calculated by the Acuros XB (AXB) algorithm and analytical anisotropic algorithm (AAA) with experimentally measured data adjacent to and within heterogeneous medium using intensity modulated radiation therapy (IMRT) and RapidArc(®) (RA) volumetric arc therapy plans for nasopharygeal carcinoma (NPC). Two-dimensional dose distribution immediately adjacent to both air and bone inserts of a rectangular tissue equivalent phantom irradiated using IMRT and RA plans for NPC cases were measured with GafChromic(®) EBT3 films. Doses near and within the nasopharygeal (NP) region of an anthropomorphic phantom containing heterogeneous medium were also measured with thermoluminescent dosimeters (TLD) and EBT3 films. The measured data were then compared with the data calculated by AAA and AXB. For AXB, dose calculations were performed using both dose-to-medium (AXB_Dm) and dose-to-water (AXB_Dw) options. Furthermore, target dose differences between AAA and AXB were analyzed for the corresponding real patients. The comparison of real patient plans was performed by stratifying the targets into components of different densities, including tissue, bone, and air. For the verification of planar dose distribution adjacent to air and bone using the rectangular phantom, the percentages of pixels that passed the gamma analysis with the ± 3%/3mm criteria were 98.7%, 99.5%, and 97.7% on the axial plane for AAA, AXB_Dm, and AXB_Dw, respectively, averaged over all IMRT and RA plans, while they were 97.6%, 98.2%, and 97.7%, respectively, on the coronal plane. For the verification of planar dose distribution within the NP region of the anthropomorphic phantom, the percentages of pixels that passed the gamma analysis with the ± 3%/3mm criteria were 95.1%, 91.3%, and 99.0% for AAA, AXB_Dm, and AXB_Dw, respectively, averaged over all IMRT and RA plans. Within the NP region where air and bone were present, the film measurements represented the dose close to unit density water in a heterogeneous medium, produced the best agreement with the AXB_Dw. For the verification of point doses within the target using TLD in the anthropomorphic phantom, the absolute percentage deviations between the calculated and measured data when averaged over all IMRT and RA plans were 1.8%, 1.7%, and 1.8% for AAA, AXB_Dm and AXB_Dw, respectively. From all the verification results, no significant difference was found between the IMRT and RA plans. The target dose analysis of the real patient plans showed that the discrepancies in mean doses to the PTV component in tissue among the three dose calculation options were within 2%, but up to about 4% in the bone content, with AXB_Dm giving the lowest values and AXB_Dw giving the highest values. In general, the verification measurements demonstrated that both algorithms produced acceptable accuracy when compared to the measured data. GafChromic(®) film results indicated that AXB produced slightly better accuracy compared to AAA for dose calculation adjacent to and within the heterogeneous media. Users should be aware of the differences in calculated target doses between options AXB_Dm and AXB_Dw, especially in bone, for IMRT and RA in NPC cases.

  5. Equalizing access to pandemic influenza vaccines through optimal allocation to public health distribution points.

    PubMed

    Huang, Hsin-Chan; Singh, Bismark; Morton, David P; Johnson, Gregory P; Clements, Bruce; Meyers, Lauren Ancel

    2017-01-01

    Vaccines are arguably the most important means of pandemic influenza mitigation. However, as during the 2009 H1N1 pandemic, mass immunization with an effective vaccine may not begin until a pandemic is well underway. In the U.S., state-level public health agencies are responsible for quickly and fairly allocating vaccines as they become available to populations prioritized to receive vaccines. Allocation decisions can be ethically and logistically complex, given several vaccine types in limited and uncertain supply and given competing priority groups with distinct risk profiles and vaccine acceptabilities. We introduce a model for optimizing statewide allocation of multiple vaccine types to multiple priority groups, maximizing equal access. We assume a large fraction of available vaccines are distributed to healthcare providers based on their requests, and then optimize county-level allocation of the remaining doses to achieve equity. We have applied the model to the state of Texas, and incorporated it in a Web-based decision-support tool for the Texas Department of State Health Services (DSHS). Based on vaccine quantities delivered to registered healthcare providers in response to their requests during the 2009 H1N1 pandemic, we find that a relatively small cache of discretionary doses (DSHS reserved 6.8% in 2009) suffices to achieve equity across all counties in Texas.

  6. Analysis of lomustine drug content in FDA-approved and compounded lomustine capsules.

    PubMed

    KuKanich, Butch; Warner, Matt; Hahn, Kevin

    2017-02-01

    OBJECTIVE To determine the lomustine content (potency) in compounded and FDA-approved lomustine capsules. DESIGN Evaluation study. SAMPLE 2 formulations of lomustine capsules (low dose [7 to 11 mg] and high dose [40 to 48 mg]; 5 capsules/dose/source) from 3 compounders and from 1 manufacturer of FDA-approved capsules. PROCEDURES Lomustine content was measured by use of a validated high-pressure liquid chromatography method. An a priori acceptable range of 90% to 110% of the stated lomustine content was selected on the basis of US Pharmacopeia guidelines. RESULTS The measured amount of lomustine in all compounded capsules was less than the stated content (range, 59% to 95%) and was frequently outside the acceptable range (failure rate, 2/5 to 5/5). Coefficients of variation for lomustine content ranged from 4.1% to 16.7% for compounded low-dose capsules and from 1.1% to 10.8% for compounded high-dose capsules. The measured amount of lomustine in all FDA-approved capsules was slightly above the stated content (range, 104% to 110%) and consistently within the acceptable range. Coefficients of variation for lomustine content were 0.5% for low-dose and 2.3% for high-dose FDA-approved capsules. CONCLUSIONS AND CLINICAL RELEVANCE Compounded lomustine frequently did not contain the stated content of active drug and had a wider range of lomustine content variability than did the FDA-approved product. The sample size was small, and larger studies are needed to confirm these findings; however, we recommend that compounded veterinary formulations of lomustine not be used when appropriate doses can be achieved with FDA-approved capsules or combinations of FDA-approved capsules.

  7. Accounting for patient size in the optimization of dose and image quality of pelvis cone beam CT protocols on the Varian OBI system.

    PubMed

    Wood, Tim J; Moore, Craig S; Horsfield, Carl J; Saunderson, John R; Beavis, Andrew W

    2015-01-01

    The purpose of this study was to develop size-based radiotherapy kilovoltage cone beam CT (CBCT) protocols for the pelvis. Image noise was measured in an elliptical phantom of varying size for a range of exposure factors. Based on a previously defined "small pelvis" reference patient and CBCT protocol, appropriate exposure factors for small, medium, large and extra-large patients were derived which approximate the image noise behaviour observed on a Philips CT scanner (Philips Medical Systems, Best, Netherlands) with automatic exposure control (AEC). Selection criteria, based on maximum tube current-time product per rotation selected during the radiotherapy treatment planning scan, were derived based on an audit of patient size. It has been demonstrated that 110 kVp yields acceptable image noise for reduced patient dose in pelvic CBCT scans of small, medium and large patients, when compared with manufacturer's default settings (125 kVp). Conversely, extra-large patients require increased exposure factors to give acceptable images. 57% of patients in the local population now receive much lower radiation doses, whereas 13% require higher doses (but now yield acceptable images). The implementation of size-based exposure protocols has significantly reduced radiation dose to the majority of patients with no negative impact on image quality. Increased doses are required on the largest patients to give adequate image quality. The development of size-based CBCT protocols that use the planning CT scan (with AEC) to determine which protocol is appropriate ensures adequate image quality whilst minimizing patient radiation dose.

  8. Fast and accurate Monte Carlo modeling of a kilovoltage X-ray therapy unit using a photon-source approximation for treatment planning in complex media.

    PubMed

    Zeinali-Rafsanjani, B; Mosleh-Shirazi, M A; Faghihi, R; Karbasi, S; Mosalaei, A

    2015-01-01

    To accurately recompute dose distributions in chest-wall radiotherapy with 120 kVp kilovoltage X-rays, an MCNP4C Monte Carlo model is presented using a fast method that obviates the need to fully model the tube components. To validate the model, half-value layer (HVL), percentage depth doses (PDDs) and beam profiles were measured. Dose measurements were performed for a more complex situation using thermoluminescence dosimeters (TLDs) placed within a Rando phantom. The measured and computed first and second HVLs were 3.8, 10.3 mm Al and 3.8, 10.6 mm Al, respectively. The differences between measured and calculated PDDs and beam profiles in water were within 2 mm/2% for all data points. In the Rando phantom, differences for majority of data points were within 2%. The proposed model offered an approximately 9500-fold reduced run time compared to the conventional full simulation. The acceptable agreement, based on international criteria, between the simulations and the measurements validates the accuracy of the model for its use in treatment planning and radiobiological modeling studies of superficial therapies including chest-wall irradiation using kilovoltage beam.

  9. Cost-benefit of a clinical services integrated with a decentralized unit dose system.

    PubMed

    Warrian, K; Irvine-Meek, J

    1988-06-01

    Clinical pharmacy services are believed to be beneficial to patient care and to have the potential to reduce drug costs. This study was designed to apply cost-benefit analysis techniques to selected clinical pharmacy services provided by staff pharmacists assigned to a mobile decentralized unit-dose drug distribution system. Pharmacists' interventions were identified and recorded by the pharmacists and the investigator over an eight-week period. Interventions, to which a monetary value could be assigned, included non-formulary drug use, drug regimen adjustments, and the duration of drug therapy. A total of 543 interventions were recorded or observed. Of these, 174 (32 percent) fit the criteria for inclusion in the study. Those interventions accepted by physicians (87 percent) were assigned a dollar value and tabulated. Costs to provide the service were the pharmacists' salaries. Benefit to cost ratios of 1.08 and 1.59 demonstrated that the benefits accrued from selected clinical pharmacy services exceeded the costs to the hospital.

  10. Modeling of beam customization devices in the pencil-beam splitting algorithm for heavy charged particle radiotherapy.

    PubMed

    Kanematsu, Nobuyuki

    2011-03-07

    A broad-beam-delivery system for radiotherapy with protons or ions often employs multiple collimators and a range-compensating filter, which offer complex and potentially useful beam customization. It is however difficult for conventional pencil-beam algorithms to deal with fine structures of these devices due to beam-size growth during transport. This study aims to avoid the difficulty with a novel computational model. The pencil beams are initially defined at the range-compensating filter with angular-acceptance correction for upstream collimation followed by stopping and scattering. They are individually transported with possible splitting near the aperture edge of a downstream collimator to form a sharp field edge. The dose distribution for a carbon-ion beam was calculated and compared with existing experimental data. The penumbra sizes of various collimator edges agreed between them to a submillimeter level. This beam-customization model will be used in the greater framework of the pencil-beam splitting algorithm for accurate and efficient patient dose calculation.

  11. A Distributive Model of Treatment Acceptability

    ERIC Educational Resources Information Center

    Carter, Stacy L.

    2008-01-01

    A model of treatment acceptability is proposed that distributes overall treatment acceptability into three separate categories of influence. The categories are comprised of societal influences, consultant influences, and influences associated with consumers of treatments. Each of these categories are defined and their inter-relationships within…

  12. Social mobilisation, consent and acceptability: a review of human papillomavirus vaccination procedures in low and middle-income countries.

    PubMed

    Kabakama, Severin; Gallagher, Katherine E; Howard, Natasha; Mounier-Jack, Sandra; Burchett, Helen E D; Griffiths, Ulla K; Feletto, Marta; LaMontagne, D Scott; Watson-Jones, Deborah

    2016-08-19

    Social mobilisation during new vaccine introductions encourages acceptance, uptake and adherence to multi-dose schedules. Effective communication is considered especially important for human papillomavirus (HPV) vaccine, which targets girls of an often-novel age group. This study synthesised experiences and lessons learnt around social mobilisation, consent, and acceptability during 55 HPV vaccine demonstration projects and 8 national programmes in 37 low and middle-income countries (LMICs) between January 2007 and January 2015. A qualitative study design included: (i) a systematic review, in which 1,301 abstracts from five databases were screened and 41 publications included; (ii) soliciting 124 unpublished documents from governments and partner institutions; and (iii) conducting 27 key informant interviews. Data were extracted and analysed thematically. Additionally, first-dose coverage rates were categorised as above 90 %, 90-70 %, and below 70 %, and cross-tabulated with mobilisation timing, message content, materials and methods of delivery, and consent procedures. All but one delivery experience achieved over 70 % first-dose coverage; 60 % achieved over 90 %. Key informants emphasized the benefits of starting social mobilisation early and actively addressing rumours as they emerged. Interactive communication with parents appeared to achieve higher first-dose coverage than non-interactive messaging. Written parental consent (i.e., opt-in), though frequently used, resulted in lower reported coverage than implied consent (i.e., opt-out). Protection against cervical cancer was the primary reason for vaccine acceptability, whereas fear of adverse effects, exposure to rumours, lack of project/programme awareness, and schoolgirl absenteeism were major reasons for non-vaccination. Despite some challenges in obtaining parental consent and addressing rumours, experiences indicated effective social mobilisation and high HPV vaccine acceptability in LMICs. Social mobilisation, consent, and acceptability lessons were consistent across world regions and HPV vaccination projects/programmes. These can be used to guide HPV vaccination communication strategies without additional formative research.

  13. Dose-response studies and 'no-effect-levels' of N-nitroso compounds: some general aspects.

    PubMed

    Preussmann, R

    1980-01-01

    One major problem in the evaluation of potential carcinogenic food additives and contaminants is that of thresholds or, better, of 'no-adverse-effect-levels'. Arguments in favor of the postulated 'irreversibility' of carcinogenic effects are based on dose-response studies, single dose and multigeneration experiments as well as on the concept of somatic mutation as the first step in carcinogenesis with subsequent transmittance of induced defects during cell replication. The problem of extrapolation of results of animal experiments using high doses to low exposure and low incidences in man is not yet solved satisfactorily. Possible practical consequences include zero tolerance, acceptable thresholds at low risk and safety factors. Acceptable intakes should never be considered constants but should be changeable as soon as new facts in regard to the safety evaluation are available.

  14. Multicentre knowledge sharing and planning/dose audit on flattening filter free beams for SBRT lung

    NASA Astrophysics Data System (ADS)

    Hansen, C. R.; Sykes, J. R.; Barber, J.; West, K.; Bromley, R.; Szymura, K.; Fisher, S.; Sim, J.; Bailey, M.; Chrystal, D.; Deshpande, S.; Franji, I.; Nielsen, T. B.; Brink, C.; Thwaites, D. I.

    2015-01-01

    When implementing new technology into clinical practice, there will always be a need for large knowledge gain. The aim of this study was twofold, (I) audit the treatment planning and dose delivery of Flattening Filter Free (FFF) beam technology for Stereotactic Body Radiation Therapy (SBRT) of lung tumours across a range of treatment planning systems compared to the conventional Flatting Filter (FF) beams, (II) investigate how sharing knowledge between centres of different experience can improve plan quality. All vendor/treatment planning system (TPS) combinations investigated were able to produce acceptable treatment plans and the dose accuracy was clinically acceptable for all plans. By sharing knowledge between the different centres, the minor protocol violations (MPV) could be significantly reduced, from an average of 1.9 MPV per plan to 0.6 after such sharing of treatment planning knowledge. In particular, for the centres with less SBRT and/or volumetric- modulated arc therapy (VMAT) experience the MPV average per plan improved. All vendor/TPS combinations were also able to successfully deliver the FF and FFF SBRT VMAT plans. The plan quality and dose accuracy were found to be clinically acceptable.

  15. Generation of uniformly distributed dose points for anatomy-based three-dimensional dose optimization methods in brachytherapy.

    PubMed

    Lahanas, M; Baltas, D; Giannouli, S; Milickovic, N; Zamboglou, N

    2000-05-01

    We have studied the accuracy of statistical parameters of dose distributions in brachytherapy using actual clinical implants. These include the mean, minimum and maximum dose values and the variance of the dose distribution inside the PTV (planning target volume), and on the surface of the PTV. These properties have been studied as a function of the number of uniformly distributed sampling points. These parameters, or the variants of these parameters, are used directly or indirectly in optimization procedures or for a description of the dose distribution. The accurate determination of these parameters depends on the sampling point distribution from which they have been obtained. Some optimization methods ignore catheters and critical structures surrounded by the PTV or alternatively consider as surface dose points only those on the contour lines of the PTV. D(min) and D(max) are extreme dose values which are either on the PTV surface or within the PTV. They must be avoided for specification and optimization purposes in brachytherapy. Using D(mean) and the variance of D which we have shown to be stable parameters, achieves a more reliable description of the dose distribution on the PTV surface and within the PTV volume than does D(min) and D(max). Generation of dose points on the real surface of the PTV is obligatory and the consideration of catheter volumes results in a realistic description of anatomical dose distributions.

  16. Evaluation of dose response models and parameters predicting radiation induced pneumonitis using clinical data from breast cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Tsougos, Ioannis; Mavroidis, Panayiotis; Rajala, Juha; Theodorou, Kyriaki; Järvenpää, Ritva; Pitkänen, Maunu A.; Holli, Kaija; Ojala, Antti T.; Lind, Bengt K.; Hyödynmaa, Simo; Kappas, Constantin

    2005-08-01

    The purpose of this work is to evaluate the predictive strength of the relative seriality, parallel and LKB normal tissue complication probability (NTCP) models regarding the incidence of radiation pneumonitis, in a large group of patients following breast cancer radiotherapy, and furthermore, to illustrate statistical methods for examining whether certain published radiobiological parameters are compatible with a clinical treatment methodology and patient group characteristics. The study is based on 150 consecutive patients who received radiation therapy for breast cancer. For each patient, the 3D dose distribution delivered to lung and the clinical treatment outcome were available. Clinical symptoms and radiological findings, along with a patient questionnaire, were used to assess the manifestation of radiation-induced complications. Using this material, different methods of estimating the likelihood of radiation effects were evaluated. This was attempted by analysing patient data based on their full dose distributions and associating the calculated complication rates with the clinical follow-up records. Additionally, the need for an update of the criteria that are being used in the current clinical practice was also examined. The patient material was selected without any conscious bias regarding the radiotherapy treatment technique used. The treatment data of each patient were applied to the relative seriality, LKB and parallel NTCP models, using published parameter sets. Of the 150 patients, 15 experienced radiation-induced pneumonitis (grade 2) according to the radiation pneumonitis scoring criteria used. Of the NTCP models examined, the relative seriality model was able to predict the incidence of radiation pneumonitis with acceptable accuracy, although radiation pneumonitis was developed by only a few patients. In the case of modern breast radiotherapy, radiobiological modelling appears to be very sensitive to model and parameter selection giving clinically acceptable results in certain cases selectively (relative seriality model with Seppenwoolde et al (2003 Int. J. Radiat. Oncol. Biol. Phys. 55 724-35) and Gagliardi et al (2000 Int. J. Radiat. Oncol. Biol. Phys. 46 373-81) parameter sets). The use of published parameters should be considered as safe only after their examination using local clinical data. The variation of inter-patient radiosensitivity seems to play a significant role in the prediction of such low incidence rate complications. Scoring grades were combined to give stronger evidence of radiation pneumonitis since their differences could not be strictly associated with dose. This obviously reveals a weakness of the scoring related to this endpoint, and implies that the probability of radiation pneumonitis induction may be too low to be statistically analysed with high accuracy, at least with the latest advances of dose delivery in breast radiotherapy.

  17. Three-Dimensional Radiobiologic Dosimetry: Application of Radiobiologic Modeling to Patient-Specific 3-Dimensional Imaging–Based Internal Dosimetry

    PubMed Central

    Prideaux, Andrew R.; Song, Hong; Hobbs, Robert F.; He, Bin; Frey, Eric C.; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George

    2010-01-01

    Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. The methodology is illustrated using data from a thyroid cancer patient treated with radioiodine. Methods Three registered SPECT/CT scans were used to generate 3-dimensional images of radionuclide kinetics (clearance rate) and cumulated activity. The cumulated activity image and corresponding CT scan were provided as input into an EGSnrc-based Monte Carlo calculation: The cumulated activity image was used to define the distribution of decays, and an attenuation image derived from CT was used to define the corresponding spatial tissue density and composition distribution. The rate images were used to convert the spatial absorbed dose distribution to a biologically effective dose distribution, which was then used to estimate a single equivalent uniform dose for segmented volumes of interest. Equivalent uniform dose was also calculated from the absorbed dose distribution directly. Results We validate the method using simple models; compare the dose-volume histogram with a previously analyzed clinical case; and give the mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for an illustrative case of a pediatric thyroid cancer patient with diffuse lung metastases. The mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for the tumor were 57.7, 58.5, and 25.0 Gy, respectively. Corresponding values for normal lung tissue were 9.5, 9.8, and 8.3 Gy, respectively. Conclusion The analysis demonstrates the impact of radiobiologic modeling on response prediction. The 57% reduction in the equivalent dose value for the tumor reflects a high level of dose nonuniformity in the tumor and a corresponding reduced likelihood of achieving a tumor response. Such analyses are expected to be useful in treatment planning for radionuclide therapy. PMID:17504874

  18. Computational and Experimental Evaluations of a Novel Thermo-Brachytherapy Seed for Treatment of Solid Tumors

    NASA Astrophysics Data System (ADS)

    Warrell, Gregory R.

    Hyperthermia has long been known as a radiation therapy sensitizer of high potential; however successful delivery of this modality and integrating it with radiation have often proved technically difficult. We present the dual-modality thermobrachytherapy (TB) seed, based on the ubiquitous low dose-rate (LDR) brachytherapy permanent implant, as a simple and effective combination of hyperthermia and radiation therapy. Heat is generated from a ferromagnetic or ferrimagnetic core within the seed, which produces Joule heating by eddy currents. A strategically-selected Curie temperature provides thermal self-regulation. In order to obtain a uniform and sufficiently high temperature distribution, additional hyperthermia-only (HT-only) seeds are proposed to be used in vacant spots within the needles used to implant the TB seeds; this permits a high seed density without the use of additional needles. Experimental and computational studies were done both to optimize the design of the TB and HT-only seeds and to quantitatively assess their ability to heat and irradiate defined, patient-specific targets. Experiments were performed with seed-sized ferromagnetic samples in tissue-mimicking phantoms heated by an industrial induction heater. The magnetic and thermal properties of the seeds were studied computationally in the finite element analysis (FEA) solver COMSOL Multiphysics, modelling realistic patient-specific seed distributions. These distributions were derived from LDR permanent prostate implants previously conducted at our institution; various modifications of the seeds' design were studied. The calculated temperature distributions were analyzed by generating temperature-volume histograms, which were used to quantify coverage and temperature homogeneity for a range of blood perfusion rates, as well as for a range of seed Curie temperatures and thermal power production rates. The impact of the interseed attenuation and scatter (ISA) effect on radiation dose distributions of this seed was also quantified by Monte Carlo studies in the software package MCNP5. Experimental and computational analyses agree that the proposed seeds may heat a defined target with safe and attainable seed spacing and magnetic field parameters. These studies also point to the use of a ferrite-based ferrimagnetic core within the seeds, a design that would deliver hyperthermia of acceptable quality even for the high rate of blood perfusion in prostate tissue. The loss of radiation coverage due to the ISA effect of distributions of TB and HT-only seeds may be rectified by slightly increasing the prescribed dose in standard dose superposition-based treatment planning software. A systematic approach of combining LDR prostate brachytherapy with hyperthermia is thus described, and its ability to provide sufficient and uniform temperature distributions in realistic patient-specific implants evaluated. Potential improvements to the previously reported TB seed design are discussed based on quantitative evaluation of its operation and performance.

  19. Toward endobronchial Ir-192 high-dose-rate brachytherapy therapeutic optimization

    NASA Astrophysics Data System (ADS)

    Gay, H. A.; Allison, R. R.; Downie, G. H.; Mota, H. C.; Austerlitz, C.; Jenkins, T.; Sibata, C. H.

    2007-06-01

    A number of patients with lung cancer receive either palliative or curative high-dose-rate (HDR) endobronchial brachytherapy. Up to a third of patients treated with endobronchial HDR die from hemoptysis. Rather than accept hemoptysis as an expected potential consequence of HDR, we have calculated the radial dose distribution for an Ir-192 HDR source, rigorously examined the dose and prescription points recommended by the American Brachytherapy Society (ABS), and performed a radiobiological-based analysis. The radial dose rate of a commercially available Ir-192 source was calculated with a Monte Carlo simulation. Based on the linear quadratic model, the estimated palliative, curative and blood vessel rupture radii from the center of an Ir-192 source were obtained for the ABS recommendations and a series of customized HDR prescriptions. The estimated radius at risk for blood vessel perforation for the ABS recommendations ranges from 7 to 9 mm. An optimized prescription may in some situations reduce this radius to 4 mm. The estimated blood perforation radius is generally smaller than the palliative radius. Optimized and individualized endobronchial HDR prescriptions are currently feasible based on our current understanding of tumor and normal tissue radiobiology. Individualized prescriptions could minimize complications such as fatal hemoptysis without sacrificing efficacy. Fiducial stents, HDR catheter centering or spacers and the use of CT imaging to better assess the relationship between the catheter and blood vessels promise to be useful strategies for increasing the therapeutic index of this treatment modality. Prospective trials employing treatment optimization algorithms are needed.

  20. Dosimetric assessment of static and helical TomoTherapy in the clinical implementation of breast cancer treatments.

    PubMed

    Reynders, Truus; Tournel, Koen; De Coninck, Peter; Heymann, Steve; Vinh-Hung, Vincent; Van Parijs, Hilde; Duchateau, Michaël; Linthout, Nadine; Gevaert, Thierry; Verellen, Dirk; Storme, Guy

    2009-10-01

    Investigation of the use of TomoTherapy and TomoDirect versus conventional radiotherapy for the treatment of post-operative breast carcinoma. This study concentrates on the evaluation of the planning protocol for the TomoTherapy and TomoDirect TPS, dose verification and the implementation of in vivo dosimetry. Eight patients with different breast cancer indications (left/right tumor, axillary nodes involvement (N+)/no nodes (N0), tumorectomy/mastectomy) were enrolled. TomoTherapy, TomoDirect and conventional plans were generated for prone and supine positions leading to six or seven plans per patient. Dose prescription was 42Gy in 15 fractions over 3weeks. Dose verification of a TomoTherapy plan is performed using TLDs and EDR2 film inside a home-made wax breast phantom fixed on a rando-alderson phantom. In vivo dosimetry was performed with TLDs. It is possible to create clinically acceptable plans with TomoTherapy and TomoDirect. TLD calibration protocol with a water equivalent phantom is accurate. TLD verification with the phantom shows measured over calculated ratios within 2.2% (PTV). An overresponse of the TLDs was observed in the low dose regions (<0.1Gy). The film measurements show good agreement for high and low dose regions inside the phantom. A sharp gradient can be created to the thoracic wall. In vivo dosimetry with TLDs was clinically feasible. The TomoTherapy and TomoDirect modalities can deliver dose distributions which the radiotherapist judges to be equal to or better than conventional treatment of breast carcinoma according to the organ to be protected.

  1. TH-CD-209-04: Fuzzy Robust Optimization in Intensity-Modulated Proton Therapy Planning to Account for Range and Patient Setup Uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Y; Bues, M; Schild, S

    Purpose: We propose to apply a robust optimization model based on fuzzy-logic constraints in the intensity-modulated proton therapy (IMPT) planning subject to range and patient setup uncertainties. The purpose is to ensure the plan robustness under uncertainty and obtain the best trade-off between tumor dose coverage and organ-at-risk(OAR) sparing. Methods: Two IMPT plans were generated for 3 head-and-neck cancer patients: one used the planning target volume(PTV) method; the other used the fuzzy robust optimization method. In the latter method, nine dose distributions were computed - the nominal one and one each for ±3mm setup uncertainties along three cardinal axes andmore » for ±3.5% range uncertainty. For tumors, these nine dose distributions were explicitly controlled by adding hard constraints with adjustable parameters. For OARs, fuzzy constraints that allow the dose to vary within a certain range were used so that the tumor dose distribution was guaranteed by minimum compromise of that of OARs. We rendered this model tractable by converting the fuzzy constraints to linear constraints. The plan quality was evaluated using dose-volume histogram(DVH) indices such as tumor dose coverage(D95%), homogeneity(D5%-D95%), plan robustness(DVH band at D95%), and OAR sparing like D1% of brain and D1% of brainstem. Results: Our model could yield clinically acceptable plans. The fuzzy-logic robust optimization method produced IMPT plans with comparable target dose coverage and homogeneity compared to the PTV method(unit: Gy[RBE]; average[min, max])(CTV D95%: 59 [52.7, 63.5] vs 53.5[46.4, 60.1], CTV D5% - D95%: 11.1[5.3, 18.6] vs 14.4[9.2, 21.5]). It also generated more robust plans(CTV DVH band at D95%: 3.8[1.2, 5.6] vs 11.5[6.2, 16.7]). The parameters of tumor constraints could be adjusted to control the tradeoff between tumor coverage and OAR sparing. Conclusion: The fuzzy-logic robust optimization generates superior IMPT with minimum compromise of OAR sparing. This research was supported by the National Cancer Institute Career Developmental Award K25CA168984, by the Fraternal Order of Eagles Cancer Research Fund Career Development Award, by The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research, by Mayo Arizona State University Seed Grant, and by The Kemper Marley Foundation. eRA Person ID(s) for the Principal Investigator: 11017970 (Research Supported by National Institutes of Health)« less

  2. Theoretical study of the influence of a heterogeneous activity distribution on intratumoral absorbed dose distribution.

    PubMed

    Bao, Ande; Zhao, Xia; Phillips, William T; Woolley, F Ross; Otto, Randal A; Goins, Beth; Hevezi, James M

    2005-01-01

    Radioimmunotherapy of hematopoeitic cancers and micrometastases has been shown to have significant therapeutic benefit. The treatment of solid tumors with radionuclide therapy has been less successful. Previous investigations of intratumoral activity distribution and studies on intratumoral drug delivery suggest that a probable reason for the disappointing results in solid tumor treatment is nonuniform intratumoral distribution coupled with restricted intratumoral drug penetrance, thus inhibiting antineoplastic agents from reaching the tumor's center. This paper describes a nonuniform intratumoral activity distribution identified by limited radiolabeled tracer diffusion from tumor surface to tumor center. This activity was simulated using techniques that allowed the absorbed dose distributions to be estimated using different intratumoral diffusion capabilities and calculated for tumors of varying diameters. The influences of these absorbed dose distributions on solid tumor radionuclide therapy are also discussed. The absorbed dose distribution was calculated using the dose point kernel method that provided for the application of a three-dimensional (3D) convolution between a dose rate kernel function and an activity distribution function. These functions were incorporated into 3D matrices with voxels measuring 0.10 x 0.10 x 0.10 mm3. At this point fast Fourier transform (FFT) and multiplication in frequency domain followed by inverse FFT (iFFT) were used to effect this phase of the dose calculation process. The absorbed dose distribution for tumors of 1, 3, 5, 10, and 15 mm in diameter were studied. Using the therapeutic radionuclides of 131I, 186Re, 188Re, and 90Y, the total average dose, center dose, and surface dose for each of the different tumor diameters were reported. The absorbed dose in the nearby normal tissue was also evaluated. When the tumor diameters exceed 15 mm, a much lower tumor center dose is delivered compared with tumors between 3 and 5 mm in diameter. Based on these findings, the use of higher beta-energy radionuclides, such as 188Re and 90Y is more effective in delivering a higher absorbed dose to the tumor center at tumor diameters around 10 mm.

  3. Monte Carlo simulation of radiation transport and dose deposition from locally released gold nanoparticles labeled with 111In, 177Lu or 90Y incorporated into tissue implantable depots

    NASA Astrophysics Data System (ADS)

    Lai, Priscilla; Cai, Zhongli; Pignol, Jean-Philippe; Lechtman, Eli; Mashouf, Shahram; Lu, Yijie; Winnik, Mitchell A.; Jaffray, David A.; Reilly, Raymond M.

    2017-11-01

    Permanent seed implantation (PSI) brachytherapy is a highly conformal form of radiation therapy but is challenged with dose inhomogeneity due to its utilization of low energy radiation sources. Gold nanoparticles (AuNP) conjugated with electron emitting radionuclides have recently been developed as a novel form of brachytherapy and can aid in homogenizing dose through physical distribution of radiolabeled AuNP when injected intratumorally (IT) in suspension. However, the distribution is unpredictable and precise placement of many injections would be difficult. Previously, we reported the design of a nanoparticle depot (NPD) that can be implanted using PSI techniques and which facilitates controlled release of AuNP. We report here the 3D dose distribution resulting from a NPD incorporating AuNP labeled with electron emitters (90Y, 177Lu, 111In) of different energies using Monte Carlo based voxel level dosimetry. The MCNP5 Monte Carlo radiation transport code was used to assess differences in dose distribution from simulated NPD and conventional brachytherapy sources, positioned in breast tissue simulating material. We further compare these dose distributions in mice bearing subcutaneous human breast cancer xenografts implanted with 177Lu-AuNP NPD, or injected IT with 177Lu-AuNP in suspension. The radioactivity distributions were derived from registered SPECT/CT images and time-dependent dose was estimated. Results demonstrated that the dose distribution from NPD reduced the maximum dose 3-fold when compared to conventional seeds. For simulated NPD, as well as NPD implanted in vivo, 90Y delivered the most homogeneous dose distribution. The tumor radioactivity in mice IT injected with 177Lu-AuNP redistributed while radioactivity in the NPD remained confined to the implant site. The dose distribution from radiolabeled AuNP NPD were predictable and concentric in contrast to IT injected radiolabeled AuNP, which provided irregular and temporally variant dose distributions. The use of NPD may serve as an intermediate between PSI and radiation delivered by radiolabeled AuNP by providing a controlled method to improve delivery of prescribed doses as well as homogenize dose from low penetrating electron sources.

  4. Threshold of toxicological concern values for non-genotoxic effects in industrial chemicals: re-evaluation of the Cramer classification.

    PubMed

    Kalkhof, H; Herzler, M; Stahlmann, R; Gundert-Remy, U

    2012-01-01

    The TTC concept employs available data from animal testing to derive a distribution of NOAELs. Taking a probabilistic view, the 5th percentile of the distribution is taken as a threshold value for toxicity. In this paper, we use 824 NOAELs from repeated dose toxicity studies of industrial chemicals to re-evaluate the currently employed TTC values, which have been derived for substances grouped according to the Cramer scheme (Cramer et al. in Food Cosm Toxicol 16:255-276, 1978) by Munro et al. (Food Chem Toxicol 34:829-867, 1996) and refined by Kroes and Kozianowski (Toxicol Lett 127:43-46, 2002), Kroes et al. 2000. In our data set, consisting of 756 NOAELs from 28-day repeated dose testing and 57 NOAELs from 90-days repeated dose testing, the experimental NOAEL had to be extrapolated to chronic TTC using regulatory accepted extrapolation factors. The TTC values derived from our data set were higher than the currently used TTC values confirming the safety of the latter. We analysed the prediction of the Cramer classification by comparing the classification by this tool with the guidance values for classification according to the Globally Harmonised System of classification and labelling of the United Nations (GHS). Nearly 90% of the chemicals were in Cramer class 3 and assumed as highly toxic compared to 22% according to the GHS. The Cramer classification does underestimate the toxicity of chemicals only in 4.6% of the cases. Hence, from a regulatory perspective, the Cramer classification scheme might be applied as it overestimates hazard of a chemical.

  5. A Comparison of the Performance of Efficient Data Analysis Versus Fine Particle Dose as Metrics for the Quality Control of Aerodynamic Particle Size Distributions of Orally Inhaled Pharmaceuticals.

    PubMed

    Tougas, Terrence P; Goodey, Adrian P; Hardwell, Gareth; Mitchell, Jolyon; Lyapustina, Svetlana

    2017-02-01

    The performance of two quality control (QC) tests for aerodynamic particle size distributions (APSD) of orally inhaled drug products (OIPs) is compared. One of the tests is based on the fine particle dose (FPD) metric currently expected by the European regulators. The other test, called efficient data analysis (EDA), uses the ratio of large particle mass to small particle mass (LPM/SPM), along with impactor sized mass (ISM), to detect changes in APSD for QC purposes. The comparison is based on analysis of APSD data from four products (two different pressurized metered dose inhalers (MDIs) and two dry powder inhalers (DPIs)). It is demonstrated that in each case, EDA is able to detect shifts and abnormalities that FPD misses. The lack of sensitivity on the part of FPD is due to its "aggregate" nature, since FPD is a univariate measure of all particles less than about 5 μm aerodynamic diameter, and shifts or changes within the range encompassed by this metric may go undetected. EDA is thus shown to be superior to FPD for routine control of OIP quality. This finding augments previously reported superiority of EDA compared with impactor stage groupings (favored by US regulators) for incorrect rejections (type I errors) when incorrect acceptances (type II errors) were adjusted to the same probability for both approaches. EDA is therefore proposed as a method of choice for routine quality control of OIPs in both European and US regulatory environments.

  6. SU-E-T-278: Realization of Dose Verification Tool for IMRT Plan Based On DPM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Jinfeng; Cao, Ruifen; Dai, Yumei

    Purpose: To build a Monte Carlo dose verification tool for IMRT Plan by implementing a irradiation source model into DPM code. Extend the ability of DPM to calculate any incident angles and irregular-inhomogeneous fields. Methods: With the virtual source and the energy spectrum which unfolded from the accelerator measurement data,combined with optimized intensity maps to calculate the dose distribution of the irradiation irregular-inhomogeneous field. The irradiation source model of accelerator was substituted by a grid-based surface source. The contour and the intensity distribution of the surface source were optimized by ARTS (Accurate/Advanced Radiotherapy System) optimization module based on the tumormore » configuration. The weight of the emitter was decided by the grid intensity. The direction of the emitter was decided by the combination of the virtual source and the emitter emitting position. The photon energy spectrum unfolded from the accelerator measurement data was adjusted by compensating the contaminated electron source. For verification, measured data and realistic clinical IMRT plan were compared with DPM dose calculation. Results: The regular field was verified by comparing with the measured data. It was illustrated that the differences were acceptable (<2% inside the field, 2–3mm in the penumbra). The dose calculation of irregular field by DPM simulation was also compared with that of FSPB (Finite Size Pencil Beam) and the passing rate of gamma analysis was 95.1% for peripheral lung cancer. The regular field and the irregular rotational field were all within the range of permitting error. The computing time of regular fields were less than 2h, and the test of peripheral lung cancer was 160min. Through parallel processing, the adapted DPM could complete the calculation of IMRT plan within half an hour. Conclusion: The adapted parallelized DPM code with irradiation source model is faster than classic Monte Carlo codes. Its computational accuracy and speed satisfy the clinical requirement, and it is expectable to be a Monte Carlo dose verification tool for IMRT Plan. Strategic Priority Research Program of the China Academy of Science(XDA03040000); National Natural Science Foundation of China (81101132)« less

  7. Three-dimensional radiotherapy of head and neck and esophageal carcinomas: a monoisocentric treatment technique to achieve improved dose distributions.

    PubMed

    Ahmad, M; Nath, R

    2001-02-20

    The specific aim of three-dimensional conformal radiotherapy is to deliver adequate therapeutic radiation dose to the target volume while concomitantly keeping the dose to surrounding and intervening normal tissues to a minimum. The objective of this study is to examine dose distributions produced by various radiotherapy techniques used in managing head and neck tumors when the upper part of the esophagus is also involved. Treatment planning was performed with a three-dimensional (3-D) treatment planning system. Computerized tomographic (CT) scans used by this system to generate isodose distributions and dose-volume histograms were obtained directly from the CT scanner, which is connected via ethernet cabling to the 3-D planning system. These are useful clinical tools for evaluating the dose distribution to the treatment volume, clinical target volume, gross tumor volume, and certain critical organs. Using 6 and 18 MV photon beams, different configurations of standard treatment techniques for head and neck and esophageal carcinoma were studied and the resulting dose distributions were analyzed. Film validation dosimetry in solid-water phantom was performed to assess the magnitude of dose inhomogeneity at the field junction. Real-time dose measurements on patients using diode dosimetry were made and compared with computed dose values. With regard to minimizing radiation dose to surrounding structures (i.e., lung, spinal cord, etc.), the monoisocentric technique gave the best isodose distributions in terms of dose uniformity. The mini-mantle anterior-posterior/posterior-anterior (AP/PA) technique produced grossly non-uniform dose distribution with excessive hot spots. The dose measured on the patient during the treatment agrees to within +/- 5 % with the computed dose. The protocols presented in this work for simulation, immobilization and treatment planning of patients with head and neck and esophageal tumors provide the optimum dose distributions in the target volume with reduced irradiation of surrounding non-target tissues, and can be routinely implemented in a radiation oncology department. The presence of a real-time dose-measuring system plays an important role in verifying the actual delivery of radiation dose.

  8. Toxicological importance of human biomonitoring of metallic and metalloid elements in different biological samples.

    PubMed

    Gil, F; Hernández, A F

    2015-06-01

    Human biomonitoring has become an important tool for the assessment of internal doses of metallic and metalloid elements. These elements are of great significance because of their toxic properties and wide distribution in environmental compartments. Although blood and urine are the most used and accepted matrices for human biomonitoring, other non-conventional samples (saliva, placenta, meconium, hair, nails, teeth, breast milk) may have practical advantages and would provide additional information on health risk. Nevertheless, the analysis of these compounds in biological matrices other than blood and urine has not yet been accepted as a useful tool for biomonitoring. The validation of analytical procedures is absolutely necessary for a proper implementation of non-conventional samples in biomonitoring programs. However, the lack of reliable and useful analytical methodologies to assess exposure to metallic elements, and the potential interference of external contamination and variation in biological features of non-conventional samples are important limitations for setting health-based reference values. The influence of potential confounding factors on metallic concentration should always be considered. More research is needed to ascertain whether or not non-conventional matrices offer definitive advantages over the traditional samples and to broaden the available database for establishing worldwide accepted reference values in non-exposed populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Intensity- and energy-modulated electron radiotherapy by means of an xMLC for head and neck shallow tumors

    NASA Astrophysics Data System (ADS)

    Salguero, Francisco Javier; Arráns, Rafael; Atriana Palma, Bianey; Leal, Antonio

    2010-03-01

    The purpose of this paper is to assess the feasibility of delivering intensity- and energy-modulated electron radiation treatment (MERT) by a photon multileaf collimator (xMLC) and to evaluate the improvements obtained in shallow head and neck (HN) tumors. Four HN patient cases covering different clinical situations were planned by MERT, which used an in-house treatment planning system that utilized Monte Carlo dose calculation. The cases included one oronasal, two parotid and one middle ear tumors. The resulting dose-volume histograms were compared with those obtained from conventional photon and electron treatment techniques in our clinic, which included IMRT, electron beam and mixed beams, most of them using fixed-thickness bolus. Experimental verification was performed with plane-parallel ionization chambers for absolute dose verification, and a PTW ionization chamber array and radiochromic film for relative dosimetry. A MC-based treatment planning system for target with compromised volumes in depth and laterally has been validated. A quality assurance protocol for individual MERT plans was launched. Relative MC dose distributions showed a high agreement with film measurements and absolute ion chamber dose measurements performed at a reference point agreed with MC calculations within 2% in all cases. Clinically acceptable PTV coverage and organ-at-risk sparing were achieved by using the proposed MERT approach. MERT treatment plans, based on delivery of intensity-modulated electron beam using the xMLC, for superficial head and neck tumors, demonstrated comparable or improved PTV dose homogeneity with significantly lower dose to normal tissues. The clinical implementation of this technique will be able to offer a viable alternative for the treatment of shallow head and neck tumors.

  10. [Development of external quality control protocol for CyberKnife beams dosimetry: preliminary tests multicentre].

    PubMed

    Guinement, L; Marchesi, V; Veres, A; Lacornerie, T; Buchheit, I; Peiffert, D

    2013-01-01

    To develop an external quality control procedure for CyberKnife(®) beams. This work conducted in Nancy, has included a test protocol initially drawn by the medical physicist of Nancy and Lille in collaboration with Equal-Estro Laboratory. A head and neck anthropomorphic phantom and a water-equivalent homogeneous cubic plastic test-object, so-called "MiniCube", have been used. Powder and solid thermoluminescent dosimeters as well as radiochromic films have been used to perform absolute and relative dose studies, respectively. The comparison between doses calculated by Multiplan treatment planning system and measured doses have been studied in absolute dose. The dose distributions measured with films and treatment planning system calculations have been compared via the gamma function, configured with different tolerance criteria. This work allowed, via solid thermoluminescent dosimeter measurements, verifying the beam reliability with a reproducibility of 1.7 %. The absolute dose measured in the phantom irradiated by the seven participating centres has shown an error inferior to the standard tolerance limits (± 5 %), for most of participating centres. The relative dose measurements performed at Nancy and by the Equal-Estro laboratory allowed defining the most adequate parameters for gamma index (5 %/2mm--with at least 95 % of pixels satisfying acceptability criteria: γ<1). These parameters should be independent of the film analysis software. This work allowed defining a dosimetric external quality control for CyberKnife(®) systems, based on a reproducible irradiation plan through measurements performed with thermoluminescent dosimeters and radiochromic films. This protocol should be validated by a new series of measurement and taking into account the lessons of this work. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Y; Becker, S; Mutaf, Y

    Purpose: The first GammaPod™ unit, a dedicated prone stereotactic treatment device for early stage breast cancer, has been installed and commissioned at University of Maryland School of Medicine. The objective of this study was to investigate potential dosimetric impact of inaccurate breast contour. Methods: In GammaPod treatments, patient’s beast is immobilized by a breast cup device (BCID) throughout the entire same-day imaging and treatment procedure. 28 different BICD sizes are available to accommodate patients with varying breast sizes. A mild suction helps breast tissue to conform to the shape of the cup with selected size. In treatment planning, dose calculationmore » utilizes previously calculated dose distributions for available cup geometry rather than the breast shape from CT image. Patient CT images with breast cups indicate minor geometric discrepancy between the matched shape of the cup and the breast contour, i.e., the contour size is larger or smaller. In order to investigate the dosimetric impact of these discrepancies, we simulated such discrepancies and reassessed the dose to target as well as skin. Results: In vicinity of skin, hot/cold spots were found when matched cup size was smaller/larger than patient’s breast after comparing the corrected dose profiles from Monte Carlo simulation with the planned dose from TPS. The overdosing/underdosing of target could yield point dose differences as large as 5% due to these setup errors (D95 changes within 2.5%). Maximal skin dose was overestimated/underestimated up to 25%/45% when matched cup size was larger/smaller than real breast contour. Conclusion: The dosimetric evaluation suggests substantial underdosing/overdosing with inaccurate cup geometry during planning, which is acceptable for current clinical trial. Further studies are needed to evaluate such impact to treating small volume close to skin.« less

  12. Spatial distributions of dose enhancement around a gold nanoparticle at several depths of proton Bragg peak

    NASA Astrophysics Data System (ADS)

    Kwon, Jihun; Sutherland, Kenneth; Hashimoto, Takayuki; Shirato, Hiroki; Date, Hiroyuki

    2016-10-01

    Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (Dsub) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial Dsub distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.

  13. SU-E-T-643: Pure Alanine Dosimeter for Verification Dosimetry in IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Karmi, Anan M.; Zraiqat, Fadi

    Purpose: The objective of this study was evaluation of accuracy of pure alanine dosimeters measuring intensity-modulated radiation therapy (IMRT) dose distributions in a thorax phantom. Methods: Alanine dosimeters were prepared in the form of 110 mg pure L-α-alanine powder filled into clear tissue-equivalent polymethylmethacrylate (PMMA) plastic tubes with the dimensions 25 mm length, 3 mm inner diameter, and 1 mm wall thickness. A dose-response calibration curve was established for the alanine by placing the dosimeters at 1.5 cm depth in a 30×30×30 cm{sup 3} solid water phantom and then irradiating on a linac with 6 MV photon beam at 10×10more » cm{sup 2} field size to doses ranging from 1 to 5 Gy. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the absorbed dose in alanine. An IMRT treatment plan was designed for a commercial heterogeneous CIRS thorax phantom and the dose values were calculated at three different points located in tissue, lung, and bone equivalent materials. A set of dose measurements was carried out to compare measured and calculated dose values by placing the alanine dosimeters at those selected locations inside the thorax phantom and delivering the IMRT to the phantom. Results: The alanine dose measurements and the IMRT plan dose calculations were found to be in agreement within ±2%. Specifically, the deviations were −0.5%, 1.3%, and −1.7% for tissue, lung, and bone; respectively. The slightly large deviations observed for lung and bone may be attributed to tissue inhomogeneity, steep dose gradients in these regions, and uncontrollable changes in spectrometer conditions. Conclusion: The results described herein confirmed that pure alanine dosimeter was suitable for in-phantom dosimetry of IMRT beams because of its high sensitivity and acceptable accuracy. This makes the dosimeter a promising option for quality control of the therapeutic beams, complementing the commonly used ionization chambers, TLDs, and films.« less

  14. Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-09-01

    A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which proves the need for adequate compensation strategies.

  15. Comparison of Planning Quality and Efficiency Between Conventional and Knowledge-based Algorithms in Nasopharyngeal Cancer Patients Using Intensity Modulated Radiation Therapy.

    PubMed

    Chang, Amy T Y; Hung, Albert W M; Cheung, Fion W K; Lee, Michael C H; Chan, Oscar S H; Philips, Helen; Cheng, Yung-Tang; Ng, Wai-Tong

    2016-07-01

    Intensity modulated radiation therapy (IMRT) is widely used to achieve a highly conformal dose and improve treatment outcome. However, plan quality and planning time are institute and planner dependent, and no standardized tool exists to recognize an optimal plan. RapidPlan, a knowledge-based algorithm, can generate constraints to assist optimization and produce high-quality IMRT plans. This report evaluated the quality and efficiency of using RapidPlan in nasopharyngeal carcinoma (NPC) IMRT planning. RapidPlan was configured using 79 radical IMRT plans for NPC; 20 consecutive NPC patients indicated for radical radiation therapy between October 2014 and May 2015 were then recruited to assess its performance. The ability of RapidPlan to produce acceptable plans was evaluated. For plans that could not achieve clinical acceptance, manual touch-up was performed. The IMRT plans produced without RapidPlan (manual plans) and with RapidPlan (RP-2 plans, including those with manual touch-up) were compared in terms of dosimetric quality and planning efficiency. RapidPlan by itself could produce clinically acceptable plans for 9 of the 20 patients; manual touch-up increased the number of acceptable plans (RP-2 plans) to 19. The target dose coverage and conformity were very similar. No difference was found in the maximum dose to the brainstem and optic chiasm. RP-2 plans delivered a higher maximum dose to the spinal cord (46.4 Gy vs 43.9 Gy, P=.002) but a lower dose to the parotid (mean dose to right parotid, 37.3 Gy vs 45.4 Gy; left, 34.4 Gy vs 43.1 Gy; P<.001) and the right cochlea (mean dose, 48.6 Gy vs 52.6 Gy; P=.02). The total planning time for RP-2 plans was significantly less than that for manual plans (64 minutes vs 295 minutes, P<.001). This study shows that RapidPlan can significantly improve planning efficiency and produce quality IMRT plans for NPC patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Clinical Implications of TiGRT Algorithm for External Audit in Radiation Oncology.

    PubMed

    Shahbazi-Gahrouei, Daryoush; Saeb, Mohsen; Monadi, Shahram; Jabbari, Iraj

    2017-01-01

    Performing audits play an important role in quality assurance program in radiation oncology. Among different algorithms, TiGRT is one of the common application software for dose calculation. This study aimed to clinical implications of TiGRT algorithm to measure dose and compared to calculated dose delivered to the patients for a variety of cases, with and without the presence of inhomogeneities and beam modifiers. Nonhomogeneous phantom as quality dose verification phantom, Farmer ionization chambers, and PC-electrometer (Sun Nuclear, USA) as a reference class electrometer was employed throughout the audit in linear accelerators 6 and 18 MV energies (Siemens ONCOR Impression Plus, Germany). Seven test cases were performed using semi CIRS phantom. In homogeneous regions and simple plans for both energies, there was a good agreement between measured and treatment planning system calculated dose. Their relative error was found to be between 0.8% and 3% which is acceptable for audit, but in nonhomogeneous organs, such as lung, a few errors were observed. In complex treatment plans, when wedge or shield in the way of energy is used, the error was in the accepted criteria. In complex beam plans, the difference between measured and calculated dose was found to be 2%-3%. All differences were obtained between 0.4% and 1%. A good consistency was observed for the same type of energy in the homogeneous and nonhomogeneous phantom for the three-dimensional conformal field with a wedge, shield, asymmetric using the TiGRT treatment planning software in studied center. The results revealed that the national status of TPS calculations and dose delivery for 3D conformal radiotherapy was globally within acceptable standards with no major causes for concern.

  17. Outreach hepatitis B vaccination of female sex workers in central-west Brazil: immunization status, compliance, and immune response.

    PubMed

    Carneiro, Luciene Moraes; Mousquer, Gina Jonasson; Pinheiro, Raquel Silva; Castro, Ana Rita Coimbra Motta; França, Divânia Dias Da Silva; Caetano, Karlla Antonieta Amorim; Carneiro, Megmar Aparecida dos Santos; Martins, Regina Maria Bringel; Matos, Marcos André de; Castro, Lisie; Rezende, Grazielli; Teles, Sheila Araujo

    2014-01-01

    To evaluate the hepatitis B immunization status of female sex workers (FSWs) in Central-West Brazil and to evaluate their compliance with and immune response to hepatitis B vaccination delivered using outreach strategies. A total of 721 FSWs recruited in 2 large cities in Central-West Brazil were interviewed and screened for the presence of hepatitis B virus (HBV) markers. Hepatitis B vaccine was offered to all women susceptible to HBV, using outreach strategies. The immune response of FSWs who received a full course of vaccine was assessed following the final vaccine dose. We found that 27.6% of FSWs, the majority of whom were aged 18 to 25 years, had serological evidence of previous hepatitis B vaccination. A total of 434 FSWs were eligible for vaccination, 389 (89.6%) of whom accepted the first hepatitis B vaccine dose. Of those, 64% received a second dose and 37.5% received all three doses. Through the outreach strategy, there was a 52.2% increase in the number of women who received the second dose and a 67% increase in the number who received the third dose. Of the 146 women who received a full course of vaccine, 105 accepted testing for quantitative anti-HBs (hepatitis B surface antibody) following the final vaccine dose, and 92.4% of those tested had developed protective levels of anti-HBs. Lower education level, workplace, and length of prostitution were predictors of full-vaccine acceptance. The present findings illustrate the benefits of using outreach strategies to overcome the difficulties of vaccinating hard-to-reach populations such as FSWs.

  18. Accounting for patient size in the optimization of dose and image quality of pelvis cone beam CT protocols on the Varian OBI system

    PubMed Central

    Moore, Craig S; Horsfield, Carl J; Saunderson, John R; Beavis, Andrew W

    2015-01-01

    Objective: The purpose of this study was to develop size-based radiotherapy kilovoltage cone beam CT (CBCT) protocols for the pelvis. Methods: Image noise was measured in an elliptical phantom of varying size for a range of exposure factors. Based on a previously defined “small pelvis” reference patient and CBCT protocol, appropriate exposure factors for small, medium, large and extra-large patients were derived which approximate the image noise behaviour observed on a Philips CT scanner (Philips Medical Systems, Best, Netherlands) with automatic exposure control (AEC). Selection criteria, based on maximum tube current–time product per rotation selected during the radiotherapy treatment planning scan, were derived based on an audit of patient size. Results: It has been demonstrated that 110 kVp yields acceptable image noise for reduced patient dose in pelvic CBCT scans of small, medium and large patients, when compared with manufacturer's default settings (125 kVp). Conversely, extra-large patients require increased exposure factors to give acceptable images. 57% of patients in the local population now receive much lower radiation doses, whereas 13% require higher doses (but now yield acceptable images). Conclusion: The implementation of size-based exposure protocols has significantly reduced radiation dose to the majority of patients with no negative impact on image quality. Increased doses are required on the largest patients to give adequate image quality. Advances in knowledge: The development of size-based CBCT protocols that use the planning CT scan (with AEC) to determine which protocol is appropriate ensures adequate image quality whilst minimizing patient radiation dose. PMID:26419892

  19. Clinical Implications of TiGRT Algorithm for External Audit in Radiation Oncology

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Saeb, Mohsen; Monadi, Shahram; Jabbari, Iraj

    2017-01-01

    Background: Performing audits play an important role in quality assurance program in radiation oncology. Among different algorithms, TiGRT is one of the common application software for dose calculation. This study aimed to clinical implications of TiGRT algorithm to measure dose and compared to calculated dose delivered to the patients for a variety of cases, with and without the presence of inhomogeneities and beam modifiers. Materials and Methods: Nonhomogeneous phantom as quality dose verification phantom, Farmer ionization chambers, and PC-electrometer (Sun Nuclear, USA) as a reference class electrometer was employed throughout the audit in linear accelerators 6 and 18 MV energies (Siemens ONCOR Impression Plus, Germany). Seven test cases were performed using semi CIRS phantom. Results: In homogeneous regions and simple plans for both energies, there was a good agreement between measured and treatment planning system calculated dose. Their relative error was found to be between 0.8% and 3% which is acceptable for audit, but in nonhomogeneous organs, such as lung, a few errors were observed. In complex treatment plans, when wedge or shield in the way of energy is used, the error was in the accepted criteria. In complex beam plans, the difference between measured and calculated dose was found to be 2%–3%. All differences were obtained between 0.4% and 1%. Conclusions: A good consistency was observed for the same type of energy in the homogeneous and nonhomogeneous phantom for the three-dimensional conformal field with a wedge, shield, asymmetric using the TiGRT treatment planning software in studied center. The results revealed that the national status of TPS calculations and dose delivery for 3D conformal radiotherapy was globally within acceptable standards with no major causes for concern. PMID:28989910

  20. Assessing correlations between the spatial distribution of the dose to the rectal wall and late rectal toxicity after prostate radiotherapy: an analysis of data from the MRC RT01 trial (ISRCTN 47772397)

    NASA Astrophysics Data System (ADS)

    Buettner, Florian; Gulliford, Sarah L.; Webb, Steve; Sydes, Matthew R.; Dearnaley, David P.; Partridge, Mike

    2009-11-01

    Many studies have been performed to assess correlations between measures derived from dose-volume histograms and late rectal toxicities for radiotherapy of prostate cancer. The purpose of this study was to quantify correlations between measures describing the shape and location of the dose distribution and different outcomes. The dose to the rectal wall was projected on a two-dimensional map. In order to characterize the dose distribution, its centre of mass, longitudinal and lateral extent, and eccentricity were calculated at different dose levels. Furthermore, the dose-surface histogram (DSH) was determined. Correlations between these measures and seven clinically relevant rectal-toxicity endpoints were quantified by maximally selected standardized Wilcoxon rank statistics. The analysis was performed using data from the RT01 prostate radiotherapy trial. For some endpoints, the shape of the dose distribution is more strongly correlated with the outcome than simple DSHs. Rectal bleeding was most strongly correlated with the lateral extent of the dose distribution. For loose stools, the strongest correlations were found for longitudinal extent; proctitis was most strongly correlated with DSH. For the other endpoints no statistically significant correlations could be found. The strengths of the correlations between the shape of the dose distribution and outcome differed considerably between the different endpoints. Due to these significant correlations, it is desirable to use shape-based tools in order to assess the quality of a dose distribution.

  1. Reference dose (RfD): description and use in health risk assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, D.G.; Dourson, M.

    1988-12-01

    For many years the concept of the acceptable daily intake has served the toxicological and regulatory fields quite well. However, as approaches to assessing the health significance of exposures to noncarcinogenic substances receive greater scrutiny, some difficulties with this traditional approach have become more apparent. Consequently, the concept of the reference dose is introduced in order to avoid use of prejudicial terms (e.g., safety and acceptable), to promote greater consistency in the assessment of noncarcinogenic chemicals, and to maintain the functional separation between risk assessment and risk management.

  2. A 1.5 T transverse magnetic field in radiotherapy of rectal cancer: Impact on the dose distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uilkema, Sander, E-mail: s.uilkema@nki.nl; Heide, Uulke van der; Sonke, Jan-Jakob

    2015-12-15

    Purpose: MRI guidance during radiotherapy has the potential to enable more accurate dose delivery, optimizing the balance between local control and treatment related toxicity. However, the presence of a permanent magnetic field influences the dose delivery, especially around air cavities. Here, electrons are able to return to the surface through which they entered the air cavity (electron return effect, ERE) locally resulting in dose hot- and cold-spots. Where RT of rectal cancer patients might benefit from MRI guidance for margin reduction, air cavities in and around the target volume are frequently present. The purpose of this research is to evaluatemore » the impact of the presence of a 1.5 T transverse magnetic field on dose delivery in patients with rectal cancer. Methods: Ten patients treated with 5 × 5 Gy RT having large changes in pelvic air content were selected out of a cohort of 33 patients. On the planning CT, a 1.5 T, 6 MV, 7-field intensity modulated radiotherapy (IMRT) plan was created. This plan was subsequently recalculated on daily CT scans. For each daily CT, the CTV V{sub 95%} and V{sub 107%} and bowel area V{sub 5Gy}, V{sub 10Gy}, V{sub 15Gy}, V{sub 20Gy}, and V{sub 25Gy} were calculated to evaluate the changes in dose distribution from fraction to fraction. For comparison, the authors repeated this procedure for the 0 T situation. To study the effect of changing air cavities separate from other anatomical changes, the authors also generated artificial air cavities in the CTV of one patient (2 and 5 cm diameter), in the high dose gradient region (2 cm), and in the low dose area (2 cm). Treatment plans were optimized without and with each simulated air cavity. For appearing and disappearing air cavities, the CTV V{sub 95%} and V{sub 107%} were evaluated. The authors also evaluated the ERE separate from attenuation changes locally around appearing gas pockets. Results: For the ten patients, at 1.5 T, the V{sub 95%} was influenced by both appearing and disappearing air, and dropped to <98% in 2 out of 50 fractions due a disappearing air cavity of 150 cm{sup 3}. V{sub 95%} differences between 0 and 1.5 T were all within 2%. The V{sub 107%} was below 1% in 46 out of 50 fractions, and increased to 3% in the remaining fractions due to appearing air of around 120 cm{sup 3}. For comparison, V{sub 107%} was <1% at 0 T for all fractions. In the bowel area, the V{sub 15Gy} varied strongest from fraction to fraction, but differences between 1.5 and 0 T were minimal with an average difference of 2.3 cm{sup 3} (SD = 18.7 cm{sup 3}, p = 0.38). For the simulated air cavities, the ERE resulted in cold-spots maximally 5% lower than prescribed and hot-spots maximally 6% higher than prescribed. Conclusions: The presence of a 1.5 T magnetic field has an impact on the dose distribution when the air content changes of within a few percent in these selected rectal cancer patients. The authors consider this influence of the transverse magnetic field on the dose distribution in IMRT for rectal cancer patients clinically acceptable.« less

  3. Differential pencil beam dose computation model for photons.

    PubMed

    Mohan, R; Chui, C; Lidofsky, L

    1986-01-01

    Differential pencil beam (DPB) is defined as the dose distribution relative to the position of the first collision, per unit collision density, for a monoenergetic pencil beam of photons in an infinite homogeneous medium of unit density. We have generated DPB dose distribution tables for a number of photon energies in water using the Monte Carlo method. The three-dimensional (3D) nature of the transport of photons and electrons is automatically incorporated in DPB dose distributions. Dose is computed by evaluating 3D integrals of DPB dose. The DPB dose computation model has been applied to calculate dose distributions for 60Co and accelerator beams. Calculations for the latter are performed using energy spectra generated with the Monte Carlo program. To predict dose distributions near the beam boundaries defined by the collimation system as well as blocks, we utilize the angular distribution of incident photons. Inhomogeneities are taken into account by attenuating the primary photon fluence exponentially utilizing the average total linear attenuation coefficient of intervening tissue, by multiplying photon fluence by the linear attenuation coefficient to yield the number of collisions in the scattering volume, and by scaling the path between the scattering volume element and the computation point by an effective density.

  4. EFFECTS OF LOW-DOSE IRRADIATION AND STORAGE ON ACCEPTABILITY OF BROCCOLI, SWEET CORN, AND STRAWBERRIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D.C.; Tichenor, D.A.

    1962-11-01

    Fresh vegetables, in some cases stored in nitrogen, were gamma irradiated with doses of 0.25 to 1.0 Mrad, then stored at 35 deg F, and evaluated for taste at various periods up to 305 days. All nitrogen-packed irradiated sweet corn was acceptable after 305 days, in contrast with unirradiated 35 deg F control samples, which were spoiled. One set of nitrogenpacked irradiated broccoli samples was acceptable after 270 days at 35 deg F; all others were unacceptable after this period. All of the irradiated strawberries were less acceptable than 35 deg F controls at all time periods. Correlation of objectivemore » color measurements with visual color scores varied with the product, but dominant wavelength, purity, or brightness was significantly related to color score for all products tested. Irradiation of strawberries resulted in bleaching of the characteristic red color, the amount of bleaching being greater at the higher dose levels. Samples irradiated at the higher levels had the lowest average dominant wavelength, closer to the orange area of the spectrum, and the lowest average purity. The pH of all strawberry syrup samples was between 3.1 and 3.5, and varied only slightly with blanching, radiation treatment, or time period. (H.H.D.)« less

  5. Vitamin E can improve behavioral tests impairment, cell loss, and dendrite changes in rats' medial prefrontal cortex induced by acceptable daily dose of aspartame.

    PubMed

    Rafati, Ali; Noorafshan, Ali; Jahangir, Mahboubeh; Hosseini, Leila; Karbalay-Doust, Saied

    2018-01-01

    Aspartame is an artificial sweetener used in about 6000 sugar-free products. Aspartame consumption could be associated with various neurological disorders. This study aimed to evaluate the effect of aspartame onmedial Prefrontal Cortex (mPFC) as well as neuroprotective effects of vitamin E. The rats were divided into seven groups, including distilled water, corn oil, vitamin E (100mg/kg/day), and low (acceptable daily dose) and high doses of aspartame (40 and 200mg/kg/day) respectively, with or without vitamin E consumption, for 8 weeks. Behavioral tests were recorded and the brain was prepared for stereological assessments. Novel objects test and eight-arm radial maze showed impairmentoflong- and short-termmemoriesin aspartame groups. Besides, mPFC volume, infralimbic volume, neurons number, glial cells number, dendrites length per neuron,and number of spines per dendrite length were decreased by 7-61% in the rats treated with aspartame. However, neurons' number, glial cells number, and rats' performance in eight-arm radial mazes were improved by concomitant consumption of vitamin E and aspartame. Yet, the mPFC volume and infralimbic cortex were protected only in the rats receiving the low dose of aspartame+vitamin E. On the other hand, dendrites length, spines number,and novel object recognition were not protected by treatment with vitamin E+aspartame. The acceptable daily dose or higher doses of aspartame could induce memory impairments and cortical cells loss in mPFC. However, vitamin E could ameliorate some of these changes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Automatic exposure control systems designed to maintain constant image noise: effects on computed tomography dose and noise relative to clinically accepted technique charts.

    PubMed

    Favazza, Christopher P; Yu, Lifeng; Leng, Shuai; Kofler, James M; McCollough, Cynthia H

    2015-01-01

    To compare computed tomography dose and noise arising from use of an automatic exposure control (AEC) system designed to maintain constant image noise as patient size varies with clinically accepted technique charts and AEC systems designed to vary image noise. A model was developed to describe tube current modulation as a function of patient thickness. Relative dose and noise values were calculated as patient width varied for AEC settings designed to yield constant or variable noise levels and were compared to empirically derived values used by our clinical practice. Phantom experiments were performed in which tube current was measured as a function of thickness using a constant-noise-based AEC system and the results were compared with clinical technique charts. For 12-, 20-, 28-, 44-, and 50-cm patient widths, the requirement of constant noise across patient size yielded relative doses of 5%, 14%, 38%, 260%, and 549% and relative noises of 435%, 267%, 163%, 61%, and 42%, respectively, as compared with our clinically used technique chart settings at each respective width. Experimental measurements showed that a constant noise-based AEC system yielded 175% relative noise for a 30-cm phantom and 206% relative dose for a 40-cm phantom compared with our clinical technique chart. Automatic exposure control systems that prescribe constant noise as patient size varies can yield excessive noise in small patients and excessive dose in obese patients compared with clinically accepted technique charts. Use of noise-level technique charts and tube current limits can mitigate these effects.

  7. Development of a patient-specific 3D dose evaluation program for QA in radiation therapy

    NASA Astrophysics Data System (ADS)

    Lee, Suk; Chang, Kyung Hwan; Cao, Yuan Jie; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong

    2015-03-01

    We present preliminary results for a 3-dimensional dose evaluation software system ( P DRESS, patient-specific 3-dimensional dose real evaluation system). Scanned computed tomography (CT) images obtained by using dosimetry were transferred to the radiation treatment planning system (ECLIPSE, VARIAN, Palo Alto, CA) where the intensity modulated radiation therapy (IMRT) nasopharynx plan was designed. We used a 10 MV photon beam (CLiX, VARIAN, Palo Alto, CA) to deliver the nasopharynx treatment plan. After irradiation, the TENOMAG dosimeter was scanned using a VISTA ™ scanner. The scanned data were reconstructed using VistaRecon software to obtain a 3D dose distribution of the optical density. An optical-CT scanner was used to readout the dose distribution in the gel dosimeter. Moreover, we developed the P DRESS by using Flatform, which were developed by our group, to display the 3D dose distribution by loading the DICOM RT data which are exported from the radiotherapy treatment plan (RTP) and the optical-CT reconstructed VFF file, into the independent P DRESS with an ioniz ation chamber and EBT film was used to compare the dose distribution calculated from the RTP with that measured by using a gel dosimeter. The agreement between the normalized EBT, the gel dosimeter and RTP data was evaluated using both qualitative and quantitative methods, such as the isodose distribution, dose difference, point value, and profile. The profiles showed good agreement between the RTP data and the gel dosimeter data, and the precision of the dose distribution was within ±3%. The results from this study showed significantly discrepancies between the dose distribution calculated from the treatment plan and the dose distribution measured by a TENOMAG gel and by scanning with an optical CT scanner. The 3D dose evaluation software system ( P DRESS, patient specific dose real evaluation system), which were developed in this study evaluates the accuracies of the three-dimensional dose distributions. Further applications of the system utility are expected to result from future studies.

  8. 21 CFR 820.86 - Acceptance status.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... QUALITY SYSTEM REGULATION Acceptance Activities § 820.86 Acceptance status. Each manufacturer shall... product which has passed the required acceptance activities is distributed, used, or installed. ...

  9. SU-E-I-15: Quantitative Evaluation of Dose Distributions From Axial, Helical and Cone-Beam CT Imaging by Measurement Using a Two-Dimensional Diode-Array Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacko, M; Aldoohan, S; Sonnad, J

    2015-06-15

    Purpose: To evaluate quantitatively dose distributions from helical, axial and cone-beam CT clinical imaging techniques by measurement using a two-dimensional (2D) diode-array detector. Methods: 2D-dose distributions from selected clinical protocols used for axial, helical and cone-beam CT imaging were measured using a diode-array detector (MapCheck2). The MapCheck2 is composed from solid state diode detectors that are arranged in horizontal and vertical lines with a spacing of 10 mm. A GE-Light-Speed CT-simulator was used to acquire axial and helical CT images and a kV on-board-imager integrated with a Varian TrueBeam-STx machine was used to acquire cone-beam CT (CBCT) images. Results: Themore » dose distributions from axial, helical and cone-beam CT were non-uniform over the region-of-interest with strong spatial and angular dependence. In axial CT, a large dose gradient was measured that decreased from lateral sides to the middle of the phantom due to large superficial dose at the side of the phantom in comparison with larger beam attenuation at the center. The dose decreased at the superior and inferior regions in comparison to the center of the phantom in axial CT. An asymmetry was found between the right-left or superior-inferior sides of the phantom which possibly to angular dependence in the dose distributions. The dose level and distribution varied from one imaging technique into another. For the pelvis technique, axial CT deposited a mean dose of 3.67 cGy, helical CT deposited a mean dose of 1.59 cGy, and CBCT deposited a mean dose of 1.62 cGy. Conclusions: MapCheck2 provides a robust tool to measure directly 2D-dose distributions for CT imaging with high spatial resolution detectors in comparison with ionization chamber that provides a single point measurement or an average dose to the phantom. The dose distributions measured with MapCheck2 consider medium heterogeneity and can represent specific patient dose.« less

  10. Factors influencing alert acceptance: a novel approach for predicting the success of clinical decision support

    PubMed Central

    Seidling, Hanna M; Phansalkar, Shobha; Seger, Diane L; Paterno, Marilyn D; Shaykevich, Shimon; Haefeli, Walter E

    2011-01-01

    Background Clinical decision support systems can prevent knowledge-based prescription errors and improve patient outcomes. The clinical effectiveness of these systems, however, is substantially limited by poor user acceptance of presented warnings. To enhance alert acceptance it may be useful to quantify the impact of potential modulators of acceptance. Methods We built a logistic regression model to predict alert acceptance of drug–drug interaction (DDI) alerts in three different settings. Ten variables from the clinical and human factors literature were evaluated as potential modulators of provider alert acceptance. ORs were calculated for the impact of knowledge quality, alert display, textual information, prioritization, setting, patient age, dose-dependent toxicity, alert frequency, alert level, and required acknowledgment on acceptance of the DDI alert. Results 50 788 DDI alerts were analyzed. Providers accepted only 1.4% of non-interruptive alerts. For interruptive alerts, user acceptance positively correlated with frequency of the alert (OR 1.30, 95% CI 1.23 to 1.38), quality of display (4.75, 3.87 to 5.84), and alert level (1.74, 1.63 to 1.86). Alert acceptance was higher in inpatients (2.63, 2.32 to 2.97) and for drugs with dose-dependent toxicity (1.13, 1.07 to 1.21). The textual information influenced the mode of reaction and providers were more likely to modify the prescription if the message contained detailed advice on how to manage the DDI. Conclusion We evaluated potential modulators of alert acceptance by assessing content and human factors issues, and quantified the impact of a number of specific factors which influence alert acceptance. This information may help improve clinical decision support systems design. PMID:21571746

  11. The effects of small field dosimetry on the biological models used in evaluating IMRT dose distributions

    NASA Astrophysics Data System (ADS)

    Cardarelli, Gene A.

    The primary goal in radiation oncology is to deliver lethal radiation doses to tumors, while minimizing dose to normal tissue. IMRT has the capability to increase the dose to the targets and decrease the dose to normal tissue, increasing local control, decrease toxicity and allow for effective dose escalation. This advanced technology does present complex dose distributions that are not easily verified. Furthermore, the dose inhomogeneity caused by non-uniform dose distributions seen in IMRT treatments has caused the development of biological models attempting to characterize the dose-volume effect in the response of organized tissues to radiation. Dosimetry of small fields can be quite challenging when measuring dose distributions for high-energy X-ray beams used in IMRT. The proper modeling of these small field distributions is essential in reproducing accurate dose for IMRT. This evaluation was conducted to quantify the effects of small field dosimetry on IMRT plan dose distributions and the effects on four biological model parameters. The four biological models evaluated were: (1) the generalized Equivalent Uniform Dose (gEUD), (2) the Tumor Control Probability (TCP), (3) the Normal Tissue Complication Probability (NTCP) and (4) the Probability of uncomplicated Tumor Control (P+). These models are used to estimate local control, survival, complications and uncomplicated tumor control. This investigation compares three distinct small field dose algorithms. Dose algorithms were created using film, small ion chamber, and a combination of ion chamber measurements and small field fitting parameters. Due to the nature of uncertainties in small field dosimetry and the dependence of biological models on dose volume information, this examination quantifies the effects of small field dosimetry techniques on radiobiological models and recommends pathways to reduce the errors in using these models to evaluate IMRT dose distributions. This study demonstrates the importance of valid physical dose modeling prior to the use of biological modeling. The success of using biological function data, such as hypoxia, in clinical IMRT planning will greatly benefit from the results of this study.

  12. Monte Carlo evaluation of RapidArc™ oropharynx treatment planning strategies for sparing of midline structures

    NASA Astrophysics Data System (ADS)

    Bush, K.; Zavgorodni, S.; Gagne, I.; Townson, R.; Ansbacher, W.; Beckham, W.

    2010-08-01

    The aim of the study was to perform the Monte Carlo (MC) evaluation of RapidArc™ (Varian Medical Systems, Palo Alto, CA) dose calculations for four oropharynx midline sparing planning strategies. Six patients with squamous cell cancer of the oropharynx were each planned with four RapidArc head and neck treatment strategies consisting of single and double photon arcs. In each case, RTOG0522 protocol objectives were used during planning optimization. Dose calculations performed with the analytical anisotropic algorithm (AAA) are compared against BEAMnrc/DOSXYZnrc dose calculations for the 24-plan dataset. Mean dose and dose-to-98%-of-structure-volume (D98%) were used as metrics in the evaluation of dose to planning target volumes (PTVs). Mean dose and dose-to-2%-of-structure-volume (D2%) were used to evaluate dose differences within organs at risk (OAR). Differences in the conformity index (CI) and the homogeneity index (HI) as well as 3D dose distributions were also observed. AAA calculated PTV mean dose, D98%, and HIs showed very good agreement with MC dose calculations within the 0.8% MC (statistical) calculation uncertainty. Regional node volume (PTV-80%) mean dose and D98% were found to be overestimated (1.3%, σ = 0.8% and 2.3%, σ = 0.8%, respectively) by the AAA with respect to MC calculations. Mean dose and D2% to OAR were also observed to be consistently overestimated by the AAA. Increasing dose calculation differences were found in planning strategies exhibiting a higher overall fluence modulation. From the plan dataset, the largest local dose differences were observed in heavily shielded regions and within the esophageal and sinus cavities. AAA dose calculations as implemented in RapidArc™ demonstrate excellent agreement with MC calculations in unshielded regions containing moderate inhomogeneities. Acceptable agreement is achieved in regions of increased MLC shielding. Differences in dose are attributed to inaccuracies in the AAA-modulated fluence modeling, modeling of material inhomogeneities and dose deposition within low-density materials. The use of MC dose calculations leads to the same general conclusion as using AAA that a two arc delivery with limited collimator opening can provide the greatest amount of midline sparing compared to the other techniques investigated.

  13. [Clinical evaluation of heavy-particle radiotherapy using dose volume histogram (DVH)].

    PubMed

    Terahara, A; Nakano, T; Tsujii, H

    1998-01-01

    Radiotherapy with heavy particles such as proton and heavy-charged particles is a promising modality for treatment of localized malignant tumors because of the good dose distribution. A dose calculation and radiotherapy planning system which is essential for this kind of treatment has been developed in recent years. It has the capability to compute the dose volume histogram (DVH) which contains dose-volume information for the target volume and other interesting volumes. Recently, DVH is commonly used to evaluate and compare dose distributions in radiotherapy with both photon and heavy particles, and it shows that a superior dose distribution is obtained in heavy particle radiotherapy. DVH is also utilized for the evaluation of dose distribution related to clinical outcomes. Besides models such as normal tissue complication probability (NTCP) and tumor control probability (TCP), which can be calculated from DVH are proposed by several authors, they are applied to evaluate dose distributions themselves and to evaluate them in relation to clinical results. DVH is now a useful and important tool, but further studies are needed to use DVH and these models practically for clinical evaluation of heavy-particle radiotherapy.

  14. Utilizing knowledge from prior plans in the evaluation of quality assurance

    NASA Astrophysics Data System (ADS)

    Stanhope, Carl; Wu, Q. Jackie; Yuan, Lulin; Liu, Jianfei; Hood, Rodney; Yin, Fang-Fang; Adamson, Justus

    2015-06-01

    Increased interest regarding sensitivity of pre-treatment intensity modulated radiotherapy and volumetric modulated arc radiotherapy (VMAT) quality assurance (QA) to delivery errors has led to the development of dose-volume histogram (DVH) based analysis. This paradigm shift necessitates a change in the acceptance criteria and action tolerance for QA. Here we present a knowledge based technique to objectively quantify degradations in DVH for prostate radiotherapy. Using machine learning, organ-at-risk (OAR) DVHs from a population of 198 prior patients’ plans were adapted to a test patient’s anatomy to establish patient-specific DVH ranges. This technique was applied to single arc prostate VMAT plans to evaluate various simulated delivery errors: systematic single leaf offsets, systematic leaf bank offsets, random normally distributed leaf fluctuations, systematic lag in gantry angle of the mutli-leaf collimators (MLCs), fluctuations in dose rate, and delivery of each VMAT arc with a constant rather than variable dose rate. Quantitative Analyses of Normal Tissue Effects in the Clinic suggests V75Gy dose limits of 15% for the rectum and 25% for the bladder, however the knowledge based constraints were more stringent: 8.48   ±   2.65% for the rectum and 4.90   ±   1.98% for the bladder. 19   ±   10 mm single leaf and 1.9   ±   0.7 mm single bank offsets resulted in rectum DVHs worse than 97.7% (2σ) of clinically accepted plans. PTV degradations fell outside of the acceptable range for 0.6   ±   0.3 mm leaf offsets, 0.11   ±   0.06 mm bank offsets, 0.6   ±   1.3 mm of random noise, and 1.0   ±   0.7° of gantry-MLC lag. Utilizing a training set comprised of prior treatment plans, machine learning is used to predict a range of achievable DVHs for the test patient’s anatomy. Consequently, degradations leading to statistical outliers may be identified. A knowledge based QA evaluation enables customized QA criteria per treatment site, institution and/or physician and can often be more sensitive to errors than criteria based on organ complication rates.

  15. SU-F-P-19: Fetal Dose Estimate for a High-Dose Fluoroscopy Guided Intervention Using Modern Data Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moirano, J

    Purpose: An accurate dose estimate is necessary for effective patient management after a fetal exposure. In the case of a high-dose exposure, it is critical to use all resources available in order to make the most accurate assessment of the fetal dose. This work will demonstrate a methodology for accurate fetal dose estimation using tools that have recently become available in many clinics, and show examples of best practices for collecting data and performing the fetal dose calculation. Methods: A fetal dose estimate calculation was performed using modern data collection tools to determine parameters for the calculation. The reference pointmore » air kerma as displayed by the fluoroscopic system was checked for accuracy. A cumulative dose incidence map and DICOM header mining were used to determine the displayed reference point air kerma. Corrections for attenuation caused by the patient table and pad were measured and applied in order to determine the peak skin dose. The position and depth of the fetus was determined by ultrasound imaging and consultation with a radiologist. The data collected was used to determine a normalized uterus dose from Monte Carlo simulation data. Fetal dose values from this process were compared to other accepted calculation methods. Results: An accurate high-dose fetal dose estimate was made. Comparison to accepted legacy methods were were within 35% of estimated values. Conclusion: Modern data collection and reporting methods ease the process for estimation of fetal dose from interventional fluoroscopy exposures. Many aspects of the calculation can now be quantified rather than estimated, which should allow for a more accurate estimation of fetal dose.« less

  16. Evaluation of three presets for four-dimensional cone beam CT in lung radiotherapy verification by visual grading analysis.

    PubMed

    Kember, Sally A; Hansen, Vibeke N; Fast, Martin F; Nill, Simeon; McDonald, Fiona; Ahmed, Merina; Thomas, Karen; McNair, Helen A

    2016-07-01

    To evaluate three image acquisition presets for four-dimensional cone beam CT (CBCT) to identify an optimal preset for lung tumour image quality while minimizing dose and acquisition time. Nine patients undergoing radical conventionally fractionated radiotherapy for lung cancer had verification CBCTs acquired using three presets: Preset 1 on Day 1 (11 mGy dose, 240 s acquisition time), Preset 2 on Day 2 (9 mGy dose, 133 s acquisition time) and Preset 3 on Day 3 (9 mGy dose, 67 s acquisition time). The clarity of the tumour and other thoracic structures, and the acceptability of the match, were retrospectively graded by visual grading analysis (VGA). Logistic regression was used to identify the most appropriate preset and any factors that might influence the result. Presets 1 and 2 met a clinical requirement of 75% of structures to be rated "Clear" or above and 75% of matches to be rated "Acceptable" or above. Clarity is significantly affected by preset, patient, observer and structure. Match acceptability is significantly affected by preset. The application of VGA in this initial study enabled a provisional selection of an optimal preset (Preset 2) to be made. This was the first application of VGA to the investigation of presets for CBCT.

  17. SU-E-T-357: Electronic Compensation Technique to Deliver Total Body Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakeman, T; Wang, I; Podgorsak, M

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient’s immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has conventionally been used to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Methods: Treatment plans utilizing electronic compensation to deliver a total body dose were created retrospectively for patients for whom CTmore » data had been previously acquired. Each treatment plan includes two, specifically weighted, pair of opposed fields. One pair of open, large fields (collimator=45°), to encompass the patient’s entire anatomy, and one pair of smaller fields (collimator=0°) focused only on the thicker midsection of the patient. The optimal fluence for each one of the smaller fields was calculated at a patient specific penetration depth. Irregular surface compensators provide a more uniform dose distribution within the smaller opposed fields. Results: Dose-volume histograms (DVH) were calculated for the evaluating the electronic compensation technique. In one case, the maximum body doses calculated from the DVH were reduced from the non-compensated 195.8% to 165.3% in the electronically compensated plans, indicating a more uniform dose with the region of electronic compensation. The mean body doses calculated from the DVH were also reduced from the non-compensated 120.6% to 112.7% in the electronically compensated plans, indicating a more accurate delivery of the prescription dose. All calculated monitor units were well within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not substantially increase the beam on time while it can significantly reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.« less

  18. Impact of temporal probability in 4D dose calculation for lung tumors.

    PubMed

    Rouabhi, Ouided; Ma, Mingyu; Bayouth, John; Xia, Junyi

    2015-11-08

    The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient-specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four-dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath-hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath-hold CT using the deformation map between the phase CT and the breath-hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient-specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate > 95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of -0.1% ± 0.6% and -0.2% ± 0.4% in MTD, -0.2% ± 1.9% and -0.2% ± 1.3% in MLD, 0.09% ± 2.8% and -0.07% ± 1.8% in lung V20, -0.1% ± 2.0% and 0.08% ± 1.34% in lung V10, 0.47% ± 1.8% and 0.19% ± 1.3% in lung V5, respectively. We concluded that four-dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can approximate four-dimensional dose computed using the patient-specific respiratory trace.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mwidu, U; Devic, S; Shehadeh, M

    Purpose: A retrospective comparison of dose distributions achievable by High dose rate brachytherapy (HDRBT), Helical TomoTherapy (TOMO), CyberKnife (CK) and RapidArc (RA) in locally advanced inoperable cervical cancer patients is presented. Methods: Five patients with advanced stage cervical carcinoma were selected for this study after a full course of external beam radiotherapy (EBRT), chemotherapy and HDR Brachytherapy. To highlight any significant similarities/differences in dose distributions, high-risk clinical target volume (HRCTV) coverage, organs at risk (OAR) sparing, and machine specific delivery limitations, we used D90 (dose received by 90% of the volume) as the parameter for HRCTV coverage as recommended bymore » the GEC-ESTRO Working Group. We also compared both integral and differential dose volume histograms (DVH) between different dose distributions treatment modalities for HRCTV and OAR. Results: TOMO and RA provided the most conformal dose distributions to HRCTV. Median doses (in Gy) to organs at risk were; for rectal wall: 1.7±0.6, 2.5±0.6,1.2±0.3, and 1.5±0.6, and for bladder wall: 1.6±0.1, 2.4±0.4, 0.8±0.6, and 1.5±0.5, for HDRBT, TOMO, CK, and RA, respectively. Conclusion: Contemporary EBRT modalities might be able to replace brachytherapy treatments for cervix cancer. While brachytherapy dose distributions feature high dose gradients, EBRT modalities provide highly conformal dose distributions to the target. However, it is still not clear whether a highly conformal dose or high gradient dose is more clinically relevant for the HRCTV in cervix cancer patients.« less

  20. SU-F-T-279: Impact of Beam Energy Drifts On IMRT Delivery Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goddu, S; Kamal, G; Herman, A

    Purpose: According to TG-40 percent-depth-dose (PDD) tolerance is ±2% but TG-142 is ±1%. Now the question is, which one is relevant in IMRT era? The primary objective of this study is to evaluate dosimetric impact of beam-energy-drifts on IMRT-delivery. Methods: Beam-energy drifts were simulated by adjusting Linac’s bending-magnet-current (BMC) followed by tuning the pulse-forming network and adjusting gun-current. PDD change of −0.6% and +1.2% were tested. Planar-dosimetry measurements were performed using an ionization-chamber-array in solid-water phantoms. Study includes 10-head-and-neck and 3-breast cancer patients. en-face beam-deliveries were also tested at 1.3cm and 5.3cm depths. Composite and single-field dose-distributions were compared againstmore » the plans to determine %Gamma pass-rates (%GPRs). For plan dose comparisons, changes in %Gamma pass-rates (cPGPRs) were computed/reported to exclude the differences between dose-computation and delivery. Dose distributions of the drifted-energies were compared against their baseline measurements to determine the% GPRs. A Gamma criteria of 3%/3mm was considered for plan-dose comparisons while 3%/1mm used for measured dose intercomparisons. Results: For composite-dose delivery, average cPGPRs were 0.41%±2.48% and −2.54%±3.65% for low-energy (LE) and high-energy (HE) drifts, respectively. For measured dose inter-comparisons, the average%GPRs were 98.4%±2.2% (LE-drift) and 95.8%±4.0 (HE-drift). The average %GPR of 92.6%±4.3% was noted for the worst-case scenario comparing LE-drift to HE-drift. All en-face beams at 5.3 cm depth have cPGPRs within ±4% of the baseline-energy measurements. However, greater variations were noted for 1.3cm depth. Average %GPRs for drifted energies were >99% at 5.3cm and >97% at 1.3cm depths. However, for the worst-case scenario (LE-drift to HE-drift) these numbers dropped to 95.2% at 5.3cm and 93.1% at 1.3cm depths. Conclusion: The dosimetric impact of beam-energy drifts was found to be within clinically acceptable tolerance. However, this study includes a single energy with limited range of PDD change. Further studies are on going and the results will be presented. Received funding from Varian Medical Systems, Palo Alto, CA.« less

  1. TU-AB-BRB-01: Coverage Evaluation and Probabilistic Treatment Planning as a Margin Alternative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebers, J.

    The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less

  2. TU-AB-BRB-03: Coverage-Based Treatment Planning to Accommodate Organ Deformable Motions and Contouring Uncertainties for Prostate Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, H.

    The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less

  3. TU-AB-BRB-02: Stochastic Programming Methods for Handling Uncertainty and Motion in IMRT Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkelbach, J.

    The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less

  4. TU-AB-BRB-00: New Methods to Ensure Target Coverage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less

  5. SU-F-T-380: Comparing the Effect of Respiration On Dose Distribution Between Conventional Tangent Pair and IMRT Techniques for Adjuvant Radiotherapy in Early Stage Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M; Ramaseshan, R

    2016-06-15

    Purpose: In this project, we compared the conventional tangent pair technique to IMRT technique by analyzing the dose distribution. We also investigated the effect of respiration on planning target volume (PTV) dose coverage in both techniques. Methods: In order to implement IMRT technique a template based planning protocol, dose constrains and treatment process was developed. Two open fields with optimized field weights were combined with two beamlet optimization fields in IMRT plans. We compared the dose distribution between standard tangential pair and IMRT. The improvement in dose distribution was measured by parameters such as conformity index, homogeneity index and coveragemore » index. Another end point was the IMRT technique will reduce the planning time for staff. The effect of patient’s respiration on dose distribution was also estimated. The four dimensional computed tomography (4DCT) for different phase of breathing cycle was used to evaluate the effect of respiration on IMRT planned dose distribution. Results: We have accumulated 10 patients that acquired 4DCT and planned by both techniques. Based on the preliminary analysis, the dose distribution in IMRT technique was better than conventional tangent pair technique. Furthermore, the effect of respiration in IMRT plan was not significant as evident from the 95% isodose line coverage of PTV drawn on all phases of 4DCT. Conclusion: Based on the 4DCT images, the breathing effect on dose distribution was smaller than what we expected. We suspect that there are two reasons. First, the PTV movement due to respiration was not significant. It might be because we used a tilted breast board to setup patients. Second, the open fields with optimized field weights in IMRT technique might reduce the breathing effect on dose distribution. A further investigation is necessary.« less

  6. LM193 Dual Differential Comparator Total Ionizing Dose Test Report

    NASA Technical Reports Server (NTRS)

    Topper, Alyson; Forney, James; Campola, Michael

    2017-01-01

    The purpose of this test was to characterize the flight lot of Texas Instruments' LM193 (flight part number is 5962-9452601Q2A) for total dose response. This test served as the radiation lot acceptance test (RLAT) for the lot date code (LDC) tested. Low dose rate (LDR) irradiations were performed in this test so that the device susceptibility to enhanced low dose rate sensitivity (ELDRS) was determined.

  7. On the random distribution of scarce doses of vaccine in response to the threat of an influenza pandemic: a response to Wardrope.

    PubMed

    McLachlan, Hugh V

    2015-02-01

    Wardrope argues against my proposed non-consequentialist policy for the distribution of scarce influenza vaccine in the face of a pandemic. According to him, even if one accepts what he calls my deontological ethical theory, it does not follow that we are required to agree with my proposed randomised allocation of doses of vaccine by means of a lottery. He argues in particular that I fail to consider fully the prophylactic role of vaccination whereby it serves to protect from infection more people than are vaccinated. He concludes that: 'The benefits and burdens of vaccination are provided impartially and far more effectively by targeted vaccination than impartial lotteries.' He has shown convincingly that this conclusion can be established in the case of his particular envisaged scenario. However, Wardrope gives no reason to suppose that, in the circumstances that we actually face, targeted vaccination would constitute impartial treatment of citizens in the UK. I readily agree with Wardrope that if it should treat its citizens justly and impartially, it does not necessarily follow that the state should distribute vaccinations of the basis of a lottery. That will be a reasonable thing to do only if certain assumptions are made. These assumptions will not always be reasonable. However, they are reasonable ones to make in the actual circumstances that currently apply. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Population pharmacokinetic drug–drug interaction pooled analysis of existing data for rifabutin and HIV PIs

    PubMed Central

    Hennig, Stefanie; Svensson, Elin M.; Niebecker, Ronald; Fourie, P. Bernard; Weiner, Marc H.; Bonora, Stefano; Peloquin, Charles A.; Gallicano, Keith; Flexner, Charles; Pym, Alex; Vis, Peter; Olliaro, Piero L.; McIlleron, Helen; Karlsson, Mats O.

    2016-01-01

    Objectives Extensive but fragmented data from existing studies were used to describe the drug–drug interaction between rifabutin and HIV PIs and predict doses achieving recommended therapeutic exposure for rifabutin in patients with HIV-associated TB, with concurrently administered PIs. Methods Individual-level data from 13 published studies were pooled and a population analysis approach was used to develop a pharmacokinetic model for rifabutin, its main active metabolite 25-O-desacetyl rifabutin (des-rifabutin) and drug–drug interaction with PIs in healthy volunteers and patients who had HIV and TB (TB/HIV). Results Key parameters of rifabutin affected by drug–drug interaction in TB/HIV were clearance to routes other than des-rifabutin (reduced by 76%–100%), formation of the metabolite (increased by 224% in patients), volume of distribution (increased by 606%) and distribution to the peripheral compartment (reduced by 47%). For des-rifabutin, clearance was reduced by 35%–76% and volume of distribution increased by 67%–240% in TB/HIV. These changes resulted in overall increased exposure to rifabutin in TB/HIV patients by 210% because of the effects of PIs and 280% with ritonavir-boosted PIs. Conclusions Given together with non-boosted or ritonavir-boosted PIs, rifabutin at 150 mg once daily results in similar or higher exposure compared with rifabutin at 300 mg once daily without concomitant PIs and may achieve peak concentrations within an acceptable therapeutic range. Although 300 mg of rifabutin every 3 days with boosted PI achieves an average equivalent exposure, intermittent doses of rifamycins are not supported by current guidelines. PMID:26832753

  9. Failure-probability driven dose painting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogelius, Ivan R.; Håkansson, Katrin; Due, Anne K.

    Purpose: To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed.Methods: Patients treated at our center have five tumor subvolumes from the center of the tumor (PET positive volume) and out delineated. The spatial distribution of 48 failures in patients with complete clinical response after (chemo)radiation is used to derive a model for tumor control probability (TCP). Themore » total TCP is fixed to the clinically observed 70% actuarial TCP at five years. Additionally, the authors match the distribution of failures between the five subvolumes to the observed distribution. The steepness of the dose–response is extracted from the literature and the authors assume 30% and 20% risk of subclinical involvement in the elective volumes. The result is a five-compartment dose response model matching the observed distribution of failures. The model is used to optimize the distribution of dose in individual patients, while keeping the treatment intensity constant and the maximum prescribed dose below 85 Gy.Results: The vast majority of failures occur centrally despite the small volumes of the central regions. Thus, optimizing the dose prescription yields higher doses to the central target volumes and lower doses to the elective volumes. The dose planning study shows that the modified prescription is clinically feasible. The optimized TCP is 89% (range: 82%–91%) as compared to the observed TCP of 70%.Conclusions: The observed distribution of locoregional failures was used to derive an objective, data-driven dose prescription function. The optimized dose is predicted to result in a substantial increase in local control without increasing the predicted risk of toxicity.« less

  10. Measurement of relative depth-dose distribution in radiochromic film dosimeters irradiated with 43-70 keV electron beam for industrial application

    NASA Astrophysics Data System (ADS)

    Matsui, Shinjiro; Hattori, Takeaki; Nonaka, Takashi; Watanabe, Yuki; Morita, Ippei; Kondo, Junichi; Ishikawa, Masayoshi; Mori, Yoshitaka

    2018-05-01

    The relative dose in a layer, which is thinner than the thickness of the dosimeter is evaluated using simulated depth-dose distributions, and the measured responses of dosimeters with acceleration voltages from 43 to 70 kV, via ultra-low-energy electron beam (ULEB) irradiation. By stacking thin film dosimeters, we confirmed that the simulated depth-dose distributions coincided with the measured depth-dose curve within the measurement uncertainty (k = 2). Using the measurement dose of the 47 μm dosimeter and the simulated depth-dose distribution, the dose of 11 μm dosimeters in the surface was evaluated within the measurement uncertainty (k = 2). We also verified the effectiveness of this method for a thinner layer by changing the acceleration voltage of the irradiation source. We evaluated the relative dose for an adjusted depth of energy deposition from 4.4 μm to 22.8 μm. As a result, this method was found to be effective for a thickness, which is less than the thickness of the dosimeter. When irradiation conditions are well known with accuracy, using the confirmed relative depth-dose distributions across any dosimeter thickness range, a dose evaluation, in several μm steps will possibly improve the design of industrial ULEB processes.

  11. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp; Yamaguchi, Hajime; Kizaki, Hisao

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV,more » spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.« less

  12. DMLC tracking and gating can improve dose coverage for prostate VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvill, E.; Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065; School of Physics, University of Sydney, NSW 2006

    2014-09-15

    Purpose: To assess and compare the dosimetric impact of dynamic multileaf collimator (DMLC) tracking and gating as motion correction strategies to account for intrafraction motion during conventionally fractionated prostate radiotherapy. Methods: A dose reconstruction method was used to retrospectively assess the dose distributions delivered without motion correction during volumetric modulated arc therapy fractions for 20 fractions of five prostate cancer patients who received conventionally fractionated radiotherapy. These delivered dose distributions were compared with the dose distributions which would have been delivered had DMLC tracking or gating motion correction strategies been implemented. The delivered dose distributions were constructed by incorporating themore » observed prostate motion with the patient's original treatment plan to simulate the treatment delivery. The DMLC tracking dose distributions were constructed using the same dose reconstruction method with the addition of MLC positions from Linac log files obtained during DMLC tracking simulations with the observed prostate motions input to the DMLC tracking software. The gating dose distributions were constructed by altering the prostate motion to simulate the application of a gating threshold of 3 mm for 5 s. Results: The delivered dose distributions showed that dosimetric effects of intrafraction prostate motion could be substantial for some fractions, with an estimated dose decrease of more than 19% and 34% from the planned CTVD{sub 99%} and PTV D{sub 95%} values, respectively, for one fraction. Evaluation of dose distributions for DMLC tracking and gating deliveries showed that both interventions were effective in improving the CTV D{sub 99%} for all of the selected fractions to within 4% of planned value for all fractions. For the delivered dose distributions the difference in rectum V{sub 65%} for the individual fractions from planned ranged from −44% to 101% and for the bladder V{sub 65%} the range was −61% to 26% from planned. The application of tracking decreased the maximum rectum and bladder V{sub 65%} difference to 6% and 4%, respectively. Conclusions: For the first time, the dosimetric impact of DMLC tracking and gating to account for intrafraction motion during prostate radiotherapy has been assessed and compared with no motion correction. Without motion correction intrafraction prostate motion can result in a significant decrease in target dose coverage for a small number of individual fractions. This is unlikely to effect the overall treatment for most patients undergoing conventionally fractionated treatments. Both DMLC tracking and gating demonstrate dose distributions for all assessed fractions that are robust to intrafraction motion.« less

  13. Skin dose mapping for non-uniform x-ray fields using a backscatter point spread function

    NASA Astrophysics Data System (ADS)

    Vijayan, Sarath; Xiong, Zhenyu; Shankar, Alok; Rudin, Stephen; Bednarek, Daniel R.

    2017-03-01

    Beam shaping devices like ROI attenuators and compensation filters modulate the intensity distribution of the xray beam incident on the patient. This results in a spatial variation of skin dose due to the variation of primary radiation and also a variation in backscattered radiation from the patient. To determine the backscatter component, backscatter point spread functions (PSF) are generated using EGS Monte-Carlo software. For this study, PSF's were determined by simulating a 1 mm beam incident on the lateral surface of an anthropomorphic head phantom and a 20 cm thick PMMA block phantom. The backscatter PSF's for the head phantom and PMMA phantom are curve fit with a Lorentzian function after being normalized to the primary dose intensity (PSFn). PSFn is convolved with the primary dose distribution to generate the scatter dose distribution, which is added to the primary to obtain the total dose distribution. The backscatter convolution technique is incorporated in the dose tracking system (DTS), which tracks skin dose during fluoroscopic procedures and provides a color map of the dose distribution on a 3D patient graphic model. A convolution technique is developed for the backscatter dose determination for the nonuniformly spaced graphic-model surface vertices. A Gafchromic film validation was performed for shaped x-ray beams generated with an ROI attenuator and with two compensation filters inserted into the field. The total dose distribution calculated by the backscatter convolution technique closely agreed with that measured with the film.

  14. Liquid chromatographic determination of minocycline in brain-to-plasma distribution studies in the rat.

    PubMed

    Colovic, Milena; Caccia, Silvio

    2003-07-05

    An isocratic reversed-phase high-performance liquid chromatographic procedure was developed for the determination of minocycline in rat plasma and brain and applied to brain-to-blood (plasma) distribution studies. The procedure is based on isolation of the compound and the internal standard (either demeclocycline or tetracycline may be used) from plasma and brain constituents using the Oasis HLB cartridge, with satisfactory recovery and specificity, and separation on a Symmetry Shield RP8 (15 cm x 4.6 mm, 3.5 microm) column coupled with a UV detector set at 350 nm. The assay was linear over a wide range, with a lower limit of quantification of 50 ng ml(-1) or g(-1), using 0.2 ml of plasma and about 200 mg of brain tissue. Precision and accuracy were acceptable. In the rat minocycline crossed the blood-brain barrier slowly, achieving mean brain concentrations between 30 and 40% of the equivalent systemic exposure, regardless of the dose and route of administration.

  15. Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment

    NASA Astrophysics Data System (ADS)

    Asuni, Ganiyu Adeniyi

    Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. in vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. in vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was demonstrated that the tool accurately simulates dose to the patient CT and planar detector geometries. The tool has been made freely available to the medical physics research community to help advance the development of in vivo planar detectors. In conclusion, this thesis presents several investigations that improve the understanding of a novel entrance detector designed for patient in vivo dosimetry.

  16. Independent dose verification system with Monte Carlo simulations using TOPAS for passive scattering proton therapy at the National Cancer Center in Korea

    NASA Astrophysics Data System (ADS)

    Shin, Wook-Geun; Testa, Mauro; Kim, Hak Soo; Jeong, Jong Hwi; Byeong Lee, Se; Kim, Yeon-Joo; Min, Chul Hee

    2017-10-01

    For the independent validation of treatment plans, we developed a fully automated Monte Carlo (MC)-based patient dose calculation system with the tool for particle simulation (TOPAS) and proton therapy machine installed at the National Cancer Center in Korea to enable routine and automatic dose recalculation for each patient. The proton beam nozzle was modeled with TOPAS to simulate the therapeutic beam, and MC commissioning was performed by comparing percent depth dose with the measurement. The beam set-up based on the prescribed beam range and modulation width was automated by modifying the vendor-specific method. The CT phantom was modeled based on the DICOM CT files with TOPAS-built-in function, and an in-house-developed C++ code directly imports the CT files for positioning the CT phantom, RT-plan file for simulating the treatment plan, and RT-structure file for applying the Hounsfield unit (HU) assignment, respectively. The developed system was validated by comparing the dose distributions with those calculated by the treatment planning system (TPS) for a lung phantom and two patient cases of abdomen and internal mammary node. The results of the beam commissioning were in good agreement of up to 0.8 mm2 g-1 for B8 option in both of the beam range and the modulation width of the spread-out Bragg peaks. The beam set-up technique can predict the range and modulation width with an accuracy of 0.06% and 0.51%, respectively, with respect to the prescribed range and modulation in arbitrary points of B5 option (128.3, 132.0, and 141.2 mm2 g-1 of range). The dose distributions showed higher than 99% passing rate for the 3D gamma index (3 mm distance to agreement and 3% dose difference) between the MC simulations and the clinical TPS in the target volume. However, in the normal tissues, less favorable agreements were obtained for the radiation treatment planning with the lung phantom and internal mammary node cases. The discrepancies might come from the limitations of the clinical TPS, which is the inaccurate dose calculation algorithm for the scattering effect, in the range compensator and inhomogeneous material. Moreover, the steep slope of the compensator, conversion of the HU values to the human phantom, and the dose calculation algorithm for the HU assignment also could be reasons of the discrepancies. The current study could be used for the independent dose validation of treatment plans including high inhomogeneities, the steep compensator, and riskiness such as lung, head & neck cases. According to the treatment policy, the dose discrepancies predicted with MC could be used for the acceptance decision of the original treatment plan.

  17. The effect of irradiation in the quality of the avocado frozen pulp

    NASA Astrophysics Data System (ADS)

    Valdivia, Ma. Ángeles; Bustos, Ma. Emilia; Ruiz, Javier; Ruiz, Luisa F.

    2002-03-01

    The quality of frozen avocado pulp irradiated with 60Co gamma rays at doses of: 0.5, 1.0, 1.5, and 2.5 kGy, was studied. These are possible doses for reducing the content of bacteria Listeria monocytogenes by 1-4 log cycles. The study principally consisted of weekly evaluations of damages caused in lipids and chlorophyll pigment over a period of one year. No significant differences were found in either hydrolysis rancidity or in the oxidative rancidity for any of the doses. The concentrations of fatty acids and peroxides were below those established by Codex Alimentarius. This means that the quality of the oil in the frozen avocado pulp remains acceptable. The kinetic model for the oxidative rancidity is of first order and the shelf life of the product is of about 120 weeks. The concentrations of the fatty acids and of malondialdehyde were not high enough to produce off-flavors. It was also determined that the radiation doses did not influence the chemistry of the chlorophyll. The results were confirmed by the panelists, who accepted irradiated frozen pulp at the highest radiation dose.

  18. High dose rate brachytherapy for oral cancer

    PubMed Central

    YamazakI, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. PMID:23179377

  19. High dose rate brachytherapy for oral cancer.

    PubMed

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer.

  20. Acute Biological Effects of Simulating the Whole-Body Radiation Dose Distribution from a Solar Particle Event Using a Porcine Model

    PubMed Central

    Wilson, Jolaine M.; Sanzari, Jenine K.; Diffenderfer, Eric S.; Yee, Stephanie S.; Seykora, John T.; Maks, Casey; Ware, Jeffrey H.; Litt, Harold I.; Reetz, Jennifer A.; McDonough, James; Weissman, Drew; Kennedy, Ann R.; Cengel, Keith A.

    2011-01-01

    In a solar particle event (SPE), an unshielded astronaut would receive proton radiation with an energy profile that produces a highly inhomogeneous dose distribution (skin receiving a greater dose than internal organs). The novel concept of using megavoltage electron-beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation has been described previously. Here, Yucatan minipigs were used to determine the effects of a superficial, SPE-like proton dose distribution using megavoltage electrons. In these experiments, dose-dependent increases in skin pigmentation, ulceration, keratinocyte necrosis and pigment incontinence were observed. Five of 18 animals (one each exposed to 7.5 Gy and 12.5 Gy radiation and three exposed to 25 Gy radiation) developed symptomatic, radiation-associated pneumonopathy approximately 90 days postirradiation. The three animals from the highest dose group showed evidence of mycoplasmal pneumonia along with radiation pneumonitis. Moreover, delayed-type hypersensitivity was found to be altered, suggesting that superficial irradiation of the skin with ionizing radiation might cause immune dysfunction or dysregulation. In conclusion, using total doses, patterns of dose distribution, and dose rates that are compatible with potential astronaut exposure to SPE radiation, animals experienced significant toxicities that were qualitatively different from toxicities previously reported in pigs for homogeneously delivered radiation at similar doses. PMID:21859326

  1. BMDExpress Data Viewer: A Visualization Tool to Analyze BMDExpress Datasets(SoTC)

    EPA Science Inventory

    Background: Benchmark Dose (BMD) modelling is a mathematical approach used to determine where a dose-response change begins to take place relative to controls following chemical exposure. BMDs are being increasingly applied in regulatory toxicology to estimate acceptable exposure...

  2. BMDExpress Data Viewer: A Visualization Tool to Analyze BMDExpress Datasets (STC symposium)

    EPA Science Inventory

    Background: Benchmark Dose (BMD) modelling is a mathematical approach used to determine where a dose-response change begins to take place relative to controls following chemical exposure. BMDs are being increasingly applied in regulatory toxicology to estimate acceptable exposure...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, Y; Tachibana, H

    Purpose: For head and neck VMAT (HN-VMAT), variations of position and deformation of patient’s shoulders is a concern to affect inaccuracy of dose distribution. It has been reported that the setup error of the shoulders was variable from 5 mm – 1 cm. The beams of the HN-VMAT pass through the shoulders. We assessed the impact of shoulder deformation to dose distribution for HN-VMAT. Methods: One HN-VMAT plan was generated using a patient’s CT. The patient’s CT was deformed using ImSimQA (Oncology Systems Limited, Shrewsbury, Shropshire, UK) to generate several patterns of the shoulders’ deformations when the right and leftmore » humeral heads were shifted with 3, 6, and 15 mm in the superior and inferior directions (SI), 3, 5, and 15 mm in the anterior and posterior directions (AP), and 5 and 15 mm in the right or left direction (LR). DVH comparison was performed in the different deformation patterns. The dosimetric parameters of D95% for CTV70Gy, CTV60Gy and CTV54Gy and dmax for Spinal cord were also measured. Gamma index evaluation (Criteria: 3%/2mm) was performed to exhibit clinically tolerable area in the comparison. Results: DVH comparison shows similar for all structures. As the comparison for the dosimetric parameters, the variations of D95% in the LR and AP were within 1%. There were larger variations in the SI than those in the other directions, however were within 1.5%. In gamma index evaluation, the small spots with higher gamma index values were appeared when the shift was 6 mm, however the pass ratio was 99.13%. Conclusion: HN-VMAT should be robust for shoulder deformation and geometric accuracy within 6 mm from patient’s setup and image-guided radiotherapy may be clinically acceptable for target dose coverage or normal tissue dose sparing.« less

  4. A retrospective planning analysis comparing intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) using two optimization algorithms for the treatment of early-stage prostate cancer

    PubMed Central

    Elith, Craig A; Dempsey, Shane E; Warren-Forward, Helen M

    2013-01-01

    Introduction The primary aim of this study is to compare intensity modulated radiation therapy (IMRT) to volumetric modulated arc therapy (VMAT) for the radical treatment of prostate cancer using version 10.0 (v10.0) of Varian Medical Systems, RapidArc radiation oncology system. Particular focus was placed on plan quality and the implications on departmental resources. The secondary objective was to compare the results in v10.0 to the preceding version 8.6 (v8.6). Methods Twenty prostate cancer cases were retrospectively planned using v10.0 of Varian's Eclipse and RapidArc software. Three planning techniques were performed: a 5-field IMRT, VMAT using one arc (VMAT-1A), and VMAT with two arcs (VMAT-2A). Plan quality was assessed by examining homogeneity, conformity, the number of monitor units (MUs) utilized, and dose to the organs at risk (OAR). Resource implications were assessed by examining planning and treatment times. The results obtained using v10.0 were also compared to those previously reported by our group for v8.6. Results In v10.0, each technique was able to produce a dose distribution that achieved the departmental planning guidelines. The IMRT plans were produced faster than VMAT plans and displayed improved homogeneity. The VMAT plans provided better conformity to the target volume, improved dose to the OAR, and required fewer MUs. Treatments using VMAT-1A were significantly faster than both IMRT and VMAT-2A. Comparison between versions 8.6 and 10.0 revealed that in the newer version, VMAT planning was significantly faster and the quality of the VMAT dose distributions produced were of a better quality. Conclusion VMAT (v10.0) using one or two arcs provides an acceptable alternative to IMRT for the treatment of prostate cancer. VMAT-1A has the greatest impact on reducing treatment time. PMID:26229615

  5. Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supe, Sanjay S.; Bijina, T.K.; Varatharaj, C.

    2009-04-01

    Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of thismore » study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome points were higher for the apex model compared with the non-apex model. Mean doses to the optimization points for both the cylinder models and all the cylinder diameters were 6 Gy, matching with the prescription dose of 6 Gy. Iterative optimization routine resulted in the highest dose to apex point and dome points. The mean dose for optimization point was 6.01 Gy for iterative optimization and was much higher than 5.74 Gy for geometric and equal times routines. Step size of 1 cm gave the highest dose to the apex point. This step size was superior in terms of mean dose to optimization points. Selection of dose optimization points for the derivation of optimized dose distributions for vaginal cylinders affects the dose distributions.« less

  6. 21 CFR 556.113 - Ceftiofur.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., AND RELATED PRODUCTS TOLERANCES FOR RESIDUES OF NEW ANIMAL DRUGS IN FOOD Specific Tolerances for Residues of New Animal Drugs § 556.113 Ceftiofur. (a) Acceptable daily intake and acceptable single-dose... desfuroylceftiofur (marker residue) are: (i) Kidney (target tissue). 0.25 parts per million (ppm). (ii)Liver. 3 ppm...

  7. 21 CFR 556.113 - Ceftiofur.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., AND RELATED PRODUCTS TOLERANCES FOR RESIDUES OF NEW ANIMAL DRUGS IN FOOD Specific Tolerances for Residues of New Animal Drugs § 556.113 Ceftiofur. (a) Acceptable daily intake and acceptable single-dose... desfuroylceftiofur (marker residue) are: (i) Kidney (target tissue). 0.25 parts per million (ppm). (ii)Liver. 3 ppm...

  8. 21 CFR 556.113 - Ceftiofur.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., AND RELATED PRODUCTS TOLERANCES FOR RESIDUES OF NEW ANIMAL DRUGS IN FOOD Specific Tolerances for Residues of New Animal Drugs § 556.113 Ceftiofur. (a) Acceptable daily intake and acceptable single-dose... desfuroylceftiofur (marker residue) are: (i) Kidney (target tissue). 0.25 parts per million (ppm). (ii)Liver. 3 ppm...

  9. A Dosimetric Comparison of Proton and Intensity-Modulated Photon Radiotherapy for Pediatric Parameningeal Rhabdomyosarcomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozak, Kevin R.; Adams, Judith; Krejcarek, Stephanie J.

    Purpose: We compared tumor and normal tissue dosimetry of proton radiation therapy with intensity-modulated radiation therapy (IMRT) for pediatric parameningeal rhabdomyosarcomas (PRMS). Methods and Materials: To quantify dosimetric differences between contemporary proton and photon treatment for pediatric PRMS, proton beam plans were compared with IMRT plans. Ten patients treated with proton radiation therapy at Massachusetts General Hospital had IMRT plans generated. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Proton and IMRT plans provided acceptable and comparable target volume coverage, with atmore » least 99% of the CTV receiving 95% of the prescribed dose in all cases. Improved dose conformality provided by proton therapy resulted in significant sparing of all examined normal tissues except for ipsilateral cochlea and mastoid; ipsilateral parotid gland sparing was of borderline statistical significance (p = 0.05). More profound sparing of contralateral structures by protons resulted in greater dose asymmetry between ipsilateral and contralateral retina, optic nerves, cochlea, and mastoids; dose asymmetry between ipsilateral and contralateral parotids was of borderline statistical significance (p = 0.05). Conclusions: For pediatric PRMS, superior normal tissue sparing is achieved with proton radiation therapy compared with IMRT. Because of enhanced conformality, proton plans also demonstrate greater normal tissue dose distribution asymmetry. Longitudinal studies assessing the impact of proton radiotherapy and IMRT on normal tissue function and growth symmetry are necessary to define the clinical consequences of these differences.« less

  10. Analysis of the Body Distribution of Absorbed Dose in the Organs of Three Species of Fish from Sepetiba Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Wagner de S; Universidade Federal Fluminense, Programa de Pos-graduacao em Biologia Marinha; Kelecom, Alphonse

    2008-08-07

    The body distribution of Polonium-210 in three fishes from the Sepetiba Bay (Macrodon ancylodon, Micropogonias furnieri and Mugil curema) has been studied under the approach of the Department of Energy of the United States of America (DOE) that set the limit of absorbed dose rate in biota equal to 3.5x10{sup 3} {mu}Gy/y, and that also established the relation between dose rate (D) and radionuclide concentration (c) on a fish muscle fresh weight basis, as follows: D = 5.05 ExNxC, assuming that the radionuclide distribution is homogenous among organs. Two hypotheses were tested here, using statistical tools: 1) is the bodymore » distribution of absorbed dose homogenous among organs? and 2) is the body distribution of absorbed dose identical among studied fishes? It was concluded, as expected, that the distribution among organs is heterogeneous; but, unexpectedly, that the three fishes display identical body distribution pattern, although they belong to different trophic levels. Hence, concerning absorbed dose calculation, the statement that data distribution is homogenous must be understood merely as an approximation, at least in the case of Polonium-210.« less

  11. Second trimester medical abortion with mifepristone followed by unlimited dosing of buccal misoprostol in Armenia.

    PubMed

    Louie, Karmen S; Chong, Erica; Tsereteli, Tamar; Avagyan, Gayane; Abrahamyan, Ruzanna; Winikoff, Beverly

    2017-02-01

    The aim of the study was to assess the efficacy and acceptability of a regimen using mifepristone and buccal misoprostol with unlimited dosing for second trimester abortion in Armenia. Women seeking to terminate 13-22 week pregnancies were enrolled in the study. Participants swallowed 200 mg mifepristone in the clinic and were instructed to return to the hospital for induction 24-48 h later. During induction, women were given 400 μg buccal misoprostol every 3 h until the fetus and placenta were expelled. The abortion was considered a success if complete uterine evacuation was achieved without oxytocin or surgery. A total of 120 women with a median gestational age of 18 weeks participated in the study. All women began misoprostol induction around 24 h after taking mifepristone. Complete uterine evacuation was achieved in 119 (99.2%) women. The median induction-to-abortion interval was 10.3 h (range 4-17.4) with a mean of 9.5 ± 2.5 h. A median of four misoprostol doses (range 2-6) with a mean of 4 ± 1 misoprostol doses were administered. The induction-to-abortion interval, number of misoprostol doses, pain score and analgesia use increased as gestational age advanced. Acceptability of the method was high among both patients and providers. The medical abortion regimen of 200 mg mifepristone followed 24 h later by induction with 400 μg buccal misoprostol administered every 3 h, with no limit on the number of doses used for the termination of pregnancies of 13-22 weeks' gestation is an effective and acceptable option for women.

  12. Pharmacokinetics of lacosamide and omeprazole coadministration in healthy volunteers: results from a phase I, randomized, crossover trial.

    PubMed

    Cawello, Willi; Mueller-Voessing, Christa; Fichtner, Andreas

    2014-05-01

    The antiepileptic drug lacosamide has a low potential for drug-drug interactions, but is a substrate and moderate inhibitor of the cytochrome P450 (CYP) enzyme CYP2C19. This phase I, randomized, open-label, two-way crossover trial evaluated the pharmacokinetic effects of lacosamide and omeprazole coadministration. Healthy, White, male volunteers (n = 36) who were not poor metabolizers of CYP2C19 were randomized to treatment A (single-dose 40 mg omeprazole on days 1 and 8 together with 6 days of multiple-dose lacosamide [200-600 mg/day] on days 3-8) and treatment B (single doses of 300 mg lacosamide on days 1 and 8 with 7 days of 40 mg/day omeprazole on days 3-9) in pseudorandom order, separated by a ≥ 7-day washout period. Area under the concentration-time curve (AUC) and peak concentration (C(max)) were the primary pharmacokinetic parameters measured for lacosamide or omeprazole administered alone (reference) or in combination (test). Bioequivalence was determined if the 90 % confidence interval (CI) of the ratio (test/reference) fell within the acceptance range of 0.8-1.25. The point estimates (90 % CI) of the ratio of omeprazole + lacosamide coadministered versus omeprazole alone for AUC (1.098 [0.996-1.209]) and C(max) (1.105 [0.979-1.247]) fell within the acceptance range for bioequivalence. The point estimates (90 % CI) of the ratio of lacosamide + omeprazole coadministration versus lacosamide alone also fell within the acceptance range for bioequivalence (AUC 1.133 [1.102-1.165]); C(max) 0.996 (0.947-1.047). Steady-state lacosamide did not influence omeprazole single-dose pharmacokinetics, and multiple-dose omeprazole did not influence lacosamide single-dose pharmacokinetics.

  13. Automatic Exposure Control Systems Designed to Maintain Constant Image Noise: Effects on Computed Tomography Dose and Noise Relative to Clinically Accepted Technique Charts

    PubMed Central

    Favazza, Christopher P.; Yu, Lifeng; Leng, Shuai; Kofler, James M.; McCollough, Cynthia H.

    2015-01-01

    Objective To compare computed tomography dose and noise arising from use of an automatic exposure control (AEC) system designed to maintain constant image noise as patient size varies with clinically accepted technique charts and AEC systems designed to vary image noise. Materials and Methods A model was developed to describe tube current modulation as a function of patient thickness. Relative dose and noise values were calculated as patient width varied for AEC settings designed to yield constant or variable noise levels and were compared to empirically derived values used by our clinical practice. Phantom experiments were performed in which tube current was measured as a function of thickness using a constant-noise-based AEC system and the results were compared with clinical technique charts. Results For 12-, 20-, 28-, 44-, and 50-cm patient widths, the requirement of constant noise across patient size yielded relative doses of 5%, 14%, 38%, 260%, and 549% and relative noises of 435%, 267%, 163%, 61%, and 42%, respectively, as compared with our clinically used technique chart settings at each respective width. Experimental measurements showed that a constant noise–based AEC system yielded 175% relative noise for a 30-cm phantom and 206% relative dose for a 40-cm phantom compared with our clinical technique chart. Conclusions Automatic exposure control systems that prescribe constant noise as patient size varies can yield excessive noise in small patients and excessive dose in obese patients compared with clinically accepted technique charts. Use of noise-level technique charts and tube current limits can mitigate these effects. PMID:25938214

  14. True beam commissioning experience at Nordland Hospital Trust, Norway

    NASA Astrophysics Data System (ADS)

    Daci, Lulzime; Malkaj, Partizan

    2016-03-01

    To evaluate the measured of all photon beam data of first Varian True Beam version 2.0 slim model, recently commissioned at Nordland Hospital Trust, Bodø. To compare and evaluate the possibility of beam matching with the Clinac2300, for the energies of 6MV and 15 MV. Materials/Methods: Measurements of PDD, OAR, and Output factors were realized with the IBA Blue-phantom with different detectors and evaluated between them for all photon energies: 6MV, 15MV, 6MV FFF and 10MV FFF. The ionization chambers used were Pin Point CC01, CC04, Semiflex CC13 and photon diode by Iba dosimetry. The data were processed using Beizer algorithm with a resolution of 1 mm. The measured depth dose curves, diagonals, OAR, and output factors were imported into Eclipse in order to calculate beam data for the anisotropic analytical algorithm (AAA version 10.0.28) for both the dataset measured with CC04 and CC13 and compared. The model head of 23EX was selected as the most near model to True Beam as a restriction of our version of Aria. It was seen that better results were achieved with the CC04 measured data as a result of better resolution. For the biggest field after 10 cm depth a larger difference is seen between measured and calculated for both dataset, but it is within the criteria for acceptance. Results: The Beam analysis criteria of 2 mm at 50% dose is achieved for all the fields accept for 40x40 that is within 3%. Depth difference at maximum dose is within 1 mm for all the fields and dose difference at 100 mm and 200 mm is lower than 1% for or all the fields. The PDD between two machines for all the fields differ after Dmax with less than 1%. For profiles in the field zone and outside field the difference is within 1% for all the fields. In the penumbra region the difference is from 2% up to 12% for big fields. As for diagonals they differ as a result of the head construction at the edge of the field and the penumbra region. The output factors differ for big fields within 5% and for the small fields within 3%. MU and dose distribution does not change for plans recalculated with the new modeled machine.

  15. Using SAFRAN Software to Assess Radiological Hazards from Dismantling of Tammuz-2 Reactor Core at Al-tuwaitha Nuclear Site

    NASA Astrophysics Data System (ADS)

    Abed Gatea, Mezher; Ahmed, Anwar A.; jundee kadhum, Saad; Ali, Hasan Mohammed; Hussein Muheisn, Abbas

    2018-05-01

    The Safety Assessment Framework (SAFRAN) software has implemented here for radiological safety analysis; to verify that the dose acceptance criteria and safety goals are met with a high degree of confidence for dismantling of Tammuz-2 reactor core at Al-tuwaitha nuclear site. The activities characterizing, dismantling and packaging were practiced to manage the generated radioactive waste. Dose to the worker was considered an endpoint-scenario while dose to the public has neglected due to that Tammuz-2 facility is located in a restricted zone and 30m berm surrounded Al-tuwaitha site. Safety assessment for dismantling worker endpoint-scenario based on maximum external dose at component position level in the reactor pool and internal dose via airborne activity while, for characterizing and packaging worker endpoints scenarios have been done via external dose only because no evidence for airborne radioactivity hazards outside the reactor pool. The in-situ measurements approved that reactor core components are radiologically activated by Co-60 radioisotope. SAFRAN results showed that the maximum received dose for workers are (1.85, 0.64 and 1.3mSv/y) for activities dismantling, characterizing and packaging of reactor core components respectively. Hence, the radiological hazards remain below the low level hazard and within the acceptable annual dose for workers in radiation field

  16. Surface applicator of a miniature X-ray tube for superficial electronic brachytherapy of skin cancer.

    PubMed

    Kim, Hyun Nam; Lee, Ju Hyuk; Park, Han Beom; Kim, Hyun Jin; Cho, Sung Oh

    2018-01-01

    We designed and fabricated a surface applicator of a novel carbon nanotube (CNT)-based miniature X-ray tube for the use in superficial electronic brachytherapy of skin cancer. To investigate the effectiveness of the surface applicator, the performance of the applicator was numerically and experimentally analyzed. The surface applicator consists of a graphite flattening filter and an X-ray shield. A Monte Carlo radiation transport code, MCNP6, was used to optimize the geometries of both the flattening filter and the shield so that X-rays are generated uniformly over the desired region. The performance of the graphite filter was compared with that of conventional aluminum (Al) filters of different geometries using the numerical simulations. After fabricating a surface applicator, the X-ray spatial distribution was measured to evaluate the performance of the applicator. The graphite filter shows better spatial dose uniformity and less dose distortion than Al filters. Moreover, graphite allows easy fabrication of the flattening filter due to its low X-ray attenuation property, which is particularly important for low-energy electronic brachytherapy. The applicator also shows that no further X-ray shielding is required for the application because unwanted X-rays are completely protected. As a result, highly uniform X-ray dose distribution was achieved from the miniature X-ray tube mounted with the surface applicators. The measured values of both flatness and symmetry were less than 5% and the measured penumbra values were less than 1 mm. All these values satisfy the currently accepted tolerance criteria for radiation therapy. The surface applicator exhibits sufficient performance capability for their application in electronic brachytherapy of skin cancers. © 2017 American Association of Physicists in Medicine.

  17. Framing Innovation: The Role of Distributed Leadership in Gaining Acceptance of Large-Scale Technology Initiatives

    ERIC Educational Resources Information Center

    Turner, Henry J.

    2014-01-01

    This dissertation of practice utilized a multiple case-study approach to examine distributed leadership within five school districts that were attempting to gain acceptance of a large-scale 1:1 technology initiative. Using frame theory and distributed leadership theory as theoretical frameworks, this study interviewed each district's…

  18. SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement Using Plastic Scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, M; Kozuka, T; Oguchi, M

    2014-06-15

    Purpose: To develop the detector for the four-dimensional dose distribution measurement. Methods: We made the prototype detector for four-dimensional dose distribution measurement using a cylindrical plastic scintillator (5 cm diameter) and a conical reflection grass. The plastic scintillator is used as a phantom. When the plastic scintillator is irradiated, the scintillation light was emitted according to absorbed dose distribution. The conical reflection grass was arranged to surround the plastic scintillator, which project to downstream the projection images of the scintillation light. Then, the projection image was reflected to 45 degree direction by flat reflection grass, and was recorded by camcorder.more » By reconstructing the three-dimensional dose distribution from the projection image recorded in each frame, we could obtain the four-dimensional dose distribution. First, we tested the characteristic according to the amount of emitted light. Then we compared of the light profile and the dose profile calculated with the radiotherapy treatment planning system. Results: The dose dependency of the amount of light showed linearity. The pixel detecting smaller amount of light had high sensitivity than the pixel detecting larger amount of light. However the difference of the sensitivity could be corrected from the amount of light detected in each pixel. Both of the depth light profile through the conical reflection grass and the depth dose profile showed the same attenuation in the region deeper than peak depth. In lateral direction, the difference of the both profiles was shown at outside field and penumbra region. We consider that the difference is occurred due to the scatter of the scintillation light in the plastic scintillator block. Conclusion: It was possible to obtain the amount of light corresponding to the absorbed dose distribution from the prototype detector. Four-dimensional dose distributions can be reconstructed with high accuracy by the correction of the scattered light.« less

  19. SU-E-T-205: Improving Quality Assurance of HDR Brachytherapy: Verifying Agreement Between Planned and Delivered Dose Distributions Using DICOM RTDose and Advanced Film Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, A L; University of Surrey, Guildford, Surrey; Bradley, D A

    Purpose: HDR brachytherapy is undergoing significant development, and quality assurance (QA) checks must keep pace. Current recommendations do not adequately verify delivered against planned dose distributions: This is particularly relevant for new treatment planning system (TPS) calculation algorithms (non TG-43 based), and an era of significant patient-specific plan optimisation. Full system checks are desirable in modern QA recommendations, complementary to device-centric individual tests. We present a QA system incorporating TPS calculation, dose distribution export, HDR unit performance, and dose distribution measurement. Such an approach, more common in external beam radiotherapy, has not previously been reported in the literature for brachytherapy.more » Methods: Our QA method was tested at 24 UK brachytherapy centres. As a novel approach, we used the TPS DICOM RTDose file export to compare planned dose distribution with that measured using Gafchromic EBT3 films placed around clinical brachytherapy treatment applicators. Gamma analysis was used to compare the dose distributions. Dose difference and distance to agreement were determined at prescription Point A. Accurate film dosimetry was achieved using a glass compression plate at scanning to ensure physically-flat films, simultaneous scanning of known dose films with measurement films, and triple-channel dosimetric analysis. Results: The mean gamma pass rate of RTDose compared to film-measured dose distributions was 98.1% at 3%(local), 2 mm criteria. The mean dose difference, measured to planned, at Point A was -0.5% for plastic treatment applicators and -2.4% for metal applicators, due to shielding not accounted for in TPS. The mean distance to agreement was 0.6 mm. Conclusion: It is recommended to develop brachytherapy QA to include full-system verification of agreement between planned and delivered dose distributions. This is a novel approach for HDR brachytherapy QA. A methodology using advanced film dosimetry and gamma comparison to DICOM RTDose files has been demonstrated as suitable to fulfil this need.« less

  20. Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssens, Guillaume; Orban de Xivry, Jonathan; Fekkes, Stein

    2009-09-15

    Purpose: Interfraction dose accumulation is necessary to evaluate the dose distribution of an entire course of treatment by adding up multiple dose distributions of different treatment fractions. This accumulation of dose distributions is not straightforward as changes in the patient anatomy may occur during treatment. For this purpose, the accuracy of nonrigid registration methods is assessed for dose accumulation based on the calculated deformations fields. Methods: A phantom study using a deformable cubic silicon phantom with implanted markers and a cylindrical silicon phantom with MOSFET detectors has been performed. The phantoms were deformed and images were acquired using a cone-beammore » CT imager. Dose calculations were performed on these CT scans using the treatment planning system. Nonrigid CT-based registration was performed using two different methods, the Morphons and Demons. The resulting deformation field was applied on the dose distribution. For both phantoms, accuracy of the registered dose distribution was assessed. For the cylindrical phantom, also measured dose values in the deformed conditions were compared with the dose values of the registered dose distributions. Finally, interfraction dose accumulation for two treatment fractions of a patient with primary rectal cancer has been performed and evaluated using isodose lines and the dose volume histograms of the target volume and normal tissue. Results: A significant decrease in the difference in marker or MOSFET position was observed after nonrigid registration methods (p<0.001) for both phantoms and with both methods, as well as a significant decrease in the dose estimation error (p<0.01 for the cubic phantom and p<0.001 for the cylindrical) with both methods. Considering the whole data set at once, the difference between estimated and measured doses was also significantly decreased using registration (p<0.001 for both methods). The patient case showed a slightly underdosed planning target volume and an overdosed bladder volume due to anatomical deformations. Conclusions: Dose accumulation using nonrigid registration methods is possible using repeated CT imaging. This opens possibilities for interfraction dose accumulation and adaptive radiotherapy to incorporate possible differences in dose delivered to the target volume and organs at risk due to anatomical deformations.« less

  1. Evaluation of XD/A Plus and ST8G films for cephalometric radiography with Grenex G8 and BH-III screens.

    PubMed

    Wakoh, M; Farman, A G; Scarfe, W C; Shibuya, H; Nishikawa, K; Kuroyanagi, K

    1997-02-01

    Sensitometric properties, clinical image quality, and patient dose requirements are important considerations when selecting film for cephalometrics. Two recently released films, XD/A Plus and ST 8G green sensitive films, were studied. The films were each combined with Grenex G8 (Fuji Medical) green-fluorescing matched and BH-III (Kasei Optonix) blue-fluorescing mismatched intensifying screens. The density response and resolution for each screen-film combination were evaluated by use of the characteristic curve and modulation transfer function. The kilovoltage settings providing clinically acceptable images were assessed individually by 12 observers. Clinically acceptable images for each combination were also compared, and the skin entrance doses in the temporomandibular joint region were determined. The average contrast at the most effective density range was found to be slightly higher for the BH-III group than for the G8 group. The modulation transfer function for the BH-III group was inferior to that for the G8 screens. There were no significant differences in diagnostically acceptable image quality among the four combinations; nevertheless the BH-III screen group required two to three times more exposure than the G8 screen group. XD/A Plus and ST8G films provide acceptable image detail for cephalometrics. To minimize the patient dose they should be used with green-emitting screens.

  2. The nonuniformity of antibody distribution in the kidney and its influence on dosimetry.

    PubMed

    Flynn, Aiden A; Pedley, R Barbara; Green, Alan J; Dearling, Jason L; El-Emir, Ethaar; Boxer, Geoffrey M; Boden, Robert; Begent, Richard H J

    2003-02-01

    The therapeutic efficacy of radiolabeled antibody fragments can be limited by nephrotoxicity, particularly when the kidney is the major route of extraction from the circulation. Conventional dose estimates in kidney assume uniform dose deposition, but we have shown increased antibody localization in the cortex after glomerular filtration. The purpose of this study was to measure the radioactivity in cortex relative to medulla for a range of antibodies and to assess the validity of the assumption of uniformity of dose deposition in the whole kidney and in the cortex for these antibodies with a range of radionuclides. Storage phosphor plate technology (radioluminography) was used to acquire images of the distributions of a range of antibodies of various sizes, labeled with 125I, in kidney sections. This allowed the calculation of the antibody concentration in the cortex relative to the medulla. Beta-particle point dose kernels were then used to generate the dose-rate distributions from 14C, 131I, 186Re, 32P and 90Y. The correlation between the actual dose-rate distribution and the corresponding distribution calculated assuming uniform antibody distribution throughout the kidney was used to test the validity of estimating dose by assuming uniformity in the kidney and in the cortex. There was a strong inverse relationship between the ratio of the radioactivity in the cortex relative to that in the medulla and the antibody size. The nonuniformity of dose deposition was greatest with the smallest antibody fragments but became more uniform as the range of the emissions from the radionuclide increased. Furthermore, there was a strong correlation between the actual dose-rate distribution and the distribution when assuming a uniform source in the kidney for intact antibodies along with medium- to long-range radionuclides, but there was no correlation for small antibody fragments with any radioisotope or for short-range radionuclides with any antibody. However, when the cortex was separated from the whole kidney, the correlation between the actual dose-rate distribution and the assumed dose-rate distribution, if the source was uniform, increased significantly. During radioimmunotherapy, the extent of nonuniformity of dose deposition in the kidney depends on the properties of the antibody and radionuclide. For dosimetry estimates, the cortex should be taken as a separate source region when the radiopharmaceutical is small enough to be filtered by the glomerulus.

  3. SU-E-T-404: Evaluation of the Effect of Spine Hardware for CyberKnife Spinal Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, J; Zhang, Y; Zheng, Y

    2015-06-15

    Purpose: Spine hardware made of high-Z materials such as titanium has the potential to affect the dose distribution around the metal rods in CyberKnife spinal stereotactic radiosurgery (SRS) treatments. The purpose of this work was to evaluate the magnitude of such effect retrospectively for clinical CyberKnife plans. Methods: The dose calculation was performed within the MultiPlan treatment planning system using the ray tracing (RT) and Monte Carlo (MC) method. A custom density model was created by extending the CT-to-Density table to titanium density of 4.5 g/cm3 with the CT number of 4095. To understand the dose perturbation caused by themore » titanium rod, a simple beam setup (7.5 mm IRIS collimator) was used to irradiate a mimic rod (5 mm) with overridden high density. Five patient spinal SRS cases were found chronologically from 2010 to 2015 in our institution. For each case, the hardware was contoured manually. The original plan was re-calculated using both RT and MC methods with and without rod density override without changing clinical beam parameters. Results: The simple beam irradiation shows that there is 10% dose increase at the interface because of electron backscattering and 7% decrease behind the rod because of photon attenuation. For actual clinical plans, the iso-dose lines and DVHs are almost identical (<2%) for calculations with and without density override for both RT and MC methods. However, there is a difference of more than 10% for D90 between RT and MC method. Conclusion: Although the dose perturbation around the metal rods can be as large as 10% for a single beam irradiation, for clinical treatments with complex beam composition the effect of spinal hardware to the PTV and spinal dose is minimal. As such, the MC dose algorithm without rod density override for CyberKnife spinal SRS is acceptable.« less

  4. Practical use of a plastic scintillator for quality assurance of electron beam therapy.

    PubMed

    Yogo, Katsunori; Tatsuno, Yuya; Tsuneda, Masato; Aono, Yuki; Mochizuki, Daiki; Fujisawa, Yoshiki; Matsushita, Akihiro; Ishigami, Minoru; Ishiyama, Hiromichi; Hayakawa, Kazushige

    2017-06-07

    Quality assurance (QA) of clinical electron beams is essential for performing accurate and safe radiation therapy. However, with advances in radiation therapy, QA has become increasingly labor-intensive and time-consuming. In this paper, we propose a tissue-equivalent plastic scintillator for quick and easy QA of clinical electron beams. The proposed tool comprises a plastic scintillator plate and a charge-coupled device camera that enable the scintillation light by electron beams to be recorded with high sensitivity and high spatial resolution. Further, the Cerenkov image is directly subtracted from the scintillation image to discriminate Cerenkov emissions and accurately measure the dose profiles of electron beams with high spatial resolution. Compared with conventional methods, discrepancies in the depth profile improved from 7% to 2% in the buildup region via subtractive corrections. Further, the output brightness showed good linearity with dose, good reproducibility (deviations below 1%), and dose rate independence (within 0.5%). The depth of 50% dose measured with the tool, an index of electron beam quality, was within  ±0.5 mm of that obtained with an ionization chamber. Lateral brightness profiles agreed with the lateral dose profiles to within 4% and no significant improvement was obtained using Cerenkov corrections. Field size agreed to within 0.5 mm with those obtained with ionization chamber. For clinical QA of electron boost treatment, a disk scintillator that mimics the shape of a patient's breast is applied. The brightness distribution and dose, calculated using a treatment planning system, was generally acceptable for clinical use, except in limited zones. Overall, the proposed plastic scintillator plate tool efficiently performs QA for electron beam therapy and enables simultaneous verification of output constancy, beam quality, depth, and lateral dose profiles during monthly QAs at lower doses of irradiation (small monitor units, MUs).

  5. Tolerance of the Brachial Plexus to High-Dose Reirradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Allen M., E-mail: achen5@kumc.edu; Yoshizaki, Taeko; Velez, Maria A.

    Purpose: To study the tolerance of the brachial plexus to high doses of radiation exceeding historically accepted limits by analyzing human subjects treated with reirradiation for recurrent tumors of the head and neck. Methods and Materials: Data from 43 patients who were confirmed to have received overlapping dose to the brachial plexus after review of radiation treatment plans from the initial and reirradiation courses were used to model the tolerance of this normal tissue structure. A standardized instrument for symptoms of neuropathy believed to be related to brachial plexus injury was utilized to screen for toxicity. Cumulative dose was calculatedmore » by fusing the initial dose distributions onto the reirradiation plan, thereby creating a composite plan via deformable image registration. The median elapsed time from the initial course of radiation therapy to reirradiation was 24 months (range, 3-144 months). Results: The dominant complaints among patients with symptoms were ipsilateral pain (54%), numbness/tingling (31%), and motor weakness and/or difficulty with manual dexterity (15%). The cumulative maximum dose (Dmax) received by the brachial plexus ranged from 60.5 Gy to 150.1 Gy (median, 95.0 Gy). The cumulative mean (Dmean) dose ranged from 20.2 Gy to 111.5 Gy (median, 63.8 Gy). The 1-year freedom from brachial plexus–related neuropathy was 67% and 86% for subjects with a cumulative Dmax greater than and less than 95.0 Gy, respectively (P=.05). The 1-year complication-free rate was 66% and 87%, for those reirradiated within and after 2 years from the initial course, respectively (P=.06). Conclusion: The development of brachial plexus–related symptoms was less than expected owing to repair kinetics and to the relatively short survival of the subject population. Time-dose factors were demonstrated to be predictive of complications.« less

  6. SU-E-T-467: Implementation of Monte Carlo Dose Calculation for a Multileaf Collimator Equipped Robotic Radiotherapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, JS; Fan, J; Ma, C-M

    Purpose: To improve the treatment efficiency and capabilities for full-body treatment, a robotic radiosurgery system has equipped with a multileaf collimator (MLC) to extend its accuracy and precision to radiation therapy. To model the MLC and include it in the Monte Carlo patient dose calculation is the goal of this work. Methods: The radiation source and the MLC were carefully modeled to consider the effects of the source size, collimator scattering, leaf transmission and leaf end shape. A source model was built based on the output factors, percentage depth dose curves and lateral dose profiles measured in a water phantom.more » MLC leaf shape, leaf end design and leaf tilt for minimizing the interleaf leakage and their effects on beam fluence and energy spectrum were all considered in the calculation. Transmission/leakage was added to the fluence based on the transmission factors of the leaf and the leaf end. The transmitted photon energy was tuned to consider the beam hardening effects. The calculated results with the Monte Carlo implementation was compared with measurements in homogeneous water phantom and inhomogeneous phantoms with slab lung or bone material for 4 square fields and 9 irregularly shaped fields. Results: The calculated output factors are compared with the measured ones and the difference is within 1% for different field sizes. The calculated dose distributions in the phantoms show good agreement with measurements using diode detector and films. The dose difference is within 2% inside the field and the distance to agreement is within 2mm in the penumbra region. The gamma passing rate is more than 95% with 2%/2mm criteria for all the test cases. Conclusion: Implementation of Monte Carlo dose calculation for a MLC equipped robotic radiosurgery system is completed successfully. The accuracy of Monte Carlo dose calculation with MLC is clinically acceptable. This work was supported by Accuray Inc.« less

  7. Prediction of terrestrial gamma dose rate based on geological formations and soil types in the Johor State, Malaysia.

    PubMed

    Saleh, Muneer Aziz; Ramli, Ahmad Termizi; bin Hamzah, Khaidzir; Alajerami, Yasser; Moharib, Mohammed; Saeed, Ismael

    2015-10-01

    This study aims to predict and estimate unmeasured terrestrial gamma dose rate (TGDR) using statistical analysis methods to derive a model from the actual measurement based on geological formation and soil type. The measurements of TGDR were conducted in the state of Johor with a total of 3873 measured points which covered all geological formations, soil types and districts. The measurements were taken 1 m above the soil surface using NaI [Ti] detector. The measured gamma dose rates ranged from 9 nGy h(-1) to 1237 nGy h(-1) with a mean value of 151 nGy h(-1). The data have been normalized to fit a normal distribution. Tests of significance were conducted among all geological formations and soil types, using the unbalanced one way ANOVA. The results indicated strong significant differences due to the different geological formations and soil types present in Johor State. Pearson Correlation was used to measure the relations between gamma dose rate based on geological formation and soil type (D(G,S)) with the gamma dose rate based on geological formation (D(G)) or soil type (D(s)). A very good correlation was found between D(G,S) and D(G) or D(G,S) and D(s). A total of 118 pairs of geological formations and soil types were used to derive the statistical contribution of geological formations and soil types to gamma dose rates. The contribution of the gamma dose rate from geological formation and soil type were found to be 0.594 and 0.399, respectively. The null hypotheses were accepted for 83% of examined data, therefore, the model could be used to predict gamma dose rates based on geological formation and soil type information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. WE-F-16A-05: Use of 3D-Printers to Create a Tissue Equivalent 3D-Bolus for External Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burleson, S; Baker, J; Hsia, A

    2014-06-15

    Purpose: The purpose of this project is to demonstrate that a non-expensive 3D-printer can be used to manufacture a 3D-bolus for external beam therapy. The printed bolus then can be modeled in our treatment planning system to ensure accurate dose delivery to the patient. Methods: We developed a simple method to manufacture a patient-specific custom 3Dbolus. The bolus is designed using Eclipse Treatment Planning System, contoured onto the patients CT images. The bolus file is exported from Eclipse to 3D-printer software, and then printed using a 3D printer. Various tests were completed to determine the properties of the printing material.more » Percent depth dose curves in this material were measured with electron and photon beams for comparison to other materials. In order to test the validity of the 3D printed bolus for treatment planning, a custom bolus was printed and tested on the Rando phantom using film for a dose plane comparison. We compared the dose plane measured on the film to the same dose plane exported from our treatment planning system using Film QA software. The gamma-dose distribution tool was used in our film analysis. Results: We compared point measurements throughout the dose plane and were able to achieve greater than 95% passing rate at 3% dose difference and 3 mm distance to agreement, which is our departments acceptable gamma pixel parameters. Conclusion: The printed 3D bolus has proven to be accurately modeled in our treatment planning system, it is more conformal to the patient surface and more durable than other bolus currently used (wax, superflab etc.). It is also more convenient and less costly than comparable bolus from milling machine companies.« less

  9. Single-arc volumetric-modulated arc therapy (sVMAT) as adjuvant treatment for gastric cancer: Dosimetric comparisons with three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Li, Guangjun; Zhang, Yingjie

    2013-01-01

    To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMATmore » plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.« less

  10. Design and characterization of a new high-dose-rate brachytherapy Valencia applicator for larger skin lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candela-Juan, C., E-mail: ccanjuan@gmail.com; Niatsetski, Y.; Laarse, R. van der

    Purpose: The aims of this study were (i) to design a new high-dose-rate (HDR) brachytherapy applicator for treating surface lesions with planning target volumes larger than 3 cm in diameter and up to 5 cm in size, using the microSelectron-HDR or Flexitron afterloader (Elekta Brachytherapy) with a {sup 192}Ir source; (ii) to calculate by means of the Monte Carlo (MC) method the dose distribution for the new applicator when it is placed against a water phantom; and (iii) to validate experimentally the dose distributions in water. Methods: The PENELOPE2008 MC code was used to optimize dwell positions and dwell times.more » Next, the dose distribution in a water phantom and the leakage dose distribution around the applicator were calculated. Finally, MC data were validated experimentally for a {sup 192}Ir mHDR-v2 source by measuring (i) dose distributions with radiochromic EBT3 films (ISP); (ii) percentage depth–dose (PDD) curve with the parallel-plate ionization chamber Advanced Markus (PTW); and (iii) absolute dose rate with EBT3 films and the PinPoint T31016 (PTW) ionization chamber. Results: The new applicator is made of tungsten alloy (Densimet) and consists of a set of interchangeable collimators. Three catheters are used to allocate the source at prefixed dwell positions with preset weights to produce a homogenous dose distribution at the typical prescription depth of 3 mm in water. The same plan is used for all available collimators. PDD, absolute dose rate per unit of air kerma strength, and off-axis profiles in a cylindrical water phantom are reported. These data can be used for treatment planning. Leakage around the applicator was also scored. The dose distributions, PDD, and absolute dose rate calculated agree within experimental uncertainties with the doses measured: differences of MC data with chamber measurements are up to 0.8% and with radiochromic films are up to 3.5%. Conclusions: The new applicator and the dosimetric data provided here will be a valuable tool in clinical practice, making treatment of large skin lesions simpler, faster, and safer. Also the dose to surrounding healthy tissues is minimal.« less

  11. Seasonal influenza vaccine dose distribution in 157 countries (2004-2011).

    PubMed

    Palache, Abraham; Oriol-Mathieu, Valerie; Abelin, Atika; Music, Tamara

    2014-11-12

    Globally there are an estimated 3-5 million cases of severe influenza illness every year, resulting in 250,000-500,000 deaths. At the World Health Assembly in 2003, World Health Organization (WHO) resolved to increase influenza vaccine coverage rates (VCR) for high-risk groups, particularly focusing on at least 75% of the elderly by 2010. But systematic worldwide data have not been available to assist public health authorities to monitor vaccine uptake and review progress toward vaccination coverage targets. In 2008, the International Federation of Pharmaceutical Manufacturers and Associations Influenza Vaccine Supply task force (IFPMA IVS) developed a survey methodology to assess global influenza vaccine dose distribution. The current survey results represent 2011 data and demonstrate the evolution of the absolute number distributed between 2004 and 2011 inclusive, and the evolution in the per capita doses distributed in 2008-2011. Global distribution of IFPMA IVS member doses increased approximately 86.9% between 2004 and 2011, but only approximately 12.1% between 2008 and 2011. The WHO's regions in Eastern Mediterranean (EMRO), Southeast Asian (SEARO) and Africa (AFRO) together account for about 47% of the global population, but only 3.7% of all IFPMA IVS doses distributed. While distributed doses have globally increased, they have decreased in EURO and EMRO since 2009. Dose distribution can provide a reasonable proxy of vaccine utilization. Based on the dose distribution, we conclude that seasonal influenza VCR in many countries remains well below the WHA's VCR targets and below the recommendations of the Council of the European Union in EURO. Inter- and intra-regional disparities in dose distribution trends call into question the impact of current vaccine recommendations at achieving coverage targets. Additional policy measures, particularly those that influence patients adherence to vaccination programs, such as reimbursement, healthcare provider knowledge, attitudes, practices, and communications, are required for VCR targets to be met and benefit public health. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. CERISE, a French radioprotection code, to assess the radiological impact and acceptance criteria of installations for material handling, and recycling or disposal of very low-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santucci, P.; Guetat, P.

    1993-12-31

    This document describes the code CERISE, Code d`Evaluations Radiologiques Individuelles pour des Situations en Enterprise et dans l`Environnement. This code has been developed in the frame of European studies to establish acceptance criteria of very low-level radioactive waste and materials. This code is written in Fortran and runs on PC. It calculates doses received by the different pathways: external exposure, ingestion, inhalation and skin contamination. Twenty basic scenarios are already elaborated, which have been determined from previous studies. Calculations establish the relation between surface, specific and/or total activities, and doses. Results can be expressed as doses for an average activitymore » unit, or as average activity limits for a set of reference doses (defined for each scenario analyzed). In this last case, the minimal activity values and the corresponding limiting scenarios, are selected and summarized in a final table.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, S; Kuo, L; Happersett, L

    Purpose: To commission a custom 6MV-SRS-AAA Eclipse beam model for VMAT multiple lesions cranial SRS treatment on a Varian TrueBeam STx. Methods: Six clinical plans were created using a customized beam model with dosimetric-leaf-gap(DLG) optimized for clinical treatments. Each plan had 4–6 non-isocentric targets with size from 0.2 to 7.1cc. All fields were measured with EBT3 film in the coronal plane in a solid water phantom and with an AS1000 EPID using gantry rotation. In addition, an end-to-end test was performed with coronal and sagittal films in an anthropomorphic phantom verifying dosimetry and localization accuracy. Portal dose distributions were generatedmore » with a custom portal dosimetry algorithm(PDIP). Measured dose distributions were compared with calculations using average dose difference (DD), and gamma function, γ. Using a 1.25mm grid, the γ criteria, local DD ≤ 3% and 2mm distance-to-agreement, were applied in regions with dose 50% of maximum. Results: The respective DD and γ for all films were <±2% and >94.2%. The portal dose γ scores for all the plans were >94.9%. However, local regions with underdose >10%, were observed when targets were treated with the 5mm leaves. The same plans re-optimized with two isocenters such that all lesions were under the 2.5mm leaves did not show this effect. The DD and localization error of the end-to-end test were within 3.4% and 1.0mm respectively. Conclusion: The custom AAA beam model is capable of calculating acceptable dosimetry for targets using only the 2.5 mm leaves. This restricts lesions to within ±4cm of isocenter. The observed underdose beneath the 5mm leaves is attributed to a limitation in Eclipse that uses a single DLG representing the DLG’s of both 2.5mm and 5mm leaves. If lesions are >4cm from isocenter, a multiple isocenter technique should be considered to allow the use of only the 2.5mm leaves.« less

  14. Recommended de minimis radiation dose rates for Canada. Report No. INFO-0355

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    A de minimis dose or dose rate as used in this report represents a level of risk which is generally accepted as being of no significance to an individual, or in the case of a population, of no significance to society. The report describes the risk of biological effects from radiation; radiation from natural and man-made sources; normal incidences of cancer and genetic defects; initiatives by other agencies in the U.S., the U.K. and internationally; the importance of collective dose and dose rate; assigning values to the de minimis dose rates; and application of the de minimis dose rates.

  15. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  16. SU-E-T-370: Evaluating Plan Quality and Dose Delivery Accuracy of Tomotherapy SBRT Treatments for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blake, S; Thwaites, D; Hansen, C

    2015-06-15

    Purpose: This study evaluated the plan quality and dose delivery accuracy of stereotactic body radiotherapy (SBRT) helical Tomotherapy (HT) treatments for lung cancer. Results were compared with those previously reported by our group for flattening filter (FF) and flattening filter free (FFF) VMAT treatments. This work forms part of an ongoing multicentre and multisystem planning and dosimetry audit on FFF beams for lung SBRT. Methods: CT datasets and DICOM RT structures delineating the target volume and organs at risk for 6 lung cancer patients were selected. Treatment plans were generated using the HT treatment planning system. Tumour locations were classifiedmore » as near rib, near bronchial tree or in free lung with prescribed doses of 48Gy/4fr, 50Gy/5fr and 54Gy/3fr respectively. Dose constraints were specified by a modified RTOG0915 protocol used for an Australian SBRT phase II trial. Plan quality was evaluated using mean PTV dose, PTV volume receiving 100% of the prescribed dose (V100%), target conformity (CI=VD100%/VPTV) and low dose spillage (LDS=VD50%/VPTV). Planned dose distributions were compared to those measured using an ArcCheck phantom. Delivery accuracy was evaluated using a gamma-index pass rate of 95% with 3% (of max dose) and 3mm criteria. Results: Treatment plans for all patients were clinically acceptable in terms of quality and accuracy of dose delivery. The following DVH metrics are reported as averages (SD) of all plans investigated: mean PTV dose was 115.3(2.4)% of prescription, V100% was 98.8(0.9)%, CI was 1.14(0.03) and LDS was 5.02(0.37). The plans had an average gamma-index passing rate of 99.3(1.3)%. Conclusion: The results reported in this study for HT agree within 1 SD to those previously published by our group for VMAT FF and FFF lung SBRT treatments. This suggests that HT delivers lung SBRT treatments of comparable quality and delivery accuracy as VMAT using both FF and FFF beams.« less

  17. Dosimetric comparison between intra-cavitary breast brachytherapy techniques for accelerated partial breast irradiation and a novel stereotactic radiotherapy device for breast cancer: GammaPod™

    NASA Astrophysics Data System (ADS)

    Ödén, Jakob; Toma-Dasu, Iuliana; Yu, Cedric X.; Feigenberg, Steven J.; Regine, William F.; Mutaf, Yildirim D.

    2013-07-01

    The GammaPod™ device, manufactured by Xcision Medical Systems, is a novel stereotactic breast irradiation device. It consists of a hemispherical source carrier containing 36 Cobalt-60 sources, a tungsten collimator with two built-in collimation sizes, a dynamically controlled patient support table and a breast immobilization cup also functioning as the stereotactic frame for the patient. The dosimetric output of the GammaPod™ was modelled using a Monte Carlo based treatment planning system. For the comparison, three-dimensional (3D) models of commonly used intra-cavitary breast brachytherapy techniques utilizing single lumen and multi-lumen balloon as well as peripheral catheter multi-lumen implant devices were created and corresponding 3D dose calculations were performed using the American Association of Physicists in Medicine Task Group-43 formalism. Dose distributions for clinically relevant target volumes were optimized using dosimetric goals set forth in the National Surgical Adjuvant Breast and Bowel Project Protocol B-39. For clinical scenarios assuming similar target sizes and proximity to critical organs, dose coverage, dose fall-off profiles beyond the target and skin doses at given distances beyond the target were calculated for GammaPod™ and compared with the doses achievable by the brachytherapy techniques. The dosimetric goals within the protocol guidelines were fulfilled for all target sizes and irradiation techniques. For central targets, at small distances from the target edge (up to approximately 1 cm) the brachytherapy techniques generally have a steeper dose fall-off gradient compared to GammaPod™ and at longer distances (more than about 1 cm) the relation is generally observed to be opposite. For targets close to the skin, the relative skin doses were considerably lower for GammaPod™ than for any of the brachytherapy techniques. In conclusion, GammaPod™ allows adequate and more uniform dose coverage to centrally and peripherally located targets with an acceptable dose fall-off and lower relative skin dose than the brachytherapy techniques considered in this study.

  18. A computational method for estimating the dosimetric effect of intra-fraction motion on step-and-shoot IMRT and compensator plans

    NASA Astrophysics Data System (ADS)

    Waghorn, Ben J.; Shah, Amish P.; Ngwa, Wilfred; Meeks, Sanford L.; Moore, Joseph A.; Siebers, Jeffrey V.; Langen, Katja M.

    2010-07-01

    Intra-fraction organ motion during intensity-modulated radiation therapy (IMRT) treatment can cause differences between the planned and the delivered dose distribution. To investigate the extent of these dosimetric changes, a computational model was developed and validated. The computational method allows for calculation of the rigid motion perturbed three-dimensional dose distribution in the CT volume and therefore a dose volume histogram-based assessment of the dosimetric impact of intra-fraction motion on a rigidly moving body. The method was developed and validated for both step-and-shoot IMRT and solid compensator IMRT treatment plans. For each segment (or beam), fluence maps were exported from the treatment planning system. Fluence maps were shifted according to the target position deduced from a motion track. These shifted, motion-encoded fluence maps were then re-imported into the treatment planning system and were used to calculate the motion-encoded dose distribution. To validate the accuracy of the motion-encoded dose distribution the treatment plan was delivered to a moving cylindrical phantom using a programmed four-dimensional motion phantom. Extended dose response (EDR-2) film was used to measure a planar dose distribution for comparison with the calculated motion-encoded distribution using a gamma index analysis (3% dose difference, 3 mm distance-to-agreement). A series of motion tracks incorporating both inter-beam step-function shifts and continuous sinusoidal motion were tested. The method was shown to accurately predict the film's dose distribution for all of the tested motion tracks, both for the step-and-shoot IMRT and compensator plans. The average gamma analysis pass rate for the measured dose distribution with respect to the calculated motion-encoded distribution was 98.3 ± 0.7%. For static delivery the average film-to-calculation pass rate was 98.7 ± 0.2%. In summary, a computational technique has been developed to calculate the dosimetric effect of intra-fraction motion. This technique has the potential to evaluate a given plan's sensitivity to anticipated organ motion. With knowledge of the organ's motion it can also be used as a tool to assess the impact of measured intra-fraction motion after dose delivery.

  19. SU-E-T-188: Film Dosimetry Verification of Monte Carlo Generated Electron Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enright, S; Asprinio, A; Lu, L

    2014-06-01

    Purpose: The purpose of this study was to compare dose distributions from film measurements to Monte Carlo generated electron treatment plans. Irradiation with electrons offers the advantages of dose uniformity in the target volume and of minimizing the dose to deeper healthy tissue. Using the Monte Carlo algorithm will improve dose accuracy in regions with heterogeneities and irregular surfaces. Methods: Dose distributions from GafChromic{sup ™} EBT3 films were compared to dose distributions from the Electron Monte Carlo algorithm in the Eclipse{sup ™} radiotherapy treatment planning system. These measurements were obtained for 6MeV, 9MeV and 12MeV electrons at two depths. Allmore » phantoms studied were imported into Eclipse by CT scan. A 1 cm thick solid water template with holes for bonelike and lung-like plugs was used. Different configurations were used with the different plugs inserted into the holes. Configurations with solid-water plugs stacked on top of one another were also used to create an irregular surface. Results: The dose distributions measured from the film agreed with those from the Electron Monte Carlo treatment plan. Accuracy of Electron Monte Carlo algorithm was also compared to that of Pencil Beam. Dose distributions from Monte Carlo had much higher pass rates than distributions from Pencil Beam when compared to the film. The pass rate for Monte Carlo was in the 80%–99% range, where the pass rate for Pencil Beam was as low as 10.76%. Conclusion: The dose distribution from Monte Carlo agreed with the measured dose from the film. When compared to the Pencil Beam algorithm, pass rates for Monte Carlo were much higher. Monte Carlo should be used over Pencil Beam for regions with heterogeneities and irregular surfaces.« less

  20. Methods for Probabilistic Radiological Dose Assessment at a High-Level Radioactive Waste Repository.

    NASA Astrophysics Data System (ADS)

    Maheras, Steven James

    Methods were developed to assess and evaluate the uncertainty in offsite and onsite radiological dose at a high-level radioactive waste repository to show reasonable assurance that compliance with applicable regulatory requirements will be achieved. Uncertainty in offsite dose was assessed by employing a stochastic precode in conjunction with Monte Carlo simulation using an offsite radiological dose assessment code. Uncertainty in onsite dose was assessed by employing a discrete-event simulation model of repository operations in conjunction with an occupational radiological dose assessment model. Complementary cumulative distribution functions of offsite and onsite dose were used to illustrate reasonable assurance. Offsite dose analyses were performed for iodine -129, cesium-137, strontium-90, and plutonium-239. Complementary cumulative distribution functions of offsite dose were constructed; offsite dose was lognormally distributed with a two order of magnitude range. However, plutonium-239 results were not lognormally distributed and exhibited less than one order of magnitude range. Onsite dose analyses were performed for the preliminary inspection, receiving and handling, and the underground areas of the repository. Complementary cumulative distribution functions of onsite dose were constructed and exhibited less than one order of magnitude range. A preliminary sensitivity analysis of the receiving and handling areas was conducted using a regression metamodel. Sensitivity coefficients and partial correlation coefficients were used as measures of sensitivity. Model output was most sensitive to parameters related to cask handling operations. Model output showed little sensitivity to parameters related to cask inspections.

  1. Dose distribution for dental cone beam CT and its implication for defining a dose index

    PubMed Central

    Pauwels, R; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Horner, K; Bogaerts, R

    2012-01-01

    Objectives To characterize the dose distribution for a range of cone beam CT (CBCT) units, investigating different field of view sizes, central and off-axis geometries, full or partial rotations of the X-ray tube and different clinically applied beam qualities. The implications of the dose distributions on the definition and practicality of a CBCT dose index were assessed. Methods Dose measurements on CBCT devices were performed by scanning cylindrical head-size water and polymethyl methacrylate phantoms, using thermoluminescent dosemeters, a small-volume ion chamber and radiochromic films. Results It was found that the dose distribution can be asymmetrical for dental CBCT exposures throughout a homogeneous phantom, owing to an asymmetrical positioning of the isocentre and/or partial rotation of the X-ray source. Furthermore, the scatter tail along the z-axis was found to have a distinct shape, generally resulting in a strong drop (90%) in absorbed dose outside the primary beam. Conclusions There is no optimal dose index available owing to the complicated exposure geometry of CBCT and the practical aspects of quality control measurements. Practical validation of different possible dose indices is needed, as well as the definition of conversion factors to patient dose. PMID:22752320

  2. High acceptability of HIV pre-exposure prophylaxis but challenges in adherence and use: qualitative insights from a phase I trial of intermittent and daily PrEP in at-risk populations in Kenya.

    PubMed

    Van der Elst, Elisabeth Maria; Mbogua, Judie; Operario, Don; Mutua, Gaudensia; Kuo, Caroline; Mugo, Peter; Kanungi, Jennifer; Singh, Sagri; Haberer, Jessica; Priddy, Frances; Sanders, Eduard Joachim

    2013-07-01

    This paper used qualitative methods to explore experiences of men who have sex with men and female sex workers in Nairobi and Mtwapa, Kenya, who used oral pre-exposure prophylaxis (PrEP) for HIV prevention as part of a four-month trial of safety, acceptability and adherence. Fifty-one of 72 volunteers who took part in a randomized, placebo-controlled, blinded trial that compared daily and intermittent dosage of PrEP underwent qualitative assessments after completing the trial. Analyses identified three themes: (i) acceptability of PrEP was high, i.e. side effects were experienced early in the study but diminished over time, however characteristics of pills could improve comfort and use; (ii) social impacts such as stigma, rumors, and relationship difficulties due to being perceived as HIV positive were prevalent; (iii) adherence was challenged by complexities of daily life, in particular post-coital dosing adherence suffered from alcohol use around time of sex, mobile populations, and transactional sex work. These themes resonated across dosing regimens and gender, and while most participants favored the intermittent dosing schedule, those in the intermittent group noted particular challenges in adhering to the post-coital dose. Culturally appropriate and consistent counseling addressing these issues may be critical for PrEP effectiveness.

  3. Phase 2a study assessing colonization efficiency, safety, and acceptability of Lactobacillus crispatus CTV-05 in women with bacterial vaginosis.

    PubMed

    Hemmerling, Anke; Harrison, William; Schroeder, Adrienne; Park, Jeanna; Korn, Abner; Shiboski, Stephen; Foster-Rosales, Anne; Cohen, Craig R

    2010-12-01

    Bacterial vaginosis (BV) is a common vaginal infection caused by a lack of endogenous lactobacilli and overgrowth of pathogens that frequently recurs following antibiotic treatment. A phase 2a study assessed colonization efficiency, safety, tolerability, and acceptability of Lactobacillus crispatus CTV-05 (LACTIN-V) administered by a vaginal applicator. Twenty-four women with BV were randomized in a 3:1 ratio of active product to placebo. Participants used LACTIN-V at 2 × 10 colony-forming units (cfu)/dose or placebo for 5 initial consecutive days, followed by a weekly application over 2 weeks. They returned for follow-up on Days 10 and 28. Sixty-one percent of the 18 women randomized to the LACTIN-V group were colonized with L. crispatus CTV-05 at Day 10 or Day 28. Among LACTIN-V users with complete adherence to the study regimen, 78% were colonized at Day 10 or Day 28. Of the 120 adverse events (AEs) that occurred, 108 (90%) and 12 (10%) were of mild and moderate severity, respectively. AEs were evenly distributed between the LACTIN-V and placebo group. Of the total AEs, 93 (78%) were genitourinary in origin. The most common genitourinary AEs included vaginal discharge (46%), abdominal pain (46%), dysuria (21%), pollakiuria (21%), vaginal odor (21%), and genital pruritus (17%). No grade 3 or 4 AEs or serious AEs occurred and no deep epithelial disruption was seen during colposcopic evaluation. The product was well tolerated and accepted. LACTIN-V colonized well, and was safe and acceptable in women treated for BV.

  4. SU-D-BRC-03: Development and Validation of an Online 2D Dose Verification System for Daily Patient Plan Delivery Accuracy Check

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J; Hu, W; Xing, Y

    Purpose: All plan verification systems for particle therapy are designed to do plan verification before treatment. However, the actual dose distributions during patient treatment are not known. This study develops an online 2D dose verification tool to check the daily dose delivery accuracy. Methods: A Siemens particle treatment system with a modulated scanning spot beam is used in our center. In order to do online dose verification, we made a program to reconstruct the delivered 2D dose distributions based on the daily treatment log files and depth dose distributions. In the log files we can get the focus size, positionmore » and particle number for each spot. A gamma analysis is used to compare the reconstructed dose distributions with the dose distributions from the TPS to assess the daily dose delivery accuracy. To verify the dose reconstruction algorithm, we compared the reconstructed dose distributions to dose distributions measured using PTW 729XDR ion chamber matrix for 13 real patient plans. Then we analyzed 100 treatment beams (58 carbon and 42 proton) for prostate, lung, ACC, NPC and chordoma patients. Results: For algorithm verification, the gamma passing rate was 97.95% for the 3%/3mm and 92.36% for the 2%/2mm criteria. For patient treatment analysis,the results were 97.7%±1.1% and 91.7%±2.5% for carbon and 89.9%±4.8% and 79.7%±7.7% for proton using 3%/3mm and 2%/2mm criteria, respectively. The reason for the lower passing rate for the proton beam is that the focus size deviations were larger than for the carbon beam. The average focus size deviations were −14.27% and −6.73% for proton and −5.26% and −0.93% for carbon in the x and y direction respectively. Conclusion: The verification software meets our requirements to check for daily dose delivery discrepancies. Such tools can enhance the current treatment plan and delivery verification processes and improve safety of clinical treatments.« less

  5. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators.

    PubMed

    Eichmann, Marion; Flühs, Dirk; Spaan, Bernhard

    2009-10-01

    The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. In order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate distribution, which then can be used as input for a refined clinical treatment planning system. The improved dose rate measurements will facilitate a clinical study, which could correlate the therapeutic outcome of a brachytherapy treatment with an applicator and its individual dose rate distribution.

  6. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichmann, Marion; Fluehs, Dirk; Spaan, Bernhard

    2009-10-15

    Purpose: The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. Methods: Inmore » order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. Results: The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. Conclusions: The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate distribution, which then can be used as input for a refined clinical treatment planning system. The improved dose rate measurements will facilitate a clinical study, which could correlate the therapeutic outcome of a brachytherapy treatment with an applicator and its individual dose rate distribution.« less

  7. 78 FR 64030 - Monitoring Criteria and Methods To Calculate Occupational Radiation Doses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0234] Monitoring Criteria and Methods To Calculate... regulatory guide (DG), DG-8031, ``Monitoring Criteria and Methods to Calculate Occupational Radiation Doses.'' This guide describes methods that the NRC staff considers acceptable for licensees to use to determine...

  8. SU-F-T-18: The Importance of Immobilization Devices in Brachytherapy Treatments of Vaginal Cuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shojaei, M; Dumitru, N; Pella, S

    2016-06-15

    Purpose: High dose rate brachytherapy is a highly localized radiation therapy that has a very high dose gradient. Thus one of the most important parts of the treatment is the immobilization. The smallest movement of the patient or applicator can result in dose variation to the surrounding tissues as well as to the tumor to be treated. We will revise the ML Cylinder treatments and their localization challenges. Methods: A retrospective study of 25 patients with 5 treatments each looking into the applicator’s placement in regard to the organs at risk. Motion possibilities for each applicator intra and inter fractionationmore » with their dosimetric implications were covered and measured in regard with their dose variance. The localization immobilization devices used were assessed for the capability to prevent motion before and during the treatment delivery. Results: We focused on the 100% isodose on central axis and a 15 degree displacement due to possible rotation analyzing the dose variations to the bladder and rectum walls. The average dose variation for bladder was 15% of the accepted tolerance, with a minimum variance of 11.1% and a maximum one of 23.14% on the central axis. For the off axis measurements we found an average variation of 16.84% of the accepted tolerance, with a minimum variance of 11.47% and a maximum one of 27.69%. For the rectum we focused on the rectum wall closest to the 120% isodose line. The average dose variation was 19.4%, minimum 11.3% and a maximum of 34.02% from the accepted tolerance values Conclusion: Improved immobilization devices are recommended. For inter-fractionation, localization devices are recommended in place with consistent planning in regards with the initial fraction. Many of the present immobilization devices produced for external radiotherapy can be used to improve the localization of HDR applicators during transportation of the patient and during treatment.« less

  9. Total Ionizing Dose Test of Microsemi's Silicon Switching Transistors JANTXV2N2222AUB and 2N2907AUB

    NASA Technical Reports Server (NTRS)

    Campola, M.; Freeman, B.; Yau, K.

    2017-01-01

    Microsemi's silicon switching transistors, JANTXV2N2222AUB and 2N2907AUB, were tested for total ionizing dose (TID) response beginning on July 11, 2016. This test served as the radiation lot acceptance test (RLAT) for the lot date code (LDC) tested. Low dose rate (LDR) irradiations were performed in this test so that the device susceptibility to enhanced low dose rate sensitivity (ELDRS) could be determined.

  10. Is Dose Deformation–Invariance Hypothesis Verified in Prostate IGRT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Antoine, E-mail: antoine.simon@univ-rennes1.fr; Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, 35000 Rennes; Le Maitre, Amandine

    Purpose: To assess dose uncertainties resulting from the dose deformation–invariance hypothesis in prostate cone beam computed tomography (CT)–based image guided radiation therapy (IGRT), namely to evaluate whether rigidly propagated planned dose distribution enables good estimation of fraction dose distributions. Methods and Materials: Twenty patients underwent a CT scan for planning intensity modulated radiation therapy–IGRT delivering 80 Gy to the prostate, followed by weekly CT scans. Two methods were used to obtain the dose distributions on the weekly CT scans: (1) recalculating the dose using the original treatment plan; and (2) rigidly propagating the planned dose distribution. The cumulative doses were then estimatedmore » in the organs at risk for each dose distribution by deformable image registration. The differences between recalculated and propagated doses were finally calculated for the fraction and the cumulative dose distributions, by use of per-voxel and dose-volume histogram (DVH) metrics. Results: For the fraction dose, the mean per-voxel absolute dose difference was <1 Gy for 98% and 95% of the fractions for the rectum and bladder, respectively. The maximum dose difference within 1 voxel reached, however, 7.4 Gy in the bladder and 8.0 Gy in the rectum. The mean dose differences were correlated with gas volume for the rectum and patient external contour variations for the bladder. The mean absolute differences for the considered volume receiving greater than or equal to dose x (V{sub x}) of the DVH were between 0.37% and 0.70% for the rectum and between 0.53% and 1.22% for the bladder. For the cumulative dose, the mean differences in the DVH were between 0.23% and 1.11% for the rectum and between 0.55% and 1.66% for the bladder. The largest dose difference was 6.86%, for bladder V{sub 80Gy}. The mean dose differences were <1.1 Gy for the rectum and <1 Gy for the bladder. Conclusions: The deformation–invariance hypothesis was corroborated for the organs at risk in prostate IGRT except in cases of a large disappearance or appearance of rectal gas for the rectum and large external contour variations for the bladder.« less

  11. Converging stereotactic radiotherapy using kilovoltage X-rays: experimental irradiation of normal rabbit lung and dose-volume analysis with Monte Carlo simulation.

    PubMed

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  12. SU-F-BRF-13: Investigating the Feasibility of Accurate Dose Measurement in a Deforming Radiochromic Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, T; Adamovics, J; Oldham, M

    Purpose: Presage-Def, a deformable radiochromic 3D dosimeter, has been previously shown to have potential for validating deformable image registration algorithms. This work extends this effort to investigate the feasibility of using Presage-Def to validate dose-accumulation algorithms in deforming structures. Methods: Two cylindrical Presage-Def dosimeters (8cm diameter, 4.5cm length) were irradiated in a water-bath with a simple 4-field box treatment. Isocentric dose was 20Gy. One dosimeter served as control (no deformation) while the other was laterally compressed during irradiation by 21%. Both dosimeters were imaged before and after irradiation with a fast (∼10 minutes for 1mm isotropic resolution), broad beam, highmore » resolution optical-CT scanner. Measured dose distributions were compared to corresponding distributions calculated by a commissioned Eclipse planning system. Accuracy in the control was evaluated with 3D gamma (3%/3mm). The dose distribution calculated for the compressed dosimeter in the irradiation geometry cannot be directly compared via profiles or 3D gamma to the measured distribution, which deforms with release from compression. Thus, accuracy under deformation was determined by comparing integral dose within the high dose region of the deformed dosimeter distribution versus calculated dose. Dose profiles were used to study temporal stability of measured dose distributions. Results: Good dose agreement was demonstrated in the control with a 3D gamma passing rate of 96.6%. For the dosimeter irradiated under compression, the measured integral dose in the high dose region (518.0Gy*cm3) was within 6% of the Eclipse-calculated integral dose (549.4Gy*cm3). Elevated signal was noted on the dosimeter edge in the direction of compression. Change in dosimeter signal over 1.5 hours was ≤2.7%, and the relative dose distribution remained stable over this period of time. Conclusion: Presage-Def is promising as a 3D dosimeter capable of accurately measuring dose in a deforming structure, and warrants further study to quantify comprehensive accuracy at different levels of deformation. This work was supported by NIH R01CA100835. John Adamovics is the president of Heuris Inc., which commercializes PRESAGE.« less

  13. Assessing the gluten content in wheat as an expression of the nutrition deficit, through beta distribution

    NASA Astrophysics Data System (ADS)

    Pîslea, Daniela; Boldea, Marius; Sala, Florin

    2013-10-01

    The laboratory analysis of the gluten content of wheat in relation to the doses of nitrogen, phosphorus and potassium used for fertilizing the soil reveals positive correlation between the two variables. The gluten content in wheat grains is an extremely important quality index in bread manufacturing. One of the farmers' objectives is to obtain high values of this index. The quality of bread manufacturing products is very sensitive to any changes in the percentage share of this indicator. The minimum limit of gluten accepted for bread manufacturing is 26%; even a small variation, of one percentage, of gluten, over this limit, changes the quality of the wheat yield, with considerable effects on the quality of bread. Therefore, farmers are interested in using crop technologies and especially fertilization in order to obtain wheat with high gluten content. Of the nutritive macronutrients, nitrogen plays a significant role in ensuring high gluten content. The definition domain of the measurements is (0;1). This ratio is not constant, but it has a tendency towards a certain medium value, depending on the chemical fertilizers, on fertilization. It follows that the statistic distribution which evaluates the phenomenon is the beta distribution.

  14. Derivation of mean dose tolerances for new fractionation schemes and treatment modalities

    NASA Astrophysics Data System (ADS)

    Perkó, Zoltán; Bortfeld, Thomas; Hong, Theodore; Wolfgang, John; Unkelbach, Jan

    2018-02-01

    Avoiding toxicities in radiotherapy requires the knowledge of tolerable organ doses. For new, experimental fractionation schemes (e.g. hypofractionation) these are typically derived from traditional schedules using the biologically effective dose (BED) model. In this report we investigate the difficulties of establishing mean dose tolerances that arise since the mean BED depends on the entire spatial dose distribution, rather than on the dose level alone. A formula has been derived to establish mean physical dose constraints such that they are mean BED equivalent to a reference treatment scheme. This formula constitutes a modified BED equation where the influence of the spatial dose distribution is summarized in a single parameter, the dose shape factor. To quantify effects we analyzed 24 liver cancer patients for whom both proton and photon IMRT treatment plans were available. The results show that the standard BED equation—neglecting the spatial dose distribution—can overestimate mean dose tolerances for hypofractionated treatments by up to 20%. The shape difference between photon and proton dose distributions can cause 30-40% differences in mean physical dose for plans having identical mean BEDs. Converting hypofractionated, 5/15-fraction proton doses to mean BED equivalent photon doses in traditional 35-fraction regimens resulted in up to 10 Gy higher doses than applying the standard BED formula. The dose shape effect should be accounted for to avoid overestimation of mean dose tolerances, particularly when estimating constraints for hypofractionated regimens. Additionally, tolerances established for one treatment modality cannot necessarily be applied to other modalities with drastically different dose distributions, such as proton therapy. Last, protons may only allow marginal (5-10%) dose escalation if a fraction-size adjusted organ mean dose is constraining instead of a physical dose.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perko, Z; Bortfeld, T; Hong, T

    Purpose: The safe use of radiotherapy requires the knowledge of tolerable organ doses. For experimental fractionation schemes (e.g. hypofractionation) these are typically extrapolated from traditional fractionation schedules using the Biologically Effective Dose (BED) model. This work demonstrates that using the mean dose in the standard BED equation may overestimate tolerances, potentially leading to unsafe treatments. Instead, extrapolation of mean dose tolerances should take the spatial dose distribution into account. Methods: A formula has been derived to extrapolate mean physical dose constraints such that they are mean BED equivalent. This formula constitutes a modified BED equation where the influence of themore » spatial dose distribution is summarized in a single parameter, the dose shape factor. To quantify effects we analyzed 14 liver cancer patients previously treated with proton therapy in 5 or 15 fractions, for whom also photon IMRT plans were available. Results: Our work has two main implications. First, in typical clinical plans the dose distribution can have significant effects. When mean dose tolerances are extrapolated from standard fractionation towards hypofractionation they can be overestimated by 10–15%. Second, the shape difference between photon and proton dose distributions can cause 30–40% differences in mean physical dose for plans having the same mean BED. The combined effect when extrapolating proton doses to mean BED equivalent photon doses in traditional 35 fraction regimens resulted in up to 7–8 Gy higher doses than when applying the standard BED formula. This can potentially lead to unsafe treatments (in 1 of the 14 analyzed plans the liver mean dose was above its 32 Gy tolerance). Conclusion: The shape effect should be accounted for to avoid unsafe overestimation of mean dose tolerances, particularly when estimating constraints for hypofractionated regimens. In addition, tolerances established for a given treatment modality cannot necessarily be applied to other modalities with drastically different dose distributions.« less

  16. SU-E-T-113: Dose Distribution Using Respiratory Signals and Machine Parameters During Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imae, T; Haga, A; Saotome, N

    Purpose: Volumetric modulated arc therapy (VMAT) is a rotational intensity-modulated radiotherapy (IMRT) technique capable of acquiring projection images during treatment. Treatment plans for lung tumors using stereotactic body radiotherapy (SBRT) are calculated with planning computed tomography (CT) images only exhale phase. Purpose of this study is to evaluate dose distribution by reconstructing from only the data such as respiratory signals and machine parameters acquired during treatment. Methods: Phantom and three patients with lung tumor underwent CT scans for treatment planning. They were treated by VMAT while acquiring projection images to derive their respiratory signals and machine parameters including positions ofmore » multi leaf collimators, dose rates and integrated monitor units. The respiratory signals were divided into 4 and 10 phases and machine parameters were correlated with the divided respiratory signals based on the gantry angle. Dose distributions of each respiratory phase were calculated from plans which were reconstructed from the respiratory signals and the machine parameters during treatment. The doses at isocenter, maximum point and the centroid of target were evaluated. Results and Discussion: Dose distributions during treatment were calculated using the machine parameters and the respiratory signals detected from projection images. Maximum dose difference between plan and in treatment distribution was −1.8±0.4% at centroid of target and dose differences of evaluated points between 4 and 10 phases were no significant. Conclusion: The present method successfully evaluated dose distribution using respiratory signals and machine parameters during treatment. This method is feasible to verify the actual dose for moving target.« less

  17. Estimation of the influence of radical effect in the proton beams using a combined approach with physical data and gel data

    NASA Astrophysics Data System (ADS)

    Haneda, K.

    2016-04-01

    The purpose of this study was to estimate an impact on radical effect in the proton beams using a combined approach with physical data and gel data. The study used two dosimeters: ionization chambers and polymer gel dosimeters. Polymer gel dosimeters have specific advantages when compared to other dosimeters. They can measure chemical reaction and they are at the same time a phantom that can map in three dimensions continuously and easily. First, a depth-dose curve for a 210 MeV proton beam measured using an ionization chamber and a gel dosimeter. Second, the spatial distribution of the physical dose was calculated by Monte Carlo code system PHITS: To verify of the accuracy of Monte Carlo calculation, and the calculation results were compared with experimental data of the ionization chamber. Last, to evaluate of the rate of the radical effect against the physical dose. The simulation results were compared with the measured depth-dose distribution and showed good agreement. The spatial distribution of a gel dose with threshold LET value of proton beam was calculated by the same simulation code. Then, the relative distribution of the radical effect was calculated from the physical dose and gel dose. The relative distribution of the radical effect was calculated at each depth as the quotient of relative dose obtained using physical and gel dose. The agreement between the relative distributions of the gel dosimeter and Radical effect was good at the proton beams.

  18. Three dimensional conformal radiotherapy for synchronous bilateral breast irradiation using a mono iso-center technique

    NASA Astrophysics Data System (ADS)

    Mani, Karthick Raj; Basu, Saumen; Bhuiyan, Md Anisuzzaman; Ahmed, Sharif; Sumon, Mostafa Aziz; Haque, Kh Anamul; Sengupta, Ashim Kumar; Un Nabi, Md Rashid; Das, K. J. Maria

    2017-06-01

    Objective: The purpose of this study is to demonstrate the synchronous bilateral breast irradiation radiotherapy technique using a single isocenter. Materials and Methods: Six patients of synchronous bilateral breast were treated with single isocenter technique from February 2011 to June 2016. All the patients underwent a CT-simulation using appropriate positioning device. Target volumes and critical structures like heart, lung, esophagus, thyroid, etc., were delineated slice by slice in the CT data. An isocenter was placed above the sternum on the skin and both medial tangential and lateral tangential of the breast / chest wall were created using asymmetrical jaws to avoid the beam divergence through the lung and heart. The field weighting were adjusted manually to obtain a homogenous dose distribution. The planning objectives were to deliver uniform doses around the target and keep the doses to the organ at risk within the permissible limit. The beam energy of 6 MV or combination of 6 MV and 15 MV photons were used in the tangential fields according to the tangential separation. Boluses were used for all the mastectomy patients to increase the doses on the chest wall. In addition to that enhanced dynamic wedge and field in field technique were also used to obtain a homogenous distribution around the target volume and reduce the hot spots. The isocenter was just kept on the skin, such that the beam junctions will be overlapped only on the air just above the sternum. Acute toxicity during the treatment and late toxicity were recorded during the patient's follow-up. Results: During the radiotherapy treatment follow-up there were no acute skin reactions in the field junctions, but one patient had grade 1 esophagitis and two patients had grade 2 skin reactions in the chest wall. With a median follow-up of 38.5 months (range: 8 - 49 months), no patients had a local recurrence, but one patients with triple negative disease had a distant metastases in brain and died after 28 months. Conclusions: We were able to successfully treat the synchronous bilateral breast using single isocenter radiotherapy while keeping the lung and heart doses within the acceptable dose limits. During the treatment follow-up there were no symptoms of acute skin reactions in the field junction.

  19. Dosage and Distribution in Morphosyntax Intervention: Current Evidence and Future Needs

    ERIC Educational Resources Information Center

    Proctor-Williams, Kerry

    2009-01-01

    This article reviews the effectiveness of dose forms and the efficacy of dosage and distribution in morphosyntax intervention for children. Dose forms include the commonly used techniques, procedures, and intervention contexts that constitute teaching episodes; dosage includes the quantitative measures of dose, dose frequency, total intervention…

  20. A quantitative study of IMRT delivery effects in commercial planning systems for the case of oesophagus and prostate tumours.

    PubMed

    Seco, J; Clark, C H; Evans, P M; Webb, S

    2006-05-01

    This study focuses on understanding the impact of intensity-modulated radiotherapy (IMRT) delivery effects when applied to plans generated by commercial treatment-planning systems such as Pinnacle (ADAC Laboratories Inc.) and CadPlan/Helios (Varian Medical Systems). These commercial planning systems have had several version upgrades (with improvements in the optimization algorithm), but the IMRT delivery effects have not been incorporated into the optimization process. IMRT delivery effects include head-scatter fluence from IMRT fields, transmission through leaves and the effect of the rounded shape of the leaf ends. They are usually accounted for after optimization when leaf sequencing the "optimal" fluence profiles, to derive the delivered fluence profile. The study was divided into two main parts: (a) analysing the dose distribution within the planning-target volume (PTV), produced by each of the commercial treatment-planning systems, after the delivered fluence had been renormalized to deliver the correct dose to the PTV; and (b) studying the impact of the IMRT delivery technique on the surrounding critical organs such as the spinal cord, lungs, rectum, bladder etc. The study was performed for tumours of (i) the oesophagus and (ii) the prostate and pelvic nodes. An oesophagus case was planned with the Pinnacle planning system for IMRT delivery, via multiple-static fields (MSF) and compensators, using the Elekta SL25 with a multileaf collimator (MLC) component. A prostate and pelvic nodes IMRT plan was performed with the Cadplan/Helios system for a dynamic delivery (DMLC) using the Varian 120-leaf Millennium MLC. In these commercial planning systems, since IMRT delivery effects are not included into the optimization process, fluence renormalization is required such that the median delivered PTV dose equals the initial prescribed PTV dose. In preparing the optimum fluence profile for delivery, the PTV dose has been "smeared" by the IMRT delivery techniques. In the case of the oesophagus, the critical organ, spinal cord, received a greater dose than initially planned, due to the delivery effects. The increase in the spinal cord dose is of the order of 2-3 Gy. In the case of the prostate and pelvic nodes, the IMRT delivery effects led to an increase of approximately 2 Gy in the dose delivered to the secondary PTV, the pelvic nodes. In addition to this, the small bowel, rectum and bladder received an increased dose of the order of 2-3 Gy to 50% of their total volume. IMRT delivery techniques strongly influence the delivered dose distributions for the oesophagus and prostate/pelvic nodes tumour sites and these effects are not yet accounted for in the Pinnacle and the CadPlan/Helios planning systems. Currently, they must be taken into account during the optimization stage by altering the dose limits accepted during optimization so that the final (sequenced) dose is within the constraints.

  1. Breast conserving treatment for breast cancer: dosimetric comparison of sequential versus simultaneous integrated photon boost.

    PubMed

    Van Parijs, Hilde; Reynders, Truus; Heuninckx, Karina; Verellen, Dirk; Storme, Guy; De Ridder, Mark

    2014-01-01

    Breast conserving surgery followed by whole breast irradiation is widely accepted as standard of care for early breast cancer. Addition of a boost dose to the initial tumor area further reduces local recurrences. We investigated the dosimetric benefits of a simultaneously integrated boost (SIB) compared to a sequential boost to hypofractionate the boost volume, while maintaining normofractionation on the breast. For 10 patients 4 treatment plans were deployed, 1 with a sequential photon boost, and 3 with different SIB techniques: on a conventional linear accelerator, helical TomoTherapy, and static TomoDirect. Dosimetric comparison was performed. PTV-coverage was good in all techniques. Conformity was better with all SIB techniques compared to sequential boost (P = 0.0001). There was less dose spilling to the ipsilateral breast outside the PTVboost (P = 0.04). The dose to the organs at risk (OAR) was not influenced by SIB compared to sequential boost. Helical TomoTherapy showed a higher mean dose to the contralateral breast, but less than 5 Gy for each patient. SIB showed less dose spilling within the breast and equal dose to OAR compared to sequential boost. Both helical TomoTherapy and the conventional technique delivered acceptable dosimetry. SIB seems a safe alternative and can be implemented in clinical routine.

  2. Breast Conserving Treatment for Breast Cancer: Dosimetric Comparison of Sequential versus Simultaneous Integrated Photon Boost

    PubMed Central

    Reynders, Truus; Heuninckx, Karina; Verellen, Dirk; Storme, Guy; De Ridder, Mark

    2014-01-01

    Background. Breast conserving surgery followed by whole breast irradiation is widely accepted as standard of care for early breast cancer. Addition of a boost dose to the initial tumor area further reduces local recurrences. We investigated the dosimetric benefits of a simultaneously integrated boost (SIB) compared to a sequential boost to hypofractionate the boost volume, while maintaining normofractionation on the breast. Methods. For 10 patients 4 treatment plans were deployed, 1 with a sequential photon boost, and 3 with different SIB techniques: on a conventional linear accelerator, helical TomoTherapy, and static TomoDirect. Dosimetric comparison was performed. Results. PTV-coverage was good in all techniques. Conformity was better with all SIB techniques compared to sequential boost (P = 0.0001). There was less dose spilling to the ipsilateral breast outside the PTVboost (P = 0.04). The dose to the organs at risk (OAR) was not influenced by SIB compared to sequential boost. Helical TomoTherapy showed a higher mean dose to the contralateral breast, but less than 5 Gy for each patient. Conclusions. SIB showed less dose spilling within the breast and equal dose to OAR compared to sequential boost. Both helical TomoTherapy and the conventional technique delivered acceptable dosimetry. SIB seems a safe alternative and can be implemented in clinical routine. PMID:25162031

  3. Pediatric chest HRCT using the iDose4 Hybrid Iterative Reconstruction Algorithm: Which iDose level to choose?

    NASA Astrophysics Data System (ADS)

    Smarda, M.; Alexopoulou, E.; Mazioti, A.; Kordolaimi, S.; Ploussi, A.; Priftis, K.; Efstathopoulos, E.

    2015-09-01

    Purpose of the study is to determine the appropriate iterative reconstruction (IR) algorithm level that combines image quality and diagnostic confidence, for pediatric patients undergoing high-resolution computed tomography (HRCT). During the last 2 years, a total number of 20 children up to 10 years old with a clinical presentation of chronic bronchitis underwent HRCT in our department's 64-detector row CT scanner using the iDose IR algorithm, with almost similar image settings (80kVp, 40-50 mAs). CT images were reconstructed with all iDose levels (level 1 to 7) as well as with filtered-back projection (FBP) algorithm. Subjective image quality was evaluated by 2 experienced radiologists in terms of image noise, sharpness, contrast and diagnostic acceptability using a 5-point scale (1=excellent image, 5=non-acceptable image). Artifacts existance was also pointed out. All mean scores from both radiologists corresponded to satisfactory image quality (score ≤3), even with the FBP algorithm use. Almost excellent (score <2) overall image quality was achieved with iDose levels 5 to 7, but oversmoothing artifacts appearing with iDose levels 6 and 7 affected the diagnostic confidence. In conclusion, the use of iDose level 5 enables almost excellent image quality without considerable artifacts affecting the diagnosis. Further evaluation is needed in order to draw more precise conclusions.

  4. Using Acceptance and Commitment Therapy during Methadone Dose Reduction: Rationale, Treatment Description, and a Case Report

    ERIC Educational Resources Information Center

    Stotts, Angela L.; Masuda, Akihiko; Wilson, Kelly

    2009-01-01

    Many clients who undergo methadone maintenance (MM) treatment for heroin and other opiate dependence prefer abstinence from methadone. Attempts at methadone detoxification are often unsuccessful, however, due to distressing physical as well as psychological symptoms. Outcomes from an MM client who voluntarily participated in an Acceptance and…

  5. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT imagesmore » in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.« less

  6. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model.

    PubMed

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit

    2017-02-01

    To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  7. Evaluation of polymer gels and MRI as a 3-D dosimeter for intensity-modulated radiation therapy.

    PubMed

    Low, D A; Dempsey, J F; Venkatesan, R; Mutic, S; Markman, J; Mark Haacke, E; Purdy, J A

    1999-08-01

    BANG gel (MGS Research, Inc., Guilford, CT) has been evaluated for measuring intensity-modulated radiation therapy (IMRT) dose distributions. Treatment plans with target doses of 1500 cGy were generated by the Peacock IMRT system (NOMOS Corp., Sewickley, PA) using test target volumes. The gels were enclosed in 13 cm outer diameter cylindrical glass vessels. Dose calibration was conducted using seven smaller (4 cm diameter) cylindrical glass vessels irradiated to 0-1800 cGy in 300 cGy increments. Three-dimensional maps of the proton relaxation rate R2 were obtained using a 1.5 T magnetic resonance imaging (MRI) system (Siemens Medical Systems, Erlangen, Germany) and correlated with dose. A Hahn spin echo sequence was used with TR = 3 s, TE = 20 and 100 ms, NEX = 1, using 1 x 1 x 3 mm3 voxels. The MRI measurements were repeated weekly to identify the gel-aging characteristics. Ionization chamber, thermoluminescent dosimetry (TLD), and film dosimetry measurements of the IMRT dose distributions were obtained to compare against the gel results. The other dosimeters were used in a phantom with the same external cross-section as the gel phantom. The irradiated R2 values of the large vessels did not precisely track the smaller vessels, so the ionization chamber measurements were used to normalize the gel dose distributions. The point-to-point standard deviation of the gel dose measurements was 7.0 cGy. When compared with the ionization chamber measurements averaged over the chamber volume, 1% agreement was obtained. Comparisons against radiographic film dose distribution measurements and the treatment planning dose distribution calculation were used to determine the spatial localization accuracy of the gel and MRI. Spatial localization was better than 2 mm, and the dose was accurately determined by the gel both within and outside the target. The TLD chips were placed throughout the phantom to determine gel measurement precision in high- and low-dose regions. A multidimensional dose comparison tool that simultaneously examines the dose-difference and distance-to-agreement was used to evaluate the gel in both low-and high-dose gradient regions. When 3% and 3 mm criteria were used for the comparisons, more than 90% of the TLD measurements agreed with the gel, with the worst of 309 TLD chip measurements disagreeing by 40% of the criteria. All four MRI measurement session gel-measured dose distributions were compared to evaluate the time behavior of the gel. The low-dose regions were evaluated by comparison with TLD measurements at selected points, while high-dose regions were evaluated by directly comparing measured dose distributions. Tests using the multidimensional comparison tool showed detectable degradation beyond one week postirradiation, but all low-dose measurements passed relative to the test criteria and the dose distributions showed few regions that failed.

  8. Effects of irradiation source and dose level on quality characteristics of processed meat products

    NASA Astrophysics Data System (ADS)

    Ham, Youn-Kyung; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Choi, Yun-Sang; Song, Beom-Seok; Park, Jong-Heum; Kim, Cheon-Jei

    2017-01-01

    The effect of irradiation source (gamma-ray, electron-beam, and X-ray) and dose levels on the physicochemical, organoleptic and microbial properties of cooked beef patties and pork sausages was studied, during 10 days of storage at 30±1 °C. The processed meat products were irradiated at 0, 2.5, 5, 7.5, and 10 kGy by three different irradiation sources. The pH of cooked beef patties and pork sausages was unaffected by irradiation sources or their doses. The redness of beef patties linearly decreased with increasing dose level (P<0.05), obviously by e-beam irradiation compared to gamma-ray and X-ray (P<0.05). The redness of pork sausages was increased by gamma-ray irradiation, whereas it decreased by e-beam irradiation depending on absorbed dose level. No significant changes in overall acceptability were observed for pork sausages regardless of irradiation source (P>0.05), while gamma-ray irradiated beef patties showed significantly decreased overall acceptability in a dose-dependent manner (P<0.05). Lipid oxidation of samples was accelerated by irradiation depending on irradiation sources and dose levels during storage at 30 °C. E-beam reduced total aerobic bacteria of beef patties more effectively, while gamma-ray considerably decreased microbes in pork sausages as irradiation dose increased. The results of this study indicate that quality attributes of meat products, in particular color, lipid oxidation, and microbial properties are significantly influenced by the irradiation sources.

  9. SU-E-T-374: Evaluation and Verification of Dose Calculation Accuracy with Different Dose Grid Sizes for Intracranial Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, C; Schultheiss, T

    Purpose: In this study, we aim to evaluate the effect of dose grid size on the accuracy of calculated dose for small lesions in intracranial stereotactic radiosurgery (SRS), and to verify dose calculation accuracy with radiochromic film dosimetry. Methods: 15 intracranial lesions from previous SRS patients were retrospectively selected for this study. The planning target volume (PTV) ranged from 0.17 to 2.3 cm{sup 3}. A commercial treatment planning system was used to generate SRS plans using the volumetric modulated arc therapy (VMAT) technique using two arc fields. Two convolution-superposition-based dose calculation algorithms (Anisotropic Analytical Algorithm and Acuros XB algorithm) weremore » used to calculate volume dose distribution with dose grid size ranging from 1 mm to 3 mm with 0.5 mm step size. First, while the plan monitor units (MU) were kept constant, PTV dose variations were analyzed. Second, with 95% of the PTV covered by the prescription dose, variations of the plan MUs as a function of dose grid size were analyzed. Radiochomic films were used to compare the delivered dose and profile with the calculated dose distribution with different dose grid sizes. Results: The dose to the PTV, in terms of the mean dose, maximum, and minimum dose, showed steady decrease with increasing dose grid size using both algorithms. With 95% of the PTV covered by the prescription dose, the total MU increased with increasing dose grid size in most of the plans. Radiochromic film measurements showed better agreement with dose distributions calculated with 1-mm dose grid size. Conclusion: Dose grid size has significant impact on calculated dose distribution in intracranial SRS treatment planning with small target volumes. Using the default dose grid size could lead to under-estimation of delivered dose. A small dose grid size should be used to ensure calculation accuracy and agreement with QA measurements.« less

  10. Probability Distribution of Dose and Dose-Rate Effectiveness Factor for use in Estimating Risks of Solid Cancers From Exposure to Low-Let Radiation.

    PubMed

    Kocher, David C; Apostoaei, A Iulian; Hoffman, F Owen; Trabalka, John R

    2018-06-01

    This paper presents an analysis to develop a subjective state-of-knowledge probability distribution of a dose and dose-rate effectiveness factor for use in estimating risks of solid cancers from exposure to low linear energy transfer radiation (photons or electrons) whenever linear dose responses from acute and chronic exposure are assumed. A dose and dose-rate effectiveness factor represents an assumption that the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation, RL, differs from the risk per Gy at higher acute doses, RH; RL is estimated as RH divided by a dose and dose-rate effectiveness factor, where RH is estimated from analyses of dose responses in Japanese atomic-bomb survivors. A probability distribution to represent uncertainty in a dose and dose-rate effectiveness factor for solid cancers was developed from analyses of epidemiologic data on risks of incidence or mortality from all solid cancers as a group or all cancers excluding leukemias, including (1) analyses of possible nonlinearities in dose responses in atomic-bomb survivors, which give estimates of a low-dose effectiveness factor, and (2) comparisons of risks in radiation workers or members of the public from chronic exposure to low linear energy transfer radiation at low dose rates with risks in atomic-bomb survivors, which give estimates of a dose-rate effectiveness factor. Probability distributions of uncertain low-dose effectiveness factors and dose-rate effectiveness factors for solid cancer incidence and mortality were combined using assumptions about the relative weight that should be assigned to each estimate to represent its relevance to estimation of a dose and dose-rate effectiveness factor. The probability distribution of a dose and dose-rate effectiveness factor for solid cancers developed in this study has a median (50th percentile) and 90% subjective confidence interval of 1.3 (0.47, 3.6). The harmonic mean is 1.1, which implies that the arithmetic mean of an uncertain estimate of the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation is only about 10% less than the mean risk per Gy at higher acute doses. Data were also evaluated to define a low acute dose or low dose rate of low linear energy transfer radiation, i.e., a dose or dose rate below which a dose and dose-rate effectiveness factor should be applied in estimating risks of solid cancers.

  11. Survey of distribution of seasonal influenza vaccine doses in 201 countries (2004-2015): The 2003 World Health Assembly resolution on seasonal influenza vaccination coverage and the 2009 influenza pandemic have had very little impact on improving influenza control and pandemic preparedness.

    PubMed

    Palache, A; Abelin, A; Hollingsworth, R; Cracknell, W; Jacobs, C; Tsai, T; Barbosa, P

    2017-08-24

    There is no global monitoring system for influenza vaccination coverage, making it difficult to assess progress towards the 2003 World Health Assembly (WHA) vaccination coverage target. In 2008, the IFPMA Influenza Vaccine Supply International Task Force (IVS) developed a survey method to assess the global distribution of influenza vaccine doses as a proxy for vaccination coverage rates. The latest dose distribution data for 2014 and 2015 was used to update previous analyses. Data were confidentially collected and aggregated by the IFPMA Secretariat, and combined with previous IFPMA IVS survey data (2004-2013). Data were available from 201 countries over the 2004-2015 period. A "hurdle" rate was defined as the number of doses required to reach 15.9% of the population in 2008. Overall, the number of distributed doses progressively increased between 2004 and 2011, driven by a 150% increase in AMRO, then plateaued. One percent fewer doses were distributed in 2015 than in 2011. Twenty-three countries were above the hurdle rate in 2015, compared to 15 in 2004, but distribution was highly uneven in and across all WHO regions. Three WHO regions (AMRO, EURO and WPRO) accounted for about 95% of doses distributed. But in EURO and WPRO, distribution rates in 2015 were only marginally higher than in 2004, and in EURO there was an overall downward trend in dose distribution. The vast majority of countries cannot meet the 2003WHA coverage targets and are inadequately prepared for a global influenza pandemic. With only 5% of influenza vaccine doses being distributed to 50% of the world's population, there is urgency to redress the gross inequities in disease prevention and in pandemic preparedness. The 2003WHA resolution must be reviewed and revised and a call issued for the renewed commitment of Member States to influenza vaccination coverage targets. Copyright © 2017. Published by Elsevier Ltd.

  12. Optimization of image quality and dose for Varian aS500 electronic portal imaging devices (EPIDs).

    PubMed

    McGarry, C K; Grattan, M W D; Cosgrove, V P

    2007-12-07

    This study was carried out to investigate whether the electronic portal imaging (EPI) acquisition process could be optimized, and as a result tolerance and action levels be set for the PIPSPro QC-3V phantom image quality assessment. The aim of the optimization process was to reduce the dose delivered to the patient while maintaining a clinically acceptable image quality. This is of interest when images are acquired in addition to the planned patient treatment, rather than images being acquired using the treatment field during a patient's treatment. A series of phantoms were used to assess image quality for different acquisition settings relative to the baseline values obtained following acceptance testing. Eight Varian aS500 EPID systems on four matched Varian 600C/D linacs and four matched Varian 2100C/D linacs were compared for consistency of performance and images were acquired at the four main orthogonal gantry angles. Images were acquired using a 6 MV beam operating at 100 MU min(-1) and the low-dose acquisition mode. Doses used in the comparison were measured using a Farmer ionization chamber placed at d(max) in solid water. The results demonstrated that the number of reset frames did not have any influence on the image contrast, but the number of frame averages did. The expected increase in noise with corresponding decrease in contrast was also observed when reducing the number of frame averages. The optimal settings for the low-dose acquisition mode with respect to image quality and dose were found to be one reset frame and three frame averages. All patients at the Northern Ireland Cancer Centre are now imaged using one reset frame and three frame averages in the 6 MV 100 MU min(-1) low-dose acquisition mode. Routine EPID QC contrast tolerance (+/-10) and action (+/-20) levels using the PIPSPro phantom based around expected values of 190 (Varian 600C/D) and 225 (Varian 2100C/D) have been introduced. The dose at dmax from electronic portal imaging has been reduced by approximately 28%, and while the image quality has been reduced, the images produced are still clinically acceptable.

  13. Proton depth dose distribution: 3-D calculation of dose distributions from solar flare irradiation

    NASA Astrophysics Data System (ADS)

    Leavitt, Dennis D.

    1990-11-01

    Relative depth dose distribution to the head from 3 typical solar flare proton events were calculated for 3 different exposure geometries: (1) single directional radiation incident upon a fixed head; (2) single directional radiation incident upon head rotating axially (2-D rotation); and (3) omnidirectional radiation incident upon head (3-D rotation). Isodose distributions in the transverse plane intersecting isocenter are presented for each of the 3 solar flare events in all 3 exposure geometries. In all 3 calculation configurations the maximum predicted dose occurred on the surface of the head. The dose at the isocenter of the head relative to the surface dose for the 2-D and 3-D rotation geometries ranged from 2 to 19 percent, increasing with increasing energy of the event. The calculations suggest the superficially located organs (lens of the eye and skin) are at greatest risk for the proton events studied here.

  14. The effect of dose heterogeneity on radiation risk in medical imaging.

    PubMed

    Samei, Ehsan; Li, Xiang; Chen, Baiyu; Reiman, Robert

    2013-06-01

    The current estimations of risk associated with medical imaging procedures rely on assessing the organ dose via direct measurements or simulation. The dose to each organ is assumed to be homogeneous. To take into account the differences in radiation sensitivities, the mean organ doses are weighted by a corresponding tissue-weighting coefficients provided by ICRP to calculate the effective dose, which has been used as a surrogate of radiation risk. However, those coefficients were derived under the assumption of a homogeneous dose distribution within each organ. That assumption is significantly violated in most medical-imaging procedures. In helical chest CT, for example, superficial organs (e.g. breasts) demonstrate a heterogeneous dose distribution, whereas organs on the peripheries of the irradiation field (e.g. liver) might possess a discontinuous dose profile. Projection radiography and mammography involve an even higher level of organ dose heterogeneity spanning up to two orders of magnitude. As such, mean dose or point measured dose values do not reflect the maximum energy deposited per unit volume of the organ. In this paper, the magnitude of the dose heterogeneity in both CT and projection X-ray imaging was reported, using Monte Carlo methods. The lung dose demonstrated factors of 1.7 and 2.2 difference between the mean and maximum dose for chest CT and radiography, respectively. The corresponding values for the liver were 1.9 and 3.5. For mammography and breast tomosynthesis, the difference between mean glandular dose and maximum glandular dose was 3.1. Risk models based on the mean dose were found to provide a reasonable reflection of cancer risk. However, for leukaemia, they were found to significantly under-represent the risk when the organ dose distribution is heterogeneous. A systematic study is needed to develop a risk model for heterogeneous dose distributions.

  15. A continuous regimen of levonorgestrel/ethinyl estradiol for contraception and elimination of menstruation.

    PubMed

    Jensen, Jeffrey T

    2008-03-01

    Clinicians and patients desiring amenorrhea for therapeutic or social reasons will find continuous-use 90 microg levonorgestrel/20 microg ethinyl estradiol to be an attractive oral contraceptive dosing option. Although other formulations of oral contraceptives can be dosed in a continuous manner off-label, the convenience of a 28-day dose pack represents a major advance that will likely increase acceptability of the strategy. The availability of FDA-approved continuous-use 90 microg levonorgestrel/20 microg ethinyl estradiol will help mainstream continuous oral contraception in the same way that Preven and Plan B helped legitimize and mainstream emergency contraception. Patients wishing to use continuous 90 microg levonorgestrel/20 microg ethinyl estradiol must recognize and accept that unscheduled breakthrough bleeding is typical during the first four to six cycles of use. Control of cycle-related symptoms may emerge as an off-label indication for use.

  16. Development of probabilistic internal dosimetry computer code

    NASA Astrophysics Data System (ADS)

    Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki

    2017-02-01

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values ( e.g. the 2.5th, 5th, median, 95th, and 97.5th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases of severe internal exposure, the causation probability of a deterministic health effect can be derived from the dose distribution, and a high statistical value ( e.g., the 95th percentile of the distribution) can be used to determine the appropriate intervention. The distribution-based sensitivity analysis can also be used to quantify the contribution of each factor to the dose uncertainty, which is essential information for reducing and optimizing the uncertainty in the internal dose assessment. Therefore, the present study can contribute to retrospective dose assessment for accidental internal exposure scenarios, as well as to internal dose monitoring optimization and uncertainty reduction.

  17. Real-time dose calculation and visualization for the proton therapy of ocular tumours

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Karsten; Bendl, Rolf

    2001-03-01

    A new real-time dose calculation and visualization was developed as part of the new 3D treatment planning tool OCTOPUS for proton therapy of ocular tumours within a national research project together with the Hahn-Meitner Institut Berlin. The implementation resolves the common separation between parameter definition, dose calculation and evaluation and allows a direct examination of the expected dose distribution while adjusting the treatment parameters. The new tool allows the therapist to move the desired dose distribution under visual control in 3D to the appropriate place. The visualization of the resulting dose distribution as a 3D surface model, on any 2D slice or on the surface of specified ocular structures is done automatically when adapting parameters during the planning process. In addition, approximate dose volume histograms may be calculated with little extra time. The dose distribution is calculated and visualized in 200 ms with an accuracy of 6% for the 3D isodose surfaces and 8% for other objects. This paper discusses the advantages and limitations of this new approach.

  18. Evaluation of the use of automatic exposure control and automatic tube potential selection in low-dose cerebrospinal fluid shunt head CT.

    PubMed

    Wallace, Adam N; Vyhmeister, Ross; Bagade, Swapnil; Chatterjee, Arindam; Hicks, Brandon; Ramirez-Giraldo, Juan Carlos; McKinstry, Robert C

    2015-06-01

    Cerebrospinal fluid shunts are primarily used for the treatment of hydrocephalus. Shunt complications may necessitate multiple non-contrast head CT scans resulting in potentially high levels of radiation dose starting at an early age. A new head CT protocol using automatic exposure control and automated tube potential selection has been implemented at our institution to reduce radiation exposure. The purpose of this study was to evaluate the reduction in radiation dose achieved by this protocol compared with a protocol with fixed parameters. A retrospective sample of 60 non-contrast head CT scans assessing for cerebrospinal fluid shunt malfunction was identified, 30 of which were performed with each protocol. The radiation doses of the two protocols were compared using the volume CT dose index and dose length product. The diagnostic acceptability and quality of each scan were evaluated by three independent readers. The new protocol lowered the average volume CT dose index from 15.2 to 9.2 mGy representing a 39 % reduction (P < 0.01; 95 % CI 35-44 %) and lowered the dose length product from 259.5 to 151.2 mGy/cm representing a 42 % reduction (P < 0.01; 95 % CI 34-50 %). The new protocol produced diagnostically acceptable scans with comparable image quality to the fixed parameter protocol. A pediatric shunt non-contrast head CT protocol using automatic exposure control and automated tube potential selection reduced patient radiation dose compared with a fixed parameter protocol while producing diagnostic images of comparable quality.

  19. PROPOSALS FOR THE ESTABLISHMENT OF NATIONAL DIAGNOSTIC REFERENCE LEVELS FOR RADIOGRAPHY FOR ADULT PATIENTS BASED ON REGIONAL DOSE SURVEYS IN RUSSIAN FEDERATION.

    PubMed

    Vodovatov, A V; Balonov, M I; Golikov, V Yu; Shatsky, I G; Chipiga, L A; Bernhardsson, C

    2017-04-01

    In 2009-2014, dose surveys aimed to collect adult patient data and parameters of most common radiographic examinations were performed in six Russian regions. Typical patient doses were estimated for the selected examinations both in entrance surface dose and in effective dose. 75%-percentiles of typical patient effective dose distributions were proposed as preliminary regional diagnostic reference levels (DRLs) for radiography. Differences between the 75%-percentiles of regional typical patient dose distributions did not exceed 30-50% for the examinations with standardized clinical protocols (skull, chest and thoracic spine) and a factor of 1.5 for other examinations. Two different approaches for establishing national DRLs were evaluated: as a 75%-percentile of a pooled regional sample of patient typical doses (pooled method) and as a median of 75%-percentiles of regional typical patient dose distributions (median method). Differences between pooled and median methods for effective dose did not exceed 20%. It was proposed to establish Russian national DRLs in effective dose using a pooled method. In addition, the local authorities were granted an opportunity to establish regional DRLs if the local radiological practice and typical patient dose distributions are significantly different. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kok, H. Petra, E-mail: H.P.Kok@amc.uva.nl; Crezee, Johannes; Franken, Nicolaas A.P.

    2014-03-01

    Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy{sup −1}) and β (Gy{sup −2}) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normalmore » tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different treatment modalities.« less

  1. Implementation of a volumetric modulated arc therapy treatment planning solution for kidney and adrenal stereotactic body radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonier, Marcus, E-mail: Marcus.Sonier@bccancer.bc.ca; Chu, William; Department of Radiation Oncology, University of Toronto, Toronto, ON

    To develop a volumetric modulated arc therapy (VMAT) treatment planning solution in the treatment of primary renal cell carcinoma and oligometastatic adrenal lesions with stereotactic body radiation therapy. Single-arc VMAT plans (n = 5) were compared with clinically delivered step-and-shoot intensity-modulated radiotherapy (IMRT) with planning target volume coverage normalized between techniques. Target volume conformity, organ-at-risk (OAR) dose, treatment time, and monitor units were compared. A VMAT planning solution, created from a combination of arc settings and optimization constraints, auto-generated treatment plans in a single optimization. The treatment planning solution was evaluated on 15 consecutive patients receiving kidney and adrenal stereotacticmore » body radiation therapy. Treatment time was reduced from 13.0 ± 2.6 to 4.0 ± 0.9 minutes for IMRT and VMAT, respectively. The VMAT planning solution generated treatment plans with increased target homogeneity, improved 95% conformity index, and a reduced maximum point dose to nearby OARs but with increased intermediate dose to distant OARs. The conformity of the 95% isodose improved from 1.32 ± 0.39 to 1.12 ± 0.05 for IMRT and VMAT treatment plans, respectively. Evaluation of the planning solution showed clinically acceptable dose distributions for 13 of 15 cases with tight conformity of the prescription isodose to the planning target volume of 1.07 ± 0.04, delivering minimal dose to OARs. The introduction of a stereotactic body radiation therapy VMAT treatment planning solution improves the efficiency of planning and delivery time, producing treatment plans of comparable or superior quality to IMRT in the case of primary renal cell carcinoma and oligometastatic adrenal lesions.« less

  2. Customized vaginal vault brachytherapy with computed tomography imaging-derived applicator prototyping.

    PubMed

    Wiebe, Ericka; Easton, Harry; Thomas, Gillian; Barbera, Lisa; D'Alimonte, Laura; Ravi, Ananth

    2015-01-01

    A novel customized vaginal brachytherapy mould technique has been developed for clinical use. This image-guided technique provides a brachytherapy applicator solution for irregular vaginal vault configuration and/or a wide vaginal apex relative to the vaginal introitus that would be sub-optimally treated with standard cylinders. The customized vaginal applicator is generated by the following process: CT images are obtained with contrast-soaked vaginal packing in situ to highlight unique anatomical detail. A 3-dimensional digital model is developed from the images and subsequently converted into a custom applicator with the use of stereolithography, which is an additive manufacturing technique whereby layers 50-100 μm thick of resin are deposited and polymerized using a laser to create intricate 3-dimensional objects. The density of the applicator and the dose delivered using the custom applicator were both measured to ensure accurate dosimetry. The CT-based densities of a clinical vaginal cylinder and the cylinder generated using stereolithography were 1.29 ± 0.06 g/cm(3) vs 1.28 ± 0.01 g/cm(3), respectively. The mean measured dose from a representative stereolithographed applicator normalized to dose measured for a single plastic catheter was 99.8 ± 4.2%. In patient dosimetric results indicate improved coverage of the lateral aspect of vaginal vault with the custom cylinder relative to the standard cylinder; 700 cGy vs 328 cGy, respectively, at a representative lateral vaginal dose point, while simultaneously achieving relatively narrow dose distribution in the anterior/posterior direction. Stereolithographic applicator production was available within a clinically acceptable timeframe, and its clinical feasibility and utility has been demonstrated. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  3. An accurate derivation of the air dose-rate and the deposition concentration distribution by aerial monitoring in a low level contaminated area

    NASA Astrophysics Data System (ADS)

    Nishizawa, Yukiyasu; Sugita, Takeshi; Sanada, Yukihisa; Torii, Tatsuo

    2015-04-01

    Since 2011, MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan) have been conducting aerial monitoring to investigate the distribution of radioactive cesium dispersed into the atmosphere after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), Tokyo Electric Power Company. Distribution maps of the air dose-rate at 1 m above the ground and the radioactive cesium deposition concentration on the ground are prepared using spectrum obtained by aerial monitoring. The radioactive cesium deposition is derived from its dose rate, which is calculated by excluding the dose rate of the background radiation due to natural radionuclides from the air dose-rate at 1 m above the ground. The first step of the current method of calculating the dose rate due to natural radionuclides is calculate the ratio of the total count rate of areas where no radioactive cesium is detected and the count rate of regions with energy levels of 1,400 keV or higher (BG-Index). Next, calculate the air dose rate of radioactive cesium by multiplying the BG-Index and the integrated count rate of 1,400 keV or higher for the area where the radioactive cesium is distributed. In high dose-rate areas, however, the count rate of the 1,365-keV peak of Cs-134, though small, is included in the integrated count rate of 1,400 keV or higher, which could cause an overestimation of the air dose rate of natural radionuclides. We developed a method for accurately evaluating the distribution maps of natural air dose-rate by excluding the effect of radioactive cesium, even in contaminated areas, and obtained the accurate air dose-rate map attributed the radioactive cesium deposition on the ground. Furthermore, the natural dose-rate distribution throughout Japan has been obtained by this method.

  4. Is there a place for quantitative risk assessment?

    PubMed

    Hall, Eric J

    2009-06-01

    The use of ionising radiations is so well established, especially in the practice of medicine, that it is impossible to imagine contemporary life without them. At the same time, ionising radiations are a known and proven human carcinogen. Exposure to radiation in some contexts elicits fear and alarm (nuclear power for example) while in other situations, until recently at least, it was accepted with alacrity (diagnostic x-rays for example). This non-uniform reaction to the potential hazards of radiation highlights the importance of quantitative risk estimates, which are necessary to help put things into perspective. Three areas will be discussed where quantitative risk estimates are needed and where uncertainties and limitations are a problem. First, the question of diagnostic x-rays. CT usage over the past quarter of a century has increased about 12 fold in the UK and more than 20 fold in the US. In both countries, more than 90% of the collective population dose from diagnostic x-rays comes from the few high dose procedures, such as interventional radiology, CT scans, lumbar spine x-rays and barium enemas. These all involve doses close to the lower limit at which there are credible epidemiological data for an excess cancer incidence. This is a critical question; what is the lowest dose at which there is good evidence of an elevated cancer incidence? Without low dose risk estimates the risk-benefit ratio of diagnostic procedures cannot be assessed. Second, the use of new techniques in radiation oncology. IMRT is widely used to obtain a more conformal dose distribution, particularly in children. It results in a larger total body dose, due to an increased number of monitor units and to the application of more radiation fields. The Linacs used today were not designed for IMRT and are based on leakage standards that were decided decades ago. It will be difficult and costly to reduce leakage from treatment machines, and a necessary first step is to refine the available radiation risks at the fractionated high doses characteristic of radiotherapy. The dose response for carcinogenesis is known for single doses up to about 2 Sv from the A-bomb data, but the shape at higher fractionated doses is uncertain. Third, the proliferation of proton facilities. The improved dose distribution made possible by charged particle beams has created great interest and led to the design and building of many expensive proton centres. However, due to technical problems, most facilities use passive scattering, rather than spot scanning, to spread the pencil beam to cover realistic target volumes. This process, together with the methods used of final collimation, results in substantial total body doses of neutrons. The relative biological effectiveness of these neutrons is not well known, and the risk estimates are therefore uncertain. Unless and until the risks are known with more certainty, it is difficult to know how much effort and cost should be directed towards reducing, or eliminating, the neutron doses. These three examples, where uncertainties in quantitative risk estimates result in important practical problems, will be discussed.

  5. Radiation exposure assessment for portsmouth naval shipyard health studies.

    PubMed

    Daniels, R D; Taulbee, T D; Chen, P

    2004-01-01

    Occupational radiation exposures of 13,475 civilian nuclear shipyard workers were investigated as part of a retrospective mortality study. Estimates of annual, cumulative and collective doses were tabulated for future dose-response analysis. Record sets were assembled and amended through range checks, examination of distributions and inspection. Methods were developed to adjust for administrative overestimates and dose from previous employment. Uncertainties from doses below the recording threshold were estimated. Low-dose protracted radiation exposures from submarine overhaul and repair predominated. Cumulative doses are best approximated by a hybrid log-normal distribution with arithmetic mean and median values of 20.59 and 3.24 mSv, respectively. The distribution is highly skewed with more than half the workers having cumulative doses <10 mSv and >95% having doses <100 mSv. The maximum cumulative dose is estimated at 649.39 mSv from 15 person-years of exposure. The collective dose was 277.42 person-Sv with 96.8% attributed to employment at Portsmouth Naval Shipyard.

  6. Acceptance sampling for attributes via hypothesis testing and the hypergeometric distribution

    NASA Astrophysics Data System (ADS)

    Samohyl, Robert Wayne

    2017-10-01

    This paper questions some aspects of attribute acceptance sampling in light of the original concepts of hypothesis testing from Neyman and Pearson (NP). Attribute acceptance sampling in industry, as developed by Dodge and Romig (DR), generally follows the international standards of ISO 2859, and similarly the Brazilian standards NBR 5425 to NBR 5427 and the United States Standards ANSI/ASQC Z1.4. The paper evaluates and extends the area of acceptance sampling in two directions. First, by suggesting the use of the hypergeometric distribution to calculate the parameters of sampling plans avoiding the unnecessary use of approximations such as the binomial or Poisson distributions. We show that, under usual conditions, discrepancies can be large. The conclusion is that the hypergeometric distribution, ubiquitously available in commonly used software, is more appropriate than other distributions for acceptance sampling. Second, and more importantly, we elaborate the theory of acceptance sampling in terms of hypothesis testing rigorously following the original concepts of NP. By offering a common theoretical structure, hypothesis testing from NP can produce a better understanding of applications even beyond the usual areas of industry and commerce such as public health and political polling. With the new procedures, both sample size and sample error can be reduced. What is unclear in traditional acceptance sampling is the necessity of linking the acceptable quality limit (AQL) exclusively to the producer and the lot quality percent defective (LTPD) exclusively to the consumer. In reality, the consumer should also be preoccupied with a value of AQL, as should the producer with LTPD. Furthermore, we can also question why type I error is always uniquely associated with the producer as producer risk, and likewise, the same question arises with consumer risk which is necessarily associated with type II error. The resolution of these questions is new to the literature. The article presents R code throughout.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorissen, BL; Giantsoudi, D; Unkelbach, J

    Purpose: Cell survival experiments suggest that the relative biological effectiveness (RBE) of proton beams depends on linear energy transfer (LET), leading to higher RBE near the end of range. With intensity-modulated proton therapy (IMPT), multiple treatment plans that differ in the dose contribution per field may yield a similar physical dose distribution, but the RBE-weighted dose distribution may be disparate. RBE models currently do not have the required predictive power to be included in an optimization model due to the variations in experimental data. We propose an LET-based planning method that guides IMPT optimization models towards plans with reduced RBE-weightedmore » dose in surrounding organs at risk (OARs) compared to inverse planning based on physical dose alone. Methods: Optimization models for physical dose are extended with a term for dose times LET (doseLET). Monte Carlo code is used to generate the physical dose and doseLET distribution of each individual pencil beam. The method is demonstrated for an atypical meningioma patient where the target volume abuts the brainstem and partially overlaps with the optic nerve. Results: A reference plan optimized based on physical dose alone yields high doseLET values in parts of the brainstem and optic nerve. Minimizing doseLET in these critical structures as an additional planning goal reduces the risk of high RBE-weighted dose. The resulting treatment plan avoids the distal fall-off of the Bragg peaks for shaping the dose distribution in front of critical stuctures. The maximum dose in the OARs evaluated with RBE models from literature is reduced by 8–14\\% with our method compared to conventional planning. Conclusion: LET-based inverse planning for IMPT offers the ability to reduce the RBE-weighted dose in OARs without sacrificing target dose. This project was in part supported by NCI - U19 CA 21239.« less

  8. Mechanistic simulation of normal-tissue damage in radiotherapy—implications for dose-volume analyses

    NASA Astrophysics Data System (ADS)

    Rutkowska, Eva; Baker, Colin; Nahum, Alan

    2010-04-01

    A radiobiologically based 3D model of normal tissue has been developed in which complications are generated when 'irradiated'. The aim is to provide insight into the connection between dose-distribution characteristics, different organ architectures and complication rates beyond that obtainable with simple DVH-based analytical NTCP models. In this model the organ consists of a large number of functional subunits (FSUs), populated by stem cells which are killed according to the LQ model. A complication is triggered if the density of FSUs in any 'critical functioning volume' (CFV) falls below some threshold. The (fractional) CFV determines the organ architecture and can be varied continuously from small (series-like behaviour) to large (parallel-like). A key feature of the model is its ability to account for the spatial dependence of dose distributions. Simulations were carried out to investigate correlations between dose-volume parameters and the incidence of 'complications' using different pseudo-clinical dose distributions. Correlations between dose-volume parameters and outcome depended on characteristics of the dose distributions and on organ architecture. As anticipated, the mean dose and V20 correlated most strongly with outcome for a parallel organ, and the maximum dose for a serial organ. Interestingly better correlation was obtained between the 3D computer model and the LKB model with dose distributions typical for serial organs than with those typical for parallel organs. This work links the results of dose-volume analyses to dataset characteristics typical for serial and parallel organs and it may help investigators interpret the results from clinical studies.

  9. Biological effective dose for comparison and combination of external beam and low-dose rate interstitial brachytherapy prostate cancer treatment plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jani, Ashesh B.; Hand, Christopher M.; Lujan, Anthony E.

    2004-03-31

    We report a methodology for comparing and combining dose information from external beam radiotherapy (EBRT) and interstitial brachytherapy (IB) components of prostate cancer treatment using the biological effective dose (BED). On a prototype early-stage prostate cancer patient treated with EBRT and low-dose rate I-125 brachytherapy, a 3-dimensional dose distribution was calculated for each of the EBRT and IB portions of treatment. For each component of treatment, the BED was calculated on a point-by-point basis to produce a BED distribution. These individual BED distributions could then be summed for combined therapies. BED dose-volume histograms (DVHs) of the prostate, urethra, rectum, andmore » bladder were produced and compared for various combinations of EBRT and IB. Transformation to BED enabled computation of the relative contribution of each modality to the prostate dose, as the relative weighting of EBRT and IB was varied. The BED-DVHs of the prostate and urethra demonstrated dramatically increased inhomogeneity with the introduction of even a small component of IB. However, increasing the IB portion relative to the EBRT component resulted in lower dose to the surrounding normal structures, as evidenced by the BED-DVHs of the bladder and rectum. Conformal EBRT and low-dose rate IB conventional dose distributions were successfully transformed to the common 'language' of BED distributions for comparison and for merging prostate cancer radiation treatment plans. The results of this analysis can assist physicians in quantitatively determining the best combination and weighting of radiation treatment modalities for individual patients.« less

  10. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, H; Jeon, H; Nam, J

    Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law.more » In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.« less

  11. Total Ionizing Dose Test Report BFR92A NPN 5 GHz Wide Band Transistor from NXP

    NASA Technical Reports Server (NTRS)

    Phan, Anthony M.; Oldham, Timothy R.

    2011-01-01

    The purpose of this test was to characterize the Philips/NXP BFR92A NPN 5 gigahertz wide band silicon transistor for total dose response. This test shall serves as the radiation lot acceptance test (RLAT) for the lot date code (LDC) 1027. The BFR92A is packaged in a 3-pin plastic SOT23 package. Low dose rate (LDR/ELDRS) irradiations was performed.

  12. Verification of Dose Distribution in Carbon Ion Radiation Therapy for Stage I Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irie, Daisuke; Saitoh, Jun-ichi, E-mail: junsaito@gunma-u.ac.jp; Shirai, Katsuyuki

    Purpose: To evaluate robustness of dose distribution of carbon-ion radiation therapy (C-ion RT) in non-small cell lung cancer (NSCLC) and to identify factors affecting the dose distribution by simulated dose distribution. Methods and Materials: Eighty irradiation fields for delivery of C-ion RT were analyzed in 20 patients with stage I NSCLC. Computed tomography images were obtained twice before treatment initiation. Simulated dose distribution was reconstructed on computed tomography for confirmation under the same settings as actual treatment with respiratory gating and bony structure matching. Dose-volume histogram parameters, such as %D95 (percentage of D95 relative to the prescribed dose), were calculated.more » Patients with any field for which the %D95 of gross tumor volume (GTV) was below 90% were classified as unacceptable for treatment, and the optimal target margin for such cases was examined. Results: Five patients with a total of 8 fields (10% of total number of fields analyzed) were classified as unacceptable according to %D95 of GTV, although most patients showed no remarkable change in the dose-volume histogram parameters. Receiver operating characteristic curve analysis showed that tumor displacement and change in water-equivalent pathlength were significant predictive factors of unacceptable cases (P<.001 and P=.002, respectively). The main cause of degradation of the dose distribution was tumor displacement in 7 of the 8 unacceptable fields. A 6-mm planning target volume margin ensured a GTV %D95 of >90%, except in 1 extremely unacceptable field. Conclusions: According to this simulation analysis of C-ion RT for stage I NSCLC, a few fields were reported as unacceptable and required resetting of body position and reconfirmation. In addition, tumor displacement and change in water-equivalent pathlength (bone shift and/or chest wall thickness) were identified as factors influencing the robustness of dose distribution. Such uncertainties should be regarded in planning.« less

  13. Dose escalation in permanent brachytherapy for prostate cancer: dosimetric and biological considerations

    NASA Astrophysics Data System (ADS)

    Li, X. Allen; Wang, Jian Z.; Stewart, Robert D.; Di Biase, Steven J.

    2003-09-01

    No prospective dose escalation study for prostate brachytherapy (PB) with permanent implants has been reported. In this work, we have performed a dosimetric and biological analysis to explore the implications of dose escalation in PB using 125I and 103Pd implants. The concept of equivalent uniform dose (EUD), proposed originally for external-beam radiotherapy (EBRT), is applied to low dose rate brachytherapy. For a given 125I or 103Pd PB, the EUD for tumour that corresponds to a dose distribution delivered by EBRT is calculated based on the linear quadratic model. The EUD calculation is based on the dose volume histogram (DVH) obtained retrospectively from representative actual patient data. Tumour control probabilities (TCPs) are also determined in order to compare the relative effectiveness of different dose levels. The EUD for normal tissue is computed using the Lyman model. A commercial inverse treatment planning algorithm is used to investigate the feasibility of escalating the dose to prostate with acceptable dose increases in the rectum and urethra. The dosimetric calculation is performed for five representative patients with different prostate sizes. A series of PB dose levels are considered for each patient using 125I and 103Pd seeds. It is found that the PB prescribed doses (minimum peripheral dose) that give an equivalent EBRT dose of 64.8, 70.2, 75.6 and 81 Gy with a fraction size of 1.8 Gy are 129, 139, 150 and 161 Gy for 125I and 103, 112, 122 and 132 Gy for 103Pd implants, respectively. Estimates of the EUD and TCP for a series of possible prescribed dose levels (e.g., 145, 160, 170 and 180 Gy for 125I and 125, 135, 145 and 155 for 103Pd implants) are tabulated. The EUD calculation was found to depend strongly on DVHs and radiobiological parameters. The dosimetric calculations suggest that the dose to prostate can be escalated without a substantial increase in both rectal and urethral dose. For example, increasing the PB prescribed dose from 145 to 180 Gy increases EUD for the rectum by only 3%. Our studies indicate that the dose to urethra can be kept within 100-120% of the prescription dose for all the dose levels studied. In conclusion, dose escalation in permanent implant for localized prostate cancer may be advantageous. It is dosimetrically possible to increase dose to prostate without a substantial increase in the dose to the rectum and urethra. Based on the results of our studies, a prospective dose escalation trial for prostate permanent implants has been initiated at our institution.

  14. Four-dimensional layer-stacking carbon-ion beam dose distribution by use of a lung numeric phantom.

    PubMed

    Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro

    2015-07-01

    To extend layer-stacking irradiation to accommodate intrafractional organ motion, we evaluated the carbon-ion layer-stacking dose distribution using a numeric lung phantom. We designed several types of range compensators. The planning target volume was calculated from the respective respiratory phases for consideration of intrafractional beam range variation. The accumulated dose distribution was calculated by registering of the dose distributions at respective phases to that at the reference phase. We evaluated the dose distribution based on the following six parameters: motion displacement, direction, gating window, respiratory cycle, range-shifter change time, and prescribed dose. All parameters affected the dose conformation to the moving target. By shortening of the gating window, dose metrics for superior-inferior (SI) and anterior-posterior (AP) motions were decreased from a D95 of 94 %, Dmax of 108 %, and homogeneity index (HI) of 23 % at T00-T90, to a D95 of 93 %, Dmax of 102 %, and HI of 20 % at T40-T60. In contrast, all dose metrics except the HI were independent of respiratory cycle. All dose metrics in SI motion were almost the same in respective motion displacement, with a D95 of 94 %, Dmax of 108 %, Dmin of 89 %, and HI of 23 % for the ungated phase, and D95 of 93 %, Dmax of 102 %, Dmin of 85 %, and HI of 20 % for the gated phase. The dose conformation to a moving target was improved by the gating strategy and by an increase in the prescribed dose. A combination of these approaches is a practical means of adding them to existing treatment protocols without modifications.

  15. Development of a Spect-Based Three-Dimensional Treatment Planner for Radionuclide Therapy with Iodine -131.

    NASA Astrophysics Data System (ADS)

    Giap, Huan Bosco

    Accurate calculation of absorbed dose to target tumors and normal tissues in the body is an important requirement for establishing fundamental dose-response relationships for radioimmunotherapy. Two major obstacles have been the difficulty in obtaining an accurate patient-specific 3-D activity map in-vivo and calculating the resulting absorbed dose. This study investigated a methodology for 3-D internal dosimetry, which integrates the 3-D biodistribution of the radionuclide acquired from SPECT with a dose-point kernel convolution technique to provide the 3-D distribution of absorbed dose. Accurate SPECT images were reconstructed with appropriate methods for noise filtering, attenuation correction, and Compton scatter correction. The SPECT images were converted into activity maps using a calibration phantom. The activity map was convolved with an ^{131}I dose-point kernel using a 3-D fast Fourier transform to yield a 3-D distribution of absorbed dose. The 3-D absorbed dose map was then processed to provide the absorbed dose distribution in regions of interest. This methodology can provide heterogeneous distributions of absorbed dose in volumes of any size and shape with nonuniform distributions of activity. Comparison of the activities quantitated by our SPECT methodology to true activities in an Alderson abdominal phantom (with spleen, liver, and spherical tumor) yielded errors of -16.3% to 4.4%. Volume quantitation errors ranged from -4.0 to 5.9% for volumes greater than 88 ml. The percentage differences of the average absorbed dose rates calculated by this methodology and the MIRD S-values were 9.1% for liver, 13.7% for spleen, and 0.9% for the tumor. Good agreement (percent differences were less than 8%) was found between the absorbed dose due to penetrating radiation calculated from this methodology and TLD measurement. More accurate estimates of the 3 -D distribution of absorbed dose can be used as a guide in specifying the minimum activity to be administered to patients to deliver a prescribed absorbed dose to tumor without exceeding the toxicity limits of normal tissues.

  16. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Yani, Sitti; Dirgayussa, I. Gde E.; Rhani, Moh. Fadhillah; Haryanto, Freddy; Arif, Idam

    2015-09-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm3, 1 × 1 × 0.5 cm3, and 1 × 1 × 0.8 cm3. The 1 × 109 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in dmax from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  17. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-specific doses (RSDs) are listed for the carcinogenic metals. The RSD for a metal is the acceptable ambient... RSD as described in paragraph (d)(3) of this section. (3) Carcinogenic metals. For the carcinogenic... person resides on site) to the risk-specific dose (RSD) for all carcinogenic metals emitted shall not...

  18. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-specific doses (RSDs) are listed for the carcinogenic metals. The RSD for a metal is the acceptable ambient... RSD as described in paragraph (d)(3) of this section. (3) Carcinogenic metals. For the carcinogenic... person resides on site) to the risk-specific dose (RSD) for all carcinogenic metals emitted shall not...

  19. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-specific doses (RSDs) are listed for the carcinogenic metals. The RSD for a metal is the acceptable ambient... RSD as described in paragraph (d)(3) of this section. (3) Carcinogenic metals. For the carcinogenic... person resides on site) to the risk-specific dose (RSD) for all carcinogenic metals emitted shall not...

  20. Gaining Acceptance for the use of in vitro Toxicity Assays and QIVIVE in Regulatory Risk Assessment

    EPA Science Inventory

    Testing strategies are anticipated to increasingly rely on in vitro data as a basis to characterize early steps or key events in toxicity at relevant dose levels in human tissues. This requires quantitative in vitro to in vivo extrapolation to characterize dose-response as a bas...

  1. Near real-time automated dose restoration in IMPT to compensate for daily tissue density variations in prostate cancer

    NASA Astrophysics Data System (ADS)

    Jagt, Thyrza; Breedveld, Sebastiaan; van de Water, Steven; Heijmen, Ben; Hoogeman, Mischa

    2017-06-01

    Proton therapy is very sensitive to daily density changes along the pencil beam paths. The purpose of this study is to develop and evaluate an automated method for adaptation of IMPT plans to compensate for these daily tissue density variations. A two-step restoration method for ‘densities-of-the-day’ was created: (1) restoration of spot positions (Bragg peaks) by adapting the energy of each pencil beam to the new water equivalent path length; and (2) re-optimization of pencil beam weights by minimizing the dosimetric difference with the planned dose distribution, using a fast and exact quadratic solver. The method was developed and evaluated using 8-10 repeat CT scans of 10 prostate cancer patients. Experiments demonstrated that giving a high weight to the PTV in the re-optimization resulted in clinically acceptable restorations. For all scans we obtained V 95%  ⩾  98% and V 107%  ⩽  2%. For the bladder, the differences between the restored and the intended treatment plan were below  +2 Gy and  +2%-point. The rectum differences were below  +2 Gy and  +2%-point for 90% of the scans. In the remaining scans the rectum was filled with air, which partly overlapped with the PTV. The air cavity distorted the Bragg peak resulting in less favorable rectum doses.

  2. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions

    NASA Astrophysics Data System (ADS)

    Schneider, Wilfried; Bortfeld, Thomas; Schlegel, Wolfgang

    2000-02-01

    We describe a new method to convert CT numbers into mass density and elemental weights of tissues required as input for dose calculations with Monte Carlo codes such as EGS4. As a first step, we calculate the CT numbers for 71 human tissues. To reduce the effort for the necessary fits of the CT numbers to mass density and elemental weights, we establish four sections on the CT number scale, each confined by selected tissues. Within each section, the mass density and elemental weights of the selected tissues are interpolated. For this purpose, functional relationships between the CT number and each of the tissue parameters, valid for media which are composed of only two components in varying proportions, are derived. Compared with conventional data fits, no loss of accuracy is accepted when using the interpolation functions. Assuming plausible values for the deviations of calculated and measured CT numbers, the mass density can be determined with an accuracy better than 0.04 g cm-3 . The weights of phosphorus and calcium can be determined with maximum uncertainties of 1 or 2.3 percentage points (pp) respectively. Similar values can be achieved for hydrogen (0.8 pp) and nitrogen (3 pp). For carbon and oxygen weights, errors up to 14 pp can occur. The influence of the elemental weights on the results of Monte Carlo dose calculations is investigated and discussed.

  3. [Detection and classification of medication errors at Joan XXIII University Hospital].

    PubMed

    Jornet Montaña, S; Canadell Vilarrasa, L; Calabuig Mũoz, M; Riera Sendra, G; Vuelta Arce, M; Bardají Ruiz, A; Gallart Mora, M J

    2004-01-01

    Medication errors are multifactorial and multidisciplinary, and may originate in processes such as drug prescription, transcription, dispensation, preparation and administration. The goal of this work was to measure the incidence of detectable medication errors that arise within a unit dose drug distribution and control system, from drug prescription to drug administration, by means of an observational method confined to the Pharmacy Department, as well as a voluntary, anonymous report system. The acceptance of this voluntary report system's implementation was also assessed. A prospective descriptive study was conducted. Data collection was performed at the Pharmacy Department from a review of prescribed medical orders, a review of pharmaceutical transcriptions, a review of dispensed medication and a review of medication returned in unit dose medication carts. A voluntary, anonymous report system centralized in the Pharmacy Department was also set up to detect medication errors. Prescription errors were the most frequent (1.12%), closely followed by dispensation errors (1.04%). Transcription errors (0.42%) and administration errors (0.69%) had the lowest overall incidence. Voluntary report involved only 4.25% of all detected errors, whereas unit dose medication cart review contributed the most to error detection. Recognizing the incidence and types of medication errors that occur in a health-care setting allows us to analyze their causes and effect changes in different stages of the process in order to ensure maximal patient safety.

  4. Environmental hazards and distribution of radioactive black sand along the Rosetta coastal zone in Egypt using airborne spectrometric and remote sensing data.

    PubMed

    Kaiser, M F; Aziz, A M; Ghieth, B M

    2014-11-01

    High-resolution airborne gamma ray spectrometry, conducted in 2003, was used to estimate radioactive elements spatial abundance along the Rosetta coastal zone area. It was noticed that both Uranium and Thorium are concentrated in the black sand deposits along the beach. In contrary, Potassium was observed in high level abundance at the cultivated Nile Delta lands due to the accumulated usage of fertilizers. Exposure Rate (ER), Absorbed Dose Rate (ADR) and Annual Effective Dose Rate (AEDR) were calculated to evaluate the radiation background influence in human. Results indicated that the human body in the study sites is subjected to radiation hazards exceeds the accepted limit for long duration exposure. In addition, the areas covered by the highest concentration of Uranium and Thorium show the highest level of radiogenic heat production. Detection the environmental hazards of the radioactive black sands in the study site encouraged this research to monitor the spatial and temporal distribution of these sediments. The Landsat Thematic Mapper images acquired in 1990, 2003 and 2013 were analyzed using remote sensing image processing techniques. Image enhancements, classification and changes detection indicated a positive significant relationship between the patterns of coastline changes and distribution of the radioactive black sand in the study sites. The radioactive black sands are usually concentrated in the eroded areas. Therefore, in 1990 high concentration of the radioactive black sands were observed along the eastern and western flanks of the Rosetta promontory. Distribution of these sediments decreased due to the construction of the protective sea walls. Most of the radioactive black sands are transported toward the east in Abu Khashaba bay under the effect of the longshore currents and toward the west in Alexandria and Abu Quir bay under the action of the seasonal reverse currents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. SU-E-T-558: Assessing the Effect of Inter-Fractional Motion in Esophageal Sparing Plans.

    PubMed

    Williamson, R; Bluett, J; Niedzielski, J; Liao, Z; Gomez, D; Court, L

    2012-06-01

    To compare esophageal dose distributions in esophageal sparing IMRT plans with predicted dose distributions which include the effect of inter-fraction motion. Seven lung cancer patients were used, each with a standard and an esophageal sparing plan (74Gy, 2Gy fractions). The average max dose to esophagus was 8351cGy and 7758cGy for the standard and sparing plans, respectively. The average length of esophagus for which the total circumference was treated above 60Gy (LETT60) was 9.4cm in the standard plans and 5.8cm in the sparing plans. In order to simulate inter-fractional motion, a three-dimensional rigid shift was applied to the calculated dose field. A simulated course of treatment consisted of a single systematic shift applied throughout the treatment as well a random shift for each of the 37 fractions. Both systematic and random shifts were generated from Gaussian distributions of 3mm and 5mm standard deviation. Each treatment course was simulated 1000 times to obtain an expected distribution of the delivered dose. Simulated treatment dose received by the esophagus was less than dose seen in the treatment plan. The average reduction in maximum esophageal dose for the standard plans was 234cGy and 386cGY for the 3mm and 5mm Gaussian distributions, respectively. The average reduction in LETT60 was 0.6cm and 1.7cm, for the 3mm and 5mm distributions respectively. For the esophageal sparing plans, the average reduction in maximum esophageal dose was 94cGy and 202cGy for 3mm and 5mm Gaussian distributions, respectively. The average change in LETT60 for the esophageal sparing plans was smaller, at 0.1cm (increase) and 0.6cm (reduction), for the 3mm and 5mm distributions, respectively. Interfraction motion consistently reduced the maximum doses to the esophagus for both standard and esophageal sparing plans. © 2012 American Association of Physicists in Medicine.

  6. Prediction of adaptive self-regulatory responses to arthritis pain anxiety in exercising adults: does pain acceptance matter?

    PubMed

    Cary, Miranda Ashley; Gyurcsik, Nancy C; Brawley, Lawrence R

    2015-01-01

    Exercising for ≥ 150 min/week is a recommended strategy for self-managing arthritis. However, exercise nonadherence is a problem. Arthritis pain anxiety may interfere with regular exercise. According to the fear-avoidance model, individuals may confront their pain anxiety by using adaptive self-regulatory responses (eg, changing exercise type or duration). Furthermore, the anxiety-self-regulatory responses relationship may vary as a function of individuals' pain acceptance levels. To investigate pain acceptance as a moderator of the pain anxiety-adaptive self-regulatory responses relationship. The secondary objective was to examine whether groups of patients who differed in meeting exercise recommendations also differed in pain-related and self-regulatory responses. Adults (mean [± SD] age 49.75 ± 13.88 years) with medically diagnosed arthritis completed online measures of arthritis pain-related variables and self-regulatory responses at baseline, and exercise participation two weeks later. Individuals meeting (n=87) and not meeting (n=49) exercise recommendations were identified. Hierarchical multiple regression analysis revealed that pain acceptance moderated the anxiety-adaptive self-regulatory responses relationship. When pain anxiety was lower, greater pain acceptance was associated with less frequent use of adaptive responses. When anxiety was higher, adaptive responses were used regardless of pain acceptance level. MANOVA findings revealed that participants meeting the recommended exercise dose reported significantly lower pain and pain anxiety, and greater pain acceptance (P<0.05) than those not meeting the dose. Greater pain acceptance may help individuals to focus their efforts to adapt to their pain anxiety only when it is higher, leaving self-regulatory capacity to cope with additional challenges to exercise adherence (eg, busy schedule).

  7. Prediction of adaptive self-regulatory responses to arthritis pain anxiety in exercising adults: Does pain acceptance matter?

    PubMed Central

    Cary, Miranda A; Gyurcsik, Nancy C; Brawley, Lawrence R

    2015-01-01

    BACKGROUND: Exercising for ≥150 min/week is a recommended strategy for self-managing arthritis. However, exercise nonadherence is a problem. Arthritis pain anxiety may interfere with regular exercise. According to the fear-avoidance model, individuals may confront their pain anxiety by using adaptive self-regulatory responses (eg, changing exercise type or duration). Furthermore, the anxiety-self-regulatory responses relationship may vary as a function of individuals’ pain acceptance levels. OBJECTIVES: To investigate pain acceptance as a moderator of the pain anxiety-adaptive self-regulatory responses relationship. The secondary objective was to examine whether groups of patients who differed in meeting exercise recommendations also differed in pain-related and self-regulatory responses. METHODS: Adults (mean [± SD] age 49.75±13.88 years) with medically diagnosed arthritis completed online measures of arthritis pain-related variables and self-regulatory responses at baseline, and exercise participation two weeks later. Individuals meeting (n=87) and not meeting (n=49) exercise recommendations were identified. RESULTS: Hierarchical multiple regression analysis revealed that pain acceptance moderated the anxiety-adaptive self-regulatory responses relationship. When pain anxiety was lower, greater pain acceptance was associated with less frequent use of adaptive responses. When anxiety was higher, adaptive responses were used regardless of pain acceptance level. MANOVA findings revealed that participants meeting the recommended exercise dose reported significantly lower pain and pain anxiety, and greater pain acceptance (P<0.05) than those not meeting the dose. CONCLUSIONS: Greater pain acceptance may help individuals to focus their efforts to adapt to their pain anxiety only when it is higher, leaving self-regulatory capacity to cope with additional challenges to exercise adherence (eg, busy schedule). PMID:25621990

  8. [Comparison of SIB-IMRT treatment plans for upper esophageal carcinoma].

    PubMed

    Fu, Wei-hua; Wang, Lv-hua; Zhou, Zong-mei; Dai, Jian-rong; Hu, Yi-min

    2003-06-01

    To implement simultaneous integrated boost intensity-modulated radiotherapy(SIB-IMRT) plans for upper esophageal carcinoma and investigate the dose profiles of tumor and electively treated region and the dose to organs at risk (OARs). SIB-IMRT plans were designed for two patients with upper esophageal carcinoma. Two target volumes were predefined: PTV1, the target volume of the primary lesion, which was given to 67.2 Gy, and PTV2, the target volume of electively treated region, which was given to 50.4 Gy. With the same dose-volume constraints, but different beams arrangements (3, 5, 7, or 9 equispaced coplanar beams), four plans were generated. Indices, including dose distribution, dose volume histogram (DVH) and conformity index, were used for comparison of these plans. The plan with three intensity-modulated beams could produce good dose distribution for the two target volumes. The dose conformity to targets and the dose to OARs were improved as the beam number increased. The dose distributions in targets changed little when the beam number increased from 7 to 9. Five to seven intensity-modulated beams can produce desirable dose distributions for simultaneous integrated boost (SIB) treatment for upper esophageal carcinoma. The primary tumor can get higher equivalent dose by SIB treatments. It is easier and more efficient to design plans with equispaced coplanar beams. The efficacy of SIB-IMRT remains to be determined by the clinical outcome.

  9. Dose Distribution in Cone-Beam Breast Computed Tomography: An Experimental Phantom Study

    NASA Astrophysics Data System (ADS)

    Russo, Paolo; Lauria, Adele; Mettivier, Giovanni; Montesi, Maria Cristina; Villani, Natalia

    2010-02-01

    We measured the spatial distribution of absorbed dose in a 14 cm diameter PMMA half-ellipsoid phantom simulating the uncompressed breast, using an X-ray cone-beam breast computed tomography apparatus, assembled for laboratory tests. Thermoluminescent dosimeters (TLD-100) were placed inside the phantom in six positions, both axially and at the phantom periphery. To study the dose distribution inside the PMMA phantom two experimental setups were adopted with effective energies in the range 28.7-44.4 keV. Different values of effective energies were obtained by combining different configurations of added Cu filtration (0.05 mm or 0.2 mm) and tube voltages (from 50 kVp to 80 kVp). Dose values obtained by TLDs in different positions inside the PMMA are reported. To evaluate the dose distribution in the breast shaped volume, the values measured were normalized to the one obtained in the inner position inside the phantom. Measurements with a low energy setup show a gradual increment of dose going from the "chest wall" to the "nipple" (63% more at the "nipple" compared to the central position). Likewise, a gradual increment is observed going from the breast axis toward the periphery (82% more at the "skin" compared to the central position). A more uniform distribution of dose inside the PMMA was obtained with a high energy setup (the maximum variation was 33% at 35.5 keV effective energy in the radial direction). The most uniform distribution is obtained at 44.4 keV. The results of this study show how the dose is distributed: it varies as a function of effective energy of the incident X-ray beam and as a function of the position inside the volume (axial or peripheral position).

  10. TU-H-CAMPUS-JeP2-04: Deriving Delivered Doses to Assess the Viability of 2.5 Mm Margins in Head and Neck SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, S; Shang, Q; Godley, A

    Purpose: To calculate the delivered dose for head and neck SBRT patients using pre-treatment images. This delivered dose was then used to determine the viability of 2.5 mm margins. Methods: Daily cone beam CTs (CBCTs) were collected for 20 patients along with a planning CT, planned dose, and planning structures. The day 1 CBCT was aligned to the planning CT using the treatment shifts (six degrees of freedom) and then the dose and contours were transferred to the CBCT. The day 1 CBCT becomes the reference image for days 2–5. The day 2–5 CBCTs were also aligned to the planningmore » CT using the treatment shifts given and the dose transferred. The day 2–5 CBCTs were then deformably registered to the day 1 CBCT. The doses delivered on days 2–5 were then deformed to the day 1 CBCT where they could be accumulated. This was achieved with MIM 6.5.1 (MIM Software, Cleveland OH). The accumulated doses for the 20 patients were evaluated against the planned doses using the initial planning criteria as points of comparison. Results: The delivered CTV dose conformed to the planned 98.6% coverage, with an average decrease of 2.6% between planned and delivered coverage. This implies the 2.5 mm margin was sufficient. Larger CTVs correlated to smaller differences between planned and delivered coverage. Delivered dose to critical structures including the spinal cord, mandible, brain, brainstem, and larynx was acceptable, with differences between planned and delivered max dose <5% on average. Similarly for the parotid glands, globes, cochlear, optic nerve, lens, and submandibular glands, differences between planned and delivered doses were generally <5%. Conclusion: The 2.5 mm margin provided acceptable CTV coverage, adequately accounting for setup errors. Organ at risk sparing was also satisfactory. Small tumor volumes (<20 cc) may require a larger margin to treat effectively.« less

  11. Shelf life extension of minimally processed cabbage and cucumber through gamma irradiation.

    PubMed

    Khattak, Amal Badshah; Bibi, Nizakat; Chaudry, Muhammad Ashraf; Khan, Misal; Khan, Maazullah; Qureshi, Muhammad Jamil

    2005-01-01

    The influence of irradiation of minimally processed cabbage and cucumber on microbial safety, texture, and sensory quality was investigated. Minimally processed, polyethylene-packed, and irradiated cabbage and cucumber were stored at refrigeration temperature (5 degrees C) for 2 weeks. The firmness values ranged from 3.23 kg (control) to 2.82 kg (3.0-kGy irradiated samples) for cucumbers, with a gradual decrease in firmness with increasing radiation dose (0 to 3 kGy). Cucumbers softened just after irradiation with a dose of 3.0 kGy and after 14 days storage, whereas the texture remained within acceptable limits up to a radiation dose of 2.5 kGy. The radiation treatment had no effect on the appearance scores of cabbage; however, scores decreased from 7.0 to 6.7 during storage. The appearance and flavor scores of cucumbers decreased with increasing radiation dose, and overall acceptability was better after radiation doses of 2.5 and 3.0 kGy. The aerobic plate counts per gram for cabbage increased from 3 to 5 log CFU (control), from 1.85 to 2.93 log CFU (2.5 kGy), and from a few colonies to 2.6 log CFU (3.0 kGy) after 14 days of storage at 5 degrees C. A similar trend was noted for cucumber samples. No coliform bacteria were detected at radiation doses greater than 2.0 kGy in either cabbage or cucumber samples. Total fungal counts per gram of sample were within acceptable limits for cucumbers irradiated at 3.0 kGy, and for cabbage no fungi were detected after 2.0-kGy irradiation. The D-values for Escherichia coli in cucumber and cabbage were 0.19 and 0.17 kGy, and those for Salmonella Paratyphi A were 0.25 and 0.29 kGy for cucumber and cabbage, respectively.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, H; Ferjani, S; Masssey, V

    Purpose: Perform dosimetric comparison between planned and delivered dose in the junction area, measure daily dose variation in the arc junction area for pediatric patients treated for medulloblastoma using Craniospinal axis irradiation(CSI) Material and methods Dose comparison in the junction area, daily dose variation in the arc junction area for a Rando Phantom and 5 pediatric patients treated using CSI technique were analyzed. Plans were created using the Eclipse treatment planning system. Two arcs for cranium and 1 arc for spine region were used. Planar dose matrix was created by projecting phantom and patient plan into the ArcCheck phantom. EBT3more » film was placed in the middle of ArcCheck plug to measure dose distribution in the junction areaDuring patient treatment, strip of EBT3 film was placed daily at each junction area for verification. EBT3 films were scanned using a flatbed scanner, Epson Expression 10000 XL. Film QA pro software was used to analyze film. Scanning and analysis was performed according to vendor recommendations and AAPM TG-55 report. Films were scanned and analyzed daily after each treatment and at the end of treatment course. Planar dose distributions from films were compared with planar dose distribution from treatment planning system. Results: Comparison of planned vs. measured dose distributions for patients have passing rates of 90%–100% with 3% and 3 mm gamma analysis. In some of the treatment fractions, daily setup film showed variation in dose distribution in the junction area. Conclusion: It is critical to measure dose distribution in the arc junction area and use additional quality assurance measures to verify daily setup for CSI patient where one or more junctions are present. EBT3 film prove to be a good tool to achieve this task considering flexibility associated with the film such as symmetry, self-developing and ease of use.« less

  13. A comparison of intensity modulated x-ray therapy to intensity modulated proton therapy for the delivery of non-uniform dose distributions

    NASA Astrophysics Data System (ADS)

    Flynn, Ryan

    2007-12-01

    The distribution of biological characteristics such as clonogen density, proliferation, and hypoxia throughout tumors is generally non-uniform, therefore it follows that the optimal dose prescriptions should also be non-uniform and tumor-specific. Advances in intensity modulated x-ray therapy (IMXT) technology have made the delivery of custom-made non-uniform dose distributions possible in practice. Intensity modulated proton therapy (IMPT) has the potential to deliver non-uniform dose distributions as well, while significantly reducing normal tissue and organ at risk dose relative to IMXT. In this work, a specialized treatment planning system was developed for the purpose of optimizing and comparing biologically based IMXT and IMPT plans. The IMXT systems of step-and-shoot (IMXT-SAS) and helical tomotherapy (IMXT-HT) and the IMPT systems of intensity modulated spot scanning (IMPT-SS) and distal gradient tracking (IMPT-DGT), were simulated. A thorough phantom study was conducted in which several subvolumes, which were contained within a base tumor region, were boosted or avoided with IMXT and IMPT. Different boosting situations were simulated by varying the size, proximity, and the doses prescribed to the subvolumes, and the size of the phantom. IMXT and IMPT were also compared for a whole brain radiation therapy (WBRT) case, in which a brain metastasis was simultaneously boosted and the hippocampus was avoided. Finally, IMXT and IMPT dose distributions were compared for the case of non-uniform dose prescription in a head and neck cancer patient that was based on PET imaging with the Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone (Cu-ATSM) hypoxia marker. The non-uniform dose distributions within the tumor region were comparable for IMXT and IMPT. IMPT, however, was capable of delivering the same non-uniform dose distributions within a tumor using a 180° arc as for a full 360° rotation, which resulted in the reduction of normal tissue integral dose by a factor of up to three relative to IMXT, and the complete sparing of organs at risk distal to the tumor region.

  14. SU-F-T-159: Monte Carlo Simulation Studies of Three-Dimensional Dose Distribution for Polymer Gel Dosimeter and Radiochromic Gel Dosimeter in a Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Kim, G; Jung, H

    Purpose: The purpose of this simulation study is to evaluate the proton detectability of gel dosimeters, and estimate the three-dimensional dose distribution of protons in the radiochromic gel and polymer gel dosimeter compared with the dose distribution in water. Methods: The commercial composition ratios of normoxic polymer gel and LCV micelle radiochromic gel were included in this simulation study. The densities of polymer and radiochromic gel were 1.024 and 1.005 g/cm3, respectively. The 50, 80 and 140 MeV proton beam energies were selected. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiationmore » transport code (MCNPX 2.7.0, Los Alamos Laboratory). The water equivalent depth profiles and the dose distributions of two gel dosimeters were compared for the water. Results: In case of irradiating 50, 80 and 140 MeV proton beam to water phantom, the reference Bragg-peak depths are represented at 2.22, 5.18 and 13.98 cm, respectively. The difference in the water equivalent depth is represented to about 0.17 and 0.37 cm in the radiochromic gel and polymer gel dosimeter, respectively. The proton absorbed doses in the radiochromic gel dosimeter are calculated to 2.41, 3.92 and 6.90 Gy with increment of incident proton energies. In the polymer gel dosimeter, the absorbed doses are calculated to 2.37, 3.85 and 6.78 Gy with increment of incident proton energies. The relative absorbed dose in radiochromic gel (about 0.47 %) is similar to that of water than the relative absorbed dose of polymer gel (about 2.26 %). In evaluating the proton dose distribution, we found that the dose distribution of both gel dosimeters matched that of water in most cases. Conclusion: As the dosimetry device, the radiochromic gel dosimeter has the potential particle detectability and is feasible to use for quality assurance of proton beam therapy beam.« less

  15. SU-E-T-753: Three-Dimensional Dose Distributions of Incident Proton Particle in the Polymer Gel Dosimeter and the Radiochromic Gel Dosimeter: A Simulation Study with MCNP Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Kim, G; Ji, Y

    Purpose: The purpose of this study is to estimate the three-dimensional dose distributions in the polymer and the radiochromic gel dosimeter, and to identify the detectability of both gel dosimeters by comparing with the water phantom in case of irradiating the proton particles. Methods: The normoxic polymer gel and the LCV micelle radiochromic gel were used in this study. The densities of polymer and the radiochromic gel dosimeter were 1.024 and 1.005 g/cm{sup 3}, respectively. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiation transport code (MCNPX, Los Alamos National Laboratory). Themore » shape of phantom irradiated by proton particles was a hexahedron with the dimension of 12.4 × 12.4 × 15.0 cm{sup 3}. The energies of proton beam were 50, 80, and 140 MeV energies were directed to top of the surface of phantom. The cross-sectional view of proton dose distribution in both gel dosimeters was estimated with the water phantom and evaluated by the gamma evaluation method. In addition, the absorbed dose(Gy) was also calculated for evaluating the proton detectability. Results: The evaluation results show that dose distributions in both gel dosimeters at intermediated section and Bragg-peak region are similar with that of the water phantom. At entrance section, however, inconsistencies of dose distribution are represented, compared with water. The relative absorbed doses in radiochromic and polymer gel dosimeter were represented to be 0.47 % and 2.26 % difference, respectively. These results show that the radiochromic gel dosimeter was better matched than the water phantom in the absorbed dose evaluation. Conclusion: The polymer and the radiochromic gel dosimeter show similar characteristics in dose distributions for the proton beams at intermediate section and Bragg-peak region. Moreover the calculated absorbed dose in both gel dosimeters represents similar tendency by comparing with that in water phantom.« less

  16. An Investigation of Aerosol Measurements from the Halogen Occultation Experiment: Validation, Size Distributions, Composition, and Relation to Other Chemical Species

    NASA Technical Reports Server (NTRS)

    Deshler, Terry; Hervig, Mark E.

    1998-01-01

    The efforts envisioned within the original proposal (accepted February 1994) and the extension of this proposal (accepted February 1997) included measurement validations, the retrieval of aerosol size distributions and distribution moments, aerosol correction studies, and investigations of polar stratospheric clouds. A majority of the results from this grant have been published. The principal results from this grant are discussed.

  17. Monte Carlo Estimation of Absorbed Dose Distributions Obtained from Heterogeneous 106Ru Eye Plaques.

    PubMed

    Zaragoza, Francisco J; Eichmann, Marion; Flühs, Dirk; Sauerwein, Wolfgang; Brualla, Lorenzo

    2017-09-01

    The distribution of the emitter substance in 106 Ru eye plaques is usually assumed to be homogeneous for treatment planning purposes. However, this distribution is never homogeneous, and it widely differs from plaque to plaque due to manufacturing factors. By Monte Carlo simulation of radiation transport, we study the absorbed dose distribution obtained from the specific CCA1364 and CCB1256 106 Ru plaques, whose actual emitter distributions were measured. The idealized, homogeneous CCA and CCB plaques are also simulated. The largest discrepancy in depth dose distribution observed between the heterogeneous and the homogeneous plaques was 7.9 and 23.7% for the CCA and CCB plaques, respectively. In terms of isodose lines, the line referring to 100% of the reference dose penetrates 0.2 and 1.8 mm deeper in the case of heterogeneous CCA and CCB plaques, respectively, with respect to the homogeneous counterpart. The observed differences in absorbed dose distributions obtained from heterogeneous and homogeneous plaques are clinically irrelevant if the plaques are used with a lateral safety margin of at least 2 mm. However, these differences may be relevant if the plaques are used in eccentric positioning.

  18. Detailed Distribution Map of Absorbed Dose Rate in Air in Tokatsu Area of Chiba Prefecture, Japan, Constructed by Car-Borne Survey 4 Years after the Fukushima Daiichi Nuclear Power Plant Accident.

    PubMed

    Inoue, Kazumasa; Arai, Moeko; Fujisawa, Makoto; Saito, Kyouko; Fukushi, Masahiro

    2017-01-01

    A car-borne survey was carried out in the northwestern, or Tokatsu, area of Chiba Prefecture, Japan, to make a detailed distribution map of absorbed dose rate in air four years after the Fukushima Daiichi Nuclear Power Plant accident. This area was chosen because it was the most heavily radionuclide contaminated part of Chiba Prefecture and it neighbors metropolitan Tokyo. Measurements were performed using a 3-in × 3-in NaI(Tl) scintillation spectrometer in June 2015. The survey route covered the whole Tokatsu area which includes six cities. A heterogeneous distribution of absorbed dose rate in air was observed on the dose distribution map. Especially, higher absorbed dose rates in air exceeding 80 nGy h-1 were observed along national roads constructed using high porosity asphalt, whereas lower absorbed dose rates in air were observed along local roads constructed using low porosity asphalt. The difference between these asphalt types resulted in a heterogeneous dose distribution in the Tokatsu area. The mean of the contribution ratio of artificial radionuclides to absorbed dose rate in air measured 4 years after the accident was 29% (9-50%) in the Tokatsu area. The maximum absorbed dose rate in air, 201 nGy h-1 was observed at Kashiwa City. Radiocesium was deposited in the upper 1 cm surface layer of the high porosity asphalt which was collected in Kashiwa City and the environmental half-life of the absorbed dose rate in air was estimated to be 1.7 years.

  19. WE-A-17A-12: The Influence of Eye Plaque Design On Dose Distributions and Dose- Volume Histograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryal, P; Molloy, JA; Rivard, MJ

    Purpose: To investigate the effect of slot design of the model EP917 plaque on dose distributions and dose-volume histograms (DVHs). Methods: The dimensions and orientation of the slots in EP917 plaques were measured. In the MCNP5 radiation simulation geometry, dose distributions on orthogonal planes and DVHs for a tumor and sclera were generated for comparisons. 27 slot designs and 13 plaques were evaluated and compared with the published literature and the Plaque Simulator clinical treatment planning system. Results: The dosimetric effect of the gold backing composition and mass density was < 3%. Slot depth, width, and length changed the centralmore » axis (CAX) dose distributions by < 1% per 0.1 mm in design variation. Seed shifts in the slot towards the eye and shifts of the {sup 125} I-coated Ag rod within the capsule had the greatest impact on CAX dose distribution, increasing by 14%, 9%, 4%, and 2.5% at 1, 2, 5, and 10 mm, respectively, from the inner sclera. Along the CAX, dose from the full plaque geometry using the measured slot design was 3.4% ± 2.3% higher than the manufacturer-provided geometry. D{sub 10} for the simulated tumor, inner sclera, and outer sclera for the measured plaque was also higher, but 9%, 10%, and 20%, respectively. In comparison to the measured plaque design, a theoretical plaque having narrow and deep slots delivered 30%, 37%, and 62% lower D{sub 10} doses to the tumor, inner sclera, and outer sclera, respectively. CAX doses at −1, 0, 1, and 2 mm were also lower by a factor of 2.6, 1.4, 1.23, and 1.13, respectively. Conclusion: The study identified substantial sensitivity of the EP917 plaque dose distributions to slot design. However, it did not identify substantial dosimetric variations based on radionuclide choice ({sup 125}I, {sup 103}Pd, or {sup 131}Cs). COMS plaques provided lower scleral doses with similar tumor dose coverage.« less

  20. SU-E-T-109: An Investigation of Including Variable Relative Biological Effectiveness in Intensity Modulated Proton Therapy Planning Optimization for Head and Neck Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, W; Zaghian, M; Lim, G

    2015-06-15

    Purpose: The current practice of considering the relative biological effectiveness (RBE) of protons in intensity modulated proton therapy (IMPT) planning is to use a generic RBE value of 1.1. However, RBE is indeed a variable depending on the dose per fraction, the linear energy transfer, tissue parameters, etc. In this study, we investigate the impact of using variable RBE based optimization (vRBE-OPT) on IMPT dose distributions compared by conventional fixed RBE based optimization (fRBE-OPT). Methods: Proton plans of three head and neck cancer patients were included for our study. In order to calculate variable RBE, tissue specific parameters were obtainedmore » from the literature and dose averaged LET values were calculated by Monte Carlo simulations. Biological effects were calculated using the linear quadratic model and they were utilized in the variable RBE based optimization. We used a Polak-Ribiere conjugate gradient algorithm to solve the model. In fixed RBE based optimization, we used conventional physical dose optimization to optimize doses weighted by 1.1. IMPT plans for each patient were optimized by both methods (vRBE-OPT and fRBE-OPT). Both variable and fixed RBE weighted dose distributions were calculated for both methods and compared by dosimetric measures. Results: The variable RBE weighted dose distributions were more homogenous within the targets, compared with the fixed RBE weighted dose distributions for the plans created by vRBE-OPT. We observed that there were noticeable deviations between variable and fixed RBE weighted dose distributions if the plan were optimized by fRBE-OPT. For organs at risk sparing, dose distributions from both methods were comparable. Conclusion: Biological dose based optimization rather than conventional physical dose based optimization in IMPT planning may bring benefit in improved tumor control when evaluating biologically equivalent dose, without sacrificing OAR sparing, for head and neck cancer patients. The research is supported in part by National Institutes of Health Grant No. 2U19CA021239-35.« less

  1. Assessment of national dosimetry quality audits results for teletherapy machines from 1989 to 2015.

    PubMed

    Muhammad, Wazir; Ullah, Asad; Mahmood, Khalid; Matiullah

    2016-01-01

    The purpose of this study was to ensure accuracy in radiation dose delivery, external dosimetry quality audit has an equal importance with routine dosimetry performed at clinics. To do so, dosimetry quality audit was organized by the Secondary Standard Dosimetry Laboratory (SSDL) of Pakistan Institute of Nuclear Science and Technology (PINSTECH) at the national level to investigate and minimize uncertainties involved in the measurement of absorbed dose, and to improve the accuracy of dose measurement at different radiotherapy hospitals. A total of 181 dosimetry quality audits (i.e., 102 of Co-60 and 79 of linear accelerators) for teletherapy units installed at 22 different sites were performed from 1989 to 2015. The percent deviation between users’ calculated/stated dose and evaluated dose (in the result of on-site dosimetry visits) were calculated and the results were analyzed with respect to the limits of ± 2.5% (ICRU "optimal model") ± 3.0% (IAEA on-site dosimetry visits limit) and ± 5.0% (ICRU minimal or "lowest acceptable" model). The results showed that out of 181 total on-site dosimetry visits, 20.44%, 16.02%, and 4.42% were out of acceptable limits of ± 2.5% ± 3.0%, and ± 5.0%, respectively. The importance of a proper ongoing quality assurance program, recommendations of the followed protocols, and properly calibrated thermometers, pressure gauges, and humidity meters at radiotherapy hospitals are essential in maintaining consistency and uniformity of absorbed dose measurements for precision in dose delivery.

  2. An assessment of a 3D EPID-based dosimetry system using conventional two- and three-dimensional detectors for VMAT.

    PubMed

    Stevens, S; Dvorak, P; Spevacek, V; Pilarova, K; Bray-Parry, M; Gesner, J; Richmond, A

    2018-01-01

    To provide a 3D dosimetric evaluation of a commercial portal dosimetry system using 2D/3D detectors under ideal conditions using VMAT. A 2D ion chamber array, radiochromic film and gel dosimeter were utilised to provide a dosimetric evaluation of transit phantom and pre-treatment 'fluence' EPID back-projected dose distributions for a standard VMAT plan. In-house 2D and 3D gamma methods compared pass statistics relative to each dosimeter and TPS dose distributions. Fluence mode and transit EPID dose distributions back-projected onto phantom geometry produced 2D gamma pass rates in excess of 97% relative to other tested detectors and exported TPS dose planes when a 3%, 3 mm global gamma criterion was applied. Use of a gel dosimeter within a glass vial allowed comparison of measured 3D dose distributions versus EPID 3D dose and TPS calculated distributions. 3D gamma comparisons between modalities at 3%, 3 mm gave pass rates in excess of 92%. Use of fluence mode was indicative of transit results under ideal conditions with slightly reduced dose definition. 3D EPID back projected dose distributions were validated against detectors in both 2D and 3D. Cross validation of transit dose delivered to a patient is limited due to reasons of practicality and the tests presented are recommended as a guideline for 3D EPID dosimetry commissioning; allowing direct comparison between detector, TPS, fluence and transit modes. The results indicate achievable gamma scores for a complex VMAT plan in a homogenous phantom geometry and contributes to growing experience of 3D EPID dosimetry. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Inclusion of dosimetric data as covariates in toxicity-related radiogenomic studies : A systematic review.

    PubMed

    Yahya, Noorazrul; Chua, Xin-Jane; Manan, Hanani A; Ismail, Fuad

    2018-05-17

    This systematic review evaluates the completeness of dosimetric features and their inclusion as covariates in genetic-toxicity association studies. Original research studies associating genetic features and normal tissue complications following radiotherapy were identified from PubMed. The use of dosimetric data was determined by mining the statement of prescription dose, dose fractionation, target volume selection or arrangement and dose distribution. The consideration of the dosimetric data as covariates was based on the statement mentioned in the statistical analysis section. The significance of these covariates was extracted from the results section. Descriptive analyses were performed to determine their completeness and inclusion as covariates. A total of 174 studies were found to satisfy the inclusion criteria. Studies published ≥2010 showed increased use of dose distribution information (p = 0.07). 33% of studies did not include any dose features in the analysis of gene-toxicity associations. Only 29% included dose distribution features as covariates and reported the results. 59% of studies which included dose distribution features found significant associations to toxicity. A large proportion of studies on the correlation of genetic markers with radiotherapy-related side effects considered no dosimetric parameters. Significance of dose distribution features was found in more than half of the studies including these features, emphasizing their importance. Completeness of radiation-specific clinical data may have increased in recent years which may improve gene-toxicity association studies.

  4. Patient radiation doses in interventional cardiology in the U.S.: Advisory data sets and possible initial values for U.S. reference levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Donald L.; Hilohi, C. Michael; Spelic, David C.

    2012-10-15

    Purpose: To determine patient radiation doses from interventional cardiology procedures in the U.S and to suggest possible initial values for U.S. benchmarks for patient radiation dose from selected interventional cardiology procedures [fluoroscopically guided diagnostic cardiac catheterization and percutaneous coronary intervention (PCI)]. Methods: Patient radiation dose metrics were derived from analysis of data from the 2008 to 2009 Nationwide Evaluation of X-ray Trends (NEXT) survey of cardiac catheterization. This analysis used deidentified data and did not require review by an IRB. Data from 171 facilities in 30 states were analyzed. The distributions (percentiles) of radiation dose metrics were determined for diagnosticmore » cardiac catheterizations, PCI, and combined diagnostic and PCI procedures. Confidence intervals for these dose distributions were determined using bootstrap resampling. Results: Percentile distributions (advisory data sets) and possible preliminary U.S. reference levels (based on the 75th percentile of the dose distributions) are provided for cumulative air kerma at the reference point (K{sub a,r}), cumulative air kerma-area product (P{sub KA}), fluoroscopy time, and number of cine runs. Dose distributions are sufficiently detailed to permit dose audits as described in National Council on Radiation Protection and Measurements Report No. 168. Fluoroscopy times are consistent with those observed in European studies, but P{sub KA} is higher in the U.S. Conclusions: Sufficient data exist to suggest possible initial benchmarks for patient radiation dose for certain interventional cardiology procedures in the U.S. Our data suggest that patient radiation dose in these procedures is not optimized in U.S. practice.« less

  5. SU-E-T-397: Evaluation of Planned Dose Distributions by Monte Carlo (0.5%) and Ray Tracing Algorithm for the Spinal Tumors with CyberKnife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, H; Brindle, J; Hepel, J

    2015-06-15

    Purpose: To analyze and evaluate dose distribution between Ray Tracing (RT) and Monte Carlo (MC) algorithms of 0.5% uncertainty on a critical structure of spinal cord and gross target volume and planning target volume. Methods: Twenty four spinal tumor patients were treated with stereotactic body radiotherapy (SBRT) by CyberKnife in 2013 and 2014. The MC algorithm with 0.5% of uncertainty is used to recalculate the dose distribution for the treatment plan of the patients using the same beams, beam directions, and monitor units (MUs). Results: The prescription doses are uniformly larger for MC plans than RT except one case. Upmore » to a factor of 1.19 for 0.25cc threshold volume and 1.14 for 1.2cc threshold volume of dose differences are observed for the spinal cord. Conclusion: The MC recalculated dose distributions are larger than the original MC calculations for the spinal tumor cases. Based on the accuracy of the MC calculations, more radiation dose might be delivered to the tumor targets and spinal cords with the increase prescription dose.« less

  6. Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue

    PubMed Central

    Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus

    2015-01-01

    Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532

  7. Measurement and simulation of lineal energy distribution at the CERN high energy facility with a tissue equivalent proportional counter.

    PubMed

    Rollet, S; Autischer, M; Beck, P; Latocha, M

    2007-01-01

    The response of a tissue equivalent proportional counter (TEPC) in a mixed radiation field with a neutron energy distribution similar to the radiation field at commercial flight altitudes has been studied. The measurements have been done at the CERN-EU High-Energy Reference Field (CERF) facility where a well-characterised radiation field is available for intercomparison. The TEPC instrument used by the ARC Seibersdorf Research is filled with pure propane gas at low pressure and can be used to determine the lineal energy distribution of the energy deposition in a mass of gas equivalent to a 2 microm diameter volume of unit density tissue, of similar size to the nuclei of biological cells. The linearity of the detector response was checked both in term of dose and dose rate. The effect of dead-time has been corrected. The influence of the detector exposure location and orientation in the radiation field on the dose distribution was also studied as a function of the total dose. The microdosimetric distribution of the absorbed dose as a function of the lineal energy has been obtained and compared with the same distribution simulated with the FLUKA Monte Carlo transport code. The dose equivalent was calculated by folding this distribution with the quality factor as a function of linear energy transfer. The comparison between the measured and simulated distributions show that they are in good agreement. As a result of this study the detector is well characterised, thanks also to the numerical simulations the instrument response is well understood, and it's currently being used onboard the aircrafts to evaluate the dose to aircraft crew caused by cosmic radiation.

  8. Adaptive statistical iterative reconstruction use for radiation dose reduction in pediatric lower-extremity CT: impact on diagnostic image quality.

    PubMed

    Shah, Amisha; Rees, Mitchell; Kar, Erica; Bolton, Kimberly; Lee, Vincent; Panigrahy, Ashok

    2018-06-01

    For the past several years, increased levels of imaging radiation and cumulative radiation to children has been a significant concern. Although several measures have been taken to reduce radiation dose during computed tomography (CT) scan, the newer dose reduction software adaptive statistical iterative reconstruction (ASIR) has been an effective technique in reducing radiation dose. To our knowledge, no studies are published that assess the effect of ASIR on extremity CT scans in children. To compare radiation dose, image noise, and subjective image quality in pediatric lower extremity CT scans acquired with and without ASIR. The study group consisted of 53 patients imaged on a CT scanner equipped with ASIR software. The control group consisted of 37 patients whose CT images were acquired without ASIR. Image noise, Computed Tomography Dose Index (CTDI) and dose length product (DLP) were measured. Two pediatric radiologists rated the studies in subjective categories: image sharpness, noise, diagnostic acceptability, and artifacts. The CTDI (p value = 0.0184) and DLP (p value <0.0002) were significantly decreased with the use of ASIR compared with non-ASIR studies. However, the subjective ratings for sharpness (p < 0.0001) and diagnostic acceptability of the ASIR images (p < 0.0128) were decreased compared with standard, non-ASIR CT studies. Adaptive statistical iterative reconstruction reduces radiation dose for lower extremity CTs in children, but at the expense of diagnostic imaging quality. Further studies are warranted to determine the specific utility of ASIR for pediatric musculoskeletal CT imaging.

  9. A new transmission methodology for quality assurance in radiotherapy based on radiochromic film measurements

    PubMed Central

    do Amaral, Leonardo L.; Pavoni, Juliana F.; Sampaio, Francisco; Netto, Thomaz Ghilardi

    2015-01-01

    Despite individual quality assurance (QA) being recommended for complex techniques in radiotherapy (RT) treatment, the possibility of errors in dose delivery during therapeutic application has been verified. Therefore, it is fundamentally important to conduct in vivo QA during treatment. This work presents an in vivo transmission quality control methodology, using radiochromic film (RCF) coupled to the linear accelerator (linac) accessory holder. This QA methodology compares the dose distribution measured by the film in the linac accessory holder with the dose distribution expected by the treatment planning software. The calculated dose distribution is obtained in the coronal and central plane of a phantom with the same dimensions of the acrylic support used for positioning the film but in a source‐to‐detector distance (SDD) of 100 cm, as a result of transferring the IMRT plan in question with all the fields positioned with the gantry vertically, that is, perpendicular to the phantom. To validate this procedure, first of all a Monte Carlo simulation using PENELOPE code was done to evaluate the differences between the dose distributions measured by the film in a SDD of 56.8 cm and 100 cm. After that, several simple dose distribution tests were evaluated using the proposed methodology, and finally a study using IMRT treatments was done. In the Monte Carlo simulation, the mean percentage of points approved in the gamma function comparing the dose distribution acquired in the two SDDs were 99.92%±0.14%. In the simple dose distribution tests, the mean percentage of points approved in the gamma function were 99.85%±0.26% and the mean percentage differences in the normalization point doses were −1.41%. The transmission methodology was approved in 24 of 25 IMRT test irradiations. Based on these results, it can be concluded that the proposed methodology using RCFs can be applied for in vivo QA in RT treatments. PACS number: 87.55.Qr, 87.55.km, 87.55.N‐ PMID:26699306

  10. Verification of the grid size and angular increment effects in lung stereotactic body radiation therapy using the dynamic conformal arc technique

    NASA Astrophysics Data System (ADS)

    Park, Hae-Jin; Suh, Tae-Suk; Park, Ji-Yeon; Lee, Jeong-Woo; Kim, Mi-Hwa; Oh, Young-Taek; Chun, Mison; Noh, O. Kyu; Suh, Susie

    2013-06-01

    The dosimetric effects of variable grid size and angular increment were systematically evaluated in the measured dose distributions of dynamic conformal arc therapy (DCAT) for lung stereotactic body radiation therapy (SBRT). Dose variations with different grid sizes (2, 3, and 4 mm) and angular increments (2, 4, 6, and 10°) for spherical planning target volumes (PTVs) were verified in a thorax phantom by using EBT2 films. Although the doses for identical PTVs were predicted for the different grid sizes, the dose discrepancy was evaluated using one measured dose distribution with the gamma tool because the beam was delivered in the same set-up for DCAT. The dosimetric effect of the angular increment was verified by comparing the measured dose area histograms of organs at risk (OARs) at each angular increment. When the difference in the OAR doses is higher than the uncertainty of the film dosimetry, the error is regarded as the angular increment effect in discretely calculated doses. In the results, even when a 2-mm grid size was used with an elaborate dose calculation, 4-mm grid size led to a higher gamma pass ratio due to underdosage, a steep-dose descent gradient, and lower estimated PTV doses caused by the smoothing effect in the calculated dose distribution. An undulating dose distribution and a difference in the maximum contralateral lung dose of up to 14% were observed in dose calculation using a 10° angular increment. The DCAT can be effectively applied for an approximately spherical PTV in a relatively uniform geometry, which is less affected by inhomogeneous materials and differences in the beam path length.

  11. Spatial frequency performance limitations of radiation dose optimization and beam positioning

    NASA Astrophysics Data System (ADS)

    Stewart, James M. P.; Stapleton, Shawn; Chaudary, Naz; Lindsay, Patricia E.; Jaffray, David A.

    2018-06-01

    The flexibility and sophistication of modern radiotherapy treatment planning and delivery methods have advanced techniques to improve the therapeutic ratio. Contemporary dose optimization and calculation algorithms facilitate radiotherapy plans which closely conform the three-dimensional dose distribution to the target, with beam shaping devices and image guided field targeting ensuring the fidelity and accuracy of treatment delivery. Ultimately, dose distribution conformity is limited by the maximum deliverable dose gradient; shallow dose gradients challenge techniques to deliver a tumoricidal radiation dose while minimizing dose to surrounding tissue. In this work, this ‘dose delivery resolution’ observation is rigorously formalized for a general dose delivery model based on the superposition of dose kernel primitives. It is proven that the spatial resolution of a delivered dose is bounded by the spatial frequency content of the underlying dose kernel, which in turn defines a lower bound in the minimization of a dose optimization objective function. In addition, it is shown that this optimization is penalized by a dose deposition strategy which enforces a constant relative phase (or constant spacing) between individual radiation beams. These results are further refined to provide a direct, analytic method to estimate the dose distribution arising from the minimization of such an optimization function. The efficacy of the overall framework is demonstrated on an image guided small animal microirradiator for a set of two-dimensional hypoxia guided dose prescriptions.

  12. A graphical user interface (GUI) toolkit for the calculation of three-dimensional (3D) multi-phase biological effective dose (BED) distributions including statistical analyses.

    PubMed

    Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis

    2016-07-01

    A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Dual-energy computed tomography of the head: a phantom study assessing axial dose distribution, eye lens dose, and image noise level

    NASA Astrophysics Data System (ADS)

    Matsubara, Kosuke; Kawashima, Hiroki; Hamaguchi, Takashi; Takata, Tadanori; Kobayashi, Masanao; Ichikawa, Katsuhiro; Koshida, Kichiro

    2016-03-01

    The aim of this study was to propose a calibration method for small dosimeters to measure absorbed doses during dual- source dual-energy computed tomography (DECT) and to compare the axial dose distribution, eye lens dose, and image noise level between DE and standard, single-energy (SE) head CT angiography. Three DE (100/Sn140 kVp 80/Sn140 kVp, and 140/80 kVp) and one SE (120 kVp) acquisitions were performed using a second-generation dual-source CT device and a female head phantom, with an equivalent volumetric CT dose index. The axial absorbed dose distribution at the orbital level and the absorbed doses for the eye lens were measured using radiophotoluminescent glass dosimeters. CT attenuation numbers were obtained in the DE composite images and the SE images of the phantom at the orbital level. The doses absorbed at the orbital level and in the eye lens were lower and standard deviations for the CT attenuation numbers were slightly higher in the DE acquisitions than those in the SE acquisition. The anterior surface dose was especially higher in the SE acquisition than that in the DE acquisitions. Thus, DE head CT angiography can be performed with a radiation dose lower than that required for a standard SE head CT angiography, with a slight increase in the image noise level. The 100/Sn140 kVp acquisition revealed the most balanced axial dose distribution. In addition, our proposed method was effective for calibrating small dosimeters to measure absorbed doses in DECT.

  14. Diagnostic reference levels of paediatric computed tomography examinations performed at a dedicated Australian paediatric hospital.

    PubMed

    Bibbo, Giovanni; Brown, Scott; Linke, Rebecca

    2016-08-01

    Diagnostic Reference Levels (DRL) of procedures involving ionizing radiation are important tools to optimizing radiation doses delivered to patients and in identifying cases where the levels of doses are unusually high. This is particularly important for paediatric patients undergoing computed tomography (CT) examinations as these examinations are associated with relatively high-dose. Paediatric CT studies, performed at our institution from January 2010 to March 2014, have been retrospectively analysed to determine the 75th and 95th percentiles of both the volume computed tomography dose index (CTDIvol ) and dose-length product (DLP) for the most commonly performed studies to: establish local diagnostic reference levels for paediatric computed tomography examinations performed at our institution, benchmark our DRL with national and international published paediatric values, and determine the compliance of CT radiographer with established protocols. The derived local 75th percentile DRL have been found to be acceptable when compared with those published by the Australian National Radiation Dose Register and two national children's hospitals, and at the international level with the National Reference Doses for the UK. The 95th percentiles of CTDIvol for the various CT examinations have been found to be acceptable values for the CT scanner Dose-Check Notification. Benchmarking CT radiographers shows that they follow the set protocols for the various examinations without significant variations in the machine setting factors. The derivation of DRL has given us the tool to evaluate and improve the performance of our CT service by improved compliance and a reduction in radiation dose to our paediatric patients. We have also been able to benchmark our performance with similar national and international institutions. © 2016 The Royal Australian and New Zealand College of Radiologists.

  15. True beam commissioning experience at Nordland Hospital Trust, Norway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daci, Lulzime, E-mail: lulzime.daci@nodlandssykehuset.no; Malkaj, Partizan, E-mail: malkaj-p@hotmail.com

    To evaluate the measured of all photon beam data of first Varian True Beam version 2.0 slim model, recently commissioned at Nordland Hospital Trust, Bodø. To compare and evaluate the possibility of beam matching with the Clinac2300, for the energies of 6MV and 15 MV. Materials/Methods: Measurements of PDD, OAR, and Output factors were realized with the IBA Blue-phantom with different detectors and evaluated between them for all photon energies: 6MV, 15MV, 6MV FFF and 10MV FFF. The ionization chambers used were Pin Point CC01, CC04, Semiflex CC13 and photon diode by Iba dosimetry. The data were processed using Beizermore » algorithm with a resolution of 1 mm. The measured depth dose curves, diagonals, OAR, and output factors were imported into Eclipse in order to calculate beam data for the anisotropic analytical algorithm (AAA version 10.0.28) for both the dataset measured with CC04 and CC13 and compared. The model head of 23EX was selected as the most near model to True Beam as a restriction of our version of Aria. It was seen that better results were achieved with the CC04 measured data as a result of better resolution. For the biggest field after 10 cm depth a larger difference is seen between measured and calculated for both dataset, but it is within the criteria for acceptance. Results: The Beam analysis criteria of 2 mm at 50% dose is achieved for all the fields accept for 40x40 that is within 3%. Depth difference at maximum dose is within 1 mm for all the fields and dose difference at 100 mm and 200 mm is lower than 1% for or all the fields. The PDD between two machines for all the fields differ after Dmax with less than 1%. For profiles in the field zone and outside field the difference is within 1% for all the fields. In the penumbra region the difference is from 2% up to 12% for big fields. As for diagonals they differ as a result of the head construction at the edge of the field and the penumbra region. The output factors differ for big fields within 5% and for the small fields within 3%. MU and dose distribution does not change for plans recalculated with the new modeled machine.« less

  16. Determination of spatial dose distribution in UCC treatments with LDR brachytherapy using Monte Carlo methods.

    PubMed

    Benites-Rengifo, Jorge Luis; Vega-Carrillo, Hector Rene

    2018-05-19

    Using Monte Carlos methods, with the MCNP5 code, a gynecological phantom and a vaginal cylinder were modeled. The spatial distribution of absorbed dose rates in Uterine Cervical Cancer treatment through low dose rate brachytherapy was determined. A liquid water gynecology computational phantom, including a vaginal cylinder applicator made of Lucite, was designed. The applicator has a linear array of four radioactive sources of Cesium 137. Around the vaginal cylinder, 13 water spherical cells of 0.5 cm-diameter were modeled to calculate absorbed dose emulating the procedure made by the treatment planning system. The gamma-ray fluence distribution was estimated, as well as the absorbed doses resulting approximately symmetrical for cells located at upper and lower of vaginal cylinder. Obtained results allow the use of the radioactive decay law to determine dose rate for Uterine Cervical Cancer using low dose rate brachytherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Imaging study of using radiopharmaceuticals labeled with cyclotron-produced 99mTc.

    PubMed

    Hou, X; Tanguay, J; Vuckovic, M; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A

    2016-12-07

    Cyclotron-produced 99m Tc (CPTc) has been recognized as an attractive and practical substitution of reactor/generator based 99m Tc. However, the small amount of 92-98 Mo in the irradiation of enriched 100 Mo could lead to the production of other radioactive technetium isotopes (Tc-impurities) which cannot be chemically separated. Thus, these impurities could contribute to patient dose and affect image quality. The potential radiation dose caused by these Tc-impurities produced using different targets, irradiation conditions, and corresponding to different injection times have been investigated, leading us to create dose-based limits of these parameters for producing clinically acceptable CPTc. However, image quality has been not considered. The aim of the present work is to provide a comprehensive and quantitative analysis of image quality for CPTc. The impact of Tc-impurities in CPTc on image resolution, background noise, and contrast is investigated by performing both Monte-Carlo simulations and phantom experiments. Various targets, irradiation, and acquisition conditions are employed for investigating the image-based limits of CPTc production parameters. Additionally, the relationship between patient dose and image quality of CPTc samples is studied. Only those samples which meet both dose- and image-based limits should be accepted in future clinical studies.

  18. Effect of ketamine dose on self-rated dissociation in patients with treatment refractory anxiety disorders.

    PubMed

    Castle, Cameron; Gray, Andrew; Neehoff, Shona; Glue, Paul

    2017-10-01

    Patients receiving ketamine for refractory depression and anxiety report dissociative symptoms in the first 60 min post-dose. The most commonly used instrument to assess this is the Clinician-Administered Dissociative States Scale (CADSS), developed based on the assessment of patients with dissociative symptoms. Its psychometric properties for ketamine-induced dissociation have not been reported. We evaluated these from a study using 0.25-1 mg/kg ketamine and midazolam (as an active control) in 18 patients with treatment-resistant anxiety. Dissociation ratings were increased by ketamine in a dose-dependent manner. In contrast, midazolam showed no effect on ratings of dissociation. For individual CADSS items, the magnitude of change and the ketamine dose at which changes were observed were not homogenous. The Cronbach alpha for the total scale was high (0.937), with acceptable item-rest correlations for almost all individual items. Purposefully removing items to maximise alpha did not lead to meaningful improvements. Acceptable internal consistency was still observed after removing items which lacked evidence of responsiveness at lower doses. The high Cronbach alpha values identified in this study suggests that the CADSS is an internally consistent instrument for evaluating ketamine-induced dissociation in clinical trials in anxiety, although it does not capture symptoms such as thought disorder.

  19. Imaging study of using radiopharmaceuticals labeled with cyclotron-produced 99mTc

    NASA Astrophysics Data System (ADS)

    Hou, X.; Tanguay, J.; Vuckovic, M.; Buckley, K.; Schaffer, P.; Bénard, F.; Ruth, T. J.; Celler, A.

    2016-12-01

    Cyclotron-produced 99mTc (CPTc) has been recognized as an attractive and practical substitution of reactor/generator based 99mTc. However, the small amount of 92-98Mo in the irradiation of enriched 100Mo could lead to the production of other radioactive technetium isotopes (Tc-impurities) which cannot be chemically separated. Thus, these impurities could contribute to patient dose and affect image quality. The potential radiation dose caused by these Tc-impurities produced using different targets, irradiation conditions, and corresponding to different injection times have been investigated, leading us to create dose-based limits of these parameters for producing clinically acceptable CPTc. However, image quality has been not considered. The aim of the present work is to provide a comprehensive and quantitative analysis of image quality for CPTc. The impact of Tc-impurities in CPTc on image resolution, background noise, and contrast is investigated by performing both Monte-Carlo simulations and phantom experiments. Various targets, irradiation, and acquisition conditions are employed for investigating the image-based limits of CPTc production parameters. Additionally, the relationship between patient dose and image quality of CPTc samples is studied. Only those samples which meet both dose- and image-based limits should be accepted in future clinical studies.

  20. Mechanisms of carcinogensis: dose response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehring, P.J.; Blau, G.E.

    There is great controversy whether the carcinogenicity of chemicals is dose-dependent and whether a threshold dose exists below which cancer will not be induced by exposure. Evidence for dose-dependency exists and is believed to be accepted generally if extricated as it should be from the threshold concept. The threshold concept conflict is not likely to be resolved in the foreseeable future; proponents and opponents argue their case in a manner similar to those arguing religion. In this paper the various arguments are reviewed. Subsequently, a chemical process model for carcinogenesis is developed based on the generally accepted evidence that themore » carcinogenic activity of many chemicals can be related to electrophilic alkylation of DNA. Using this model, some incidence of cancer, albeit negligible, will be predicted regardless how low the dose. However, the model revelas that the incidence of cancer induced by real-life exposures is likely to be greatly overestimated by currently used stochastic statistical extrapolations. Even more important, modeling of the chemical processes involved in the fate of a carcinogenic chemical in the body reveals experimental approaches to elucidating the mechanism(s) of carcinogenesis and ultimately a more scientifically sound basis for assessing the hazard of low-level exposure to a chemical carcinogen.« less

  1. NSR&D Program Fiscal Year 2015 Funded Research Stochastic Modeling of Radioactive Material Releases Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrus, Jason P.; Pope, Chad; Toston, Mary

    2016-12-01

    Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose distribution associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. Users can also specify custom distributions through a user defined distribution option. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA, developed using the MATLAB coding framework, has a graphical user interface and can be installed on both Windows and Mac computers. SODA is a standalone software application and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC; rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The SODA development project was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less

  2. NSR&D Program Fiscal Year 2015 Funded Research Stochastic Modeling of Radioactive Material Releases Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrus, Jason P.; Pope, Chad; Toston, Mary

    Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose distribution associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. Users can also specify custom distributions through a user defined distribution option. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA, developed using the MATLAB coding framework, has a graphical user interface and can be installed on both Windows and Mac computers. SODA is a standalone software application and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC; rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The SODA development project was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less

  3. Multiple comparisons permutation test for image based data mining in radiotherapy.

    PubMed

    Chen, Chun; Witte, Marnix; Heemsbergen, Wilma; van Herk, Marcel

    2013-12-23

    : Comparing incidental dose distributions (i.e. images) of patients with different outcomes is a straightforward way to explore dose-response hypotheses in radiotherapy. In this paper, we introduced a permutation test that compares images, such as dose distributions from radiotherapy, while tackling the multiple comparisons problem. A test statistic Tmax was proposed that summarizes the differences between the images into a single value and a permutation procedure was employed to compute the adjusted p-value. We demonstrated the method in two retrospective studies: a prostate study that relates 3D dose distributions to failure, and an esophagus study that relates 2D surface dose distributions of the esophagus to acute esophagus toxicity. As a result, we were able to identify suspicious regions that are significantly associated with failure (prostate study) or toxicity (esophagus study). Permutation testing allows direct comparison of images from different patient categories and is a useful tool for data mining in radiotherapy.

  4. TU-C-BRE-11: 3D EPID-Based in Vivo Dosimetry: A Major Step Forward Towards Optimal Quality and Safety in Radiation Oncology Practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mijnheer, B; Mans, A; Olaciregui-Ruiz, I

    Purpose: To develop a 3D in vivo dosimetry method that is able to substitute pre-treatment verification in an efficient way, and to terminate treatment delivery if the online measured 3D dose distribution deviates too much from the predicted dose distribution. Methods: A back-projection algorithm has been further developed and implemented to enable automatic 3D in vivo dose verification of IMRT/VMAT treatments using a-Si EPIDs. New software tools were clinically introduced to allow automated image acquisition, to periodically inspect the record-and-verify database, and to automatically run the EPID dosimetry software. The comparison of the EPID-reconstructed and planned dose distribution is donemore » offline to raise automatically alerts and to schedule actions when deviations are detected. Furthermore, a software package for online dose reconstruction was also developed. The RMS of the difference between the cumulative planned and reconstructed 3D dose distributions was used for triggering a halt of a linac. Results: The implementation of fully automated 3D EPID-based in vivo dosimetry was able to replace pre-treatment verification for more than 90% of the patient treatments. The process has been fully automated and integrated in our clinical workflow where over 3,500 IMRT/VMAT treatments are verified each year. By optimizing the dose reconstruction algorithm and the I/O performance, the delivered 3D dose distribution is verified in less than 200 ms per portal image, which includes the comparison between the reconstructed and planned dose distribution. In this way it was possible to generate a trigger that can stop the irradiation at less than 20 cGy after introducing large delivery errors. Conclusion: The automatic offline solution facilitated the large scale clinical implementation of 3D EPID-based in vivo dose verification of IMRT/VMAT treatments; the online approach has been successfully tested for various severe delivery errors.« less

  5. Estimation of ambient dose equivalent distribution in the 18F-FDG administration room using Monte Carlo simulation.

    PubMed

    Nagamine, Shuji; Fujibuchi, Toshioh; Umezu, Yoshiyuki; Himuro, Kazuhiko; Awamoto, Shinichi; Tsutsui, Yuji; Nakamura, Yasuhiko

    2017-03-01

    In this study, we estimated the ambient dose equivalent rate (hereafter "dose rate") in the fluoro-2-deoxy-D-glucose (FDG) administration room in our hospital using Monte Carlo simulations, and examined the appropriate medical-personnel locations and a shielding method to reduce the dose rate during FDG injection using a lead glass shield. The line source was assumed to be the FDG feed tube and the patient a cube source. The dose rate distribution was calculated with a composite source that combines the line and cube sources. The dose rate distribution was also calculated when a lead glass shield was placed in the rear section of the lead-acrylic shield. The dose rate behind the automatic administration device decreased by 87 % with respect to that behind the lead-acrylic shield. Upon positioning a 2.8-cm-thick lead glass shield, the dose rate behind the lead-acrylic shield decreased by 67 %.

  6. Assessment of radiation doses from residential smoke detectors that contain americium-241

    NASA Astrophysics Data System (ADS)

    Odonnell, F. R.; Etnier, E. L.; Holton, G. A.; Travis, C. C.

    1981-10-01

    External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv to 20 nSv for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 micro-Sv (0.0006 to 8 mrem) to total body and from 0.06 to 800 micro-Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft squared.

  7. SU-E-T-13: A Comparative Dosimetric Study On Radio-Dynamic Therapy for Pelvic Cancer Treatment: Strategies for Bone Marrow Dose and Volume Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C; Renmin Hospital of Wuhan University, Wuhan, Hubei Province; Wang, B

    Purpose: Radio-dynamic therapy (RDT) is a potentially effective modality for local and systemic cancer treatment. Using RDT, the administration of a radio-sensitizer enhances the biological effect of high-energy photons. Although the sensitizer uptake ratio of tumor to normal tissue is normally high, one cannot simply neglect its effect on critical structures. In this study, we aim to explore planning strategies to improve bone marrow sparing without compromising the plan quality for RDT treatment of pelvic cancers. Methods: Ten cervical and ten prostate cancer patients who previously received radiotherapy at our institution were selected for this study. For each patient, ninemore » plans were created using the Varian Eclipse treatmentplanning-system (TPS) with 3D-CRT, IMRT, and VMAT delivery techniques containing various gantry angle combinations and optimization parameters (dose constraints to the bone marrow). To evaluate the plans for bone marrow sparing, the dose-volume parameters V5, V10, V15, V20, V30, and V40 for bone marrow were examined. Effective doseenhancement factors for the sensitizer were used to weigh the dose-volume histograms for various tissues from individual fractions. Results: The planning strategies had different impacts on bone marrow sparing for the cervical and prostate cases. For the cervical cases, provided the bone marrow constraints were properly set during optimization, the dose to bone marrow sparing was found to be comparable between different IMRT and VMAT plans regardless of the gantry angle selection. For the prostate cases, however, careful selection of gantry angles could dramatically improve the bone marrow sparing, although the dose distribution in bone marrow was clinically acceptable for all prostate plans that we created. Conclusion: For intensity-modulated RDT planning for cervical cancer, planners should set bone marrow constraints properly to avoid any adverse damage, while for prostate cancer one can carefully select gantry angles to improve bone marrow sparing when necessary.« less

  8. Oral and intravenous l-[1-13 C]phenylalanine delivery measure similar rates of elimination when gastric emptying and splanchnic extraction are accounted for in adult mixed hounds.

    PubMed

    Gooding, M A; Cant, J P; Pencharz, P B; Davenport, G M; Atkinson, J L; Shoveller, A K

    2013-02-01

    There are few reported estimates of amino acid (AA) kinetics in adult mammals and none exist in adult dogs. The study objectives were to evaluate the use of oral isotope delivery in contrast to the more commonly used intravenous (IV) delivery to estimate AA kinetics in adult dogs and to estimate splanchnic extraction and gastric emptying using a commonly accepted mathematical model. Dogs received 25 × 1/2-hourly meals (13 g/kg BW/day) and either an oral or IV bolus of l-[1-(13) C]Phe (12 mg/kg BW). Blood samples were taken immediately before each feeding. Concentrations of plasma Phe were measured using liquid chromatography-tandem mass spectrometry. There were no differences in baseline plasma Phe concentrations (34 μm ± 0.61), Phe distribution volume, Phe pool size and rate constants between dogs when the tracer was administered IV or orally (p > 0.25). Decay curve for plasma l-[1-(13) C]Phe differed between IV and oral dosing protocols with IV dosing fit best using a two-compartment model. Phe disappeared from plasma at a mean rate of 2.8%/min. Estimates of gastric emptying and splanchnic extraction did not differ based on oral or IV tracer dosing when the decay curves were fit with the two-compartment model (p > 0.40). The half-life for gastric emptying was 18 min, and first-pass Phe extraction by the splanchnic bed was 24% of the dietary Phe. These results suggest that oral isotope dosing can be used as an alternative to IV isotope dosing in studies that utilize a primed, constant dosing approach to measure protein and amino acid kinetics. © 2011 Blackwell Verlag GmbH.

  9. On the performances of different IMRT Treatment Planning Systems for selected paediatric cases.

    PubMed

    Fogliata, Antonella; Nicolini, Giorgia; Alber, Markus; Asell, Mats; Clivio, Alessandro; Dobler, Barbara; Larsson, Malin; Lohr, Frank; Lorenz, Friedlieb; Muzik, Jan; Polednik, Martin; Vanetti, Eugenio; Wolff, Dirk; Wyttenbach, Rolf; Cozzi, Luca

    2007-02-15

    To evaluate the performance of seven different TPS (Treatment Planning Systems: Corvus, Eclipse, Hyperion, KonRad, Oncentra Masterplan, Pinnacle and PrecisePLAN) when intensity modulated (IMRT) plans are designed for paediatric tumours. Datasets (CT images and volumes of interest) of four patients were used to design IMRT plans. The tumour types were: one extraosseous, intrathoracic Ewing Sarcoma; one mediastinal Rhabdomyosarcoma; one metastatic Rhabdomyosarcoma of the anus; one Wilm's tumour of the left kidney with multiple liver metastases. Prescribed doses ranged from 18 to 54.4 Gy. To minimise variability, the same beam geometry and clinical goals were imposed on all systems for every patient. Results were analysed in terms of dose distributions and dose volume histograms. For all patients, IMRT plans lead to acceptable treatments in terms of conformal avoidance since most of the dose objectives for Organs At Risk (OARs) were met, and the Conformity Index (averaged over all TPS and patients) ranged from 1.14 to 1.58 on primary target volumes and from 1.07 to 1.37 on boost volumes. The healthy tissue involvement was measured in terms of several parameters, and the average mean dose ranged from 4.6 to 13.7 Gy. A global scoring method was developed to evaluate plans according to their degree of success in meeting dose objectives (lower scores are better than higher ones). For OARs the range of scores was between 0.75 +/- 0.15 (Eclipse) to 0.92 +/- 0.18 (Pinnacle(3) with physical optimisation). For target volumes, the score ranged from 0.05 +/- 0.05 (Pinnacle(3) with physical optimisation) to 0.16 +/- 0.07 (Corvus). A set of complex paediatric cases presented a variety of individual treatment planning challenges. Despite the large spread of results, inverse planning systems offer promising results for IMRT delivery, hence widening the treatment strategies for this very sensitive class of patients.

  10. On the performances of different IMRT treatment planning systems for selected paediatric cases

    PubMed Central

    Fogliata, Antonella; Nicolini, Giorgia; Alber, Markus; Åsell, Mats; Clivio, Alessandro; Dobler, Barbara; Larsson, Malin; Lohr, Frank; Lorenz, Friedlieb; Muzik, Jan; Polednik, Martin; Vanetti, Eugenio; Wolff, Dirk; Wyttenbach, Rolf; Cozzi, Luca

    2007-01-01

    Background To evaluate the performance of seven different TPS (Treatment Planning Systems: Corvus, Eclipse, Hyperion, KonRad, Oncentra Masterplan, Pinnacle and PrecisePLAN) when intensity modulated (IMRT) plans are designed for paediatric tumours. Methods Datasets (CT images and volumes of interest) of four patients were used to design IMRT plans. The tumour types were: one extraosseous, intrathoracic Ewing Sarcoma; one mediastinal Rhabdomyosarcoma; one metastatic Rhabdomyosarcoma of the anus; one Wilm's tumour of the left kidney with multiple liver metastases. Prescribed doses ranged from 18 to 54.4 Gy. To minimise variability, the same beam geometry and clinical goals were imposed on all systems for every patient. Results were analysed in terms of dose distributions and dose volume histograms. Results For all patients, IMRT plans lead to acceptable treatments in terms of conformal avoidance since most of the dose objectives for Organs At Risk (OARs) were met, and the Conformity Index (averaged over all TPS and patients) ranged from 1.14 to 1.58 on primary target volumes and from 1.07 to 1.37 on boost volumes. The healthy tissue involvement was measured in terms of several parameters, and the average mean dose ranged from 4.6 to 13.7 Gy. A global scoring method was developed to evaluate plans according to their degree of success in meeting dose objectives (lower scores are better than higher ones). For OARs the range of scores was between 0.75 ± 0.15 (Eclipse) to 0.92 ± 0.18 (Pinnacle3 with physical optimisation). For target volumes, the score ranged from 0.05 ± 0.05 (Pinnacle3 with physical optimisation) to 0.16 ± 0.07 (Corvus). Conclusion A set of complex paediatric cases presented a variety of individual treatment planning challenges. Despite the large spread of results, inverse planning systems offer promising results for IMRT delivery, hence widening the treatment strategies for this very sensitive class of patients. PMID:17302972

  11. Clinical Utility of the Modified Segmental Boost Technique for Treatment of the Pelvis and Inguinal Nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, M.S., E-mail: meena.moran@yale.ed; Yale New Haven Hospital, New Haven, Connecticut and William W. Backus Hospital, Norwich, Connecticut; Castrucci, W.A.

    2010-03-15

    Purpose: Low-lying pelvic malignancies often require simultaneous radiation to pelvis and inguinal nodes. We previously reported improved homogeneity with the modified segmental boost technique (MSBT) compared to that with traditional methods, using phantom models. Here we report our institutional clinical experience with MSBT. Methods and Materials: MSBT patients from May 2001 to March 2007 were evaluated. Parameters analyzed included isocenter/multileaf collimation shifts, time per fraction (four fields), monitor units (MU)/fraction, femoral doses, maximal dose relative to body mass index, and inguinal node depth. In addition, a dosimetric comparison of the MSBT versus intensity modulated radiation therapy (IMRT) was conducted. Results:more » Of the 37 MSBT patients identified, 32 were evaluable. Port film adjustments were required in 6% of films. Median values for each analyzed parameter were as follows: MU/fraction, 298 (range, 226-348); delivery time, 4 minutes; inguinal depth, 4.5 cm; volume receiving 45 Gy (V45), 7%; V27.5, 87%; body mass index, 25 (range, 16.0-33.8). Inguinal dose was 100% in all cases; in-field inhomogeneity ranged from 111% to 118%. IMRT resulted in significantly decreased dose to normal tissue but required more time for treatment planning and a higher number of MUs (1,184 vs. 313 MU). Conclusions: In our clinical experience, the mono-isocentric MSBT provides a high degree of accuracy, improved homogeneity compared with traditional techniques, ease of simulation, treatment planning, treatment delivery, and acceptable femoral doses for pelvic/inguinal radiation fields requiring 45 to 50.4 Gy. In addition, the MSBT delivers a relatively uniform dose distribution throughout the treatment volume, despite varying body habitus. Clinical scenarios for the use of MSBT vs. intensity-modulated radiation therapy are discussed. To our knowledge, this is the first study reporting the utility of MSBT in the clinical setting.« less

  12. Monte Carlo simulation of depth-dose distributions in TLD-100 under 90Sr-90Y irradiation.

    PubMed

    Rodríguez-Villafuerte, M; Gamboa-deBuen, I; Brandan, M E

    1997-04-01

    In this work the depth-dose distribution in TLD-100 dosimeters under beta irradiation from a 90Sr-90Y source was investigated using the Monte Carlo method. Comparisons between the simulated data and experimental results showed that the depth-dose distribution is strongly affected by the different components of both the source and dosimeter holders due to the large number of electron scattering events.

  13. Food Deserts in Leon County, FL: Disparate Distribution of Supplemental Nutrition Assistance Program-Accepting Stores by Neighborhood Characteristics

    ERIC Educational Resources Information Center

    Rigby, Samantha; Leone, Angela F.; Kim, Hwahwan; Betterley, Connie; Johnson, Mary Ann; Kurtz, Hilda; Lee, Jung Sun

    2012-01-01

    Objective: Examine whether neighborhood characteristics of racial composition, income, and rurality were related to distribution of Supplemental Nutrition Assistance Program (SNAP)-accepting stores in Leon County, Florida. Design: Cross-sectional; neighborhood and food store data collected in 2008. Setting and Participants: Forty-eight census…

  14. SU-F-J-17: Patient Localization Using MRI-Guided Soft Tissue for Head-And-Neck Radiotherapy: Indication for Margin Reduction and Its Feasibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, X; Yang, Y; Jack, N

    Purpose: On-board MRI provides superior soft-tissue contrast, allowing patient alignment using tumor or nearby critical structures. This study aims to study H&N MRI-guided IGRT to analyze inter-fraction patient setup variations using soft-tissue targets and design appropriate CTV-to-PTV margin and clinical implication. Methods: 282 MR images for 10 H&N IMRT patients treated on a ViewRay system were retrospectively analyzed. Patients were immobilized using a thermoplastic mask on a customized headrest fitted in a radiofrequency coil and positioned to soft-tissue targets. The inter-fraction patient displacements were recorded to compute the PTV margins using the recipe: 2.5∑+0.7σ. New IMRT plans optimized on themore » revised PTVs were generated to evaluate the delivered dose distributions. An in-house dose deformation registration tool was used to assess the resulting dosimetric consequences when margin adaption is performed based on weekly MR images. The cumulative doses were compared to the reduced margin plans for targets and critical structures. Results: The inter-fraction displacements (and standard deviations), ∑ and σ were tabulated for MRI and compared to kVCBCT. The computed CTV-to-PTV margin was 3.5mm for soft-tissue based registration. There were minimal differences between the planned and delivered doses when comparing clinical and the PTV reduced margin plans: the paired t-tests yielded p=0.38 and 0.66 between the planned and delivered doses for the adapted margin plans for the maximum cord and mean parotid dose, respectively. Target V95 received comparable doses as planned for the reduced margin plans. Conclusion: The 0.35T MRI offers acceptable soft-tissue contrast and good spatial resolution for patient alignment and target visualization. Better tumor conspicuity from MRI allows soft-tissue based alignments with potentially improved accuracy, suggesting a benefit of margin reduction for H&N radiotherapy. The reduced margin plans (i.e., 2 mm) resulted in improved normal structure sparing and accurate dose delivery to achieve intended treatment goal under MR guidance.« less

  15. Dose Distribution in Bladder and Surrounding Normal Tissues in Relation to Bladder Volume in Conformal Radiotherapy for Bladder Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, Wojciech, E-mail: wmajewski1@poczta.onet.p; Wesolowska, Iwona; Urbanczyk, Hubert

    2009-12-01

    Purpose: To estimate bladder movements and changes in dose distribution in the bladder and surrounding tissues associated with changes in bladder filling and to estimate the internal treatment margins. Methods and Materials: A total of 16 patients with bladder cancer underwent planning computed tomography scans with 80- and 150-mL bladder volumes. The bladder displacements associated with the change in volume were measured. Each patient had treatment plans constructed for a 'partially empty' (80 mL) and a 'partially full' (150 mL) bladder. An additional plan was constructed for tumor irradiation alone. A subsequent 9 patients underwent sequential weekly computed tomography scanningmore » during radiotherapy to verify the bladder movements and estimate the internal margins. Results: Bladder movements were mainly observed cranially, and the estimated internal margins were nonuniform and largest (>2 cm) anteriorly and cranially. The dose distribution in the bladder worsened if the bladder increased in volume: 70% of patients (11 of 16) would have had bladder underdosed to <95% of the prescribed dose. The dose distribution in the rectum and intestines was better with a 'partially empty' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 23%, 20%, and 15% for the rectum and 162, 144, 123 cm{sup 3} for the intestines, respectively) than with a 'partially full' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 28%, 24%, and 18% for the rectum and 180, 158, 136 cm{sup 3} for the intestines, respectively). The change in bladder filling during RT was significant for the dose distribution in the intestines. Tumor irradiation alone was significantly better than whole bladder irradiation in terms of organ sparing. Conclusion: The displacements of the bladder due to volume changes were mainly related to the upper wall. The internal margins should be nonuniform, with the largest margins cranially and anteriorly. The changes in bladder filling during RT could influence the dose distribution in the bladder and intestines. The dose distribution in the rectum and bowel was slightly better with a 'partially empty' than with a 'full' bladder.« less

  16. SU-E-T-215: Comparison of VMAT-SABR Treatment Plans with Flattened Filter (FF) Beam and Flattening Filter-Free (FFF) Beam for Localized Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, J; Kim, J; Kang, S

    2015-06-15

    Purpose: The purpose of this study is to access VMAT-SABR plan using flattening filter (FF) and flattening filter-free (FFF) beam, and compare the verification results for all pretreatment plans. Methods: SABR plans for 20 prostate patients were optimized in the Eclipse treatment planning system. A prescription dose was 42.7 Gy/7 fractions. Four SABR plans for each patient were calculated using Acuros XB algorithm with both FF and FFF beams of 6- and 10-MV. The dose-volume histograms (DVH) and technical parameters were recorded and compared. A pretreatment verification was performed and the gamma analysis was used to quantify the agreement betweenmore » calculations and measurements. Results: For each patient, the DVHs are closely similar for plans of four different beams. There are small differences showed in dose distributions and corresponding DVHs when comparing the each plan related to the same patient. Sparing on bladder and rectum was slightly better on plans with 10-MV FF and FFF than with 6-MV FF and FFF, but this difference was negligible. However, there was no significance in the other OARs. The mean agreement of 3%/3mm criteria was higher than 97% in all plans. The mean MUs and deliver time employed was 1701±101 and 3.02±0.17 min for 6-MV FF, 1870±116 and 1.69±0.08 min for 6-MV FFF, 1471±86 and 2.68±0.14 min for 10-MV FF, and 1619±101 and 0.98±0.04 min for 10-MV FFF, respectively. Conclusion: Dose distributions on prostate SABR plans using FFF beams were similar to those generated by FF beams. However, the use of FFF beam offers a clear benefit in delivery time when compared to FF beam. Verification of pretreatment also represented the acceptable and comparable results in all plans using FF beam as well as FFF beam. Therefore, this study suggests that the use of FFF beam is feasible and efficient technique for prostate SABR.« less

  17. Real-time measurement and monitoring of absorbed dose for electron beams

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-09-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators.

  18. A 3D isodose manipulation tool for interactive dose shaping

    NASA Astrophysics Data System (ADS)

    Kamerling, C. P.; Ziegenhein, P.; Heinrich, H.; Oelfke, U.

    2014-03-01

    The interactive dose shaping (IDS) planning paradigm aims to perform interactive local dose adaptations of an IMRT plan without compromising already established valuable dose features in real-time. In this work we introduce an interactive 3D isodose manipulation tool which enables local modifications of a dose distribution intuitively by direct manipulation of an isodose surface. We developed an in-house IMRT TPS framework employing an IDS engine as well as a 3D GUI for dose manipulation and visualization. In our software an initial dose distribution can be interactively modified through an isodose surface manipulation tool by intuitively clicking on an isodose surface. To guide the user interaction, the position of the modification is indicated by a sphere while the mouse cursor hovers the isodose surface. The sphere's radius controls the locality of the modification. The tool induces a dose modification as a direct change of dose in one or more voxels, which is incrementally obtained by fluence adjustments. A subsequent recovery step identifies voxels with violated dose features and aims to recover their original dose. We showed a proof of concept study for the proposed tool by adapting the dose distribution of a prostate case (9 beams, coplanar). Single dose modifications take less than 2 seconds on an actual desktop PC.

  19. Detailed Distribution Map of Absorbed Dose Rate in Air in Tokatsu Area of Chiba Prefecture, Japan, Constructed by Car-Borne Survey 4 Years after the Fukushima Daiichi Nuclear Power Plant Accident

    PubMed Central

    Inoue, Kazumasa; Arai, Moeko; Fujisawa, Makoto; Saito, Kyouko; Fukushi, Masahiro

    2017-01-01

    A car-borne survey was carried out in the northwestern, or Tokatsu, area of Chiba Prefecture, Japan, to make a detailed distribution map of absorbed dose rate in air four years after the Fukushima Daiichi Nuclear Power Plant accident. This area was chosen because it was the most heavily radionuclide contaminated part of Chiba Prefecture and it neighbors metropolitan Tokyo. Measurements were performed using a 3-in × 3-in NaI(Tl) scintillation spectrometer in June 2015. The survey route covered the whole Tokatsu area which includes six cities. A heterogeneous distribution of absorbed dose rate in air was observed on the dose distribution map. Especially, higher absorbed dose rates in air exceeding 80 nGy h-1 were observed along national roads constructed using high porosity asphalt, whereas lower absorbed dose rates in air were observed along local roads constructed using low porosity asphalt. The difference between these asphalt types resulted in a heterogeneous dose distribution in the Tokatsu area. The mean of the contribution ratio of artificial radionuclides to absorbed dose rate in air measured 4 years after the accident was 29% (9–50%) in the Tokatsu area. The maximum absorbed dose rate in air, 201 nGy h-1 was observed at Kashiwa City. Radiocesium was deposited in the upper 1 cm surface layer of the high porosity asphalt which was collected in Kashiwa City and the environmental half-life of the absorbed dose rate in air was estimated to be 1.7 years. PMID:28129382

  20. Enhancing acupuncture by low dose naltrexone.

    PubMed

    Hesselink, Jan M Keppel; Kopsky, David J

    2011-06-01

    To find appropriate and effective treatment options for chronic pain syndromes is a challenging task. Multimodal treatment approach has been gaining acceptance for chronic pain. However, combining treatments, such as acupuncture, with rational pharmacology is still in its infancy. Acupuncture influences the opioid and cannabinoid system through releasing endogenous receptor ligands. Low dose naltrexone also acts on both these systems, and upregulates the opioid and cannabinoid receptors. The authors hypothesise that low dose naltrexone could enhance the pain-relieving effect of acupuncture.

  1. SU-E-T-574: Novel Chance-Constrained Optimization in Intensity-Modulated Proton Therapy Planning to Account for Range and Patient Setup Uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Y; Liang, J; Liu, W

    2015-06-15

    Purpose: We propose to apply a probabilistic framework, namely chanceconstrained optimization, in the intensity-modulated proton therapy (IMPT) planning subject to range and patient setup uncertainties. The purpose is to hedge against the influence of uncertainties and improve robustness of treatment plans. Methods: IMPT plans were generated for a typical prostate patient. Nine dose distributions are computed — the nominal one and one each for ±5mm setup uncertainties along three cardinal axes and for ±3.5% range uncertainty. These nine dose distributions are supplied to the solver CPLEX as chance constraints to explicitly control plan robustness under these representative uncertainty scenarios withmore » certain probability. This probability is determined by the tolerance level. We make the chance-constrained model tractable by converting it to a mixed integer optimization problem. The quality of plans derived from this method is evaluated using dose-volume histogram (DVH) indices such as tumor dose homogeneity (D5% – D95%) and coverage (D95%) and normal tissue sparing like V70 of rectum, V65, and V40 of bladder. We also compare the results from this novel method with the conventional PTV-based method to further demonstrate its effectiveness Results: Our model can yield clinically acceptable plans within 50 seconds. The chance-constrained optimization produces IMPT plans with comparable target coverage, better target dose homogeneity, and better normal tissue sparing compared to the PTV-based optimization [D95% CTV: 67.9 vs 68.7 (Gy), D5% – D95% CTV: 11.9 vs 18 (Gy), V70 rectum: 0.0 % vs 0.33%, V65 bladder: 2.17% vs 9.33%, V40 bladder: 8.83% vs 21.83%]. It also simultaneously makes the plan more robust [Width of DVH band at D50%: 2.0 vs 10.0 (Gy)]. The tolerance level may be varied to control the tradeoff between plan robustness and quality. Conclusion: The chance-constrained optimization generates superior IMPT plan compared to the PTV-based optimization with explicit control of plan robustness. NIH/NCI K25CA168984, Eagles Cancer Research Career Development, The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research, Mayo ASU Seed Grant, and The Kemper Marley Foundation.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkelbach, J; Perko, Z; Wolfgang, J

    Purpose: Stereotactic body radiotherapy (SBRT) has become an established treatment option for liver cancer. For patients with large tumors, the prescription dose is often limited by constraints on the mean liver dose, leading to tumor recurrence. In this work, we demonstrate that spatiotemporal fractionation schemes, ie delivering distinct dose distributions in different fractions, may allow for a 10% increase in biologically effective dose (BED) in the tumor compared to current practice where each fraction delivers the same dose distribution. Methods: We consider rotation therapy delivered with x-ray beams. Treatment plan optimization is performed using objective functions evaluated for the cumulativemore » BED delivered at the end of treatment. This allows for simultaneously optimizing multiple distinct treatment plans for different fractions. Results: The treatment that optimally exploits fractionation effects is designed such that each fraction delivers a similar dose bath to the uninvolved liver while delivering high single fraction doses to complementary parts of the target volume. Thereby, partial hypofractionation in the tumor is achieved along with near uniform fractionation in the surrounding liver - leading to an improvement in the therapeutic ratio. The benefit of such spatiotemporal fractionation schemes depends on tumor geometry and location as well as the number of fractions. For 5-fraction treatments (allowing for 5 distinct dose distributions) an improvement in the order of 10% is observed. Conclusion: Delivering distinct dose distributions in different fractions, purely motivated by fractionation effects rather than geometric changes, may improve the therapeutic ratio. For treatment sites where the prescriptions dose is limited by mean dose constraints in the surrounding organ, such as liver cancer, this approach may facilitate biological dose escalation and improved cure rates.« less

  3. SU-F-J-194: Development of Dose-Based Image Guided Proton Therapy Workflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, R; Sun, B; Zhao, T

    Purpose: To implement image-guided proton therapy (IGPT) based on daily proton dose distribution. Methods: Unlike x-ray therapy, simple alignment based on anatomy cannot ensure proper dose coverage in proton therapy. Anatomy changes along the beam path may lead to underdosing the target, or overdosing the organ-at-risk (OAR). With an in-room mobile computed tomography (CT) system, we are developing a dose-based IGPT software tool that allows patient positioning and treatment adaption based on daily dose distributions. During an IGPT treatment, daily CT images are acquired in treatment position. After initial positioning based on rigid image registration, proton dose distribution is calculatedmore » on daily CT images. The target and OARs are automatically delineated via deformable image registration. Dose distributions are evaluated to decide if repositioning or plan adaptation is necessary in order to achieve proper coverage of the target and sparing of OARs. Besides online dose-based image guidance, the software tool can also map daily treatment doses to the treatment planning CT images for offline adaptive treatment. Results: An in-room helical CT system is commissioned for IGPT purposes. It produces accurate CT numbers that allow proton dose calculation. GPU-based deformable image registration algorithms are developed and evaluated for automatic ROI-delineation and dose mapping. The online and offline IGPT functionalities are evaluated with daily CT images of the proton patients. Conclusion: The online and offline IGPT software tool may improve the safety and quality of proton treatment by allowing dose-based IGPT and adaptive proton treatments. Research is partially supported by Mevion Medical Systems.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, Anik

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result ofmore » calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.« less

  5. Dosimetry for a uterine cervix cancer treatment

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ponce, Miguel; Rodríguez-Villafuerte, Mercedes; Sánchez-Castro, Ricardo

    2003-09-01

    The dose distribution around the 3M 137Cs brachytherapy source as well as the same source inside the Amersham ASN 8231 applicator was measured using thermoluminescent dosimeters and radiochromic films. Some of the results were compared with those obtained from a Monte Carlo simulation and a good agreement was observed. The teletherapy dose distribution was measured using a pin-point ionization chamber. In addition, the experimental measurements and the Monte Carlo results were used to estimate the dose received in the rectum and bladder of an hypothetical patient treated with brachytherapy and compared with the dose distribution obtained from the Hospital's brachytherapy planning system. A 20 % dose reduction to the rectum and bladder was observed in both Monte Carlo and experimental measurements, compared with the results of the planning system, which results in a better dose control to these structures.

  6. Voxel-based dose prediction with multi-patient atlas selection for automated radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Purdie, Thomas G.

    2017-01-01

    Automating the radiotherapy treatment planning process is a technically challenging problem. The majority of automated approaches have focused on customizing and inferring dose volume objectives to be used in plan optimization. In this work we outline a multi-patient atlas-based dose prediction approach that learns to predict the dose-per-voxel for a novel patient directly from the computed tomography planning scan without the requirement of specifying any objectives. Our method learns to automatically select the most effective atlases for a novel patient, and then map the dose from those atlases onto the novel patient. We extend our previous work to include a conditional random field for the optimization of a joint distribution prior that matches the complementary goals of an accurately spatially distributed dose distribution while still adhering to the desired dose volume histograms. The resulting distribution can then be used for inverse-planning with a new spatial dose objective, or to create typical dose volume objectives for the canonical optimization pipeline. We investigated six treatment sites (633 patients for training and 113 patients for testing) and evaluated the mean absolute difference in all DVHs for the clinical and predicted dose distribution. The results on average are favorable in comparison to our previous approach (1.91 versus 2.57). Comparing our method with and without atlas-selection further validates that atlas-selection improved dose prediction on average in whole breast (0.64 versus 1.59), prostate (2.13 versus 4.07), and rectum (1.46 versus 3.29) while it is less important in breast cavity (0.79 versus 0.92) and lung (1.33 versus 1.27) for which there is high conformity and minimal dose shaping. In CNS brain, atlas-selection has the potential to be impactful (3.65 versus 5.09), but selecting the ideal atlas is the most challenging.

  7. Distribution of chlorpyrifos in rice paddy environment and its potential dietary risk.

    PubMed

    Fu, Yan; Liu, Feifei; Zhao, Chenglin; Zhao, Ying; Liu, Yihua; Zhu, Guonian

    2015-09-01

    Chlorpyrifos is one of the most extensively used insecticides in China. The distribution and residues of chlorpyrifos in a paddy environment were characterized under field and laboratory conditions. The half-lives of chlorpyrifos in the two conditions were 0.9-3.8days (field) and 2.8-10.3days (laboratory), respectively. The initial distribution of chlorpyrifos followed the increasing order of water

  8. Dose mapping inside a gamma irradiator measured with doped silica fibre dosimetry and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Moradi, F.; Khandaker, M. U.; Mahdiraji, G. A.; Ung, N. M.; Bradley, D. A.

    2017-11-01

    In recent years doped silica fibre thermoluminescent dosimeters (TLD) have been demonstrated to have considerable potential for irradiation applications, benefitting from the available sensitivity, spatial resolution and dynamic dose range, with primary focus being on the needs of medical dosimetry. Present study concerns the dose distribution inside a cylindrically shaped gamma-ray irradiator cavity, with irradiator facilities such as the familiar 60Co versions being popularly used in industrial applications. Quality assurance of the radiation dose distribution inside the irradiation cell of such a device is of central importance in respect of the delivered dose to the irradiated material. Silica fibre TLD dose-rates obtained within a Gammacell-220 irradiator cavity show the existence of non-negligible dose distribution heterogeneity, by up to 20% and 26% in the radial and axial directions respectively, Monte Carlo simulations and available literature providing some support for present findings. In practice, it is evident that there is need to consider making corrections to nominal dose-rates in order to avoid the potential for under-dosing.

  9. I-125 ROPES eye plaque dosimetry: Validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic{sup ®} EBT3 films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poder, Joel; Corde, Stéphanie

    Purpose: The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic{sup ®} EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC{sup ®} was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution.Methods:more » Using GafChromic{sup ®} EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC{sup ®}.Results: The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC{sup ®} to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC{sup ®} was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T= 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately modeled in the planning system. Off-axis profiles were also modeled in PS by taking into account the three-dimensional model of the plaque backing.Conclusions: The doses calculated by PS and RADCALC{sup ®} for uniformly loaded ROPES plaques in full and uniform scattering conditions were validated by the EBT3 film measurements. The stainless steel plaque backing was observed to decrease the measured dose by 4%. Through the introduction of a scalar correction factor (0.96) in PS, the dose homogeneity effect of the stainless steel plaque backing was found to agree with the measured EBT3 film measurements.« less

  10. I-125 ROPES eye plaque dosimetry: validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic® EBT3 films.

    PubMed

    Poder, Joel; Corde, Stéphanie

    2013-12-01

    The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic(®) EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC(®) was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution. Using GafChromic(®) EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC(®). The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC(®) to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC(®) was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T = 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately modeled in the planning system. Off-axis profiles were also modeled in PS by taking into account the three-dimensional model of the plaque backing. The doses calculated by PS and RADCALC(®) for uniformly loaded ROPES plaques in full and uniform scattering conditions were validated by the EBT3 film measurements. The stainless steel plaque backing was observed to decrease the measured dose by 4%. Through the introduction of a scalar correction factor (0.96) in PS, the dose homogeneity effect of the stainless steel plaque backing was found to agree with the measured EBT3 film measurements.

  11. Annual Status Report (FY2017): Performance Assessment for the Disposal of Low-Level Waste in the 200 East Area Burial Grounds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Will E.; Mehta, S.; Nell, R. M.

    This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 East Area Low-Level Waste Burial Grounds (LLBGs) since September 26, 1988. The estimates are calculated using the original dose methodology developed in the performance assessment (PA) analysis (WHC-SD-WM-TI-7301). The estimates are compared with performance objectives defined in U.S. Department of Energy (DOE) requirements (DOE O 435.1 Chg 1,2 and companion documents DOE M 435.1-1 Chg 13 and DOE G 435.1-14). All performance objectives are currently satisfied, and operational waste acceptance criteria (HNF-EP-00635) and waste acceptance practices continue to be sufficient to maintain compliance withmore » performance objectives. Inventory estimates and associated dose estimates from future waste disposal actions are unchanged from previous years’ evaluations, which indicate potential impacts well below performance objectives. Therefore, future compliance with DOE O 435.1 Chg 1 is expected.« less

  12. Annual Status Report (FY2017): Performance Assessment for the Disposal of Low-Level Waste in the 200 West Area Burial Grounds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Will E; Nell, R. M.; Mehta, S.

    This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 West Area Low-Level Waste Burial Grounds (LLBGs) since September 26, 1988. These estimates are calculated using the original dose methodology developed in the performance assessment (PA) analysis (WHC-EP-06451). These estimates are compared with performance objectives defined in U.S. Department of Energy (DOE) requirements (DOE O 435.1 Chg 12 and its companion documents DOE M 435.1-1 Chg 13 and DOE G 435.1-14). All performance objectives are currently satisfied, and operational waste acceptance criteria (HNF-EP-00635) and waste acceptance practices continue to be sufficient to maintain compliancemore » with performance objectives. Inventory estimates and associated dose estimates from future waste disposal actions are unchanged from previous years’ evaluations, which indicate potential impacts well below performance objectives. Therefore, future compliance with DOE O 435.1 Chg 1 is expected.« less

  13. Dosimetry of a Small-Animal Irradiation Model using a 6 MV Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitch, F. Moran; Martinez-Davalos, A.; Garcia-Garduno, O. A.

    2010-12-07

    A custom made rat-like phantom was used to measure dose distributions using a 6 MV linear accelerator. The phantom has air cavities that simulate the lungs and cylindrical inserts that simulate the backbone. The calculated dose distributions were obtained with the BrainScan v.5.31 TPS software. For the irradiation two cases were considered: (a) near the region where the phantom has two air cavities that simulate the lungs, and (b) with an entirely uniform phantom. The treatment plan consisted of two circular cone arcs that imparted a 500 cGy dose to a simulated lesion in the backbone. We measured dose distributionsmore » using EBT2 GafChromic film and an Epson Perfection V750 scanner working in transmission mode. Vertical and horizontal profiles, isodose curves from 50 to 450 cGy, dose and distance to agreement (DTA) histograms and Gamma index were obtained to compare the dose distributions using DoseLab v4.11. As a result, these calculations show very good agreement between calculated and measured dose distribution in both cases. With a 2% 2 mm criteria 100% of the points pass the Gamma test for the uniform case, while 98.9% of the points do it for the lungs case.« less

  14. Proton dose distribution measurements using a MOSFET detector with a simple dose-weighted correction method for LET effects.

    PubMed

    Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-04-04

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors.

  15. [The use of polymer gel dosimetry to measure dose distribution around metallic implants].

    PubMed

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-10-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widesott, Lamberto; Lomax, Antony J.; Schwarz, Marco

    Purpose: To assess the quality of dose distributions in real clinical cases for different dimensions of scanned proton pencil beams. The distance between spots (i.e., the grid of delivery) is optimized for each dimension of the pencil beam. Methods: The authors vary the {sigma} of the initial Gaussian size of the spot, from {sigma}{sub x} = {sigma}{sub y} = 3 mm to {sigma}{sub x} = {sigma}{sub y} = 8 mm, to evaluate the impact of the proton beam size on the quality of intensity modulated proton therapy (IMPT) plans. The distance between spots, {Delta}x and {Delta}y, is optimized on themore » spot plane, ranging from 4 to 12 mm (i.e., each spot size is coupled with the best spot grid resolution). In our Hyperion treatment planning system (TPS), constrained optimization is applied with respect to the organs at risk (OARs), i.e., the optimization tries to satisfy the dose objectives in the planning target volume (PTV) as long as all planning objectives for the OARs are met. Three-field plans for a nasopharynx case, two-field plans for a prostate case, and two-field plans for a malignant pleural mesothelioma case are considered in our analysis. Results: For the head and neck tumor, the best grids (i.e., distance between spots) are 5, 4, 6, 6, and 8 mm for {sigma} = 3, 4, 5, 6, and 8 mm, respectively. {sigma} {<=} 5 mm is required for tumor volumes with low dose and {sigma}{<=} 4 mm for tumor volumes with high dose. For the prostate patient, the best grid is 4, 4, 5, 5, and 5 mm for {sigma} = 3, 4, 5, 6, and 8 mm, respectively. Beams with {sigma} > 3 mm did not satisfy our first clinical requirement that 95% of the prescribed dose is delivered to more than 95% of prostate and proximal seminal vesicles PTV. Our second clinical requirement, to cover the distal seminal vesicles PTV, is satisfied for beams as wide as {sigma} = 6 mm. For the mesothelioma case, the low dose PTV prescription is well respected for all values of {sigma}, while there is loss of high dose PTV coverage for {sigma} > 5 mm. The best grids have a spacing of 6, 7, 8, 9, and 12 mm for {sigma} = 3, 4, 5, 6, and 8 mm, respectively. Conclusions: The maximum acceptable proton pencil beam {sigma} depends on the volume treated, the protocol of delivery, and optimization of the plan. For the clinical cases, protocol and optimization used in this analysis, acceptable {sigma}s are {<=} 4 mm for the head and neck tumor, {<=} 3 mm for the prostate tumor and {<=} 6 mm for the malignant pleural mesothelioma. One can apply the same procedure used in this analysis when given a ''class'' of patients, a {sigma} and a clinical protocol to determine the optimal grid spacing.« less

  17. Dose and scatter characteristics of a novel cone beam CT system for musculoskeletal extremities

    NASA Astrophysics Data System (ADS)

    Zbijewski, W.; Sisniega, A.; Vaquero, J. J.; Muhit, A.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2012-03-01

    A novel cone-beam CT (CBCT) system has been developed with promising capabilities for musculoskeletal imaging (e.g., weight-bearing extremities and combined radiographic / volumetric imaging). The prototype system demonstrates diagnostic-quality imaging performance, while the compact geometry and short scan orbit raise new considerations for scatter management and dose characterization that challenge conventional methods. The compact geometry leads to elevated, heterogeneous x-ray scatter distributions - even for small anatomical sites (e.g., knee or wrist), and the short scan orbit results in a non-uniform dose distribution. These complex dose and scatter distributions were investigated via experimental measurements and GPU-accelerated Monte Carlo (MC) simulation. The combination provided a powerful basis for characterizing dose distributions in patient-specific anatomy, investigating the benefits of an antiscatter grid, and examining distinct contributions of coherent and incoherent scatter in artifact correction. Measurements with a 16 cm CTDI phantom show that the dose from the short-scan orbit (0.09 mGy/mAs at isocenter) varies from 0.16 to 0.05 mGy/mAs at various locations on the periphery (all obtained at 80 kVp). MC estimation agreed with dose measurements within 10-15%. Dose distribution in patient-specific anatomy was computed with MC, confirming such heterogeneity and highlighting the elevated energy deposition in bone (factor of ~5-10) compared to soft-tissue. Scatter-to-primary ratio (SPR) up to ~1.5-2 was evident in some regions of the knee. A 10:1 antiscatter grid was found earlier to result in significant improvement in soft-tissue imaging performance without increase in dose. The results of MC simulations elucidated the mechanism behind scatter reduction in the presence of a grid. A ~3-fold reduction in average SPR was found in the MC simulations; however, a linear grid was found to impart additional heterogeneity in the scatter distribution, mainly due to the increase in the contribution of coherent scatter with increased spatial variation. Scatter correction using MC-generated scatter distributions demonstrated significant improvement in cupping and streaks. Physical experimentation combined with GPU-accelerated MC simulation provided a sophisticated, yet practical approach in identifying low-dose acquisition techniques, optimizing scatter correction methods, and evaluating patientspecific dose.

  18. Statistical analysis of radiation dose derived from ingestion of foods

    NASA Astrophysics Data System (ADS)

    Dougherty, Ward L.

    2001-09-01

    This analysis undertook the task of designing and implementing a methodology to determine an individual's probabilistic radiation dose from ingestion of foods utilizing Crystal Ball. A dietary intake model was determined by comparing previous existing models. Two principal radionuclides were considered-Lead210 (Pb-210) and Radium 226 (Ra-226). Samples from three different local grocery stores-Publix, Winn Dixie, and Albertsons-were counted on a gamma spectroscopy system with a GeLi detector. The same food samples were considered as those in the original FIPR database. A statistical analysis, utilizing the Crystal Ball program, was performed on the data to assess the most accurate distribution to use for these data. This allowed a determination of a radiation dose to an individual based on the above-information collected. Based on the analyses performed, radiation dose for grocery store samples was lower for Radium-226 than FIPR debris analyses, 2.7 vs. 5.91 mrem/yr. Lead-210 had a higher dose in the grocery store sample than the FIPR debris analyses, 21.4 vs. 518 mrem/yr. The output radiation dose was higher for all evaluations when an accurate estimation of distributions for each value was considered. Radium-226 radiation dose for FIPR and grocery rose to 9.56 and 4.38 mrem/yr. Radiation dose from ingestion of Pb-210 rose to 34.7 and 854 mrem/yr for FIPR and grocery data, respectively. Lead-210 was higher than initial doses for many reasons: Different peak examined, lower edge of detection limit, and minimum detectable concentration was considered. FIPR did not utilize grocery samples as a control because they calculated radiation dose that appeared unreasonably high. Consideration of distributions with the initial values allowed reevaluation of radiation does and showed a significant difference to original deterministic values. This work shows the value and importance of considering distributions to ensure that a person's radiation dose is accurately calculated. Probabilistic dose methodology was proved to be a more accurate and realistic method of radiation dose determination. This type of methodology provides a visual presentation of dose distribution that can be a vital aid in risk methodology.

  19. SU-F-T-364: Monte Carlo-Dose Verification of Volumetric Modulated Arc Therapy Plans Using AAPM TG-119 Test Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onizuka, R; Araki, F; Ohno, T

    2016-06-15

    Purpose: To investigate the Monte Carlo (MC)-based dose verification for VMAT plans by a treatment planning system (TPS). Methods: The AAPM TG-119 test structure set was used for VMAT plans by the Pinnacle3 (convolution/superposition), using a Synergy radiation head of a 6 MV beam with the Agility MLC. The Synergy was simulated with the EGSnrc/BEAMnrc code, and VMAT dose distributions were calculated with the EGSnrc/DOSXYZnrc code by the same irradiation conditions as TPS. VMAT dose distributions of TPS and MC were compared with those of EBT3 film, by 2-D gamma analysis of ±3%/3 mm criteria with a threshold of 30%more » of prescribed doses. VMAT dose distributions between TPS and MC were also compared by DVHs and 3-D gamma analysis of ±3%/3 mm criteria with a threshold of 10%, and 3-D passing rates for PTVs and OARs were analyzed. Results: TPS dose distributions differed from those of film, especially for Head & neck. The dose difference between TPS and film results from calculation accuracy for complex motion of MLCs like tongue and groove effect. In contrast, MC dose distributions were in good agreement with those of film. This is because MC can model fully the MLC configuration and accurately reproduce the MLC motion between control points in VMAT plans. D95 of PTV for Prostate, Head & neck, C-shaped, and Multi Target was 97.2%, 98.1%, 101.6%, and 99.7% for TPS and 95.7%, 96.0%, 100.6%, and 99.1% for MC, respectively. Similarly, 3-D gamma passing rates of each PTV for TPS vs. MC were 100%, 89.5%, 99.7%, and 100%, respectively. 3-D passing rates of TPS reduced for complex VMAT fields like Head & neck because MLCs are not modeled completely for TPS. Conclusion: MC-calculated VMAT dose distributions is useful for the 3-D dose verification of VMAT plans by TPS.« less

  20. Three-Dimensional Electron Beam Dose Calculations.

    NASA Astrophysics Data System (ADS)

    Shiu, Almon Sowchee

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements have been incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. The source of the latter inaccuracy is believed primarily due to assumptions made in the pencil beam's modeling of the complex phantom or patient geometry. A pencil-beam redefinition model was developed for the calculation of electron beam dose distributions in three dimensions. The primary aim of this redefinition model was to solve the dosimetry problem presented by deep inhomogeneities, which was the major deficiency of the enhanced version of the MDAH pencil-beam algorithm. The pencil-beam redefinition model is based on the theory of electron transport by redefining the pencil beams at each layer of the medium. The unique approach of this model is that all the physical parameters of a given pencil beam are characterized for multiple energy bins. Comparisons of the calculated dose distributions with measured dose distributions for a homogeneous water phantom and for phantoms with deep inhomogeneities have been made. From these results it is concluded that the redefinition algorithm is superior to the conventional, fluence-based, pencil-beam algorithm, especially in predicting the dose distribution downstream of a local inhomogeneity. The accuracy of this algorithm appears sufficient for clinical use, and the algorithm is structured for future expansion of the physical model if required for site specific treatment planning problems.

  1. Dosimetric evaluation of synthetic CT for magnetic resonance-only based radiotherapy planning of lung cancer.

    PubMed

    Wang, Hesheng; Chandarana, Hersh; Block, Kai Tobias; Vahle, Thomas; Fenchel, Matthias; Das, Indra J

    2017-06-26

    Interest in MR-only treatment planning for radiation therapy is growing rapidly with the emergence of integrated MRI/linear accelerator technology. The purpose of this study was to evaluate the feasibility of using synthetic CT images generated from conventional Dixon-based MRI scans for radiation treatment planning of lung cancer. Eleven patients who underwent whole-body PET/MR imaging following a PET/CT exam were randomly selected from an ongoing prospective IRB-approved study. Attenuation maps derived from the Dixon MR Images and atlas-based method was used to create CT data (synCT). Treatment planning for radiation treatment of lung cancer was optimized on the synCT and subsequently copied to the registered CT (planCT) for dose calculation. Planning target volumes (PTVs) with three sizes and four different locations in the lung were planned for irradiation. The dose-volume metrics comparison and 3D gamma analysis were performed to assess agreement between the synCT and CT calculated dose distributions. Mean differences between PTV doses on synCT and CT across all the plans were -0.1% ± 0.4%, 0.1% ± 0.5%, and 0.4% ± 0.5% for D95, D98 and D100, respectively. Difference in dose between the two datasets for organs at risk (OARs) had average differences of -0.14 ± 0.07 Gy, 0.0% ± 0.1%, and -0.1% ± 0.2% for maximum spinal cord, lung V20, and heart V40 respectively. In patient groups based on tumor size and location, no significant differences were observed in the PTV and OARs dose-volume metrics (p > 0.05), except for the maximum spinal-cord dose when the target volumes were located at the lung apex (p = 0.001). Gamma analysis revealed a pass rate of 99.3% ± 1.1% for 2%/2 mm (dose difference/distance to agreement) acceptance criteria in every plan. The synCT generated from Dixon-based MRI allows for dose calculation of comparable accuracy to the standard CT for lung cancer treatment planning. The dosimetric agreement between synCT and CT calculated doses warrants further development of a MR-only workflow for radiotherapy of lung cancer.

  2. TU-D-209-02: A Backscatter Point Spread Function for Entrance Skin Dose Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayan, S; Xiong, Z; Shankar, A

    Purpose: To determine the distribution of backscattered radiation to the skin resulting from a non-uniform distribution of primary radiation through convolution with a backscatter point spread function (PSF). Methods: A backscatter PSF is determined using Monte Carlo simulation of a 1 mm primary beam incident on a 30 × 30 cm × 20 cm thick PMMA phantom using EGSnrc software. A primary profile is similarly obtained without the phantom and the difference from the total provides the backscatter profile. This scatter PSF characterizes the backscatter spread for a “point” primary interaction and can be convolved with the entrance primary dosemore » distribution to obtain the total entrance skin dose. The backscatter PSF was integrated into the skin dose tracking system (DTS), a graphical utility for displaying the color-coded skin dose distribution on a 3D graphic of the patient during interventional fluoroscopic procedures. The backscatter convolution method was validated for the non-uniform beam resulting from the use of an ROI attenuator. The ROI attenuator is a copper sheet with about 20% primary transmission (0.7 mm thick) containing a circular aperture; this attenuator is placed in the beam to reduce dose in the periphery while maintaining full dose in the region of interest. The DTS calculated primary plus backscatter distribution is compared to that measured with GafChromic film and that calculated using EGSnrc Monte-Carlo software. Results: The PSF convolution method used in the DTS software was able to account for the spread of backscatter from the ROI region to the region under the attenuator. The skin dose distribution determined using DTS with the ROI attenuator was in good agreement with the distributions measured with Gafchromic film and determined by Monte Carlo simulation Conclusion: The PSF convolution technique provides an accurate alternative for entrance skin dose determination with non-uniform primary x-ray beams. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less

  3. SU-E-T-243: MonteCarlo Simulation Study of Polymer and Radiochromic Gel for Three-Dimensional Proton Dose Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Jung, H; Kim, G

    2014-06-01

    Purpose: To estimate the three dimensional dose distributions in a polymer gel and a radiochromic gel by comparing with the virtual water phantom exposed to proton beams by applying Monte Carlo simulation. Methods: The polymer gel dosimeter is the compositeness material of gelatin, methacrylic acid, hydroquinone, tetrakis, and distilled water. The radiochromic gel is PRESAGE product. The densities of polymer and radiochromic gel were 1.040 and 1.0005 g/cm3, respectively. The shape of water phantom was a hexahedron with the size of 13 × 13 × 15 cm3. The proton beam energies of 72 and 116 MeV were used in themore » simulation. Proton beam was directed to the top of the phantom with Z-axis and the shape of beam was quadrangle with 10 × 10 cm2 dimension. The Percent depth dose and the dose distribution were evaluated for estimating the dose distribution of proton particle in two gel dosimeters, and compared with the virtual water phantom. Results: The Bragg-peak for proton particles in two gel dosimeters was similar to the virtual water phantom. Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in the identical region (4.3 cm) for 72 MeV proton beam. For 116 MeV proton beam, the Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in 9.9, 9.9 and 9.7 cm, respectively. The dose distribution of proton particles in polymer gel, radiochromic gel, and virtual water phantom was approximately identical in the case of 72 and 116 MeV energies. The errors for the simulation were under 10%. Conclusion: This work indicates the evaluation of three dimensional dose distributions by exposing proton particles to polymer and radiochromic gel dosimeter by comparing with the water phantom. The polymer gel and the radiochromic gel dosimeter show similar dose distributions for the proton beams.« less

  4. Half doses of PEG-ES and senna vs. high-dose senna for bowel cleansing before colonoscopy: a randomized, investigator-blinded trial.

    PubMed

    Amato, Arnaldo; Radaelli, Franco; Paggi, Silvia; Terruzzi, Vittorio

    2010-03-01

    Patients' compliance with and tolerance of large-volume polyethylene glycol electrolyte solution (PEG-ES) have prompted continuous investigation with alternative forms of cleansing. High-dose senna is superior to PEG-ES for the quality of bowel cleansing, patient compliance, and tolerance, but its acceptance may be influenced by the incidence of abdominal pain. We hypothesized that a combination of half doses of PEG-ES and senna could minimize the incidence of abdominal pain without affecting the quality of bowel preparation. This randomized, investigator-blinded trial has been conducted on consecutive outpatients scheduled for elective colonoscopy at a single community-based hospital. Patients were randomly assigned to receive either 12 tablets of 12 mg senna and 2 l of PEG-ES (half-dose group, HDG) or 24 tablets of senna divided in two doses (senna group, SG) the day before colonoscopy. The main outcome measures were the quality of colon cleansing (Aronchick scoring scale) and the incidence of preparation-related abdominal pain. Secondary outcome measures were patients' compliance with the cleansing regimen, overall tolerability, prevalence of predefined side effects, and quality of right colon cleansing. A total of 296 patients were enrolled (HDG=151 and SG=145). Overall cleansing was excellent to good in 90.1 and 88.3% patients in HDG and SG, respectively (P=0.62). Preparation-related moderate-to-severe abdominal pain was reported by 6% patients in HDG and 15.2% in SG (P=0.009). No significant differences were observed for secondary outcomes. The regimen combining half doses of PEG-ES and senna provides high-quality bowel preparation and acceptable patient tolerance, with less abdominal pain compared with high-dose senna.

  5. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan

    NASA Astrophysics Data System (ADS)

    Inaniwa, Taku; Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Kanai, Tatsuaki; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2015-04-01

    At the National Institute of Radiological Sciences (NIRS), more than 8,000 patients have been treated for various tumors with carbon-ion (C-ion) radiotherapy in the past 20 years based on a radiobiologically defined clinical-dose system. Through clinical experience, including extensive dose escalation studies, optimum dose-fractionation protocols have been established for respective tumors, which may be considered as the standards in C-ion radiotherapy. Although the therapeutic appropriateness of the clinical-dose system has been widely demonstrated by clinical results, the system incorporates several oversimplifications such as dose-independent relative biological effectiveness (RBE), empirical nuclear fragmentation model, and use of dose-averaged linear energy transfer to represent the spectrum of particles. We took the opportunity to update the clinical-dose system at the time we started clinical treatment with pencil beam scanning, a new beam delivery method, in 2011. The requirements for the updated system were to correct the oversimplifications made in the original system, while harmonizing with the original system to maintain the established dose-fractionation protocols. In the updated system, the radiation quality of the therapeutic C-ion beam was derived with Monte Carlo simulations, and its biological effectiveness was predicted with a theoretical model. We selected the most used C-ion beam with αr = 0.764 Gy-1 and β = 0.0615 Gy-2 as reference radiation for RBE. The C-equivalent biological dose distribution is designed to allow the prescribed survival of tumor cells of the human salivary gland (HSG) in entire spread-out Bragg peak (SOBP) region, with consideration to the dose dependence of the RBE. This C-equivalent biological dose distribution is scaled to a clinical dose distribution to harmonize with our clinical experiences with C-ion radiotherapy. Treatment plans were made with the original and the updated clinical-dose systems, and both physical and clinical dose distributions were compared with regard to the prescribed dose level, beam energy, and SOBP width. Both systems provided uniform clinical dose distributions within the targets consistent with the prescriptions. The mean physical doses delivered to targets by the updated system agreed with the doses by the original system within ±1.5% for all tested conditions. The updated system reflects the physical and biological characteristics of the therapeutic C-ion beam more accurately than the original system, while at the same time allowing the continued use of the dose-fractionation protocols established with the original system at NIRS.

  6. 18F-FPEB, a PET radiopharmaceutical for quantifying metabotropic glutamate 5 receptors: a first-in-human study of radiochemical safety, biokinetics, and radiation dosimetry.

    PubMed

    Wong, Dean F; Waterhouse, Rikki; Kuwabara, Hiroto; Kim, Jongho; Brašić, James R; Chamroonrat, Wichana; Stabins, Michael; Holt, Daniel P; Dannals, Robert F; Hamill, Terence G; Mozley, P David

    2013-03-01

    Identification of safe and valid PET radioligands for metabotropic glutamate receptor, type 5 (mGluR5), is essential to measure changes in brain mGluR5 in neuropsychiatric disorders, to confirm central mGluR5 occupancy of drug candidates, and to guide dose selection for obtaining an optimum therapeutic window. Here we present the results of a first-in-human study assessing the safety and effectiveness of a novel PET radiopharmaceutical, (18)F-3-fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile ((18)F-FPEB), for quantifying regional brain concentrations of mGluR5. Quantification of whole-body biokinetics was conducted in 6 healthy adults (3 men and 3 women). The radiation safety profile was estimated with OLINDA/EXM software. Subsequently, pairs of dynamic brain scans were obtained for 11 healthy men to identify optimal methods for derivation of regional distribution volume and binding potential and to determine the repeatability of measurement. The whole-body effective radiation dose was approximately 17 μSv/MBq (62 mrem/mCi), with the gallbladder receiving the highest dose of 190 μSv/MBq. In brain studies, time-activity curves showed high accumulation in the insula/caudate nucleus, moderate uptake in the thalamus, and the lowest concentration in the cerebellum/pons. The plasma reference graphical analysis method appeared optimal for (18)F-FPEB; it showed acceptable test-retest variability of nondisplaceable binding potential (<10%) and identified the highest nondisplaceable binding potential values (from ∼0.5 in the globus pallidus to ∼3.5 in the insula) for target regions. Safety assessments revealed no clinically meaningful changes in vital signs, electrocardiogram, or laboratory values. (18)F-FPEB is safe and well tolerated, and its regional cerebral distribution is consistent with previous reports in the literature for metabotropic glutamate receptors. The repeatability of measurement suggests that (18)F-FPEB is suitable for quantifying mGluR5 in humans.

  7. Developing acceptance limits for measured bearing wear of the Space Shuttle Main Engine high pressure oxidizer turbopump

    NASA Technical Reports Server (NTRS)

    Genge, Gary G.

    1991-01-01

    The probabilistic design approach currently receiving attention for structural failure modes has been adapted for obtaining measured bearing wear limits in the Space Shuttle Main Engine high-pressure oxidizer turbopump. With the development of the shaft microtravel measurements to determine bearing health, an acceptance limit was neeed that protects against all known faiure modes yet is not overly conservative. This acceptance criteria limit has been successfully determined using probabilistic descriptions of preflight hardware geometry, empirical bearing wear data, mission requirements, and measurement tool precision as an input for a Monte Carlo simulation. The result of the simulation is a frequency distribution of failures as a function of preflight acceptance limits. When the distribution is converted into a reliability curve, a conscious risk management decision is made concerning the acceptance limit.

  8. Proposed linear energy transfer areal detector for protons using radiochromic film.

    PubMed

    Mayer, Rulon; Lin, Liyong; Fager, Marcus; Douglas, Dan; McDonough, James; Carabe, Alejandro

    2015-04-01

    Radiation therapy depends on predictably and reliably delivering dose to tumors and sparing normal tissues. Protons with kinetic energy of a few hundred MeV can selectively deposit dose to deep seated tumors without an exit dose, unlike x-rays. The better dose distribution is attributed to a phenomenon known as the Bragg peak. The Bragg peak is due to relatively high energy deposition within a given distance or high Linear Energy Transfer (LET). In addition, biological response to radiation depends on the dose, dose rate, and localized energy deposition patterns or LET. At present, the LET can only be measured at a given fixed point and the LET spatial distribution can only be inferred from calculations. The goal of this study is to develop and test a method to measure LET over extended areas. Traditionally, radiochromic films are used to measure dose distribution but not for LET distribution. We report the first use of these films for measuring the spatial distribution of the LET deposited by protons. The radiochromic film sensitivity diminishes for large LET. A mathematical model correlating the film sensitivity and LET is presented to justify relating LET and radiochromic film relative sensitivity. Protons were directed parallel to radiochromic film sandwiched between solid water slabs. This study proposes the scaled-normalized difference (SND) between the Treatment Planning system (TPS) and measured dose as the metric describing the LET. The SND is correlated with a Monte Carlo (MC) calculation of the LET spatial distribution for a large range of SNDs. A polynomial fit between the SND and MC LET is generated for protons having a single range of 20 cm with narrow Bragg peak. Coefficients from these fitted polynomial fits were applied to measured proton dose distributions with a variety of ranges. An identical procedure was applied to the protons deposited from Spread Out Bragg Peak and modulated by 5 cm. Gamma analysis is a method for comparing the calculated LET with the LET measured using radiochromic film at the pixel level over extended areas. Failure rates using gamma analysis are calculated for areas in the dose distribution using parameters of 25% of MC LET and 3 mm. The processed dose distributions find 5%-10% failure rates for the narrow 12.5 and 15 cm proton ranges and 10%-15% for proton ranges of 15, 17.5, and 20 cm and modulated by 5 cm. It is found through gamma analysis that the measured proton energy deposition in radiochromic film and TPS can be used to determine LET. This modified film dosimetry provides an experimental areal LET measurement that can verify MC calculations, support LET point measurements, possibly enhance biologically based proton treatment planning, and determine the polymerization process within the radiochromic film.

  9. SU-F-I-34: How Does Longitudinal Dose Profile Change with Tube Current Distribution in CT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Yang, K; Liu, B

    Purpose: To investigate how longitudinal dose profile D{sub L}(z) in 30 cm-diameter water cylinder change with tube current (mA) distribution and scan length. Methods: A constant and four variable mA distributions from two previous papers [Dixon et al., Med. Phys. 40, 111920 (14pp.) (2013); Zhang et al., Med. Phys. 41, 091911 (9pp.) (2014)] were adopted in three scan lengths of 10, 28.6, and 50 cm, and all mA distributions had the same average mA over scan ranges. Using the symmetry based dose calculation algorithms and the previously published CT dose equilibration data [Li et al., Med. Phys. 40, 031903 (10pp.)more » (2013); 41, 111910 (5pp.) (2014)], the authors calculated DL(z) on the phantom central and peripheral axes. Kolmogorov-Smirnov (K-S) test was used to compare the lineshapes of two arbitrary distributions. Results: In constant mA scans, D{sub L}(z) was “bell-shaped”. In variable mA scans, D{sub L}(z) approximately followed the mA lineshape, and the K-S distance generally changed with mA distribution. The distance decreased with scan length, and was larger on the central axis than on the peripheral axis. However, the opposite trends were found in the K-S distance between the D{sub L}(z) distributions of constant and variable mA distributions. Conclusion: Radiation dose from TCM scan is best evaluated using the specific tube current distribution. A constant mA based evaluation may lead to inconsistent longitudinal dose profile with that of TCM scan. Their difference in lineshape is larger on the phantom peripheral axis than on the central axis and increases with scan length. This work confirms that radiation dose in CT depends on not only local mA but also the overall mA distribution and scan length. On the other hand, the concept of regional tube current may be useful when scan length is large, tube current peaks near scan range edge, or the target site is superficial.« less

  10. Optimization of dual-energy subtraction chest radiography by use of a direct-conversion flat-panel detector system.

    PubMed

    Fukao, Mari; Kawamoto, Kiyosumi; Matsuzawa, Hiroaki; Honda, Osamu; Iwaki, Takeshi; Doi, Tsukasa

    2015-01-01

    We aimed to optimize the exposure conditions in the acquisition of soft-tissue images using dual-energy subtraction chest radiography with a direct-conversion flat-panel detector system. Two separate chest images were acquired at high- and low-energy exposures with standard or thick chest phantoms. The high-energy exposure was fixed at 120 kVp with the use of an auto-exposure control technique. For the low-energy exposure, the tube voltages and entrance surface doses ranged 40-80 kVp and 20-100 % of the dose required for high-energy exposure, respectively. Further, a repetitive processing algorithm was used for reduction of the image noise generated by the subtraction process. Seven radiology technicians ranked soft-tissue images, and these results were analyzed using the normalized-rank method. Images acquired at 60 kVp were of acceptable quality regardless of the entrance surface dose and phantom size. Using a repetitive processing algorithm, the minimum acceptable doses were reduced from 75 to 40 % for the standard phantom and to 50 % for the thick phantom. We determined that the optimum low-energy exposure was 60 kVp at 50 % of the dose required for the high-energy exposure. This allowed the simultaneous acquisition of standard radiographs and soft-tissue images at 1.5 times the dose required for a standard radiograph, which is significantly lower than the values reported previously.

  11. TLD postal dose intercomparison for megavoltage units in Poland.

    PubMed

    Izewska, J; Gajewski, R; Gwiazdowska, B; Kania, M; Rostkowska, J

    1995-08-01

    The aim of the TLD pilot study was to investigate and to reduce the uncertainties involved in the measurements of absorbed dose and to improve the consistency in dose determination in the regional radiotherapy centres in Poland. The intercomparison was organized by the SSDL. It covered absorbed dose measurements under reference conditions for Co-60, high energy X-rays and electron beams. LiF powder type MT-N was used for the irradiations and read with the Harshaw TLD reader model 2000B/2000C. The TLD system was set up and an analysis of the factors influencing the accuracy of absorbed dose measurements with TL-detectors was performed to evaluate and minimize the measurement uncertainty. A fading not exceeding 2% in 12 weeks was found. The relative energy correction factor did not exceed 3% for X-rays in the range 4-15 MV, and 4% for electron beams between 6 and 20 MeV. A total of 34 beams was checked. Deviation of +/- 3.5% stated and evaluated dose was considered acceptable for photons and +/- 5% for electron beams. The results for Co-60, high energy X-rays and electron beams showed that there were two, three and no centres, respectively, beyond acceptance levels. The sources of errors for all deviations out of this range were thoroughly investigated, discussed and corrected, however two deviations remained unexplained. The pilot study resulted in an improvement of the accuracy and consistency of dosimetry in Poland.

  12. A chromogranin A ELISA absent of an apparent high-dose hook effect observed in other chromogranin A ELISAs.

    PubMed

    Erickson, J Alan; Grenache, David G

    2016-01-15

    Routine testing for chromogranin A (CgA) using an established commercial ELISA revealed an apparent high-dose hook effect in approximately 15% of specimens. Investigations found the same effect in two additional ELISAs. We hypothesized that a CgA derived peptide(s) at high concentrations was responsible but experiments were inconclusive. Here we describe the analytical performance characteristics of the Chromoa™ CgA ELISA that did not display the apparent high-dose hook effect. Performance characteristics of the Chromoa ELISA were assessed. The reference interval was established utilizing healthy volunteers. Specimens producing the apparent high-dose hook effect in other assays were evaluated using the Chromoa ELISA. The limit of detection was 8ng/ml. Linearity was acceptable (slope=1.04, intercept=18.1 and r(2)=0.997). CVs were ≤4.6 and ≤9.3% for repeatability and within-laboratory imprecision, respectively. CgA was stable at ambient and refrigerated temperatures for a minimum of two and 14days, respectively. An upper reference interval limit of 95ng/ml was established. Specimens demonstrating the apparent high-dose hook effect in other ELISAs did not exhibit the phenomenon using the Chromoa ELISA. The Chromoa ELISA demonstrates acceptable performance for quantifying serum CgA. The apparent high-dose hook effect exhibited in other ELISAs was absent using the Chromoa assay. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Canadian Cytogenetic Emergency network (CEN) for biological dosimetry following radiological/nuclear accidents.

    PubMed

    Miller, Susan M; Ferrarotto, Catherine L; Vlahovich, Slavica; Wilkins, Ruth C; Boreham, Douglas R; Dolling, Jo-Anna

    2007-07-01

    To test the ability of the cytogenetic emergency network (CEN) of laboratories, currently under development across Canada, to provide rapid biological dosimetry using the dicentric assay for triage assessment, that could be implemented in the event of a large-scale radiation/nuclear emergency. A workshop was held in May 2004 in Toronto, Canada, to introduce the concept of CEN and recruit clinical cytogenetic laboratories at hospitals across the country. Slides were prepared for dicentric assay analysis following in vitro irradiation of blood to a range of gamma-ray doses. A minimum of 50 metaphases per slide were analyzed by 41 people at 22 different laboratories to estimate the exposure level. Dose estimates were calculated based on a dose response curve generated at Health Canada. There were a total of 104 dose estimates and 96 (92.3%) of them fell within the expected range using triage scoring criteria. Half of the laboratories analyzed 50 metaphases in

  14. Assessment of dosimetric impact of system specific geometric distortion in an MRI only based radiotherapy workflow for prostate

    NASA Astrophysics Data System (ADS)

    Gustafsson, C.; Nordström, F.; Persson, E.; Brynolfsson, J.; Olsson, L. E.

    2017-04-01

    Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were  ⩽0.02% and the radiotherapy structure mean volume deviations were  <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.

  15. Assessment of dosimetric impact of system specific geometric distortion in an MRI only based radiotherapy workflow for prostate.

    PubMed

    Gustafsson, C; Nordström, F; Persson, E; Brynolfsson, J; Olsson, L E

    2017-04-21

    Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were  ⩽0.02% and the radiotherapy structure mean volume deviations were  <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.

  16. SU-E-T-609: Perturbation Effects of Pedicle Screws On Radiotherapy Dose Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bar-Deroma, R; Borzov, E; Nevelsky, A

    2015-06-15

    Purpose: Radiation therapy in conjunction with surgical implant fixation is a common combined treatment in case of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced (CFR) PEEK material has been recently introduced for production of intramedullary screws and plates. Gold powder can be added to the CFR-PEEK material in order to enhance visibility of the screws during intraoperative imaging procedures. In this work, we investigated the perturbation effects of the pedicle screws made of CFR-PEEK, CFR-PEEK with added gold powder (CFR-PEEK-AU) and Titanium (Ti) on radiotherapy dose distributions. Methods: Monte Carlo (MC)more » simulations were performed using the EGSnrc code package for 6MV beams with 10×10 fields at SSD=100cm. By means of MC simulations, dose distributions around titanium, CFR- PEEK and CFR-PEEK-AU screws (manufactured by Carbo-Fix Orthopedics LTD, Israel) placed in a water phantom were calculated. The screw axis was either parallel or perpendicular to the beam axis. Dose perturbation (relative to dose in homogeneous water phantom) was assessed. Results: Maximum overdose due to backscatter was 10% for the Ti screws, 5% for the CFR-PEEK-AU screws and effectively zero for the CFR-PEEK screws. Maximum underdose due to attenuation was 25% for the Ti screws, 15% for the CFR-PEEK-AU screws and 5% for the CFR-PEEK screws. Conclusion: Titanium screws introduce the largest distortion on the radiation dose distribution. The gold powder added to the CFR-PEEK material improves visibility at the cost of increased dose perturbation. CFR-PEEK screws caused minimal alteration on the dose distribution. This can decrease possible over and underdose of adjacent tissue and thus favorably influence treatment efficiency. The use of such implants has potential clinical advantage in the treatment of neoplastic bone disease.« less

  17. SU-F-T-178: Optimized Design of a Diamond Detector Specifically Dedicated to the Dose Distribution Measurements in Clinical Proton Pencil Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moignier, C; Pomorski, M; Agelou, M

    2016-06-15

    Purpose: In proton-therapy, pencil beam scanning (PBS) dosimetry presents a real challenge due to the small size of the beam (about 3 to 8 mm in FWHM), the pulsed high dose rate (up to 100 Gy/s) and the proton energy variation (about 30 MeV to 250 MeV). In the framework of French INSERM DEDIPRO project, a specifically dedicated single crystal diamond dosimeter (SCDDo) was developed with the objective of obtaining accurate measurements of the dose distribution in PBS modality. Methods: Monte Carlo simulations with MCNPX were performed. A small proton beam of 5 mm in FWHM was simulated as wellmore » as diamond devices with various size, thickness and holder composition. The calculated doses-to-diamond were compared with the doses-to-water in order to reduce the perturbation effects. Monte-Carlo simulations lead to an optimized SCDDo design for small proton beams dosimetry. Following the optimized design, SCDDos were mounted in water-equivalent holders with electrical connection adapted to standard electrometer. First, SCDDos performances (stability, repeatability, signal-to-background ratio…) were evaluated with conventional photon beams. Then, characterizations (dose linearity, dose rate dependence…) with wide proton beams were performed at proton-therapy center (IC-CPO) from Curie Institute (France) with the passive proton delivery technique, in order to confirm dosimetric requirements. Finally, depth-dose distributions were measured in a water tank, for native and modulated Bragg Peaks with the collimator of 12 cm, and compared to a commercial PPC05 parallel-plate ionization chamber reference detector. Lateral-dose profiles were also measured with the collimator of 5 mm, and compared to a commercial SFD diode. Results: The results show that SCDDo design does not disturb the dose distributions. Conclusion: The experimental dose distributions with the SCDDo are in good agreement with the commercial detectors and no energy dependence was observed with this device configuration.« less

  18. Measurement of dose distribution in the spherical phantom onboard the ISS-KIBO module -MATROSHKA-R in KIBO-

    NASA Astrophysics Data System (ADS)

    Kodaira, Satoshi; Kawashima, Hajime; Kurano, Mieko; Uchihori, Yukio; Nikolaev, Igor; Ambrozova, Iva; Kitamura, Hisashi; Kartsev, Ivan; Tolochek, Raisa; Shurshakov, Vyacheslav

    The measurement of dose equivalent and effective dose during manned space missions on the International Space Station (ISS) is important for evaluating the risk to astronaut health and safety when exposed to space radiation. The dosimetric quantities are constantly changing and strongly depend on the level of solar activity and the various spacecraft- and orbit-dependent parameters such as the shielding distribution in the ISS module, location of the spacecraft within its orbit relative to the Earth, the attitude (orientation) and altitude. Consequently, the continuous monitoring of dosimetric quantities is required to record and evaluate the personal radiation dose for crew members during spaceflight. The dose distributions in the phantom body and on its surface give crucial information to estimate the dose equivalent in the human body and effective dose in manned space mission. We have measured the absorbed dose and dose equivalent rates using passive dosimeters installed in the spherical phantom in Japanese Experiment Module (“KIBO”) of the ISS in the framework of Matroshka-R space experiment. The exposure duration was 114 days from May 21 to September 12, 2012. The phantom consists of tissue-equivalent material covered with a poncho jacket with 32 pockets on its surface and 20 container rods inside of the phantom. The phantom diameter is 35 cm and the mass is 32 kg. The passive dosimeters consisted of a combination of luminescent detectors of Al _{2}O _{3};C OSL and CaSO _{4}:Dy TLD and CR-39 plastic nuclear track detectors. As one of preliminary results, the dose distribution on the phantom surface measured with OSL detectors installed in the jacket pockets is found to be ranging from 340 muGy/day to 260 muGy/day. In this talk, we will present the detail dose distributions, and variations of LET spectra and quality factor obtained outside and inside of the spherical phantom installed in the ISS-KIBO.

  19. High brachytherapy doses can counteract hypoxia in cervical cancer—a modelling study

    NASA Astrophysics Data System (ADS)

    Lindblom, Emely; Dasu, Alexandru; Beskow, Catharina; Toma-Dasu, Iuliana

    2017-01-01

    Tumour hypoxia is a well-known adverse factor for the outcome of radiotherapy. For cervical tumours in particular, several studies indicate large variability in tumour oxygenation. However, clinical evidence shows that the management of cervical cancer including brachytherapy leads to high rate of success. It was the purpose of this study to investigate whether the success of brachytherapy for cervical cancer, seemingly regardless of oxygenation status, could be explained by the characteristics of the brachytherapy dose distributions. To this end, a previously used in silico model of tumour oxygenation and radiation response was further developed to simulate the treatment of cervical cancer employing a combination of external beam radiotherapy and intracavitary brachytherapy. Using a clinically-derived brachytherapy dose distribution and assuming a homogeneous dose delivered by external radiotherapy, cell survival was assessed on voxel level by taking into account the variation of sensitivity with oxygenation as well as the effects of repair, repopulation and reoxygenation during treatment. Various scenarios were considered for the conformity of the brachytherapy dose distribution to the hypoxic region in the target. By using the clinically-prescribed brachytherapy dose distribution and varying the total dose delivered with external beam radiotherapy in 25 fractions, the resulting values of the dose for 50% tumour control, D 50, were in agreement with clinically-observed values for high cure rates if fast reoxygenation was assumed. The D 50 was furthermore similar for the different degrees of conformity of the brachytherapy dose distribution to the tumour, regardless of whether the hypoxic fraction was 10%, 25%, or 40%. To achieve 50% control with external RT only, a total dose of more than 70 Gy in 25 fractions would be required for all cases considered. It can thus be concluded that the high doses delivered in brachytherapy can counteract the increased radioresistance caused by hypoxia if fast reoxygenation is assumed.

  20. Systematic evaluation of four-dimensional hybrid depth scanning for carbon-ion lung therapy.

    PubMed

    Mori, Shinichiro; Furukawa, Takuji; Inaniwa, Taku; Zenklusen, Silvan; Nakao, Minoru; Shirai, Toshiyuki; Noda, Koji

    2013-03-01

    Irradiation of a moving target with a scanning beam requires a comprehensive understanding of organ motion as well as a robust dose error mitigation technique. The authors studied the effects of intrafractional respiratory motion for carbon-ion pencil beam scanning with phase-controlled rescanning on dose distributions for lung tumors. To address density variations, they used 4DCT data. Dose distributions for various rescanning methods, such as simple layer rescanning (LR), volumetric rescanning, and phase-controlled rescanning (PCR), were calculated for a lung phantom and a lung patient studies. To ensure realism, they set the scanning parameters such as scanning velocity and energy variation time to be similar to those used at our institution. Evaluation metrics were determined with regard to clinical relevance, and consisted of (i) phase-controlled rescanning, (ii) sweep direction, (iii) target motion (direction and amplitude), (iv) respiratory cycle, and (v) prescribed dose. Spot weight maps were calculated by using a beam field-specific target volume, which takes account of range variations for respective respiratory phases. To emphasize the impact of intrafractional motion on the dose distribution, respiratory gating was not used. The accumulated dose was calculated by applying a B-spline-based deformable image registration, and the results for phase-controlled layered rescanning (PCRL) and phase-controlled volumetric rescanning (PCRV) were compared. For the phantom study, simple LR was unable to improve the dose distributions for an increased number of rescannings. The phase-controlled technique without rescanning (1×PCRL and 1×PCRV) degraded dose conformity significantly due to a reduced scan velocity. In contrast, 4×PCRL or more significantly and consistently improved dose distribution. PCRV showed interference effects, but in general also improved dose homogeneity with higher numbers of rescannings. Dose distributions with single PCRL∕PCRV with a sweep direction perpendicular to motion direction showed large hot∕cold spots; however, this effect vanished with higher numbers of rescannings for both methods. Similar observations were obtained for the other dose metrics, such as target motion (SI∕AP), amplitude (6-22 mm peak-to-peak) and respiratory period (3.0-5.0 s). For four or more rescannings, both methods showed significantly better results, albeit that volumetric PCR was more affected by interference effects, which lead to severe degradation of a few dose distributions. The clinical example showed the same tendencies as the phantom study. Dose assessment metrics (D95, Dmax∕Dmin, homogeneity index) were improved with an increasing number of PCRL∕PCRV, but with PCRL being more robust. PCRL requires a longer treatment time than PCRV for high numbers of rescannings in the NIRS scanning system but is more robust. Although four or more rescans provided good dose homogeneity and conformity, the authors prefer to use more rescannings for clinical cases to further minimize dose degradation effects due to organ motion.

  1. Medicinal plants with potential anti-arthritic activity

    PubMed Central

    Choudhary, Manjusha; Kumar, Vipin; Malhotra, Hitesh; Singh, Surender

    2015-01-01

    Ethno Pharmacological Relevance: Traditional medicinal plants are practiced worldwide for treatment of arthritis especially in developing countries where resources are meager. This review presents the plants profiles inhabiting throughout the world regarding their traditional usage by various tribes/ethnic groups for treatment of arthritis. Materials and Methods: Bibliographic investigation was carried out by analyzing classical text books and peer reviewed papers, consulting worldwide accepted scientific databases from the last six decades. Plants/their parts/extracts/polyherbal formulations, toxicity studies for arthritis have been included in the review article. The profiles presented also include information about the scientific name, family, dose, methodology along with mechanism of action and toxicity profile. Research status of 20 potential plant species has been discussed. Further, geographical distribution of research, plants distribution according to families has been given in graphical form. Results: 485 plant species belonging to 100 families, traditionally used in arthritis are used. Among 100 plant families, malvaceae constitute 16, leguminasae 7, fabaceae 13, euphorbiaceae 7, compositae 20, araceae 7, solanaceae 12, liliaceae 9, apocynaceae, lauraceae, and rubiaceae 10, and remaining in lesser proportion. It was observed in our study that majority of researches are carried mainly in developing countries like India, China, Korea and Nigeria. Conclusion: This review clearly indicates that list of medicinal plants presented in this review might be useful to researchers as well as practioners. This review can be useful for preliminary screening of potential anti-arthritis plants. Further toxicity profile given in the review can be useful for the researchers for finding the safe dose. PMID:26401403

  2. Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy.

    PubMed

    Takada, Kenta; Sato, Tatsuhiko; Kumada, Hiroaki; Koketsu, Junichi; Takei, Hideyuki; Sakurai, Hideyuki; Sakae, Takeji

    2018-01-01

    The microdosimetric kinetic model (MKM) is widely used for estimating relative biological effectiveness (RBE)-weighted doses for various radiotherapies because it can determine the surviving fraction of irradiated cells based on only the lineal energy distribution, and it is independent of the radiation type and ion species. However, the applicability of the method to proton therapy has not yet been investigated thoroughly. In this study, we validated the RBE-weighted dose calculated by the MKM in tandem with the Monte Carlo code PHITS for proton therapy by considering the complete simulation geometry of the clinical proton beam line. The physical dose, lineal energy distribution, and RBE-weighted dose for a 155 MeV mono-energetic and spread-out Bragg peak (SOBP) beam of 60 mm width were evaluated. In estimating the physical dose, the calculated depth dose distribution by irradiating the mono-energetic beam using PHITS was consistent with the data measured by a diode detector. A maximum difference of 3.1% in the depth distribution was observed for the SOBP beam. In the RBE-weighted dose validation, the calculated lineal energy distributions generally agreed well with the published measurement data. The calculated and measured RBE-weighted doses were in excellent agreement, except at the Bragg peak region of the mono-energetic beam, where the calculation overestimated the measured data by ~15%. This research has provided a computational microdosimetric approach based on a combination of PHITS and MKM for typical clinical proton beams. The developed RBE-estimator function has potential application in the treatment planning system for various radiotherapies. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  3. Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy

    PubMed Central

    Sato, Tatsuhiko; Kumada, Hiroaki; Koketsu, Junichi; Takei, Hideyuki; Sakurai, Hideyuki; Sakae, Takeji

    2018-01-01

    Abstract The microdosimetric kinetic model (MKM) is widely used for estimating relative biological effectiveness (RBE)-weighted doses for various radiotherapies because it can determine the surviving fraction of irradiated cells based on only the lineal energy distribution, and it is independent of the radiation type and ion species. However, the applicability of the method to proton therapy has not yet been investigated thoroughly. In this study, we validated the RBE-weighted dose calculated by the MKM in tandem with the Monte Carlo code PHITS for proton therapy by considering the complete simulation geometry of the clinical proton beam line. The physical dose, lineal energy distribution, and RBE-weighted dose for a 155 MeV mono-energetic and spread-out Bragg peak (SOBP) beam of 60 mm width were evaluated. In estimating the physical dose, the calculated depth dose distribution by irradiating the mono-energetic beam using PHITS was consistent with the data measured by a diode detector. A maximum difference of 3.1% in the depth distribution was observed for the SOBP beam. In the RBE-weighted dose validation, the calculated lineal energy distributions generally agreed well with the published measurement data. The calculated and measured RBE-weighted doses were in excellent agreement, except at the Bragg peak region of the mono-energetic beam, where the calculation overestimated the measured data by ~15%. This research has provided a computational microdosimetric approach based on a combination of PHITS and MKM for typical clinical proton beams. The developed RBE-estimator function has potential application in the treatment planning system for various radiotherapies. PMID:29087492

  4. Comparison between beta radiation dose distribution due to LDR and HDR ocular brachytherapy applicators using GATE Monte Carlo platform.

    PubMed

    Mostafa, Laoues; Rachid, Khelifi; Ahmed, Sidi Moussa

    2016-08-01

    Eye applicators with 90Sr/90Y and 106Ru/106Rh beta-ray sources are generally used in brachytherapy for the treatment of eye diseases as uveal melanoma. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The Monte Carlo technique provides a powerful tool for calculation of the dose and dose distributions which helps to predict and determine the doses from different shapes of various types of eye applicators more accurately. The aim of this work consisted in using the Monte Carlo GATE platform to calculate the 3D dose distribution on a mathematical model of the human eye according to international recommendations. Mathematical models were developed for four ophthalmic applicators, two HDR 90Sr applicators SIA.20 and SIA.6, and two LDR 106Ru applicators, a concave CCB model and a flat CCB model. In present work, considering a heterogeneous eye phantom and the chosen tumor, obtained results with the use of GATE for mean doses distributions in a phantom and according to international recommendations show a discrepancy with respect to those specified by the manufacturers. The QC of dosimetric parameters shows that contrarily to the other applicators, the SIA.20 applicator is consistent with recommendations. The GATE platform show that the SIA.20 applicator present better results, namely the dose delivered to critical structures were lower compared to those obtained for the other applicators, and the SIA.6 applicator, simulated with MCNPX generates higher lens doses than those generated by GATE. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Seasonal influenza vaccine dose distribution in 195 countries (2004-2013): Little progress in estimated global vaccination coverage.

    PubMed

    Palache, Abraham; Oriol-Mathieu, Valerie; Fino, Mireli; Xydia-Charmanta, Margarita

    2015-10-13

    Seasonal influenza is an important disease which results in 250,000-500,000 annual deaths worldwide. Global targets for vaccination coverage rates (VCRs) in high-risk groups are at least 75% in adults ≥65 years and increased coverage in other risk groups. The International Federation of Pharmaceutical Manufacturers and Associations Influenza Vaccine Supply (IFPMA IVS) International Task Force developed a survey methodology in 2008, to assess the global distribution of influenza vaccine doses as a proxy for VCRs. This paper updates the previous survey results on absolute numbers of influenza vaccine doses distributed between 2004 and 2013 inclusive, and dose distribution rates per 1000 population, and provides a qualitative assessment of the principal enablers and barriers to seasonal influenza vaccination. The two main findings from the quantitative portion of the survey are the continued negative trend for dose distribution in the EURO region and the perpetuation of appreciable differences in scale of dose distribution between WHO regions, with no observed convergence in the rates of doses distributed per 1000 population over time. The main findings from the qualitative portion of the survey were that actively managing the vaccination program in real-time and ensuring political commitment to vaccination are important enablers of vaccination, whereas insufficient access to vaccination and lack of political commitment to seasonal influenza vaccination programs are likely contributing to vaccination target failures. In all regions of the world, seasonal influenza vaccination is underutilized as a public health tool. The survey provides evidence of lost opportunity to protect populations against potentially serious influenza-associated disease. We call on the national and international public health communities to re-evaluate their political commitment to the prevention of the annual influenza disease burden and to develop a systematic approach to improve vaccine distribution equitably. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Dose-volume histogram prediction using density estimation.

    PubMed

    Skarpman Munter, Johanna; Sjölund, Jens

    2015-09-07

    Knowledge of what dose-volume histograms can be expected for a previously unseen patient could increase consistency and quality in radiotherapy treatment planning. We propose a machine learning method that uses previous treatment plans to predict such dose-volume histograms. The key to the approach is the framing of dose-volume histograms in a probabilistic setting.The training consists of estimating, from the patients in the training set, the joint probability distribution of some predictive features and the dose. The joint distribution immediately provides an estimate of the conditional probability of the dose given the values of the predictive features. The prediction consists of estimating, from the new patient, the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimate of the dose-volume histogram.To illustrate how the proposed method relates to previously proposed methods, we use the signed distance to the target boundary as a single predictive feature. As a proof-of-concept, we predicted dose-volume histograms for the brainstems of 22 acoustic schwannoma patients treated with stereotactic radiosurgery, and for the lungs of 9 lung cancer patients treated with stereotactic body radiation therapy. Comparing with two previous attempts at dose-volume histogram prediction we find that, given the same input data, the predictions are similar.In summary, we propose a method for dose-volume histogram prediction that exploits the intrinsic probabilistic properties of dose-volume histograms. We argue that the proposed method makes up for some deficiencies in previously proposed methods, thereby potentially increasing ease of use, flexibility and ability to perform well with small amounts of training data.

  7. SU-E-T-138: Dosimetric Verification For Volumetric Modulated Arc Therapy Cranio-Spinal Irradiation Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goksel, E; Bilge, H; Yildiz, Yarar

    2014-06-01

    Purpose: Dosimetric feasibility of cranio-spinal irradiation with volumetric modulated arc therapy (VMAT-CSI) technique in terms of dose distribution accuracy was investigated using a humanlike phantom. Methods: The OARs and PTV volumes for the Rando phantom were generated on supine CT images. Eclipse (version 8.6) TPS with AAA algorithm was used to create the treatment plan with VMAT-CSI technique. RapidArc plan consisted of cranial, upper spinal (US) and lower spinal (LS) regions that were optimized in the same plan. US field was overlapped by 3cm with cranial and LS fields. Three partial arcs for cranium and 1 full arc for eachmore » US and LS region were used. The VMAT-CSI dose distribution inside the Rando phantom was measured with thermoluminescent detectors (TLD) and film dosimetry, and was compared to the calculated doses of field junctions, target and OARs. TLDs were placed at 24 positions throughout the phantom. The measured TLD doses were compared to the calculated point doses. Planar doses for field junctions were verified with Gafchromic films. Films were analyzed in PTW Verisoft application software using gamma analysis method with the 4 mm distance to agreement (DTA) and 4% dose agreement criteria. Results: TLD readings demonstrated accurate dose delivery, with a median dose difference of -0.3% (range: -8% and 12%) when compared with calculated doses for the areas inside the treatment portal. The maximum dose difference was 12% higher in testicals that are outside the treatment region and 8% lower in lungs where the heterogeinity was higher. All planar dose verifications for field junctions passed the gamma analysis and measured planar dose distributions demonstrated average 97% agreement with calculated doses. Conclusion: The dosimetric data verified with TLD and film dosimetry shows that VMAT-CSI technique provides accurate dose distribution and can be delivered safely.« less

  8. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOEpatents

    Chandler, William P.; Hartmann-Siantar, Christine L.; Rathkopf, James A.

    1999-01-01

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.

  9. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOEpatents

    Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.

    1999-02-09

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.

  10. Experimental benchmarking of a Monte Carlo dose simulation code for pediatric CT

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Samei, Ehsan; Yoshizumi, Terry; Colsher, James G.; Jones, Robert P.; Frush, Donald P.

    2007-03-01

    In recent years, there has been a desire to reduce CT radiation dose to children because of their susceptibility and prolonged risk for cancer induction. Concerns arise, however, as to the impact of dose reduction on image quality and thus potentially on diagnostic accuracy. To study the dose and image quality relationship, we are developing a simulation code to calculate organ dose in pediatric CT patients. To benchmark this code, a cylindrical phantom was built to represent a pediatric torso, which allows measurements of dose distributions from its center to its periphery. Dose distributions for axial CT scans were measured on a 64-slice multidetector CT (MDCT) scanner (GE Healthcare, Chalfont St. Giles, UK). The same measurements were simulated using a Monte Carlo code (PENELOPE, Universitat de Barcelona) with the applicable CT geometry including bowtie filter. The deviations between simulated and measured dose values were generally within 5%. To our knowledge, this work is one of the first attempts to compare measured radial dose distributions on a cylindrical phantom with Monte Carlo simulated results. It provides a simple and effective method for benchmarking organ dose simulation codes and demonstrates the potential of Monte Carlo simulation for investigating the relationship between dose and image quality for pediatric CT patients.

  11. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry

    PubMed Central

    Casey, Kevin E.; Alvarez, Paola; Kry, Stephen F.; Howell, Rebecca M.; Lawyer, Ann; Followill, David

    2013-01-01

    Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom. Methods: The authors designed and built an 8 × 8 × 10 cm3 prototype phantom that had two slots capable of holding Al2O3:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all 192Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian 192Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits. Results: The linearity correction factor was kL = (−9.43 × 10−5 × dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using 60Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian 192Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC audit program. Trial audits of four Nucletron sources and four Varian sources revealed an average RPC-to-institution dose ratio of 1.000 (standard deviation = 0.011). Conclusions: The authors have created an OSLD-based 192Ir HDR brachytherapy source remote audit tool which offers sufficient dose measurement accuracy to allow the RPC to establish a remote audit program with a ±5% acceptance criterion. The feasibility of the system has been demonstrated with eight trial audits to date. PMID:24320455

  12. Assessment of radiation doses from residential smoke detectors that contain americium-241

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donnell, F.R.; Etnier, E.L.; Holton, G.A.

    1981-10-01

    External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq (3 ..mu..Ci) americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv (0.4 prem) to 20 nSv (2 ..mu..rem) for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 ..mu..Svmore » (0.0006 to 8 mrem) to total body and from 0.06 to 800 ..mu..Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft/sup 2/).« less

  13. NAIRAS aircraft radiation model development, dose climatology, and initial validation.

    PubMed

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-10-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway.

  14. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway.

  15. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    PubMed Central

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-01-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway. PMID:26213513

  16. Experimental investigation of a HOPG crystal fan for x-ray fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Rosentreter, Tanja; Müller, Bernhard; Schlattl, Helmut; Hoeschen, Christoph

    2017-03-01

    Imaging x-ray fluorescence generally generates a conflict between the best image quality or highest sensitivity and lowest possible radiation dose. Consequently many experimental studies investigating the feasibility of this molecular imaging method, deal with either monochromatic x-ray sources that are not practical in clinical environment or accept high x-ray doses in order to maintain the advantage of high sensitivity and producing high quality images. In this work we present a x-ray fluorescence imaging setup using a HOPG crystal fan construction consisting of a Bragg reflecting analyzer array together with a scatter reducing radial collimator. This method allows for the use of polychromatic x-ray tubes that are in general easily accessible in contrast to monochromatic x-ray sources such as synchrotron facilities. Moreover this energy-selecting device minimizes the amount of Compton scattered photons while simultaneously increasing the fluorescence signal yield, thus significantly reducing the signal to noise ratio. The aim is to show the feasibility of this approach by measuring the Bragg reflected Kα fluorescence signal of an object containing an iodine solution using a large area detector with moderate energy resolution. Contemplating the anisotropic energy distribution of background scattered x-rays we compare the detection sensitivity, applying two different detector angular configurations. Our results show that even for large area detectors with limited energy resolution, iodine concentrations of 0.12 % can be detected. However, the potentially large scan times and therefore high radiation dose need to be decreased in further investigations.

  17. Evaluation of volumetric modulated arc therapy for cranial radiosurgery using multiple noncoplanar arcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audet, Chantal; Poffenbarger, Brett A.; Chang, Pauling

    2011-11-15

    Purpose: To evaluate a commercial volumetric modulated arc therapy (VMAT), using multiple noncoplanar arcs, for linac-based cranial radiosurgery, as well as evaluate the combined accuracy of the VMAT dose calculations and delivery. Methods: Twelve patients with cranial lesions of variable size (0.1-29 cc) and two multiple metastases patients were planned (Eclipse RapidArc AAA algorithm, v8.6.15) using VMAT (1-6 noncoplanar arcs), dynamic conformal arc (DCA, {approx}4 arcs), and IMRT (nine static fields). All plans were evaluated according to a conformity index (CI), healthy brain tissue doses and volumes, and the dose to organs at risk. A 2D dose distribution was measuredmore » (Varian Novalis Tx, HD120 MLC, 1000 MU/min, 6 MV beam) for the {approx}4 arc VMAT treatment plans using calibrated film dosimetry. Results: The CI (0-1 best) average for all plans was best for {approx}4 noncoplanar arc VMAT at 0.86 compared with {approx}0.78 for IMRT and a single arc VMAT and 0.68 for DCA. The volumes of healthy brain receiving 50% of the prescribed target coverage dose or more (V{sub 50%}) were lowest for the four arc VMAT [RA(4)] and DCA plans. The average ratio of the V{sub 50%} for the other plans to the RA(4) V{sub 50%} were 1.9 for a single noncoplanar arc VMAT [RA(1nc)], 1.4 for single full coplanar arc VMAT [RA(1f)] and 1.3 for IMRT. The V{sub 50%} improved significantly for single isocenter multiple metastases plan when two noncoplanar VMAT arcs were added to a full single coplanar one. The maximum dose to 5 cc of the outer 1 cm rim of healthy brain which one may want to keep below nonconsequential doses of 300-400 cGy, was 2-3 times greater for IMRT, RA(1nc) and RA(1f) plans compared with the multiple noncoplanar arc DCA and RA(4) techniques. Organs at risk near (0-4 mm) to targets were best spared by (i) single noncoplanar arcs when the targets are lateral to the organ at risk and (ii) by skewed nonvertical planes of IMRT fields when the targets are not lateral to the organ at risk. The highest dose gradient observed between an organ at risk and a target at the edge of a VMAT arc plane or plane of IMRT fields was 17%/mm. The average absolute percent difference between the measured and calculated central axis dose for all the VMAT plans was 3.6 {+-} 2.2%. The measured perpendicular profile widths and shifts were on average within 0.5 mm of planned values. The average total MUs for VMAT plans was double the DCA average and similar to the IMRT average. Conclusions: For the aforementioned planning and delivery system and cranial lesions greater than 7 mm in diameter, multiple noncoplanar arc VMAT consistently provides accurate and high quality cranial radiosurgery dose distributions with low doses to healthy brain tissue and high dose conformity to the target. These qualities may make multiple noncoplanar arc VMAT suitable for a greater range of prescription doses or larger and more irregular lesions. For smaller and/or rounder lesions there are other clinically acceptable treatment techniques that may involve fewer couch angles or arcs and reduce treatment times.« less

  18. Multiple comparisons permutation test for image based data mining in radiotherapy

    PubMed Central

    2013-01-01

    Comparing incidental dose distributions (i.e. images) of patients with different outcomes is a straightforward way to explore dose-response hypotheses in radiotherapy. In this paper, we introduced a permutation test that compares images, such as dose distributions from radiotherapy, while tackling the multiple comparisons problem. A test statistic Tmax was proposed that summarizes the differences between the images into a single value and a permutation procedure was employed to compute the adjusted p-value. We demonstrated the method in two retrospective studies: a prostate study that relates 3D dose distributions to failure, and an esophagus study that relates 2D surface dose distributions of the esophagus to acute esophagus toxicity. As a result, we were able to identify suspicious regions that are significantly associated with failure (prostate study) or toxicity (esophagus study). Permutation testing allows direct comparison of images from different patient categories and is a useful tool for data mining in radiotherapy. PMID:24365155

  19. Process evaluation of a randomised controlled trial of a diabetes prevention intervention in Dutch primary health care: the SLIMMER study.

    PubMed

    van Dongen, Ellen Ji; Duijzer, Geerke; Jansen, Sophia C; Ter Beek, Josien; Huijg, Johanna M; Leerlooijer, Joanne N; Hiddink, Gerrit J; Feskens, Edith Jm; Haveman-Nies, Annemien

    2016-11-01

    To investigate (i) how the SLIMMER intervention was delivered and received in Dutch primary health care and (ii) how this could explain intervention effectiveness. A randomised controlled trial was conducted and subjects were randomly allocated to the intervention (10-month combined dietary and physical activity intervention) or the control group. A process evaluation including quantitative and qualitative methods was conducted. Data on process indicators (recruitment, reach, dose received, acceptability, implementation integrity and applicability) were collected via semi-structured interviews with health-care professionals (n 45) and intervention participant questionnaires (n 155). SLIMMER was implemented in Dutch primary health care in twenty-five general practices, eleven dietitians, nine physiotherapist practices and fifteen sports clubs. Subjects at increased risk of developing type 2 diabetes were included. It was possible to recruit the intended high-risk population (response rate 54 %) and the SLIMMER intervention was very well received by both participants and health-care professionals (mean acceptability rating of 82 and 80, respectively). The intervention programme was to a large extent implemented as planned and was applicable in Dutch primary health care. Higher dose received and participant acceptability were related to improved health outcomes and dietary behaviour, but not to physical activity behaviour. The present study showed that it is feasible to implement a diabetes prevention intervention in Dutch primary health care. Higher dose received and participant acceptability were associated with improved health outcomes and dietary behaviour. Using an extensive process evaluation plan to gain insight into how an intervention is delivered and received is a valuable way of identifying intervention components that contribute to implementation integrity and effective prevention of type 2 diabetes in primary health care.

  20. A mathematical deconvolution formulation for superficial dose distribution measurement by Cerenkov light dosimetry.

    PubMed

    Brost, Eric Edward; Watanabe, Yoichi

    2018-06-01

    Cerenkov photons are created by high-energy radiation beams used for radiation therapy. In this study, we developed a Cerenkov light dosimetry technique to obtain a two-dimensional dose distribution in a superficial region of medium from the images of Cerenkov photons by using a deconvolution method. An integral equation was derived to represent the Cerenkov photon image acquired by a camera for a given incident high-energy photon beam by using convolution kernels. Subsequently, an equation relating the planar dose at a depth to a Cerenkov photon image using the well-known relationship between the incident beam fluence and the dose distribution in a medium was obtained. The final equation contained a convolution kernel called the Cerenkov dose scatter function (CDSF). The CDSF function was obtained by deconvolving the Cerenkov scatter function (CSF) with the dose scatter function (DSF). The GAMOS (Geant4-based Architecture for Medicine-Oriented Simulations) Monte Carlo particle simulation software was used to obtain the CSF and DSF. The dose distribution was calculated from the Cerenkov photon intensity data using an iterative deconvolution method with the CDSF. The theoretical formulation was experimentally evaluated by using an optical phantom irradiated by high-energy photon beams. The intensity of the deconvolved Cerenkov photon image showed linear dependence on the dose rate and the photon beam energy. The relative intensity showed a field size dependence similar to the beam output factor. Deconvolved Cerenkov images showed improvement in dose profiles compared with the raw image data. In particular, the deconvolution significantly improved the agreement in the high dose gradient region, such as in the penumbra. Deconvolution with a single iteration was found to provide the most accurate solution of the dose. Two-dimensional dose distributions of the deconvolved Cerenkov images agreed well with the reference distributions for both square fields and a multileaf collimator (MLC) defined, irregularly shaped field. The proposed technique improved the accuracy of the Cerenkov photon dosimetry in the penumbra region. The results of this study showed initial validation of the deconvolution method for beam profile measurements in a homogeneous media. The new formulation accounted for the physical processes of Cerenkov photon transport in the medium more accurately than previously published methods. © 2018 American Association of Physicists in Medicine.

  1. How to Assess the Biomechanical Risk Levels in Beekeeping.

    PubMed

    Maina, G; Rossi, F; Baracco, A

    2016-01-01

    Beekeepers are at particular risk of developing work-related musculoskeletal disorders, but many of the studies lack detailed exposure assessment. To evaluate the biomechanical overload exposure in a specific farming activity, a multitasking model has been developed through the characterization of 37 basic operational tasks typical of the beekeeping activity. The Occupational Repetitive Actions (OCRA) Checklist and the National Institute for Occupational Safety and Health (NIOSH) Lifting Index methodologies have been applied to these elementary tasks to evaluate the exposure, and the resulting risk indices have been time-weighted averaged. Finally, an easy access, computer-assisted toolkit has been developed to help the beekeepers in the biomechanical risk assessment process. The risk of biomechanical overload for the upper limbs ranges from acceptable (maintenance and recovery of woody material and honey packaging with dosing machine tasks) to high (distribution of the top supers) risk level. The risk for back injury is always borderline in women and increases with exposure time, whereas it ranges from acceptable to borderline in men. The definition of the biomechanical risk levels allows for planning of corrective actions aimed at preventing and reducing the risk of musculoskeletal disorders through engineering, administrative, and behavioral interventions. The methodology can be used for risk assessment in other mainly manual agricultural activities.

  2. Cost comparison of unit dose and traditional drug distribution in a long-term-care facility.

    PubMed

    Lepinski, P W; Thielke, T S; Collins, D M; Hanson, A

    1986-11-01

    Unit dose and traditional drug distribution systems were compared in a 352-bed long-term-care facility by analyzing nursing time, medication-error rate, medication costs, and waste. Time spent by nurses in preparing, administering, charting, and other tasks associated with medications was measured with a stop-watch on four different nursing units during six-week periods before and after the nursing home began using unit dose drug distribution. Medication-error rate before and after implementation of the unit dose system was determined by patient profile audits and medication inventories. Medication costs consisted of patient billing costs (acquisition cost plus fee) and cost of medications destroyed. The unit dose system required a projected 1507.2 hours less nursing time per year. Mean medication-error rates were 8.53% and 0.97% for the traditional and unit dose systems, respectively. Potential annual savings because of decreased medication waste with the unit dose system were $2238.72. The net increase in cost for the unit dose system was estimated at $615.05 per year, or approximately $1.75 per patient. The unit dose system appears safer and more time-efficient than the traditional system, although its costs are higher.

  3. Development of light ion therapy at the Karolinska Hospital and Institute.

    PubMed

    Svensson, Hans; Ringborg, Ulrik; Näslund, Ingemar; Brahme, Anders

    2004-12-01

    Recent developments in radiation therapy have made it possible to optimize the high dose region to cover almost any target volume and shape at the same time as the dose level to adjacent organs at risk is acceptable. Further implementations of IMRT (Intensity Modulated Radiation Therapy), and inverse treatment planning using already available technologies but also foreseeable improved design of therapy accelerators delivering electron- and photon beams, will bring these advances to the benefit of a broad population of cancer patients. Protons will therefore generally not be needed since in most situations the improvement will be insignificant or moderate due to the large lateral penumbra with deep proton therapy. A further step would be to use He-ions, which have only half the penumbra width of protons and still a fairly low-LET in the spread-out Bragg peak. There is however still a group of patients that cannot be helped by these advances as the tumor might be radioresistant for the presently utilized low ionization density beam qualities. The ultimate step in the therapy development process should therefore be to optimize the beam quality for each tumor-normal tissue situation. To facilitate beam quality optimization light ions are needed. It is argued that in many radioresistant tumors a dose-mean LET of 25-50 eV/nm in the target would be optimum as then tumor cells will be lost in the highest proportion through apoptotic cell kill and the superficial tissues will still be irradiated with a fairly low LET. Light ions using Li, Be, B, and C would then be the ideal choice. In this paper a light ion facility is outlined for the Karolinska University Hospital facilitating both dose distribution and beam quality optimization.

  4. Film-based delivery quality assurance for robotic radiosurgery: Commissioning and validation.

    PubMed

    Blanck, Oliver; Masi, Laura; Damme, Marie-Christin; Hildebrandt, Guido; Dunst, Jürgen; Siebert, Frank-Andre; Poppinga, Daniela; Poppe, Björn

    2015-07-01

    Robotic radiosurgery demands comprehensive delivery quality assurance (DQA), but guidelines for commissioning of the DQA method is missing. We investigated the stability and sensitivity of our film-based DQA method with various test scenarios and routine patient plans. We also investigated the applicability of tight distance-to-agreement (DTA) Gamma-Index criteria. We used radiochromic films with multichannel film dosimetry and re-calibration and our analysis was performed in four steps: 1) Film-to-plan registration, 2) Standard Gamma-Index criteria evaluation (local-pixel-dose-difference ≤2%, distance-to-agreement ≤2 mm, pass-rate ≥90%), 3) Dose distribution shift until maximum pass-rate (Maxγ) was found (shift acceptance <1 mm), and 4) Final evaluation with tight DTA criteria (≤1 mm). Test scenarios consisted of purposefully introduced phantom misalignments, dose miscalibrations, and undelivered MU. Initial method evaluation was done on 30 clinical plans. Our method showed similar sensitivity compared to the standard End-2-End-Test and incorporated an estimate of global system offsets in the analysis. The simulated errors (phantom shifts, global robot misalignment, undelivered MU) were detected by our method while standard Gamma-Index criteria often did not reveal these deviations. Dose miscalibration was not detected by film alone, hence simultaneous ion-chamber measurement for film calibration is strongly recommended. 83% of the clinical patient plans were within our tight DTA tolerances. Our presented methods provide additional measurements and quality references for film-based DQA enabling more sensitive error detection. We provided various test scenarios for commissioning of robotic radiosurgery DQA and demonstrated the necessity to use tight DTA criteria. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. WE-DE-BRA-09: Fast Megavoltage CT Imaging with Rapid Scan Time and Low Imaging Dose in Helical Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magome, T; University of Tokyo Hospital, Tokyo; University of Minnesota, Minneapolis, MN

    Purpose: Megavoltage computed tomography (MVCT) imaging has been widely used for daily patient setup with helical tomotherapy (HT). One drawback of MVCT is its very long imaging time, owing to slow couch speed. The purpose of this study was to develop an MVCT imaging method allowing faster couch speeds, and to assess its accuracy for image guidance for HT. Methods: Three cadavers (mimicking closest physiological and physical system of patients) were scanned four times with couch speeds of 1, 2, 3, and 4 mm/s. The resulting MVCT images were reconstructed using an iterative reconstruction (IR) algorithm. The MVCT images weremore » registered with kilovoltage CT images, and the registration errors were compared with the errors with conventional filtered back projection (FBP) algorithm. Moreover, the fast MVCT imaging was tested in three cases of total marrow irradiation as a clinical trial. Results: Three-dimensional registration errors of the MVCT images reconstructed with the IR algorithm were significantly smaller (p < 0.05) than the errors of images reconstructed with the FBP algorithm at fast couch speeds (3, 4 mm/s). The scan time and imaging dose at a speed of 4 mm/s were reduced to 30% of those from a conventional coarse mode scan. For the patient imaging, a limited number of conventional MVCT (1.2 mm/s) and fast MVCT (3 mm/s) reveals acceptable reduced imaging time and dose able to use for anatomical registration. Conclusion: Fast MVCT with IR algorithm maybe clinically feasible alternative for rapid 3D patient localization. This technique may also be useful for calculating daily dose distributions or organ motion analyses in HT treatment over a wide area.« less

  6. The incidence of blood contamination of lead unit dose containers with and without single-use protective inserts used with commercially prepared radiopharmaceutical unit doses.

    PubMed

    Pickett, M W; Kosegi, J E; Thomas, K S; Waterstram-Rich, K M

    1998-09-01

    This investigation evaluated the effectiveness of disposable plastic inserts in radiopharmaceutical unit dose lead containers (pigs) in preventing the distribution of doses in blood-contaminated containers. Technologists commonly dispose of the syringes by placing them into the lead pigs, leaving the needles uncapped. This process raises the question of unsuspected blood contamination of these pigs. Consequently, the distribution of commercially prepared radiopharmaceutical doses in reusable lead pigs may result in radiopharmaceutical doses being distributed in containers that are contaminated with blood. Using a simple chemical wipe test designed to determine the presence or absence of blood contamination, 618 pigs from commercial radiopharmacies throughout the U.S. were tested for contamination. The inside of the pigs and inserts, if present, were wiped before and after dose administration. Of the pigs tested, 292 came from radiopharmacies that used a protective, disposable plastic insert inside the pig, and 326 came from radiopharmacies that did not use an insert. Of those pigs without the protective disposable inserts, 39.3% arrived in the nuclear medicine department in pigs contaminated with blood. Of those pigs with inserts, 1% arrived with blood-contaminated inserts. After dose administration, 46.3% of the pigs without inserts were contaminated with blood and 3% of the protective inserts were contaminated. The proper use of disposable plastic inserts reduces the possibility of distributing radiopharmaceutical unit doses in containers contaminated with blood.

  7. [Analysis of drug-related problems in a tertiary university hospital in Barcelona (Spain)].

    PubMed

    Ferrández, Olivia; Casañ, Borja; Grau, Santiago; Louro, Javier; Salas, Esther; Castells, Xavier; Sala, Maria

    2018-05-07

    To describe drug-related problems identified in hospitalized patients and to assess physicians' acceptance rate of pharmacists' recommendations. Retrospective observational study that included all drug-related problems detected in hospitalized patients during 2014-2015. Statistical analysis included a descriptive analysis of the data and a multivariate logistic regression to evaluate the association between pharmacists' recommendation acceptance rate and the variable of interest. During the study period 4587 drug-related problems were identified in 44,870 hospitalized patients. Main drug-related problems were prescription errors due to incorrect use of the computerized physician order entry (18.1%), inappropriate drug-drug combination (13.3%) and dose adjustment by renal and/or hepatic function (11.5%). Acceptance rate of pharmacist therapy advice in evaluable cases was 81.0%. Medical versus surgical admitting department, specific types of intervention (addition of a new drug, drug discontinuation and correction of a prescription error) and oral communication of the recommendation were associated with a higher acceptance rate. The results of this study allow areas to be identified on which to implement optimization strategies. These include training courses for physicians on the computerized physician order entry, on drugs that need dose adjustment with renal impairment, and on relevant drug interactions. Copyright © 2018 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Do prostate cancer patients want to choose their own radiation treatment?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tol-Geerdink, Julia J. van; Stalmeier, Peep F.M.; Department of Medical Technology Assessment, Radboud University Nijmegen Medical Center, Nijmegen

    2006-11-15

    Purpose: The aims of this study were to investigate whether prostate cancer patients want to be involved in the choice of Radiation dose, and which patients want to be involved. Methods and Materials: This prospective study involved 150 patients with localized prostate cancer treated with three-dimensional conformal radiotherapy. A decision aid was used to explain the effects of two alternative radiation doses (70 and 74 Gy) in terms of cure and side effects. Patients were then asked whether they wanted to choose their treatment (accept choice), or leave the decision to the physician (decline choice). The treatment preference was carriedmore » out. Results: Even in this older population (mean age, 70 years), most patients (79%) accepted the option to choose. A lower score on the designations Pre-existent bowel morbidity, Anxiety, Depression, Hopelessness and a higher score on Autonomy and Numeracy were associated with an increase in choice acceptance, of which only Hopelessness held up in multiple regression (p < 0.03). The uninformed participation preference at baseline was not significantly related to choice acceptance (p = 0.10). Conclusion: Uninformed participation preference does not predict choice behavior. However, once the decision aid is provided, most patients want to choose their treatment. It should, therefore, be considered to inform patients first and ask participation preferences afterwards.« less

  9. A Monte Carlo study of the impact of the choice of rectum volume definition on estimates of equivalent uniform doses and the volume parameter

    NASA Astrophysics Data System (ADS)

    Kvinnsland, Yngve; Muren, Ludvig Paul; Dahl, Olav

    2004-08-01

    Calculations of normal tissue complication probability (NTCP) values for the rectum are difficult because it is a hollow, non-rigid, organ. Finding the true cumulative dose distribution for a number of treatment fractions requires a CT scan before each treatment fraction. This is labour intensive, and several surrogate distributions have therefore been suggested, such as dose wall histograms, dose surface histograms and histograms for the solid rectum, with and without margins. In this study, a Monte Carlo method is used to investigate the relationships between the cumulative dose distributions based on all treatment fractions and the above-mentioned histograms that are based on one CT scan only, in terms of equivalent uniform dose. Furthermore, the effect of a specific choice of histogram on estimates of the volume parameter of the probit NTCP model was investigated. It was found that the solid rectum and the rectum wall histograms (without margins) gave equivalent uniform doses with an expected value close to the values calculated from the cumulative dose distributions in the rectum wall. With the number of patients available in this study the standard deviations of the estimates of the volume parameter were large, and it was not possible to decide which volume gave the best estimates of the volume parameter, but there were distinct differences in the mean values of the values obtained.

  10. A missing dimension in measures of vaccination impacts

    USGS Publications Warehouse

    Gomes, M. Gabriela M.; Lipsitch, Marc; Wargo, Andrew R.; Kurath, Gael; Rebelo, Carlota; Medley, Graham F.; Coutinho, Antonio

    2013-01-01

    Immunological protection, acquired from either natural infection or vaccination, varies among hosts, reflecting underlying biological variation and affecting population-level protection. Owing to the nature of resistance mechanisms, distributions of susceptibility and protection entangle with pathogen dose in a way that can be decoupled by adequately representing the dose dimension. Any infectious processes must depend in some fashion on dose, and empirical evidence exists for an effect of exposure dose on the probability of transmission to mumps-vaccinated hosts [1], the case-fatality ratio of measles [2], and the probability of infection and, given infection, of symptoms in cholera [3]. Extreme distributions of vaccine protection have been termed leaky (partially protects all hosts) and all-or-nothing (totally protects a proportion of hosts) [4]. These distributions can be distinguished in vaccine field trials from the time dependence of infections [5]. Frailty mixing models have also been proposed to estimate the distribution of protection from time to event data [6], [7], although the results are not comparable across regions unless there is explicit control for baseline transmission [8]. Distributions of host susceptibility and acquired protection can be estimated from dose-response data generated under controlled experimental conditions [9]–[11] and natural settings [12], [13]. These distributions can guide research on mechanisms of protection, as well as enable model validity across the entire range of transmission intensities. We argue for a shift to a dose-dimension paradigm in infectious disease science and community health.

  11. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture.

    PubMed

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2016-01-01

    The air dose rate in an environment contaminated with (134)Cs and (137)Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modeling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate. These two strategies are more effective than reverse tillage to invert and mix the topsoil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Role of particle radiotherapy in the management of head and neck cancer.

    PubMed

    Laramore, George E

    2009-05-01

    Modern imaging techniques and powerful computers allow a radiation oncologist to design treatments delivering higher doses of radiation than previously possible. Dose distributions imposed by the physics of 'standard' photon and electron beams limit further dose escalation. Hadron radiotherapy offers advantages in either dose distribution and/or improved radiobiology that may significantly improve the treatment of certain head and neck malignancies. Clinical studies support the effectiveness of fast-neutron radiotherapy in the treatment of major and minor salivary gland tumors. Data show highly favorable outcomes with proton radiotherapy for skull-base malignancies and tumors near highly critical normal tissues compared with that expected with standard radiotherapy. Heavy-ion radiotherapy clinical studies are mainly being conducted with fully stripped carbon ions, and limited data seem to indicate a possible improvement over proton radiotherapy for the same subset of radioresistant tumors where neutrons show a benefit over photons. Fast-neutron radiotherapy has different radiobiological properties compared with standard radiotherapy but similar depth dose distributions. Its role in the treatment of head and neck cancer is currently limited to salivary gland malignancies and certain radioresistant tumors such as sarcomas. Protons have the same radiobiological properties as standard radiotherapy beams but more optimal depth dose distributions, making it particularly advantageous when treating tumors adjacent to highly critical structures. Heavy ions combine the radiobiological properties of fast neutrons with the physical dose distributions of protons, and preliminary data indicate their utility for radioresistant tumors adjacent to highly critical structures.

  13. Glucan: Mechanisms Involved in Its Radioprotective Effect

    DTIC Science & Technology

    1987-01-01

    Bethesda, Maryland It has generally been accepted that most biologically derived agents that are radlopro- tective in the hemopoietic-syndrome dose range... agents results from enhanced hemopoietic recov- whose onset, nature, and severity are a functior, of both ery and, subsequently, from enhanced...gastroin- radiation in the hemopoietic-syndrome dose range testinai syndrome, and the cer:tral nervous system syn- [37,39,401. As with other agents

  14. Proton Therapy Dose Characterization and Verification

    DTIC Science & Technology

    2016-10-01

    than recommended as these patients are on a separate UPENN research study where dose maximum accepted was 6700 cGy. 15... Research Protection Office. 8.0 Data Handling and Record Keeping All patients must have a signed Informed Consent Form and an On - study (confirmation...this award. Phase 1 concentrated on designing and building a Multi-leaf collimator for use in proton therapy. Phase 2 focused on studying the

  15. A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model.

    PubMed

    Hiatt, Jessica R; Davis, Stephen D; Rivard, Mark J

    2015-06-01

    The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Monte Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10(10) histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an (125)I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose function ratio between the current and the 2006 model had a minimum of 0.980 at 0.4 cm, close to the source sheath and for large distances approached 1.014. 2D anisotropy function ratios were close to unity for 50° ≤ θ ≤ 110°, but exceeded 5% for θ < 40° at close distances to the sheath and exceeded 15% for θ > 140°, even at large distances. Photon energy fluence of the updated model as compared to the 2006 model showed a decrease in output with increasing distance; this effect was pronounced at the lowest energies. A decrease in photon fluence with increase in polar angle was also observed and was attributed to the silver epoxy component. Changes in source design influenced the overall dose rate and distribution by more than 2% in several regions. This discrepancy is greater than the dose calculation acceptance criteria as recommended in the AAPM TG-56 report. The effect of the design change on the TG-43 parameters would likely not result in dose differences outside of patient applicators. Adoption of this new dataset is suggested for accurate depiction of model S700 source dose distributions.

  16. A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiatt, Jessica R.; Davis, Stephen D.; Rivard, Mark J., E-mail: mark.j.rivard@gmail.com

    2015-06-15

    Purpose: The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Methods: Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Montemore » Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. Results: The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an {sup 125}I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose function ratio between the current and the 2006 model had a minimum of 0.980 at 0.4 cm, close to the source sheath and for large distances approached 1.014. 2D anisotropy function ratios were close to unity for 50° ≤ θ ≤ 110°, but exceeded 5% for θ < 40° at close distances to the sheath and exceeded 15% for θ > 140°, even at large distances. Photon energy fluence of the updated model as compared to the 2006 model showed a decrease in output with increasing distance; this effect was pronounced at the lowest energies. A decrease in photon fluence with increase in polar angle was also observed and was attributed to the silver epoxy component. Conclusions: Changes in source design influenced the overall dose rate and distribution by more than 2% in several regions. This discrepancy is greater than the dose calculation acceptance criteria as recommended in the AAPM TG-56 report. The effect of the design change on the TG-43 parameters would likely not result in dose differences outside of patient applicators. Adoption of this new dataset is suggested for accurate depiction of model S700 source dose distributions.« less

  17. [Evaluation of the acceptability of a formula for children with diarrhea in a marginal community].

    PubMed

    Hernández Ramírez, B D; Guerra, M J

    1995-01-01

    Evaluated the acceptability of a nutrition formula consisting of pumpkin-rice chicken and oils; in a marginal community to children between the ages of 7 months to 5 years old when acute diarrhea was present. The acceptability was also evaluated in the mothers, who indicated that they liked food very little. Nevertheless, they admitted that they would give the product to their children. During the period of study 26 cases of diarrhea were reported of the 26 children, 6 children consumed all the food offered, 16 children showed variable acceptance and only 4 children reject the food completely. By age-groups, the acceptability was 75.69% for children between the ages of 7 months to one year. 72.90% acceptability for ages between 13 months to 2 years and 78.28% for ages between 25 months to 5 years old. The total acceptability was 75.66%. All cases presented marked decreased in diarrhea and an increased in the consistency of the feces with the third dose.

  18. Feasibility of TCP-based dose painting by numbers applied to a prostate case with (18)F-choline PET imaging.

    PubMed

    Dirscherl, Thomas; Rickhey, Mark; Bogner, Ludwig

    2012-02-01

    A biologically adaptive radiation treatment method to maximize the TCP is shown. Functional imaging is used to acquire a heterogeneous dose prescription in terms of Dose Painting by Numbers and to create a patient-specific IMRT plan. Adapted from a method for selective dose escalation under the guidance of spatial biology distribution, a model, which translates heterogeneously distributed radiobiological parameters into voxelwise dose prescriptions, was developed. At the example of a prostate case with (18)F-choline PET imaging, different sets of reported values for the parameters were examined concerning their resulting range of dose values. Furthermore, the influence of each parameter of the linear-quadratic model was investigated. A correlation between PET signal and proliferation as well as cell density was assumed. Using our in-house treatment planning software Direct Monte Carlo Optimization (DMCO), a treatment plan based on the obtained dose prescription was generated. Gafchromic EBT films were irradiated for evaluation. When a TCP of 95% was aimed at, the maximal dose in a voxel of the prescription exceeded 100Gy for most considered parameter sets. One of the parameter sets resulted in a dose range of 87.1Gy to 99.3Gy, yielding a TCP of 94.7%, and was investigated more closely. The TCP of the plan decreased to 73.5% after optimization based on that prescription. The dose difference histogram of optimized and prescribed dose revealed a mean of -1.64Gy and a standard deviation of 4.02Gy. Film verification showed a reasonable agreement of planned and delivered dose. If the distribution of radiobiological parameters within a tumor is known, this model can be used to create a dose-painting by numbers plan which maximizes the TCP. It could be shown, that such a heterogeneous dose distribution is technically feasible. Copyright © 2012. Published by Elsevier GmbH.

  19. Design of a modulated orthovoltage stereotactic radiosurgery system.

    PubMed

    Fagerstrom, Jessica M; Bender, Edward T; Lawless, Michael J; Culberson, Wesley S

    2017-07-01

    To achieve stereotactic radiosurgery (SRS) dose distributions with sharp gradients using orthovoltage energy fluence modulation with inverse planning optimization techniques. A pencil beam model was used to calculate dose distributions from an orthovoltage unit at 250 kVp. Kernels for the model were derived using Monte Carlo methods. A Genetic Algorithm search heuristic was used to optimize the spatial distribution of added tungsten filtration to achieve dose distributions with sharp dose gradients. Optimizations were performed for depths of 2.5, 5.0, and 7.5 cm, with cone sizes of 5, 6, 8, and 10 mm. In addition to the beam profiles, 4π isocentric irradiation geometries were modeled to examine dose at 0.07 mm depth, a representative skin depth, for the low energy beams. Profiles from 4π irradiations of a constant target volume, assuming maximally conformal coverage, were compared. Finally, dose deposition in bone compared to tissue in this energy range was examined. Based on the results of the optimization, circularly symmetric tungsten filters were designed to modulate the orthovoltage beam across the apertures of SRS cone collimators. For each depth and cone size combination examined, the beam flatness and 80-20% and 90-10% penumbrae were calculated for both standard, open cone-collimated beams as well as for optimized, filtered beams. For all configurations tested, the modulated beam profiles had decreased penumbra widths and flatness statistics at depth. Profiles for the optimized, filtered orthovoltage beams also offered decreases in these metrics compared to measured linear accelerator cone-based SRS profiles. The dose at 0.07 mm depth in the 4π isocentric irradiation geometries was higher for the modulated beams compared to unmodulated beams; however, the modulated dose at 0.07 mm depth remained <0.025% of the central, maximum dose. The 4π profiles irradiating a constant target volume showed improved statistics for the modulated, filtered distribution compared to the standard, open cone-collimated distribution. Simulations of tissue and bone confirmed previously published results that a higher energy beam (≥ 200 keV) would be preferable, but the 250 kVp beam was chosen for this work because it is available for future measurements. A methodology has been described that may be used to optimize the spatial distribution of added filtration material in an orthovoltage SRS beam to result in dose distributions with decreased flatness and penumbra statistics compared to standard open cones. This work provides the mathematical foundation for a novel, orthovoltage energy fluence-modulated SRS system. © 2017 American Association of Physicists in Medicine.

  20. Frameless fractionated stereotactic radiation therapy of intracranial lesions: impact of cone beam CT based setup correction on dose distribution

    PubMed Central

    2013-01-01

    Background The purpose of this study was to evaluate the impact of Cone Beam CT (CBCT) based setup correction on total dose distributions in fractionated frameless stereotactic radiation therapy of intracranial lesions. Methods Ten patients with intracranial lesions treated with 30 Gy in 6 fractions were included in this study. Treatment planning was performed with Oncentra® for a SynergyS® (Elekta Ltd, Crawley, UK) linear accelerator with XVI® Cone Beam CT, and HexaPOD™ couch top. Patients were immobilized by thermoplastic masks (BrainLab, Reuther). After initial patient setup with respect to lasers, a CBCT study was acquired and registered to the planning CT (PL-CT) study. Patient positioning was corrected according to the correction values (translational, rotational) calculated by the XVI® system. Afterwards a second CBCT study was acquired and registered to the PL-CT to confirm the accuracy of the corrections. An in-house developed software was used for rigid transformation of the PL-CT to the CBCT geometry, and dose calculations for each fraction were performed on the transformed CT. The total dose distribution was achieved by back-transformation and summation of the dose distributions of each fraction. Dose distributions based on PL-CT, CBCT (laser set-up), and final CBCT were compared to assess the influence of setup inaccuracies. Results The mean displacement vector, calculated over all treatments, was reduced from (4.3 ± 1.3) mm for laser based setup to (0.5 ± 0.2) mm if CBCT corrections were applied. The mean rotational errors around the medial-lateral, superior-inferior, anterior-posterior axis were reduced from (−0.1 ± 1.4)°, (0.1 ± 1.2)° and (−0.2 ± 1.0)°, to (0.04 ± 0.4)°, (0.01 ± 0.4)° and (0.02 ± 0.3)°. As a consequence the mean deviation between planned and delivered dose in the planning target volume (PTV) could be reduced from 12.3% to 0.4% for D95 and from 5.9% to 0.1% for Dav. Maximum deviation was reduced from 31.8% to 0.8% for D95, and from 20.4% to 0.1% for Dav. Conclusion Real dose distributions differ substantially from planned dose distributions, if setup is performed according to lasers only. Thermoplasic masks combined with a daily CBCT enabled a sufficient accuracy in dose distribution. PMID:23800172

Top