Science.gov

Sample records for acceptable glass composition

  1. Waste vitrification: prediction of acceptable compositions in a lime-soda-silica glass-forming system

    SciTech Connect

    Gilliam, T.M.; Jantzen, C.M.

    1996-10-01

    A model is presented based upon calculated bridging oxygens which allows the prediction of the region of acceptable glass compositions for a lime-soda-silica glass-forming system containing mixed waste. The model can be used to guide glass formulation studies (e.g., treatability studies) or assess the applicability of vitrification to candidate waste streams.

  2. Developing photorefractive glass composites

    NASA Astrophysics Data System (ADS)

    Duignan, Jason P.; Taylor, Lesley L.; Cook, Gary

    2002-01-01

    The production of a transparent photorefractive glass composite would offer a useful alternative to bulk crystal materials. We aim to produce such a material by incorporating single domain photorefractive Fe:LiNbO3 particles into a refractive index matched glass host. This glass host is also required to be chemically compatible with the photorefractive material. This compatibility will ensure that the Fe:LiNbO3 particles added to the host glass will remain in the intended crystalline phase and not simply dissolve in the glass. Due to the high refractive index of the Fe:LiNbO3 (no equals 2.35 532 nm), producing a chemically compatible and refractive index matched glass host is technically challenging. By examining common Tellurite, Bismuthate, and Gallate glasses as a starting point and then developing new and hybrid glasses, we have succeeded in producing a chemically compatible glass host and also a refractive index matched glass host. We have produced preliminary glass composite samples which contain a large amount of Fe:LiNbO3. We are currently able to retain nearly 90% of the incorporated Fe:LiNbO3 in the correct crystalline phase, a substantial improvement over previous work conducted in this area in recent years. In this paper we present our progress and findings in this area.

  3. Glass electrolyte composition

    DOEpatents

    Kucera, Gene H.; Roche, Michael F.

    1985-01-01

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na.sub.2 O, ZrO.sub.2, Al.sub.2 O.sub.3 and SiO.sub.2 in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2.times.10.sup.-3 (ohm-cm).sup.-1 at 300.degree. C. and a glass transition temperature in excess of 500.degree. C.

  4. Glass electrolyte composition

    DOEpatents

    Kucera, G.H.; Roche, M.F.

    1985-01-08

    An ionically conductive glass is disclosed for use as electrolyte in a high temperature electrochemical cell, particularly a cell with sodium anode and sulfur cathode. The glass includes the constituents Na/sub 2/O, ZrO/sub 2/, Al/sub 2/O/sub 3/ and SiO/sub 2/ in selected proportions to be a single phase solid solution substantially free of crystalline regions and undissolved constituents. Other advantageous properties are an ionic conductivity in excess of 2 x 10/sup -3/ (ohm-cm)/sup -1/ at 300/sup 0/C and a glass transition temperature in excess of 500/sup 0/C.

  5. Metallic glass composition

    DOEpatents

    Kroeger, Donald M.; Koch, Carl C.

    1986-01-01

    A metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon carbon and phosphorous to which is added an amount of a ductility enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  6. Compositional threshold for Nuclear Waste Glass Durability

    SciTech Connect

    Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.

    2013-04-24

    Within the composition space of glasses, a distinct threshold appears to exist that separates "good" glasses, i.e., those which are sufficiently durable, from "bad" glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region.

  7. Carbon Fiber Reinforced Glass Matrix Composites for Space Based Applications.

    DTIC Science & Technology

    1987-08-31

    Nardone , "Carbon Fiber Reinforced Glass Matrix Composites for Space Based Applications", Office of Naval Research Contract N00014-85-C-0332, Report R86... Nardone and K M. Prewo, "Tensile Performance of Carbon Fiber Reinforced Glass", J. Mater. Sci. accepted for publication, 1987. 27. R. F. Cooper and K

  8. DWPF waste glass Product Composition Control System

    SciTech Connect

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system.

  9. DWPF waste glass Product Composition Control System

    SciTech Connect

    Brown, K.G.; Postles, R.L.

    1992-07-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system.

  10. Boron Nitride Nanotubes-Reinforced Glass Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam; Hurst, Janet B.; Choi, Sung R.

    2005-01-01

    Boron nitride nanotubes of significant lengths were synthesized by reaction of boron with nitrogen. Barium calcium aluminosilicate glass composites reinforced with 4 weight percent of BN nanotubes were fabricated by hot pressing. Ambient-temperature flexure strength and fracture toughness of the glass-BN nanotube composites were determined. The strength and fracture toughness of the composite were higher by as much as 90 and 35 percent, respectively, than those of the unreinforced glass. Microscopic examination of the composite fracture surfaces showed pullout of the BN nanotubes. The preliminary results on the processing and improvement in mechanical properties of BN nanotube reinforced glass matrix composites are being reported here for the first time.

  11. Identifying glass compositions in fly ash

    NASA Astrophysics Data System (ADS)

    Aughenbaugh, Katherine; Stutzman, Paul; Juenger, Maria

    2016-01-01

    In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS), calcium aluminosilicate glasses (CAS), a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  12. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.

    1977-01-01

    The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.

  13. Glasses, ceramics, and composites from lunar materials

    NASA Technical Reports Server (NTRS)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  14. Major element composition of Luna 20 glasses.

    NASA Technical Reports Server (NTRS)

    Warner, J.; Reid, A. M.; Ridley, W. I.; Brown, R. W.

    1972-01-01

    Ten per cent of the 50 to 150-micron size fraction of Luna 20 soil is glass. A random suite of 270 of these glasses has been analyzed by electron microprobe techniques. The major glass type forms a strong cluster around a mean value corresponding to Highland basalt (anorthositic gabbro) with 70% normative feldspar. Minor glass groups have the compositions of mare basalts and of low-K Fra Mauro type basalts. The glass data indicate that Highland basalt is the major rock type in the highlands north of Mare Fecunditatis.

  15. Formulation of a candidate glass for use as an acceptance test standard material

    SciTech Connect

    Ebert, W.L.; Strachan, D.M.; Wolf, S.F.

    1998-04-01

    In this report, the authors discuss the formulation of a glass that will be used in a laboratory testing program designed to measure the precision of test methods identified in the privatization contracts for the immobilization of Hanford low-activity wastes. Tests will be conducted with that glass to measure the reproducibility of tests and analyses that must be performed by glass producers as a part of the product acceptance procedure. Test results will be used to determine if the contractually required tests and analyses are adequate for evaluating the acceptability of likely immobilized low-activity waste (ILAW) products. They will also be used to evaluate if the glass designed for use in these tests can be used as an analytical standard test material for verifying results reported by vendors for tests withg ILAW products. The results of those tests and analyses will be presented in a separate report. The purpose of this report is to document the strategy used to formulate the glass to be used in the testing program. The low-activity waste reference glass LRM that will be used in the testing program was formulated to be compositionally similar to ILAW products to be made with wastes from Hanford. Since the ILAW product compositions have not been disclosed by the vendors participating in the Hanford privatization project, the composition of LRM was formulated based on simulated Hanford waste stream and amounts of added glass forming chemicals typical for vitrified waste forms. The major components are 54 mass % SiO{sub 2}, 20 mass % Na{sub 2}O, 10 mass % Al{sub 2}O{sub 3}, 8 mass % B{sub 2}O{sub 3}, and 1.5 mass % K{sub 2}O. Small amounts of other chemicals not present in Hanford wastes were also included in the glass, since they may be included as chemical additives in ILAW products. This was done so that the use of LRM as a composition standard could be evaluated. Radionuclides were not included in LRM because a nonradioactive material was desired.

  16. Glass matrix composites from coal flyash and waste glass

    SciTech Connect

    Boccaccini, A.R.; Buecker, M.; Bossert, J.; Marszalek, K.

    1997-12-31

    Glass matrix composites have been fabricated from waste materials by means of powder technology. Flyash from coal power stations and waste glass, residue of float glass production, were used. Commercial alumina platelets were employed as the reinforcing component. For flyash contents up to 20% by weight nearly fully dense compacts could be fabricated by using relatively low sintering temperatures (650 C). For higher flyash contents the densification was hindered due to the presence of crystalline particles in the as-received flyash, which jeopardized the viscous flow densification mechanism. The addition of alumina platelets resulted in better mechanical properties of the composites than those of the unreinforced matrix, despite a residual porosity present. Young`s modulus, modulus of rupture, hardness and fracture toughness increase with platelet volume fraction. The low brittleness index of the composites suggests that the materials have good machinability. A qualitative analysis of the wear behavior showed that the composite containing 20% by volume platelet addition has a higher wear resistance than the unreinforced matrix. Overall, the results indicate that the materials may compete with conventional glasses and glass-ceramics in technical applications.

  17. Glass matrix composites. I - Graphite fiber reinforced glass

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Bacon, J. F.

    1978-01-01

    An experimental program is described in which graphite fibers of Hercules HMS and HTS, Thornel 300, and Celanese DG-12 were used to reinforce, both uniaxially and biaxially, borosilicate pyrex glass. Composite flexural strength distribution, strength as a function of test temperature, fracture toughness and oxidative stability were determined and shown to be primarily a function of fiber type and the quality of fiber-matrix bond formed during composite fabrication. It is demonstrated that the graphite fiber reinforced glass system offers unique possibilities as a high performance structural material.

  18. Celsian Glass-Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Dicarlo, James A.

    1996-01-01

    Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.

  19. Cooling rates for glass containing lunar compositions

    NASA Technical Reports Server (NTRS)

    Fang, C. Y.; Yinnon, H.; Uhlmann, D. R.

    1983-01-01

    Cooling rates required to form glassy or partly-crystalline bodies of 14 lunar compositions have been estimated using a previously introduced, simplified model. The calculated cooling rates are found to be in good agreement with cooling rates measured for the same compositions. Measurements are also reported of the liquidus temperature and glass transition temperature for each composition. Inferred cooling rates are combined with heat flow analyses to obtain insight into the thermal histories of samples 15422, 14162, 15025, 74220, 74241, 10084, 15425, and 15427. The critical cooling rates required to form glasses of 24 lunar compositions, including the 14 compositions of the present study, are suggested to increase systematically with increasing ratio of total network modifiers/total network formers in the compositions. This reflects the importance of melt viscosity in affecting glass formation.

  20. Mechanical properties of bioactive glasses, glass-ceramics and composites.

    PubMed

    Thompson, I D; Hench, L L

    1998-01-01

    The application of bioactive glass and glass-ceramics has been widely documented over the past twenty years but the high modulus and low fracture toughness has made them less applicable for clinical, load bearing, applications. The development of non-resorbable polyethylene and polysulphone matrices for these materials has improved the mechanical properties. However, the primary concern of whether the bioactivity of the composites is reduced is still unresolved. The more recent development of resorbable carrier systems, dextran and collagen, for bioactive glasses does not introduce such problems, hence making this form of composite suitable for novel soft tissue applications. The development of a simple quality index has enabled some of the materials described within this paper to be ranked by their ability to replace bone, thus enabling possible new research directions to be emphasized.

  1. Chemical constraints on fly ash glass compositions

    SciTech Connect

    John H. Brindle; Michael J. McCarthy

    2006-12-15

    The major oxide content and mineralogy of 75 European fly ashes were examined, and the major element composition of the glass phase was obtained for each. Correlation of compositional trends with the glass content of the ash was explored. Alkali content was deduced to have a major influence on glass formation, and this in turn could be related to the probable chemistry of clay minerals in the source coals. Maximal glass content corresponded to high aluminum content in the glass, and this is in accordance with the theoretical mechanism of formation of aluminosilicate glasses, in which network-modifying oxides are required to promote tetrahedral coordination of aluminum in glass chain structures. Iron oxide was found to substitute for alkali oxides where the latter were deficient, and some indications of preferred eutectic compositions were found. The work suggests that the proportion of the glass phase in the ash can be predicted from the coal mineralogy and that the utility of a given ash for processing into geopolymers or zeolites is determined by its source. 23 refs., 7 figs., 1 tab.

  2. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.; Thompson, E. R.

    1978-01-01

    A composite that can be used at temperatures up to 875 K with mechanical properties equal or superior to graphite fiber reinforced epoxy composites is presented. The composite system consist of graphite fiber, uniaxially or biaxially, reinforced borosilicate glass. The mechanical and thermal properties of such a graphite fiber reinforced glass composite are described, and the system is shown to offer promise as a high performance structural material. Specific properties that were measured were: a modified borosilicate glass uniaxially reinforced by Hercules HMS graphite fiber has a three-point flexural strength of 1030 MPa, a four-point flexural strength of 964 MPa, an elastic modulus of 199 GPa and a failure strain of 0.0052. The preparation and properties of similar composites with Hercules HTS, Celanese DG-102, Thornel 300 and Thornel Pitch graphite fibers are also described.

  3. Dimensionally Stable Graphite-Fiber/Glass Composites

    NASA Technical Reports Server (NTRS)

    Harris, Robert; Bergen, George J.; Studer, Philip A.

    1992-01-01

    Method of making composites of glass matrices reinforced by graphite fibers provides for control of proportions, orientations, and distributions of fibers in matrices and for fused bonds between fibers and matrices. Enables fabrication of composites of high specific strength and dimensional stability. Method particularly suitable for making low-thermal-expansion platforms for optical instruments.

  4. Preparation of fullerene/glass composites

    DOEpatents

    Mattes, B.R.; McBranch, D.W.; Robinson, J.M.; Koskelo, A.C.; Love, S.P.

    1995-05-30

    Synthesis of fullerene/glass composites is described. A direct method for preparing solid solutions of C{sub 60} in silicon dioxide (SiO{sub 2}) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these ``guests`` in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C{sub 60}. Depending upon the preparative procedure, C{sub 60} dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C{sub 60} in a solid glass matrix, is generated by the present method.

  5. Preparation of fullerene/glass composites

    DOEpatents

    Mattes, Benjamin R.; McBranch, Duncan W.; Robinson, Jeanne M.; Koskelo, Aaron C.; Love, Steven P.

    1995-01-01

    Synthesis of fullerene/glass composites. A direct method for preparing solid solutions of C.sub.60 in silicon dioxide (SiO.sub.2) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these "guests" in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C.sub.60. Depending upon the preparative procedure, C.sub.60 dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C.sub.60 in a solid glass matrix, is generated by the present method.

  6. Stability of Glass Fiber-Plastic Composites

    DTIC Science & Technology

    1974-11-01

    differs between the two main sources ( Owens - Corning and Ferro Corporation) from which samples were obtained for this research program. However...according to published work by Humphrey (8) of Owens - Corning , the approximate composition of S-glass (994) is 65% S1Ü2, 25% A1203 and 10% MgO. From the...fibers. S-glass fibers furnished by both Owens - Corning and Ferro Cor- poration were utilized and the results analyzed using scanning electron 34

  7. Glass/polymer composites and methods of making

    DOEpatents

    Samuels, W.D.; Exarhos, G.J.

    1995-06-06

    The present invention relates to new glass/polymer composites and methods for making them. More specifically, the invention is glass/polymer composites having phases that are at the molecular level and thereby practicably indistinguishable. The invention further discloses making molecular phase glass/polymer composites by mixing a glass and a polymer in a compatible solvent.

  8. Glass/polymer composites and methods of making

    DOEpatents

    Samuels, W. D.; Exarhos, Gregory J.

    1995-01-01

    The present invention relates to new glass/polymer composites and methods for making them. More specifically, the invention is glass/polymer composites having phases that are at the molecular level and thereby practicably indistinguishable. The invention further discloses making molecular phase glass/polymer composites by mixing a glass and a polymer in a compatible solvent.

  9. GLASS COMPOSITION AND PROCESS OF MAKING

    DOEpatents

    Bishay, A.M.

    1962-09-01

    Glass compositions are described which are suitable for scintillators of thermal-neutron counters. The glass consists of from 70 to 75 mole% of B/sub 2/O/ sub 3/, from 7 to 9 mole% of Ce/sub 2/O/sub 3/, and from 23 to 16 mole% of Al/sub 2/O/sub 3/ plus Na/sub 2 /O in a mole ratio of 1 to 1.5. The process of making the glass from cerous oxalate, ammonium pentaborate, sodium carbonate, and hydrated alumina in a nonoxidizing atmosphere at 1400-1500 deg C is given. (AEC)

  10. The Feasibility and Acceptability of Google Glass for Teletoxicology Consults.

    PubMed

    Chai, Peter R; Babu, Kavita M; Boyer, Edward W

    2015-09-01

    Teletoxicology offers the potential for toxicologists to assist in providing medical care at remote locations, via remote, interactive augmented audiovisual technology. This study examined the feasibility of using Google Glass, a head-mounted device that incorporates a webcam, viewing prism, and wireless connectivity, to assess the poisoned patient by a medical toxicology consult staff. Emergency medicine residents (resident toxicology consultants) rotating on the toxicology service wore Glass during bedside evaluation of poisoned patients; Glass transmitted real-time video of patients' physical examination findings to toxicology fellows and attendings (supervisory consultants), who reviewed these findings. We evaluated the usability (e.g., quality of connectivity and video feeds) of Glass by supervisory consultants, as well as attitudes towards use of Glass. Resident toxicology consultants and supervisory consultants completed 18 consults through Glass. Toxicologists viewing the video stream found the quality of audio and visual transmission usable in 89 % of cases. Toxicologists reported their management of the patient changed after viewing the patient through Glass in 56 % of cases. Based on findings obtained through Glass, toxicologists recommended specific antidotes in six cases. Head-mounted devices like Google Glass may be effective tools for real-time teletoxicology consultation.

  11. Research on Graphite Reinforced Glass Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.

    1977-01-01

    This report contains the results obtained in the first twelve months of research under NASA Langley Contract NAS1-14346 for the origination of graphite-fiber reinforced glass matrix composites. Included in the report is a summary of the research by other investigators in this area. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a C.G.W. 7740 (Pyrex) glass matrix. The graphite fibers used included Hercules HMS, Hercules HTS, Thornel 300S, and Celanese DG-102 and, of these, the Hercules HMS and Celanese DG-102 graphite fibers in C.G.W. 7740 gave the most interesting but widely different results. Hercules HMS fiber in C.G.W. 7740 glass (Pyrex) showed an average four-point flexural strength of 848 MPa or 127,300 psi. As the test temperature was raised from room temperature to 560 C in argon or vacuum, the strength was higher by 50 percent. However, in air, similar tests at 560 C gave a severe loss in strength. These composites also have good thermal cycle properties in argon or vacuum, greatly increased toughness compared to glass, and no loss in strength in a 100 cycle fatigue test. Celanese DG-102 fiber in C.G.W. 7740 glass (Pyrex) had a much lower flexural strength but did not suffer any loss in this strength when samples were heated to 560 C in air for 4 hrs.

  12. Composition and property measurements for PHA Phase 4 glasses

    SciTech Connect

    Edwards, T.B.

    2000-01-25

    The results presented in this report are for nine Precipitate Hydrolysis Aqueous (PHA) Phase 4 glasses. Three of the glasses contained HM sludge at 22, 26, and 30 wt% respectively, 10 wt% PHA and 1.25 wt% monosodium titanate (MST), all on an oxide basis. The remaining six glasses were selected from the Phase 1 and Phase 2 studies (Purex sludge) but with an increased amount of MST. The high-end target for MST of 2.5 wt% oxide was missed in Phases 1 and 2 due to {approximately}30 wt% water content of the MST. A goal of this Phase 4 study was to determine whether this increase in titanium concentration from the MST had any impact on glass quality or processibility. Two of the glasses, pha14c and pha15c, were rebatched and melted due to apparent batching errors with pha14 and pha15. The models currently in the Defense Waste Processing Facility's (DWPF) Product Composition Control System (PCCS) were used to predict durability, homogeneity, liquidus, and viscosity for these nine glasses. All of the HM glasses and half of the Purex glasses were predicted to be phase separated, and consequently prediction of glass durability is precluded with the cument models for those glasses that failed the homogeneity constraint. If one may ignore the homogeneity constraint, the measured durabilities were within the 95% prediction limits of the model. Further efforts will be required to resolve this issue on phase separation (inhomogeneity). The liquidus model predicted unacceptable liquidus temperatures for four of the nine glasses. The approximate, bounding liquidus temperatures measured for all had upper limits of 1,000 C or less. Given the fact that liquidus temperatures were only approximated, the 30 wt% loading of Purex may be near or at the edge of acceptability for liquidus. The measured viscosities were close to the predictions of the model. For the Purex glasses, pha12c and pha15c, the measured viscosities of 28 and 23 poise, respectively, indicate that DWPF processing may be

  13. Solid oxide fuel cell having a glass composite seal

    DOEpatents

    De Rose, Anthony J.; Mukerjee, Subhasish; Haltiner, Jr., Karl Jacob

    2013-04-16

    A solid oxide fuel cell stack having a plurality of cassettes and a glass composite seal disposed between the sealing surfaces of adjacent cassettes, thereby joining the cassettes and providing a hermetic seal therebetween. The glass composite seal includes an alkaline earth aluminosilicate (AEAS) glass disposed about a viscous glass such that the AEAS glass retains the viscous glass in a predetermined position between the first and second sealing surfaces. The AEAS glass provides geometric stability to the glass composite seal to maintain the proper distance between the adjacent cassettes while the viscous glass provides for a compliant and self-healing seal. The glass composite seal may include fibers, powders, and/or beads of zirconium oxide, aluminum oxide, yttria-stabilized zirconia (YSZ), or mixtures thereof, to enhance the desirable properties of the glass composite seal.

  14. Molybdenum sealing glass-ceramic composition

    DOEpatents

    Eagan, Robert J.

    1976-01-01

    The invention relates to a glass-ceramic composition having low hydrogen and helium permeability properties, along with high fracture strength, a thermal coefficient of expansion similar to that of molybdenum, and adaptable for hermetically sealing to molybdenum at temperatures of between about 900.degree. and about 950.degree.C. to form a hermatically sealed insulator body.

  15. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Thompson, E. R.

    1980-01-01

    High levels of mechanical performance in tension, flexure, fatigue, and creep loading situations of graphite fiber reinforced glass matrix composites are discussed. At test temperatures of up to 813 K it was found that the major limiting factor was the oxidative instability of the reinforcing graphite fibers. Particular points to note include the following: (1) a wide variety of graphite fibers were found to be comparable with the glass matrix composite fabrication process; (2) choice of fiber, to a large extent, controlled resultant composite performance; (3) composite fatigue performance was found to be excellent at both 300 K and 703 K; (4) composite creep and stress rupture at temperatures of up to 813 K was limited by the oxidative stability of the fiber; (5) exceptionally low values of composite thermal expansion coefficient were attributable to the dimensional stability of both matrix and fiber; and (6) component fabricability was demonstrated through the hot pressing of hot sections and brazing using glass and metal joining phases.

  16. NATURAL FIBER OR GLASS REINFORCED POLYPROPYLENE COMPOSITES?

    SciTech Connect

    Lorenzi, W.; Di Landro, L.; Casiraghi, A.; Pagano, M. R.

    2008-08-28

    Problems related to the recycle of conventional composite materials are becoming always more relevant for many industrial fields. Natural fiber composites (NFC) have recently gained much attention due to their low cost, environmental gains (eco-compatibility), easy disposal, reduction in volatile organic emissions, and their potential to compete with glass fiber composites (GFC). Interest in natural fibers is not only based over ecological aspects. NFC have good mechanical performances in relation to their low specific weight and low price. A characterization of mechanical properties, dynamic behavior, and moisture absorption is presented.

  17. Microwave Absorbing Properties of Metallic Glass/Polymer Composites

    DTIC Science & Technology

    2011-09-01

    Technical Report ARWSB-TR-11022 Microwave Absorbing Properties of Metallic Glass/Polymer Composites Stephen Bartolucci...Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Microwave Absorbing Properties of Metallic Glass/Polymer Composites 5a. CONTRACT...this study, the microwave absorption characteristics of metallic glass / polymer composites were investigated. Electromagnetic wave absorption

  18. Product consistency testing of West Valley Compositional Variation Glasses

    SciTech Connect

    Olson, K.M.; Marschman, S.C.; Piepel, G.F.; Whiting, G.K.

    1994-11-01

    Nuclear waste glass produced by the West Valley Demonstration Project (WVDP) must meet the requirements of the Waste Acceptance Preliminary Specification (WAPS) as developed by the US Department of Energy (DOE). To assist WVDP in complying with WAPS, the Materials Characterization Center (MCC) at Pacific Northwest Laboratory (PNL) used the Product Consistency Test (PCT) to evaluate 44 West Valley glasses that had previously been tested in FY 1987 and FY 1988. This report summarizes the results of the PCTs. The glasses tested, which were fabricated as sets of Compositional Variation Glasses for studies performed by the West Valley Support Task (WVST) at PNL during FY 1987 and FY 1988, were doped with Th and U and were variations of West Valley reference glasses. In addition, Approved Reference Material-1 (ARM-1) was used as a test standard (ARM-1 is supplied by the MCC). The PCT was originated at Westinghouse Savannah River Company (WSRC) by C. M. Jantzen and N. R. Bibler (Jantzen and Bibler 1989). The test is a seven-day modified MCC-3 test that uses crushed glass in the size range -100 +200 mesh with deionized water in a Teflon container. There is no agitation during the PCT, and no attempt to include CO{sub 2} from the test environment. Based on B and Li release, the glasses performed about the same as in previous modified MCC-3 testing performed in FY 1987 and FY 1988 (Reimus et al. 1988). The modified MCC-3 tests performed by Reimus et al. were similar to the PCT containers and the exclusion of CO{sub 2} from the tests.

  19. SCOPING MELTING STUDIES OF HIGH ALUMINA WASTE GLASS COMPOSITIONS

    SciTech Connect

    Kroll, Jared O.; Schweiger, Michael J.; Vienna, John D.

    2015-09-04

    Glass property models will be used at the Hanford Tank Waste Treatment and Immobilization Plant to formulate durable high-level waste glasses for disposal. A major effort is focused on expanding glass property models to cover a broader range of wastes and higher waste-loaded glasses. As a part of this effort, a statistically designed matrix of high-alumina glass compositions was developed. Forty five compositions were selected from the matrix to evaluate glass properties. Of these compositions, thirty three produced homogeneous glasses. The other twelve compositions contained segregated phases and high crystallinity; these were iteratively modified in an attempt to produce homogeneous glass samples while altering the original composition as little as possible. This paper focuses on the characterization of the twelve inhomogeneous compositions and their modifications using X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy.

  20. DWPF (Defense Waste Processing Facility) glass composition control based on glass properties

    SciTech Connect

    Carter, J T; Brown, K G; Bickford, D F

    1988-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize Savannah River Plant (SRP) High Level Waste as a durable borosilicate glass for permanent disposal in a civilian repository. The DWPF will be controlled based on glass composition. The waste glass physical and chemical properties, such as viscosity, liquidus temperature, and durability are functions of glass chemistry. Preliminary models have been developed to evaluate the effects of feed composition variability on the glass properties. These properties are presently being related to the waste glass composition in order to develop process control paradigms that include batching algorithms, hold points, and transfer limits. 3 refs., 6 tabs.

  1. Passive Impact Damage Detection of Fiber Glass Composite Panels

    DTIC Science & Technology

    2013-12-19

    PASSIVE IMPACT DAMAGE DETECTION OF FIBER GLASS COMPOSITE PANELS. By BRUNO ZAMORANO-SENDEROS A dissertation...COVERED 04-11-2012 to 10-12-2013 4. TITLE AND SUBTITLE PASSIVE IMPACT DAMAGE DETECTION OF FIBER GLASS COMPOSITE PANELS 5a. CONTRACT NUMBER 5b...process. .................................... 31 Figure 3-8 Sensor attached to the fiber glass fabric

  2. Filled glass composites for sealing of solid oxide fuel cells.

    SciTech Connect

    Tandon, Rajan; Widgeon, Scarlett Joyce; Garino, Terry J.; Brochu, Mathieu; Gauntt, Bryan D.; Corral, Erica L.; Loehman, Ronald E.

    2009-04-01

    Glasses filled with ceramic or metallic powders have been developed for use as seals for solid oxide fuel cells (SOFC's) as part of the U.S. Department of Energy's Solid State Energy Conversion Alliance (SECA) Program. The composites of glass (alkaline earth-alumina-borate) and powders ({approx}20 vol% of yttria-stabilized zirconia or silver) were shown to form seals with SOFC materials at or below 900 C. The type and amount of powder were adjusted to optimize thermal expansion to match the SOFC materials and viscosity. Wetting studies indicated good wetting was achieved on the micro-scale and reaction studies indicated that the degree of reaction between the filled glasses and SOFC materials, including spinel-coated 441 stainless steel, at 750 C is acceptable. A test rig was developed for measuring strengths of seals cycled between room temperature and typical SOFC operating temperatures. Our measurements showed that many of the 410 SS to 410 SS seals, made using silver-filled glass composites, were hermetic at 0.2 MPa (2 atm.) of pressure and that seals that leaked could be resealed by briefly heating them to 900 C. Seal strength measurements at elevated temperature (up to 950 C), measured using a second apparatus that we developed, indicated that seals maintained 0.02 MPa (0.2 atm.) overpressures for 30 min at 750 C with no leakage. Finally, the volatility of the borate component of sealing glasses under SOFC operational conditions was studied using weight loss measurements and found by extrapolation to be less than 5% for the projected SOFC lifetime.

  3. Modified glass fibre reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Cao, Yumei

    A high ratio of strength to density and relatively low-cost are some of the significant features of glass fibre reinforced polymer composites (GFRPCs) that made them one of the most rapidly developed materials in recent years. They are widely used as the material of construction in the areas of aerospace, marine and everyday life, such as airplane, helicopter, boat, canoe, fishing rod, racket, etc. Traditionally, researchers tried to raise the mechanical properties and keep a high strength/weight ratio using all or some of the following methods: increasing the volume fraction of the fibre; using different polymeric matrix material; or changing the curing conditions. In recent years, some new techniques and processing methods were developed to further improve the mechanical properties of glass fibre (GF) reinforced polymer composite. For example, by modifying the surface condition of the GF, both the interface strength between the GF and the polymer matrix and the shear strength of the final composite can be significantly increased. Also, by prestressing the fibre during the curing process of the composite, the tensile, flexural and the impact properties of the composite can be greatly improved. In this research project, a new method of preparing GFRPCs, which combined several traditional and modern techniques together, was developed. This new method includes modification of the surface of the GF with silica particles, application of different levels of prestressing on the GF during the curing process, and the change of the fibre volume fraction and curing conditions in different sets of experiments. The results of the new processing were tested by the three-point bend test, the short beam shear test and the impact test to determine the new set of properties so formed in the composite material. Scanning electronic microscopy (SEM) was used to study the fracture surface of the new materials after the mechanical tests were performed. By taking advantages of the

  4. Lunar glass compositions - Apollo 16 core sections 60002 and 60004

    NASA Technical Reports Server (NTRS)

    Meyer, H. O. A.; Tsai, H.-M.

    1975-01-01

    Approximately 500 glasses between 1 mm and 125 microns in size have been analyzed from fourteen samples from the Apollo 16 core sections 60002 and 60004. The majority of glasses have compositions comparable to those found in previous studies of lunar surface soils; however, two new and distinct glass compositions that are probably derived in part from mare material occur in the core samples. The major glass composition in all samples is that of Highland Basalt glass, but it also appears that high-K Fra Mauro Basalt (KREEP) glass is more common at the Apollo 16 site than was previously thought. The relative abundance of glasses within the core samples is random in distribution: each sample is characterized by a particular assemblage and distribution of the constituent glass compositions.

  5. Establishing the acceptability of Savannah River site waste glass

    SciTech Connect

    Plodinec, M.J.; Kitchen, B.G.

    1990-01-01

    The United States' first facility to immobilize high-level nuclear waste, the Defense Waste Processing Facility (DWPF), will soon begin integrated nonradioactive testing. An important objective of that testing is to demonstrate that the DWPF product will comply with specifications established by the Department of Energy's Office of Civilian Radioactive Waste Management (RW). In this report, the DWPF process and product are described, and the approach being taken to establish the acceptability of the DWPF product is presented. 8 refs., 2 figs., 1 tab.

  6. Metallic glass nanostructures of tunable shape and composition.

    PubMed

    Liu, Yanhui; Liu, Jingbei; Sohn, Sungwoo; Li, Yanglin; Cha, Judy J; Schroers, Jan

    2015-04-22

    Metals of hybrid nano-/microstructures are of broad technological and fundamental interests. Manipulation of shape and composition on the nanoscale, however, is challenging, especially for multicomponent alloys such as metallic glasses. Although top-down approaches have demonstrated nanomoulding, they are limited to very few alloy systems. Here we report a facile method to synthesize metallic glass nanoarchitectures that can be applied to a broad range of glass-forming alloys. This strategy, using multitarget carousel oblique angle deposition, offers the opportunity to achieve control over size, shape and composition of complex alloys at the nanoscale. As a consequence, nanostructures of programmable three-dimensional shapes and tunable compositions are realized on wafer scale for metallic glasses including the marginal glass formers. Realizing nanostructures in a wide compositional range allows chemistry optimization for technological usage of metallic glass nanostructures, and also enables the fundamental study on size, composition and fabrication dependences of metallic glass properties.

  7. Vitrification and waste glass compositional limits

    SciTech Connect

    Chapman, C.C.; Whittington, K.F.; Peters, R.D.

    1994-08-01

    The most important issue when evaluating the suitability of a waste stream for vitrification is the composition of the waste. Appropriate analytical data are required to ensure that adequate information is available for evaluating and implementing the technology. Although vitrification can be used to immobilize almost any waste stream through dilution of the waste with glass formers, it may be too costly for certain limiting conditions. This report provides guidelines of these limit sand the consequent analytical requirements that are necessary for appropriate qualitative cost estimates.

  8. Predicting the glass transition temperature of bioactive glasses from their molecular chemical composition.

    PubMed

    Hill, Robert G; Brauer, Delia S

    2011-10-01

    A recently published paper (M.D. O'Donnell, Acta Biomaterialia 7 (2011) 2264-2269) suggests that it is possible to correlate the glass transition temperature (T(g)) of bioactive glasses with their molar composition, based on iterative least-squares fitting of published T(g) data. However, we show that the glass structure is an important parameter in determining T(g). Phase separation, local structural effects and components (intermediate oxides) which can switch their structural role in the glass network need to be taken into consideration, as they are likely to influence the glass transition temperature of bioactive glasses. Although the model suggested by O'Donnell works reasonably well for glasses within the composition range presented, it is oversimplified and fails for glasses outside certain compositional boundaries.

  9. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-09-23

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste uranium oxides The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  10. Economic manufacturing of bulk metallic glass compositions by microalloying

    DOEpatents

    Liu, Chain T.

    2003-05-13

    A method of making a bulk metallic glass composition includes the steps of:a. providing a starting material suitable for making a bulk metallic glass composition, for example, BAM-11; b. adding at least one impurity-mitigating dopant, for example, Pb, Si, B, Sn, P, to the starting material to form a doped starting material; and c. converting the doped starting material to a bulk metallic glass composition so that the impurity-mitigating dopant reacts with impurities in the starting material to neutralize deleterious effects of the impurities on the formation of the bulk metallic glass composition.

  11. Stress Concentration in Glass-Epoxy Composite Plates.

    DTIC Science & Technology

    FIBER REINFORCED COMPOSITES, * GLASS REINFORCED PLASTICS, *STRESS CONCENTRATION, STRESS STRAIN RELATIONS, LOAD DISTRIBUTION, FIBERGLASS , MANUFACTURING, THESES, HOLES(OPENINGS), STRAIN GAGES, EPOXY COMPOUNDS, WEAR RESISTANCE.

  12. Graphite fiber reinforced glass matrix composites for aerospace applications

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Bacon, J. F.; Dicus, D. L.

    1979-01-01

    The graphite fiber reinforced glass matrix composite system is described. Although this composite is not yet a mature material, it possesses low density, attractive mechanical properties at elevated temperatures, and good environmental stability. Properties are reported for a borosilicate glass matrix unidirectionally reinforced with 60 volume percent HMS graphite fiber. The flexural strength and fatigue characteristics at room and elevated temperature, resistance to thermal cycling and continuous high temperature oxidation, and thermal expansion characteristics of the composite are reported. The properties of this new composite are compared to those of advanced resin and metal matrix composites showing that graphite fiber reinforced glass matrix composites are attractive for aerospace applications.

  13. Compositional Models of Glass/Melt Properties and their Use for Glass Formulation

    SciTech Connect

    Vienna, John D.; USA, Richland Washington

    2014-12-18

    Nuclear waste glasses must simultaneously meet a number of criteria related to their processability, product quality, and cost factors. The properties that must be controlled in glass formulation and waste vitrification plant operation tend to vary smoothly with composition allowing for glass property-composition models to be developed and used. Models have been fit to the key glass properties. The properties are transformed so that simple functions of composition (e.g., linear, polynomial, or component ratios) can be used as model forms. The model forms are fit to experimental data designed statistically to efficiently cover the composition space of interest. Examples of these models are found in literature. The glass property-composition models, their uncertainty definitions, property constraints, and optimality criteria are combined to formulate optimal glass compositions, control composition in vitrification plants, and to qualify waste glasses for disposal. An overview of current glass property-composition modeling techniques is summarized in this paper along with an example of how those models are applied to glass formulation and product qualification at the planned Hanford high-level waste vitrification plant.

  14. Compositional Models of Glass/Melt Properties and their Use for Glass Formulation

    DOE PAGES

    Vienna, John D.; USA, Richland Washington

    2014-12-18

    Nuclear waste glasses must simultaneously meet a number of criteria related to their processability, product quality, and cost factors. The properties that must be controlled in glass formulation and waste vitrification plant operation tend to vary smoothly with composition allowing for glass property-composition models to be developed and used. Models have been fit to the key glass properties. The properties are transformed so that simple functions of composition (e.g., linear, polynomial, or component ratios) can be used as model forms. The model forms are fit to experimental data designed statistically to efficiently cover the composition space of interest. Examples ofmore » these models are found in literature. The glass property-composition models, their uncertainty definitions, property constraints, and optimality criteria are combined to formulate optimal glass compositions, control composition in vitrification plants, and to qualify waste glasses for disposal. An overview of current glass property-composition modeling techniques is summarized in this paper along with an example of how those models are applied to glass formulation and product qualification at the planned Hanford high-level waste vitrification plant.« less

  15. Status of Gr/glass composites technology at UTOS

    NASA Technical Reports Server (NTRS)

    Mayor, Ramon A.

    1988-01-01

    The TSC (Thermally Stable Composite) refers to a family of graphite reinforced glass matrix composite materials developed by UTOS. This fiber matrix combination exhibits low coefficients of thermal expansion (CTE), exceptional dimensional stability, high specific strength and stiffness, adequate fracture toughness, and space environment compatibility. The dimensional stability of a TSC mirror structure was experimentally characterized at the Steward Observatory. Preliminary results indicate that TSC is significantly more thermally stable than most current structural composite materials. In addition, the use of lower CTE glass matrix materials, such as 96 percent silica glass, have the potential for producing graphite/glass panels with expansion rates and stability comparable to that of fused silica.

  16. Glass-ceramic composition for hermetic seals

    DOEpatents

    Ballard, Jr., Clifford P.

    1979-01-01

    The invention relates to a glass-ceramic composition having a high fracture strength adaptable for hermetically sealing to chromium bearing iron or nickel base alloys at temperatures of between about 950.degree. C to about 1100.degree. C to form a hermetically sealed insulator body, comprising from about 55 to about 65 weight percent SiO.sub.2, from about 0 to about 5 weight percent Al.sub.2 O.sub.3, from about 6 to about 11 weight % Li.sub.2 O, from about 25 to about 32 weight percent BaO, from about 0.5 to about 1.0 weight percent CoO and from about 1.5 to about 3.5 weight percent P.sub.2 O.sub.5.

  17. Waste Acceptance Radionuclides To Be Reported In Tank 51 Sludge Only Glass

    SciTech Connect

    Hyder, M. Lee

    1995-12-12

    The first high level waste glass to be generated at SRS will incorporate sludge from Tank 51. This sludge has been characterized by Bibler et al., who measured and estimated the radioisotope composition of the glass that might be derived from this sludge. In this report this characterization is used to determine which isotopes must be quantified to meet the legal criteria for repository placement.

  18. A comparative study of the mechanical performance of Glass and Glass/Carbon hybrid polymer composites at different temperature environments

    NASA Astrophysics Data System (ADS)

    Shukla, M. J.; Kumar, D. S.; Mahato, K. K.; Rathore, D. K.; Prusty, R. K.; Ray, B. C.

    2015-02-01

    Glass Fiber Reinforced Polymer (GFRP) composites have been widely accepted as high strength, low weight structural material as compared to their metallic counterparts. Some specific advanced high performance applications such as aerospace components still require superior specific strength and specific modulus. Carbon Fiber Reinforced Polymer (CFRP) composites exhibit superior specific strength and modulus but have a lower failure strain and high cost. Hence, the combination of both glass and carbon fiber in polymer composite may yield optimized mechanical properties. Further the in-service environment has a significant role on the mechanical performance of this class of materials. Present study aims to investigate the mechanical property of GFRP and Glass/Carbon (G/C hybrid) composites at room temperature, in-situ and ex-situ temperature conditions. In-situ testing at +70°C and +100°C results in significant loss in inter-laminar shear strength (ILSS) for both the composites as compared to room temperature. The ILSS was nearly equal for both the composite systems tested in-situ at +100°C and effect of fiber hybridisation was completely diminished there. At low temperature ex-situ conditioning significant reduction in ILSS was observed for both the systems. Further at -60°C G/C hybrid exhibited 32.4 % higher ILSS than GFRP. Hence this makes G/C hybrid a better choice of material in low temperature environmental applications.

  19. Relationship between topological order and glass forming ability in densely packed enstatite and forsterite composition glasses.

    PubMed

    Kohara, S; Akola, J; Morita, H; Suzuya, K; Weber, J K R; Wilding, M C; Benmore, C J

    2011-09-06

    The atomic structures of magnesium silicate melts are key to understanding processes related to the evolution of the Earth's mantle and represent precursors to the formation of most igneous rocks. Magnesium silicate compositions also represent a major component of many glass ceramics, and depending on their composition can span the entire fragility range of glass formation. The silica rich enstatite (MgSiO(3)) composition is a good glass former, whereas the forsterite (Mg(2)SiO(4)) composition is at the limit of glass formation. Here, the structure of MgSiO(3) and Mg(2)SiO(4) composition glasses obtained from levitated liquids have been modeled using Reverse Monte Carlo fits to diffraction data and by density functional theory. A ring statistics analysis suggests that the lower glass forming ability of the Mg(2)SiO(4) glass is associated with a topologically ordered and very narrow ring distribution. The MgO(x) polyhedra have a variety of irregular shapes in MgSiO(3) and Mg(2)SiO(4) glasses and a cavity analysis demonstrates that both glasses have almost no free volume due to a large contribution from edge sharing of MgO(x)-MgO(x) polyhedra. It is found that while the atomic volume of Mg cations in the glasses increases compared to that of the crystalline phases, the number of Mg-O contacts is reduced, although the effective chemical interaction of Mg(2+) remains similar. This unusual structure-property relation of Mg(2)SiO(4) glass demonstrates that by using containerless processing it may be possible to synthesize new families of dense glasses and glass ceramics with zero porosity.

  20. The effect of compositional parameters on the TCLP and PCT durability of environmental glasses

    SciTech Connect

    Resce, J.L.; Overcamp, T.J.; Cicero, C.A.; Bickford, D.F.

    1995-12-01

    The relationship between glass composition and the chemical durability of environmental waste glass is very important for both the development of glass formulations and the prediction of glass durability for process control. The development of such a model is extremely difficult for several reasons. Firstly, chemical durability is dependent upon the type of leach test employed; the leach tests themselves being only crude approximations of actual environmental conditions or long term behavior. Secondly, devitrification or crystallinity can also play a major role in durability, but is much more difficult to quantify. Lastly, the development of any one model for all glass types is impractical because of the wide variety of wastestreams, the heterogeneity of the wastestreams, and the large variety of components within each wastestream. Several ongoing efforts have been directed toward this goal, but as yet, no model has been proven acceptable.

  1. Prediction of glass durability as a function of glass composition and test conditions: Thermodynamics and kinetics

    SciTech Connect

    Jantzen, C M

    1988-01-01

    The long-term durability of nuclear waste glasses can be predicted by comparing their performance to natural and ancient glasses. Glass durability is a function of the kinetic and thermodynamic stability of glass in solution. The relationship between the kinetic and thermodynamic aspects of glass durability can be understood when the relative contributions of glass composition and imposed test conditions are delineated. Glass durability has been shown to be a function of the thermodynamic hydration free energy which can be calculated from the glass composition. Hydration thermodynamics also furnishes a quantitative frame of reference to understand how various test parameters affect glass durability. Linear relationships have been determined between the logarithmic extent of hydration and the calculated hydration free energy for several different test geometries. Different test conditions result in different kinetic reactivity parameters such as the exposed glass surface area (SA), the leachant solution volume (V), and the length of time that the glass is in the leachant (t). Leachate concentrations are known to be a function of the kinetic test parameter (SAV)t. The relative durabilities of glasses, including pure silica, obsidians, nuclear waste glasses, medieval window glasses, and frit glasses define a plane in three dimensional ..delta..G/sub hyd/-concentration-(SAV)t space. At constant kinetic conditions, e.g., test geometry and test duration, the three dimensional plane is intersected at constant (SAV)t and the ..delta..G/sub hyd/-concentration plots have similar slopes. The slope represents the natural logarithm of the theoretical slope, (12.303 RT), for the rate of glass dissolution. 53 refs., 4 figs.

  2. Composite materials based on wastes of flat glass processing.

    PubMed

    Gorokhovsky, A V; Escalante-Garcia, J I; Gashnikova, G Yu; Nikulina, L P; Artemenko, S E

    2005-01-01

    Glass mirrors scrap and poly (vinyl) butiral waste (PVB) obtained from flat glass processing plants were investigated as raw materials to produce composites. The emphasis was on studying the influence of milled glass mirror waste contents on properties of composites produced with PVB. The characterization involved: elongation under rupture, water absorption, tensile strength and elastic modulus tests. The results showed that the composite containing 10 wt% of filler powder had the best properties among the compositions studied. The influence of the time of exposure in humid atmosphere on the composite properties was investigated. It was found that the admixture of PVB iso-propanol solution to the scrap of glass mirrors during milling provided stabilization of the properties of the composites produced.

  3. Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films.

    PubMed

    Gao, Yuan; Chang, Jiang

    2009-08-01

    In order to improve the homogeneous dispersion of particles in the polymeric matrix, 45S5, mesoporous 58S, and 58S bioactive glasses were surface modified by esterification reactions with dodecyl alcohol at reflux temperature of 260 degrees C (named as m-45S5, m-mesoporous 58S, and m-58S, respectively). The modified particles showed better hydrophobicity and longer time of suspension in organic matrix. The PDLLA/bioactive glass composite films were fabricated using surface modified bioactive glass particles through solvent casting-evaporation method. Surface morphology, mechanical property, and bioactivity were investigated. The results revealed that the inorganic particle distribution and tensile strength of the composite films with modified bioactive glass particles were significantly improved while great bioactive properties were maintained. Scanning electron microscopy (SEM) observation illustrated that the modified bioactive glass particles were homogeneously dispersed in the PDLLA matrix. The maximum tensile strengths of composite films with modified bioactive glass particles were higher than that of composite films with unmodified bioactive glass particles. The bioactivity of the composite films were evaluated by being soaked in the simulated body fluid (SBF) and the SEM observation of the films suggested that the modified composite films were still bioactive in that they could induce the formation of HAp on its surface and the distribution of HAp was even more homogeneous on the film. The results mentioned above indicated that the surface modification of bioactive glasses with dodecyl alcohol was an effective method to prepare PDLLA/bioactive glass composites with enhanced properties. By studying the comparisons of modification effects among the three types of bioactive glasses, we could get the conclusion that the size and morphology of the inorganic particles would greatly affect the modification effects and the properties of composites.

  4. Glass/Ceramic Composites for Sealing Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2007-01-01

    A family of glass/ceramic composite materials has been investigated for use as sealants in planar solid oxide fuel cells. These materials are modified versions of a barium calcium aluminosilicate glass developed previously for the same purpose. The composition of the glass in mole percentages is 35BaO + 15CaO + 5Al2O3 + 10B2O3 + 35SiO2. The glass seal was found to be susceptible to cracking during thermal cycling of the fuel cells. The goal in formulating the glass/ ceramic composite materials was to (1) retain the physical and chemical advantages that led to the prior selection of the barium calcium aluminosilicate glass as the sealant while (2) increasing strength and fracture toughness so as to reduce the tendency toward cracking. Each of the composite formulations consists of the glass plus either of two ceramic reinforcements in a proportion between 0 and 30 mole percent. One of the ceramic reinforcements consists of alumina platelets; the other one consists of particles of yttria-stabilized zirconia wherein the yttria content is 3 mole percent (3YSZ). In preparation for experiments, panels of the glass/ceramic composites were hot-pressed and machined into test bars.

  5. Structure and constitution of glass and steel compound in glass-metal composite

    SciTech Connect

    Lyubimova, Olga N.; Morkovin, Andrey V.; Dryuk, Sergey A.; Nikiforov, Pavel A.

    2014-11-14

    The research using methods of optical and scanning electronic microscopy was conducted and it discovered common factors on structures and diffusing zone forming after welding glass C49-1 and steel Ct3sp in technological process of creating new glass-metal composite. Different technological modes of steel surface preliminary oxidation welded with and without glass were investigated. The time of welding was varied from minimum encountering time to the time of stabilizing width of diffusion zone.

  6. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE FRIT B COMPOSITION FOR PLUTONIUM DISPOSITION

    SciTech Connect

    Marra, J

    2006-01-19

    leachate solutions were ultrafiltered to quantify colloid formation. The leached solids from select PCTs were examined in an attempt to evaluate the Pu and neutron absorber release behavior from the glass and to identify the formation of alteration phases on the glass surface. Characterization of the glass prior to testing revealed that some undissolved plutonium oxide was present in the glass. The undissolved particles had a disk-like morphology and likely formed via coarsening of particles in areas compositionally enriched in plutonium. Similar disk-like PuO{sub 2} phases were observed in previous LaBS glass testing at PNNL. In that work, researchers concluded that plutonium formed with this morphology as a result of the leaching process. It was more likely that the presence of the plutonium oxide crystals in the PNNL testing was a result of glass fabrication. A series of PCTs were conducted at 90 C in ASTM Type 1 water. The PCT-Method A (PCT-A) was conducted to compare the Pu LaBS Frit B glass durability to current requirements for High Level Waste (HLW) glass in a geologic repository. The PCT-A test has a strict protocol and is designed to specifically be used to evaluate whether the chemical durability and elemental release characteristics of a nuclear waste glass have been consistently controlled during production and, thus, meet the repository acceptance requirements. The PCT-A results on the Pu containing LaBS Frit B glass showed that the glass was very durable with a normalized elemental release value for boron of approximately 0.02 g/L. This boron release value was better than two orders of magnitude better from a boron release standpoint than the current Environmental Assessment (EA) glass used for repository acceptance. The boron release value for EA glass is 16.7 g/L.

  7. Glass transition in binary eutectic systems: best glass-forming composition.

    PubMed

    Wang, Li-Min; Li, Zijing; Chen, Zeming; Zhao, Yue; Liu, Riping; Tian, Yongjun

    2010-09-23

    The glass transition and glass-forming ability in a binary eutectic system of methyl o-toluate (MOT) versus methyl p-toluate (MPT) are studied across the whole composition range. The phase diagram is constructed to explore the best glass-forming composition as the characteristic temperatures of the glass transition, crystallization, eutectic, and liquidus are determined. The best vitrification region is found to locate between the eutectic and the midpoint compositions of the eutectic line, indicating a remarkable deviation from the eutectic composition. The compilation of various simple binary eutectic systems covering inorganic, metallic, ionic, and molecular glass-forming liquids reproduces the rule. Kinetics and thermodynamics in binary systems are investigated to associate with the rule. The composition dependence of the structural relaxation time and the kinetic fragility are presented with dielectric measurements. It is found that whereas mixing of binary miscible liquids kinetically favors glass formation, thermodynamic contribution to the deviation of the best glass-forming composition from eutectics is implied.

  8. Glass fiber addition strengthens low-density ablative compositions

    NASA Technical Reports Server (NTRS)

    Chandler, H. H.

    1974-01-01

    Approximately 15% of E-glass fibers was added to compositions under test and greatly improved char stability. Use of these fibers also reduced thermal strains which, in turn, minimized char shrinkage and associated cracks, subsurface voids, and disbonds. Increased strength allows honeycomb core reinforcement to be replaced by equivalent amount of glass fibers.

  9. Monitoring Damage Propagation in Glass Fiber Composites Using Carbon Nanofibers.

    PubMed

    Al-Sabagh, Ahmed; Taha, Eman; Kandil, Usama; Nasr, Gamal-Abdelnaser; Reda Taha, Mahmoud

    2016-09-10

    In this work, we report the potential use of novel carbon nanofibers (CNFs), dispersed during fabrication of glass fiber composites to monitor damage propagation under static loading. The use of CNFs enables a transformation of the typically non-conductive glass fiber composites into new fiber composites with appreciable electrical conductivity. The percolation limit of CNFs/epoxy nanocomposites was first quantified. The electromechanical responses of glass fiber composites fabricated using CNFs/epoxy nanocomposite were examined under static tension loads. The experimental observations showed a nonlinear change of electrical conductivity of glass fiber composites incorporating CNFs versus the stress level under static load. Microstructural investigations proved the ability of CNFs to alter the polymer matrix and to produce a new polymer nanocomposite with a connected nanofiber network with improved electrical properties and different mechanical properties compared with the neat epoxy. It is concluded that incorporating CNFs during fabrication of glass fiber composites can provide an innovative means of self-sensing that will allow damage propagation to be monitored in glass fiber composites.

  10. Monitoring Damage Propagation in Glass Fiber Composites Using Carbon Nanofibers

    PubMed Central

    Al-Sabagh, Ahmed; Taha, Eman; Kandil, Usama; Nasr, Gamal-Abdelnaser; Reda Taha, Mahmoud

    2016-01-01

    In this work, we report the potential use of novel carbon nanofibers (CNFs), dispersed during fabrication of glass fiber composites to monitor damage propagation under static loading. The use of CNFs enables a transformation of the typically non-conductive glass fiber composites into new fiber composites with appreciable electrical conductivity. The percolation limit of CNFs/epoxy nanocomposites was first quantified. The electromechanical responses of glass fiber composites fabricated using CNFs/epoxy nanocomposite were examined under static tension loads. The experimental observations showed a nonlinear change of electrical conductivity of glass fiber composites incorporating CNFs versus the stress level under static load. Microstructural investigations proved the ability of CNFs to alter the polymer matrix and to produce a new polymer nanocomposite with a connected nanofiber network with improved electrical properties and different mechanical properties compared with the neat epoxy. It is concluded that incorporating CNFs during fabrication of glass fiber composites can provide an innovative means of self-sensing that will allow damage propagation to be monitored in glass fiber composites. PMID:28335298

  11. Composite material based on fluoroplast and low melting oxyfluoride glass

    NASA Astrophysics Data System (ADS)

    Ignatieva, L. N.; Savchenko, N. N.; Lalayan, V. M.; Zverev, G. A.; Goncharuk, V. K.; Ustinov, A. Yu.; Shaulov, A. Yu.; Berlin, A. A.; Bouznik, V. M.

    2016-05-01

    The present work summarizes the results of studies of the samples fabricated through extrusion blending of mixtures composed of the perfluorocarbon polymer (polyvinylidene fluoride, PVDF), which presently undergoes intensive studies, and the inorganic glass (BF-glass) of the composition 3B2O3-97(40SnF2-30SnO-30P2O5). It is revealed as a result of application of the suggested technique the composite material whose structure depends on the component ratio in the mixture (from individual areas formed by each component to homogeneously distributed composite particles) has been fabricated. The peculiarities of formation of composites were studied on the basis of the results of studying their morphology, molecular structure and phase composition. It was revealed the preservation of the polymer molecular structure and the absence of interaction with the glass in the fabricated samples. We found that in the process of sample fabrication there occur melting of the mixture, mixing of particles and changing of the phase compositions. The polymer partially and the glass almost completely crystallize in the process of composite fabrication. Glass crystals fill polymer cavities forming agglomerates. Along with the increase of the amount of inorganic component crystals, the polymer monolithic nature is disrupted and an inversion occurs at a certain component ratio: polymer particles are located between crystals of the inorganic component, mixing with them and covering them. The glass crystallization is facilitated through pre-crushing in extruder mill.

  12. Monitoring and analyzing waste glass compositions

    DOEpatents

    Schumacher, Ray F.

    1994-01-01

    A device and method for determining the viscosity of a fluid, preferably molten glass. The apparatus and method uses the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality.

  13. Monitoring and analyzing waste glass compositions

    DOEpatents

    Schumacher, R.F.

    1994-03-01

    A device and method are described for determining the viscosity of a fluid, preferably molten glass. The apparatus and method use the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality. 2 figures.

  14. Polyimide fiber-glass composite resists high temperatures

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J.; Rosser, R. W.; Parker, J. A.

    1973-01-01

    Composites synthesized from bismaleimide have superior strength and oxidation resistance at elevated temperatures when compared with similar composites prepared with epoxy or silicon polymers of similar cost. Polyimide synthesis technique and processing method yield essentially void-free fiber-glass reinforced composites.

  15. Investigation of waterborne epoxies for E-glass composites

    NASA Astrophysics Data System (ADS)

    Jensen, Robert Eric

    Research is presented which encompasses a study of epoxies based on diglycidyl ether of bisphenol A (DGEBA) cured with 2-ethyl-4-methylimidazole (EMI-24) in the presence of the nonionic surfactant Triton X-100. Interest in this epoxy system is due partially to the potential application as a waterborne replacement for solvent cast epoxies in E-glass laminated printed circuit boards. This research has revealed that the viscoelastic behavior of the cured epoxy is altered when serving as the matrix in a glass composite. The additional constraining and coupling of the E-glass fibers to the segmental motion of the epoxy matrix results in an increased level of viscoelastic cooperativity. Current research has determined that the cooperativity of an epoxy/E-glass composite is also sensitive to the surface chemistry of the glass fibers. Model single-ply epoxy/E-glass laminates were constructed in which the glass was pretreated with either 3-aminopropyltriethoxysilane (APS) or 3-glycidoxypropyltrimethoxysilane (GPS) coupling agents. Dynamic mechanical analysis (DMA) was then used to create master curves of the storage modulus (E') in the frequency domain. The frequency range of the master curves and resulting cooperativity plots clearly varied depending on the surface treatment of the glass fibers. It was determined that the surfactant has surprisingly little effect in the observed trends in cooperativity of the composites. However, the changes in cooperativity due to the surface pretreatment of the glass were lessened by the aqueous phase of the waterborne resin. Moisture uptake experiments were also performed on epoxy samples that were filled with spherical glass beads as well as multi-ply laminated composites. No increases in the diffusion constant could be attributed to the surfactant. However, the surfactant did enhance the final equilibrium moisture uptake levels. These equilibrium moisture uptake levels were also sensitive to the surface pretreatment of the E-glass.

  16. Major element compositions of Luna 20 glass particles.

    NASA Technical Reports Server (NTRS)

    Glass, B. P.

    1973-01-01

    Major element analyses of nineteen Luna 20 glass particles indicate that most of the Luna 20 glasses have Al2O3 contents greater than 21 wt % and compositions similar to Apollo 16 and Luna 20 rocks and soils. Three of the glass particles have low Al2O3 (less than 13 wt %) and high FeO (greater than 18 wt %) contents and were probably derived from one of the adjacent maria. The low glass content of the Luna 20 soil indicates that it is relatively young or less mature than most mare soils that have been studied.

  17. Ceramic fiber reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  18. Evaluating morphology and mechanical properties of glass-reinforced natural hydroxyapatite composites.

    PubMed

    Yazdanpanah, Z; Bahrololoom, M E; Hashemi, B

    2015-01-01

    Hydroxyapatite has been used in a wide variety of biomedical applications and it can be produced from natural resources such as bovine bone. This material does not have acceptable mechanical properties by itself. In the present work, hydroxyapatite composites with different weight percentages of sodalime glass were made and sintered at different temperatures (800-1200°C). Eventually the properties such as density, micro hardness, compressive strength and wear of specimens were evaluated. Specific percentages of glass additive increased the density and hardness of specimens due to increasing the sintering temperature. The hardness and density of specimens were decreased with higher percentage of glass additive. Moreover, the results of compressive test showed that increasing the glass addition increases the compressive performance. Furthermore, the SEM micrographs on worn specimens showed that the mechanism of wear was abrasive.

  19. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2000-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  20. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2004-11-02

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  1. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-10-07

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  2. Mechanical evaluation of SiC particle reinforced oxynitride glass and glass-ceramic composites

    SciTech Connect

    Rouxel, T.; Lavelle, C. . Lab. de Materiaux Ceramiques et Traitements de Surface); Garnier, C.; Verdier, P.; Laurent, Y. . Lab. de Chimie des Materiaux)

    1994-07-01

    In silicon oxynitride glasses, the nitrogen occupies anion sites and is bonded to three silicons. Hence, replacement of divalent oxygen ions by trivalent nitrogen ones results in a considerable improvement of the mechanical resistance. In this exploratory work, the authors investigate some basic mechanical properties at room temperature of composite materials prepared by adding some SiC particles to a highly refractory Y-Mg-Si-Al-O-N oxynitride glass. Taking advantage of both constituents, the brittle particulate composites exhibit much better fracture strength and toughness and higher elastic moduli than the glassy matrix. Due to the easy crystallization of the selected glass, a further improvement is attainable through a crystallization treatment of the matrix. Fracture toughness and Young's modulus as high as 5.4 MPa.m[sup 0.5] and 215 GPa respectively have been measured on the glass-ceramic composite containing 50 vol.% SiC.

  3. Design of Bulk Metallic Glasses and Glass Matrix Composites Near Intermetallic Composition by the Principle of Competitive Growth

    NASA Astrophysics Data System (ADS)

    Ma, G. Z.; Chen, D.

    2016-11-01

    A Cu49Zr51 intermetallic is used as a base for synthesizing metallic glasses and composites with glass matrixes [(Cu49Zr51)100 - x Al x , where x = 0, 2, 4, 6, 8, 10 and 12 at.%]. The introduction of aluminum raises the microhardness and the ultimate compressive strength. In addition, the suppression of formation of crystalline phase upon the introduction of 8 at.% Al provides a glass-like structure in alloy (Cu49Zr51)92Al8. The formation of the glass-like structure is discussed within the concept of competitive nucleation of different intermetallics.

  4. Highly evolved rhyolitic glass compositions from the Toba Caldera, Sumatra

    SciTech Connect

    Chesner, C.A.

    1985-01-01

    The quartz latite to rhyolitic ash flow tuffs erupted form the Toba Caldera, perhaps the largest caldera on earth (100 by 30 kms), provide the unique opportunity to study a highly differentiated liquid in equilibrium with numerous mineral phases. Not only are the rocks very crystal rich (30-50%), but at present a minimum of 15 co-existing mineral phases have been identified. Both whole-rock and glass analyses were made by XRF techniques providing data on both major and trace elements. Whole rock chemistry of individual pumices from the youngest eruption at Toba (75,000 years ago), are suggestive of the eruption of two magma compositions across a boundary layer in the magma chamber. Glass chemistry of the pumices also show two distinct liquid compositions. The more silicic pumices, which have the most evolved glass compositions, are similar to the whole rock chemistry of the few aplitic pumices and cognate granitic xenoliths that were collected. This highly evolved composition resulted from the removal of up to 15 mineral phases and may be a fractionation buffered, univariant composition. The glasses from the less silicic pumices are similar to the whole rock chemistry of the more silicic pumice, thus falling nicely on a fractionation trend towards the univariant composition for these rocks. This set of glass compositions allows an independent test for the origin of distal ashes thought to have erupted from Toba and deposited in Malaysia, the Indian Ocean, and as far away as India.

  5. Calcium phosphate glasses: silanation process and effect on the bioactivity behavior of glass-PMMA composites.

    PubMed

    Alonso, Lizette Morejón; García-Menocal, José Ángel Delgado; Aymerich, Mariona Tarragó; Guichard, Julio Ándrés Álvarez; García-Vallés, Maite; Manent, Salvador Martínez; Ginebra, Maria-Pau

    2014-02-01

    This article presents the results of a study of the efficiency of silanation process of calcium phosphate glasses particles and its effect on the bioactivity behavior of glass- poly(methyl methacrylate) (PMMA) composites. Two different calcium phosphate glasses: 44.5CaO-44.5P2 O5 -11Na2 O (BV11) and 44.5CaO-44.5P2 O5 -6Na2 O-5TiO2 (G5) were synthesized and treated with silane coupling agent. The glasses obtained were characterized by Microprobe and BET while the efficiency of silanation process was determined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS) and Thermal Analysis (DTA and TG) techniques. The content of coupling agent chemically tightly bond to the silanated glasses ascended to 1.69 ± 0.02 wt % for BV11sil glass and 0.93 ± 0.01 wt % for G5sil glass. The in vitro bioactivity test carried out in Simulated Body Fluid (SBF) revealed certain bioactive performance with the use of both silanated glasses in a 30% (by weight) as filler of the PMMA composites because of a superficial deposition of an apatite-like layer with low content of CO3 (2-) and HPO4 (2-) in its structure after soaking for 30 days occurred.

  6. Bioactive glass reinforced elastomer composites for skeletal regeneration: A review.

    PubMed

    Zeimaran, Ehsan; Pourshahrestani, Sara; Djordjevic, Ivan; Pingguan-Murphy, Belinda; Kadri, Nahrizul Adib; Towler, Mark R

    2015-08-01

    Biodegradable elastomers have clinical applicability due to their biocompatibility, tunable degradation and elasticity. The addition of bioactive glasses to these elastomers can impart mechanical properties sufficient for hard tissue replacement. Hence, a composite with a biodegradable polymer matrix and a bioglass filler can offer a method of augmenting existing tissue. This article reviews the applications of such composites for skeletal augmentation.

  7. Major element composition of glasses in three Apollo 15 soils.

    NASA Technical Reports Server (NTRS)

    Reid, A. M.; Warner, J.; Ridley, W. I.; Brown, R. W.

    1972-01-01

    Approximately 180 glasses in each of three Apollo 15 soils have been analyzed for nine elements. Cluster analysis techniques allow the recognition of preferred glass compositions that are equated with parent rock compositions. Green glass rich in Fe and Mg, poor in Al and Ti may be derived from deep-seated pyroxenitic material now present at the Apennine Front. Fra Mauro basalt (KREEP) is most abundant in the LM soil and is tentatively identified as ray material from the Aristillus-Autolycus area. Highland basalt (anorthositic gabbro), believed to be derived from the lunar highlands, has the same composition as at other landing sites, but is less abundant. The Apennine Front is probably not true highland material but may contain a substantial amount of material with the composition of Fra Mauro basalt, but lacking the high-K content.

  8. Composition-dependent metallic glass alloys correlate atomic mobility with collective glass surface dynamics.

    PubMed

    Nguyen, Duc; Zhu, Zhi-Guang; Pringle, Brian; Lyding, Joseph; Wang, Wei-Hua; Gruebele, Martin

    2016-06-22

    Glassy metallic alloys are richly tunable model systems for surface glassy dynamics. Here we study the correlation between atomic mobility, and the hopping rate of surface regions (clusters) that rearrange collectively on a minute to hour time scale. Increasing the proportion of low-mobility copper atoms in La-Ni-Al-Cu alloys reduces the cluster hopping rate, thus establishing a microscopic connection between atomic mobility and dynamics of collective rearrangements at a glass surface made from freshly exposed bulk glass. One composition, La60Ni15Al15Cu10, has a surface resistant to re-crystallization after three heating cycles. When thermally cycled, surface clusters grow in size from about 5 glass-forming units to about 8 glass-forming units, evidence of surface aging without crystal formation, although its bulk clearly forms larger crystalline domains. Such kinetically stable glass surfaces may be of use in applications where glassy coatings stable against heating are needed.

  9. Graphite-Fiber-Reinforced Glass-Matrix Composite

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Dicus, D. L.

    1982-01-01

    G/GI structural composite material made of graphite fibers embedded in borosilicate glass exhibit excellent strength, fracture toughness, and dimensional stability at elevated temperatures. It is made by passing graphite-fiber yarn through slurry containing suspension of fine glass particles in carrier liquid and winding on drum to produce prepegged uniaxial tape. After drying, tapes are cut into appropriate lengths and laid up in graphite die in desired stacking scheme. Stack is consolidated by hot pressing in furnace.

  10. Solid Oxide Fuel Cell Seal Glass - BN Nanotubes Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.; Hurst, Janet B.; Garg, Anita

    2005-01-01

    Solid oxide fuel cell seal glass G18 composites reinforced with approx.4 weight percent of BN nanotubes were fabricated via hot pressing. Room temperature strength and fracture toughness of the composite were determined by four-point flexure and single edge V-notch beam methods, respectively. The strength and fracture toughness of the composite were higher by as much as 90% and 35%, respectively, than those of the glass G18. Microscopic examination of the composite fracture surfaces using SEM and TEM showed pullout of the BN nanotubes, similar in feature to fiber-reinforced ceramic matrix composites with weak interfaces. Other mechanical and physical properties of the composite will also be presented.

  11. Glass composition development for plasma processing of Hanford high sodium content low-level radioactive liquid waste

    SciTech Connect

    Marra, J.C.

    1995-02-01

    To assess the acceptability of prospective compositions, response criteria based on durability, homogeneity, viscosity and volatility were defined. Response variables were weighted: durability 35%, homogeneity 25%, viscosity 25%, volatility 15%. A Plackett-Burman experimental design was used to define the first twelve glass formulations. Glass former additives included Al2O3, B2O3, CaO, Li2O, ZrO2 and SiO2. Lithia was added to facilitate fritting of the additives. The additives were normalized to silica content to ease experimental matrix definition and glass formulation. Preset high and low values of these ratios were determined for the initial twelve melts. Based on rankings of initial compositions, new formulations for testing were developed based on a simplex algorithm. Rating and ranking of subsequent compositions continued until no apparent improvement in glass quality was achieved in newly developed formulations. An optimized composition was determined by averaging the additive component values of the final best performing compositions. The glass former contents to form the optimized glass were: 16.1 wt % Al2O3, 12.3 wt % B2O3, 5.5 wt % CaO, 1.7 wt % Li2O, 3.3 wt % ZrO2, 61.1 wt % SiO2. An optimized composition resulted after only 25 trials despite studying six glass additives. A vitrification campaign was completed using a small-scale Joule heated melter. 80 lbs of glass was produced over 96 hours of continuous operation. Several salt compounds formed and deposited on melter components during the run and likely caused the failure of several pour chamber heaters. In an attempt to minimize sodium volatility, several low or no boron glasses were formulated. One composition containing no boron produced a homogeneous glass worthy of additional testing.

  12. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Thompson, E. R.

    1981-01-01

    A broad group of fibers and matrices were combined to create a wide range of composite properties. Primary material fabrication procedures were developed which readily permit the fabrication of flat plate and shaped composites. Composite mechanical properties were measured under a wide range of test conditions. Tensile, flexure mechanical fatigue, thermal fatigue, fracture toughness, and fatigue crack growth resistance were evaluated. Selected fiber-matrix combinations were shown to maintain their strength at up to 1300 K when tested in an inert atmosphere. Composite high temperature mechanical properties were shown to be limited primarily by the oxidation resistance of the graphite fibers. Composite thermal dimensional stability was measured and found to be excellent.

  13. Predicting bioactive glass properties from the molecular chemical composition: glass transition temperature.

    PubMed

    O'Donnell, Matthew D

    2011-05-01

    The glass transition temperature (T(g)) of inorganic glasses is an important parameter than can be used to correlate with other glass properties, such as dissolution rate, which governs in vitro and in vivo bioactivity. Seven bioactive glass compositional series reported in the literature (77 in total) were analysed here with T(g) values obtained by a number of different methods: differential thermal analysis, differential scanning calorimetry and dilatometry. An iterative least-squares fitting method was used to correlate T(g) from thermal analysis of these compositions with the levels of individual oxide and fluoride components in the glasses. When all seven series were fitted a reasonable correlation was found between calculated and experimental values (R(2)=0.89). When the two compositional series that were designed in weight percentages (the remaining five were designed in molar percentage) were removed from the model an improved fit was achieved (R(2)=0.97). This study shows that T(g) for a wide range in compositions (e.g. SiO(2) content of 37.3-68.4 mol.%) can be predicted to reasonable accuracy enabling processing parameters to be predicted such as annealing, fibre-drawing and sintering temperatures.

  14. Shock Interaction Studies on Glass Fibre Reinforced Epoxy Matrix Composites

    NASA Astrophysics Data System (ADS)

    Reddy, K. P. J.; Jagadeesh, G.; Jayaram, V.; Reddy, B. Harinath; Madhu, V.; Reddy, C. Jaya Rami

    Glass fibre reinforced polymer matrix composites are being extensively used for structural applications both in civil and defense sectors, owing to their high specific strength, stiffness and good energy absorbing capability. Understanding the dynamic response of these composites on shock loading is very essential for effective design of structures resistant to blast loads. In the present study, E- glass/epoxy composite laminate has been fabricated and evaluated for their mechanical properties such as tensile strength, flexural strength and inter laminar shear strength (ILSS). Further, dynamic response of E-glass laminates is presently studied by shock loading. When E-glass composite subjected to peak shock reflected pressure of 7.2 MPa and estimated temperature of about 14000 K for short duration, it underwent surface discolorations and charring of epoxy matrix. Post test analysis of the composite sample was carried out to study the damage analysis using Scanning Electron Microscope (SEM), changes in thermal properties of composites using Dynamic Mechanical Analyzer (DMA) and Thermo-Gravimetric Analyzer (TGA). The results of these investigations are discussed in this paper.

  15. Effect of glass composition on activation energy of viscosity in glass-melting-temperature range

    SciTech Connect

    Hrma, Pavel R.; Han, Sang Soo

    2012-08-01

    In the high-temperature range, where the viscosity (Eta) of molten glass is <10{sup 3} Pa s, the activation energy (B) is virtually ln(Eta) = A + B/T, is nearly independent of melt composition. Hence, the viscosity-composition relationship for Eta < 10{sup 3} Pa s is defined by B as a function of composition. Using a database encompassing over 1300 compositions of high-level waste glasses with nearly 7000 viscosity data, we developed mathematical models for B(x), where x is the composition vector in terms of mass fractions of components. In this paper, we present 13 versions of B(x) as first- and second-order polynomials with coefficients for 15 to 39 components, including Others, a component that sums constituents having little effect on viscosity.

  16. Chemical Composition Measurements of LAWA44 Glass Samples

    SciTech Connect

    Fox, K.; Edwards, T.; Riley, W.

    2016-11-15

    The U.S. Department of Energy (DOE) Office of River Protection (ORP) has requested that the Savannah River National Laboratory (SRNL) provide expert evaluation and experimental work in support of the River Protection Project vitrification technology development. DOE is building the Hanford Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is temporarily stored in 177 underground tanks. The low-activity waste (LAW) fraction will be partitioned from the high-level waste (HLW). Both the LAW and HLW will then be vitrified into borosilicate glass using Joule-heated ceramic melters. Efforts are being made to increase the loading of Hanford tank wastes in the glass while conforming to processing requirements and product quality regulations. DOE-ORP has requested that SRNL support the advancement of glass formulations and process control strategies in key technical areas, as defined in the Task Technical and Quality Assurance Plan (TTQAP). One of these areas is enhancing waste glass composition/property models and broadening the compositional regions over which those models are applicable. In this report, SRNL provides chemical analysis results for several samples of a simulated LAW glass, designated LAWA44, provided by Pacific Northwest National Laboratory (PNNL) as part of an ongoing development task. The objective of the PNNL task is to determine the durability of this glass using EPA Method 1313, which will include test participants at Vanderbilt University and the University of Sheffield. A report on the compositions of similar glasses (referred to as the EPA-series glasses) was issued in March 2016.

  17. Optical properties of polymer/chalcogenide glass composite materials

    NASA Astrophysics Data System (ADS)

    Bormashenko, Edward; Pogreb, Roman; Sutovski, Semion

    2000-06-01

    The novel composite material based on middle density polyethylene on one hand and thermoplastic chalcogenide glass on other hand has been worked out. Both materials used in the research are highly transparent in the middle and far IR but refraction indexes of components differ dramatically. The basic materials, polymer and glass, have close viscosities at the temperature of polyethylene processing. This fact allowed use of the extrusion technique for homogenization purposes. We proved, that the controlled structure of a composite could be derived through the varying of technological parameters of the mixing process. Single- and twin screw extrusion processes obtained compositions, which contain up to 50% particles of chalcogenide glass, which were dispersed in the polymer matrix. The highly homogeneous compositions that contain perfect spherical glass particles of 1-2 micrometers in diameter dispersed into polymer matrix were obtained as well. Highly oriented structures involving chalcogenide glass fibers immersed in the polymer matrix were prepared under high stretch speeds as well. Such fiberlike structures exhibited pronounced polarization properties. We studied the optical properties of the composite and came to the conclusion that the controlled structure of the composite allows variation in its optical properties. It was established that it is possible to produce a composite that is opaque in the visible and near IR, and highly transparent in the 2-25-micrometers wave length band. Light scattering on oriented and disordered structures was studied by the IR spectro-goniometer. The novel composite which was developed by our group is intended for various IR-optics applications.

  18. Glass-reinforced hydroxyapatite: a comprehensive study of the effect of glass composition on the crystallography of the composite.

    PubMed

    Lopes, M A; Santos, J D; Monteiro, F J; Knowles, J C

    1998-02-01

    Glass-reinforced HA composites were produced using phosphate-based glasses, and a structure refinement was carried out to determine the effect of the glass on the structure of the residual HA. Quantitative phase analysis showed that the glass causes some of the HA to decompose to beta-TCP and, at higher temperatures, to alpha-TCP. It also was indicated that when three phases were present, the formation of the alpha-TCP arose from decomposition of the beta-TCP and not from further decomposition of HA to alpha-TCP. The unit cell dimensions showed a decrease in the a axis and an increase in the c axis, giving an overall unit cell decrease in volume. There also was a significant effect based on the amount of glass added. The changes found in the composite containing the 4 wt% glass were attributed to the loss of carbonate and loss of hydroxyl. This was expected to cause shrinkage in the unit cell; however this was not seen, and therefore the major changes in the unit cell were attributed to the ions from the glass taking an interstitial role in the HA structure, thus not allowing the unit cell to shrink as much as expected.

  19. High-temperature testing of glass/ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Mandell, John F.; Grande, Dodd H.; Dannemann, Kathryn A.

    1989-01-01

    Recent advances in ceramic and other high-temperature composites have created a need for test methods that can be used at 1000 C and above. Present test methods usually require adhesively bonded tabs that cannot be used at high temperatures. This paper discusses some of the difficulties with high-temperature test development and describes several promising test methods. Stress-strain data are given for Nicalon ceramic fiber reinforced glass and glass-ceramic matrix composites tested in air at temperatures up to 1000 C.

  20. Advances in photo-thermo-refractive glass composition modifications

    NASA Astrophysics Data System (ADS)

    Ivanov, S. A.; Ignatiev, A. I.; Nikonorov, N. V.

    2015-05-01

    The novel photo-thermo-refractive (PTR) glass developed in ITMO University is a very promising optical material for photonic and plasmonic applications. In this paper authors represent study of tin influence on photo thermo inducted crystallization process and make a comparison of the optical and holographic properties of the new and classic composition of glass. Also during this work was made overall optimization of chemical composition namely was optimized concentration of halides, fluorides, bromides which are responsible for crystalline phase properties. Ions of antimony, which playing key role in catching and transferring electrons emitted during the UV exposure and subsequent heating. Also was lowered the concentration of stray impurity ions which a capable to catch photo-electrons. Optical spectra show that new composition of PTR glass has no absorption band in visible range caused by metal nano particles of silver. That allows recording of pure phase holograms in wide spectral range. Furthermore new PTR glass allows receiving refractive index modulation up to 1500 ppm. And the UV exposures needed to achieve maximum changes in refraction index are 6-7 times lower than in classic glass.

  1. Non-toxic invert analog glass compositions of high modulus

    NASA Technical Reports Server (NTRS)

    Bacon, J. F. (Inventor)

    1974-01-01

    Glass compositions having a Young's modulus of at least 15 million psi are described. They and a specific modulus of at least 110 million inches consist essentially of, in mols, 15 to 40% SiO2, 6 to 15% Li2O, 24 to 45% of at least two bivalent oxides selected from the group consisting of Ca, NzO, MgO and CuO; 13 to 39% of at least two trivalent oxides selected from the group consisting of Al2O3, Fe2O3, B2O3, La2O3, and Y2O3 and up to 15% of one or more tetravelent oxides selected from the group consisting of ZrO2, TiO2 and CeO2. The high modulus, low density glass compositions contain no toxic elements. The composition, glass density, Young's modulus, and specific modulus for 28 representative glasses are presented. The fiber modulus of five glasses are given.

  2. Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass--polycaprolactone composites.

    PubMed

    Prabhakar, Roopa L; Brocchini, Steve; Knowles, Jonathan C

    2005-05-01

    A series of polycaprolactone and ternary-based (Na(2)O)(0.55-x)(CaO)(x)(P(2)O(5))(0.45) glass composites were created, each containing 20% volume percentage of glass with various calcium compositions. A short-term degradation study was carried out to investigate the physical and ion release behaviour of these composites, utilising analytical techniques such as dynamical mechanical analysis, and ion chromatography. All the composites experienced significant loss of weight and stiffness throughout the study, with the 24 mol% calcium composites losing the greatest amount of weight and stiffness. The pH profile of the aqueous solutions in which the composites were placed were initially acidic, but began to neutralise mid-way through the study, with the 36 mol% solution achieving the most acidic conditions. The ion release behaviour mirrored the mass loss behaviour of the glass component of the composites. The cations (sodium and calcium ions) release was comparable with the initial stages of composite mass degradation, both of which exhibited almost immediate release when placed into solution. The 24 mol% composites underwent rapid rates of cation release, while the 36 mol% experienced the slowest rates of release. By contrast, anion (phosphates and polyphosphates) release showed a dissimilar trend, with rapid release of the P(2)O(7) and P(3)O(10) occurring during the first few hours in solution, whilst the P(3)O(9) structure released steadily during the first 48 h in solution. Finally, PO(4) release was at a constant rate over the duration of the study, releasing up to 300 ppm from the 32 and 36 mol% samples by the end of 200 h. To summarise, these results show that by combining phosphate glasses with biodegradable polymer, it is possible to create composites whose rate of degradation can be controlled to meet the needs of their end application.

  3. Effects of short glass fibers on the mechanical properties of glass fiber fabric/PVC composites

    NASA Astrophysics Data System (ADS)

    Park, Su Bin; Lee, Joon Seok; Kim, Jong Won

    2017-03-01

    Fiber-reinforced composites using glass fiber and polyvinylchloride (PVC) have been used widely as architectural materials, electrical applications, automotive sector, and packing materials because of their reasonable price, chemical resistance, and dimensional stability. On the other hand, most of the composites are short fiber-reinforced PVC composites. In particular, in the case of fabric reinforced composites, undulated regions exist where there is only resin due to the characteristics of the weave construction, which causes a decrease in strength. In this paper, PVC was reinforced with chopped glass fibers with different lengths and contents to produce glass fiber fabric/PVC composites. The physical properties of the composites, such as thickness, density, volume fraction (V f), and void content (V c) were identified. The mechanical properties, including tensile strength, flexural strength, and interlaminar shear strength (ILSS) were also identified. A cross section of the composites was observed by scanning electron microscopy. Compared to the fabric reinforced composite without chopped glass fiber, the tensile strength was increased by 3.90% (from 316.15 MPa to 328.48 MPa at 5 wt.% chopped fibers with 3 mm length), flexural strength was increased by 7.15% (from 87.07 MPa to 93.30 MPa at 10 wt.% chopped fibers with 2 mm length), and ILSS was increased by 8.71% (from 7.34 MPa to 7.98 MPa at 10 wt.% chopped fibers with 1 mm length). Therefore, the critical fiber aspect ratio of chopped fiber works differently on each of the three mechanical properties.

  4. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, P.T.; Fisher, R.W.; Hosking, F.M.; Zanner, F.J.

    1996-08-20

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone. 6 figs.

  5. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, Paul T.; Fisher, Robert W.; Hosking, Floyd M.; Zanner, Frank J.

    1996-01-01

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone.

  6. Mechanical properties of non-woven glass fiber geopolymer composites

    NASA Astrophysics Data System (ADS)

    Rieger, D.; Kadlec, J.; Pola, M.; Kovářík, T.; Franče, P.

    2017-02-01

    This experimental research focuses on mechanical properties of non-woven glass fabric composites bound by geopolymeric matrix. This study investigates the effect of different matrix composition and amount of granular filler on the mechanical properties of final composites. Matrix was selected as a metakaolin based geopolymer hardened by different amount of potassium silicate activator. The ceramic granular filler was added into the matrix for investigation of its impact on mechanical properties and workability. Prepared pastes were incorporated into the non-woven fabrics by hand roller and final composites were stacked layer by layer to final thickness. The early age hardening of prepared pastes were monitored by small amplitude dynamic rheology approach and after 28 days of hardening the mechanical properties were examined. The electron microscopy was used for detail description of microstructural properties. The imaging methods revealed good wettability of glass fibers by geopolymeric matrix and results of mechanical properties indicate usability of these materials for constructional applications.

  7. Tetraethyl orthosilicate-based glass composition and method

    DOEpatents

    Wicks, G.G.; Livingston, R.R.; Baylor, L.C.; Whitaker, M.J.; O`Rourke, P.E.

    1997-06-10

    A tetraethyl orthosilicate-based, sol-gel glass composition with additives selected for various applications is described. The composition is made by mixing ethanol, water, and tetraethyl orthosilicate, adjusting the pH into the acid range, and aging the mixture at room temperature. The additives, such as an optical indicator, filler, or catalyst, are then added to the mixture to form the composition which can be applied to a substrate before curing. If the additive is an indicator, the light-absorbing characteristics of which vary upon contact with a particular analyte, the indicator can be applied to a lens, optical fiber, reagent strip, or flow cell for use in chemical analysis. Alternatively, an additive such as alumina particles is blended into the mixture to form a filler composition for patching cracks in metal, glass, or ceramic piping. 12 figs.

  8. Tetraethyl orthosilicate-based glass composition and method

    DOEpatents

    Wicks, George G.; Livingston, Ronald R.; Baylor, Lewis C.; Whitaker, Michael J.; O'Rourke, Patrick E.

    1997-01-01

    A tetraethyl orthosilicate-based, sol-gel glass composition with additives selected for various applications. The composition is made by mixing ethanol, water, and tetraethyl orthosilicate, adjusting the pH into the acid range, and aging the mixture at room temperature. The additives, such as an optical indicator, filler, or catalyst, are then added to the mixture to form the composition which can be applied to a substrate before curing. If the additive is an indicator, the light-absorbing characteristics of which vary upon contact with a particular analyte, the indicator can be applied to a lens, optical fiber, reagant strip, or flow cell for use in chemical analysis. Alternatively, an additive such as alumina particles is blended into the mixture to form a filler composition for patching cracks in metal, glass, or ceramic piping.

  9. Apollo 15 green glass - Relationships between texture and composition

    NASA Technical Reports Server (NTRS)

    Steele, Alison M.

    1992-01-01

    A suite of 365 Apollo 15 green-glass particles was analyzed by INAA and then described petrographically so that comparisons between composition and physical characteristics could be made. Nonuniform compositional distributions of crystalline and elongate particles were evident, although differences in the distribution of volatile-element coatings and extent of particle breakage were not as striking. A binomial evaluation of these textures on an intergroup basis supports the previously proposed hypothesis that the green-glass groups formed during discrete eruptive events because the groups that were defined compositionally also show significant differences in the average texture and structure of particles. Furthermore, in at least one case (Group D), intragroup differences in the distribution of vitrophyric and vitric particles were apparent. An extension of previous models for pyroclastic volcanism suggests that this feature may indicate that a systematic change in the composition of ejecta occurred as eruption progressed.

  10. Bioactive glass/ZrO2 composites for orthopaedic applications.

    PubMed

    Bellucci, D; Sola, A; Cannillo, V

    2014-02-01

    Binary biocomposites were realized by combining yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) with a bioactive glass matrix. Few works are available regarding composites containing zirconia and a relatively high content of glass because the resulting samples are usually biocompatible but not bioactive after thermal treatment. In the present research, the promising properties of the new BG_Ca-K glass, with its low tendency to crystallize and high apatite-forming ability, allowed us to sinter the composites at a relatively low temperature with excellent effects in terms of bioactivity. In addition, it was possible to benefit from the good mechanical behaviour of Y-TZP, thus obtaining samples with microhardness values that were among the highest reported in the literature. After a detailed analysis regarding the thermal behaviour of the composite powders, the sintered bodies were fully characterized by means of x-ray diffraction, SEM equipped with EDS, density measurements, volumetric shrinkage determination, mechanical testing and in vitro evaluation in a simulated body fluid (SBF) solution. According to the experimental results, the presence of Y-TZP improved the mechanical performance. Meanwhile, the BG_Ca-K glass, which mainly preserved its amorphous structure after sintering, provided the composites with a good apatite-forming ability in SBF.

  11. Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation.

    PubMed

    Bellucci, Devis; Sola, Antonella; Anesi, Alexandre; Salvatori, Roberta; Chiarini, Luigi; Cannillo, Valeria

    2015-06-01

    Bioactive glass/hydroxyapatite composites for bone tissue repair and regeneration have been produced and discussed. The use of a recently developed glass, namely BG_Ca/Mix, with its low tendency to crystallize, allowed one to sinter the samples at a relatively low temperature thus avoiding several adverse effects usually reported in the literature, such as extensive crystallization of the glassy phase, hydroxyapatite (HA) decomposition and reaction between HA and glass. The mechanical properties of the composites with 80wt.% BG_Ca/Mix and 20wt.% HA are sensibly higher than those of Bioglass® 45S5 reference samples due to the presence of HA (mechanically stronger than the 45S5 glass) and to the thermal behaviour of the BG_Ca/Mix, which is able to favour the sintering process of the composites. Biocompatibility tests, performed with murine fibroblasts BALB/3T3 and osteocites MLO-Y4 throughout a multi-parametrical approach, allow one to look with optimism to the produced composites, since both the samples themselves and their extracts do not induce negative effects in cell viability and do not cause inhibition in cell growth.

  12. Determination of long-lived fission products and actinides in Savannah River site HLW sludge and glass for waste acceptance

    SciTech Connect

    Bibler, N.E.; Boyce, W.T.; Coleman, C.J.

    1997-10-01

    Savannah River Site (SRS) is currently immobilizing the radioactive, caustic, high-level waste sludge in Tank 51 into a borosilicate glass for disposal in a geologic repository. A requirement for repository acceptance is that SRS report the concentrations of certain fission product and actinide radionuclides in the glass. This paper presents measurements of many of these concentrations in both Tank 51 sludge and the final glass. The radionuclides were measured by inductively coupled plasma - mass spectrometry and {alpha}, {beta}, and {gamma} counting methods. Examples of the radionuclides are Sr-90, Cs-137, U-238, Pu-239, and Cm-244. Concentrations in the glass are 3.1 times lower due to dilution of the sludge with a nonradioactive glass forming frit in the vitrification process. Results also indicated that in both the sludge and glass the relative concentrations of the long lived fission products insoluble in caustic area in proportion to their yields from the fission of U-235 in the SRS reactors. This allowed the calculation of a fission yield scaling factor. This factor in addition to the sludge dilution factor can be used to estimate concentrations of waste acceptance radionuclides that cannot be measured in the glass.

  13. Compositional dependence of in vitro response to commercial silicate glasses

    NASA Astrophysics Data System (ADS)

    Jedlicka, Amy B.

    Materials are often incorporated into the human body, interacting with surrounding fluids, cells and tissues. The reactions that occur between a material and this surrounding biological system are not fundamentally understood. Basic knowledge of material biocompatibility and the controlling processes is lacking. This thesis examines material biocompatibility of a series of silicate-based glasses on a primary level determining cell response to material composition and durability. The silicate glass system studied included two BioglassRTM compositions with known biologically favorable response, two fiberglass compositions, with demonstrated 'not-unfavorable' in vitro response, a ternary soda-lime-silicate glass, a binary alkali silicate glass, and pure silica. Chemical durability was analyzed in three different fluids through solution analysis and material characterization. In vitro response to the substrates was observed. Cell behavior was then directly correlated to the material behavior in cell culture medium under the same conditions as the in vitro test, yet in the absence of cells. The effect of several physical and chemical surface treatments on substrates with predetermined biocompatible behavior was subsequently determined. The chemically durable glasses with no added B2O3 elicited similar cell response as the control polystyrene substrate. The addition of B2O3 resulted in polygonal cell shape and restricted cell proliferation. The non-durable glasses presented a dynamic surface to the cells, which did not adversely affect in vitro response. Extreme dissolution of the binary alkali silicate glass in conjunction with increased pH resulted in unfavorable cell response. Reaction of the Bioglass RTM compositions, producing a biologically favorable calcium-phosphate surface film, caused enhanced cell attachment and spreading. Surface energy increase due to sterilization procedures did not alter cellular response. Surface treatment procedures influencing substrate

  14. Mechanical spectrum study of glass transition by a composite method

    NASA Astrophysics Data System (ADS)

    Yuan, Y. H.; Zhang, L.; Wang, X. L.; Ying, X. N.; Yan, F.; Huang, Y. N.; Zhu, J. S.; Wang, Y. N.

    2009-11-01

    Normalized mechanical spectra of glycerol, 1,2-propanediol carbonate and poly(vinyl chloride)/di(2-ethyl-hexyl) phthalate (PVC/DOP) blends were studied in the temperature range from 100 to 300 K by a composite method. The dynamic glass transition was observed, which exhibits a peak of temperature-dependent loss modulus. The peak moves toward higher temperature with higher measuring frequency, which accords with the relaxation feature of the dynamic glass transition. Another characteristic temperature can be marked in the mechanical spectrum by the onset of storage modulus change, which is labeled as T gm. T gm is found to be nearly equal to the calorimetric glass transition temperature in glycerol, 1,2-propanediol carbonate and di(2-ethyl-hexyl) phthalate. As we expected, this onset temperature in the mechanical spectrum has an intimate relation with the calorimetric glass transition of materials, and it can be regarded as a representative when the calorimetric glass transition temperature is not available. Finally, normalized mechanical spectra of PVC/DOP blends with different PVC content were obtained and mechanical glass transition temperatures T gm were determined.

  15. Cytotoxicity of Resin Composites Containing Bioactive Glass Fillers

    PubMed Central

    Salehi, Satin; Gwinner, Fernanda; Mitchell, John C; Pfeifer, Carmem; Ferracane, Jack L

    2015-01-01

    Objective To determine the in vitro cytotoxicity of dental composites containing bioactive glass fillers. Methods Dental composites (50:50 Bis-GMA/TEGDMA resin: 72.5wt% filler, 67.5%Sr-glass and 5% OX50) containing different concentrations (0, 5, 10 and 15 wt %) of two sol-gel bioactive glasses, BAG65 (65 mole% SiO2, 31 mole% CaO, 4 mole% P2O5) and BAG62 (3 mole% F added) were evaluated for cytotoxicity using Alamar Blue assay. First, composite extracts were obtained from 7 day incubations of composite in cell culture medium at 37° C. Undifferentiated pulp cells (OD-21) were exposed to dilutions of the original extracts for 3, 5, and 7 days. Then freshly cured composite disks were incubated with OD-21 cells (n=5) for 2 days. Subsequently, fresh composite disks were incubated in culture medium at 37°C for 7 days, and then the extracted disks were incubated with OD-21 cells for 2 days. Finally, fresh composites disks were light cured for 3, 5, and 20 seconds and incubated with OD-21 cells (n=5) for 1, 3, 5, and 7 days. To verify that the three different curing modes produced different levels of degree of conversion (DC), the DC of each composite was determined by FTIR. Groups (n=5) were compared with ANOVA/Tukey’s (α≤0.05). Results Extracts from all composites significantly reduced cell viability until a dilution of 1:8 or lower, where the extract became equal to the control. All freshly-cured composites showed significantly reduced cell viability at two days. However, no reduction in cell viability was observed for any composite that had been previously soaked in media before exposure to the cells. Composites with reduced DC (3 s vs. 20 s cure), as verified by FTIR, showed significantly reduced cell viability. Significance The results show that the composites, independent of composition, had equivalent potency in terms of reducing the viability of the cells in culture. Soaking the composites for 7 days before exposing them to the cells suggested that the

  16. Thermal fatigue of ceramic fiber glass matrix composites

    SciTech Connect

    Zawada, L.P.; Wetherhold, R.C.

    1989-10-01

    The thermal fatigue (TF) of ceramic matrix composites (CMC) introduces stresses within the composite due to the inevitable thermal expansion mismatch of fiber and matrix; this will affect the lifetime and dimensional stability of the composite. A Nicalon/glass composite has been subjected to rapid, controlled TF from 250-700 C and 250-800 C under no load and dead load conditions in order to illustrate a variety of elastic and inelastic cyclic strain conditions. After TF, the surfaces of the composites were characterized using SEM for evidence of thermal damage and microcracking. The composites were then tested for flexural modulus and strength. Results from the mechanical properties tests are present and correlated with observed thermal degradation. 7 refs.

  17. Crystallization behavior and glass formation of selected lunar compositions.

    NASA Technical Reports Server (NTRS)

    Scherer, G.; Hopper, R. W.; Uhlmann, D. R.

    1972-01-01

    The kinetics of crystal growth have been determined over a wide range of temperature, from 800 to 1219 C, for lunar compositions 14259 and 14310. At all temperatures for both compositions the extent of crystal growth is found to be a linear function of time. For both materials, the growth rate versus temperature relations exhibit the form generally found with glass-forming materials. At all temperatures measured, the crystal growth rate of composition 14259 is smaller than that of composition 14310. The maximum growth rate for both compositions occurs at a temperature of about 1120 C. The growth rate data are combined with viscosity data obtained on the same compositions to construct the reduced growth rate versus undercooling relations.

  18. Interface Engineering in Alumina/Glass Composites

    DTIC Science & Technology

    1992-02-29

    BN coating applied to the fibers disappeared during the fabrication process. Coating thicknesses as much as 0.3 jim was found to be assimilated during...E-200 Alumina Fiber Tin Dioxide ’ -300 - PD - 166 coating,30 -1(0.8 un) -400 00, -600 " 9.4 9.6 9.S 10.0 10.2 r ( jim ) Fig. 2. Fracture surface of...of the specimens Chemical composition’(wt.%) were polished, with 0.5 jim alumina powder, to mini- .i. 71 mize surface flaw effects. Strengih

  19. Lithium isotope composition of basalt glass reference material.

    PubMed

    Kasemann, Simone A; Jeffcoate, Alistair B; Elliott, Tim

    2005-08-15

    We present data on the lithium isotope compositions of glass reference materials from the United States Geological Survey (USGS) and the National Institute of Standards and Technology (NIST) determined by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS), thermal ionization mass spectrometry (TIMS), and secondary ionization mass spectrometry (SIMS). Our data on the USGS basaltic glass standards agree within 2 per thousand, independent of the sample matrix or Li concentration. For SIMS analysis, we propose use of the USGS glasses GSD-1G (delta(7)Li 31.14 +/- 0.8 per thousand, 2sigma) and BCR-2G (delta(7)Li 4.08 +/- 1.0 per thousand, 2sigma) as suitable standards that cover a wide range of Li isotope compositions. Lithium isotope measurements on the silica-rich NIST 600 glass series by MC-ICPMS and TIMS agree within 0.8 per thousand, but SIMS analyses show systematic isotopic differences. Our results suggest that SIMS Li isotope analyses have a significant matrix bias in high-silica materials. Our data are intended to serve as a reference for both microanalytical and bulk analytical techniques and to improve comparisons between Li isotope data produced by different methodologies.

  20. Glass fibres reinforced polyester composites degradation monitoring by surface analysis

    NASA Astrophysics Data System (ADS)

    Croitoru, Catalin; Patachia, Silvia; Papancea, Adina; Baltes, Liana; Tierean, Mircea

    2015-12-01

    The paper presents a novel method for quantification of the modifications that occur on the surface of different types of gel-coated glass fibre-reinforced polyester composites under artificial UV-ageing at 254 nm. The method implies the adsorption of an ionic dye, namely methylene blue, on the UV-aged composite, and computing the CIELab colour space parameters from the photographic image of the coloured composite's surface. The method significantly enhances the colour differences between the irradiated composites and the reference, in contrast with the non-coloured ones. The colour modifications that occur represent a good indicative of the surface degradation, alteration of surface hydrophily and roughness of the composite and are in good correlation with the ATR-FTIR spectroscopy and optical microscopy results. The proposed method is easier, faster and cheaper than the traditional ones.

  1. Development of a glass polymer composite sewer pipe from waste glass. Final report

    SciTech Connect

    Rayfiel, R.; Kukacka, L.E.

    1980-02-01

    A range of polymer-aggregate composites for applications in industry which appear to be economically attractive and contribute to energy conservation were developed at BNL. Waste glass is the aggregate in one such material, which is called glass-polymer-composite (GPC). This report assays the economics and durability of GPC in piping for storm drains and sewers. The properties of the pipe are compared statistically with the requirements of industrial specifications. These establish the raw materials requirements. The capital and operating costs for producing pipe are then estimated. Using published sales values for competing materials, the return on investment is calculated for two cases. The ultimate energy requirement of the raw materials in GPC is compared with the corresponding requirement for vitrified clay pipe. The strengths of GPC, reinforced concrete, vitrified clay and asbestos cement pipe are compared after extended exposure to various media. The status of process and product development is reviewed and recommendations are made for future work.

  2. High temperature behavior of polypropylene and polypropylene / glass composites

    NASA Astrophysics Data System (ADS)

    Shipley, Katherine Mary Herber

    Solid state die drawing of polymer matrix composite materials offers an opportunity to make products that cannot be produced by any other method. This is done by heating a composite billet to a temperature just below the melting point and drawing it through a heated converging die by pulling from the downstream side. Since this is done at high temperatures, it is imperative to understand the behavior of the polymer and the composites at high temperature. Therefore, in this work, the stress-strain behavior of neat polypropylene and polypropylene composites with glass flake and glass bead fillers was studied at 23°C, 130°C, and 145°C. The onset of debonding was found to occur at a lower stress and strain for the composites tested at higher temperature, while the loss of reinforcement was slower at the elevated temperatures. The interfacial interaction between the filler and matrix was also determined to be greater at elevated temperatures. The presence of filler particles also changed the character of the stress-strain curves at higher temperatures. Specifically, the filler induced a sharper neck region in the composites at elevated temperature. Annealing for one hour at temperatures between 130°C and 145°C produced a secondary, lower melting temperature peak in the DSC curves, which increased in prominence with increasing temperature. This increase in prominence was greater for the composites than for the neat polymer. Finally, the onset of debonding was studied using transverse strain vs. stress curves for the two composites. The debonding stress decreased with increasing temperature for both materials, and it was determined that stress amplification at the interface is greater for the flake composite than for the bead composite.

  3. 2014 Enhanced LAW Glass Property-Composition Models, Phase 2

    SciTech Connect

    Muller, Isabelle; Pegg, Ian L.; Joseph, Innocent; Gilbo, Konstantin

    2015-10-28

    This report describes the results of testing specified by the Enhanced LAW Glass Property-Composition Models, VSL-13T3050-1, Rev. 0 Test Plan. The work was performed in compliance with the quality assurance requirements specified in the Test Plan. Results required by the Test Plan are reported. The te4st results and this report have been reviewed for correctness, technical adequacy, completeness, and accuracy.

  4. Surface coatings of bioactive glasses on high strength ceramic composites

    NASA Astrophysics Data System (ADS)

    Martorana, S.; Fedele, A.; Mazzocchi, M.; Bellosi, A.

    2009-04-01

    Dense and ultrafine alumina-zirconia composites (Al 2O 3-16 wt%ZrO 2 and ZrO 2-20 wt%Al 2O 3) are developed and characterized for load bearing prosthetic applications. The improvement of the ceramic/bone interface, namely of the ceramic bioactivity, is performed by a glass coating on the surface of the composites. A new composition is used to produce the glass powder, by melting at 1550 °C the mixture of oxide raw materials. The processing to obtain a homogeneous and adherent coating on the ceramic substrates is investigated: the optimal temperature for the glazing treatment is 1200 °C. The microstructure of the coating and of the ceramic/coating interface, the adhesion and some mechanical properties of the prepared glass and of the coating are analyzed. Besides, the in vitro bioactive responses, by incubation of osteoblast-like cells on the coated samples, are evaluated: positive results are confirmed after 24 h and 72 h.

  5. Spectroscopic determination of the in-situ composition of epoxy matrices in glass fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Antoon, M. K.; Zehner, B. E.; Koenig, J. L.

    1980-01-01

    Computerized infrared analysis is applied to the characterization of a glass-reinforced crosslinked polyester. The method of factor analysis determines the number of independent components which constitute the polymeric matrix. Subsequently, the spectra of those components are fitted by a least-squares criterion to spectra of the multicomponent matrix, or, if the glass spectrum is included as an additional component, to the spectra of composites. The least-squares coefficients yield the matrix composition in terms of the initial reactant composition and the extent of crosslinking.

  6. Electrical conductivity of a bulk metallic glass composite

    NASA Astrophysics Data System (ADS)

    Wang, K.; Fujita, T.; Chen, M. W.; Nieh, T. G.; Okada, H.; Koyama, K.; Zhang, W.; Inoue, A.

    2007-10-01

    The authors report the electrical conductivity of a bulk metallic glass (BMG) based composite fabricated by warm extrusion of a mixture of gas-atomized glassy powders and ductile α-brass powders. The conductivity of the BMG composite can be well modeled by the percolation theory and the critical percolation threshold volume of the high-conductive brass phase was estimated to be about 10%. It was found that the short irregular brass fibers can dramatically reduce the resistivity of the BMG, leading to an improved material with both high strength and good conductivity for functional applications.

  7. Morphology of Iron-Oxide Nanoparticle-Dispersed Glass Composites

    NASA Astrophysics Data System (ADS)

    Taketomi, Susamu

    2004-10-01

    We obtained dispersed-nanocrystal/glass composites by impregnating amorphous yttrium iron garnet (YIG) nanoparticles (produced by an alkoxide method) into the 49 nm diameter pores in the spongelike structure of porous silica glass (controlled pore glass or CPG) followed by heat treatment at 1000°C for 0.1 h. We observed the surface and cross section of the sample by field emission scanning electron microscopy (FE-SEM). The backscattered electron image (BSEI) of the sample surface clearly showed the nanoparticles while the secondary electron image (SEI) showed them obscurely. A similar observation of the sample cross section revealed that the CPG fused together ˜2 μm in depth from the surface while its inner core preserved the spongelike network structure. The particles were independently dispersed with sizes ranging from 20 nm to 40 nm in this fused shell with an average particle density of approximately 100 μm-2. No particles were found in the inner core. Even in the fused shell, no particles were found in those areas in which the spongelike structure was preserved. It is concluded that the particles act as seeds for triggering the fusion of the spongelike glass.

  8. Development and characterization of charcoal filled glass-composite materials made from SLS waste glass

    NASA Astrophysics Data System (ADS)

    Mustafa, Zaleha; Ismail, Mohd Ikwan; Juoi, Jariah Mohd; Shamsudin, Zurina; Rosli, Zulkifli M.; Fadzullah, Siti Hajar Sheikh Md; Othman, Radzali

    2015-07-01

    Glass-composite materials were prepared from the soda lime silicate (SLS) waste glass, ball clay and charcoal powder at various carbon content, of 1wt. % C, 5wt.% C and 10 wt.% C, fired to temperature of 850 °C as an alternative method for land site disposal method as well as effort for recycling waster glass. The effect of charcoal powder on the porosity, water absorption and hardness properties were studied. Phase analysis studies revealed the present of quartz (ICDD: 00001-0649, 2θ = 25.6° and 35.6°), cristobalite (ICDD 00004-0379, 2θ = 22.0° and 38.4°) and wollastonite (ICDD 00002-0689, 2θ = 30.1° and 26.9°). The results showed that the composite prepared from the mixture of 84 wt.% SLS, 1 wt.% of charcoal and 15 wt.% ball clay containing average pore size of 10 µm has projected optimized physical and mechanical properties. It is observed this batch has projected lowest water absorption percentage of 0.76 %, lowest porosity percentage of 1.76 %, highest 4.6 GPa for Vickers Microhardness.

  9. Thermal expansion of an epoxy-glass microsphere composite

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Burks, H. D.

    1977-01-01

    The thermal expansion of a composite of epoxy (diglycidyl ether of bisphenol A) and solid glass microspheres was investigated. The microspheres had surfaces which were either untreated or treated with a silicone release agent, an epoxy coupling agent, or a general purpose silane coupling agent. Both room temperature (about 300 K) and elevated temperature (about 475 K) cures were used for the epoxy. Two microsphere size ranges were used, about 50 microns, which is applicable in filled moldings, and about 125 microns, which is applicable as bond line spacers. The thermal expansion of the composites was measured from 300 to 350 K or from 300 to 500 K, depending on the epoxy cure temperature. Measurements were made on composites containing up to .6 volume fraction microspheres. Two predictive models, which required only the values of thermal expansion of the polymer and glass and their specific gravities, were tested against the experimental data. A finite element analysis was made of the thermal strain of a composite cell containing a single microsphere surrounded by a finite-thickness interface.

  10. Filament winding S-glass/polyimide resin composite processing studies

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Jones, R. J.

    1974-01-01

    The work performed in selecting a TRW A-type polyimide resin that would be suitable for fabrication of filament wound reinforced plastic structures is described. Several different formulations were evaluated after which the P105AC formulation was selected as the most promising. Procedures then were developed for preparing P105AC/S-glass roving prepreg and for fabricating filament wound structural composites. Composites were fabricated and then tested in order to obtain tensile and shear strength information. Small, closed-end cylindrical pressure vessels then were fabricated using a stainless steel liner and end fittings with a P105AC/S-glass polar wound overwrap. These pressure vessels were cured in an air circulating oven without augmented pressure. It is concluded that the P105AC resin system is suitable for filament winding; that low void content, high strength composites are obtained by the filament winding process; and that augmented pressure is not required to effect the fabrication of filament wound P105AC composites.

  11. Quenching Effects on Iron Site Partitioning in the Apollo 17 Orange Glass Composition

    NASA Technical Reports Server (NTRS)

    Dyar, M. D.

    1985-01-01

    Mare petrogenesis and the structure of the lunar interior were studied. Analyses of the spectral signatures of glasses was useful to remote sensing applications in areas of the moon where glass is in significant proportions in the lunar soil. The studies provided information on Fe site occupancies in glasses, which are used to construe oxygen fugacities at the lunar surface. Data were obtained through work on synthetic analogues of lunar glasses. However, recent Mossbauer studies of an Apollo 15 green glass composition have shown that synthetic glasses are extremely sensitive to variations in quenching media. Glass structure and Fe(3+)/Fe(2+) ratios are strongly controlled by quenching conditions, which may mask the effects of the original glass' formation temperature or oxygen partial pressure. Synthetic glasses were often run at low fugacities on Pt wires. The effects of quench media on the Apollo 17 orange glass composition are considered.

  12. [Characteristics of chemical composition of glass finds from the Qiemo tomb sites on the Silk Road].

    PubMed

    Cheng, Qian; Guo, Jin-Long; Wang, Bo; Cui, Jian-Feng

    2012-07-01

    Qiemo was an ancient country on the south branch of the Silk Road. The Zagunluke tomb site is located at the Qiemo County of the Xinjiang Uygur Autonomous Region. Glass beads and only colourless glass cup were excavated from the 3rd cultural layer of the tomb site M133 and M49, dated between the 1st AD-6th AD. LA-ICP-AES was applied to analyse chemical composition of these glass finds with the corning glass as reference. According to the result, characteristics of chemical composition are very similar to typical soda-lime glass, which indicates the glasses were imported productions from the west. These soda-lime glasses were divided into two groups in terms of flux source: natron glass and plant ash glass. This analytical research indicates the history of glass trade and communication between the East and the West on the Silk Road.

  13. Compositional landscape for glass formation in metal alloys.

    PubMed

    Na, Jong Hyun; Demetriou, Marios D; Floyd, Michael; Hoff, Andrew; Garrett, Glenn R; Johnson, William L

    2014-06-24

    A high-resolution compositional map of glass-forming ability (GFA) in the Ni-Cr-Nb-P-B system is experimentally determined along various compositional planes. GFA is shown to be a piecewise continuous function formed by intersecting compositional subsurfaces, each associated with a nucleation pathway for a specific crystalline phase. Within each subsurface, GFA varies exponentially with composition, wheres exponential cusps in GFA are observed when crossing from one crystallization pathway to another. The overall GFA is shown to peak at multiple exponential hypercusps that are interconnected by ridges. At these compositions, quenching from the high-temperature melt yields glassy rods with diameters exceeding 1 cm, whereas for compositions far from these cusps the critical rod diameter drops precipitously and levels off to 1 to 2 mm. The compositional landscape of GFA is shown to arise primarily from an interplay between the thermodynamics and kinetics of crystal nucleation, or more precisely, from a competition between driving force for crystallization and liquid fragility.

  14. Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration.

    PubMed

    Kim, Hae-Won; Lee, Eun-Jung; Jun, In-Kook; Kim, Hyoun-Ee; Knowles, Jonathan C

    2005-10-01

    Phosphate-based glass (P-glass) and poly(epsilon-caprolactone) (PCL) composites were fabricated in a sheet form by solvent extraction and thermal pressing methods, and the antibiotic drug Vancomycin was loaded within the composites for use as a hard-tissue regenerative. The degradation and drug-release rate of the composites in vitro were tailored by modifying the glass composition: 0.45 P(2)O(5)-x CaO-(0.55-x)Na(2)O, where x=0.2, 0.3, 0.4, and 0.5. Compared to pure PCL, all the P-glass/PCL composites degraded to a higher degree, and the composite with lower-CaO glass showed a higher material loss. This was attributed mainly to the dissolution of the glass component. The glass dissolution also increased the degradation of PCL component in the composites. The Vancomycin release from the composites was strongly dependent on the glass composition. Drug release in pure PCL was initially abrupt and flattened out over a prolonged period. However, glass/PCL composites (particularly in the glass containing higher-CaO) exhibited a reduced initial burst and a higher release rate later. Preliminary cell tests on the extracts from the glass/PCL composites showed favorable cell proliferation, but the level was dependent on the ionic concentration of the extracts. The cell proliferation on the diluted extracts from the composite with higher-CaO glass was significantly higher than that on the blank culture dish. These observations confirmed that the P-glass/PCL composites are potentially applicable for use as hard-tissue regeneration and wound-healing materials because of their controlled degradation and drug-release profile as well as enhanced cell viability.

  15. The relationship between glass viscosity and composition: A first principles model for vitrification of nuclear waste

    SciTech Connect

    Jantzen, C.M.

    1990-12-31

    The Defense Waste Processing Facility will incorporate high-level liquid waste into borosilicate glass for stabilization and permanent disposal in a geologic repository. The viscosity of the melt determines the rate of melting of the raw feed, the rate of gas bubble release due to foaming and fining, the rate of homogenization, and thus, the quality of the glass produced. The viscosity of the glass is in turn, a function of both glass composition and temperature. A model describing the viscosity dependence on composition, temperature, and glass structure (bonding) has been derived for glasses ranging from pure frits to frit plus 35 wt % simulated waste. 17 refs., 37 figs.

  16. The relationship between glass viscosity and composition: A first principles model for vitrification of nuclear waste

    SciTech Connect

    Jantzen, C.M.

    1990-01-01

    540The Defense Waste Processing Facility will incorporate high-level liquid waste into borosilicate glass for stabilization and permanent disposal in a geologic repository. The viscosity of the melt determines the rate of melting of the raw feed, the rate of gas bubble release due to foaming and fining, the rate of homogenization, and thus, the quality of the glass produced. The viscosity of the glass is in turn, a function of both glass composition and temperature. A model describing the viscosity dependence on composition, temperature, and glass structure (bonding) has been derived for glasses ranging from pure frits to frit plus 35 wt % simulated waste. 17 refs., 37 figs.

  17. Sol/Gel Processing Techniques for Glass Matrix Composites.

    DTIC Science & Technology

    1987-11-01

    development of a general technique (i.e., Pyrex is less susceptible to devitrification than SiO2 or TiO2 -SiO 2 ). In addition. the properties of these sol / gel ...of a sol / gel process for SIC 2 and SiO2 - TiO2 - together with a data base for their densification - are prerequisite to the successful fabrication of...S~%ad~ 5~ ~ ~ *~~~~;:>;::L-; 1: ’*~~’~ ’S. AFWL-TN-86-59 AFWL-TN- 86-59 00 SOL / GEL PROCESSING TECHNIQUES FOR GLASS MATRIX COMPOSITES 0) C. G

  18. Plastic stability of metallic glass composites under tension

    NASA Astrophysics Data System (ADS)

    Wu, F. F.; Li, S. T.; Zhang, G. A.; Wu, X. F.; Lin, P.

    2013-10-01

    The plastic stability of metallic glass composites (MGCs) under tension was investigated. There exists a critical normalized strain-hardening rate determining the plastic stability of MGCs: if the normalized strain-hardening rate is smaller than the critical normalized strain-hardening rate, the plastic instability occurs, thus, leading to localized plastic strain in MGCs; otherwise the plastic stability is in charge of the plastic deformation of the MGCs, so the strain localization or necking is effectively suppressed, which results in homogeneous elongation in MGCs.

  19. High Temperature Liquid and Glass Precursors for Oxyphosphate Ceramic Composites

    DTIC Science & Technology

    2007-07-01

    model . We also mapped out the general liquidus surfaces for the ternary A120 3- A16SiEO 1 3-LaPO4 system , although refinements are needed. 2. We...temperatures for the binary AI20 3-LaPO4 (alumina-monazite) and A16Si 20 13-LaPO4 (mullite-monazite) systems were determined and fitted to a thermodynamic...determined the glass transition and crystallization temperatures for the A16Si 20 3- LaPO4 system as a function of composition and have identified the

  20. Leaching behavior of microtektite glass compositions in sea water and the effect of precipitation on glass leaching

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The present study attempts to account for the slow corrosion rates of microtektite glass in nature by comparing the leach rates of synthetic microtektite glass samples in deionized water and in sea-water, respectively. In order to obtain systematic data about leachant composition effects, leach tests were also carried out with synthetic leachant compositions enriched with respect to silica or depleted with respect to certain major components of sea-water (Mg, Ca).

  1. Mechanical performance of novel bioactive glass containing dental restorative composites

    PubMed Central

    Khvostenko, D.; Mitchell, J. C.; Hilton, T. J.; Ferracane, J. L.; Kruzic, J. J.

    2013-01-01

    Objectives Bioactive glass (BAG) is known to possess antimicrobial properties and release ions needed for remineralization of tooth tissue, and therefore may be a strategic additive for dental restorative materials. The objective of this study was to develop BAG containing dental restorative composites with adequate mechanical properties comparable to successful commercially available composites, and to confirm the stability of these materials when exposed to a biologically challenging environment. Methods Composites with 72 wt.% total filler content were prepared while substituting 0–15% of the filler with ground BAG. Flexural strength, fracture toughness, and fatigue crack growth tests were performed after several different soaking treatments: 24 hours in DI water (all experiments), two months in brain-heart infusion (BHI) media+S. mutans bacteria (all experiments) and two months in BHI media (only for flexural strength). Mechanical properties of new BAG composites were compared along with the commercial composite Heliomolar by two-way ANOVA and Tukey’s multiple comparison test (p≤0.05). Results Flexural strength, fracture toughness, and fatigue crack growth resistance for the BAG containing composites were unaffected by increasing BAG content up to 15% and were superior to Heliomolar after all post cure treatments. The flexural strength of the BAG composites was unaffected by two months exposure to aqueous media and a bacterial challenge, while some decreases in fracture toughness and fatigue resistance were observed. The favorable mechanical properties compared to Heliomolar were attributed to higher filler content and a microstructure morphology that better promoted the toughening mechanisms of crack deflection and bridging. Significance Overall, the BAG containing composites developed in this study demonstrated adequate and stable mechanical properties relative to successful commercial composites. PMID:24050766

  2. Effects of varying base glass composition on the optical properties of lead borate glasses doped with rare earth ions

    NASA Astrophysics Data System (ADS)

    Heidorn, William D.

    Rare Earth (RE) doped lead borate glasses are expected to exhibit a compositional dependence in their optical properties due to the changes induced by variations in the structure of the base glass with increasing lead oxide content. A series of lead borate glasses with the composition xPbO:(99.5 - x)B2O 3 (x = 29.5 to 69.5 in steps of 10 mol%) doped with 0.5 mol% Sm2O3, Er2O3, and Ho2O3 were prepared using the melt quench technique followed by 3 hours of annealing near the glass transition temperature. Optical absorption and fluorescence spectra of these RE doped lead borate glasses were analyzed using Judd-Ofelt theory. The compositional dependence of Judd-Ofelt intensity parameters, O t (t = 2, 4, 6), were determined and were then used to calculate the radiative transition probability of the excited states, the total radiative transition probability, branching ratios, and radiative lifetime of the glasses. From the fluorescence spectra the stimulated emission cross section, and Stark splitting of the excited states were calculated as a function of glass composition. A fourth set of samples with composition xPbO:(99 - x)B2O 3(x = 29 to 69 in steps of 10 mol%) co-doped with 0.5 mol% Er2 O3 and Ho2O3 were also prepared and the effects of co-doping on the absorption and fluorescence were analyzed. In all the glass systems studied, it was found that the optical properties are strongly influenced by structural changes arising from compositional variation. Er3+ transitions exhibit large stimulated cross section suggesting the possible utilization of these materials in laser applications. Keywords: Lead and bismuth borate glasses, fluorescence, optical absorption, Sm3+, Ho3+, Er3+ ions, Judd-Ofelt intensity parameters, stimulated emission cross section.

  3. Sulfur systematics in model glass compositions from West Valley

    SciTech Connect

    Schreiber, H.D.; Schreiber, C.W.; Sisk, E.D.; Kozak, S.J.

    1994-12-31

    Sulfur is incorporated into model glass melts, representative of West Valley compositions for the vitrification of high level nuclear waste, as the sulfate ion under oxidizing conditions and as the sulfide ion under reducing conditions. A narrow range of oxygen fugacities, around 10{sup {minus}8.8} atm at 1150{degrees}C, under which the two redox forms of sulfur coexist is also the minimum in the sulfur solubility. Under the redox conditions prescribed for waste processing, sulfur dissolves as the sulfate ion. The capacity to dissolve sulfur as sulfate is about 1 to 2.5 wt% sulfur; an immiscible sulfate layer floats on the glass melt if waste loading introduces sulfur contents greater than this under oxidizing conditions. If the waste/melt system is exposed to sufficiently reducing conditions, the first phase to separate from the melt is likely nickel sulfide. The presence of the immiscible sulfate or sulfide layer buffers the iron redox ratio of the resulting glass.

  4. Durability-Based Design Criteria for a Chopped-Glass-Fiber Automotive Structural Composite

    SciTech Connect

    Battiste, R.L.; Corum, J.M.; Ren, W.; Ruggles, M.B.

    1999-11-01

    This report provides recommended durability-based design criteria for a chopped-glass-fiber reinforced polymeric composite for automotive structural applications. The criteria closely follow the framework of an earlier criteria document for a continuous-strand-mat (CSM) glass-fiber reference composite. Together these design criteria demonstrate a framework that can be adapted for future random-glass-fiber composites for automotive structural applications.

  5. Graphite fiber reinforced thermoplastic glass matrix composites for use at 1000 F

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Minford, E. J.

    1985-01-01

    The fabrication and properties of the graphite fiber reinforced glass matrix composite system are described. By reinforcing borosilicate glass with graphite fibers it has been possible to develop a composite whose properties can be compared favorably with resin matrix counterparts. Both high elastic modulus and strength can be obtained and maintained to temperatures of approximately 600 C. In addition, composite dimensional stability is superior to resin or metal matrix systems due to the low thermal expansion behavior of the glass matrix.

  6. CO2 Laser Cutting of Glass Fiber Reinforce Polymer Composite

    NASA Astrophysics Data System (ADS)

    Fatimah, S.; Ishak, M.; Aqida, S. N.

    2012-09-01

    The lamination, matrix properties, fiber orientation, and relative volume fraction of matrix of polymer structure make this polymer hard to process. The cutting of polymer composite using CO2 laser could involve in producing penetration energy in the process. Identification of the dominant factors that significantly affect the cut quality is important. The objective of this experiment is to evaluate the CO2 spot size of beam cutting for Glass Fiber Reinforce Polymer Composite (GFRP). The focal length selected 9.5mm which gave smallest focus spot size according to the cutting requirements. The effect of the focal length on the cut quality was investigated by monitoring the surface profile and focus spot size. The beam parameter has great effect on both the focused spot size and surface quality.

  7. Ion Dynamics in Organic-Inorganic Composite Superionic Conductor Glasses

    SciTech Connect

    Asayama, Ryo; Kuwata, Naoaki; Kawamura, Junichi

    2006-05-05

    Ionic conductivity of organic-inorganic composite superionic conductor glasses composed of AgI and alkylammoniumiodides is measured as a function of frequency, temperature and composition. A clear transition from insulator to superionic conductor is confirmed at the volume fraction {phi} of AgI is about 35 %. The dc component of the conductivity is fitted to the {sigma}{approx}({phi}-{phi}c){mu} with {phi}c=0.36, {mu}=2.5 for the present data. Near the percolation threshold, a power-law type frequency dependence of {omega}n (n{approx}0.67) is seen in mid frequency and {omega}1.0 at higher frequency corresponding to the constant loss region power-law is observed. The activation energies and preexponential factors derived from the temperature dependence increase from 0.3 to 0.7 eV approaching to the threshold. From these results, the ion dynamics in these glasses can be explained by the static site percolation theory at first approximation, but require the consideration on the chemical bond variation between the Ag and I modified by the organic ions.

  8. Porous polymer/bioactive glass composites for soft-to-hard tissue interfaces.

    PubMed

    Zhang, Kai; Ma, Yue; Francis, Lorraine F

    2002-09-15

    Porous composites consisting of a polysulfone (or cellulose acetate) matrix and bioactive glass particles were prepared by phase separation techniques. Microstructures were designed for potential application as an interconnect between artificial cartilage and bone. The effects of polymer type, concentration and molecular weight, as well as bioactive glass size and content, on the microstructures of the composites were studied. The composites have asymmetric structures with dense top layers and porous structures beneath. The microstructural features depend most strongly on the type of polymer, the interaction between the polymer and bioactive glass, and the glass content. The dense top layer could be removed by abrasion to make a structure with large pores (20-150 microm) exposed. Composites were immersed in simulated body fluid at body temperature. The growth of hydroxycarbonate apatite inside and on the composites demonstrates their potential for integration with bone. Composite modulus and break strength increased with increasing glass content due to the change in composition and pore content.

  9. 49 CFR 178.523 - Standards for composite packagings with inner glass, porcelain, or stoneware receptacles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... expanded plastic packaging; and (11) 6PH2 for glass, porcelain, or stoneware receptacles within a... glass, porcelain, or stoneware receptacles. 178.523 Section 178.523 Transportation Other Regulations... Packaging Standards § 178.523 Standards for composite packagings with inner glass, porcelain, or...

  10. 49 CFR 178.523 - Standards for composite packagings with inner glass, porcelain, or stoneware receptacles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... glass, porcelain, or stoneware receptacles. 178.523 Section 178.523 Transportation Other Regulations... Standards § 178.523 Standards for composite packagings with inner glass, porcelain, or stoneware receptacles..., porcelain, or stoneware: (1) 6PA1 for glass, porcelain, or stoneware receptacles within a protective...

  11. 49 CFR 178.523 - Standards for composite packagings with inner glass, porcelain, or stoneware receptacles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... glass, porcelain, or stoneware receptacles. 178.523 Section 178.523 Transportation Other Regulations... Standards § 178.523 Standards for composite packagings with inner glass, porcelain, or stoneware receptacles..., porcelain, or stoneware: (1) 6PA1 for glass, porcelain, or stoneware receptacles within a protective...

  12. 49 CFR 178.523 - Standards for composite packagings with inner glass, porcelain, or stoneware receptacles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... glass, porcelain, or stoneware receptacles. 178.523 Section 178.523 Transportation Other Regulations... Standards § 178.523 Standards for composite packagings with inner glass, porcelain, or stoneware receptacles..., porcelain, or stoneware: (1) 6PA1 for glass, porcelain, or stoneware receptacles within a protective...

  13. 49 CFR 178.523 - Standards for composite packagings with inner glass, porcelain, or stoneware receptacles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... glass, porcelain, or stoneware receptacles. 178.523 Section 178.523 Transportation Other Regulations... Standards § 178.523 Standards for composite packagings with inner glass, porcelain, or stoneware receptacles..., porcelain, or stoneware: (1) 6PA1 for glass, porcelain, or stoneware receptacles within a protective...

  14. Low Temperature Thermal Conductivity of Woven Fabric Glass Fibre Composites

    NASA Astrophysics Data System (ADS)

    Kanagaraj, S.; Pattanayak, S.

    2004-06-01

    Fibre reinforced composites are replacing conventional materials due to its compatible and superior properties at low temperatures. Transverse thermal conductivity of plain fabric E-glass/Epoxy composites with the fibre concentrations of 32.5%, 35.2%, 39.2% and 48.9% has been studied in a GM-refrigerator based experimental setup using guarded hotplate technique. Experiments are carried out with the sets of stability criteria. This paper presents the investigation of the influence of the fibre concentration and temperature on the thermal conductivity of fabric composites from 30 K to 300K. It is observed from the experimental results that thermal conductivity increases with the increase of temperature and also with fibre concentration with different rate in different temperature range. The series model has been used to predict the thermal conductivity and compared with the experimental results. It is observed that below the crossover temperature of the composites, which varies from 150-225K depending upon their fibre concentration, the experimental results are within 10% with that of predicted values. The possible causes of variation are analyzed. The physical phenomenon behind the temperature dependence of thermal conductivity is discussed in detail.

  15. Low Temperature Thermal Conductivity of Woven Fabric Glass Fibre Composites

    SciTech Connect

    Kanagaraj, S.; Pattanayak, S.

    2004-06-28

    Fibre reinforced composites are replacing conventional materials due to its compatible and superior properties at low temperatures. Transverse thermal conductivity of plain fabric E-glass/Epoxy composites with the fibre concentrations of 32.5%, 35.2%, 39.2% and 48.9% has been studied in a GM-refrigerator based experimental setup using guarded hotplate technique. Experiments are carried out with the sets of stability criteria. This paper presents the investigation of the influence of the fibre concentration and temperature on the thermal conductivity of fabric composites from 30 K to 300K. It is observed from the experimental results that thermal conductivity increases with the increase of temperature and also with fibre concentration with different rate in different temperature range. The series model has been used to predict the thermal conductivity and compared with the experimental results. It is observed that below the crossover temperature of the composites, which varies from 150-225K depending upon their fibre concentration, the experimental results are within 10% with that of predicted values. The possible causes of variation are analyzed. The physical phenomenon behind the temperature dependence of thermal conductivity is discussed in detail.

  16. Stress Corrosion Cracking in Polymer Matrix Glass Fiber Composites

    NASA Astrophysics Data System (ADS)

    Kosak, Jonathan

    With the use of Polymer Matrix Glass Fiber Composites ever expanding, understanding conditions that lead to failure before expected service life is of increasing importance. Stress Corrosion Cracking (SCC) has proven to be one such example of conditions found in use in high voltage transmission line applications that leads to brittle fracture of polymer matrix composites. SCC has been proven to be the result of acid buildup on the lines due to corona discharges and water buildup. This acid leaches minerals from the fibers, leading to fracture at low loads and service life. In order to combat this problem, efforts are being made to determine which composites have greater resistance to SCC. This study was used to create a methodology to monitor for damage during SCC and classify damage by mechanism type (matrix cracking and fiber breaking) by using 4-point SCC bend testing, 3-point bend testing, a forward predictive model, unique post processing techniques, and microscopy. This would allow a classification in composite resistance to SCC as well as create a methodology for future research in this field. Concluding this study, only matrix cracking was able to be fully classified, however, a methodology was developed for future experimentation.

  17. Clinical performance of Class I nanohybrid composite restorations with resin-modified glass-ionomer liner and flowable composite liner: A randomized clinical trial

    PubMed Central

    Suhasini, Krishtipati; Madhusudhana, Koppolu; Suneelkumar, Chinni; Lavanya, Anumula; Chandrababu, K. S.; Kumar, Perisetty Dinesh

    2016-01-01

    Background: Liners play a vital role in minimizing polymerization shrinkage stress by elastic bonding concept and increase the longevity and favorable outcome for composite restorations. Aims: The aim of this study was to evaluate the clinical performance of nanohybrid composite restorations using resin-modified glass-ionomer and flowable composite liners. Settings and Design: A single-centered, double-blinded randomized clinical trial, with split-mouth design and equal allocation ratio that was conducted in the Department of Conservative Dentistry and Endodontics. Materials and Methods: In forty patients, a total of eighty Class I restorations were placed with resin-modified glass-ionomer cement (RMGIC) liner (FUJI II LC, GC America) in one group and flowable composite liner (smart dentin replacement/SDR, Dentsply Caulk, Milford, DE, USA) in another group. All restorations were clinically evaluated by two examiners, immediately (baseline), 3, 6, and 12 months using US Public Health Service modified criteria. Statistical Analysis Used: Statistical analysis was performed using McNemar's test (P < 0.05). Results: There was no significant difference in the color match, marginal discoloration, surface roughness, and marginal adaptation. Restorations with RMGIC liner group show 20% Bravo scores on anatomic form at 12 months but are still clinically acceptable. Conclusion: Nanohybrid composite restorations with RMGIC (Fuji II LC) and flowable composite liner (SDR) demonstrated clinically acceptable performance after 12 months. PMID:27994310

  18. The Study of Optical Properties as Glass Composition of Bi2O3-Based Glass/Phosphor Mixed Paste.

    PubMed

    Hwang, M K; Kim, I G; Jung, Y K; Ryu, B K

    2015-10-01

    Recently, White light emitting diodes (WLEDs) have been studied because of many advantages such as lower energy consumption, fast response, high brightness. Glass frit has been interested in LED packages due to their superior properties such as long-term stability and permeability. To maximize the LED light emission characteristic, the glass frit was required a low firing temperature and high refractive index. We selected the bismuth-based glass due to their low melting and high refractive index. This study was investigated characteristics of glass according to the influence of the glass within Bi2O3 content and this glass characteristic change was studied the effects on the optical properties of LED package structure. The properties changes of the glass frit affect the optical property of the mixed paste. With higher contents of Bi203 glass composition, the transmittance and emission intensity of the mixed paste was increased. These results suggest that the difference in refractive index between the phosphor and glass frit is minimized, the loss of light is minimized.

  19. Effect of glass composition on waste form durability: A critical review

    SciTech Connect

    Ellison, A.J.G.; Mazer, J.J.; Ebert, W.L.

    1994-11-01

    This report reviews literature concerning the relationship between the composition and durability of silicate glasses, particularly glasses proposed for immobilization of radioactive waste. Standard procedures used to perform durability tests are reviewed. It is shown that tests in which a low-surface area sample is brought into contact with a very large volume of solution provide the most accurate measure of the intrinsic durability of a glass composition, whereas high-surface area/low-solution volume tests are a better measure of the response of a glass to changes in solution chemistry induced by a buildup of glass corrosion products. The structural chemistry of silicate and borosilicate glasses is reviewed to identify those components with the strongest cation-anion bonds. A number of examples are discussed in which two or more cations engage in mutual bonding interactions that result in minima or maxima in the rheologic and thermodynamic properties of the glasses at or near particular optimal compositions. It is shown that in simple glass-forming systems such interactions generally enhance the durability of glasses. Moreover, it is shown that experimental results obtained for simple systems can be used to account for durability rankings of much more complex waste glass compositions. Models that purport to predict the rate of corrosion of glasses in short-term durability tests are evaluated using a database of short-term durability test results for a large set of glass compositions. The predictions of these models correlate with the measured durabilities of the glasses when considered in large groupings, but no model evaluated in this review provides accurate estimates of durability for individual glass compositions. Use of these models in long-term durability models is discussed. 230 refs.

  20. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    SciTech Connect

    Sushama, D.

    2014-10-15

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er{sub 2}O{sub 3} doped TeO{sub 2}‐WO{sub 3}‐La{sub 2}O{sub 3} Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  1. Resonance Tests on Glass Reinforced Plastic Composite Panels.

    DTIC Science & Technology

    1981-04-01

    glass -- fibre woven roving and glass - fibre chopped strand mat. BP Cellobond A2785-CV resin was used to bond the glass fibre layers to the foam. A rib was...foam slabs were filled with putty. The differences between the panels were the number of layers of glass fibre used on each side, the density of the...ORGANISATION AERONAUTICAL RESEARCH LABORATORIES MELBOURNE, VICTORIA Structures Technical Memorandum 329 RESONANCE TESTS O GLASS REINFORCED PLASTIC

  2. Transition from glass to graphite in manufacture of composite aircraft structure

    NASA Technical Reports Server (NTRS)

    Buffum, H. E.; Thompson, V. S.

    1978-01-01

    The transition from fiberglass reinforced plastic composites to graphite reinforced plastic composites is described. Structural fiberglass design and manufacturing background are summarized. How this experience provides a technology base for moving into graphite composite secondary structure and then to composite primary structure is considered. The technical requirements that must be fulfilled in the transition from glass to graphite composite structure are also included.

  3. High modulus rare earth and beryllium containing silicate glass compositions. [for glass reinforcing fibers

    NASA Technical Reports Server (NTRS)

    Bacon, J. F. (Inventor)

    1976-01-01

    Glass compositions having a Young's modulus of at least 16 million psi and a specific modulus of at least 110 million inches consisting essentially of approximately, by weight, 20 to 43% SiO2, 8 to 21% Al2O3, 4 to 10% BeO, 27 to 58% of at least one oxide selected from a first group consisting of Y2O3, La2O3, Nd2O3, Ce2O3, Ce2O3, and the mixed rare earth oxides, and 3 to 12% of at least one oxide selected from a second group consisting of MgO, ZrO2, ZnO and CaO are described. The molar ratio of BeO to the total content of the first group oxides is from 1.0 to 3.0.

  4. Bioactive glass/polymer composites for bone and nerve repair and regeneration

    NASA Astrophysics Data System (ADS)

    Mohammadkhah, Ali

    Bioactive glasses have several attractive properties in hard and soft tissue repair but their brittleness limited their use, as scaffolding materials, for applications in load-bearing hard tissue repair. At the same time, because of their bioactive properties, they are being studied more often for soft tissue repair. In the present work, a new glass/polymer composite scaffold was developed for the repair of load-bearing bones with high flexural strength and without brittle behavior. The new composites have 2.5 times higher flexural strength and ˜100 times higher work of fracture (without catastrophic failure) compared to a similar bare glass scaffold. Also the use of two known bioactive glasses (13-93-B3 and 45S5) was investigated in developing glass/Poly(epsilon-caprolactone) (PCL) composite films for peripheral nerve repair. It was found that a layer of globular hydroxyapatite (HA) formed on both sides of the composites. The borate glass in the composites was fully reacted in SBF and different ions were released into the solution. The addition of bioactive glass particles to the PCL lowered its elastic modulus and yield strength, but the composites remained intact after the 14 day period in SBF at 37°C. Finally, in an effort to design a better bioactive glass, new borosilicate glass compositions were developed that possess advantages of borate and silicate bioactive glasses at the same time. It was found that replacing small amounts of B2O3 with SiO2 improved glass formation, resistance to nucleation and crystallization, and increased the release rate of boron and silicon in vitro. This new borosilicate glass could be a good alternative to existing silicate and borate bioactive glasses.

  5. Bulk metallic glasses and their composites: Composition optimization, thermal stability, and microstructural tunability

    NASA Astrophysics Data System (ADS)

    Khalifa, Hesham Ezzat

    A design protocol utilizing common elements for bulk metallic glass formation has been employed to develop novel, low cost Fe-, and Ti- based bulk metallic glasses. A critical obstacle that was successfully overcome in this work is the omission of beryllium in these alloys. Beryllium is of vital importance in many bulk metallic glass forming systems, but it is expensive and poses considerable health risks. Bulk metallic glasses in these novel Fe-, and Ti-based systems exhibit extremely high mechanical strength and excellent thermal stability. Devitrification and cooling rate experiments were used to identify crystalline phase formation and assess activation energy for crystallization, as well as to explore and develop ductile BMG composites. To better control microstructure in these BMG composites, a novel processing technique, called semi-solid forging was developed, wherein the alloy melt is heated to above the melt temperature of the glass, but below the melt temperature of the ductile crystalline phase. Such an approach permits the maintenance of a glassy, or nanocrystalline matrix phase, while simultaneously coarsening and homogenizing the ductile, secondary phase. This processing approach leads to enhanced ductility in the alloys, which, to this point, has not been observed using conventional casting methods. The combination of novel, low-cost, alloy compositions with semi-solid forging has been successfully utilized to develop new high strength structural materials with enhanced ductility and toughness. Microstrutural and mechanical properties of these novel, toughened, BMG composites are presented. A comprehensive analysis of the relationship between deformation mechanisms and microstructure reveals that enhanced ductility is predicated on matching fundamental mechanical and microstructural length scales in a Ti-Ni-Si-Mo BMG composite. Under optimized microstructural conditions, a maximum compressive strength exceeding 2400 MPa with ˜ 30% total strain to

  6. Redox systematics in model glass compositions from West Valley

    SciTech Connect

    Schreiber, H.D.; Schreiber, C.W.; Ward, C.C.

    1993-12-31

    At a processing temperature of 1150{degrees}C for model West Valley glass composition, the prescribed range of oxygen fugacities needed to achieve an [Fe{sup 2+}]/[Fe{sup 3+}] of 0.1 to 0.5 is 10{sup -4} to 10{sup -7} atm. Establishment of the Fe{sup 2+}-Fe{sup 0} equilibrium, resulting in metal precipitation from the melt, occurs at oxygen fugacities lower than 10{sup -11} atm at this temperature. The target processing range as defined by the iron redox ratio is equally valid at both lower and higher temperatures ({+-}100{degrees}C). Elevations of the concentrations of redox-active components to 1 wt% Cr{sub 2}O{sub 3}, 1 wt% NiO, 1 wt% CeO{sub 2}, and 4 wt% Mn{sub 2}O{sub 3} in the waste glass will not affect the redox limits as established by the iron redox ratio of 0.1 to 0.5; these limits provide sufficiently large margins of safety to assure no stabilization of reduced or oxidized forms of these elements.

  7. Multilayered Glass Fibre-reinforced Composites In Rotational Moulding

    NASA Astrophysics Data System (ADS)

    Chang, W. C.; Harkin-Jones, E.; Kearns, M.; McCourt, M.

    2011-05-01

    The potential of multiple layer fibre-reinforced mouldings is of growing interest to the rotational moulding industry because of their cost/performance ratio. The particular problem that arises when using reinforcements in this process relate to the fact that the process is low shear and good mixing of resin and reinforcement is not optimum under those conditions. There is also a problem of the larger/heavier reinforcing agents segregating out of the powder to lay up on the inner part surface. In this study, short glass fibres were incorporated and distributed into a polymer matrix to produce fibre-reinforced polymer composites using the rotational moulding process and characterised in terms of morphology and mechanical properties.

  8. Parametric Study of End Milling Glass Fibre Reinforced Composites

    SciTech Connect

    Azmi, Azwan I.; Lin, Richard J. T.; Bhattacharyya, Debes

    2011-01-17

    This paper discusses the application of Taguchi 'Design of Experiment' method to investigate the effects of end milling parameters on machinability characteristics of unidirectional E-glass fibre reinforced polymer (GFRP) composites. A series of milling experiments were conducted using tungsten carbide end milling cutters at various spindle speeds, feed rates and depths of cut. Taguchi analysis was carried out and the signal to noise (S/N) ratio with analysis of variance (ANOVA) was employed to analyse the effects of those parameters on GFRP machinability. Overall, the results of the current investigations present some desirable combinations of the machining parameters that can further enhance the end milling machinability characteristics to suit the final requirements of the finished GFRP products.

  9. Multilayered Glass Fibre-reinforced Composites In Rotational Moulding

    SciTech Connect

    Chang, W. C.; Harkin-Jones, E.; Kearns, M.; McCourt, M.

    2011-05-04

    The potential of multiple layer fibre-reinforced mouldings is of growing interest to the rotational moulding industry because of their cost/performance ratio. The particular problem that arises when using reinforcements in this process relate to the fact that the process is low shear and good mixing of resin and reinforcement is not optimum under those conditions. There is also a problem of the larger/heavier reinforcing agents segregating out of the powder to lay up on the inner part surface. In this study, short glass fibres were incorporated and distributed into a polymer matrix to produce fibre-reinforced polymer composites using the rotational moulding process and characterised in terms of morphology and mechanical properties.

  10. Ultrasonic detection of fatigue damage in glass-epoxy composites

    SciTech Connect

    Simpson, W.A. Jr.; McClung, R.W.

    1990-01-01

    Energy storage flywheels fabricated of S2 glass-epoxy composite were studied to determine the behavior of the ultrasonic properties as a function of strain history and to identify possible predictors of incipient failure. Tensile specimens of the flywheel material were loaded uniaxially, and the ultrasonic properties (i.e., the shear and longitudinal wave velocities and the attenuation) were measured as a function of strain. Finished flywheels were similarly tested at various stages during cyclic spin testing; in addition, the polar backscattering intensity as a function of fatigue cycle was recorded. The velocities are excellent indicators of the maximum strain incurred at each point of the flywheel, and the attenuation delineates the region in which the stress is high enough to initiate microcracking in the matrix.

  11. High modulus invert analog glass compositions containing beryllia

    NASA Technical Reports Server (NTRS)

    Bacon, J. F. (Inventor)

    1974-01-01

    Glass compositions having a Young's modulus of at least 15 million psi and a specific modulus of at least 110 million inches consisting essentially of, in mols, 10-45% SiO2, 2-15% Li2O, 3-34% BeO, 12-36% of at least one bivalent oxide selected from the group consisting of CaO, ZnO, MgO and CuO, 10-39% of at least one trivalent oxide selected from the group consisting of Al2O3, B2O3, La2O3, Y2O3 and the mixed rare earth oxides, the total number of said bivalent and trivalent oxides being at least three, and up to 10% of a tetravalent oxide selected from the group consisting of ZrO2, TiO2 and CeO2.

  12. Microleakage of high-strength glass ionomer: resin composite restorations in minimally invasive treatment.

    PubMed

    Platt, J A; Rhodes, B

    Atraumatic Restorative Treatment (ART) has been investigated as an alternative caries treatment. The technique involves removal of loose tooth structure with a spoon excavator, followed by placement of an adhesive restorative material, often a high-strength glass ionomer. This study compares the microleakage of a high-strength glass ionomer/resin composite and two occlusal resin composite restoration techniques.

  13. Influence of temperature and glass composition on aluminum nitride contact angle

    NASA Astrophysics Data System (ADS)

    Tarnovskiy, R.; Ditts, A.

    2016-11-01

    Results of research of different glass compositions for possibility of their application in metallization pastes intended for ceramics based on aluminum nitride are presented in this article. It includes research of contact angle of aluminum nitride with glasses of different compositions at different temperatures and different roughness of ceramics.

  14. Secondary caries formation in vitro around glass ionomer-lined amalgam and composite restorations.

    PubMed

    Dionysopoulos, P; Kotsanos, N; Papadogianis, Y

    1996-08-01

    The aim of this in vitro secondary caries study was to examine the glass-ionomer liner's effect on wall-lesion inhibition when a conventional and a light-cured glass ionomer liner was placed under amalgam and composite resin restorations. Class V preparations in extracted upper premolars were used and ten restorations were used for each of the following groups: (i) two layers of copal varnish and amalgam; (ii) conventional glass-ionomer and amalgam; (iii) light-cured glass-ionomer and amalgam; (iv) bonding agent and light-cured composite resin; (v) conventional glass-ionomer, bonding agent and light-cured composite resin; (vi) light-cured glass-ionomer, extended 0.3 mm short of the enamel margin bonding agent and light-cured composite resin; and (vii) light-cured glass-ionomer, extended 1 mm short of the enamel margin, bonding agent and light-cured composite resin. The teeth were thermocycled and artificial caries were created using an acid-gel. The results of this study showed that artificial recurrent caries can be reduced significantly (P < 0.05) with a glass-ionomer liner under amalgam restorations. The results also showed that when the light-cured glass-ionomer liner was placed 0.3 mm from the cavosurface margin under composite resin restoration, the artificial recurrent caries reduced significantly (P < 0.05).

  15. Study to determine and analyze the strength of high modulus glass in epoxy-matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.

    1974-01-01

    Glass composition research was conducted to produce a high modulus, high strength beryllium-free glass fiber. This program was built on the previous research for developing high modulus, high strength glass fibers which had a 5 weight percent beryllia content. The fibers resulting from the composition program were then used to produce fiber reinforced-epoxy resin composites which were compared with composites reinforced by commercial high modulus glass fibers, Thornel S graphite fiber, and hybrids where the external quarters were reinforced with Thornel S graphite fiber and the interior half with glass fiber as well as the reverse hybrid. The composites were given tensile strength, compressive strength, short-beam shear strength, creep and fatigue tests. Comments are included on the significance of the test data.

  16. The role of glass composition in the behaviour of glass acetic acid and glass lactic acid cements.

    PubMed

    Shahid, Saroash; Billington, R W; Pearson, G J

    2008-02-01

    Cements have recently been described, made from glass ionomer glass reacted with acetic and lactic acid instead of polymeric carboxylic acid. From their behaviour a theory relating to a possible secondary setting mechanism of glass ionomer has been adduced. However, only one glass (G338) was used throughout. In this study a much simpler glass ionomer glass (MP4) was compared with G338. This produced very different results. With acetic acid G338 formed cement which became resistant to water over a period of hours, as previously reported, MP4 formed cement which was never stable to water. With lactic acid G338 behaved similarly to G338 with acetic acid, again as reported, but MP4 produced a cement which was completely resistant to water at early exposure and unusually became slightly less resistant if exposure was delayed for 6 h or more. These findings indicate that the theories relating to secondary setting in glass ionomer maturation may need revision.

  17. SLURRY MIX EVAPORATOR BATCH ACCEPTABILITY AND TEST CASES OF THE PRODUCT COMPOSITION CONTROL SYSTEM WITH THORIUM AS A REPORTABLE ELEMENT

    SciTech Connect

    Edwards, T.

    2010-10-07

    The Defense Waste Processing Facility (DWPF), which is operated by Savannah River Remediation, LLC (SRR), has recently begun processing Sludge Batch 6 (SB6) by combining it with Frit 418 at a nominal waste loading (WL) of 36%. A unique feature of the SB6/Frit 418 glass system, as compared to the previous glass systems processed in DWPF, is that thorium will be a reportable element (i.e., concentrations of elemental thorium in the final glass product greater than 0.5 weight percent (wt%)) for the resulting wasteform. Several activities were initiated based upon this unique aspect of SB6. One of these was an investigation into the impact of thorium on the models utilized in DWPF's Product Composition and Control System (PCCS). While the PCCS is described in more detail below, for now note that it is utilized by Waste Solidification Engineering (WSE) to evaluate the acceptability of each batch of material in the Slurry Mix Evaporator (SME) before this material is passed on to the melter. The evaluation employs models that predict properties associated with processability and product quality from the composition of vitrified samples of the SME material. The investigation of the impact of thorium on these models was conducted by Peeler and Edwards [1] and led to a recommendation that DWPF can process the SB6/Frit 418 glass system with ThO{sub 2} concentrations up to 1.8 wt% in glass. Questions also arose regarding the handling of thorium in the SME batch acceptability process as documented by Brown, Postles, and Edwards [2]. Specifically, that document is the technical bases of PCCS, and while Peeler and Edwards confirmed the reliability of the models, there is a need to confirm that the current implementation of DWPF's PCCS appropriately handles thorium as a reportable element. Realization of this need led to a Technical Task Request (TTR) prepared by Bricker [3] that identified some specific SME-related activities that the Savannah River National Laboratory (SRNL) was

  18. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part II: In vitro degradation.

    PubMed

    Niemelä, Tiiu; Niiranen, Henna; Kellomäki, Minna

    2008-01-01

    The in vitro degradation behavior of self-reinforced bioactive glass-containing composites was investigated comparatively with plain self-reinforced matrix polymer. The materials used were spherical bioactive glass 13-93 particles, with a particle size distribution of 50-125 microm, as a filler material and bioabsorbable poly-L,DL-lactide 70/30 as a matrix material. The composites containing 0, 20, 30, 40 and 50 wt.% of bioactive glass were manufactured using twin-screw extruder followed by self-reinforcing. The samples studied were characterized determining the changes in mechanical properties, thermal properties, molecular weight, mass loss and water absorption in phosphate-buffered saline at 37 degrees C for up to 104 weeks. The results showed that the bioactive glass addition modified the degradation kinetics and material morphology of the matrix material. It was concluded that the optimal bioactive glass content depends on the applications of the composites. The results of this study could be used as a guideline when estimating the best filler content of other self-reinforced osteoconductive filler containing composites which are manufactured in a similar way.

  19. Fabrication and characterization of poly-(ε)-caprolactone and bioactive glass composites for tissue engineering applications.

    PubMed

    Mohammadkhah, Ali; Marquardt, Laura M; Sakiyama-Elbert, Shelly E; Day, Delbert E; Harkins, Amy B

    2015-04-01

    Much work has focused on developing synthetic materials that have tailored degradation profiles and physical properties that may prove useful in developing biomaterials for tissue engineering applications. In the present study, three different composite sheets consisting of biodegradable poly-ε-caprolactone (PCL) and varying types of bioactive glass were investigated. The three composites were composed of 50wt.% PCL and (1) 50wt.% 13-93 B3 borate glass particles, (2) 50wt.% 45S5 silicate glass particles, or (3) a blend of 25wt.% 13-93 B3 and 25wt.% 45S5 glass particles. Degradation profiles determined for each composite showed the composite that contained only 13-93 B3 borate glass had a higher degradation rate compared to the composite containing only 45S5 silicate glass. Uniaxial tensile tests were performed on the composites to determine the effect of adding glass to the polymer on mechanical properties. The peak stress of all of the composites was lower than that of PCL alone, but 100% PCL had a higher stiffness when pre-reacted in cell media for 6weeks, whereas composite sheets did not. Finally, to determine whether the composite sheets would maintain neuronal growth, dorsal root ganglia isolated from embryonic chicks were cultured on composite sheets, and neurite outgrowth was measured. The bioactive glass particles added to the composites showed no negative effects on neurite extension, and neurite extension increased on PCL:45S5 PCL:13-93 B3 when pre-reacted in media for 24h. This work shows that composite sheets of PCL and bioactive glass particles provide a flexible biomaterial for neural tissue engineering applications.

  20. Mechanical behavior of polyester-based woven jute/glass hybrid composites

    NASA Astrophysics Data System (ADS)

    Ahsan, Q.; Tanju, S.

    2012-06-01

    In polymer composite fabrication system, hybridization of jute fibers with synthetic fibers is one of the techniques adopted to overcome some of the limitations (poor mechanical properties and moisture resistance) that have been identified for jute fiber reinforced composites. In the present study, the effect of hybridization on mechanical properties of jute and glass mat reinforced polyester composites has been evaluated experimentally. The composites were made of glass mat, jute mat and varying layers of jute and glass mat in the polyester matrix by applying hand lay-up technique at room temperature (250C). The values of mechanical properties obtained from tensile, flexural and interlaminar shear strength (ILSS) tests show significant improvement with the increase of glass fiber content in hybrid composites. But the positive contribution from glass mat in increasing of ILSS of composite is limited to some extent and the optimum ILSS is achieved when glass-jute incorporated in composite as 50-50 weight basis. SEM images were used to study the modes of fracture, fiber-matrix adhesion, and jute-glass layer adhesion. The fracture surfaces resulted from different tests clearly show that cracks propagate throughout the polyester matrix by tearing the jute mat and delaminating the glass mat.

  1. The combined effect of glass buffer strips and stitching on the damage tolerance of composites

    NASA Technical Reports Server (NTRS)

    Kullerd, Susan M.

    1993-01-01

    Recent research has demonstrated that through-the-thickness stitching provides major improvements in the damage tolerance of composite laminates loaded in compression. However, the brittle nature of polymer matrix composites makes them susceptible to damage propagation, requiring special material applications and designs to limit damage growth. Glass buffer strips, embedded within laminates, have shown the potential for improving the damage tolerance of unstitched composite laminates loaded in tension. The glass buffer strips, less stiff than the surrounding carbon fibers, arrest crack growth in composites under tensile loads. The present study investigates the damage tolerance characteristics of laminates that contain both stitching and glass buffer strips.

  2. Thermal Features and Glass Transition in Polystyrene-Nanodiamond Composites

    NASA Astrophysics Data System (ADS)

    Cristian Chipara, Alin; Mion, Thomas; Villegas, Rafael; Lozano, Karen; Magdalena Chipara, Dorina; Tidrow, Steven; Chipara, Mircea

    2010-03-01

    Polystyrene-Nanodiamond composites were obtained by dissolving the polymeric matrix into a theta solvent (cyclohexane) followed by the addition of diamond nanoparticles from Aldrich (with a particle size ranging between 3 and 8 nm) and subsequent sonication for about 100 minutes by using a Hielscher high power (1 kW) sonicator. The homogeneous solution was poured onto microscope slides and the solvent has been removed by heating in an oven at 125 ^oC for about 3 hours. Composites containing various amounts (from 0 % to 25 % nanodiamonds within polystyrene) have been investigated. The physical properties of the as obtained nanocomposites were investigated by DSC, TGA, Raman, and WAXS. Glass transition temperature was shifted to higher temperatures and the thermal stability was enhanced by the addition of nanodiamonds. A phenomenological model for the observed changes is proposed (within the free volume approximation) and discussed in detail. Acknowledgements: This research was supported by US Army Research Laboratory (W911NF-08-1-0353) and LSAMP -UTPA.

  3. Viscous sealing glass compositions for solid oxide fuel cells

    SciTech Connect

    Kim, Cheol Woon; Brow, Richard K.

    2016-12-27

    A sealant for forming a seal between at least two solid oxide fuel cell components wherein the sealant comprises a glass material comprising B.sub.2O.sub.3 as a principal glass former, BaO, and other components and wherein the glass material is substantially alkali-free and contains less than 30% crystalline material.

  4. Glass former composition and method for immobilizing nuclear waste using the same

    DOEpatents

    Cadoff, Laurence H.; Smith-Magowan, David B.

    1988-01-01

    An alkoxide glass former composition has silica-containing constituents present as solid particulates of a particle size of 0.1 to 0.7 micrometers in diameter in a liquid carrier phase substantially free of dissolved silica. The glass former slurry is resistant to coagulation and may contain other glass former metal constituents. The immobilization of nuclear waste employs the described glass former by heating the same to reduce the volume, mixing the same with the waste, and melting the resultant mixture to encapsulate the waste in the resultant glass.

  5. R&D on glass fiber reinforced epoxy resin composites for superconducting Tokamak.

    PubMed

    Hu, Nannan; Wang, Ke; Ma, Hongming; Pan, Wanjiang; Chen, Qingqing

    2016-01-01

    The glass fiber reinforced epoxy resin composites play an important role in superconducting Tokamak, which are used to insulate the metal components, such as superconducting winding, cooling pipes, metal electrodes and so on. For the components made of metal and glass fiber reinforced epoxy resin composites, thermal shrinkage leads to non-ignorable thermal stress, therefore, much attention should be paid on the thermal shrinkage rate of glass fiber reinforced epoxy resin composites. The structural design of glass fiber reinforced epoxy resin composites should aim at reducing thermal stress. In this paper, the density, glass fiber content and thermal shrinkage rate of five insulation tubes were tested. The testing results will be applied in structural design and mechanical analysis of isolators for superconducting Tokamak.

  6. Bioactive glass/polymer composite scaffolds mimicking bone tissue.

    PubMed

    Gentile, Piergiorgio; Mattioli-Belmonte, Monica; Chiono, Valeria; Ferretti, Concetta; Baino, Francesco; Tonda-Turo, Chiara; Vitale-Brovarone, Chiara; Pashkuleva, Iva; Reis, Rui L; Ciardelli, Gianluca

    2012-10-01

    The aim of this work was the preparation and characterization of scaffolds with mechanical and functional properties able to regenerate bone. Porous scaffolds made of chitosan/gelatin (POL) blends containing different amounts of a bioactive glass (CEL2), as inorganic material stimulating biomineralization, were fabricated by freeze-drying. Foams with different compositions (CEL2/POL 0/100; 40/60; 70/30 wt %/wt) were prepared. Samples were crosslinked using genipin (GP) to improve mechanical strength and thermal stability. The scaffolds were characterized in terms of their stability in water, chemical structure, morphology, bioactivity, and mechanical behavior. Moreover, MG63 osteoblast-like cells and periosteal-derived stem cells were used to assess their biocompatibility. CEL2/POL samples showed interconnected pores having an average diameter ranging from 179 ± 5 μm for CEL2/POL 0/100 to 136 ± 5 μm for CEL2/POL 70/30. GP-crosslinking and the increase of CEL2 amount stabilized the composites to water solution (shown by swelling tests). In addition, the SBF soaking experiment showed a good bioactivity of the scaffold with 30 and 70 wt % CEL2. The compressive modulus increased by increasing CEL2 amount up to 2.1 ± 0.1 MPa for CEL2/POL 70/30. Dynamical mechanical analysis has evidenced that composite scaffolds at low frequencies showed an increase of storage and loss modulus with increasing frequency; furthermore, a drop of E' and E″ at 1 Hz was observed, and for higher frequencies both moduli increased again. Cells displayed a good ability to interact with the different tested scaffolds which did not modify cell metabolic activity at the analyzed points. MTT test proved only a slight difference between the two cytotypes analyzed.

  7. Optical properties of dy doped lead and bismuth borate glasses - effect of glass composition, metal and semiconducting nanoparticles

    NASA Astrophysics Data System (ADS)

    Ooi, Hio Giap

    The optical properties of Dy3+ ions in lead borate and bismuth borate glasses are studied as a function of glass composition with PbO content (29.5 to 69.5mol%) and Bi2O3 content (29.5 to 59.5 mol%). We also studied the effect of metal and semiconducting nanoparticles on the absorption and fluorescence emission of Dy3+ ions in both lead and bismuth borate glasses. The absorption coefficient at each wavelength is obtained from the optical absorption spectrum of a glass sample, and the number density of rare-earth (RE) ions is calculated from the measurement of the glass density. These two parameters are then used to calculate the oscillator strength of each transition using Judd-Ofelt theory. Using the oscillator strength for each transition, we obtained the intensity parameters which represent changes in the symmetry of the ligand field at the Dy 3+ site (due to structural group changes and changes in Dy-O covalency). Radiative transition probabilities, the radiative lifetime of the excited states and the branching ratios are then obtained from these intensity parameters. The fluorescence spectra, obtained using 355 nm and 458 nm laser excitation, are analyzed by determining the area ratio of yellow/blue (Y/B) peaks and the wavelength of the hypersensitive transition (HST). The compositional dependence and effect of nanoparticles on the stimulated emission cross-section (sigmap), are then evaluated using radiative transition probability, the refractive index of the host glass, effective fluorescence linewidth, and the position of the band. In all of the glass systems, it was found that the optical properties are strongly influenced by structural changes arising from compositional variation and size of nanoparticles. Dy 3+ transitions exhibit large sigmap suggesting the possible utilization of these materials in laser applications.

  8. Development of test acceptance standards for qualification of the glass-bonded zeolite waste form. Interim annual report, October 1995--September 1996

    SciTech Connect

    Simpson, L.J.; Wronkiewicz, D.J.; Fortner, J.A.

    1997-09-01

    Glass-bonded zeolite is being developed at Argonne National Laboratory in the Electrometallurgical Treatment Program as a potential ceramic waste form for the disposition of radionuclides associated with the US Department of Energy`s (DOE`s) spent nuclear fuel conditioning activities. The utility of standard durability tests [e.g. Materials Characterization Center Test No. 1 (MCC-1), Product Consistency Test (PCT), and Vapor Hydration Test (VHT)] are being evaluated as an initial step in developing test methods that can be used in the process of qualifying this material for acceptance into the Civilian Radioactive Waste Management System. A broad range of potential repository conditions are being evaluated to determine the bounding parameters appropriate for the corrosion testing of the ceramic waste form, and its behavior under accelerated testing conditions. In this report we provide specific characterization information and discuss how the durability test results are affected by changes in pH, leachant composition, and sample surface area to leachant volume ratios. We investigate the release mechanisms and other physical and chemical parameters that are important for establishing acceptance parameters, including the development of appropriate test methodologies required to measure product consistency.

  9. Relationship between borosilicate glass composition, structure, and durability test response (SRS)

    SciTech Connect

    Ramsey, W.G.; Jantzen, C.M.; Taylor, T.D.

    1992-12-31

    The chemical durability of 30 glasses from the Na{sub 2}O {center_dot} B{sub 2}O{sub 3} {center_dot} SiO{sub 2} {center_dot} Al{sub 2}O{sub 3} {center_dot} Fe{sub 2}O{sub 3}{center_dot}CaO system was examined. Two standard leach tests, MCC-1P and PCT, were performed in unbuffered, deionized water. PCT tests were performed for durations up to twenty-four weeks to obtain glass dissolution rate data. Short-term MCC-1P test leachate solutions are determined by the glass composition. Long-term glass dissolution rates, however, are dependent on glass structure in addition to glass composition. The applicability of the free energy of hydration and other dissolution and durability models to this system is discussed.

  10. Relationship between borosilicate glass composition, structure, and durability test response (SRS)

    SciTech Connect

    Ramsey, W.G.; Jantzen, C.M. ); Taylor, T.D. )

    1992-01-01

    The chemical durability of 30 glasses from the Na[sub 2]O [center dot] B[sub 2]O[sub 3] [center dot] SiO[sub 2] [center dot] Al[sub 2]O[sub 3] [center dot] Fe[sub 2]O[sub 3][center dot]CaO system was examined. Two standard leach tests, MCC-1P and PCT, were performed in unbuffered, deionized water. PCT tests were performed for durations up to twenty-four weeks to obtain glass dissolution rate data. Short-term MCC-1P test leachate solutions are determined by the glass composition. Long-term glass dissolution rates, however, are dependent on glass structure in addition to glass composition. The applicability of the free energy of hydration and other dissolution and durability models to this system is discussed.

  11. Dynamic mechanical properties of a Ti-based metallic glass matrix composite

    SciTech Connect

    Li, Jinshan Cui, Jing; Bai, Jie; Kou, Hongchao; Wang, Jun; Qiao, Jichao

    2015-04-21

    Dynamic mechanical behavior of a Ti{sub 50}Zr{sub 20}Nb{sub 12}Cu{sub 5}Be{sub 13} bulk metallic glass composite was investigated using mechanical spectroscopy in both temperature and frequency domains. Storage modulus G′ and loss modulus G″ are determined by temperature, and three distinct regions corresponding to different states in the bulk metallic glass composite are characterized. Physical parameters, such as atomic mobility and correlation factor χ, are introduced to analyze dynamic mechanical behavior of the bulk metallic glass composite in the framework of quasi-point defects (QPD) model. The experimental results are in good agreement with the prediction of QPD model.

  12. Polyimide/Glass Composite High-Temperature Insulation

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Vasquez, Peter; Chatlin, Richard L.; Smith, Donald L.; Skalski, Thomas J.; Johnson, Gary S.; Chu, Sang-Hyon

    2009-01-01

    Lightweight composites of RP46 polyimide and glass fibers have been found to be useful as extraordinarily fire-resistant electrical-insulation materials. RP46 is a polyimide of the polymerization of monomeric reactants (PMR) type, developed by NASA Langley Research Center. RP46 has properties that make it attractive for use in electrical insulation at high temperatures. These properties include high-temperature resistance, low relative permittivity, low dissipation factor, outstanding mechanical properties, and excellent resistance to moisture and chemicals. Moreover, RP46 contains no halogen or other toxic materials and when burned it does not produce toxic fume or gaseous materials. The U. S. Navy has been seeking lightweight, high-temperature-resistant electrical-insulation materials in a program directed toward reducing fire hazards and weights in ship electrical systems. To satisfy the requirements of this program, an electrical-insulation material must withstand a 3-hour gas-flame test at 1,600 F (about 871 C). Prior to the development reported here, RP46 was rated for use at temperatures from -150 to +700 F (about -101 to 371 C), and no polymeric product - not even RP46 - was expected to withstand the Navy 3-hour gas-flame test.

  13. Chitosan/bioactive glass nanoparticles composites for biomedical applications.

    PubMed

    Luz, Gisela M; Mano, João F

    2012-10-01

    Nanocomposite films based on a chitosan blend with bioactive glass nanoparticles (BG-NPs) with different formulations, namely SiO(2):CaO:P(2)O(5)(mol.%) = 55:40:5 and SiO(2):CaO:P(2)O(5):MgO(mol.%) = 64:26:5:5 were produced in order to develop systems with applicability in guided tissue regeneration. The zeta (ζ)-potential of the BG-NPs containing magnesium was found to be lower than the other formulation and the corresponding composite with chitosan was the most hydrophilic. The bioactive character of the biomaterials was also assessed in vitro by immersion of the materials in simulated body fluid, followed by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy evaluations. SaOs-2 osteoblastic-like cells were seeded on the different nanocomposites and their behavior was followed by SEM observations, cytotoxicity assessments, DNA quantification and alkaline phosphatase analysis. The introduction of the inorganic component in the chitosan matrix had a positive effect on the biological response of the membranes. The developed nanocomposite films are potential candidates for regenerating damaged bone tissue and could be useful in orthopedic and maxillo-facial applications.

  14. Water absorption behavior and residual strength assessment of glass/epoxy and glass-carbon/epoxy hybrid composite

    NASA Astrophysics Data System (ADS)

    Mohanty, S. C.; Singh, B. P.; Mahato, K. K.; Rathore, D. K.; Prusty, R. K.; Ray, B. C.

    2016-02-01

    Present investigation is aimed to study the water absorption behaviour and evaluation of residual strength of glass fibre/epoxy (GE) and alternate plies of glass- carbon/epoxy (GCE) hybrid composite. Both the composite systems were exposed to water at 70°C. Specimens were weighed after certain time periods to study the water uptake kinetic. Flexural tests were conducted after 4, 100 and 450 hours of ageing to evaluate the effect of hot water ageing on the mechanical properties of these potential materials. The water uptake kinetic was found to follow Fickian diffusion kinetic for GE as well as GCE hybrid composite but the rate of diffusion was higher for GE composite over GCE composite. The water content was also higher in GE composite over GCE composite after 450 hours of ageing. Significant decrement in flexural strength was observed with the increase in ageing time. Presence of water in the composite also imparted significant embrittlement to the matrix as reflected in the decrease in strain at peak for both the composite systems.

  15. Three-dimensional imaging of shear bands in bulk metallic glass composites.

    PubMed

    Hunter, A H; Araullo-Peters, V; Gibbons, M; Restrepo, O D; Niezgoda, S R; Windl, W; Flores, K M; Hofmann, D C; Marquis, E A

    2016-12-01

    The mechanism of the increase in ductility in bulk metallic glass matrix composites over monolithic bulk metallic glasses is to date little understood, primarily because the interplay between dislocations in the crystalline phase and shear bands in the glass could neither be imaged nor modelled in a validated way. To overcome this roadblock, we show that shear bands can be imaged in three dimensions by atom probe tomography from density variations in the reconstructed atomic density, which density-functional theory suggests being a local-work function effect. Imaging of near-interface shear bands in Ti48 Zr20 V12 Cu5 Be15 bulk metallic glass matrix composite permits measurement of their composition, thickness, branching and interactions with the dendrite interface. These results confirm that shear bands here nucleate from stress concentrations in the glass due to intense, localized plastic deformation in the dendrites rather than intrinsic structural inhomogeneities.

  16. Preparation and bioactive properties of nano bioactive glass and segmented polyurethane composites.

    PubMed

    Aguilar-Pérez, Fernando J; Vargas-Coronado, Rossana F; Cervantes-Uc, Jose M; Cauich-Rodríguez, Juan V; Covarrubias, Cristian; Pedram-Yazdani, Merhdad

    2016-04-01

    Composites of glutamine-based segmented polyurethanes with 5 to 25 wt.% bioactive glass nanoparticles were prepared, characterized, and their mineralization potential was evaluated in simulated body fluid. Biocompatibility with dental pulp stem cells was assessed by MTS to an extended range of compositions (1 to 25 wt.% of bioactive glass nanoparticles). Physicochemical characterization showed that composites retained many of the matrix properties, i.e. those corresponding to semicrystalline elastomeric polymers as they exhibited a glass transition temperature (Tg) between -41 and -36℃ and a melting temperature (Tm) between 46 and 49℃ in agreement with X-ray reflections at 23.6° and 21.3°. However, with bioactive glass nanoparticles addition, tensile strength and strain were reduced from 22.2 to 12.2 MPa and 667.2 to 457.8%, respectively with 25 wt.% of bioactive glass nanoparticles. Although Fourier transform infrared spectroscopy did not show evidence of mineralization after conditioning of these composites in simulated body fluid, X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray microanalysis showed the formation of an apatite layer on the surface which increased with higher bioactive glass concentrations and longer conditioning time. Dental pulp stem cells proliferation at day 5 was improved in bioactive glass nanoparticles composites containing lower amounts of the filler (1-2.5 wt.%) but it was compromised at day 9 in composites containing high contents of nBG (5, 15, 25 wt.%). However, Runx2 gene expression was particularly upregulated for the dental pulp stem cells cultured with composites loaded with 15 and 25 wt.% of bioactive glass nanoparticles. In conclusion, low content bioactive glass nanoparticles and segmented polyurethanes composites deserve further investigation for applications such as guided bone regeneration membranes, where osteoconductivity is desirable but not a demanding mechanical performance.

  17. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  18. The role of the ionomer glass component in polyacid-modified composite resin dental restorative materials.

    PubMed

    Adusei, Gabriel O; Deb, Sanjukta; Nicholson, John W

    2004-07-01

    In order to model the processes that occur within polyacid-modified composite resin ("compomer") dental restoratives, a series of experiments has been carried out with silanated and silane-free ionomer glass G338, and silanated and silane-free unreactive glass (Raysorb T-4000). In an acid-base reaction with dental grade aqueous maleic acid-acrylic acid copolymer solution, the setting time of the silanted G338 was found to be 9 min, compared with 5 min for the silane-free glass. Inclusion of each glass in an experimental composite resin system showed that the formulations which contained G338 absorbed more water than the formulations which contained Raysorb T-4000, regardless of whether or not the glass was silanted. Biaxial flexure strength was superior for experimental composites containing Raysorb T-4000, with highest results being obtained with the silanated glass. Overall these results demonstrate that silanation of the filler is essential for optimal physical properties but that, for the ionomer glass, it inhibits the acid-base reaction. The presence of ionomer glass led to an increase in water uptake compared with the unreactive glass, regardless of the presence of silane.

  19. Antibacterial and antifungal potential of Ga-bioactive glass and Ga-bioactive glass/polymeric hydrogel composites.

    PubMed

    Keenan, T J; Placek, L M; Hall, M M; Wren, A W

    2016-03-21

    A bioactive glass series (0.42SiO2 -0.10Na2 O-0.08CaO-(0.40 - x)ZnO-(x)Ga2 O3 ) was synthesized, and it is efficacy against the Gram (-ve) bacteria Escherichia coli (E. coli), the Gram (+ve) bacteria Staphylococcus aureus (S. aureus), and the fungus Candida albicans (C. albicans), were characterized through liquid broth analysis. The glass series was also seeded in CMC-Dex hydrogels at three different loadings (0.05, 0.10, and 0.25 m(2) ), and the antibacterial and antifungal efficacies of the resulting composites were characterized using both liquid broth and agar diffusion analysis. Liquid broth analysis was conducted using liquid extracts, which for glass samples were obtained after incubation for up to 30 days in both ultrapure water and phosphate buffered saline (PBS), while glass-hydrogel extracts were obtained solely in PBS. Glass extracts (water) decreased C. albicans viability, while those obtained in PBS decreased the viability of both E. coli and C. albicans. Glass-hydrogel extracts exhibited slight inhibition of E. coli and C. albicans. However, none of the liquid extracts decreased S. aureus viability. Glass-hydrogel composites produced inhibition zones in all three microbial cultures, with the greatest efficacy against C. albicans. The results of this study suggest these materials have potential as bone void-filling materials which display antifungal, and possibly, antibacterial properties. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  20. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  1. Composition/Property Relationships for the Phase 2 Am-Cm Glass Variability Study

    SciTech Connect

    Peeler, D.

    2000-06-09

    The objective of this research was to evaluate the effect of compositional uncertainties on the primary processing and product performance criteria for potential glasses to stabilize the Tank 17.1 Am-Cm solution and to identify the AGCR in which glasses simultaneously meet both process and product performance criteria as defined for Phase 2.

  2. The effect of exposed glass fibers and particles of bioactive glass on the surface wettability of composite implants.

    PubMed

    Abdulmajeed, Aous A; Lassila, Lippo V; Vallittu, Pekka K; Närhi, Timo O

    2011-01-01

    Measurement of the wettability of a material is a predictive index of cytocompatibility. This study was designed to evaluate the effect of exposed E-glass fibers and bioactive glass (BAG) particles on the surface wettability behavior of composite implants. Two different groups were investigated: (a) fiber reinforced composites (FRCs) with different fiber orientations and (b) polymer composites with different wt. % of BAG particles. Photopolymerized and heat postpolymerized composite substrates were made for both groups. The surface wettability, topography, and roughness were analyzed. Equilibrium contact angles were measured using the sessile drop method. Three liquids were used as a probe for surface free energy (SFE) calculations. SFE values were calculated from contact angles obtained on smooth surfaces. The surface with transverse distribution of fibers showed higher (P < 0.001) polar (γ(P)) and total SFE (γ(TOT)) components (16.9 and 51.04 mJ/m(2), resp.) than the surface with in-plane distribution of fibers (13.77 and 48.27 mJ/m(2), resp.). The increase in BAG particle wt. % increased the polar (γ(P)) value, while the dispersive (γ(D)) value decreased. Postpolymerization by heat treatment improved the SFE components on all the surfaces investigated (P < 0.001). Composites containing E-glass fibers and BAG particles are hydrophilic materials that show good wettability characteristics.

  3. Property/composition relationships for Hanford high-level waste glasses melting at 1150{degrees}C volume 2: Chapters 12-16 and appendices A-K

    SciTech Connect

    Hrma, P.R.; Piepel, G.F.

    1994-12-01

    A Composition Variation Study (CVS) is being performed within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) project in support of a future high-level nuclear waste vitrification plant at the Hanford site in Washington. From 1989 to 1994, over 120 nonradioactive glasses were melted and properties measured in five statistically-designed experimental phases. Glass composition is represented by the 10 components SiO{sub 2}, B{sub 2}O{sub 3}, ZrO{sub 2}, Na{sub 2}O, Li{sub 2}O, CaO, MgO, and Others (all remaining components). The properties measured include viscosity ({eta}), electrical conductivity ({epsilon}), glass transition temperature (T{sub g}), thermal expansion of solid glass ({alpha}{sub s}) and molten glass ({alpha}{sub m}), crystallinity (quenched and canister centerline cooled glasses), liquidus temperature (T{sub L}), durability based on normalized elemental releases from the Materials Characterization Center-1 28-day dissolution test (MCC-1, r{sub mi}) and the 7-day Product Consistency Test (PCT, r{sub pi}), and solution pHs from MCC-1 and PCT. Amorphous phase separation was also evaluated. Empirical first- and second-order mixture models were fit using the CVS data to relate the various properties to glass composition. Equations for calculating the uncertainty associated with property values predicted by the models were also developed. The models were validated using both internal and external data. Other modeling approaches (e.g., non-bridging oxygen, free energy of hydration, phase-equilibria T{sub L}) were investigated for specific properties. A preliminary Qualified Composition Region was developed to identify glass compositions with high confidence of being processable in a melter and meeting waste form acceptance criteria.

  4. Property/composition relationships for Hanford high-level waste glasses melting at 115{degrees}C volume 1: Chapters 1-11

    SciTech Connect

    Hrma, P.R.; Piepel, G.F.

    1994-12-01

    A Composition Variation study (CVS) is being performed within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) project in support of a future high-level nuclear waste vitrification plant at the Hanford site in Washington. From 1989 to 1994, over 120 nonradioactive glasses were melted and properties measured in five statistically-designed experimental phases. Glass composition is represented by the 10 components SiO{sub 2}, B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, ZrO{sub 2}, Na{sub 2}O, Li{sub 2}O, CaO, MgO, and Others (all remaining components). The properties measured include viscosity ({eta}), electrical conductivity ({epsilon}), glass transition temperature (T{sub g} ), thermal expansion of solid glass ({alpha}{sub s}) and molten glass ({alpha}{sub m}), crystallinity (quenched and canister centerline cooled glasses), liquidus temperature (T{sub L}), durability based on normalized elemental releases from the Materials Characterization Center-1 28-day dissolution test (MCC-1, r{sub mi}) and the 7-day Product Consistency Test (PCT, r{sub pi}), and solution pHs from MCC-1 and PCT. Amorphous phase separation was also evaluated. Empirical first- and second-order mixture models were fit using the CVS data to relate the various properties to glass composition. Equations for calculating the uncertainty associated with property values predicted by the models were also developed. The models were validated using both internal and external data. Other modeling approaches (e.g., non-bridging oxygen, free energy of hydration, phase-equilibria T{sub L}) were investigated for specific properties. A preliminary Qualified Composition Region was developed to identify glass compositions with high confidence of being processable in a melter and meeting waste form acceptance criteria.

  5. First-order study of property/composition relationships for Hanford Waste Vitrification Plant glasses

    SciTech Connect

    Piepel, G.F.; Hrma, P.R.; Bates, S.O.; Schweiger, M.J.; Smith, D.E.

    1993-01-01

    A first-order composition variability study (CVS-I) was conducted for the Hanford Waste Vitrification Plant (HWVP) program to preliminarily characterize the effects on key glass properties of variations i selected glass (waste and frit) components. The components selected were Si0{sub 2},B{sub 2}O{sub 3},A1{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, ZrO{sub 2}, Na{sub 2}O,Li{sub 2}O,CaO,MgO, and Others (all remaining waste components). A glass composition region was selected for study based on the expected range of glass compositions and the results of a previous series of scoping and solubility studies. Then, a 23-glass statistically-designed mixture experiment was conducted and data obtained for viscosity, electrical conductivity, glass transition temperature, thermal expansion, crystallinity, and durability [Materials Characterization Center (MCC-1) 28-day leach test and the 7-day Product Consistency Test (PCT)]. These data were modeled using first-order functions of composition, and the models were used to investigate the effects of the components on glass and melt properties. The CVS-I data and models will also be used to support the second-order composition variability study (CVS-II).

  6. First-order study of property/composition relationships for Hanford Waste Vitrification Plant glasses

    SciTech Connect

    Piepel, G.F.; Hrma, P.R.; Bates, S.O.; Schweiger, M.J.; Smith, D.E.

    1993-01-01

    A first-order composition variability study (CVS-I) was conducted for the Hanford Waste Vitrification Plant (HWVP) program to preliminarily characterize the effects on key glass properties of variations i selected glass (waste and frit) components. The components selected were Si0[sub 2],B[sub 2]O[sub 3],A1[sub 2]O[sub 3], Fe[sub 2]O[sub 3], ZrO[sub 2], Na[sub 2]O,Li[sub 2]O,CaO,MgO, and Others (all remaining waste components). A glass composition region was selected for study based on the expected range of glass compositions and the results of a previous series of scoping and solubility studies. Then, a 23-glass statistically-designed mixture experiment was conducted and data obtained for viscosity, electrical conductivity, glass transition temperature, thermal expansion, crystallinity, and durability [Materials Characterization Center (MCC-1) 28-day leach test and the 7-day Product Consistency Test (PCT)]. These data were modeled using first-order functions of composition, and the models were used to investigate the effects of the components on glass and melt properties. The CVS-I data and models will also be used to support the second-order composition variability study (CVS-II).

  7. Composition/Property Relationships for the Phase 1 Am/Cm Glass Variability Study

    SciTech Connect

    Peeler, D.

    1999-07-14

    The objective of this research was to evaluate the effect of compositional uncertainties on the primary processing and product performance criteria for potential glasses to stabilize the Tank 17.1 Am-Cm solution.

  8. Mechanical behavior of glass fiber polyester hybrid composite filled with natural fillers

    NASA Astrophysics Data System (ADS)

    Gupta, G.; Gupta, A.; Dhanola, A.; Raturi, A.

    2016-09-01

    Now-a-days, the natural fibers and fillers from renewable natural resources offer the potential to act as a reinforcing material for polymer composite material alternative to the use of synthetic fiber like as; glass, carbon and other man-made fibers. Among various natural fibers and fillers like banana, wheat straw, rice husk, wood powder, sisal, jute, hemp etc. are the most widely used natural fibers and fillers due to its advantages like easy availability, low density, low production cost and reasonable physical and mechanical properties This research work presents the effect of natural fillers loading with 5%, 10% and 15% on mechanical behavior of polyester based hybrid composites. The result of test depicted that hybrid composite has far better properties than single fibre glass reinforced composite under impact and flexural loads. However it is found that the hybrid composite have better strength as compared to single glass fibre composites.

  9. Simplified model evaluation of cooling rates for glass-containing lunar compositions

    NASA Technical Reports Server (NTRS)

    Uhlmann, D. R.; Yinnon, H.; Fang, C.-Y.

    1982-01-01

    The simplified model of glass formation and the development of partial crystallinity in cooled bodies has been applied to lunar compositions 10060, 15028, 15086, 15101, 15286, 15301, 15498, 15499, 60255, 65016, 77017, Apollo 15 green glass and LUNA 24 highland basalt. The critical cooling rates for glass formation predicted by the simplified model are found to be in good agreement (to within an order of magnitude) with those predicted by the exact treatment of crystallization statistics. These predicted critical cooling rates are in even better agreement (a factor of 2) with measured values of the rates required to form glasses of the materials.

  10. Flexural Strength Comparison of Silorane- and Methacrylate-Based Composites with Pre-impregnated Glass Fiber

    PubMed Central

    Doozandeh, Maryam; Alavi, Ali Asghar; Karimizadeh, Zahra

    2016-01-01

    Statement of the Problem Sufficient adhesion between silorane/methacrylate-based composites and methacrylate impregnated glass fiber increases the benefits of fibers and enhances the mechanical and clinical performance of both composites. Purpose The aim of this study was to evaluate the compatibility of silorane and methacrylate-based composites with pre-impregnated glass fiber by using flexural strength (FS) test. Materials and Method A total of 60 bar specimens were prepared in a split mold (25×2×2 mm) in 6 groups (n=10). In groups 1 and 4 (control), silorane-based (Filtek P90) and nanohybrid (Filtek Z350) composites were placed into the mold and photopolymerized with a high-intensity curing unit. In groups 2 and 5, pre-impregnated glass fiber was first placed into the mold and after two minutes of curing, the mold was filled with respective composites. Prior to filling the mold in groups 3 and 6, an intermediate adhesive layer was applied to the glass fiber. The specimens were stored in distilled water for 24 hours and then their flexural strength was measured by 3 point bending test, using universal testing machine at the crosshead speed of 1 mm/min. Two-way ANOVA and post-hoc test were used for analyzing the data (p< 0.05). Results A significant difference was observed between the groups (p< 0.05). The highest FS was registered for combination of Z350 composite, impregnated glass fiber, and application of intermediate adhesive layer .The lowest FS was obtained in Filtek P90 alone. Cohesive failure in composite was the predominant failure in all groups, except group 5 in which adhesive failure between the composite and fiber was exclusively observed. Conclusion Significant improvement in FS was achieved for both composites with glass fiber. Additional application of intermediate adhesive layer before composite build up seems to increase FS. Nanohybrid composite showed higher FS than silorane-based composite. PMID:27284555

  11. Chemical composition measurements of the low activity waste (LAW) EPA-Series glasses

    SciTech Connect

    Fox, K.; Edwards, T. B.

    2016-03-01

    In this report, the Savannah River National Laboratory provides chemical analysis results for a series of simulated low activity waste glasses provided by Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 100.2 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %.

  12. Flow and Fracture of Bulk Metallic Glass Alloys and their Composites

    SciTech Connect

    Flores, K M; Suh, D; Howell, R; Asoka-Kumar, P; Dauskardt, R H

    2001-06-20

    The fracture and plastic deformation mechanisms of a Zr-Ti-Ni-Cu-Be bulk metallic glass and a composite utilizing a crystalline reinforcement phase are reviewed. The relationship between stress state, free volume and shear band formation are discussed. Positron annihilation techniques were used to confirm the predicted increase in free volume after plastic straining. Strain localization and failure were examined for a wide range of stress states. Finally, methods for toughening metallic glasses are considered. Significant increases in toughness are demonstrated for a composite bulk metallic glass containing a ductile second phase which stabilizes shear band formation and distributes plastic deformation.

  13. Technical Note: Updated durability/composition relationships for Hanford high-level waste glasses

    SciTech Connect

    Piepel, G.F.; Hartley, S.A.; Redgate, P.E.

    1996-03-01

    This technical note presents empirical models developed in FYI 995 to predict durability as functions of glass composition. Models are presented for normalized releases of B, Li, Na, and Si from the 7-day Product Consistency Test (PCT) applied to quenched and canister centerline cooled (CCC) glasses as well as from the 28-day Materials Characterization Center-1 (MCC-1) test applied to quenched glasses. Models are presented for Composition Variation Study (CVS) data from low temperature melter (LTM) studies (Hrma, Piepel, et al. 1994) and high temperature melter (HTM) studies (Vienna et al. 1995). The data used for modeling in this technical note are listed in Appendix A.

  14. Glass formation and crystallization of high lead content PbO-B2O3 compositions

    NASA Technical Reports Server (NTRS)

    Weinberg, Michael C.; Smith, Gary L.; Neilson, George F.

    1986-01-01

    The glass-forming and undercooling ability of PbO-B2O3 melts in the 2PbO.B2O3 to 4PbO.B2O3 composition range were studied. The glass formation propensities were investigated as a function of cooling rate and sample mass. A qualitative investigation of the crystallization process(es) preventing glass formation was made, and it was concluded that under normal circumstances heterogeneous nucleation was the common occurrence. Hence, it was concluded that such compositions are prime candidates for containerless experiments aboard the Space Shuttle.

  15. Glass composition and excitation wavelength dependence of the luminescence of Eu{sup 3+} doped lead borate glass

    SciTech Connect

    Wen Hongli; Duan, Chang-Kui; Jia Guohua; Tanner, Peter A.; Brik, Mikhail G.

    2011-08-01

    This work explores the relationship between the bandwidth of luminescence spectral features and their relative intensities, using glasses doped with europium, Eu{sup 3+}, over a wide composition range. Glasses of composition (B{sub 2}O{sub 3}){sub 70}(PbO){sub 29}(0.5Eu{sub 2}O{sub 3}){sub 1} and (B{sub 2}O{sub 3}){sub z}(PbO){sub 99.6-z}(0.5Eu{sub 2}O{sub 3}){sub 0.4}, (z = 20, 30, 40, 60, 70), were prepared by the melting-quenching technique. Variable-wavelength measurements by the prism-coupling method enabled interpolation of refractive index at selected wavelengths. Diffuse reflectance spectra confirmed the incorporation of Eu{sup 3+} into the glass, and scanning electron microscopy displayed that this was in a homogeneous manner. Vibrational spectra showed a change in boron coordination from BO{sub 3} to BO{sub 4} units with increase of PbO content in the glass. Multi-wavelength excited luminescence spectra were recorded for the glasses at temperatures down to 10 K and qualitative interpretations of spectral differences with change of B{sub 2}O{sub 3} content are given. The quantitative analysis of {sup 5}D{sub 0} luminescence intensity-bandwidth relations showed that although samples with higher boron content closely exhibit a simple proportional relationship with band intensity ratios, as expected from theory, the expression needs to be slightly modified for those with low boron content. The Judd-Ofelt intensity analysis of the {sup 5}D{sub 0} emission spectra under laser excitations at low temperature gives {Omega}{sub 2} values within the range from (3.9-6.5) x 10{sup -20} cm{sup 2}, and {Omega}{sub 4} in the range from (4.1-7.0) x 10{sup -20} cm{sup 2}, for different values of z. However, no clear monotonic relation was found between the parameter values and composition. The Judd-Ofelt parameters are compared with those from other systems doped with Eu{sup 3+} and are found to lie in the normal ranges for Eu{sup 3+}-doped glasses. The comparison of

  16. Effect of composition on peraluminous glass properties: An application to HLW containment

    NASA Astrophysics Data System (ADS)

    Piovesan, V.; Bardez-Giboire, I.; Perret, D.; Montouillout, V.; Pellerin, N.

    2017-01-01

    Part of the Research and Development program concerning high level nuclear waste (HLW) glasses aims to assess new glass formulations able to incorporate a high waste content with enhanced properties in terms of thermal stability, chemical durability, and process ability. This study focuses on peraluminous glasses of the SiO2 - Al2O3 - B2O3 - Na2O - Li2O - CaO - La2O3 system, defined by an excess of aluminum ions Al3+ in comparison with modifier elements such as Na+, Li+ or Ca2+. To understand the effect of composition on physical properties of glasses (viscosity, density, Tg), a Design Of Experiments (DOE) approach was applied to investigate the peraluminous glass domain. The influence of each oxide was quantified to build predictive models for each property. Lanthanum and lithium oxides appear to be the most influential factors on peraluminous glass properties.

  17. Structural considerations in design of lightweight glass-fiber composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1973-01-01

    The development of structurally efficient, metal-lined, glass-fiber composite pressure vessels. Both the current state-of-the-art and current problems are discussed along with fracture mechanics considerations for the metal liner. The design concepts used for metal-lined, glass-fiber, composite pressure vessels are described and the structural characteristics of the composite designs are compared with each other and with homogeneous metal pressure vessels. Specific design techniques and available design data are identified. Results of a current program to evaluate flaw growth and fracture characteristics of the metal liners are reviewed and the impact of these results on composite pressure vessel designs is discussed.

  18. Methods of vitrifying waste with low melting high lithia glass compositions

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2001-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  19. Glass/BNNT Composite for Sealing Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hurst, Janet B.; Choi, Sung R.

    2007-01-01

    A material consisting of a barium calcium aluminosilicate glass reinforced with 4 weight percent of boron nitride nanotubes (BNNTs) has shown promise for use as a sealant in planar solid oxide fuel cells (SOFCs).

  20. Composite polymer-glass edge cladding for laser disks

    DOEpatents

    Powell, Howard T.; Riley, Michael O.; Wolfe, Charles R.; Lyon, Richard E.; Campbell, John H.; Jessop, Edward S.; Murray, James E.

    1989-01-01

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation.

  1. Composite polymer: Glass edge cladding for laser disks

    DOEpatents

    Powell, H.T.; Wolfe, C.A.; Campbell, J.H.; Murray, J.E.; Riley, M.O.; Lyon, R.E.; Jessop, E.S.

    1987-11-02

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation. 18 figs.

  2. Production of circular polymer-glass fabric composites

    NASA Technical Reports Server (NTRS)

    Hardesty, E. E.

    1973-01-01

    Potentially automated pultrusion technique has been provided for production of curved, glass-reinforced polyimide, epoxy, and graphite reinforced structures. Specially designed apparatus has been manufactured for production of curved structures.

  3. CHEMICAL COMPOSITION AND PCT DATA FOR THE INITIAL SET OF HANFORD ENHANCED WASTE LOADING GLASSES

    SciTech Connect

    Fox, K.; Edwards, T.

    2014-06-02

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test results for 20 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation ranges of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. Two components of the study glasses, fluorine and silver, were not measured since each of these species would have required the use of an additional preparation method and their measured values were likely to be near or below analytical detection limits. Some of the glasses were difficult to prepare for chemical analysis. A sodium peroxide fusion dissolution method was successful in completely dissolving the glasses. Components present in the glasses in minor concentrations can be difficult to measure using this dissolution method due to dilution requirements. The use of a lithium metaborate preparation method for the minor components (planned for use since it is typically successful in digesting Defense Waste Processing Facility HLW glasses) resulted in an unacceptable amount of undissolved solids remaining in the sample solutions. An acid dissolution method was used instead, which provided more thorough dissolution of the glasses, although a small amount of undissolved material remained for some of the study glasses. The undissolved material was analyzed to determine those components of the glasses that did not fully dissolve. These components (e.g., calcium and chromium) were present in sufficient quantities to be reported from the measurements resulting from the sodium peroxide fusion preparation method, which did not leave undissolved material. Overall, the analyses resulted in sums of

  4. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    SciTech Connect

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang; Hrma, Pavel R.

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition models were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.

  5. Metallic glass composition. [That does not embrittle upon annealing

    DOEpatents

    Kroeger, D.M.; Koch, C.C.

    1984-09-14

    This patent pertains to a metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon, carbon and phosphorous to which is added an amount of a ductility-enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  6. Spectroscopic determination of the in-situ composition of epoxy matrices in glass-fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Antoon, M. K.; Zehner, B. E.; Koenig, J. L.

    1981-01-01

    Computerized infrared analysis is applied to the characterization of a glass-reinforced crosslinked polyester. The method of factor analysis determines the number of independent components which constitute the polymeric matrix. Subsequently, the spectra of those components are fitted by a least-squares criterion to spectra of the multicomponent matrix, or, if the glass spectrum is included as an additional component, to the spectra of composites. The least-squares coefficients yield the matrix composition in terms of the initial reactant composition and the extent of crosslinking.

  7. A compliant, high failure strain, fibre-reinforced glass-matrix composite

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.

    1982-01-01

    A glass-matrix composite reinforced by discontinuous graphite fibers was produced by hot pressing glass-powder-impregnated two-dimensional arrays of in-plane randomly oriented graphite fibers held together by approximately 5-10% by weight of organic binder (generally polyester). The composite tensile behavior is characterized by a highly nonlinear stress-strain curve which differs markedly from that of either unreinforced glass or a similarly reinforced epoxy-matrix composite. By virtue of this nonlinearity, the composite is able to redistribute applied stresses to achieve a high load-carrying capacity. The fibrous microstructure and the low fiber-matrix bond provide a mechanism for achieving high fracture toughness and unusually high compliance. For a 96%-silica-matrix composite, the strength is retained to over 1000 C.

  8. Properties of glass/carbon fiber reinforced epoxy hybrid polymer composites

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Sevkani, V. R.; Patel, B. R.; Patel, V. B.

    2016-05-01

    Composite Materials are well known for their tailor-made properties. For the fabrication of composites different types of reinforcements are used for different applications. Sometimes for a particular application, one type of reinforcement may not fulfill the requirements. Therefore, more than one type of reinforcements may be used. Thus, the idea of hybrid composites arises. Hybrid composites are made by joining two or more different reinforcements with suitable matrix system. It helps to improve the properties of composite materials. In the present work glass/carbon fiber reinforcement have been used with a matrix triglycidyl ether of tris(m-hydroxy phenyl) phosphate epoxy resin using amine curing agent. Different physical and mechanical properties of the glass, carbon and glass/carbon fiber reinforced polymeric systems have been found out.

  9. The effect of high-level waste glass composition on spinel liquidus temperature

    SciTech Connect

    Kruger, A. A.; Riley, Brian J.; Crum, Jarrod V.; Hrma, Pavel; Matyas, Josef

    2012-11-15

    Spinel crystals precipitate in high-level waste glasses containing Fe, Cr, Ni, Mn, Zn, and Ru. The liquidus temperature (T{sub L}d) of spinel as the primary crystallization phase is a function of glass composition, and the spinel solubility (c{sub o}) is a function of both glass composition and temperature (T). Previously reported models of T{sub L} as a function of composition are based on T{sub L} measured directly, which requires laborious experimental procedures. Viewing the curve of c{sub o} versus T as the liquidus line allows a significant broadening of the composition region for model fitting. This paper estimates T{sub L} as a function of composition based on c{sub o} data obtained with the X-ray diffraction technique.

  10. The effect of high-level waste glass composition on spinel liquidus temperature

    SciTech Connect

    Hrma, Pavel R.; Riley, Brian J.; Crum, Jarrod V.; Matyas, Josef

    2014-01-15

    Spinel crystals precipitate in high-level waste glasses containing Fe, Cr, Ni , Mn, Zn, and Ru. The liquidus temperature (TL) of spinel as the primary crystallization phase is a function of glass composition and the spinel solubility (c0) is a function of both glass composition and temperature (T). Previously reported models of TL as a function of composition are based on TL measured directly, which requires laborious experimental procedures. Viewing the curve of c0 versus T as the liquidus line allows a significant broadening of the composition region for model fitting. This paper estimates TL as a function of composition based on c0 data obtained with the X-ray diffraction technique.

  11. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  12. Use of composites of topaz-glass as TSEE and TL dosemeters.

    PubMed

    de Magalhães, C M S; Souza, D N; Caldas, L V E

    2006-01-01

    The properties of the thermally stimulated exoelectron emission (TSEE) and thermoluminescent (TL) emission of topaz-glass composites were studied with the aim of using them as solid-state dosemeters. The TSEE response was studied as a function of radiation energy and as a function of absorbed dose. Topaz-glass composites presented a linear TL and TSEE response to dose within a range of 0.01-1 Gy. The topaz-glass composites presented higher TSEE peaks than topaz-Teflon pellets. In the dosimetry of radiotherapic fields normally the responses of the topaz-glass dosemeters are comparable to topaz-Teflon pellets. The results confirmed that these new dosemeters can be useful in monitoring the quality of the radiation sources. This dose mapping technique is particularly useful in investigating dose distribution throughout a planned target volume.

  13. Composite properties for S-2 glass in a room-temperature-curable epoxy matrix

    NASA Technical Reports Server (NTRS)

    Clements, L. L.; Moore, R. L.

    1979-01-01

    The authors have measured thermal and mechanical properties of several composites of S-2 glass fiber in a room-temperature-curable epoxy matrix. The filament-wound composites ranged from 50 to 70 vol% fiber. The composites had generally good to excellent mechanical properties, particularly in view of the moderate cost of the material. However, the composites showed rapid increases in transverse thermal expansion above 50 C, and this property must be carefully considered if any use above that temperature is contemplated.

  14. The effects of composition on glass dissolution rates: The application of four models to a data base

    SciTech Connect

    Geldart, R.W.; Kindle, C.H.

    1988-01-01

    Four models have been applied to a data base to relate glass dissolution in distilled water to composition. The data base is used to compare the precisions obtained from the models in fitting actual data. The usefulness of the data base in formulating a model is also demonstrated. Two related models in which the composite or pH-adjusted free energy of hydration of the glass is the correlating parameter are compared with experimental data. In a structural model, the nonbridging oxygen content of the glasses is used to correlate glass dissolution rate to composition. In a model formulated for this report, the cation valence and the oxygen content of the glass are compared with observed dissolution rates. The models were applied to the 28-day normalized silica release at 90/sup 0/C for over 285 glass compositions with surface area to volume ratios of 10 m/sup -1/ (Materials Characterization Center MCC-1 glass durability test using distilled water). These glasses included the nonradioactive analogs of WV205 and SRL-165, as well as SRL-131, PNL 76-68, and a European glass, UK209. Predicted glass dissolution rates show similar fits to the data for all four models. The predictions of the models were also plotted for two subsets of the glasses: waste glasses and Savannah River Laboratory glasses. The model predictions fit the data for these groups much better than they fit the data for the entire set of glasses. 14 refs., 12 figs., 7 tabs.

  15. Driving force for indentation cracking in glass: composition, pressure and temperature dependence

    PubMed Central

    Rouxel, Tanguy

    2015-01-01

    The occurrence of damage at the surface of glass parts caused by sharp contact loading is a major issue for glass makers, suppliers and end-users. Yet, it is still a poorly understood problem from the viewpoints both of glass science and solid mechanics. Different microcracking patterns are observed at indentation sites depending on the glass composition and indentation cracks may form during both the loading and the unloading stages. Besides, we do not know much about the fracture toughness of glass and its composition dependence, so that setting a criterion for crack initiation and predicting the extent of the damage yet remain out of reach. In this study, by comparison of the behaviour of glasses from very different chemical systems and by identifying experimentally the individual contributions of the different rheological processes leading to the formation of the imprint—namely elasticity, densification and shear flow—we obtain a fairly straightforward prediction of the type and extent of the microcracks which will most likely form, depending on the physical properties of the glass. Finally, some guidelines to reduce the driving force for microcracking are proposed in the light of the effects of composition, temperature and pressure, and the areas for further research are briefly discussed. PMID:25713446

  16. Soft magnetic composites manufactured by warm co-extrusion of bulk metallic glass and steel powders

    SciTech Connect

    Johnson, Francis; Raber, Thomas R.; Zabala, Robert J.; Buresh, Steve J.; Tanico, Brian

    2013-05-07

    Soft magnetic composites of Fe-based bulk metallic glass and low-alloy steel have been manufactured by warm co-extrusion of precursor powders at temperatures within the supercooled liquid region of the glass. Composites were manufactured with amorphous volume fractions of 75%, 67%, and 100%. Full consolidation of the constituent powders was observed with the bulk metallic glass remaining substantially amorphous. The composite electrical resistivity was observed to be anisotropic with a resistivity of 79 {mu}{Omega} cm measured transverse to the extrusion axis in a sample with 75% amorphous volume fraction. A 0-3 connectivity pattern with the low-resistivity steel phase embedded in a 3-dimensionally connected high-resistivity bulk metallic glass phase was observed with scanning electron microscopy. This confirms that the flow characteristics of the bulk metallic glass and the steel powders were comparable during extrusion at these temperatures. The saturation magnetization of 1.3 T was consistent with the volume weighted average of the saturation magnetization of the two phases. A relatively high quasistatic coercivity of 8 Oe was measured and is likely due to slight crystallization of the bulk metallic glass as well as domain wall pinning at prior particle boundaries. Careful control of the thermal environment during the extrusion process is required to minimize glass crystallization and achieve the desired balance of magnetic and electrical properties.

  17. Soft magnetic composites manufactured by warm co-extrusion of bulk metallic glass and steel powders

    NASA Astrophysics Data System (ADS)

    Johnson, Francis; Raber, Thomas R.; Zabala, Robert J.; Buresh, Steve J.; Tanico, Brian

    2013-05-01

    Soft magnetic composites of Fe-based bulk metallic glass and low-alloy steel have been manufactured by warm co-extrusion of precursor powders at temperatures within the supercooled liquid region of the glass. Composites were manufactured with amorphous volume fractions of 75%, 67%, and 100%. Full consolidation of the constituent powders was observed with the bulk metallic glass remaining substantially amorphous. The composite electrical resistivity was observed to be anisotropic with a resistivity of 79 μΩ cm measured transverse to the extrusion axis in a sample with 75% amorphous volume fraction. A 0-3 connectivity pattern with the low-resistivity steel phase embedded in a 3-dimensionally connected high-resistivity bulk metallic glass phase was observed with scanning electron microscopy. This confirms that the flow characteristics of the bulk metallic glass and the steel powders were comparable during extrusion at these temperatures. The saturation magnetization of 1.3 T was consistent with the volume weighted average of the saturation magnetization of the two phases. A relatively high quasistatic coercivity of 8 Oe was measured and is likely due to slight crystallization of the bulk metallic glass as well as domain wall pinning at prior particle boundaries. Careful control of the thermal environment during the extrusion process is required to minimize glass crystallization and achieve the desired balance of magnetic and electrical properties.

  18. Driving force for indentation cracking in glass: composition, pressure and temperature dependence.

    PubMed

    Rouxel, Tanguy

    2015-03-28

    The occurrence of damage at the surface of glass parts caused by sharp contact loading is a major issue for glass makers, suppliers and end-users. Yet, it is still a poorly understood problem from the viewpoints both of glass science and solid mechanics. Different microcracking patterns are observed at indentation sites depending on the glass composition and indentation cracks may form during both the loading and the unloading stages. Besides, we do not know much about the fracture toughness of glass and its composition dependence, so that setting a criterion for crack initiation and predicting the extent of the damage yet remain out of reach. In this study, by comparison of the behaviour of glasses from very different chemical systems and by identifying experimentally the individual contributions of the different rheological processes leading to the formation of the imprint--namely elasticity, densification and shear flow--we obtain a fairly straightforward prediction of the type and extent of the microcracks which will most likely form, depending on the physical properties of the glass. Finally, some guidelines to reduce the driving force for microcracking are proposed in the light of the effects of composition, temperature and pressure, and the areas for further research are briefly discussed.

  19. Fiberglass goes green: Developing phosphate glass for use in biodegradable composites

    NASA Astrophysics Data System (ADS)

    Arendt, Christina Lee

    Composite materials, such as the glass fiber reinforced polyester thermosets known as "fiberglass," are used in many applications. However, recycling processes for these materials are inefficient and not widely available. Specially engineered degradable polymers offer an opportunity to redesign these composites. Additionally, the composite could be tailored to be multi-use, such that upon degradation, the resulting products could be used as part of a zeoponic substrate (artificial soil) for growing plants. Such a material would be beneficial for long-duration space missions, terraforming, or in other agricultural applications. The research presented in this dissertation focuses on developing phosphate glass for use as the fiber reinforcement for such a composite. Due to the under-utilization of phosphate systems, there is a lack of thermodynamic data on these systems. The modified associate species method of phase diagram calculation was used in an attempt to gain more information about the desired system, as it is a good predictor of the phase relations in oxide melts, slags, and glasses and requires less data than other methods. Further research into the thermodynamic properties of phosphates is still needed to develop accurate phase diagrams and melting temperatures for this system. Seventeen glass formulations were developed and melted. Six of these formulations were chosen for dissolution testing. Of these six, Glass 17 was chosen for intensive testing and characterization. This glass was tested in water, hydrochloric acid solutions, and citric acid solutions. The weight loss was measured and ICP-OES was performed on the leachate solution. Scanning electron microscopy (SEM) and X-ray diffraction were performed on the tested specimens. Shrinking-core models were fit to the dissolution data. Fibers were drawn from the glass and characterized using SEM. The data shows that this glass is not dissolving congruently, as is expected of phosphate glasses. Instead

  20. Structural characterization and anti-cancerous potential of gallium bioactive glass/hydrogel composites.

    PubMed

    Keenan, T J; Placek, L M; Coughlan, A; Bowers, G M; Hall, M M; Wren, A W

    2016-11-20

    A bioactive glass series (0.42SiO2-0.10Na2O-0.08CaO-(0.40-X)ZnO-(X)Ga2O3) was incorporated into carboxymethyl cellulose (CMC)/dextran (Dex) hydrogels in three different amounts (0.05, 0.10, and 0.25m(2)), and the resulting composites were characterized using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and (13)C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CP MAS-NMR). Composite extracts were also evaluated in vitro against MG-63 osteosarcoma cells. TEM confirmed glass distribution throughout the composites, although some particle agglomeration was observed. DSC revealed that glass composition and content did have small effects on both Tg and Tm. MAS-NMR revealed that both CMC and Dex were successfully functionalized, that cross-linking occurred, and that glass addition did slightly alter bonding environments. Cell viability analysis suggested that extracts of the glass and composites with the largest Ga-content significantly decreased MG-63 osteosarcoma viability after 30days. This study successfully characterized this composite series, and demonstrated their potential for anti-cancerous applications.

  1. Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds.

    PubMed

    Bellucci, D; Sola, A; Cannillo, V

    2013-05-01

    Recently several attempts have been made to combine calcium phosphates, such as β-tricalcium phosphate (β-TCP) and, most of all, hydroxyapatite (HA), with bioactive glasses of different composition, in order to develop composites with improved biological and mechanical performance. Unfortunately, the production of such systems usually implies a high-temperature treatment (up to 1300 °C), which may result in several drawbacks, including crystallization of the original glass, decomposition of the calcium phosphate phase and/or reactions between the constituent phases, with non-trivial consequences in terms of microstructure, bioactivity and mechanical properties of the final samples. In the present contribution, novel binary composites have been obtained by sintering a bioactive glass, characterized by a low tendency to crystallize, with the addition of HA or β-TCP as the second phase. In particular, the composites have been treated at a relatively low temperature (818 °C and 830 °C, depending on the sample), thus preserving the amorphous structure of the glass and minimizing the interaction between the constituent phases. The effects of the glass composition, calcium phosphate nature and processing conditions on the composite microstructure, mechanical properties and in vitro bioactivity have been systematically discussed. To conclude, a feasibility study to obtain scaffolds for bone tissue regeneration has been proposed.

  2. La composition academique: les limites de l'acceptabilite (Composition for Academic Purposes: Criteria for Acceptability).

    ERIC Educational Resources Information Center

    Grenall, G. M.

    1981-01-01

    Examines the pedagogical approaches and problems attendant to the development of English writing programs for foreign students. Discusses the skills necessary to handle course work, such as essay tests, term papers and reports, theses and dissertations, and focuses particularly on diagnostic problems and acceptability criteria. Societe Nouvelle…

  3. Reactive and Nonreactive Binders in Glass/Vinyl Ester Composites

    DTIC Science & Technology

    2004-09-01

    composite molding processes such as vacuum-assisted resin transfer molding ( VARTM ), resin transfer molding ( RTM ), and the Seeman composite resin...Composite Fabrication Composite laminates were manufactured from the preforms using a VARTM technique. Preforms consisted of 8 plies of reinforcement

  4. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    PubMed

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-04-12

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  5. Study of optical and mechanical strengths of the glass composites with sol-gel films

    NASA Astrophysics Data System (ADS)

    Atkarskaya, A. B.; Zakalova, E. Yu; Kaunov, V. S.; Nartzev, V. M.; Chartiy, P. V.; Shemanin, V. G.

    2016-11-01

    Dependences of optical and mechanical strengths of glass composites with the drawn films upon the film thickness, particles packing density in a layer in the sol disperse phase and the particles diameter have been studied experimentally. We report that the laser ablation threshold energy density values decrease with the growth of the composites microhardness.

  6. Chemical composition analysis of simulated waste glass T10-G-16A

    SciTech Connect

    Fox, K. M.

    2015-08-01

    In this report, SRNL provides chemical composition analyses of a simulated LAW glass designated T10-G-16A.The measured chemical composition data are reported and compared with the targeted values for each component. No issues were identified in reviewing the analytical data.

  7. Effects of Freeze/Thaw Cycles on Hydrostatically Conditioned E-Glass/J-2 Composite

    DTIC Science & Technology

    1992-09-01

    A study was performed to determine if freeze/thaw cycles of a polymer matrix composite (PMC) with high moisture content cause increased mechanical...while the dry samples failed with single delaminations. Further investigation of this observation is suggested.... Polymer matrix composite , E-Glass

  8. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-04-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  9. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  10. Modification of epoxy-reinforced glass-cloth composites with a perfluorinated alkyl ether elastomer

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Chen, T. S.; Taylor, M.

    1984-01-01

    A perfluorinated alkyl ether diacyl fluoride prepolymer (molecular weight about 1500) was coreacted with Epon 828 epoxy resin and diamino diphenyl sulfone to obtain an elastomer-toughened, glass-cloth composite. Improvements in flexural toughness, impact resistance, and water resistance, without loss of strength, modulus of elasticity or a lowering of the glass-transition temperature, were realized over those of the unmodified composite. Factors concerning optimization of the process are discussed. Results suggest that a simultaneously interpenetrating polymer network may be formed which gives rise to a measured improvement in composite mechanical properties.

  11. Structural considerations in design of lightweight glass-fiber composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1973-01-01

    The design concepts used for metal-lined glass-fiber composite pressure vessels are described, comparing the structural characteristics of the composite designs with each other and with homogeneous metal pressure vessels. Specific design techniques and available design data are identified. The discussion centers around two distinctly different design concepts, which provide the basis for defining metal lined composite vessels as either (1) thin-metal lined, or (2) glass fiber reinforced (GFR). Both concepts are described and associated development problems are identified and discussed. Relevant fabrication and testing experience from a series of NASA-Lewis Research Center development efforts is presented.

  12. The oxidative stability of carbon fibre reinforced glass-matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Batt, J. A.

    1988-01-01

    The environmental stability of carbon fibre reinforced glass-matrix composites is assessed. Loss of composite strength due to oxidative exposure at elevated temperatures under no load, static load and cyclic fatigue as well as due to thermal cycling are all examined. It is determined that strength loss is gradual and predictable based on the oxidation of carbon fibres. The glass matrix was not found to prevent this degradation but simply to limit it to a gradual process progressing from the composite surfaces inward.

  13. Fracture Morphology and Local Deformation Characteristics in the Metallic Glass Matrix Composite Under Tension

    NASA Astrophysics Data System (ADS)

    Wang, Y. S.; Sun, X. H.; Hao, G. J.; Guo, Z. X.; Zhang, Y.; Lin, J. P.; Sui, M. L.; Qiao, J. W.

    2017-04-01

    Fracture and deformation characteristics of the Ti-based metallic glass matrix composite have been studied by the tensile test and the in situ TEM tension test. Typically, the composite exhibits the high strength and considerable plasticity. Microscopically, it was found that shear deformation zone formed at the crack tip in glass phase, which can bring about quick propagation of shear bands. However, the plastic deformation zone nearby the crack tip in dendrites will postpone or retard the crack extension by dislocations. The attributions of micro-deformations to mechanical properties of composites were discussed.

  14. Effect of Etching Condition on the Formation of Bioactive Surface of Hydroxyapatite-Glass-Titanium Composite

    NASA Astrophysics Data System (ADS)

    Ban, Seiji; Maruno, Shigeo; Hasegawa, Jiro

    1991-07-01

    X-ray diffraction study shows that an etching solution of 3% HF and 5% HNO3 is the most suitable solution for preparing a bioactive surface layer of HA-glass-titanium composite, since the glass is removed, a great number of HA particles are exposed, and little CaF2 is produced by the etching. Anodic polarization measurement demonstrates that the 3-min etching gives an electrochemically active surface of the composites. These results and SEM observations suggest that this solution provides an adequate surface of the composite for the dental and medical implants.

  15. Properties of indirect composites reinforced with monomer-impregnated glass fiber.

    PubMed

    Tanoue, Naomi; Sawase, Takashi; Matsumura, Hideo; McCabe, John F

    2012-07-01

    Sufficient flexural strength is required for long-term clinical use of fixed partial dentures made with fiber-reinforced composite. The flexural strengths of indirect composite materials reinforced with a monomer-preimpregnated glass fiber material were determined to evaluate the compatibility of the composites to glass fiber material. Four types (microhybrid, nanohybrid, microfilled, and minifilled) of indirect composites and a unidirectional long glass fiber material were selected for investigation. The composites were placed on a fiber plate and polymerized in accordance with the respective manufacturer's instructions. Rectangular bar fiber-composite specimens were machined and the flexural strength was calculated. The flexural strength of each indirect composite was also measured. The microfilled composite with the lowest filler content (70 wt%) exhibited the highest increase ratio using the fiber, although its strength without fiber reinforcement was the lowest (62.1 MPa). The fiber-microhybrid specimen demonstrated the highest mean strength (355.9 MPa), although the filler content of the microhybrid composite was comparatively low (73 wt%). The type of composite material should be considered for the selection of an optimal fiber-composite combination.

  16. Monotonic and fatigue properties of kenaf /glass hybrid composites under fully reversed cyclic loading

    NASA Astrophysics Data System (ADS)

    Sharba, M. J.; Leman, Z.; Sultan, M. T. H.; Ishak, M. R.; Hanim, M. A. A.

    2015-12-01

    The aim of this work is to investigate the effect of hybridization of kenaf-glass fibers reinforced unsaturated polyester on fatigue life. Three types of composites were fabricated using hands lay-up method, namely, kenaf, glass, and hybrid composites with 30% of weight fraction, the hybrid was mixed with a ratio of kenaf: glass 10:20. Monotonic tests were achieved (Tensile and compression) to determine the fatigue stress levels. Fully reversed fatigue loading was conducted with a stress ratio of -1 and stress levels 55-85% of the ultimate static stresses, all tests were conducted at 10 Hz of frequency. The results proof a positive hybrid composite; also agree with the rule of mixture that can predict the final composite properties. Moreover, it's been observed an improvement in overall mechanical properties of hybrid compared to individual ones.

  17. Research of structure, mechanical and operation properties of glass-metal composites

    NASA Astrophysics Data System (ADS)

    Lyubimova, O. N.; Lyubimov, E. V.; Solonenko, E. P.; Morkovin, A. V.; Dryuk, S. A.

    2016-11-01

    The technological bases for the creation of the new structural material—glass-metal composite—are explored in this paper. Properties of the new material: structure and properties of the contact zone of glass and steel, tensile strength under static and dynamic loading, corrosion resistance and abrasion resistance under abrasive wear in the corrosive environment are theoretically and experimentally studied. The limit of thermal stability for experimental composite specimens equals 440°C. Corrosion tests show that the corrosion acceleration is the same for all composite specimens and does not depend on the solution concentration and the initial specimen weight. Steel specimens show significant changes in geometrical characteristics in comparison with composite specimens. Its prospect and ability to compete with steel is proved. The practical application is proposed for glass-metal composite rods.

  18. Method of producing a ceramic fiber-reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1994-01-01

    A fiber-reinforced composite composed of a BaO-Al2O3-2SiO2 (BAS) glass ceramic matrix is reinforced with CVD silicon carbide continuous fibers. A slurry of BAS glass powders is prepared and celsian seeds are added during ball melting. The slurry is cast into tapes which are cut to the proper size. Continuous CVD-SiC fibers are formed into mats of the desired size. The matrix tapes and the fiber mats are alternately stacked in the proper orientation. This tape-mat stack is warm pressed to produce a 'green' composite. The 'green' composite is then heated to an elevated temperature to burn out organic constituents. The remaining interim material is then hot pressed to form a silicon carbide fiber-reinforced celsian (BAS) glass-ceramic matrix composite which may be machined to size.

  19. Flexural Strength of Glass and Polyethylene Fiber Combined with Three Different Composites

    PubMed Central

    Sharafeddin, F; Alavi, AA; Talei, Z

    2013-01-01

    Statement of Problem: The flexure of the fiber- reinforced composites (FRC) which can be generally used instead of fixed metal- framework prostheses have been more advocated due to the enormous demands for the conservative and esthetic restoration. The flexure of the fiber should be well-fitted to its covering composite. No study has been reported the comparison of the combination of glass and polyethylene fiber with particulate filled composite and fiber reinforced composite yet. Purpose: This study compared the flexural strength of two types of fibers combined with three types of composites. Materials and Method: Sixty-six specimens were prepared in a split mold (25×2×2 mm). The specimens were divided into six groups according to the type of resin and the fiber (N = 11): group 1: Z250 composite + Polyethylene fiber; group 2: Build It composite + Polyethylene fiber; group 3: Nulite F composite+ Polyethylene fiber; group 4: glass fiber + Z250 composite; group 5: glass fiber + Build-It composite and group 6: glass fiber + Nulite F. The mean flexural strengths (MPa) values were determined in a 3-point bending test at a crosshead speed of 1 mm/min by a universal testing machine (Zwick/Roell Z020, Germany). The results were statistically analyzed, using one and two- way ANOVA and LSD post-hoc tests (p< 0.05). Results: The highest flexural strength was registered for glass fiber in combination with Z250 composite (500 MPa) and the lowest for polyethylene fiber in combination with Build-It composite (188 MPa). One-way ANOVA test revealed that there was no statistically significant difference between polyethylene fiber combinations (p= 0.62) but there was a significant difference between glass fiber combinations (p= 0.0001). Two-way ANOVA revealed that the fiber type had a significant effect on flexural strength (p= 0.0001). Conclusion: The choice of fiber and composite type was shown to have a significant positive influence on the flexural properties of the

  20. Chemical composition analysis and product consistency tests to support enhanced Hanford waste glass models. Results for the third set of high alumina outer layer matrix glasses

    SciTech Connect

    Fox, K. M.; Edwards, T. B.

    2015-12-01

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for 14 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. All of the measured sums of oxides for the study glasses fell within the interval of 96.9 to 100.8 wt %, indicating recovery of all components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. The PCT results were normalized to both the targeted and measured compositions of the study glasses. Several of the glasses exhibited increases in normalized concentrations (NCi) after the canister centerline cooled (CCC) heat treatment. Five of the glasses, after the CCC heat treatment, had NCB values that exceeded that of the Environmental Assessment (EA) benchmark glass. These results can be combined with additional characterization, including X-ray diffraction, to determine the cause of the higher release rates.

  1. Design and Fabrication of E-Glass /carbon/graphite epoxy hybrid composite leaf spring

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, T.; Raja, M.; Jothi Prakash, V. M.; Gnanavel, C.

    2017-03-01

    The Automobile Industry has shown increase interest for replacement of steel leaf spring with that of composite leaf spring. Substituting composite materials for conventional metallic materials has many advantages because of higher specific stiffness, strength and fatigue resistance etc. This work deals with the replacement of conventional steel leaf spring with a hybrid Composite leaf spring using E -Glass/Carbon/Graphite/Epoxy. The hybrid composite is obtained by introducing more than one fiber in the reinforcement phase. The hybrid composite is fabricated by the vacuum bag technique. The result shows that introduction of carbon and graphite fiber in the reinforcement phase increases the stiffness of the composite.

  2. Mechanical behaviour of degradable phosphate glass fibres and composites-a review.

    PubMed

    Colquhoun, R; Tanner, K E

    2015-12-23

    Biodegradable materials are potentially an advantageous alternative to the traditional metallic fracture fixation devices used in the reconstruction of bone tissue defects. This is due to the occurrence of stress shielding in the surrounding bone tissue that arises from the absence of mechanical stimulus to the regenerating bone due to the mismatch between the elastic modulus of bone and the metal implant. However although degradable polymers may alleviate such issues, these inert materials possess insufficient mechanical properties to be considered as a suitable alternative to current metallic devices at sites of sufficient mechanical loading. Phosphate based glasses are an advantageous group of materials for tissue regenerative applications due to their ability to completely degrade in vivo at highly controllable rates based on the specific glass composition. Furthermore the release of the glass's constituent ions can evoke a therapeutic stimulus in vivo (i.e. osteoinduction) whilst also generating a bioactive response. The processing of these materials into fibres subsequently allows them to act as reinforcing agents in degradable polymers to simultaneously increase its mechanical properties and enhance its in vivo response. However despite the various review articles relating to the compositional influences of different phosphate glass systems, there has been limited work summarising the mechanical properties of different phosphate based glass fibres and their subsequent incorporation as a reinforcing agent in degradable composite materials. As a result, this review article examines the compositional influences behind the development of different phosphate based glass fibre compositions intended as composite reinforcing agents along with an analysis of different potential composite configurations. This includes variations in the fibre content, matrix material and fibre architecture as well as other novel composites designs.

  3. Research of glass fibre used in the electromagnetic wave shielding and absorption composite material

    NASA Astrophysics Data System (ADS)

    Xu, M.; Jia, F.; Bao, H. Q.; Cui, K.; Zhang, F.

    2016-07-01

    Electromagnetic shielding and absorption composite material plays an important role in the defence and economic field. Comparing with other filler, Glass fibre and its processed product—metal-coated glass fibre can greatly reduce the material's weight and costs, while it still remains the high strength and the electromagnetic shielding effectiveness. In this paper, the electromagnetic absorption mechanism and the reflection mechanism have been investigated as a whole, and the shielding effectiveness of the double-layer glass fibre composite material is mainly focused. The relationship between the shielding effectiveness and the filled glass fibre as well as its metal-coated product's parameters has also been studied. From the subsequent coaxial flange and anechoic chamber analysis, it can be confirmed that the peak electromagnetic shielding effectiveness of this double-layer material can reach -78dB while the bandwidth is from 2GHz to 18GHz.

  4. Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr

    PubMed Central

    Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R.

    2015-01-01

    In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation. PMID:26539431

  5. Behaviour of hybrid jute-glass/epoxy composite tubes subjected to lateral loading

    NASA Astrophysics Data System (ADS)

    Khalid, A. A.

    2015-12-01

    Experimental work on hybrid and non-hybrid composite tubes subjected to lateral loading has been carried out using jute, glass and hybrid jute-glass/epoxy materials. Tubes of 200 mm length with 110 mm inner diameter were fabricated by hand lay-up method to investigate the effect of material used and the number of layers on lateral-load-displacement relations and on the failure mode. Crush force efficiency and the specific energy absorption of the composite tubes were calculated. Results show that the six layers glass/epoxy tubes supported load higher 10.6% than that of hybrid jute-glass/ epoxy made of two layers of jute/epoxy four layers of glass/epoxy. It has been found that the specific energy absorption of the glass/epoxy tubes is found higher respectively 11.6% and 46% than hybrid jute-glass/epoxy and jute/epoxy tubes. The increase in the number of layers from two to six increases the maximum lateral load from 0.53KN to 1.22 KN for jute/epoxy and from 1.35 KN to 3.87 KN for the glass/epoxy tubes. The stacking sequence of the hybrid tubes influenced on the maximum lateral load and the absorbed energy. The maximum load obtained for the six layers jute-glass/epoxy tubes of different staking sequence varies between 1.88 KN to 3.46 KN. Failure mechanisms of the laterally loaded composite tubes were also observed and discussed.

  6. Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr.

    PubMed

    Miola, Marta; Verné, Enrica; Ciraldo, Francesca Elisa; Cordero-Arias, Luis; Boccaccini, Aldo R

    2015-01-01

    In this research work, the original 45S5 bioactive glass was modified by introducing zinc and/or strontium oxide (6 mol%) in place of calcium oxide. Sr was added for its ability to stimulate bone formation and Zn for its role in bone metabolism, antibacterial properties, and anti-inflammatory effect. The glasses were produced by means of melting and quenching process. SEM and XRD analyses evidenced that Zr and Sr introduction did not modify the glass structure and morphology while compositional analysis (EDS) demonstrated the effective incorporation of these elements in the glass network. Bioactivity test in simulated body fluid (SBF) up to 1 month evidenced a reduced bioactivity kinetics for Zn-doped glasses. Doped glasses were combined with chitosan to produce organic/inorganic composite coatings on stainless steel AISI 316L by electrophoretic deposition (EPD). Two EPD processes were considered for coating development, namely direct current EPD (DC-EPD) and alternating current EPD (AC-EPD). The stability of the suspension was analyzed and the deposition parameters were optimized. Tape and bending tests demonstrated a good coating-substrate adhesion for coatings containing 45S5-Sr and 45S5-ZnSr glasses, whereas the adhesion to the substrate decreased by using 45S5-Zn glass. FTIR analyses demonstrated the composite nature of coatings and SEM observations indicated that glass particles were well integrated in the polymeric matrix, the coatings were fairly homogeneous and free of cracks; moreover, the AC-EPD technique provided better results than DC-EPD in terms of coating quality. SEM, XRD analyses, and Raman spectroscopy, performed after bioactivity test in SBF solution, confirmed the bioactive behavior of 45S5-Sr-containing coating while coatings containing Zn exhibited no hydroxyapatite formation.

  7. Compositional dependent response of silica-based glasses to femtosecond laser pulse irradiation

    NASA Astrophysics Data System (ADS)

    Seuthe, Thomas; Grehn, Moritz; Mermillod-Blondin, Alexandre; Bonse, Jörn; Eberstein, Markus

    2013-11-01

    Femtosecond laser pulse irradiation of inorganic glasses allows a selective modification of the optical properties with very high precision. This results in the possibility for the production of three-dimensional functional optical elements in the interior of glass materials, such as optical data storage, waveguide writing, etc. The influence of the chemical glass composition to the response upon ultrashort laser irradiation has not been studied systematically. For that, simple silicabased model glasses composed of systematically varying alkaline- and earth-alkaline components were prepared, irradiated on the surface and in the volume with single fs-laser pulses (~130 fs, 800 nm), and were subsequently analyzed by means of micro-Raman spectroscopy and quantitative phase contrast microscopy in order to account for changes in the glass structure and for alterations of the optical refractive index, respectively. The Raman spectroscopic studies of the laser-irradiated spots revealed no change in the average binding configuration (the so called Q-structure), but local changes of bond-angles and bond-lengths within the glass structure structure. Those changes are explained by structural relaxation of the glass network due to densification caused by a transient laser-induced plasma generation and the following shock wave and other thermal phenomena. Glasses with a low amount of network modifiers show changes in the Si-O network while glasses with a high amount of network modifiers react primarily via variation of the nonbridging oxygen ions. The results are discussed in terms of possible structural response mechanisms and conclusions are outlined regarding glass compositions with technical suitability for fs-laser modifications.

  8. Thermal recycling and re-manufacturing of glass fibre thermosetting composites

    NASA Astrophysics Data System (ADS)

    Fraisse, A.; Beauson, J.; Brøndsted, P.; Madsen, B.

    2016-07-01

    The impact of using thermally recycled glass fibre in re-manufactured composites was investigated. A unidirectional glass fibre thermosetting composite laminate was manufactured. The matrix in one part of the laminate was burnt off to recover the glass fibres. These recycled glass fibres were used to manufacture a new composite laminate with the same fibre architecture as the pristine one. The fibres, the matrix and the composite laminates were thoroughly characterised and analysed. The results show that good materials quality was obtained for both laminates. A difference in fibre packing behaviour was observed in the composites with the pristine and the recycled fibres, which lead to a lower fibre volume fraction in the latter one. The Young's modulus of the composites was not changed by the recycling process, if the lower fibre volume fraction is taken into account. However, a marked drop in the maximum stress of the composites was reported, which was found to be related to the loss in maximum stress of the fibres.

  9. Hanford enhanced waste glass characterization. Influence of composition on chemical durability

    SciTech Connect

    Fox, K. M.; Edwards, T. B.

    2016-06-01

    This report provides a review of the complete high-level waste (HLW) and low-activity waste (LAW) data sets for the glasses recently fabricated at Pacific Northwest National Laboratory and characterized at Savannah River National Laboratory (SRNL). The review is from the perspective of relating the chemical durability performance to the compositions of these study glasses, since the characterization work at SRNL focused on chemical analysis and ASTM Product Consistency Test (PCT) performance.

  10. Use of glass fiber post and composite resin in restoration of a vertical fractured tooth.

    PubMed

    Fidel, Sandra Rivera; Sassone, Luciana; Alvares, Gustavo Ribeiro; Guimarães, Rodrigo Prada Sant'anna; Fidel, Rivail Antônio Sérgio

    2006-12-01

    Combined coronal and vertical root fractures are difficult to treat and extraction of the affected tooth is quite often indicated. In anterior teeth, esthetics and function must be reestablished immediately. This case describes the restoration of a fractured upper right central incisor using a glass fiber post and adhesive composite. At the follow-up appointment, 13 months later, clinical and radiographical examinations revealed the glass fiber post and restoration in place, suggesting the efficacy of the treatment in maintaining fractured tooth.

  11. Viscoelastic Characterization of a Nonlinear, Glass/Epoxy Composite Including the Effects of Damage

    DTIC Science & Technology

    1974-10-01

    Schapery Isothermal creep and recovery tests were conducted on an epoxy resin and a glass fiber-reiiforced composite made from the same bulk resin ...Contracted Notations ... ......... ... 43 2 Ingredients of Shell 58-68R Epoxy Resin [181]. . 9 3 Fiber Content of S-901 Glass/Shell 58-68R Epoxy Resin ...Epoxy Resin .......... ................... 154 i0 Shift Factors, aT, for Shell 58-68R Epoxy Resin .......... ................... 164 11 Shell 58-68R

  12. Simulations reveal the role of composition into the atomic-level flexibility of bioactive glass cements.

    PubMed

    Tian, Kun Viviana; Chass, Gregory A; Di Tommaso, Devis

    2016-01-14

    Bioactive glass ionomer cements (GICs), the reaction product of a fluoro-alumino-silicate glass and polyacrylic acid, have been in effective use in dentistry for over 40 years and more recently in orthopaedics and medical implantation. Their desirable properties have affirmed GIC's place in the medical materials community, yet are limited to non-load bearing applications due to the brittle nature of the hardened composite cement, thought to arise from the glass component and the interfaces it forms. Towards helping resolve the fundamental bases of the mechanical shortcomings of GICs, we report the 1st ever computational models of a GIC-relevant component. Ab initio molecular dynamics simulations were employed to generate and characterise three fluoro-alumino-silicate glasses of differing compositions with focus on resolving the atomic scale structural and dynamic contributions of aluminium, phosphorous and fluorine. Analyses of the glasses revealed rising F-content leading to the expansion of the glass network, compression of Al-F bonding, angular constraint at Al-pivots, localisation of alumino-phosphates and increased fluorine diffusion. Together, these changes to the structure, speciation and dynamics with raised fluorine content impart an overall rigidifying effect on the glass network, and suggest a predisposition to atomic-level inflexibility, which could manifest in the ionomer cements they form.

  13. Combustion Synthesis of Glass-Ceramic Composites Under Terrestrial and Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Manerbino, Anthony; Yi, H. C.; Guigne, J. Y.; Moore, J. J.; Gokoglu, S. (Technical Monitor)

    2001-01-01

    Glasses based on B2O3-Al2O3-BaO-and B2O3-Al2O3-MgO have been produced by the combustion synthesis technique. The combustion temperature, wave velocity for selected compositions are presented. Combustion reactions of these materials were typically low exothermic, resulting in unstable combustion waves. Microstructural characterization of these materials indicated that the glass formation region was similar to those that were produced by the traditional technique. Results of the effect of gravity on the glass formation (or divitrification) studied onboard of KC-135 is also presented.

  14. High Strength Glass Second Source Qualification to Composite Armor Specification MIL-L-46197(MR)

    DTIC Science & Technology

    1992-04-01

    L-46197 (MR). The Owens Corning Fiberglass (OCF) S-2 glass woven roving product has set the standard for this application to structural armor. The...HIARTMAN. 1). R. liallistc Penetration of S 2 Glass L~aminates S-2 Glass I-iber Technical Paper. Owens Corning Fiberglass. I I 1ASKLI.. W E. Spall...Materials Marketing. Owens Corning F’iberglass- Toledo. O1l, 416𔄃 SR and RI1 Gla" Chemical Composition. Vetrotex Data Sheet. IM11 04-02-2 6

  15. Carbon Fiber Reinforced Glass Matrix Composites for Structural Space Based Applications

    DTIC Science & Technology

    1989-07-31

    1988) 2745-2752. 2 R89-917704-1 10. V. C. Nardone and K. M. Prewo, "Tensile Performance of Carbon-Fibre-Reinforced Glass," J. Mater. Sci., 23 (1988...168-180. 11. K. M. Prewo and V. C. Nardone , "Carbon Fiber Reinforced Glass Matrix Composites for Space Based Applications," UTRC Report R86-917161-1...Mater. Sci., 23 (1988) 2745-2752. 11. V. C. Nardone and K. M. Prewo, "Tensile Performance of Carbon-Fibre-Reinforced Glass," J. Mater. Sci., 23 (1988

  16. Raman spectra of Martian glass analogues: A tool to approximate their chemical composition

    NASA Astrophysics Data System (ADS)

    Di Genova, Danilo; Kolzenburg, Stephan; Vona, Alessandro; Chevrel, Magdalena Oryaëlle; Hess, Kai-Uwe; Neuville, Daniel R.; Ertel-Ingrisch, Werner; Romano, Claudia; Dingwell, Donald B.

    2016-05-01

    Raman spectrometers will form a key component of the analytical suite of future planetary rovers intended to investigate geological processes on Mars. In order to expand the applicability of these spectrometers and use them as analytical tools for the investigation of silicate glasses, a database correlating Raman spectra to glass composition is crucial. Here we investigate the effect of the chemical composition of reduced silicate glasses on their Raman spectra. A range of compositions was generated in a diffusion experiment between two distinct, iron-rich end-members (a basalt and a peralkaline rhyolite), which are representative of the anticipated compositions of Martian rocks. Our results show that for silica-poor (depolymerized) compositions the band intensity increases dramatically in the regions between 550-780 cm-1 and 820-980 cm-1. On the other hand, Raman spectra regions between 250-550 cm-1 and 1000-1250 cm-1 are well developed in silica-rich (highly polymerized) systems. Further, spectral intensity increases at ~965 cm-1 related to the high iron content of these glasses (~7-17 wt % of FeOtot). Based on the acquired Raman spectra and an ideal mixing equation between the two end-members we present an empirical parameterization that enables the estimation of the chemical compositions of silicate glasses within this range. The model is validated using external samples for which chemical composition and Raman spectra were characterized independently. Applications of this model range from microanalysis of dry and hydrous silicate glasses (e.g., melt inclusions) to in situ field investigations and studies under extreme conditions such as extraterrestrial (i.e., Mars) and submarine volcanic environments.

  17. Raman spectra of Martian glass analogues: A tool to approximate their chemical composition.

    PubMed

    Di Genova, Danilo; Kolzenburg, Stephan; Vona, Alessandro; Chevrel, Magdalena Oryaëlle; Hess, Kai-Uwe; Neuville, Daniel R; Ertel-Ingrisch, Werner; Romano, Claudia; Dingwell, Donald B

    2016-05-01

    Raman spectrometers will form a key component of the analytical suite of future planetary rovers intended to investigate geological processes on Mars. In order to expand the applicability of these spectrometers and use them as analytical tools for the investigation of silicate glasses, a database correlating Raman spectra to glass composition is crucial. Here we investigate the effect of the chemical composition of reduced silicate glasses on their Raman spectra. A range of compositions was generated in a diffusion experiment between two distinct, iron-rich end-members (a basalt and a peralkaline rhyolite), which are representative of the anticipated compositions of Martian rocks. Our results show that for silica-poor (depolymerized) compositions the band intensity increases dramatically in the regions between 550-780 cm(-1) and 820-980 cm(-1). On the other hand, Raman spectra regions between 250-550 cm(-1) and 1000-1250 cm(-1) are well developed in silica-rich (highly polymerized) systems. Further, spectral intensity increases at ~965 cm(-1) related to the high iron content of these glasses (~7-17 wt % of FeOtot). Based on the acquired Raman spectra and an ideal mixing equation between the two end-members we present an empirical parameterization that enables the estimation of the chemical compositions of silicate glasses within this range. The model is validated using external samples for which chemical composition and Raman spectra were characterized independently. Applications of this model range from microanalysis of dry and hydrous silicate glasses (e.g., melt inclusions) to in situ field investigations and studies under extreme conditions such as extraterrestrial (i.e., Mars) and submarine volcanic environments.

  18. Chemical composition analysis and product consistency tests to support enhanced Hanford waste glass models: Results for the January, March, and April 2015 LAW glasses

    SciTech Connect

    Fox, K. M.; Edwards, T. B.; Riley, W. T.; Best, D. R.

    2015-09-03

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for several simulated low activity waste (LAW) glasses (designated as the January, March, and April 2015 LAW glasses) fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions.

  19. Chemical composition analysis and product consistency tests to support Enhanced Hanford Waste Glass Models. Results for the Augusta and October 2014 LAW Glasses

    SciTech Connect

    Fox, K. M.; Edwards, T. B.; Best, D. R.

    2015-07-07

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for several simulated low activity waste (LAW) glasses (designated as the August and October 2014 LAW glasses) fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions.

  20. The possibility of E-glass woven roving as reinforcement of GFRP composite sheet roof

    NASA Astrophysics Data System (ADS)

    Setyanto, Djoko

    2016-03-01

    The 1.25 mm thickness of opaque glass fiber reinforced polymer (GFRP) composite sheet roof that is produced by an Indonesia company at Tangerang, consists of two layers of 300 g/m2 E-glass chopped strand mat as reinforcement and unsaturated polyester resin as matrix. A layer of 300 g/m2 E-glass chopped strand mat is replaced by a layer of 400 g/m2 E-glass woven roving as reinforcement to study the possibility use as sheet roof material. The properties of the two samples of GFRP composite materials were compared. Barcol hardness and flexure strength of the two samples relatively not significance change. Tensile strength and elastic modulus of the new sample which contains a layer of woven roving reinforcement is greater than the other one. On the other hand the waviness of the new sample is greater, but cheaper. In general, a layer of E-glass woven roving and a layer of E-glass chopped strand mat can be considered as an alternative reinforcement of two layers reinforcement of GFRP composite material of sheet roof.

  1. Structure of a composite material based on oxyfluoride glass and low-melting fluoroplast

    NASA Astrophysics Data System (ADS)

    Ignat'eva, L. N.; Savchenko, N. N.; Lalayan, V. M.; Zverev, G. A.; Usol'tseva, T. I.; Ustinov, A. Yu.; Shaulov, A. Yu.; Berlin, A. A.; Buznik, V. M.

    2016-09-01

    Aspects of the fabrication of composites obtained via the extrusion formation of mixtures composed of a perfluorocarbon polymer (F2MB) and a thermoplastic inorganic glass of the composition 3B2O3-97(40SnF2-30SnO-30P2O5) are investigated by analyzing the results from studies of their morphology, molecular structure, and phase composition.

  2. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSHILICATE FRIT X COMPOSITION FOR PLUTONIUM DISPOSITION

    SciTech Connect

    Marra, J

    2006-11-21

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is the preferred option for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium in the late 1990's. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Recent FY05 studies have further investigated the LaBS Frit B formulation as well as development of a newer LaBS formulation denoted as LaBS Frit X. The objectives of this present task were to fabricate plutonium loaded LaBS Frit X glass and perform corrosion testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit X composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was thoroughly characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL using quenched Pu Frit X glass with varying exposed surface areas. Effects of isothermal and can-in-canister heat treatments on the Pu Frit X glass were also investigated. Another series of PCTs were performed on these different heat-treated Pu Frit X glasses. Leachates from all these PCTs were

  3. Fretting maps of glass fiber-reinforced composites

    SciTech Connect

    Turki, C.; Salvia, M.; Vincent, L.

    1993-12-31

    Industrial development of new materials are often limited due to an insufficient knowledge in their functional properties. The paper deals with fretting behavior of glass fiber reinforced epoxy/metal contacts. Fretting is a plague for all industries, especially in the case of quasi-static loadings. Furthermore friction testing under small displacements appeared well fitted to understand the effect of fiber orientations and to relate results to microstructure (fiber, matrix and interface).

  4. Kenaf-glass fiber reinforced unsaturated polyester hybrid composites: Tensile properties

    NASA Astrophysics Data System (ADS)

    Zhafer, S. F.; Rozyanty, A. R.; Shahnaz, S. B. S.; Musa, L.; Zuliahani, A.

    2016-07-01

    The use of natural fibers in composite is rising in recent years due their lightweight, non-abrasive, combustible, non-toxic, low cost and biodegradable properties. However, in comparison with synthetic fibers, the mechanical properties of natural fibers are lower. Therefore, the inclusion of synthetic fibers could improve the mechanical performance of natural fiber based composites. In this study, kenaf bast fiber and glass fiber at different weight percentage loading were used as reinforcement to produce hybrid composites. Unsaturated polyester (UP) resin was used as matrix and hand lay-up process was performed to apply the UP resin on the hybrid kenaf bast/glass fiber composite. Effect of different fiber loading on tensile strength, tensile modulus and elongation at break of the hybrid composite was studied. It has been found that the highest value of tensile strength and modulus was achieved at 10 wt.% kenaf/10 wt.% glass fiber loading. It was concluded that addition of glass fiber has improved the tensile properties of kenaf bast fiber based UP composites.

  5. Energy dissipation and high-strain rate dynamic response of E-glass fiber composites with anchored carbon nanotubes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study explores the mechanical properties of an E-glass fabric composite reinforced with anchored multi-walled carbon nanotubes (CNTs). The CNTs were grown on the E-glass fabric using a floating catalyst chemical vapor deposition procedure. The E-glass fabric with attached CNTs was then incorpor...

  6. A review of volatile compounds in tektites, and carbon content and isotopic composition of moldavite glass

    NASA Astrophysics Data System (ADS)

    Žák, Karel; SkáLA, Roman; Šanda, Zdeněk.; Mizera, Jiří.

    2012-06-01

    Tektites, natural silica-rich glasses produced during impact events, commonly contain bubbles. The paper reviews published data on pressure and composition of a gas phase contained in the tektite bubbles and data on other volatile compounds which can be released from tektites by either high-temperature melting or by crushing or milling under vacuum. Gas extraction from tektites using high-temperature melting generally produced higher gas yield and different gas composition than the low-temperature extraction using crushing or milling under vacuum. The high-temperature extraction obviously releases volatiles not only from the bubbles, but also volatile compounds contained directly in the glass. Moreover, the gas composition can be modified by reactions between the released gases and the glass melt. Published data indicate that besides CO2 and/or CO in the bubbles, another carbon reservoir is present directly in the tektite glass. To clarify the problem of carbon content and carbon isotopic composition of the tektite glass, three samples from the Central European tektite strewn field—moldavites—were analyzed. The samples contained only 35-41 ppm C with δ13C values in the range from -28.5 to -29.9‰ VPDB. This indicates that terrestrial organic matter was a dominant carbon source during moldavite formation.

  7. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15

    NASA Astrophysics Data System (ADS)

    Yang, Jae Hwan; Park, Hwan Seo; Ahn, Do-Hee; Yim, Man-Sung

    2016-11-01

    The aim of this study was to stabilize bismuth-embedded SBA-15 that captured iodine gas by fabrication of monolithic waste forms. The iodine containing waste was mixed with Bi2O3 (a stabilizing additive) and low-temperature sintering glass followed by pelletizing and the sintering process to produce glass composite materials. Iodine volatility during the sintering process was significantly affected by the ratio of Bi2O3 and the glass composition. It was confirmed that BiI3, the main iodine phase within bismuth-embedded SBA-15, was effectively transformed to the mixed phases of Bi5O7I and BiOI. The initial leaching rates of iodine from the glass composite waste forms ranged 10-3-10-2 g/m2 day, showing the stability of the iodine phases encapsulated by the glassy networks. It was also observed that common groundwater anions (e.g., chloride, carbonate, sulfite, and fluoride) elevated the iodine leaching rate by anion exchange reactions. The present results suggest that the glass composite waste form of bismuth-embedded SBA-15 could be a candidate material for stable storage of 129I.

  8. Effect of winding layer and speed on kenaf/glass fiber hybrid reinforced acrylonitrile butadiene styrene (ABS) composites

    NASA Astrophysics Data System (ADS)

    Khoni, Norizzahthul Ainaa Abdul; Sharifah Shahnaz S., B.; Ghazali, Che Mohd Ruzaidi

    2016-07-01

    The usage of natural fiber is becoming significant in composite industries due to their good performance. Single and continuous natural fibers have relatively high mechanical properties; especially their young modulus can be as high as glass fibers. Filament winding is a method to produce technically aligned composites which have high fibers content. The properties of filament winding can be tailored to meet the end product requirements. This research studied the compression properties of kenaf/glass fibers hybrid reinforced composites. Kenaf/glass fibers hybrid composite samples were fabricated by filament winding technique and their properties were compared with the properties of neat kenaf fiber and glass fibers composites. The kenaf/glass fiber hybrid composites exhibited higher strength compared to the neat glass fibers composites. Composites of helical pattern, which produced at low winding speed showed better compression resistance than hoop pattern winding, which produced at high winding speed. As predicted, kenaf composite showed highest water absorption; followed by kenaf/glass fiber hybrid composites while neat glass fiber has lowest water absorption capability.

  9. Recommended Minimum Test Requirements and Test Methods for Assessing Durability of Random-Glass-Fiber Composites

    SciTech Connect

    Battiste, R.L.; Corum, J.M.; Ren, W.; Ruggles, M.B.

    1999-06-01

    This report provides recommended minimum test requirements are suggested test methods for establishing the durability properties and characteristics of candidate random-glass-fiber polymeric composites for automotive structural applications. The recommendations and suggestions are based on experience and results developed at Oak Ridge National Laboratory (ORNL) under a US Department of Energy Advanced Automotive Materials project entitled ''Durability of Lightweight Composite Structures,'' which is closely coordinated with the Automotive Composites Consortium. The report is intended as an aid to suppliers offering new structural composites for automotive applications and to testing organizations that are called on to characterize the composites.

  10. GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE FRIT X COMPOSITION FOR PLUTONIUM DISPOSITION

    SciTech Connect

    Marra, J

    2006-11-15

    The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is the preferred option for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium in the late 1990's. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Recent FY05 studies have further investigated the LaBS Frit B formulation as well as development of a newer LaBS formulation denoted as LaBS Frit X. The objectives of this present task were to fabricate plutonium loaded LaBS Frit X glass and perform corrosion testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit X composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was thoroughly characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL using quenched Pu Frit X glass with varying exposed surface areas. Effects of isothermal and can-in-canister heat treatments on the Pu Frit X glass were also investigated. Another series of PCTs were performed on these different heat-treated Pu Frit X glasses. Leachates from all these PCTs were

  11. Bone response to three different chemical compositions of fluorcanasite glass-ceramic.

    PubMed

    da Rocha Barros, Valdemar Mallet; Liporaci, Jorge Luiz J; Rosa, Adalberto L; Junqueira, Marcela Caffarena; de Oliveira, Paulo Tambasco; Johnson, Anthony; van Noort, Richard

    2007-11-01

    The aim of this study was to evaluate the bone response to three fluorcanasite glass-ceramic compositions with different solubilities (K3, K5, and K8) after implantation in a femur rabbit model. Fluorcanasite glass-ceramic rods were implanted bilaterally in the mid-shafts rabbit femurs. Implants were harvested at 8 and 12 weeks and prepared for histological and histomorphometric analyses at the light microscope level. Bioglass 45S5 rods were used as a control material. At 8 weeks, all fluorcanasite glass-ceramics were entirely surrounded by a nonmineralized connective tissue. At 12 weeks, reduced areas of bone tissue were observed in the cortical area in direct contact with the K3 and K5 fluorcanasite glass-ceramics compared to Bioglass 45S5, whereas no bone tissue was observed in direct contact with the K8 surface. Bone-to-implant contact in the cortical area was affected by the material chemical composition and ranked as follows: Bioglass 45S5>K3>K5>K8 (p=0.001). In the bone marrow, a layer of fibrous connective tissue formed in direct contact with the fluorcanasite glass-ceramics and Bioglass 45S5, and only rarely exhibited contact osteogenesis. All the fluorcanasite glass-ceramics appeared to degrade in the biological environment. The solubility ratio did not alter significantly the biological reply of the fluorcanasite glass-ceramics in vivo. Further modifications of the chemical composition of the fluorcanasite glass-ceramic are required to increase the stability of the material in vivo.

  12. Composition-structure-properties relationship of strontium borate glasses for medical applications.

    PubMed

    Hasan, Muhammad S; Werner-Zwanziger, Ulrike; Boyd, Daniel

    2015-07-01

    We have synthesized TiO2 doped strontium borate glasses, 70B2O3-(30-x)SrO-xTiO2 and 70B2 O3 -20SrO(10-x)Na2 O-xTiO2 . The composition dependence of glass structure, density, thermal properties, durability, and cytotoxicity of degradation products was studied. Digesting the glass in mineral acid and detecting the concentrations of various ions using an ICP provided the actual compositions that were 5-8% deviated from the theoretical values. The structure was investigated by means of (11)B magic angle spinning (MAS) NMR spectroscopy. DSC analyses provided the thermal properties and the degradation rates were measured by measuring the weight loss of glass disc-samples in phosphate buffered saline at 37°C in vitro. Finally, the MTT assay was used to analyze the cytotoxicity of the degradation products. The structural analysis revealed that replacing TiO2 for SrO or Na2 O increased the BO3/BO4 ratio suggesting the network-forming role of TiO2 . Thermal properties, density, and degradation rates also followed the structural changes. Varying SrO content predominantly controlled the degradation rates, which in turn controlled the ion release kinetics. A reasonable control (2-25% mass loss in 21 days) over mass loss was achieved in current study. Even though, very high concentrations (up to 5500 ppm B, and 1200 ppm Sr) of ions were released from the ternary glass compositions that saturated the degradation media in 7 days, the degradation products from ternary glass system was found noncytotoxic. However, quaternary glasses demonstrated negative affect on cell viability due to very high (7000 ppm) Na ion concentration. All the glasses investigated in current study are deemed fast degrading with further control over degradation rates, release kinetics desirable.

  13. Computation assisted design of favored composition for ternary Mg-Cu-Y metallic glass formation.

    PubMed

    Wang, Q; Li, J H; Liu, B X

    2015-06-14

    With the aid of ab initio calculations, a realistic interatomic potential was constructed for the Mg-Cu-Y ternary system under the proposed formalism of smoothed and long-range second-moment approximation of tight-binding. Taking the potential as the starting base, an atomistic computation/simulation route was developed for designing favored and optimized compositions for Mg-Cu-Y metallic glass formation. Simulations revealed that the physical origin of metallic glass formation is the collapse of crystalline lattice when solute concentration exceeds a critical value, thus leading to predict a hexagonal region in the Mg-Cu-Y composition triangle, within which metallic glass formation is energetically favored. It is proposed that the hexagonal region can be defined as the intrinsic glass formation region, or quantitative glass formation ability of the system. Inside the hexagonal region, the driving force for formation of each specific glassy alloy was further calculated and correlated with its forming ability in practice. Calculations pinpointed the optimized stoichiometry in the Mg-Cu-Y system to be Mg64Cu16Y20, at which the formation driving force reaches its maximum, suggesting that metallic glasses designed to have compositions around Mg64Cu16Y20 are most stable or easiest to obtain. The predictions derived directly from the atomistic simulations are supported by experimental observations reported so far in the literature. Furthermore, Honeycutt-Anderson analysis indicated that pentagonal bipyramids (although not aggregating to form icosahedra) dominate in the local structure of the Mg-Cu-Y metallic glasses. A microscopic picture of the medium-range packing can then be described as an extended network of the pentagonal bipyramids, entangled with the fourfold and sixfold disclination lines, jointly fulfilling the space of the metallic glasses.

  14. Compositional trends of γ-induced optical changes observed in chalcogenide glasses of binary As-S system

    SciTech Connect

    Shpotyuk, M.; Shpotyuk, O.; Golovchak, Roman; McCloy, John S.; Riley, Brian J.

    2014-01-23

    Compositional trends of γ-induced optical changes in chalcogenide glasses are studied with the binary As-S system. Effects of γ-irradiation and annealing are compared using the changes measured in the fundamental optical absorption edge region. It is shown that annealing near the glass transition temperature leads to bleaching of As-S glasses, while γ-irradiation leads to darkening; both depend on the glass composition and thermal history of the specimens. These results are explained in terms of competitive destruction–polymerization transformations and physical aging occurring in As-S chalcogenide glasses under the influence of γ-irradiation.

  15. HIGH-LEVEL WASTE GLASS FORMULATION MODEL SENSITIVITY STUDY 2009 GLASS FORMULATION MODEL VERSUS 1996 GLASS FORMULATION MODEL

    SciTech Connect

    BELSHER JD; MEINERT FL

    2009-12-07

    This document presents the differences between two HLW glass formulation models (GFM): The 1996 GFM and 2009 GFM. A glass formulation model is a collection of glass property correlations and associated limits, as well as model validity and solubility constraints; it uses the pretreated HLW feed composition to predict the amount and composition of glass forming additives necessary to produce acceptable HLW glass. The 2009 GFM presented in this report was constructed as a nonlinear optimization calculation based on updated glass property data and solubility limits described in PNNL-18501 (2009). Key mission drivers such as the total mass of HLW glass and waste oxide loading are compared between the two glass formulation models. In addition, a sensitivity study was performed within the 2009 GFM to determine the effect of relaxing various constraints on the predicted mass of the HLW glass.

  16. The bearing strength and failure behavior of bolted e-glass/epoxy composite joints

    NASA Astrophysics Data System (ADS)

    Pekbey, Y.

    2008-07-01

    An experimental study was carried out to investigate the failure strength of a pinned-joint E-glass/epoxy composite plate. The main objective was to examine the influence of the preload moment, the edge distance to the pin diameter ratio, and the specimen width to pin diameter ratio on the strength. The load-carrying capacity of the pin-loaded hole could be changed by varying the specimen geometry and the preload moment. Guidelines for effective geometrical configurations and the preload moment for the mechanically pin-connected E-glass/epoxy composite plate were specified based on the ultimate bearing strength.

  17. Silicon carbide fiber reinforced strontium aluminosilicate glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam (Inventor)

    1992-01-01

    A SrO-Al2O3 - 2SrO2 (SAS) glass ceramic matrix is reinforced with CVD SiC continuous fibers. This material is prepared by casting a slurry of SAS glass powder into tapes. Mats of continuous CVD-SiC fibers are alternately stacked with the matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite. Organic constituents are burned out of the 'green' composite, and the remaining interim material is hot pressed.

  18. Method of producing a silicon carbide fiber reinforced strontium aluminosilicate glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1995-01-01

    A SrO-Al2O3-2SrO2 (SAS) glass ceramic matrix is reinforced with CVD SiC continuous fibers. This material is prepared by casting a slurry of SAS glass powder into tapes. Mats of continuous CVD-SiC fibers are alternately stacked with the matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite. Organic constituents are burned out of the 'green' composite, and the remaining interim material is hot pressed.

  19. Alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte for Zn-air battery

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lin, Sheng-Jen

    An alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte with high ionic conductivity (10 -2 S cm -1) at room temperature has been prepared and applied to solid-state primary Zn-air batteries. The electrolyte shows excellent mechanical strength. The electrochemical characteristics of the batteries were experimentally investigated by means of ac impedance spectroscopy and galvanostatic discharge. The results indicate that the PEO-PVA-glass-fibre-mat composite polymer electrolyte is a promising candidate for application in alkaline primary Zn-air batteries.

  20. EPR measurement of the effect of glass composition on the oxidation states of europium

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Haskin, L. A.

    1974-01-01

    An investigation was conducted concerning the dependence of the concentration ratio of Eu(2+) to Eu(3+) on composition for silicate liquids whose compositional end members are CaAl2Si2O8 and MgSiO3, MG2SiO4, CaMgSi2O6, CaMgSiO4, CaSiO3, or Ca2SiO4. The liquids were quenched to produce glasses. An electron paramagnetic resonance spectrometer was used to determine the concentration ratios of Eu(2+) to Eu(3+) in the glasses.

  1. Glass sealing

    SciTech Connect

    Brow, R.K.; Kovacic, L.; Chambers, R.S.

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  2. Structural and compositional modification of a barium boroaluminosilicate glass surface by thermal poling

    NASA Astrophysics Data System (ADS)

    Smith, Nicholas J.; Pantano, Carlo G.

    2014-08-01

    In addition to inducing second-order nonlinear properties, significant structural and compositional alteration can be imparted to glass surfaces during the process of thermal poling. In this work, we focus on how thermal poling affects a structurally complex, nominally alkali-free boroaluminosilicate display glass composition. We provide evidence for electrolysis of the glass network, characterized by the migration of both cations (Ba2+, Na+) and anions (O-, F-) towards opposing electrode interfaces. This process results in oxidation of the positively biased electrode and forms a network-former rich, modifier-depleted glass surface layer adjacent to the anodic interface. The modified glass layer thickness is qualitatively correlated to the oxidation resistance of the electrode material, while extrinsic ions such as H+/H3O+ at not found in the depletion layer to compensate for the migration of modifier cations out of the region. Rather, FTIR spectroscopy suggests a local restructuring of the B2O3-Al2O3-SiO2 network species to accommodate the charge imbalance created by the exodus of network-modifying cations, specifically the conversion of tetrahedral B(4) to trigonal B(3) as Ba or Na ions are removed from B-related sites in the parent network. The resultant poling-induced depletion layer exhibits enhanced hydrolytic resistance under acidic conditions, and the IR spectra are substantially unlike those produced by acid leaching the same glass.

  3. Influence of Copolyester Composition on Adhesion to Soda-Lime Glass via Molecular Dynamics Simulations.

    PubMed

    Hanson, Ben; Hofmann, John; Pasquinelli, Melissa A

    2016-06-01

    Copolyesters are a subset of polymers that have the desirable properties of strength and clarity while retaining chemical resistance, and are thus potential candidates for enhancing the impact resistance of soda-lime glass. Adhesion between the polymer and the glass relates to the impact performance of the system, as well as the longevity of the bond between the polymer and the glass under various conditions. Modifying the types of diols and diacids present in the copolyester provides a method for fine-tuning the physical properties of the polymer. In this study, we used molecular dynamics (MD) simulations to examine the influence of the chemical composition of the polymers on adhesion of polymer film laminates to two soda-lime glass surfaces, one tin-rich and one oxygen-rich. By calculating properties such as adhesion energies and contact angles, these results provide insights into how the polymer-glass interaction is impacted by the polymer composition, temperature, and other factors such as the presence of free volume or pi stacking. These results can be used to optimize the adhesion of copolyester films to glass surfaces.

  4. Mare glasses from Apollo 17 - Constraints on the moon's bulk composition

    NASA Technical Reports Server (NTRS)

    Delano, J. W.; Lindsley, D. H.

    1983-01-01

    Two previously unreported varieties of mare volcanic glass have been discovered in Apollo 17 samples. Twenty-three chemical types of volcanic glass have now been analyzed from the six Apollo landing sites. These volcanic glasses, which may be samples of primary magmas derived from the differentiated lunar mantle, define two linear arrays that seem to reflect regional, if not global, regularities among the source regions of these melts. Additional systematics among these glasses have been used to estimate the bulk composition of the moon. The results suggest that the refractory lithophile elements are present at abundances of 1.7 x chondrites. The silicate portion of the moon appears to have a major-element composition similar to a volatile (Si, Na, K)-depleted, earth's upper mantle. The theory involving an earth-fission origin of the moon can be tested further through trace element analyses on the volcanic glasses, and through determination of the N/Ar-36 ratio and noble gas isotopes from primordial lunar gas trapped within vesicles associated with mare volcanic glass.

  5. Contrasted glass-whole rock compositions and phenocryst re-distribution, IPOD Sites 417 and 418

    NASA Astrophysics Data System (ADS)

    Staudigel, H.; Bryan, W. B.

    1982-01-01

    Major element composition ranges of closely associated basalt glass-whole rock pairs from individual small cooling units approach the total known range of basalt glass and whole rock compositions at IPOD sites 417 and 418. The whole rock samples fall into two groups: one is depleted in MgO and distinctly enriched in plagioclase but has lost some olivine and/or pyroxene relative to its corresponding glass; and the other is enriched in MgO and in phenocrysts of olivine and pyroxene as well as plagioclase compared to its corresponding glass. By analogy with observed phenocryst distributions in lava pillows, tubes, and dikes, and with some theoretical studies, we infer that bulk rock compositions are strongly affected by phenocryst redistribution due to gravity settling, flotation, and dynamic sorting after eruption, although specific models are not well constrained by the one-dimensional geometry of drill core. Compositional trends or groupings in whole rock data resulting from such late-stage processes should not be confused with more fundamental compositional effects produced in deep chambers or during partial melting.

  6. Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites.

    PubMed

    Misra, Superb K; Ansari, Tahera; Mohn, Dirk; Valappil, Sabeel P; Brunner, Tobias J; Stark, Wendelin J; Roy, Ipsita; Knowles, Jonathan C; Sibbons, Paul D; Jones, Eugenia Valsami; Boccaccini, Aldo R; Salih, Vehid

    2010-03-06

    This work investigated the effect of adding nanoparticulate (29 nm) bioactive glass particles on the bioactivity, degradation and in vitro cytocompatibility of poly(3-hydroxybutyrate) (P(3HB)) composites/nano-sized bioactive glass (n-BG). Two different concentrations (10 and 20 wt %) of nanoscale bioactive glass particles of 45S5 Bioglass composition were used to prepare composite films. Several techniques (Raman spectroscopy, scanning electron microscopy, atomic force microscopy, energy dispersive X-ray) were used to monitor their surface and bioreactivity over a 45-day period of immersion in simulated body fluid (SBF). All results suggested the P(3HB)/n-BG composites to be highly bioactive, confirmed by the formation of hydroxyapatite on material surfaces upon immersion in SBF. The weight loss and water uptake were found to increase on increasing bioactive glass content. Cytocompatibility study (cell proliferation, cell attachment, alkaline phosphatase activity and osteocalcin production) using human MG-63 osteoblast-like cells in osteogenic and non-osteogenic medium showed that the composite substrates are suitable for cell attachment, proliferation and differentiation.

  7. Neutron detector using lithiated glass-scintillating particle composite

    SciTech Connect

    Wallace, Steven; Stephan, Andrew C.; Dai, Sheng; Im, Hee-Jung

    2009-09-01

    A neutron detector composed of a matrix of scintillating particles imbedded in a lithiated glass is disclosed. The neutron detector detects the neutrons by absorbing the neutron in the lithium-6 isotope which has been enriched from the natural isotopic ratio to a commercial ninety five percent. The utility of the detector is optimized by suitably selecting scintillating particle sizes in the range of the alpha and the triton. Nominal particle sizes are in the range of five to twenty five microns depending upon the specific scintillating particle selected.

  8. Hierarchical composite structures prepared by electrophoretic deposition of carbon nanotubes onto glass fibers.

    PubMed

    An, Qi; Rider, Andrew N; Thostenson, Erik T

    2013-03-01

    Carbon nanotube/glass fiber hierarchical composite structures have been produced using an electrophoretic deposition (EPD) approach for integrating the carbon nanotubes (CNTs) into unidirectional E-glass fabric, followed by infusion of an epoxy polymer matrix. The resulting composites show a hierarchical structure, where the structural glass fibers, which have diameters in micrometer range, are coated with CNTs having diameters around 10-20 nm. The stable aqueous dispersions of CNTs were produced using a novel ozonolysis and ultrasonication technique that results in dispersion and functionalization in a single step. Ozone-oxidized CNTs were then chemically reacted with a polyethyleneimine (PEI) dendrimer to enable cathodic EPD and promote adhesion between the CNTs and the glass-fiber substrate. Deposition onto the fabric was accomplished by placing the fabric in front of the cathode and applying a direct current (DC) field. Microscopic characterization shows the integration of CNTs throughout the thickness of the glass fabric, where individual fibers are coated with CNTs and a thin film of CNTs also forms on the fabric surfaces. Within the composite, networks of CNTs span between adjacent fibers, and the resulting composites exhibit good electrical conductivity and considerable increases in the interlaminar shear strength, relative to fiber composites without integrated CNTs. Mechanical, chemical and morphological characterization of the coated fiber surfaces reveal interface/interphase modification resulting from the coating is responsible for the improved mechanical and electrical properties. The CNT-coated glass-fiber laminates also exhibited clear changes in electrical resistance as a function of applied shear strain and enables self-sensing of the transition between elastic and plastic load regions.

  9. The cyclic strength of carbon nanotube/glass fiber hybrid composites

    NASA Astrophysics Data System (ADS)

    Grimmer, Christopher Stephen

    Recent trends in engineering design have involved a shift towards increasingly lighter structures, especially in transportation and primarily due to the rising cost of energy. This shift has placed further emphasis on the importance of fiber-reinforced composites as a lighter alternative to other engineering materials. Glass-fiber reinforced composites, while a low-cost alternative to the higher performance carbon-fiber based composites, are susceptible to fatigue loading in service, precluding their use in many applications. The present work explores the use of carbon nanotubes (CNTs) in conventional glass fiber composites as an additive that can improve the fatigue strength. The research described here is focused on the development, testing and modeling of CNT/glass-fiber hybrid composites, a novel material exhibiting both low cost and improved properties under fatigue loading. A manufacturing process for small-scale production of these hybrid composites was developed for the purpose of evaluating their relative benefits. The hybrid composites were subjected to uniaxial fatigue and cyclic delamination tests and their performance was compared to that of traditional glass-fiber composites. A solid mechanics-based model was developed as a means for predicting the energetic differences in the formation and propagation of damage in the polymer matrix of the two composite types under cyclic loading. The model was then compared to the experimental results and found to be in relative agreement. The hybrid composites were found to have fatigue lifetimes in the high-cycle regime of up to two and a half times greater than the traditional composites, with this improvement diminishing slightly at higher loads. Additionally, resistance to both critical and sub-critical delamination crack propagation was improved in the hybrid composites. These improvements have been attributed here to the dissipative mechanisms of CNT fracture and pull-out during matrix cracking, which result

  10. Survey of Potential Glass Compositions for the Immobilisation of the UK's Separated Plutonium Stocks

    SciTech Connect

    Harrison, Mike T.; Scales, Charlie R.; Bingham, Paul A.; Hand, Russell J.

    2007-07-01

    The Nuclear Decommissioning Authority (NDA) has taken over ownership of the majority of the UK's separated civil plutonium stocks, which are expected to exceed 100 metric tons by 2010. Studies to technically underpin options development for the disposition of these stocks, for example by immobilization or re-use as fuel, are being carried out by Nexia Solutions on behalf of NDA. Three classes of immobilization matrices have been selected for investigation by means of previous studies and stakeholder dialogue: ceramic or crystalline waste-forms, storage MOx, and vitreous or glass-based waste-forms. This paper describes the preliminary inactive experimental program for the vitrification option, with results from a wide range of glass compositions along with conclusions on their potential use for plutonium immobilization. Following review, four glass systems were selected for preliminary investigation: borosilicate, lanthanide borosilicate, aluminosilicate and phosphate glasses. A broad survey of glass properties was completed in order to allow meaningful evaluation, e.g. glass formulation, waste loading, chemical durability, thermal properties, and viscosity. The program was divided into two parts, with silicate and phosphate glasses being investigated by Nexia Solutions and the Immobilisation Science Laboratory (ISL) at the University of Sheffield respectively. (authors)

  11. Sintering and hot pressing of Fra Mauro composition glass and the lithification of lunar breccias.

    NASA Technical Reports Server (NTRS)

    Simonds, C. H.

    1973-01-01

    It is proposed that Apollo 14 type breccias lithify by sintering of particles of matrix glass under stress-free conditions. Meteorite impacts generate the heat necessary for sintering. Compacted angular particles of glass with the composition of an Apollo 14 rock were sintered experimentally. Loose clods of sub 37 micron grains form in several days at 700 C. Synthetic rocks, which texturally resemble the breccias, were produced at 795 C and above in 7.5 hours. Glass devitrified with increasing temperature. At 850 C, devitrification prevents much further densification of the synthetic breccias after 2 hours. Experiments compressing glass at 500 bars at 600 C produced dense vitreous masses which did not resemble lunar breccias. Confining pressure does not play a major role in lithifying the breccias. It is concluded that Apollo 14 type lunar breccias form at shallow depths at 800 C+ in a period of minutes to days.

  12. Morphology and composition of condensates on Apollo 17 orange and black glass

    NASA Technical Reports Server (NTRS)

    Mckay, David S.; Wentworth, Sue J.

    1992-01-01

    Lunar soil sample 74220 and core samples 74001/2 consist mainly of orange glass droplets, droplet fragments, and their crystallized equivalents. These samples are now generally accepted to be pyroclastic ejecta from early lunar volcanic eruptions. It has been known since early examination of these samples that they contain surface coatings and material rich in volatile condensible phases, including S, Zn, F, Cl, and many volatile metals. The volatiles associated with these orange and black glasses (and the Apollo 15 green glasses) may provide important clues in understanding the differentiation and volcanic history of the Moon. In addition, condensible volatiles can be mobilized and concentrated by volcanic processes. We have reviewed many of our existing photomicrographs and energy dispersive analysis (EDXA) of grain surfaces and have reexamined some of our older SEM mounts using an improved EDXA system capable of light-element detection and analysis (oxygen, nitrogen, and carbon). The results from these investigations are presented.

  13. Chemical Principles Revisited: The Chemistry of Glass.

    ERIC Educational Resources Information Center

    Kolb, Doris; Kolb, Kenneth E.

    1979-01-01

    Presents a detailed discussion on the chemistry of glass. Topics discussed include: natural glass, early history, modern glass composition, raw materials for glass melting, chemically modified glasses, modern glass forming, glass ceramics, and new developments in glass research. (BT)

  14. A novel processing route for carbon nanotube reinforced glass-ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Dassios, Konstantinos G.; Bonnefont, Guillaume; Fantozzi, Gilbert; Matikas, Theodore E.

    2015-03-01

    The current study reports the establishment of a novel feasible way for processing glass- and ceramic- matrix composites reinforced with carbon nanotubes (CNTs). The technique is based on high shear compaction of glass/ceramic and CNT blends in the presence of polymeric binders for the production of flexible green bodies which are subsequently sintered and densified by spark plasma sintering. The method was successfully applied on a borosilicate glass / multi-wall CNT composite with final density identical to that of the full-dense ceramic. Preliminary non-destructive evaluation of dynamic mechanical properties such as Young's and shear modulus and Poisson's ratio by ultrasonics show that property improvement maximizes up to a certain CNT loading; after this threshold is exceeded, properties degrade with further loading increase.

  15. Low beryllium content Zr-based bulk metallic glass composite with plasticity and work hardenability

    SciTech Connect

    Zheng, Q. E-mail: dujuan@nimte.ac.cn; Du, J. E-mail: dujuan@nimte.ac.cn

    2014-01-28

    A modified Zr-based bulk metallic glass matrix composite Zr{sub 47.67}Cu{sub 40}Ti{sub 3.66}Ni{sub 2.66}Be{sub 6} has been produced by increasing the contents of elements of Zr and Cu with higher Poisson ratio and reducing the contents of Ti, Ni, and Be elements with lower Poisson ratio based on famous metallic glass former Vitreloy 1. A compressive yielding strength of 1804 MPa, fracture strength of 1938 MPa and 3.5% plastic strain was obtained for obtained metallic glass composite. Also, work-hardening behavior was observed during compressive experiment which was ascribed to the interaction of the in situ precipitated CuZr phase and shear bands.

  16. Development of a bioactive glass fiber reinforced starch-polycaprolactone composite.

    PubMed

    Jukola, H; Nikkola, L; Gomes, M E; Chiellini, F; Tukiainen, M; Kellomäki, M; Chiellini, E; Reis, R L; Ashammakhi, N

    2008-10-01

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this work was to develop and characterize BaG fiber reinforced starch-poly-epsilon-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt %) were produced using single-screw extrusion. They were then cut and compression-molded in layers with BaG fibers to form composite structures with different combinations. Mechanical and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the nonreinforced specimens. However, the mechanical properties of the composites after 2 weeks of hydrolysis were comparable to those of the nonreinforced samples. During the 6 weeks hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained as initial for the 6-week period of hydrolysis. In conclusion, it is possible to enhance initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, mechanical properties of the composites are typical for bone fillers and strength properties need to be further improved for allowing more demanding bone applications.

  17. Silicate and borate glasses as composite fillers: a bioactivity and biocompatibility study.

    PubMed

    Lopes, P P; Ferreira, B J M Leite; Gomes, P S; Correia, R N; Fernandes, M H; Fernandes, M H V

    2011-06-01

    Composites filled with a silicate glass (CSi) and a new borate glass (CB) were developed and compared in terms of their in vitro behaviour both in acellular and cellular media. Acellular tests were carried out in SBF and the composites were characterized by SEM-EDS, XRD and ICP. Biocompatibility studies were investigated by in vitro cell culture with MG-63 osteoblast-like and human bone marrow cells. The growth of spherical calcium phosphate aggregates was observed in acellular medium on all composite surfaces indicating that these materials became potentially bioactive. The biological assessment resulted in a dissimilar behavior of the composites. The CSi demonstrated an inductive effect on the proliferation of cells. The cells showed a normal morphology and high growth rate when compared to standard culture plates. Contrarily, inhibition of cell proliferation occurred in the CB probably due to its high degradation rate, leading to high B and Mg ionic concentration in the cell culture medium.

  18. Tensile behavior of glass/ceramic composite materials at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.; Grande, D. H.; Jacobs, J.

    1987-01-01

    This paper describes the tensile behavior of high-temperature composite materials containing continuous Nicalon ceramic fiber reinforcement and glass and glass/ceramic matrices. The longitudinal properties of these materials can approach theoretical expectations for brittle matrix composites, failing at a strength and ultimate strain level consistent with those of the fibers. The brittle, high-modulus matrices result in a nonlinear stress-strain curve due to the onset of stable matrix cracking at 10 to 30 percent of the fiber strain to failure, and at strains below this range in off-axis plies. Current fibers and matrices can provide attractive properties well above 1000 C, but composites experience embrittlement in oxidizing atmospheres at 800 to 1000 C due to oxidation of a carbon interface reaction layer.The oxidation effect greatly increases the interface bond strength, causing composite embrittlement.

  19. Mechanochemically synthesized kalsilite based bioactive glass-ceramic composite for dental vaneering

    NASA Astrophysics Data System (ADS)

    Kumar, Pattem Hemanth; Singh, Vinay Kumar; Kumar, Pradeep

    2015-08-01

    Kalsilite glass-ceramic composites have been prepared by a mechanochemical synthesis process for dental veneering application. The aim of the present study is to prepare bioactive kalsilite composite material for application in tissue attachment and sealing of the marginal gap between fixed prosthesis and tooth. Mechanochemical synthesis is used for the preparation of microfine kalsilite glass-ceramic. Low temperature frit and bioglass have been prepared using the traditional quench method. Thermal, microstructural and bioactive properties of the composite material have been examined. The feasibility of the kalsilite to be coated on the base commercial opaque as well as the bioactive behavior of the coated specimen has been confirmed. This study indicates that the prepared kalsilite-based composites show similar structural, morphological and bioactive behavior to that of commercial VITA VMK95 Dentin 1M2.

  20. Biocompatibility of a flowable composite bonded with a self-etching adhesive compared with a glass lonomer cement and a high copper amalgam.

    PubMed

    Shimada, Yasushi; Seki, Yuichi; Sasafuchi, Yasutaka; Arakawa, Makoto; Burrow, Michael F; Otsuki, Masayuki; Tagami, Junji

    2004-01-01

    This study evaluated the pulpal response and in-vivo microleakage of a flowable composite bonded with a self-etching adhesive and compared the results with a glass ionomer cement and amalgam. Cervical cavities were prepared in monkey teeth. The teeth were randomly divided into three groups. A self-etching primer system (Imperva FluoroBond, Shofu) was applied to the teeth in one of the experimental groups, and the cavities were filled with a flowable composite (SI-BF-2001-LF, Shofu). In the other groups, a glass ionomer cement (Fuji II, GC) or amalgam (Dispersalloy, Johnson & Johnson) filled the cavity. The teeth were then extracted after 3, 30 and 90 days, fixed in 10% buffered formalin solution and prepared according to routine histological techniques. Five micrometer sections were stained with hematoxylin and eosin or Brown and Brenn gram stain for bacterial observation. No serious inflammatory reaction of the pulp, such as necrosis or abscess formation, was observed in any of the experimental groups. Slight inflammatory cell infiltration was the main initial reaction, while deposition of reparative dentin was the major long-term reaction in all groups. No bacterial penetration along the cavity walls was detected in the flowable composite or glass ionomer cement except for one case at 30 days in the glass ionomer cement. The flowable composite bonded with self-etching adhesive showed an acceptable biological com- patibility to monkey pulp. The in vivo sealing ability of the flowable composite in combination with the self-etching adhesive was considered comparable to glass ionomer cement. Amalgam restorations without adhesive liners showed slight bacterial penetration along the cavity wall.

  1. Fluorescent protein senses and reports mechanical damage in glass-fiber-reinforced polymer composites.

    PubMed

    Makyła, Katarzyna; Müller, Christoph; Lörcher, Samuel; Winkler, Thomas; Nussbaumer, Martin G; Eder, Michaela; Bruns, Nico

    2013-05-21

    Yellow fluorescent protein (YFP) is used as a mechanoresponsive layer at the fiber/resin interface in glass-fiber-reinforced composites. The protein loses its fluorescence when subjected to mechanical stress. Within the material, it reports interfacial shear debonding and barely visible impact damage by a transition from a fluorescent to a non-fluorescent state.

  2. TL behavior of topaz-glass composite in various irradiation fields.

    PubMed

    Sardar, M; Souza, D N; Tufail, M; Caldas, Linda V E; Antonio, P L; Carvalho, A B

    2013-08-01

    Topaz is a natural hard silicate mineral that has the potential to be used as a thermoluminescent dosimeter (TLD). It is difficult to manufacture chips of topaz and problematic to use its powder as TLDs. Topaz-glass composite (in the form of pellets) can be made easily and applied for radiation dosimetry. To produce pellets of topaz-glass composite in 2:1 wt (%), topaz powder was combined with commercial glass. The pellets with 6 mm diameter and 1 mm thickness were sintered in a furnace at 900°C for 1 h. The composite pellets were irradiated with x-ray and gamma photons and alpha and beta particles. The pellets yielded two peaks in the glow curve; Peak 1 at temperature range 150-160°C and Peak 2 at 250-260°C. The intensity of Peak 2 rose linearly with the increase in absorbed dose. The intensity of Peak 2 was comparable with peaks for photons and beta irradiation but relatively low for alpha exposure. The reproducibility of the intensity of Peak 2 was within 5-8%. Two months after irradiation of the pellets, the fading of the intensity of Peak 2 was found to be about 7%. The topaz-glass composite can be used effectively and efficiently for dosimetry of alpha, beta, and gamma radiation.

  3. Composite Laminate With Coefficient of Thermal Expansion Matching D263 Glass

    NASA Technical Reports Server (NTRS)

    Robinson, David; Rodini, Benjamin

    2012-01-01

    The International X-ray Observatory project seeks to make an X-ray telescope assembly with 14,000 flexible glass segments. The glass used is commercially available SCHOTT D263 glass. Thermal expansion causes the mirror to distort out of alignment. A housing material is needed that has a matching coefficient of thermal expansion (CTE) so that when temperatures change in the X-ray mirror assembly, the glass and housing pieces expand equally, thus reducing or eliminating distortion. Desirable characteristics of this material include a high stiffness/weight ratio, and low density. Some metal alloys show promise in matching the CTE of D263 glass, but their density is high compared to aluminum, and their stiffness/weight ratio is not favorable. A laminate made from carbon fiber reinforced plastic (CFRP) should provide more favorable characteristics, but there has not been any made with the CTE matching D263 Glass. It is common to create CFRP laminates of various CTEs by stacking layers of prepreg material at various angles. However, the CTE of D263 glass is 6.3 ppm/ C at 20 C, which is quite high, and actually unachievable solely with carbon fiber and resin. A composite laminate has been developed that has a coefficient of thermal expansion identical to that of SCHOTT D263 glass. The laminate is made of a combination of T300 carbon fiber, Eglass, and RS3C resin. The laminate has 50% uni-T300 plies and 50% uni-E-glass plies, with each fiber-layer type laid up in a quasi-isotropic laminate for a total of 16 plies. The fiber volume (percent of fiber compared to the resin) controls the CTE to a great extent. Tests have confirmed that a fiber volume around 48% gives a CTE of 6.3 ppm/ C. This is a fairly simple composite laminate, following well established industry procedures. The unique feature of this laminate is a somewhat unusual combination of carbon fiber with E-glass (fiberglass). The advantage is that the resulting CTE comes out to 6.3 ppm/ C at 20 C, which matches D

  4. An evaluation of the interfacial bond properties between carbon phenolic and glass phenolic composites

    NASA Technical Reports Server (NTRS)

    Jordan, Kelvin; Clinton, Raymond; Jeelani, Shaik

    1989-01-01

    The effects of moisture and surface finish on the mechanical and physical properties of the interfacial bond between the carbon/phenolic (C/P) and glass/phenolic (G/P) composite materials are presented. Four flat panel laminates were fabricated using the C/P and G/P materials. Of the four laminates, one panel was fabricated in which the C/P and G/P materials were cured simultaneously. It was identified as the cocure. The remaining laminates were processed with an initial simultaneous cure of the three C/P billets. Two surface finishes, one on each half, were applied to the top surface. Prior to the application and cure of the G/P material to the machined surface of the three C/P panels, each was subjected to the specific environmental conditioning. Types of conditioning included: (1) nominal fabrication environment, (2) a prescribed drying cycle, and (3) a total immersion in water at 160 F. Physical property tests were performed on specimens removed from the C/P materials of each laminate for determination of the specific gravity, residual volatiles and and resin content. Comparisons of results with shuttle solid rocket motor (SRM) nozzle material specifications verified that the materials used in fabricating the laminates met acceptance criteria and were representative of SRM nozzle materials. Mechanical property tests were performed at room temperature on specimens removed from the G/P, the C/P and the interface between the two materials for each laminate. The double-notched shear strength test was used to determine the ultimate interlaminar shear strength. Results indicate no appreciable difference in the C/P material of the four laminates with the exception of the cocure laminate, where 20 percent reduction in the strength was observed. The most significant effect and the ultimate strength was significantly reduced in the wet material. No appreciable variation was noted between the surface finishes in the wet laminate.

  5. Evolution of the health of concrete structures by electrically conductive GFRP (glass fiber reinforced plastic) composites

    NASA Astrophysics Data System (ADS)

    Shin, Soon-Gi

    2002-02-01

    The function and performance of self-diagnostic composites embedded in concrete blocks and piles were investigated by bending tests and electrical resistance measurement. Carbon powder (CP) and carbon fiber (CF) were introduced into glass fiber reinforced plastic (GFRP) composites to provide electrical conductivity. The CPGFRP composite displays generally good performance in various bending tests of concrete block and piles compared to the CFGFRP composite. The electrical resistance of the CPGFRP composite increases remarkably at small strains in response to microcrack formation at about 200 μm strain, and can be used to detect smaller deformations before crack formation. The CPGFRP composite shows continuous change in resistance up to a large strain level just before the final fracture for concrete structures reinforced by steel bars. It is concluded that self-diagnostic composites can be used to predict damage and fracture in concrete blocks and piles.

  6. Mechanical and thermal properties of composite material system reinforced with micro glass balloons

    NASA Astrophysics Data System (ADS)

    Ozawa, Y.; Watanabe, M.; Kikuchi, T.; Ishiwatari, H.

    2010-06-01

    The mechanical and thermal properties of polymer composites reinforced with micro glass balloons are investigated in temperature conditions. The matrix resin of the composite is epoxy resin and its dispersion is micro glassy spherical shells of Sirasu Balloon. The composite system developed is a kind of micro porous materials with lightweight. From the experimental data of bending and tension tests, mechanical behaviours of the composites were clarified, and the effects of material properties and configurations on the mechanical properties of composites were discussed from the viewpoint of micromechanical study. A homogenization theory with multi-scale analytical method has been applied in order to evaluate the composite material system in temperature conditions. Numerical calculations were performed by using a model of micro porous materials and setting properties of each material at the temperature. Analytical results for the mechanical behaviour made a good agreement with experimental result of the composites in temperature conditions.

  7. Composition dependence of the glass forming ability in binary mixtures: The role of demixing entropy

    NASA Astrophysics Data System (ADS)

    Nandi, Ujjwal Kumar; Banerjee, Atreyee; Chakrabarty, Suman; Bhattacharyya, Sarika Maitra

    2016-07-01

    We present a comparative study of the glass forming ability of binary systems with varying composition, where the systems have similar global crystalline structure (CsCl+fcc). Biased Monte Carlo simulations using umbrella sampling technique show that the free energy cost to create a CsCl nucleus increases as the composition of the smaller particles is decreased. We find that systems with comparatively lower free energy cost to form CsCl nucleus exhibit more pronounced pre-crystalline demixing near the liquid/crystal interface. The structural frustration between the CsCl and fcc crystal demands this demixing. We show that closer to the equimolar mixture, the entropic penalty for demixing is lower and a glass forming system may crystallize when seeded with a nucleus. This entropic penalty as a function of composition shows a non-monotonic behaviour with a maximum at a composition similar to the well known Kob-Anderson (KA) model. Although the KA model shows the maximum entropic penalty and thus maximum frustration against CsCl formation, it also shows a strong tendency towards crystallization into fcc lattice of the larger "A" particles which can be explained from the study of the energetics. Thus for systems closer to the equimolar mixture although it is the requirement of demixing which provides their stability against crystallization, for KA model it is not demixing but slow dynamics and the presence of the "B" particles make it a good glass former. The locally favoured structure around "B" particles is quite similar to the CsCl structure and the incompatibility of CsCl and fcc hinders the fcc structure growth in the KA model. Although the glass forming binary systems studied here are quite similar, differing only in composition, we find that their glass forming ability cannot be attributed to a single phenomenon.

  8. Structural insights of glass-reinforced hydroxyapatite composites by Rietveld refinement.

    PubMed

    Lopes; Knowles, J C; Santos, J D

    2000-09-01

    Phase transformations and interstitial and/or substitution of trace elements during the liquid-phase sintering process of P2O5-CaO-MgO glass-reinforced hydroxyapatite (GR-HA) composites were examined by X-ray diffraction and Rietveld analyses. Using the Rietveld method for structure refinement, changes in the lattice parameters of the two main phases of the composites, hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP), as well as changes in several bond lengths and in the occupancy of the hydroxyl oxygen site in the HA phase structure were assessed. The glasses gave rise to formation of between approximately 45 and 50% of beta-TCP, with evidence for the Mg2+ enhancing the formation of beta-TCP. Between 1,300 and 1,350 degrees C, the beta-TCP inverts to alpha-TCP, without further decomposition of the residual HA. The glasses showed evidence for stabilisation of the hydroxyl group located in the hydroxyl channels. This is supported by measurements of the hydroxyl channel radius (Rc), the Ca2-OH bond length and the hydroxyl oxygen occupancy (Oocc). Results showed that the Mg2+ containing glasses induced the beta-TCP phase formation in the structure of GR-HA composites and retarded the beta-TCP into alpha-TCP transformation at higher temperatures. The chemical composition of the P2O5 glasses also induces modifications in the lattice parameters of the crystallographic phases present in the microstructure of the composites. This suggests some substitution of Mg2 + -for-Ca2+ in the beta-TCP structure during the liquid-phase sintering process.

  9. Composition dependence of the glass forming ability in binary mixtures: The role of demixing entropy.

    PubMed

    Nandi, Ujjwal Kumar; Banerjee, Atreyee; Chakrabarty, Suman; Bhattacharyya, Sarika Maitra

    2016-07-21

    We present a comparative study of the glass forming ability of binary systems with varying composition, where the systems have similar global crystalline structure (CsCl+fcc). Biased Monte Carlo simulations using umbrella sampling technique show that the free energy cost to create a CsCl nucleus increases as the composition of the smaller particles is decreased. We find that systems with comparatively lower free energy cost to form CsCl nucleus exhibit more pronounced pre-crystalline demixing near the liquid/crystal interface. The structural frustration between the CsCl and fcc crystal demands this demixing. We show that closer to the equimolar mixture, the entropic penalty for demixing is lower and a glass forming system may crystallize when seeded with a nucleus. This entropic penalty as a function of composition shows a non-monotonic behaviour with a maximum at a composition similar to the well known Kob-Anderson (KA) model. Although the KA model shows the maximum entropic penalty and thus maximum frustration against CsCl formation, it also shows a strong tendency towards crystallization into fcc lattice of the larger "A" particles which can be explained from the study of the energetics. Thus for systems closer to the equimolar mixture although it is the requirement of demixing which provides their stability against crystallization, for KA model it is not demixing but slow dynamics and the presence of the "B" particles make it a good glass former. The locally favoured structure around "B" particles is quite similar to the CsCl structure and the incompatibility of CsCl and fcc hinders the fcc structure growth in the KA model. Although the glass forming binary systems studied here are quite similar, differing only in composition, we find that their glass forming ability cannot be attributed to a single phenomenon.

  10. Composition, Production and Procurement of Glass at San Vincenzo al Volturno: An Early Medieval Monastic Complex in Southern Italy

    PubMed Central

    Schibille, Nadine; Freestone, Ian C.

    2013-01-01

    136 glasses from the ninth-century monastery of San Vincenzo and its workshops have been analysed by electron microprobe in order to situate the assemblage within the first millennium CE glass making tradition. The majority of the glass compositions can be paralleled by Roman glass from the first to third centuries, with very few samples consistent with later compositional groups. Colours for trailed decoration on vessels, for vessel bodies and for sheet glass for windows were largely produced by melting the glass tesserae from old Roman mosaics. Some weakly-coloured transparent glass was obtained by re-melting Roman window glass, while some was produced by melting and mixing of tesserae, excluding the strongly coloured cobalt blues. Our data suggest that to feed the needs of the glass workshop, the bulk of the glass was removed as tesserae and windows from a large Roman building. This is consistent with a historical account according to which the granite columns of the monastic church were spolia from a Roman temple in the region. The purported shortage of natron from Egypt does not appear to explain the dependency of San Vincenzo on old Roman glass. Rather, the absence of contemporary primary glass may reflect the downturn in long-distance trade in the later first millennium C.E., and the role of patronage in the “ritual economy” founded upon donations and gift-giving of the time. PMID:24146876

  11. Composition, production and procurement of glass at San Vincenzo Al Volturno: an early Medieval monastic complex in Southern Italy.

    PubMed

    Schibille, Nadine; Freestone, Ian C

    2013-01-01

    136 glasses from the ninth-century monastery of San Vincenzo and its workshops have been analysed by electron microprobe in order to situate the assemblage within the first millennium CE glass making tradition. The majority of the glass compositions can be paralleled by Roman glass from the first to third centuries, with very few samples consistent with later compositional groups. Colours for trailed decoration on vessels, for vessel bodies and for sheet glass for windows were largely produced by melting the glass tesserae from old Roman mosaics. Some weakly-coloured transparent glass was obtained by re-melting Roman window glass, while some was produced by melting and mixing of tesserae, excluding the strongly coloured cobalt blues. Our data suggest that to feed the needs of the glass workshop, the bulk of the glass was removed as tesserae and windows from a large Roman building. This is consistent with a historical account according to which the granite columns of the monastic church were spolia from a Roman temple in the region. The purported shortage of natron from Egypt does not appear to explain the dependency of San Vincenzo on old Roman glass. Rather, the absence of contemporary primary glass may reflect the downturn in long-distance trade in the later first millennium C.E., and the role of patronage in the "ritual economy" founded upon donations and gift-giving of the time.

  12. Surface characterization and cell response of a PLA/CaP glass biodegradable composite material.

    PubMed

    Navarro, M; Engel, E; Planell, J A; Amaral, I; Barbosa, M; Ginebra, M P

    2008-05-01

    Bioabsorbable materials are of great interest for bone regeneration applications, since they are able to degrade gradually as new tissue is formed. In this work, a fully biodegradable composite material containing polylactic acid (PLA) and calcium phosphate (CaP) soluble glass particles has been characterized in terms of surface properties and cell response. Cell cultures were performed in direct contact with the materials and also with their extracts, and were evaluated using the MTT assay, alkaline phosphatase activity, and osteocalcin measurements. The CaP glass and PLA were used as reference materials. No significant differences were observed in cell proliferation with the extracts containing the degradation by-products of the three materials studied. A relation between the materials wettability and the material-cell interactions at the initial stages of contact was observed. The most hydrophilic material (CaP glass) presented the highest cell adhesion values as well as an earlier differentiation, followed by the PLA/glass material. The incorporation of glass particles into the PLA matrix increased surface roughness. SEM images showed that the heterogeneity of the composite material induced morphological changes in the cells cytoskeleton.

  13. Thorium abundances on the aristarchus plateau: Insights into the composition of the aristarchus pyroclastic glass deposits

    USGS Publications Warehouse

    Hagerty, J.J.; Lawrence, D.J.; Hawke, B.R.; Gaddis, L.R.

    2009-01-01

    Thorium (Th) data from the Lunar Prospector gamma ray spectrometer (LP-GRS) are used to constrain the composition of lunar pyroclastic glass deposits on top of the Aristarchus plateau. Our goal is to use forward modeling of LP-GRS Th data to measure the Th abundances on the plateau and then to determine if the elevated Th abundances on the plateau are associated with the pyroclastic deposits or with thorium-rich ejecta from Aristarchus crater. We use a variety of remote sensing data to show that there is a large, homogenous portion of the pyroclastics on the plateau that has seen little or no contamination from the Th-rich ejecta of Aristarchus crater. Our results show that the uncontaminated pyroclastic glasses on Aristarchus plateau have an average Th content of 6.7 ppm and ???7 wt % TiO2. These Th and Ti values are consistent with Th-rich, intermediate-Ti yellow glasses from the lunar sample suite. On the basis of this information, we use petrologic equations and interelement correlations for the Moon to estimate the composition of the source region from which the Aristarchus glasses were derived. We find that the source region for the Aristarchus glasses contained high abundances of heat-producing elements, which most likely served as a thermal driver for the prolonged volcanic activity in this region of the Moon. Copyright 2009 by the American Geophysical Union.

  14. Glass-reinforced hydroxyapatite composites: secondary phase proportions and densification effects on biaxial bending strength.

    PubMed

    Lopes, M A; Monteiro, F J; Santos, J D

    1999-01-01

    CaO-P(2)O(5) glasses with additions of MgO and CaF(2) were used as a sintering aid of hydroxyapatite, and glass-reinforced hydroxyapatite composites obtained. Glasses promoted significant changes in the microstructure of the composites, namely with the formation of tricalcium phosphate secondary phases, beta and alpha-TCP. Quantitative phase analysis was performed by the Rietveld method using General Structure Analysis Software. Grain size measurements were carried out on SEM photomicrographs, using a planimetric procedure according to ASTM E 112-88. Flexural bending strength was determined from concentric ring-on-ring testing. Flexural bending strength (FBS) of glass-reinforced hydroxyapatite composites was found to be about twice or three times higher than that of unreinforced hydroxyapatite and tended to depend more on porosity and beta and alpha-TCP secondary phases, rather than on grain size. Traces of alpha-tricalcium phosphate significantly enhanced the strength of the composites. Using the rule of mixtures to estimate the zero porosity bending strength, the Duckworth-Knudsen model applied to the composites gave a porosity correction factor, b, with a value of 4.02. Weibull statistics were also used to analyze biaxial strength data and the level of reinforcement obtained by comparing failure probability for the composites and for the unreinforced hydroxyapatite. Lower activation energies for grain growth were observed for the composites compared to unreinforced hydroxyapatite, which should be attributed to the presence of a liquid glassy phase that promotes atomic diffusion during the sintering process.

  15. New bioactive glass-ceramic: synthesis and application in PMMA bone cement composites.

    PubMed

    Abd Samad, Hamizah; Jaafar, Mariatti; Othman, Radzali; Kawashita, Masakazu; Abdul Razak, Noor Hayati

    2011-01-01

    In present study, a new composition of glass-ceramic was synthesized based on the Na2O-CaO-SiO2-P2O5 glass system. Heat treatment of glass powder was carried out in 2 stages: 600 °C as the nucleation temperature and different temperature on crystallization at 850, 950 and 1000 °C. The glass-ceramic heat-treated at 950 °C was selected as bioactive filler in commercial PMMA bone cement; (PALACOS® LV) due to its ability to form 2 high crystallization phases in comparison with 850 and 1000 °C. The results of this newly glass-ceramic filled PMMA bone cement at 0-16 wt% of filler loading were compared with those of hydroxyapatite (HA). The effect of different filler loading on the setting properties was evaluated. The peak temperature during the polymerization of bone cement decreased when the liquid to powder (L/P) ratio was reduced. The setting time, however, did not show any trend when filler loading was increased. In contrast, dough time was observed to decrease with increased filler loading. Apatite morphology was observed on the surface of the glass-ceramic and selected cement after bioactivity test.

  16. Woven graphite epoxy composite test specimens with glass buffer strips

    NASA Technical Reports Server (NTRS)

    Bonnar, G. R.; Palmer, R. J.

    1982-01-01

    Woven unidirectional graphite cloth with bands of fiberglass replacing the graphite in discrete lengthwise locations was impregnated with epoxy resin and used to fabricate a series of composite tensile and shear specimens. The finished panels, with the fiberglass buffer strips, were tested. Details of the fabrication process are reported.

  17. Low-Dielectric-Constant Polyimide/Glass Composites

    NASA Technical Reports Server (NTRS)

    Stoakley, Diane M.; St. Clair, Anne K.; Baucom, Robert M.; Proctor, K. Mason; Smith, Ricky E.; Smith, Janice Y.

    1994-01-01

    Advance in polymer technology yields composites having relatively low dielectric constants. Reduction achieved by reducing interactions between linear polyimide chains and by incorporation of fluorine into polymer backbones. Further reductions obtained by physically incorporating selected diamic acid additives into polyimides. Strong potential for use in microelectronics industry for fabrication of printed-circuit boards and fabrication of components for military aircraft.

  18. Comparison of shear bond strength of resin reinforced chemical cure glass ionomer, conventional chemical cure glass ionomer and chemical cure composite resin in direct bonding systems: an in vitro study.

    PubMed

    Rao, Kolasani Srinivasa; Reddy, T Praveen Kumar; Yugandhar, Garlapati; Kumar, B Sunil; Reddy, S N Chandrasekhar; Babu, Devatha Ashok

    2013-01-01

    The acid pretreatment and use of composite resins as the bonding medium has disadvantages like scratching and loss of surface enamel, decalcification, etc. To overcome disadvantages of composite resins, glass ionomers and its modifications are being used for bonding. The study was conducted to evaluate the efficiency of resin reinforced glass ionomer as a direct bonding system with conventional glass ionomer cement and composite resin. The study showed that shear bond strength of composite resin has the higher value than both resin reinforced glass ionomer and conventional glass ionomer cement in both 1 and 24 hours duration and it increased from 1 to 24 hours in all groups. The shear bond strength of resin reinforced glass ionomer cement was higher than the conventional glass ionomer cement in both 1 and 24 hours duration. Conditioning with polyacrylic acid improved the bond strength of resin reinforced glass ionomer cement significantly but not statistically significant in the case of conventional glass ionomer cement.

  19. Dental applications of nanostructured bioactive glass and its composites

    PubMed Central

    Polini, Alessandro; Bai, Hao; Tomsia, Antoni P.

    2013-01-01

    To improve treatments for bone or dental trauma, and for diseases such as osteoporosis, cancer, and infections, scientists who perform basic research are collaborating with clinicians to design and test new biomaterials for the regeneration of lost or injured tissue. Developed some 40 years ago, bioactive glass (BG) has recently become one of the most promising biomaterials, a consequence of discoveries that its unusual properties elicit specific biological responses inside the body. Among these important properties are the capability of BG to form strong interfaces with both hard and soft tissues, and its release of ions upon dissolution. Recent developments in nanotechnology have introduced opportunities for materials sciences to advance dental and bone therapies. For example, the applications for BG expand as it becomes possible to finely control structures and physicochemical properties of materials at the molecular level. Here we review how the properties of these materials have been enhanced by the advent of nanotechnology; and how these developments are producing promising results in hard-tissue regeneration and development of innovative BG-based drug-delivery systems. PMID:23606653

  20. Dental applications of nanostructured bioactive glass and its composites.

    PubMed

    Polini, Alessandro; Bai, Hao; Tomsia, Antoni P

    2013-01-01

    To improve treatments of bone or dental trauma and diseases such as osteoporosis, cancer, and infections, scientists who perform basic research are collaborating with clinicians to design and test new biomaterials for the regeneration of lost or injured tissue. Developed some 40 years ago, bioactive glass (BG) has recently become one of the most promising biomaterials, a consequence of discoveries that its unusual properties elicit specific biological responses inside the body. Among these important properties are the capability of BG to form strong interfaces with both hard and soft tissues, and its release of ions upon dissolution. Recent developments in nanotechnology have introduced opportunities for materials sciences to advance dental and bone therapies. For example, the applications for BG expand as it becomes possible to finely control structures and physicochemical properties of materials at the molecular level. Here, we review how the properties of these materials have been enhanced by the advent of nanotechnology, and how these developments are producing promising results in hard-tissue regeneration and development of innovative BG-based drug delivery systems.

  1. The effect of boron oxide on the composition, structure, and adsorptivity of glass surfaces

    NASA Astrophysics Data System (ADS)

    Schaut, Robert A.

    Boron oxide has been added to commercial silicate glasses for many years to aid in lowering melting temperatures, lowering thermal expansion, and controlling chemical durability. The fact that simple borate glasses have rather high thermal expansion and low chemical durability attests to the unique influence of boron oxide additions upon the properties of silicate glasses. However, the impact of boron oxide additions upon surface properties of multicomponent borosilicates such as adsorption and reactivity is not yet well understood. In particular, the presence of multiple coordination states for boron is expected to introduce adsorption sites with different acidic or basic behavior, but their existence is yet unproven. To investigate these effects, multicomponent sodium aluminosilicate glasses have been prepared with varying sodium and boron concentrations and drawn into moderately high-surface-area continuous filament fibers. A relatively new technique, boron K-edge Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy is applied to study the local boron coordination at fracture and melt-derived fiber surfaces of these glasses. This structural information is combined with surface compositional information by X-ray Photoelectron Spectroscopy (XPS) to characterize the local atomic structure of boron at the as-formed glass surface. Finally, this information is used to interpret the adsorptivity of these as-formed and leached surfaces toward short-chain alcohol molecules through a new Inverse Gas Chromatography---Temperature Programmed Desorption (IGC-TPD) experiment. The results clearly show that boron additions to alkali-free glass surfaces introduce a unique adsorption site which is not present on boron-free glass surfaces and is easily removed by leaching in acidic solutions.

  2. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    NASA Astrophysics Data System (ADS)

    Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha

    2013-02-01

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  3. Hydrophobicity, surface tension, and zeta potential measurements of glass-reinforced hydroxyapatite composites.

    PubMed

    Lopes, M A; Monteiro, F J; Santos, J D; Serro, A P; Saramago, B

    1999-06-15

    Wettability and zeta potential studies were performed to characterize the hydrophobicity, surface tension, and surface charge of P2O5-glass-reinforced hydroxyapatite composites. Quantitative phase analysis was performed by the Rietveld method using GSAS software applied to X-ray diffractograms. Surface charge was assessed by zeta potential measurements. Protein adsorption studies were performed using vitronectin. Contact angles and surface tensions variation with time were determined by the sessile and pendent drop techniques, respectively, using ADSA-P software. The highest (-18.1 mV) and lowest (-28.7 mV) values of zeta potential were found for hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP), respectively, with composite materials presenting values in between. All studied bioceramic materials showed similar solid surface tension. For HA and beta-TCP, solid surface tensions of 46.7 and 45.3 mJ/m2, respectively, were obtained, while composites presented intermediate surface tension values. The dispersive component of surface tension was the predominant one for all materials studied. Adhesion work values between the vitronectin solution and HA and beta-TCP were found to be 79.8 and 88.0 mJ/m2, respectively, while the 4.0 wt % glass composites showed slightly lower values than the 2.5 wt % ones. The presence of beta-TCP influenced surface charge, hydrophobicity, and protein adsorption of the glass-reinforced HA composites, and therefore indirectly affected cell-biomaterial interactions.

  4. Development of high strength hydroxyapatite for bone tissue regeneration using nanobioactive glass composites

    SciTech Connect

    Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.; Sudera, Prerna; Sivam, Santosh Param; Sharma, Pratibha

    2013-02-05

    With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO{sub 2} 70 mol%, CaO 26 mol % and P{sub 2}O{sub 5} 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.

  5. Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering.

    PubMed

    Roether, J A; Gough, J E; Boccaccini, A R; Hench, L L; Maquet, V; Jérôme, R

    2002-12-01

    Bioresorbable and bioactive tissue engineering scaffolds based on bioactive glass (45S5 Bioglass(R)) particles and macroporous poly(DL-lactide) (PDLLA) foams were fabricated. A slurry dipping technique in conjunction with pretreatment in ethanol was used to achieve reproducible and well adhering bioactive glass coatings of uniform thickness on the internal and external surfaces of the foams. In vitro studies in simulated body fluid (SBF) demonstrated rapid hydroxyapatite (HA) formation on the surface of the composites, indicating their bioactivity. For comparison, composite foams containing Bioglass(R) particles as filler for the polymer matrix (in concentration of up to 40 wt %) were prepared by freeze-drying, enabling homogenous glass particle distribution in the polymer matrix. The formation of HA on the composite surfaces after immersion in phosphate buffer saline (PBS) was investigated to confirm the bioactivity of the composites. Human osteoblasts (HOBs) were seeded onto as-fabricated PDLLA foams and onto PDLLA foams coated with Bioglass(R) particles to determine early cell attachment and spreading. Cells were observed to attach and spread on all surfaces after the first 90 min in culture. The results of this study indicate that the fabricated composite materials have potential as scaffolds for guided bone regeneration.

  6. Use of copper slag in glass-epoxy composites for improved wear resistance.

    PubMed

    Biswas, Sandhyarani; Satapathy, Alok

    2010-07-01

    Copper slag is a by-product obtained during matte smelting and refining of copper. The common management options for copper slag are recycling, recovery of metal and production of value-added products. In the present study using copper slag as a filler in glass-epoxy composites, the tensile modulus increased from 8.77 GPa to 9.64 GPa when using up to 10 wt% of copper slag but on further addition of copper slag (up to 20 wt%), the tensile modulus started to decrease down to 7.11 GPa. Similar trends were observed in the case of flexural strength and interlaminar shear strength. With the incorporation of copper slag particles, the impact strength increased about 10-15%. This work includes the processing, characterization and study of the erosion behaviour of a class of such copper slag filled glass-epoxy composites based on Taguchi's experimental approach to characterise erosion behaviour. The results show that peak erosion takes place at an impingement angle of 60 degrees for the unfilled composites whereas for the copper slag filled glass-epoxy composites it occurs at a 45 degrees impingement angle. This paper considers the possible utilisation of copper slag as filler material for the preparation of composite materials and preparation of added-value products such as abrasive tools, cutting tools and railroad ballast.

  7. Thermal analysis and in vitro bioactivity of bioactive glass-alumina composites

    SciTech Connect

    Chatzistavrou, Xanthippi; Kantiranis, Nikolaos; Kontonasaki, Eleana; Chrissafis, Konstantinos; Papadopoulou, Labrini; Koidis, Petros; Boccaccini, Aldo R.; Paraskevopoulos, Konstantinos M.

    2011-01-15

    Bioactive glass-alumina composite (BA) pellets were fabricated in the range 95/5-60/40 wt.% respectively and were heat-treated under a specific thermal treatment up to 950 {sup o}C. Control (unheated) and heat-treated pellets were immersed in Simulated Body Fluid (SBF) for bioactivity testing. All pellets before and after immersion in SBF were studied by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM-EDS) and X-ray Diffraction (XRD) analysis. All composite pellets presented bioactive response. On the surface of the heat-treated pellets the development of a rich biological hydroxyapatite (HAp) layer was delayed for one day, compared to the respective control pellets. Independent of the proportion of the two components, all composites of each group (control and heat-treated) presented the same bioactive response as a function of immersion time in SBF. It was found that by the applied methodology, Al{sub 2}O{sub 3} can be successfully applied in bioactive glass composites without obstructing their bioactive response. - Research Highlights: {yields} Isostatically pressed glass-alumina composites presented apatite-forming ability. {yields} The interaction with SBF resulted in an aluminium phosphate phase formation. {yields} The formation of an aluminium phosphate phase enhanced the in vitro apatite growth.

  8. Long-Term Viscoelastic Response of E-glass/Bismaleimide Composite in Seawater Environment

    NASA Astrophysics Data System (ADS)

    Yian, Zhao; Zhiying, Wang; Keey, Seah Leong; Boay, Chai Gin

    2015-12-01

    The effect of seawater absorption on the long-term viscoelastic response of E-glass/BMI composite is presented in this paper. The diffusion of seawater into the composite shows a two-stage behavior, dominated by Fickian diffusion initially and followed by polymeric relaxation. The Glass transition temperature (Tg) of the composite with seawater absorption is considerably lowered due to the plasticization effect. However the effect of water absorption at 50 °C is found to be reversible after drying process. The time-temperature superposition (TTS) was performed based on the results of Dynamic Mechanical Analysis to construct the master curve of storage modulus. The shift factors exhibit Arrhenius behavior when temperature is well below Tg and Vogel-Fulcher-Tammann (VFT) like behavior when temperature gets close to glass transition region. As a result, a semi-empirical formulation is proposed to account for the seawater absorption effect in predicting long-term viscoelastic response of BMI composites based on temperature dependent storage modulus and TTS. The predicted master curves show that the degradation of storage modulus accelerates with both seawater exposure and increasing temperature. The proposed formulation can be applied to predict the long-term durability of any thermorheologically simple composite materials in seawater environment.

  9. Processing and damage recovery of intrinsic self-healing glass fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Sordo, Federica; Michaud, Véronique

    2016-08-01

    Glass fiber reinforced composites with a self-healing, supramolecular hybrid network matrix were produced using a modified vacuum assisted resin infusion moulding process adapted to high temperature processing. The quality and fiber volume fraction (50%) of the obtained materials were assessed through microscopy and matrix burn-off methods. The thermo-mechanical properties were quantified by means of dynamic mechanical analysis, revealing very high damping properties compared to traditional epoxy-based glass fiber reinforced composites. Self-healing properties were assessed by three-point bending tests. A high recovery of the flexural properties, around 72% for the elastic modulus and 65% of the maximum flexural stress, was achieved after a resting period of 24 h at room temperature. Recovery after low velocity impact events was also visually observed. Applications for this intrinsic and autonomic self-healing highly reinforced composite material point towards semi-structural applications where high damping and/or integrity recovery after impact are required.

  10. Interlaminar Fracture toughness in Glass-Cellulose Reinforced Epoxy hybrid composites

    NASA Astrophysics Data System (ADS)

    Uppin, Vinayak S.; Ashok; AnanthJoshi; Sridhar, I.; Shivakumar Gouda, P. S.

    2016-09-01

    Laminates of fibre reinforced compositesare weak in through thicknessbut strong in fibre direction, this lead to development of hybridizationconcept in polymer composites. In this work a new method of disperssing cellulose micro particleson unidirectional (UD) Glass fibre epoxy composite using semi-automated draw down coating technique was adopted to enhance fracture toughness.Test results show that by adding cellulose increases the load carrying competency by 32% in mode-I as compare to Glass- Epoxy composite samples. Imrovement in interlaminar critical energy release rates (GiC and GnC) up to 55% in Mode -I and 19 %in Mode -II respectively was also observed. This enahancement in fracture toughnees is due to the amount of fiber bridging seen during crack initiation and propagation.

  11. Thermal expansion of selected graphite-reinforced polyimide-, epoxy-, and glass-matrix composites

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.

    1987-01-01

    The thermal expansion of continuous carbon-fiber reinforced composites with epoxy-, polyimide-, and borosilicate glass-matrices has been measured and compared. The expansion of a rubber-toughened epoxy-matrix/P75S carbon-fiber composite was very different from the expansion of two different single-phase epoxy-matrix/P75S composites, although all three had the same stacking sequence. Reasonable agreement was obtained between measured thermal expansion data and results from classical laminate theory. Microdamage in the graphite/polyimide laminate, induced by 250 cycles between -156 and 121 C, caused a 53 percent decrease in the coefficient of thermal expansion. The thermal expansion of the graphite/glass laminate was not changed after 100 thermal cycles from -129 to 38 C; however, a residual strain of about 10 x 10 to the -6 was observed for the laminate tested.

  12. Antibacterial and bioactive composite bone cements containing surface silver-doped glass particles.

    PubMed

    Miola, Marta; Fucale, Giacomo; Maina, Giovanni; Verné, Enrica

    2015-10-20

    A bioactive silica-based glass powder (SBA2) was doped with silver (Ag(+)) ions by means of an ion-exchange process. Scanning electron microscopy (SEM), energy dispersion spectrometry (EDS) and x-ray diffraction (XRD) evidenced that the glass powder was enriched with Ag(+) ions. However, a small amount of Ag2CO3 precipitated with increased Ag concentrations in the exchange solution. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of Ag-SBA2 towards Staphylococcus aureus were also evaluated and were respectively 0.05 mg ml(-1) and 0.2 mg ml(-1). Subsequently, Ag-SBA2 glass was used as filler (30%wt) in a commercial formulation of bone cement (Simplex(™) P) in order to impart both antibacterial and bioactive properties. The composite bone cement was investigated in terms of morphology (using SEM) and composition (using EDS); the glass powder was well dispersed and exposed on the cement surface. Bioactivity tests in simulated body fluid (SBF) evidenced the precipitation of hydroxyapatite on sample surfaces. Composite cement demonstrated antibacterial properties and a compressive strength comparable to the commercial formulation.

  13. Compositional trends of radiation-induced effects in ternary systems of chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Kovalskiy, A.

    2003-01-01

    The effect of gamma-irradiation on the optical transmittance spectra of pseudobinary stoichiometric and non-stoichiometric cuts of ternary systems of chalcogenide glasses was studied. The application of chemical-bond approach is proposed to explain the features of compositional dependencies of radiation-induced effects in these materials. It is shown that free volume concept must be taken into consideration at the presence of different radiation-sensitive structural units. The creation processes of coordination defects connected with the formation of free volume and coupled with the capability of the constituent atoms to passivation are the main factors determining the magnitude of the radiation-induced effects in chalcogenide glasses.

  14. Shape dependence of nonlinear optical behaviors of nanostructured silver and their silica gel glass composites

    SciTech Connect

    Zheng Chan; Du Yuhong; Feng Miao; Zhan Hongbing

    2008-10-06

    Nanostructured Ag in shapes of nanoplate, nanowire, and nanoparticle, as well as their silica gel glass composites have been prepared and characterized. Nonlinear optical (NLO) properties were measured at 532 and 1064 nm using open aperture z-scan technique and studied from the view of shape effect. NLO behaviors of the nanostructured Ag are found to be shape dependent in suspensions at both the investigated wavelengths, although they originate differently. Comparing to the mother suspensions, the Ag/silica gel glass nanocomposites present rather dissimilar NLO behaviors, which is quite interesting for further studies.

  15. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Hasan, Muhammad S; Grant, David M; Harper, Lee T; Parsons, Andrew J; Palmer, Graham; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line.

  16. Characterization of carbon nanotube (MWCNT) containing P(3HB)/bioactive glass composites for tissue engineering applications.

    PubMed

    Misra, Superb K; Ohashi, F; Valappil, Sabeel P; Knowles, Jonathan C; Roy, I; Silva, S Ravi P; Salih, Vehid; Boccaccini, Aldo R

    2010-03-01

    Poly(3-hydroxybutyrate) (P(3HB)) composites with bioactive glass particles and multiwall carbon nanotubes (MWCNTs) were prepared and used to identify whether the electrical properties of MWCNTs can be used to detect the bioactivity of P(3HB)/bioactive glass composites. The presence of MWCNTs (2-7 wt.%) increased the surface roughness of the composites. The presence of MWCNTs in low quantity enhanced MG-63 osteoblast-like cell attachment and proliferation compared to composites with higher concentration of MWCNTs. Current-voltage measurements demonstrated that the electrical resistance of the composites containing bioactive glass particles decreased over a 45-day immersion period in SBF, whereas composites without bioactive glass showed no significant change over the same period.

  17. Structure, phases, and mechanical response of Ti-alloy bioactive glass composite coatings.

    PubMed

    Nelson, G M; Nychka, J A; McDonald, A G

    2014-03-01

    Porous titanium alloy-bioactive glass composite coatings were manufactured via the flame spray deposition process. The porous coatings, targeted for orthodontic and bone-fixation applications, were made from bioactive glass (45S5) powder blended with either commercially pure titanium (Cp-Ti) or Ti-6Al-4V alloy powder. Two sets of spray conditions, two metallic particle size distributions, and two glass particle size distributions were used for this study. Negative control coatings consisting of pure Ti-6Al-4V alloy or Cp-Ti were sprayed under both conditions. The as-sprayed coatings were characterized through quantitative optical cross-sectional metallography, X-ray diffraction (XRD), and ASTM Standard C633 tensile adhesion testing. Determination of the porosity and glassy phase distribution was achieved by using image analysis in accordance with ASTM Standard E2109. Theoretical thermodynamic and heat transfer modeling was conducted to explain experimental observations. Thermodynamic modeling was performed to estimate the flame temperature and chemical environment for each spray condition and a lumped capacitance heat transfer model was developed to estimate the temperatures attained by each particle. These models were used to establish trends among the choice of alloy, spray condition, and particle size distribution. The deposition parameters, alloy composition, and alteration of the feedstock powder size distribution had a significant effect on the coating microstructure, porosity, phases present, mechanical response, and theoretical particle temperatures that were attained. The most promising coatings were the Ti-6Al-4V-based composite coatings, which had bond strength of 20±2MPa (n=5) and received reinforcement and strengthening from the inclusion of a glassy phase. It was shown that the use of the Ti-6Al-4V-bioactive glass composite coatings may be a superior choice due to the possible osteoproductivity from the bioactive glass, the potential ability to

  18. Tensile behavior of MWCNT enhanced glass fiber reinforced polymeric composites at various crosshead speeds

    NASA Astrophysics Data System (ADS)

    Mahato, K. K.; Rathore, D. K.; Prusty, R. K.; Dutta, K.; Ray, B. C.

    2017-02-01

    Fiber reinforced polymeric (FRP) composite materials are subjected to different range of crosshead speeds during their in-service life. The work has been focused to investigate the effect of carbon nanotube (CNT) addition in glass fiber reinforced polymer (GFRP) composite on tensile behavior. The Control GFRP composites and CNT modified composites were tested at different crosshead speeds viz. 1, 10, 100 mm/min. CNT modified matrix was processed with epoxy as a matrix materials and multi-walled carbon nanotube (MWCNT) as a filler with different MWCNT content (i.e. 0.1, 0.3 and 0.5 wt. %). Increase in the CNT content upto 0.3% the tensile strength increasing for all the crosshead speeds as compared to the control GFRP composite. The tensile strength are dependent on the CNT content in GFRP composite. It has been observed that addition of 0.1% CNT and 0.3% CNT enhanced the tensile strength by 6.11% and 9.28% respectively than control GFRP composite. The tensile modulus is found to be mostly unaffected on an optimum CNT content in the GFRP composite. The tensile strength of control GFRP and all CNT modified GFRP composites were found to be crosshead speed sensitive and increased with increasing crosshead speeds in the aforesaid loadings. However, slight decrease in tensile modulus was observed with addition of CNT due to agglomeration of the CNT in the polymer matrix composites. The DSC analysis was also carried out to understand the effect of the CNT content on the glass transition temperature (Tg) of GFRP composites. Different failure patterns of GFRP composite tested at 1, 10, and 100 mm/min crosshead speeds were identified.

  19. Interface Modified Glass Fiber/Thermoplastic Matrix Composites

    DTIC Science & Technology

    1989-03-01

    iFoster -Miller, Inc. I CASMA 350 ecod Avnue495Summr Sree 󈨆 ADDRESS ( Qty State, and ZIP Cod ) 7b. ADDRESS (CIty, State, and ZIP Code) Waltham, MA...FUNDING NUMB3ERS PROGRAM PROJECT TASKm~3800 N. Quincy Street ELEMENT NO. NO. NO.S010 O *Arlington, VA 22217-5000 1 MfS* ;I t: TITLE Include Socunvty...Thermpastic, Composites, Sizing i1*9USTRCT (Continue on ,wrer sf necesary and identfy by ok number) * "Lhis Phase I SBIR program is applying a

  20. Fabrication, characterization, and in vitro degradation of composite scaffolds based on PHBV and bioactive glass.

    PubMed

    Li, Haiyan; Du, Ruilin; Chang, Jiang

    2005-10-01

    Composite scaffolds of polyhydroxybutyrate-polyhydroxyvalerate (PHBV) with sol-gel-derived bioactive glass (BG, 58S) are fabricated by compression molding, thermal processing, and salt particulate leaching method. Structure and mechanical properties of the scaffolds are determined. The bioactivity of the composites is evaluated by soaking the scaffolds in a simulated body fluid (SBF), and the formation of the apatite layer on the scaffolds is determined by scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS). The results show that the PHBV/BG composites are bioactive as they induce the formation of apatite on the composite scaffolds after soaking in SBF for 3 days. In addition, the measurements of the water contact angles suggest that incorporation of BG into PHBV can improve the hydrophilicity of the composites and the enhancement is dependent on the BG content. Furthermore, the degradation assessment of the scaffolds is performed in phosphate-buffered saline (PBS) solution at 37 C. Weight loss and water absorption of the scaffolds, pH of the incubation media, and molecular weight measurements of the PHBV in the scaffolds are used to monitor the degradation of the scaffolds during a nine-week incubation in PBS. It has been found that the incorporation of bioactive glass into the PHBV delayed the degradation of PHBV in the composite scaffolds for the period investigated. The present results show not only a useful method to prepare composite scaffolds with improved properties but also a way of adjusting the in vitro degradation behavior of composite scaffolds by tailoring the content of bioactive glass.

  1. Processing, properties, and in vitro bioactivity of polysulfone-bioactive glass composites.

    PubMed

    Oréfice, Rodrigo; Clark, Arthur; West, Jon; Brennan, Anthony; Hench, Larry

    2007-03-01

    The mismatch between the mechanical properties of bioceramics and natural tissue has restricted in several cases a wider application of ceramics in medical and dental fields. To overcome this problem, polymer matrix composites can be designed to combine bioactive properties of some bioceramics with the superior mechanical properties of some engineering plastics. In this work, polymer particulate composites composed of a high mechanical-property polymer and bioactive glass particles were produced and both the in vitro bioactivity and properties of the system were investigated. Composites with different volume fraction and particle size were prepared. In vitro tests showed that hydroxy-carbonate-apatite can be deposited on the surface of a composite as early as 20 h in a simulated body fluid. Ionic evolution from a composite with 40% volume fraction of particles was demonstrated to be similar to bulk bioactive glasses. The mechanical properties of some of the obtained composites had values comparable with the ones reported for bone. Moreover, a physical model based on dynamical mechanical tests showed evidences that the interface of the composite was aiding in the stress transfer process.

  2. Research on Tribological Behavior of PEEK and Glass Fiber Reinforced PEEK Composite

    NASA Astrophysics Data System (ADS)

    Li, E. Z.; Guo, W. L.; Wang, H. D.; Xu, B. S.; Liu, X. T.

    The tribological behaviors of pure polyetheretherketone (PEEK) and PEEK composites reinforced by 30wt% short glass fibers (GF) were comparatively evaluated on a ball-on-disc configuration at room temperature. The effects of applied load and sliding time on the friction coefficient and wear loss of the GF/PEEK were examined. The mechanical property, morphology and thermal performance of the composite were studied. The results indicated that the friction coefficient and wear loss of the composite increased gradually and tended to be a stable state as the increase of applied load and sliding time. The GF/PEEK has an excellent wear resistance, compared with PEEK. The SEM and EDS indicated that the short glass-fibers were extruded from the composite rather than pulverized into the composite. Compared with that of pure PEEK, the thermal decomposition temperature of GF/PEEK composite had an increase of 75 °C. The tensile strength and flexural strength of the composite were increased by 64% and 66%, respectively.

  3. IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION: KT01, KT02, KT03, AND KT04-SERIES GLASS COMPOSITIONS

    SciTech Connect

    Fox, K.; Edwards, T.

    2010-11-01

    Four series of glass compositions were selected, fabricated, and characterized as part of a study to determine the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. The KT01 and KT02-series of glasses were chosen to allow for the identification of the influence of the concentrations of major components of the glass on the retention of TiO{sub 2}. The KT03 series of glasses was chosen to allow for the identification of these influences when higher Nb{sub 2}O{sub 5} and ZrO{sub 2} concentrations are included along with TiO2. The KT04 series of glasses was chosen to investigate the properties and performance of glasses based on the best available projections of actual compositions to be processed at the DWPF (i.e., future sludge batches including the SCIX streams).

  4. IMPACTS OF SMALL COLUMN ION EXCHANGE STREAMS ON DWPF GLASS FORMULATION: KT08, KT09, AND KT10-SERIES GLASS COMPOSITIONS

    SciTech Connect

    Fox, K.; Edwards, T.

    2011-04-26

    This report is the fourth in a series of studies of the impacts of the addition of Crystalline Silicotitanate (CST) and Monosodium Titanate (MST) from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) glass waste form and the applicability of the DWPF process control models. MST from the Salt Waste Processing Facility (SWPF) is also considered in the study. The KT08-series of glasses was designed to evaluate any impacts of the inclusion of uranium and thorium in glasses containing the SCIX components. The KT09-series of glasses was designed to study the effect of increasing Al{sub 2}O{sub 3} and K{sub 2}O concentrations on the propensity for crystallization of titanium containing phases in high TiO{sub 2} concentration glasses. Earlier work on the KT05-series glasses recommended that the impact of these two components be studied further. Increased Al{sub 2}O{sub 3} concentrations have been shown to improve the properties and performance of high waste loading glasses, and K{sub 2}O has been reported to improve the retention of TiO{sub 2} in silicate glasses. The KT10-series of compositions was designed to evaluate any impacts of the SCIX components at concentrations 50% higher than currently projected.a The glasses were fabricated in the laboratory and characterized to identify crystallization, to verify chemical compositions, to measure viscosity, and to measure durability. Liquidus temperature measurements for the KT10-series glasses are underway and will be reported separately. All but one of the KT08-series glasses were found to be amorphous by X-ray diffraction (XRD). One of the slowly cooled glasses contained a small amount of trevorite, which had no practical impact on the durability of the glass and is typically found in DWPF-type glasses. The measured Product Consistency Test (PCT) responses for the KT08-series glasses are well predicted by the DWPF models. The viscosities of the KT08-series glasses were generally

  5. Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses

    SciTech Connect

    Mallur, Saisudha B.; Czarnecki, Tyler; Adhikari, Ashish; Babu, Panakkattu K.

    2015-08-15

    Highlights: • Refractive indices increase with increasing PbO/Bi{sub 2}O{sub 3} content. • Optical band gap arises due to direct forbidden transition. • Optical band gaps decrease with increasing PbO/Bi{sub 2}O{sub 3} content. • New empirical relation between the optical band gap and the refractive index. - Abstract: We prepared a series of lead and bismuth borate glasses by varying PbO/Bi{sub 2}O{sub 3} content and studied refractive index and optical band gap as a function of glass composition. Refractive indices were measured very accurately using a Brewster’s angle set up while the optical band gaps were determined by analyzing the optical absorption edge using the Mott–Davis model. Using the Lorentz–Lorentz method and the effective medium theory, we calculated the refractive indices and then compared them with the measured values. Bismuth borate glasses show better agreement between the calculated values of the refractive index and experimental values. We used a differential method based on Mott–Davis model to obtain the type of transition and optical band gap (E{sub opt}) which in turn was compared with the value of E{sub opt} obtained using the extinction coefficient. Our analysis shows that in both lead and bismuth borate glasses, the optical band gap arises due to direct forbidden transition. With increasing PbO/Bi{sub 2}O{sub 3} content, the absorption edge shifts toward longer wavelengths and the optical band gap decreases. This behavior can be explained in terms of changes to the Pb−O/Bi−O chemical bonds with glass composition. We obtained a new empirical relation between the optical band gap and the refractive index which can be used to accurately determine the electronic oxide polarizability in lead and bismuth oxide glasses.

  6. A photo-oxidation mechanism for patterning and hologram formation in conjugated polymer/glass composites

    NASA Astrophysics Data System (ADS)

    Levi, Ofer; Perepelitsa, Galina; Davidov, Dan; Shalom, Shoshy; Benjamin, Iris; Neumann, Ronny; Agranat, Aharon J.; Avny, Yair

    2000-08-01

    Improved diffraction efficiency was observed in holograms stored in disordered conjugated polymer/glass composites. The conjugated polymers used were alkoxy substituted poly(phenylenevinylne) analogs and the glass matrices were zirconia-organosilica xerogels. Investigation of the mechanism of hologram formation revealed evidence of a photochromic process consisting of light induced photo-oxidation (bleaching) of the embedded conjugated polymer resulting in the formation of an absorption grating and a phase grating. Investigation of the hologram formation revealed that the process was oxygen dependent. Oxygen removal increases hologram formation time by more than an order of magnitude and halves the total hologram efficiency. The oxygen dependence was also highly correlated with photobleaching of the samples and beam interaction of the writing beams. The chemical transformations upon photobleaching were shown by infrared and Raman spectroscopy to involve chain scission and oxidation of the polymer at the vinylic position of the conjugated polymer. Film preparation of the composites was optimized showing a tenfold improvement in the holographic properties compared to our previous results. The optimized treatment method allows for a high, >20%, diffraction efficiency, η, to be obtained for the 2.5-μm-thick polymer/glass films. Light sensitivity was compared for several polymer/glass composites and was correlated to the absorption curves and holographic diffraction efficiency showing that the new composites and film preparation techniques are promising for holographic materials sensitive in the blue and ultraviolet spectral regions. A method of information fixing by preventing oxygen entry to the composite film resulted in a fourfold increase of the erasure time. These findings suggest that holograms can be fixed for a long term by nonoxygen permeable coating, applied after hologram formation.

  7. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    NASA Astrophysics Data System (ADS)

    Jukola, H.; Nikkola, L.; Gomes, M. E.; Chiellini, F.; Tukiainen, M.; Kellomäki, M.; Chiellini, E.; Reis, R. L.; Ashammakhi, N.

    2008-02-01

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-ɛ-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 °C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 °C with the decomposition of starch and continued at 400 °C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.

  8. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    SciTech Connect

    Jukola, H.; Nikkola, L.; Tukiainen, M.; Kellomaeki, M.; Ashammakhi, N.; Gomes, M. E.; Reis, R. L.; Chiellini, F.; Chiellini, E.

    2008-02-15

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-{epsilon}-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 deg. C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 deg. C with the decomposition of starch and continued at 400 deg. C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.

  9. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair.

    PubMed

    Quinlan, Elaine; Partap, Sonia; Azevedo, Maria M; Jell, Gavin; Stevens, Molly M; O'Brien, Fergal J

    2015-06-01

    One of the biggest challenges in regenerative medicine is promoting sufficient vascularisation of tissue-engineered constructs. One approach to overcome this challenge is to target the cellular hypoxia inducible factor (HIF-1α) pathway, which responds to low oxygen concentration (hypoxia) and results in the activation of numerous pro-angiogenic genes including vascular endothelial growth factor (VEGF). Cobalt ions are known to mimic hypoxia by artificially stabilising the HIF-1α transcription factor. Here, resorbable bioactive glass particles (38 μm and 100 μm) with cobalt ions incorporated into the glass network were used to create bioactive glass/collagen-glycosaminoglycan scaffolds optimised for bone tissue engineering. Inclusion of the bioactive glass improved the compressive modulus of the resulting composite scaffolds while maintaining high degrees of porosity (>97%). Moreover, in vitro analysis demonstrated that the incorporation of cobalt bioactive glass with a mean particle size of 100 μm significantly enhanced the production and expression of VEGF in endothelial cells, and cobalt bioactive glass/collagen-glycosaminoglycan scaffold conditioned media also promoted enhanced tubule formation. Furthermore, our results prove the ability of these scaffolds to support osteoblast cell proliferation and osteogenesis in all bioactive glass/collagen-glycosaminoglycan scaffolds irrespective of the particle size. In summary, we have developed a hypoxia-mimicking tissue-engineered scaffold with pro-angiogenic and pro-osteogenic capabilities that may encourage bone tissue regeneration and overcome the problem of inadequate vascularisation of grafts commonly seen in the field of tissue engineering.

  10. Impact performance characteristics and modeling failure mechanisms of pultruded glass-graphite/epoxy hybrid composite beams

    NASA Astrophysics Data System (ADS)

    Kowsika, Murthy V. S. L. N.

    In this study, investigation was performed to comprehend the influence of hybridization on the impact performance in terms of the energy absorption characteristics and delamination fracture toughness of pultruded uni-directional composite materials. In order to evaluate the improvements/changes in the impact performance as a result of hybridization, apart from considering mono-fiber reinforced all-graphite and all-glass composites, several types of sandwich hybrid composites comprising of both graphite as well as glass fibers were included in the investigation. By keeping a constant overall fiber content, the lay-up sequence and the volume fraction of each type of fiber are altered in these pultruded composites to determine the trend in the mechanical behavior as a result of hybridization. The response of pultruded all-graphite, all-glass and glass-graphite hybrid composites is evaluated under two different incident impact energy conditions. A high incident energy (HIE) and a low incident energy (LIE) of impact are chosen to cause either complete fracture or induce delamination, respectively, for assessing the energy absorption characteristics (crashworthiness) and delamination fracture toughness of these composites. Finite element modeling is performed under static as well as dynamic loading conditions to simulate the stress distribution and to predict the energy absorption behavior of composites. Progressive damage due to sequential ply failure was modeled by utilizing the failure strain data obtained from static and HTE impact tests for analyzing the post-initial ply failure characteristics of pultruded composites. Finite element modeling was also performed to simulate delamination crack propagation at various levels through the thickness. The strain energy release rate computed using the virtual crack closure technique was monitored to determine the likelihood of delamination crack propagation with increment in crack growth for the pultruded composites under

  11. An influence of a Glass Braze Composition on the Properties of Li-Ti Ferrite Joints

    NASA Astrophysics Data System (ADS)

    Lin, Panpan; Lin, Tiesong; He, Peng; Sekulic, Dusan P.; Zhao, Mengyuan; Wang, Shulei

    2017-04-01

    The influence of the chemical composition of Bi2O3-B2O3-SiO2-ZnO glass brazes on (i) the microstructure, (ii) the mechanical and (iii) the dielectric properties of Li-Ti ferrite joints was systematically investigated. The Bi5(Ti3Fe)O15 whisker and a white block phase consisting of Bi12SiO2 and Bi24B2O39 were observed in the joints of Li-Ti ferrite/Bi25-Ba and Li-Ti ferrite/glass brazes, respectively, containing a higher content of Bi2O3. No crystalline phase was detected in the Li-Ti ferrite/Bi25 and Li-Ti ferrite/Bi20 joints. The joint strength reached the maximum of 48 MPa in the Li-Ti ferrite/Bi25-Ba couples. It is assumed that this is mainly due to the strengthening effect of Bi5(Ti3Fe)O15 whiskers. The bonding temperature (700°C) had little effect on the dielectric properties of Li-Ti ferrite. Moreover, compared to the Bi25-Ba glass brazes, the Bi25 and Bi20 glass brazes had a less pronounced influence on the dielectric properties of joints. Different glass brazes can be tailored to different requirements depending on specific application and joint property requirements.

  12. Investigation on pseudo-ductility to improve mechanical behavior in glass-cellulose epoxy composites

    NASA Astrophysics Data System (ADS)

    Ashok; Uppin, Vinayak S.; Huddar, Deepak S.; Kodancha, Krishanaraj G.; Sridhar, I.; Shivakumar Gouda, P. S.

    2016-09-01

    Nowadays composite materials exhibit sudden and catastrophic failure, which is undesirable for several applications. A new class of hybrid laminates was prepared using semi-automated draw down coating method with varying surface coating densities on unidirectional (UD) Glass fiber. Cellulose particles were coated on UD Glass fiber to investigate the effect of pseudo-ductility to improve mechanical behavior. Glass Cellulose epoxy hybrid laminate was fabricated with 5%, 7.5% and 10% of cellulose. Coating with 5% Cellulose produces a coating density of 319.08 g/m2 and exhibits the appreciable pseudo ductile tensile stress-strain behavior with a non-linear variation at second part followed by linear variation at initial region. The response of tensile stress had shown 27% improvement in tensile modulus (330MPa) as compared to neat glass epoxy laminate with 0.04% of pseudo ductile strain. Further, flexural strength and inter-laminar shear strength of each specimen configuration were calculated and found good improvement in flexural strength with cellulose coated samples as compared to Glass-Epoxy laminate.

  13. Hygrothermal expansion of Kevlar 49/epoxy and S2-glass/epoxy composites

    SciTech Connect

    Lo, S.Y.; Hahn, H.T.

    1982-11-01

    Ply failure occurred during preconditioning at 75/sup 0/C of (0/90)/sub 2S/ S2-glass/epoxy and Kevlar 49/epoxy laminates. Wet specimens showed different thermal expansion beavior near and above the glass transition temperature. Various available theories can be used to predict the thermal expansion coefficients. Stress analysis showed that the compressive normal stress at the interface in Kevlar 49/epoxy after cure is very small compared with those in other composites. Significant and rapid changes in the transverse coefficient of thermal expansion occurs in the T/sub g/ region. The two-phase diffusion model is a good representation of the diffusion behavior. Desorption process reveals a higher diffusion coefficient than absorption. S2-glass/epoxy was found to be unstable under the conditions applied, with cracking and losses during desorption. Maximum moisture contents were approx. 0.31% at 75/sup 0/C/75% RH and approx. 0.412% at 75/sup 0/C/water. The composite swelled transversely up to about 0.11 and 0.16%. Kevlar 49/epoxy was more stable than S2-glass/epoxy; max moisture contents were approx. 2.47% at 75/sup 0/C/75% RH and approx. 5.5% at 75/sup 0/C/water. The composite swelled transversely up to 1.0 and 2.23%. Results indicate that Kevlar 49 fibers swell radially. Relation between swelling strain and moisture content undergoes hysteresis during moisture cycling. Relation between swelling strain and moisture concentration is fairly linear for S2-glass/epoxy, Kevlar 49/epoxy and AS 3501/5 graphite/epoxy and only weakly depends on the material system. The equilibrium moisture content in (+-45)/sub 2S/ laminate is higher than in unidirectional lamina. The equilibrium thickness swelling strain can be predicted by laminated plate theory.

  14. Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes.

    PubMed

    Aloisi, Mirko; Karamanov, Alexander; Taglieri, Giuliana; Ferrante, Fabiola; Pelino, Mario

    2006-09-01

    A glass ceramic composite was obtained by sinter-crystallisation of vitrified municipal solid waste bottom ashes with the addition of various percentages of alumina waste. The sintering was investigated by differential dilatometry and the crystallisation of the glass particles by differential thermal analysis. The crystalline phases produced by the thermal treatment were identified by X-ray diffraction analysis. The sintering process was found to be affected by the alumina addition and inhibited by the beginning of the crystal-phase precipitation. Scanning electron microscopy was performed on the fractured sintered samples to observe the effect of the sintering. Young's modulus and the mechanical strength of the sintered glass ceramic and composites were determined at different heating rates. The application of high heating rate and the addition of alumina powder improved the mechanical properties. Compared to the sintered glass ceramic without additives, the bending strength and the Young's modulus obtained at 20 degrees C/min, increased by about 20% and 30%, respectively.

  15. Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition.

    PubMed

    Frosz, Michael H; Moselund, Peter M; Rasmussen, Per D; Thomsen, Carsten L; Bang, Ole

    2008-12-08

    Supercontinuum light sources spanning into the ultraviolet- visible wavelength region are highly useful for applications such as fluorescence microscopy. A method of shifting the supercontinuum spectrum into this wavelength region has recently become well understood. The method relies on designing the group-velocity profile of the nonlinear fiber in which the supercontinuum is generated, so that red-shifted solitons are group-velocity matched to dispersive waves in the desired ultraviolet-visible wavelength region. The group-velocity profile of a photonic crystal fiber (PCF) can be engineered through the structure of the PCF, but this mostly modifies the group-velocity in the long-wavelength part of the spectrum. In this work, we first consider how the group-velocity profile can be engineered more directly in the short-wavelength part of the spectrum through alternative choices of the glass material from which the PCF is made. We then make simulations of supercontinuum generation in PCFs made of alternative glass materials. It is found that it is possible to increase the blue-shift of the generated supercontinuum by about 20 nm through a careful choice of glass composition, provided that the alternative glass composition does not have a significantly higher loss than silica in the near-infrared.

  16. Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations

    PubMed Central

    Khvostenko, D.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J.

    2015-01-01

    Objectives Bioactive glass (BAG) is known to possess antimicrobial and remineralizing properties; however, the use of BAG as a filler for resin based composite restorations to slow recurrent caries has not been studied. Accordingly, the objective of this study was to investigate the effect of 15 wt% BAG additions to a resin composite on bacterial biofilms penetrating into marginal gaps of simulated tooth fillings in vitro during cyclic mechanical loading. Methods Human molars were machined into approximately 3 mm thick disks of dentin and 1.5–2 mm deep composite restorations were placed. A narrow 15–20 micrometer wide dentin-composite gap was allowed to form along half of the margin by not applying dental adhesive to that region. Two different 72 wt% filled composites were used, one with 15 wt% BAG filler (15BAG) and the balance silanated strontium glass and one filled with OX-50 and silanated strontium glass without BAG (0BAG – control). Samples of both groups had Streptococcus mutans biofilms grown on the surface and were tested inside a bioreactor for two weeks while subjected to periods of cyclic mechanical loading. After post-test biofilm viability was confirmed, each specimen was fixed in glutaraldehyde, gram positive stained, mounted in resin and cross-sectioned to reveal the gap profile. Depth of biofilm penetration for 0BAG and 15BAG was quantified as the fraction of gap depth. The data were compared using a Student’s t-test. Results The average depth of bacterial penetration into the marginal gap for the 15BAG samples was significantly smaller (~61%) in comparison to 0BAG, where 100% penetration was observed for all samples with the biofilm penetrating underneath of the restoration in some cases. Significance BAG containing resin dental composites reduce biofilm penetration into marginal gaps of simulated tooth restorations. This suggests BAG containing composites may have the potential to slow the development and propagation of secondary tooth

  17. Magnesium coated phosphate glass fibers for unidirectional reinforcement of polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Grant, David M; Palmer, Graham; Parsons, Andrew J; Rudd, Chris D; Ahmed, Ifty

    2015-10-01

    Bioresorbable composites have shown much potential for bone repair applications, as they have the ability to degrade completely over time and their degradation and mechanical properties can be tailored to suit the end application. In this study, phosphate glass fiber (from the system 45% P2 O5-16% CaO-24% MgO-11% Na2 O-4% Fe2 O3 (given in mol%)) were used to reinforce polycaprolactone (PCL) with approximately 20% fiber volume fraction. The glass fiber surfaces were coated with magnesium (Mg) through magnetron sputtering to improve the fiber-matrix interfacial properties. The Mg coating provided a rough fiber surface (roughness (Ra) of about 44nm). Both noncoated and Mg-coated fiber-reinforced composites were assessed. The water uptake and mass loss properties for the composites were assessed in phosphate-buffered saline (PBS) at 37°C for up to 28 days, and ion release profiles were also investigated in both water and PBS media. Inhibition of media influx was observed for the Mg-coated composites. The composite mechanical properties were characterized on the basis of both tensile and flexural tests and their retention in PBS media at 37°C was also investigated. A higher retention of the mechanical properties was observed for the Mg-coated composites over the 28 days degradation period.

  18. Evaluation of Hydroxyapatite-Forsterite Glass Composite Nanopowder Prepared via Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Mazrooei Sebdani, Maryam; Fathi, Mohammadhossein

    In spite of attractive bioactivity of bioactive ceramics i.e. hydroxyapatite and bioactive glasses, their poor mechanical properties have restricted their clinical applications. To overcome these limitations, an alternative approach suggested is preparation a composite including these bioactive ceramics with others. It is expected that a ceramic reinforcement with reduced grain size below 100 nm promotes theirs. The aim of this work was fabrication and characterization of hydroxyapatite-forsterite-bioglass composite nanopowder. Novel hydroxyapatite-forsterite-bioglass composite nanopowder was synthesized by incorporation of the forsterite and bioactive glass in hydroxyapatite matrix via a sol-gel process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fourier transform infrared (FTIR) spectroscopy techniques were utilized in order to evaluate the phase composition, agglomerates size distribution, morphology and particle size and functional groups of synthesized. The effects of sintering temperature and time were also investigated. Results showed that the appropriate temperature for calcination was 600°C and the particle size of composite nanopowder was about 60-70nm. The decomposition of hydroxyapatite was increased with the increase of the sintering temperature and sintering time. Obtained results indicate that prepared composite nanopowder could be a good candidate for medical applications.

  19. Composition of Façon de Venise glass from early 17th century London in comparison with luxury glass of the same age

    NASA Astrophysics Data System (ADS)

    Cagno, S.; De Raedt, I.; Jeffries, T.; Janssens, K.

    SEM-EDX and LA-ICP-MS analyses were performed on a set of early 17th century London glass fragments. The samples originate from two archaeological sites (Aldgate and Old Broad Street) where glass workshops were active in this period. The great majority of the samples are made of soda glass. Two distinct compositional groups are observed, each typical of one site of provenance. The samples originating from the Old Broad Street excavation feature a silica-soda-lime composition, with a moderate amount of potash. The samples from Aldgate are richer in potassium and feature higher amounts of trace elements such as Rb, Zr and Cu. The distinction between the two groups stems from different flux and silica sources used for glassmaking. A comparison with different European glass compositions of that time reveals no resemblance with genuine Venetian production, yet the composition of the Old Broad Street glass shows a close similarity to that of fragments produced `à la façon de Venise' in Antwerp at the end of the 16th century. This coincides with historical sources attesting the arrival of glassworkers from the Low Countries in England and suggests that a transfer of technology took place near the turn of the century.

  20. A Glass-Fiber-Reinforced Composite with a Damage Indication Function

    NASA Astrophysics Data System (ADS)

    Bulderberga, O.; Aniskevich, A.; Vidinejevs, S.

    2016-05-01

    A method for the manufacture of a glass-fiber-reinforced plastic (GFRP) containing a sensitive layer with a damage visualization capability is developed. The layer is based on a glass fabric impregnated with a mixture of three components — microcapsules with a leuco dye, a dye developer, and a polymer adhesive. Specimens of the GFRP epoxy composite with an integrated damage-indicating layer were manufactured by the method of vacuum-assisted resin transfer molding. It was established that both the shear and compression strains above the threshold of sensitivity of the layer led to a change in color of the specimen. The kinetics of the halochromic transformation in room conditions was estimated in series of quasi-static compression and shear strength experiments. The effect of the integrated damage indicating layer on the interlaminar shear strength of the composite was estimated in a series of test on double-notch specimens.

  1. In vitro microleakage of glass-ionomer composite resin hybrid materials.

    PubMed

    Rodrigues, J A; De Magalhães, C S; Serra, M C; Rodrigues Júnior, A L

    1999-01-01

    The purpose of this study was to evaluate the microleakage of six glass-ionomer composite resin hybrid materials compared with a glass-ionomer cement and a composite resin. Standardized class 5 dentin cavities were prepared on root surfaces of 240 extracted human teeth that were randomly assigned to eight groups and restored using the following restorative systems: (I) Vitremer, (II) Compoglass, (III) Photac-Fil Aplicap, (IV) Variglass, (V) Dyract, (VI) Fuji II LC, (VII) Ketac-Fil Aplicap, and (VIII) Z100. The teeth were thermocycled, placed in a 2% methylene blue solution, and sectioned with diamond disks. Dye penetration was scored on a scale of 0-3. Results showed no significant differences among groups VIII, IV, I, V, VI, III, and II. There were also no significant differences among groups VI, III, II, and VII.

  2. Modelling of ultrasound tomography technique for Glass Fibre Reinforced Epoxy (GFRE) composites liquid transportation pipeline

    NASA Astrophysics Data System (ADS)

    Siow, L. T.; Rahiman, M. H. F.; Majid, M. S. Abdul; Rahim, R. A.; Zakaria, Z.; Thomas W. K., T.; Ang, Vernoon

    2017-03-01

    The purpose of this paper is to model the ultrasonic tomography on the E-glass fibre reinforced epoxy composite pipe for process monitoring and control. Finite element software and mathematical estimation were applied to model and study the ultrasound wave propagation, especially the reflection and transmission coefficient. While there is a significant result achieved between mathematical estimation and finite element analysis with maximum percentage distinctly in 2.33.

  3. Tomographic Imaging of Glass/Epoxy Composite with a Laser Based Ultrasonics Setup

    SciTech Connect

    Khanna, N.; Raghuram, V.; Munshi, P.; Kishore, N. N.; Arnold, W.

    2008-09-26

    The present work is an attempt to augment the classical laser-based-ultrasonics setup for tomographic imaging purposes. A Glass/epoxy composite with steel insert is the test specimen and time-of-flight data has been used for tomographic reconstruction. Multiplicative algebraic reconstruction technique is used for this limited-view experiment. The resulting image is able to bring out the strong metal features.

  4. A glass fiber-reinforced composite - bioactive glass cranioplasty implant: A case study of an early development stage implant removed due to a late infection.

    PubMed

    Posti, Jussi P; Piitulainen, Jaakko M; Hupa, Leena; Fagerlund, Susanne; Frantzén, Janek; Aitasalo, Kalle M J; Vuorinen, Ville; Serlo, Willy; Syrjänen, Stina; Vallittu, Pekka K

    2015-03-01

    This case study describes the properties of an early development stage bioactive glass containing fiber-reinforced composite calvarial implant with histology that has been in function for two years and three months. The patient is a 33-year old woman with a history of substance abuse, who sustained a severe traumatic brain injury later unsuccessfully treated with an autologous bone flap and a custom-made porous polyethylene implant. She was thereafter treated with developmental stage glass fiber-reinforced composite - bioactive glass implant. After two years and three months, the implant was removed due to an implant site infection. The implant was analyzed histologically, mechanically, and in terms of chemistry and dissolution of bioactive glass. Mechanical integrity of the load bearing fiber-reinforced composite part of the implant was not affected by the in vivo period. Bioactive glass particles demonstrated surface layers of hydroxyapatite like mineral and dissolution, and related increase of pH was considerably less after two and three months period than that for fresh bioactive glass. There was a difference in the histology of the tissues inside the implant areas near to the margin of the implant that absorbed blood during implant installation surgery, showed fibrous tissue with blood vessels, osteoblasts, collagenous fibers with osteoid formation, and tiny clusters of more mature hard tissue. In the center of the implant, where there was less absorbed blood, only fibrous tissue was observed. This finding is in line with the combined positron emission tomography - computed tomography examination with (18F)-fluoride marker, which demonstrated activity of the mineralizing bone by osteoblasts especially at the area near to the margin of the implant 10 months after implantation. Based on these promising reactions found in the bioactive glass containing fiber-reinforced composite implant that has been implanted for two years and three months, calvarial

  5. Optical coherence elastography for measuring the deformation within glass fiber composite.

    PubMed

    Liu, Ping; Groves, Roger M; Benedictus, Rinze

    2014-08-01

    Optical coherence elastography (OCE) has been applied to the study of microscopic deformation in biological tissue under compressive stress for more than a decade. In this paper, OCE has been extended for the first time, to the best of our knowledge, to deformation measurement in a glass fiber composite in the field of nondestructive testing. A customized optical coherence tomography system, combined with a mechanical loading setup, was developed to provide pairs of prestressed and stressed structural images. The speckle tracking algorithm, based on 2D cross correlation, was used to estimate the local displacements in micrometer scale. The algorithm was first evaluated by a test of rigid body translation. Then the experiments were carried out with the tensile test and three point bending on a set of glass fiber composites. The structural features and structural variations during the mechanical loadings are clearly observed with the presented displacement maps. The advantages and prospects for OCE application on glass fiber composites are discussed at the end of this paper.

  6. Monitoring fiber stress during curing of single fiber glass- and graphite-epoxy composites

    SciTech Connect

    Madhukar, M.S.; Kosuri, R.P.; Bowles, K.J.

    1994-11-01

    The difference in thermal expansion characteristics of epoxy matrices and graphite fibers can produce significant residual stresses in the fibers during curing of composite materials. Tests on single fiber glass-epoxy and graphite-epoxy composite specimens were conducted in which the glass and graphite fibers were preloaded in tension, and the epoxy matrix was cast around the fibers. The fiber tension was monitored while the matrix was placed around the fiber and subjected to the temperature-time curing cycle. Two mechanisms responsible for producing stress in embedded fibers were identified as matrix thermal expansion and contraction and matrix cure shrinkage. A simple analysis based on the change in fiber tension during the curing cycle was conducted to estimate the produced stresses. Experimental results on single fiber glass- and graphite-epoxy composites show that the fiber was subjected to significant tensile stresses when the temperature was raised from the first to the second dwell period. When initial fiber pretension is about 60 percent of the fiber failure load, these curing-induced stresses can cause tensile fracture of the embedded fiber.

  7. Osmium Isotope and Highly Siderophile Element Compositions of Lunar Orange and Green Glasses

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; Horan, M. F.; Shearer, C. K.; Papike, J. J.

    2003-01-01

    The absolute and relative abundances of the highly siderophile elements (HSE) present in planetary mantles are primarily controlled by: 1) silicate-metal partitioning during core-mantle differentiation, 2) the subsequent addition of HSE to mantles via continued planetary accretion. Consequently, constraints on the absolute and relative abundances of the HSE in the lunar mantle will provide unique insights to the formation and late accretionary history of not only the Moon, but also Earth. Determining the HSE content of the lunar mantle, however, has proven difficult, because no bona fide mantle rocks have been collected from the moon. The only materials presently available for constraining mantle abundances are lunar volcanic rocks. Lunar basalts typically have very low concentrations of HSE and highly fractionated HSE patterns. Because of our extremely limited understanding of mantle melt partitioning of the HSE, even for terrestrial systems, extrapolations to mantle compositions from basaltic compositions are difficult, except possibly for the less compatible HSE Pt and Pd. Primitive, presumably less fractionated materials, such as picritic glasses are potentially more diagnostic of the lunar interior. Here we report Os isotopic composition data and Re, Os, Ir, Ru, Pt and Pd concentration data for green glass (15426,164) and orange glass (74001,1217). As with previous studies utilizing neutron activation analysis, we are examining different size fractions of the spherules to assess the role of surface condensation in the generation of the HSE abundances.

  8. Effect of diameter of glass fibers on flexural properties of fiber-reinforced composites.

    PubMed

    Obukuro, Motofumi; Takahashi, Yutaka; Shimizu, Hiroshi

    2008-07-01

    This study investigated the effect of the diameter of glass fibers on the flexural properties of fiber-reinforced composites. Bar-shaped test specimens of highly filled fiber-reinforced composites (FRCs) and FRC of 30 vol% fiber content were made from a light-cured dimethacrylate monomer liquid (mixture of urethane dimethacrylate and triethylene glycol dimethacrylate) with silanized E-glass fibers (7, 10, 13, 16, 20, 25, 30, and 45 microm in diameter). Flexural strength and elastic modulus were measured. The flexural strength of the highly filled FRCs increased with increasing fiber diameter. In particular, the strengths of highly filled FRCs with 20-, 25-, 30-, and 45-microm-diameter fibers was significantly higher than the others (p<0.05). The flexural strength of FRC of 30 vol% fiber content increased with increasing fiber diameter, except for the FRC with 45-microm-diameter fibers; FRCs with 20-, 25-, and 30-microm-diameter fibers were significantly stronger than the others (p<0.05). Therefore, it was revealed that the diameter of glass fibers significantly affected the flexural properties of fiber-reinforced composites.

  9. Superstrong nature of covalently bonded glass-forming liquids at select compositions

    NASA Astrophysics Data System (ADS)

    Gunasekera, K.; Bhosle, S.; Boolchand, P.; Micoulaut, M.

    2013-10-01

    Variation of fragility (m) of specially homogenized GexSe100-x melts is established from complex specific heat measurements and shows that m(x) has a global minimum at an extremely low value (m = 14.8(0.5)) in the 21.5% < x < 23% range of Ge. Outside of that compositional range, m(x) then increases first rapidly and then slowly to about m = 25-30. By directly mapping melt stoichiometry as a function of reaction time at a fixed temperature T > Tg, we observe a slowdown of melt-homogenization by the super-strong melt compositions, 21.5% < x < 23%. This range furthermore appears to be correlated to the one observed between the flexible and stressed rigid phase in network glasses. These spectacular features underscore the crucial role played by topology and rigidity in the properties of network-forming liquids and glasses which are highlighted when fragility is represented as a function of variables tracking the effect of rigidity. Finally, we investigate the fragility-glass transition temperature relationship, and find that reported scaling laws do not apply in the flexible phase, while being valid for intermediate and stressed rigid compositions.

  10. Monitoring Fiber Stress During Curing of Single Fiber Glass- and Graphite-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Madhukar, Madhu S.; Kosuri, Ranga P.; Bowles, Kenneth J.

    1994-01-01

    The difference in thermal expansion characteristics of epoxy matrices and graphite fibers can produce significant residual stresses in the fibers during curing of composite materials. Tests on single fiber glass-epoxy and graphite-epoxy composite specimens were conducted in which the glass and graphite fibers were preloaded in tension, and the epoxy matrix was cast around the fibers. The fiber tension was monitored while the matrix was placed around the fiber and subjected to the temperature-time curing cycle. Two mechanisms responsible for producing stress in embedded fibers were identified as matrix thermal expansion and contraction and matrix cure shrinkage. A simple analysis based on the change in fiber tension during the curing cycle was conducted to estimate the produced stresses. Experimental results on single fiber glass- and graphite-epoxy composites show that the fiber was subjected to significant tensile stresses when the temperature was raised from the first to the second dwell period. When initial fiber pretension is about 60 percent of the fiber failure load, these curing-induced stresses can cause tensile fracture of the embedded fiber.

  11. [Influence of retainer design on fixation strength of resin-bonded glass fiber reinforced composite fixed cantilever dentures].

    PubMed

    Petrikas, O A; Voroshilin, Iu G; Petrikas, I V

    2013-01-01

    Fiber-reinforced composite (FRC) fixed partial dentures (FPD) have become an accepted part of the restorative dentist's armamentarium. The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass FRC-FPDs. Four retainer designs were tested: a dual wing, a dual wing + horizontal groove, a dual wing + occlusal rest and a step-box. Of each design on 7 human mandibular molars, FRC-FPDs of a premolar size were produced. The FRC framework was made of resin Revolution (Kerr) impregnated glass fibers (GlasSpan, GlasSpan) and veneered with hybrid resin composite (Charisma, Kulzer). Revolution (Kerr) was used as resin luting cement. FRC-FPDs were loaded to failure in a universal testing machine. T (Student's)-test was used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FPDs (step-box: 172±11 N) compared to wing-retained FPDs (p<0.05) (a dual wing + horizontal groove 222±9 N). The highest fracture strengths were observed with dual wing + occlusal rest FPDs: 250±10 N compared to inlay-retained FPDs (p<0.001) and wing-retained FPDs (p<0.001). FEA showed more favorable stress distributions within the tooth/restoration complex for dual wing retainers+ occlusal rest FPDs. There was stress concentration around connectors and retainers near connectors. A dual-wing retainer with occlusal rest is the optimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FPDs.

  12. The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber-epoxy composite laminate

    NASA Astrophysics Data System (ADS)

    Konka, Hari P.; Wahab, M. A.; Lian, K.

    2012-01-01

    Piezoelectric fiber composite sensors (PFCSs) made from micro-sized lead zirconate titanate (PZT) fibers have many advantages over the traditional bulk PZT sensors for embedded sensor applications. PFCSs as embedded sensors will be an ideal choice to continuously monitor the stress/strain levels and health conditions of composite structures. PFCSs are highly flexible, easily embeddable, have high compatibility with composite structures, and also provides manufacturing flexibility. This research is focused on examining the effects of embedding PFCS sensors (macro-fiber composite (MFC) and piezoelectric fiber composite (PFC)) on the structural integrity of glass-fiber-epoxy composite laminates. The strengths of composite materials with embedded PFCSs and conventional PZT sensors were compared, and the advantages of PFCS sensors over PZTs were demonstrated. Initially a numerical simulation study is performed to understand the local stress/strain field near the embedded sensor region inside a composite specimen. High stress concentration regions were observed near the embedded sensor corner edge. Using PFCS leads to a reduction of 56% in longitudinal stress concentration and 38% in transverse stress concentration, when compared to using the conventional PZTs as embedded sensors. In-plane tensile, in-plane tension-tension fatigue, and short beam strength tests are performed to evaluate the strengths/behavior of the composite specimens containing embedded PFCS. From the tensile test it is observed that embedding PFCS and PZT sensors in the composite structures leads to a reduction in ultimate strength by 3 and 6% respectively. From the fatigue test results it is concluded that both embedded PFCS and PZT sensors do not have a significant effect on the fatigue behavior of the composite specimens. From the short beam strength test it is found that embedding PFCS and PZT sensors leads to a reduction in shear strength by 7 and 15% respectively. Overall the pure PZT sensors

  13. Composition mediated serration dynamics in Zr-based bulk metallic glasses

    SciTech Connect

    Wang, Z.; Qiao, J. W. E-mail: mwchen@wpi-aimr.tohoku.ac.jp; Wang, B. C.; Xu, B. S.; Tian, H.; Sun, B. A.; Chen, M. W. E-mail: mwchen@wpi-aimr.tohoku.ac.jp

    2015-11-16

    The composition mediated serration dynamics in Zr-based bulk metallic glasses (BMGs) is investigated by statistics analyses of the elastic-energy density, and free volumes during shear-banding are beneficial to understand serrated-flow behavior. The amplitude and elastic-energy density display a gradually increasing and then decreasing trend with increasing the content of Zr. It is based on the free-volume theory describing the atomic-level structure of ternary Zr-Cu-Al BMGs. The good agreement between the molecular dynamics simulation and experimental results provides evidence for the variation of free volumes as the elementary mechanism of composition mediated serration dynamics.

  14. Highly conductive electrolyte composites containing glass and ceramic, and method of manufacture

    DOEpatents

    Hash, M.C.; Bloom, I.D.

    1992-10-13

    An electrolyte composite is manufactured by pressurizing a mixture of sodium ion conductive glass and an ionically conductive compound at between 12,000 and 24,000 pounds per square inch to produce a pellet. The resulting pellet is then sintered at relatively lower temperatures (800--1200 C), for example 1000 C, than are typically required (1400 C) when fabricating single constituent ceramic electrolytes. The resultant composite is 100 percent conductive at 250 C with conductivity values of 2.5 to 4[times]10[sup [minus]2](ohm-cm)[sup [minus]1]. The matrix exhibits chemical stability against sodium for 100 hours at 250 to 300 C. 1 figure.

  15. Application of a Fiber Optic Distributed Strain Sensor System to Woven E-Glass Composite

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Lopatin, Craig

    2001-01-01

    A distributed strain sensing system utilizing a series of identically written Bragg gratings along an optical fiber is examined for potential application to Composite Armored Vehicle health monitoring. A vacuum assisted resin transfer molding process was used to fabricate a woven fabric E-glass/composite panel with an embedded fiber optic strain sensor. Test samples machined from the panel were mechanically tested in 4-point bending. Experimental results are presented that show the mechanical strain from foil strain gages comparing well to optical strain from the embedded sensors. Also, it was found that the distributed strain along the sample length was consistent with the loading configuration.

  16. Composition mediated serration dynamics in Zr-based bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Qiao, J. W.; Tian, H.; Sun, B. A.; Wang, B. C.; Xu, B. S.; Chen, M. W.

    2015-11-01

    The composition mediated serration dynamics in Zr-based bulk metallic glasses (BMGs) is investigated by statistics analyses of the elastic-energy density, and free volumes during shear-banding are beneficial to understand serrated-flow behavior. The amplitude and elastic-energy density display a gradually increasing and then decreasing trend with increasing the content of Zr. It is based on the free-volume theory describing the atomic-level structure of ternary Zr-Cu-Al BMGs. The good agreement between the molecular dynamics simulation and experimental results provides evidence for the variation of free volumes as the elementary mechanism of composition mediated serration dynamics.

  17. Database and Interim Glass Property Models for Hanford HLW Glasses

    SciTech Connect

    Hrma, Pavel R.; Piepel, Gregory F.; Vienna, John D.; Cooley, Scott K.; Kim, Dong-Sang; Russell, Renee L.

    2001-07-24

    The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region.

  18. Innovative approach to the design of low-cost Zr-based BMG composites with good glass formation.

    PubMed

    Cheng, Jia-Lin; Chen, Guang; Liu, Chain-Tsuan; Li, Yi

    2013-01-01

    The high manufacturing cost for metallic glasses hampers actual commercial applications of this class of fascinating materials. In this letter, the effect of oxygen impurity on the glass forming ability and tensile properties of Zr-BMG composites were studied. Our results have demonstrated that oxygen was absorbed and concentrated only in the precipitated β-Zr phase, leading that the remainder molten metal retains good glass forming ability. The high oxygen concentration in the β-Zr phase induces a significant solid-solution strengthening effect, this resulting in an enhanced strength of the BMG composites without sacrificing their overall ductility. Based on this alloying strategy, we have successfully developed the low-cost Zr-based BMG composites with excellent tensile properties and good glass forming ability, using the low grade industrial raw materials processed under industrial vacuum systems. This finding is expected to greatly cut down the manufacturing cost and greatly promote the commercial applications of the BMG composites.

  19. Thermal expansion of selected graphite reinforced polyimide-, epoxy-, and glass-matrix composite

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.

    1985-01-01

    The thermal expansion of three epoxy-matrix composites, a polyimide-matrix composite and a borosilicate glass-matrix composite, each reinforced with continuous carbon fibers, has been measured and compared. The expansion of a composite with a rubber toughened epoxy-matrix and P75S carbon fibers was very different from the expansion of two different single phase epoxy-matrix composites with P75S fibers although all three had the same stacking sequence. Reasonable agreement was obtained between measured thermal-expansion data and results from classical laminate theory. The thermal expansion of a material may change markedly as a result of thermal cycling. Microdamage, induced by 250 cycles between -156 C and 121 C in the graphite/polyimide laminate, caused a 53 percent decrease in the coefficient of thermal expansion. The thermal expansion of the graphite/glass laminate was not changed by 100 thermal cycles from -129 C to 38 C; however, a residual strain of about 10 x 10 to the minus 6 power was measured for the laminate tested.

  20. An update on glass fiber dental restorative composites: a systematic review.

    PubMed

    Khan, Abdul Samad; Azam, Maria Tahir; Khan, Maria; Mian, Salman Aziz; Ur Rehman, Ihtesham

    2015-02-01

    Dentistry is a much developed field in the last few decades. New techniques have changed the conventional treatment methods as applications of new dental materials give better outcomes. The current century has suddenly forced on dentistry, a new paradigm regarding expected standards for state-of-the-art patient care. Within the field of restorative dentistry, the incredible advances in dental materials research have led to the current availability of esthetic adhesive restorations. The chemistry and structure of the resins and the nature of the glass fiber reinforced systems in dental composites are reviewed in relation to their influence and properties including mechanical, physical, thermal, biocompatibility, technique sensitivity, mode and rate of failure of restorations on clinical application. It is clear that a deeper understanding of the structure of the polymeric matrix and resin-based dental composite is required. As a result of ongoing research in the area of glass fiber reinforced composites and with the development and advancement of these composites, the future prospects of resin-based composite are encouraging.

  1. Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility

    SciTech Connect

    Vienna, John D.; Kim, Dong-Sang; Muller, Isabelle S.; Piepel, Gregory F.; Kruger, Albert A.

    2014-10-01

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis). If the amount of sulfur exceeds its tolerance level a molten salt will accumulate and upset melter operations and potentially shorten melter useful life. Therefore relatively conservative limits have been placed on sulfur loading in melter feed which in-turn significantly impacts the amount of glass that will be produced, in particular at the Hanford site. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 312 individual glass compositions. This model was shown to well represent the data, accounting for over 80% of the variation in data and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed based on 19 scaled melter tests. The model is appropriate for control of waste glass processing which includes uncertainty quantification. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5 ≈ TiO2 < CaO < P2O5 ≈ ZnO. The components that most decrease sulfur solubility are Cl > Cr2O3 > SiO2 ≈ ZrO2 > Al2O3.

  2. Influence of glass composition on the properties of glass polyalkenoate cements. Part III: influence of fluorite content.

    PubMed

    De Barra, E; Hill, R G

    2000-03-01

    The influence of fluorite content of the glass on the formation and properties of glass polyalkenoate cements was investigated. A series of glass powders based on 1.5SiO2 x 0.5P2O5 x Al2O3 x CaO x XCaF2 were synthesised. The glass transition temperature of the glass fell with increasing fluorite content. Setting and working times of the cement pastes decreased with increasing fluorite content of the glass. Compressive strength and un-notched fracture strength increased with increasing fluorite content of the glass. Fracture toughness and toughness of the cements were relatively insensitive to fluorite content.

  3. Elution characteristics of teicoplanin-loaded biodegradable borate glass/chitosan composite.

    PubMed

    Jia, Wei-Tao; Zhang, Xin; Zhang, Chang-Qing; Liu, Xin; Huang, Wen-Hai; Rahaman, Mohamed N; Day, Delbert E

    2010-03-15

    Local antibiotic delivery system has an advantage over systemic antibiotic for osteomyelitis treatment due to the delivery of high local antibiotic concentration while avoiding potential systemic toxicity. Composite biomaterials with multifunctional roles, consisting of a controlled antibiotic release, a mechanical (load-bearing) function, and the ability to promote bone regeneration, gradually become the most active area of investigation and development of local antibiotic delivery vehicles. In the present study, a composite of borate glass and chitosan (designated BG/C) was developed as teicoplanin delivery vehicle. The in vitro elution kinetics and antibacterial activity of teicoplanin released from BG/C composite as a function of immersion time were determined. Moreover, the pH changes of eluents and the bioactivity of the composite were characterized using scanning electron microscopy coupled with energy-dispersive spectroscopy and X-ray diffraction analysis.

  4. Biodegradable composite scaffolds of bioactive glass/chitosan/carboxymethyl cellulose for hemostatic and bone regeneration.

    PubMed

    Chen, Chen; Li, Hong; Pan, Jianfeng; Yan, Zuoqin; Yao, Zhenjun; Fan, Wenshuai; Guo, Changan

    2015-02-01

    Hemostasis in orthopedic osteotomy or bone cutting requires different methods and materials. The bleeding of bone marrow can be mostly stopped by bone wax. However, the wax cannot be absorbed, which leads to artificial prosthesis loosening, foreign matter reaction, and infection. Here, a bioactive glass/chitosan/carboxymethyl cellulose (BG/CS/CMC) composite scaffold was designed to replace traditional wax. WST-1 assay indicated the BG/CS/CMC composite resulted in excellent biocompatibility with no cytotoxicity. In vivo osteogenesis assessment revealed that the BG/CS/CMC composite played a dominant role in bone regeneration and hemostasis. The BG/CS/CMC composite had the same hemostasis effect as bone wax; in addition its biodegradation also led to the functional reconstruction of bone defects. Thus, BG/CS/CMC scaffolds can serve as a potential material for bone repair and hemostasis in critical-sized bone defects.

  5. Fracture Resistance of Endodontically-treated Maxillary Premolars Restored with Composite Resin along with Glass Fiber Insertion in Different Positions

    PubMed Central

    Jafari Navimipour, Elmira; Ebrahimi Chaharom, Mohammad Esmaeel; Alizadeh Oskoee, Parnian; Mohammadi, Narmin; Bahari, Mahmoud; Firouzmandi, Maryam

    2012-01-01

    Background and aims The aim was to evaluate the effect of three methods of fiber insertion on fracture resistance of root-filled maxillary premolars in vitro. Materials and methods Sixty extracted human maxillary premolars received endodontic treatment followed by preparation of mesioocclusodistal (MOD) cavities, with gingival cavosurface margin 1.5 mm coronal to the cementoenamel junction (CEJ). Subsequently, the samples were randomly divided into four groups: no-fiber group; occlusal fiber group (fiber was placed in the occlusal third); circumferential fiber group (fiber was placed circumferentially in the cervical third); and dual-fiber group (occlusal and circumferential fibers). Subsequent to restoring with composite resin and thermocycling, a compressive force was applied until fracture. Data was analyzed using one-way ANOVA and Tukey test at significance levels of P < 0.05 and P < 0.02, respectively. Results Fiber placement significantly increased fracture resistance. Fracture resistance in the dual-fiber group was significantly higher than that in the circumferential fiber group (P < 0.007); however, there were no significant differences between the dual-fiber and occlusal fiber groups (P = 0.706). The highest favorable fracture rate was observed in the circumferential fiber group (60%). Conclusion Composite resin restoration along with glass fiber in the occlusal and gingival thirds can be an acceptable treatment option for restoring root-filled upper premolars. PMID:23277858

  6. The effects of glass ionomer and flowable composite liners on the fracture resistance of open-sandwich class II restorations.

    PubMed

    Güray Efes, Begüm; Yaman, Batu Can; Gümüştaş, Burak; Tıryakı, Murat

    2013-01-01

    This in vitro study aimed to investigate the effects of glass-ionomer and flowable composite liners on the fracture resistance of Class II amalgam and composite restorations. Group 1 cavities were restored with amalgam and Group 4 cavities with nanofill composite after the application of a dentin-bonding agent. For the remaining groups, light-cured-glass-ionomer liner was used in a gingival floor proximal box (Groups 2, 5) or flowable composite was used as a liner (Groups 3, 6), the remainder of the cavity was restored with amalgam (Groups 2, 3) or composite (Groups 5, 6). The restorations were loaded in compression to failure. The data was analyzed using Tukey's multiple comparison test. The fracture resistance was significantly higher (p<0.05) in Group 3 than in all other groups, except Group 2 (p>0.05). Flowable composite, glass-ionomer liners increased the fracture resistance of open-sandwich Class II amalgam restorations.

  7. Toward understanding the effect of low-activity waste glass composition on sulfur solubility

    DOE PAGES

    Vienna, John D.; Kim, Dong -Sang; Muller, Isabelle S.; ...

    2014-07-24

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which inmore » turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ≈ P2O5 > Na2O ≈ B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ≈ SnO2 > Others ≈ SiO2. As a result, the order of component effects is similar to previous literature data, in most cases.« less

  8. Toward understanding the effect of low-activity waste glass composition on sulfur solubility

    SciTech Connect

    Vienna, John D.; Kim, Dong -Sang; Muller, Isabelle S.; Piepel, Greg F.; Kruger, Albert A.; Jantzen, C.

    2014-07-24

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, which in turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5> CaO ≈ P2O5 > Na2O ≈ B2O3 > K2O. The components that most decrease sulfur solubility are Cl > Cr2O3 > Al2O3 > ZrO2 ≈ SnO2 > Others ≈ SiO2. As a result, the order of component effects is similar to previous literature data, in most cases.

  9. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  10. Theoretical study on the composition location of the best glass formers in Cu-Zr amorphous alloys.

    PubMed

    Wang, Da; Zhao, Shi-Jin; Liu, Li-Min

    2015-01-29

    This study combines the molecular dynamics (MD) simulations and first-principles approach to explain the experimental observation that the best glass formers of Cu-Zr bulk metallic glasses (BMGs) have the compositions Cu50Zr50 and Cu64Zr36. These two best glass formers are first calculated to be most abundantly composed of Cu6Zr7 and Cu8Zr5 icosahedral clusters when compared in the compositional range of CuxZr100-x (45 ≤ x ≤ 70), and then these two icosahedral clusters are calculated to have the lowest formation energy among the icosahedral clusters CuxZr13-x (3 ≤ x ≤ 10), as well as possessing some characteristics in electronic structure and chemical hardness. Through understanding the properties of specific icosahedral clusters in metallic glasses, the structural and energetic contribution to the glass-forming ability are systematically discussed.

  11. Characterization of fabricated cobalt-based alloy/nano bioactive glass composites.

    PubMed

    Bafandeh, Mohammad Reza; Gharahkhani, Raziyeh; Fathi, Mohammad Hossein

    2016-12-01

    In this work, cobalt-based alloy/nano bioactive glass (NBG) composites with 10, 15 and 20wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4weeks was studied. Scanning electron microscopy images of two- step sintered composites revealed relatively dense microstructure. The results showed that density of composite samples decreased with increase in NBG amount. The microstructure analysis as well as energy dispersive X-ray analysis (EDX) revealed that small amount of calcium phosphate phases precipitates on the surface of composite samples after 1week immersion in SBF. After 2weeks immersion, considerable amounts of cauliflower-like shaped precipitations were seen on the surface of the composites. Based on EDX analysis, these precipitations were composed mainly from Ca, P and Si. The observed bands in the Fourier transform infrared spectroscopy of immersed composites samples for 4weeks in SBF, were characteristic bands of hydroxyapatite. Therefore it is possible to form hydroxyapatite layer on the surface of composite samples during immersion in SBF. The results indicated that prepared composites unlike cobalt-based alloy are bioactive, promising their possibility for implant applications.

  12. Effect of food deprivation and maintenance diet composition on fat preference and acceptance in rats.

    PubMed

    Warwick, Z S; Synowski, S J

    High-fat diets typically elicit greater kcal intake and/or weight gain than low-fat diets. Palatability, caloric density, and the unique postingestive effects of fat have each been shown to contribute to high-fat diet hyperphagia. Because long-term intake reflects the sum of many individual eating episodes (meals), it is important to investigate factors that may modulate fat intake at a meal. The present studies used high-fat (hi-fat) and high-carbohydrate (hi-carb) liquid diets (both 2.3 kcal/mL) to assess the effect of hunger level (0 versus 24-h food deprivation) and fat content of the maintenance diet (12 versus 48%) on fat preference (when a choice among foods is offered in a two-bottle test), and acceptance (only one food offered) in male rats. Preference for hi-fat relative to hi-carb (two-bottle test) was enhanced by 24-h food deprivation, and by a high-fat maintenance diet. In contrast, neither deprivation nor maintenance diet composition influenced relative meal size (one-bottle test) of hi-fat and hi-carb: irrespective of test conditions, meal size of hi-fat was bigger than meal size of hi-carb.

  13. PNL vitrification technology development project glass formulation strategy for LLW vitrification

    SciTech Connect

    Kim, D.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01

    This Glass Formulation Strategy describes development approaches to optimize glass compositions for Hanford`s low-level waste vitrification between now and the projected low-level waste facility start-up in 2005. The objectives of the glass formulation task are to develop optimized glass compositions with satisfactory long-term durability, acceptable processing characteristics, adequate flexibility to handle waste variations, maximize waste loading to practical limits, and to develop methodology to respond to further waste variations.

  14. Low loss Co2Z (Ba3Co2Fe24O41)-glass composite for gigahertz antenna application

    NASA Astrophysics Data System (ADS)

    Lee, Jaejin; Hong, Yang-Ki; Bae, Seok; Jalli, Jeevan; Abo, Gavin S.; Park, Jihoon; Seong, Won-Mo; Park, Sang-Hoon; Ahn, Won-Ki

    2011-04-01

    Low magnetic and dielectric loss Co2Z (Ba3Co2Fe24O41)-glass composite in the frequency range of 1-3 GHz is reported. Co2Z-glass composite was prepared by firing a mixture of 40 h shake-milled Co2Z hexaferrite powder and borosilicate glass at 950 °C for 1 h. The real part of permeability decreased slightly from 2.29 to 1.96 at 2.4 GHz as the glass content increased from 0 to 4 wt. %, but magnetic loss decreased less than 0.02. On the other hand, the real part of permittivity was 7.29 at 0 wt. % and 7.28 at 4 wt. % glass and dielectric loss was less than 0.01 at 2.4 GHz. The 3D peak gain of Co2Z-glass composite chip antenna was measured to be 3.32 dBi at 2.35 GHz. These results imply that the Co2Z-glass composite is an underpinning magnetodielectric material for gigahertz antenna applications.

  15. Electrical and morphological properties of conducting layers formed from the silver-glass composite conducting powders prepared by spray pyrolysis.

    PubMed

    Jung, D S; Koo, H Y; Kang, Y C

    2010-03-01

    Ag-glass composite powders with various glass contents and excellent conducting properties were prepared by spray pyrolysis. Irrespective of the glass content, all the prepared powders were found to comprise spherical particles with nonaggregation characteristics. The crystal structure of the powder particles resembled that of pure Ag particles, irrespective of the glass content. Conducting layers formed from pure Ag did not melt even when sintered at 400 degrees C. On the other hand, conducting layers formed from composite powders containing 3 and 5 wt% glass melted when sintered at 400 degrees C. The optimum glass content of the composite powders was 3 wt% at sintering temperatures of 400 and 450 degrees C. However, the optimum glass content decreased to 1 wt% when the sintering temperature was increased to 550 degrees C. The lowest specific resistances of the conducting layers formed from the composite powders were 5.3 and 2.3 microohms-cm at sintering temperatures of 400 and 550 degrees C, respectively.

  16. An improved tensile deformation model for in-situ dendrite/metallic glass matrix composites

    PubMed Central

    Sun, X. H.; Qiao, J. W.; Jiao, Z. M.; Wang, Z. H.; Yang, H. J.; Xu, B. S.

    2015-01-01

    With regard to previous tensile deformation models simulating the tensile behavior of in-situ dendrite-reinforced metallic glass matrix composites (MGMCs) [Qiao et al., Acta Mater. 59 (2011) 4126; Sci. Rep. 3 (2013) 2816], some parameters, such as yielding strength of the dendrites and glass matrix, and the strain-hardening exponent of the dendrites, are estimated based on literatures. Here, Ti48Zr18V12Cu5Be17 MGMCs are investigated in order to improve the tensile deformation model and reveal the tensile deformation mechanisms. The tensile behavior of dendrites is obtained experimentally combining nano-indentation measurements and finite-element-method analysis for the first time, and those of the glass matrix and composites are obtained by tension. Besides, the tensile behavior of the MGMCs is divided into four stages: (1) elastic-elastic, (2) elastic-plastic, (3) plastic-plastic (work-hardening), and (4) plastic-plastic (softening). The respective constitutive relationships at different deformation stages are quantified. The calculated results coincide well with the experimental results. Thus, the improved model can be applied to clarify and predict the tensile behavior of the MGMCs. PMID:26354724

  17. Mechanical and thermal characterization of a ceramic/glass composite seal for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Dev, Bodhayan; Walter, Mark E.; Arkenberg, Gene B.; Swartz, Scott L.

    2014-01-01

    Solid oxide fuel cells (SOFCs) require seals that can function in harsh, elevated temperature environments. Comprehensive characterization and understanding of seals is needed for commercially viable SOFCs. The present research focuses on a novel ceramic/glass composite seal that is produced by roller compaction or tape casting of glass and ceramic powders and an organic binder. Upon heat treatment, micro-voids and surface anomalies are formed. Increased heating and cooling rates during the heat treatment resulted in more and larger voids. The first goal of the current research is to suggest an appropriate heating and cooling rate to minimize the formation of microstructural defects. After identifying an appropriate cure cycle, seals were thermally cycled and then characterized with laser dilatometry, X-ray diffraction, and sonic resonance. From these experiments the crystalline phases, thermal expansion, and elastic properties were determined. Subsequently compression testing with an acoustic emission (AE) sensor and post-test microstructural analysis were used to identify the formation of damage. By fully understanding the characteristics of this ceramic/glass composite seal, next generation seals can be fabricated for improved performance.

  18. An improved tensile deformation model for in-situ dendrite/metallic glass matrix composites.

    PubMed

    Sun, X H; Qiao, J W; Jiao, Z M; Wang, Z H; Yang, H J; Xu, B S

    2015-09-10

    With regard to previous tensile deformation models simulating the tensile behavior of in-situ dendrite-reinforced metallic glass matrix composites (MGMCs) [Qiao et al., Acta Mater. 59 (2011) 4126; Sci. Rep. 3 (2013) 2816], some parameters, such as yielding strength of the dendrites and glass matrix, and the strain-hardening exponent of the dendrites, are estimated based on literatures. Here, Ti48Zr18V12Cu5Be17 MGMCs are investigated in order to improve the tensile deformation model and reveal the tensile deformation mechanisms. The tensile behavior of dendrites is obtained experimentally combining nano-indentation measurements and finite-element-method analysis for the first time, and those of the glass matrix and composites are obtained by tension. Besides, the tensile behavior of the MGMCs is divided into four stages: (1) elastic-elastic, (2) elastic-plastic, (3) plastic-plastic (work-hardening), and (4) plastic-plastic (softening). The respective constitutive relationships at different deformation stages are quantified. The calculated results coincide well with the experimental results. Thus, the improved model can be applied to clarify and predict the tensile behavior of the MGMCs.

  19. Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes.

    PubMed

    Guner, Selen N Gurbuz; Dericioglu, Arcan F

    2016-12-05

    Nacre-mimetic epoxy matrix composites reinforced with readily available micron-sized high aspect ratio C-glass flakes were fabricated by a relatively simple, single-step, scalable, time, cost and man-power effective processing strategy: hot-press assisted slip casting (HASC). HASC enables the fabrication of preferentially oriented two-dimensional inorganic reinforcement-polymer matrix bulk lamellar composites with a micro-scale structure resembling the brick-and-mortar architecture of nacre. By applying the micro-scale design guideline found in nacre and optimizing the relative volume fractions of the reinforcement and the matrix as well as by anchoring the brick-and-mortar architecture, and tailoring the interface between reinforcements and the matrix via silane coupling agents, strong, stiff and tough bio-inspired nacre-mimetic bulk composites were fabricated. As a result of high shear stress transfer lengths and effective stress transfer at the interface achieved through surface functionalization of the reinforcements, fabricated bulk composites exhibited enhanced mechanical performance as compared to neat epoxy. Furthermore, governed flake pull-out mode along with a highly torturous crack path, which resulted from extensive deflection and meandering of the advancing crack around well-aligned high aspect ratio C-glass flakes, have led to high work-of-fracture values similar to nacre.

  20. Thermal Insulation Properties Research of the Composite Material "Water Glass - Graphite Microparticles"

    NASA Astrophysics Data System (ADS)

    Gostev, V. A.; Pitukhin, E. A.; Ustinov, A. S.; Shelestov, A. S.

    2016-04-01

    Research results for the composite material (CM) "water glass - graphite microparticles" with high thermal stability and thermal insulation properties are given. A composition is proposed consisting of graphite (42 % by weight), water glass Na2O(SiO2)n (50% by weight) and the hardener - sodium silicofluoride Na2SiF6 (8% by weight). Processing technology of such composition is suggested. Experimental samples of the CM with filler particles (graphite) of a few microns in size were obtained. This is confirmed by a study of samples using X-ray diffraction analysis and electron microscopy. The qualitative and quantitative phase analysis of the CM structure was done. Values of limit load causing destruction of the CM were identified. The character of the rupture surface was detected. Numerical values of the specific heat and thermal conductivity were defined. Dependence of the specific heat capacity and thermal conductivity on temperature during monotonic heating was obtained experimentally. Studies have confirmed the increased thermal insulation properties of the proposed composition. The CM with such properties can be recommended as a coating designed to reduce heat losses and resistant to high temperatures. Due to accessibility and low cost of its components the proposed material can be produced on an industrial scale.

  1. 40Ar/39Ar ages of lunar impact glasses: Relationships among Ar diffusivity, chemical composition, shape, and size

    NASA Astrophysics Data System (ADS)

    Zellner, N. E. B.; Delano, J. W.

    2015-07-01

    Lunar impact glasses, which are quenched melts produced during cratering events on the Moon, have the potential to provide not only compositional information about both the local and regional geology of the Moon but also information about the impact flux over time. We present in this paper the results of 73 new 40Ar/39Ar analyses of well-characterized, inclusion-free lunar impact glasses and demonstrate that size, shape, chemical composition, fraction of radiogenic 40Ar retained, and cosmic ray exposure (CRE) ages are important for 40Ar/39Ar investigations of these samples. Specifically, analyses of lunar impact glasses from the Apollo 14, 16, and 17 landing sites indicate that retention of radiogenic 40Ar is a strong function of post-formation thermal history in the lunar regolith, size, and chemical composition. This is because the Ar diffusion coefficient (at a constant temperature) is estimated to decrease by ∼3-4 orders of magnitude with an increasing fraction of non-bridging oxygens, X(NBO), over the compositional range of most lunar impact glasses with compositions from feldspathic to basaltic. Based on these relationships, lunar impact glasses with compositions and sizes sufficient to have retained ∼90% of their radiogenic Ar during 750 Ma of cosmic ray exposure at time-integrated temperatures of up to 290 K have been identified and are likely to have yielded reliable 40Ar/39Ar ages of formation. Additionally, ∼50% of the identified impact glass spheres have formation ages of ⩽500 Ma, while ∼75% of the identified lunar impact glass shards and spheres have ages of formation ⩽2000 Ma. Higher thermal stresses in lunar impact glasses quenched from hyperliquidus temperatures are considered the likely cause of poor survival of impact glass spheres, as well as the decreasing frequency of lunar impact glasses in general with increasing age. The observed age-frequency distribution of lunar impact glasses may reflect two processes: (i) diminished

  2. Abrasive Wear Performance of Aluminium Modified Epoxy-Glass Fiber Composites

    NASA Astrophysics Data System (ADS)

    Kamble, Vikram G.; Mishra, Punyapriya; Al Dabbas, Hassan A.; Panda, H. S.; Fernandez, Johnathan Bruce

    2015-07-01

    For a long time, Aluminum filled epoxies molds have been used in rapid tooling process. These molds are very economical when applied in manufacturing of low volume of plastic parts. To improve the thermal conductivity of the material, the metallic filler material is added to it and the glass fiber improves the wear resistance of the material. These two important parameters establish the life of composites. The present work reports on abrasive wear behavior of Aluminum modified epoxy and glass fiber composite with 5 wt.% and 10 wt.% of aluminum particles. Through pin on disc wear testing machine, we studied the wear behaviors of composites, and all these samples were fabricated by using hand layup process. Epoxy resin was used as matrix material which was reinforced with Glass fiber and Aluminum as filler. The composite with 5 wt.% and 10 wt.% of Al was cast with dimensions 100 × 100 × 6 mm. The specimens were machined to a size of 6 × 6 × 4 mm for abrasive testing. Abrasive tests were carried out for different grit paper sizes, i.e., 150, 320, 600 at different sliding distance, i.e., 20, 40, 60 m at different loads of 5, 10 and 15 N and at constant speed. The weight loss due to wear was calculated along with coefficient of friction. Hardness was found using Rockwell hardness machine. The SEM morphology of the worn out surface wear was analyzed to understand the wear mechanism. Results showed that the addition of Aluminum particles was beneficial for low abrasive conditions.

  3. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    PubMed

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced.

  4. In Vitro Investigation of Bioactive Glass-Ceramic Composites Based on Biogenic Hydroxyapatite or Synthetic Calcium Phosphates.

    PubMed

    Pinchuk, Nataliia; Parkhomey, Oleksandr; Sych, Olena

    2017-12-01

    This in vitro investigation of the behavior of two types of calcium phosphate glass ceramics on the basis of phosphates of biogenic or synthetic origin prepared from initial mixtures with different particle size has revealed that some different factors affect the behavior, namely the phase composition of composite, fraction of open porosity, and average diameter of pore channels. It was established that the solubility of the composites on the basis of synthetic calcium phosphates and glass after 2 and 7 days contact with saline composites is the highest among the materials under study. First of all, this fact is related to the peculiarities of their phase composition, high fraction of open porosity, and high permeability. As for biogenic hydroxyapatite/glass materials, their solubility is several times lower in spite of close total porosity. The particle size of initial mixture practically does not affect the material solubility; the latter is only slightly lower for smaller particles.

  5. In Vitro Investigation of Bioactive Glass-Ceramic Composites Based on Biogenic Hydroxyapatite or Synthetic Calcium Phosphates

    NASA Astrophysics Data System (ADS)

    Pinchuk, Nataliia; Parkhomey, Oleksandr; Sych, Olena

    2017-02-01

    This in vitro investigation of the behavior of two types of calcium phosphate glass ceramics on the basis of phosphates of biogenic or synthetic origin prepared from initial mixtures with different particle size has revealed that some different factors affect the behavior, namely the phase composition of composite, fraction of open porosity, and average diameter of pore channels. It was established that the solubility of the composites on the basis of synthetic calcium phosphates and glass after 2 and 7 days contact with saline composites is the highest among the materials under study. First of all, this fact is related to the peculiarities of their phase composition, high fraction of open porosity, and high permeability. As for biogenic hydroxyapatite/glass materials, their solubility is several times lower in spite of close total porosity. The particle size of initial mixture practically does not affect the material solubility; the latter is only slightly lower for smaller particles.

  6. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites.

    PubMed

    Braga, R A; Magalhaes, P A A

    2015-11-01

    This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Epoxy resin, jute and glass fibers were laminated in three weight ratios (69/31/0, 68/25/7 and 64/18/19) respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in epoxy, increases the density, the impact energy, the tensile strength and the flexural strength, but decreases the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope.

  7. Microyielding of core-shell crystal dendrites in a bulk-metallic-glass matrix composite

    SciTech Connect

    Huang, E. -Wen; Qiao, Junwei; Winiarski, Bartlomiej; Lee, Wen -Jay; Scheel, Mario; Chuang, Chih -Pin; Liaw, Peter K.; Lo, Yu -Chieh; Zhang, Yong; Di Michiel, Marco

    2014-03-18

    In-situ synchrotron x-ray experiments have been used to follow the evolution of the diffraction peaks for crystalline dendrites embedded in a bulk metallic glass matrix subjected to a compressive loading-unloading cycle. We observe irreversible diffraction-peak splitting even though the load does not go beyond half of the bulk yield strength. The chemical analysis coupled with the transmission electron microscopy mapping suggests that the observed peak splitting originates from the chemical heterogeneity between the core (major peak) and the stiffer shell (minor peak) of the dendrites. A molecular dynamics model has been developed to compare the hkl-dependent microyielding of the bulk metallic-glass matrix composite. As a result, the complementary diffraction measurements and the simulation results suggest that the interfaces between the amorphous matrix and the (211) crystalline planes relax under prolonged load that causes a delay in the reload curve which ultimately catches up with the original path.

  8. Preparation and Characterization of Low-Dielectric Glass Composite with Aluminum Borate

    NASA Astrophysics Data System (ADS)

    Jean, Jau-Ho; Hwang, Shiang-Po

    1994-10-01

    The effect of aluminum borate ( Al18B4O33) on crystallization and thermal expansion of Pyrex borosilicate glass has been studied. X-ray diffraction (XRD) results show that with 40 vol% aluminum borate, the precipitation of cristobalite in the Pyrex borosilicate glass is completely inhibited. This result is further evidenced by the linear thermal expansion measurement in which, in contrast to the system without aluminum borate, the thermal expansion coefficient remains unchanged with sintering time and is close to that of silicon, 3×10-6 K-1. Moreover, the composite with 40 vol% aluminum borate has a dielectric constant of 5.2 and a dielectric loss of 0.8% at 1 MHz.

  9. Antibacterial glass-composite coatings for protection of special purpose steel panels

    NASA Astrophysics Data System (ADS)

    Savvova, O.; Bragina, L.; Babich, E.

    2011-12-01

    It has been established that the most informative and universal method for determination of biocide properties of vitreous coatings is qualitative method that takes into account the growth level of biotest microorganisms inoculated into liquid nutrient media. It is shown, that biocidity of glass-composite coatings on the basis of glasses of Na2O - K2O - CaO - ZrO2 - TiO2 - Al2O3 - P2O5 - B2O3 - SiO2 system is determined by the presence of calcium phosphates in them and depends on the type of bactericide filler. The most effective ones by the action on Pseudomonas aeruginosa bacterium and Aspergillus niger and Candida albicans fungi are zinc titanate and Ag+, to Escherichia coli- only zinc phosphate.

  10. In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites.

    PubMed

    Cui, Xu; Gu, Yifei; Li, Le; Wang, Hui; Xie, Zhongping; Luo, Shihua; Zhou, Nai; Huang, Wenhai; Rahaman, Mohamed N

    2013-10-01

    Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection.

  11. Effect of long-term in vitro testing on the properties of bioactive glass-polysulfone composites.

    PubMed

    Oréfice, Rodrigo; West, Jon; Latorre, Guy; Hench, Larry; Brennan, Anthony

    2010-03-08

    The combination of bioactive ceramics and polymers can allow the preparation of composites with tailorable mechanical properties and bioactive behavior. In these composites, bioactive ceramics can act as a source of both reinforcement and bioactivity, while the polymer matrix can add toughness and processability to the material. On the other hand, the effect of using a highly dimensional unstable phase as a reinforcing agent on the long-term properties of the composite is a major concern regarding the lifetime of possible applications. In this work, a bioactive glass-polysulfone particulate composite was prepared by hot-pressing at 215 degrees C a mixture of polysulfone and different concentrations of bioactive glass particles (Bioglass 45S5, particle size range: 125-106 microm) to yield composites having 20 and 40 vol % of bioactive glass particles. The obtained composites were exposed to a simulated body fluid at 37 degrees C for different periods of time ranging from 1 h to 60 days. After the test, the mechanical properties of the composites were investigated by a four-point bending test, while DMS (dynamic mechanical spectroscopy) was used to identify the effect of water on the structure and behavior of the composite. The interface between glass particles and the polymer was also investigated by SEM/EDX and diffuse reflection infrared spectroscopy. The results showed that a decay in the mechanical properties of the composites within the first 20 h of test can occur. Otherwise, after this initial decay, no more pronounced reduction in properties could be noted. The analyses of the fracture surface of composites tested in vitro indicated the hydration of the surface of the particles. Therefore, it was concluded that water migration through the interface of the composite causes surface dissolution of glass particles and formation of voids, which were responsible for the observed decay in mechanical properties. Composites with modified interfaces revealed less

  12. In vitro blood and fibroblast responses to BisGMA-TEGDMA/bioactive glass composite implants.

    PubMed

    Abdulmajeed, Aous A; Kokkari, Anne K; Käpylä, Jarmo; Massera, Jonathan; Hupa, Leena; Vallittu, Pekka K; Närhi, Timo O

    2014-01-01

    This in vitro study was designed to evaluate both blood and human gingival fibroblast responses to bisphenol A-glycidyl methacrylate-triethyleneglycol dimethacrylate (BisGMA-TEGDMA)/bioactive glass (BAG) composite, aimed to be used as composite implant abutment surface modifier. Three different types of substrates were investigated: (a) plain polymer (BisGMA 50 wt%-TEGDMA 50 wt%), (b) BAG-composite (50 wt% polymer + 50 wt% fraction of BAG-particles, <50 μm), and (c) plain BAG plates (100 wt% BAG). The blood response, including the blood-clotting ability and platelet adhesion morphology were evaluated. Human gingival fibroblasts were plated and cultured on the experimental substrates for up to 10 days, then the cell proliferation rate was assessed using AlamarBlue assay™. The BAG-composite and plain BAG substrates had a shorter clotting time than plain polymer substrates. Platelet activation and aggregation were most extensive, qualitatively, on BAG-composite. Analysis of the normalized cell proliferation rate on the different surfaces showed some variations throughout the experiment, however, by day 10 the BAG-composite substrate showed the highest (P < 0.001) cell proliferation rate. In conclusion, the presence of exposed BAG-particles enhances fibroblast and blood responses on composite surfaces in vitro.

  13. Preparation and catalytic application of Ag/polydopamine composite on surface of glass substrates

    NASA Astrophysics Data System (ADS)

    Yu, Jianying; Sun, Chengyi; Lu, Shixiang; Xu, Wenguo; Liu, Zhehan; He, Dongsheng

    2017-01-01

    In this work, Ag/polydopamine composite on glass substrates (Ag/PDA@slides) were formed by using polydopamine (PDA) as both reducing and stabilizing agent to reduce silver salts to silver nanoparticles (NPs) and adhesive them to slides. The morphology and chemical composition of the composite material was characterized by scanning electron microscopy (SEM) and X-ray diffraction pattern (XRD). The prepared Ag/PDA@slide was a highly active catalyst for the reduction of 4-nitrophenol (4-NP) in the presence of sodium borohydride (NaBH4) aqueous solution at room temperature. The reduction rate of the optimal catalyst was as fast as 10 s and it was stable up to 6 cycles without a significant loss of its catalytic activity. By measuring the UV-Vis absorption bonds of Ag/PDA@slides, it proved that condition of the strongest surface plasmon resonance of Ag/PDA@slides is the optimal condition of catalytic reduction of 4-NP.

  14. Fatigue Behaviour of Glass Fibre Reinforced Composites for Ocean Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Boisseau, A.; Davies, P.; Thiebaud, F.

    2013-04-01

    The development of ocean energy conversion systems places more severe requirements on materials than similar land-based structures such as wind turbines. Intervention and maintenance at sea are very costly, so for ocean energy supply to become economically viable long term durability must be guaranteed. Cyclic loading is a common feature of most energy conversion devices and composites are widely used, but few data are available concerning the fatigue behaviour in sea water of composite materials. This paper presents the results from an experimental study to fill this gap. The fatigue behavior of composite materials reinforced with different types of glass fibre is characterized in air and in sea water; the influence of testing in sea water rather than air is shown to be small. However, sea water ageing is shown to reduce the fatigue lifetime significantly and strongly depends on matrix formulation.

  15. Effect of Sodium bicarbonate on Fire behaviour of tilled E- Glass Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Girish, S.; Devendra, K.; Bharath, K. N.

    2016-09-01

    Composites such as fibre reinforced polymers give us the good mechanical properties, but their fire behaviour is not appreciable and needs to be improved. In this work, E- glass fiber is used as a reinforcement material and Epoxy resin is used as a matrix with particulate sodium bi-carbonate (NaHCO3) is used as additive. The hand lay-up technique is adopted for the development of composites by varying percentage of additive. All the tests were conducted according to ASTM standards to study the Fire behaviour of the developed composites. The different fire properties like Ignition time, mass loss rate and flame propagation rate of Fiber Reinforced Polymers (FRP) with NaHCO3 are compared with neat FRPs. It is found that the ignition time increases as the percentage of additive is increased.

  16. Comparison of the effect of topical fluorides on the commercially available conventional glass ionomers, resin modified glass ionomers and polyacid modified composite resins--an in vitro study.

    PubMed

    Setty, J V; Singh, S; Subba Reddy, V V

    2003-06-01

    This study was undertaken to assess the effect of a single application of three professionally applied topical fluoride agents (Sodium fluoride 2%, Stannous fluoride 8% and APF 1.23%) on the surfaces of six modern esthetic restorative materials used in pediatric dentistry viz., two conventional glass ionomers (Fuji II and Shofu-restorative), two resin modified glass ionomers (Vitremer, with and without glaze, and Photac-fil Quick) and two Polyacid modified composite resins (Luxat and Hytac Aplitip). Mean surface roughness and surface micro hardness (SMH) measurements were the parameters employed for comparison. Results showed that APF gel applications significantly increased the surface roughness measurements and decreased SMH of all tested materials, which was pronounced in conventional glass ionomers when compared with resin modified glass ionomers and polyacid modified composite resins. NaF and SnF2 produced a statistically significant increase in the surface roughness of conventional glass ionomers without any significant change in surface roughness and SMH on rest of the materials tested, except for NaF on SMH values of Fuji II, which was statistically significant.

  17. Mg-Zn based composites reinforced with bioactive glass (45S5) fabricated via powder metallurgy

    NASA Astrophysics Data System (ADS)

    Ab llah, N.; Jamaludin, S. B.; Daud, Z. C.; Zaludin, M. A. F.

    2016-07-01

    Metallic implants are shifting from bio-inert to bioactive and biodegradable materials. These changes are made in order to improve the stress shielding effect and bio-compatibility and also avoid the second surgery procedure. Second surgery procedure is required if the patient experienced infection and implant loosening. An implant is predicted to be well for 15 to 20 years inside patient body. Currently, magnesium alloys are found to be the new biomaterials because of their properties close to the human bones and also able to degrade in the human body. In this work, magnesium-zinc based composites reinforced with different content (5, 15, 20 wt. %) of bioactive glass (45S5) were fabricated through powder metallurgy technique. The composites were sintered at 450˚C. Density and porosity of the composites were determined using the gas pycnometer. Microstructure of the composites was observed using an optical microscope. In-vitro bioactivity behavior was evaluated in the simulated body fluid (SBF) for 7 days. Fourier Transform Infrared (FTIR) was used to characterize the apatite forming on the samples surface. The microstructure of the composite showed that the pore segregated near the grain boundaries and bioglass clustering was observed with increasing content of bioglass. The true density of the composites increased with the increasing content of bioglass and the highest value of porosity was indicated by the Mg-Zn reinforced with 20 wt.% of bioglass. The addition of bio-glass to the Mg-Zn has also induced the formation of apatite layer after soaking in SBF solution.

  18. Isothermal and hygrothermal agings of hybrid glass fiber/carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Barjasteh, Ehsan

    New applications of fiber-reinforced polymer composites (FRPCs) are arising in non-traditional sectors of industry, such as civil infrastructure, automotive, and power distribution. For example, composites are being used in place of steel to support high-voltage overhead conductors. In this application, conductive strands of aluminum are wrapped around a solid composite rod comprised of unidirectional carbon and glass fibers in an epoxy matrix, which is commercially called ACCC conductor. Composite-core conductors such as these are expected to eventually replace conventional steel-reinforced conductors because of the reduced sag at high temperatures, lower weight, higher ampacity, and reduced line losses. Despite the considerable advantages in mechanical performance, long-term durability of composite conductors is a major concern, as overhead conductors are expected to retain properties (with minimal maintenance) over a service life that spans multiple decades. These concerns stem from the uncertain effects of long-term environmental exposure, which includes temperature, moisture, radiation, and aggressive chemicals, all of which can be exacerbated by cyclic loads. In general, the mechanical and physical properties of polymer composites are adversely affected by such environmental factors. Consequently, the ability to forecast changes in material properties as a function of environmental exposure, particularly bulk mechanical properties, which are affected by the integrity of fiber-matrix interfaces, is required to design for extended service lives. Polymer composites are susceptible to oxidative degradation at high temperatures approaching but not quite reaching the glass transition temperature ( Tg). Although the fibers are stable at such temperatures, the matrix and especially the fiber-matrix interface can undergo degradation that affects the physical and mechanical properties of the structure over time. Therefore, as a first step, the thermal aging of an

  19. Modifying glass fiber surface with grafting acrylamide by UV-grafting copolymerization for preparation of glass fiber reinforced PVDF composite membrane.

    PubMed

    Luo, Nan; Zhong, Hui; Yang, Min; Yuan, Xing; Fan, Yaobo

    2016-01-01

    Experimental design and response surface methodology (RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide (AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride) (PVDF) composite membrane (GFRP-CM). The factors considered for experimental design were the UV (ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0-0.25 wt.%, solvent of N-Dimethylacetamide (DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy (FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and energy dispersive X-ray spectroscopy (EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM.

  20. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites.

    PubMed

    Misra, Superb K; Mohn, Dirk; Brunner, Tobias J; Stark, Wendelin J; Philip, Sheryl E; Roy, Ipsita; Salih, Vehid; Knowles, Jonathan C; Boccaccini, Aldo R

    2008-04-01

    This study compares the effects of introducing micro (m-BG) and nanoscale (n-BG) bioactive glass particles on the various properties (thermal, mechanical and microstructural) of poly(3hydroxybutyrate) (P(3HB))/bioactive glass composite systems. P(3HB)/bioactive glass composite films with three different concentrations of m-BG and n-BG (10, 20 and 30 wt%, respectively) were prepared by a solvent casting technique. The addition of n-BG particles had a significant stiffening effect on the composites, modulus when compared with m-BG. However, there were no significant differences in the thermal properties of the composites due to the addition of n-BG and m-BG particles. The systematic addition of n-BG particles induced a nanostructured topography on the surface of the composites, which was not visible by SEM in m-BG composites. This surface effect induced by n-BG particles considerably improved the total protein adsorption on the n-BG composites compared to the unfilled polymer and the m-BG composites. A short term in vitro degradation (30 days) study in simulated body fluid (SBF) showed a high level of bioactivity as well as higher water absorption for the P(3HB)/n-BG composites. Furthermore, a cell proliferation study using MG-63 cells demonstrated the good biocompatibility of both types of P(3HB)/bioactive glass composite systems. The results of this investigation confirm that the addition of nanosized bioactive glass particles had a more significant effect on the mechanical and structural properties of a composite system in comparison with microparticles, as well as enhancing protein adsorption, two desirable effects for the application of the composites in tissue engineering.

  1. Characterization of ceramic/glass composite seals for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Dev, Bodhayan

    Solid oxide fuel cells (SOFCs) require seals that can function in harsh, elevated temperature environments. Comprehensive characterization and understanding of seals is needed for commercially viable SOFCs. The present research focuses on a novel ceramic/glass composite seal that is produced by roller compaction or tape casting of glass and ceramic powders and a proprietary organic binder. Upon heat treatment, micro-voids and surface anomalies are formed. Increased heating and cooling rates during the heat treatment resulted in more and larger voids. The first goal of the current research is to suggest an appropriate heating and cooling rate to minimize the formation of microstructural defects. After identifying an appropriate cure cycle, seals were thermally cycled and then characterized with laser dilatometry, X-Ray diffraction, and sonic resonance. From these experiments the crystalline phases, thermal expansion, and elastic properties were determined. Subsequently compression testing with an acoustic emission (AE) sensor and post-test microstructural analysis were used to identify the formation of damage. The research also focuses on the study of Weibull statistics and thermal responses for cured seals. The green seal was initially cured for 1 thermal cycle based on the aforementioned appropriate thermal cycle. The cycled seal was then characterized with a laser dilatometer to identify the glass transition, softening temperature and thermal expansion properties. High temperature ring-on-ring tests were also performed to study the effect of glass transition and softening temperatures on mechanical responses. In addition, Weibull statistics were conducted to determine the cumulative probability of failure/damage in seals. The third part of the research focuses on the construction and use of a controlled leak testing facility for investigating different interfaces involved in sealing electrolyte-supported cells. Simultaneous leak testing with an acoustic emission

  2. Assessment of decontamination methods as pretreatment of silanization of composite glass fillers.

    PubMed

    Shirai, K; Yoshida, Y; Nakayama, Y; Fujitani, M; Shintani, H; Wakasa, K; Okazaki, M; Snauwaert, J; Van Meerbeek, B

    2000-01-01

    In terms of mechanical properties and durability, the surface of glass fillers should be decontaminated in order to optimize the silanization process for the production of resin composites. The objective of this study was to evaluate the decontamination efficiency of 18 cleaning methods on glass fillers as pretreatment of silane coupling. X-ray photoelectron spectroscopy revealed that SiO(2) boiled with a 5% sodium peroxodisulfate aqueous solution for 15 min, followed by ultrasonic rinsing with acetone for 30 min was most effective among all the decontamination methods investigated. In addition, nano-indentation measurements on SiO(2) treated by the above-mentioned method revealed that the surface was not significantly weakened as compared to untreated SiO(2). The results of this study should lead to an improved filler-matrix coupling and thus contribute to the development of better wear and fatigue-resistant composites. Therefore, sodium peroxodisulfate is proposed as a presilanization filler decontamination step in the production process of resin composites.

  3. Simultaneous application of fibrous piezoresistive sensors for compression and traction detection in glass laminate composites.

    PubMed

    Nauman, Saad; Cristian, Irina; Koncar, Vladan

    2011-01-01

    This article describes further development of a novel Non Destructive Evaluation (NDE) approach described in one of our previous papers. Here these sensors have been used for the first time as a Piecewise Continuous System (PCS), which means that they are not only capable of following the deformation pattern but can also detect distinctive fracture events. In order to characterize the simultaneous compression and traction response of these sensors, multilayer glass laminate composite samples were prepared for 3-point bending tests. The laminate sample consisted of five layers of plain woven glass fabrics placed one over another. The sensors were placed at two strategic locations during the lay-up process so as to follow traction and compression separately. The reinforcements were then impregnated in epoxy resin and later subjected to 3-point bending tests. An appropriate data treatment and recording device has also been developed and used for simultaneous data acquisition from the two sensors. The results obtained, under standard testing conditions have shown that our textile fibrous sensors can not only be used for simultaneous detection of compression and traction in composite parts for on-line structural health monitoring but their sensitivity and carefully chosen location inside the composite ensures that each fracture event is indicated in real time by the output signal of the sensor.

  4. Green glass vitrophyre 78526 - An impact of very low-Ti mare basalt composition

    NASA Technical Reports Server (NTRS)

    Warner, R. D.; Taylor, G. J.; Kiel, K.; Planner, H. H.; Nehru, C. E.; Ma, M.-S.; Schmitt, R. A.

    1978-01-01

    Rake sample 78526 is an 8.77 g rock consisting primarily of vitrophyric pale green glass with subordinate mineral and lithic relics. Petrographic and compositional evidence leads to the following conclusions: (1) the bulk composition represents that of a mixture formed by impact melting of at least two different textural and compositional varieties of VLT mare basalt that are now present in the rock as lithic relics and a poorly defined low-Ti mare basalt component observed in thin section only in the form of isolated mineral relics; (2) the admixed VLT mare basalts had REE abundances lower than those found in other mare basalts (but probably higher than emerald green glass) and REE patterns showing significant enrichment of the heavy relative to light REE's, suggesting that they were derived by comparatively high degrees of partial melting of a clinopyroxene-rich source region; and (3) the impact melt supercooled to produce the vitrophyre, with rather sharply contrasting textural domains present in the vitrophyre resulting from differences in nucleation kinetics and degrees of supercooling in various portions of the sample.

  5. Consequences of the superstrong nature of chalcogenide glass-forming liquids at select compositions

    NASA Astrophysics Data System (ADS)

    Gunasekera, Kapila; Bhosle, Siddhesh; Boolchand, Punit; Micoulaut, Matthieu

    2014-03-01

    Growth of homogeneous melts of stoichiometric compositions of chalcogenides is facilitated by underlying crystalline phases. Such is not the case for non-stoichiometric melt compositions in which, for example, variation of fragility (m) from complex specific heat measurements show global minimum at an extremely low value (m =14.8(0.5)) in the 21.5% glasses due to their heterogeneity. By directly mapping melt stoichiometry variation along a quartz tube as a function of reaction time of starting materials at a fixed temperature T>Tg over days, we have observed a slowdown of melt-homogenization by the super-strong melt compositions, 21.5% glasses. Supported by NSF grant DMR 08-53957.

  6. Composition-dependent stability of the medium-range order responsible for metallic glass formation

    DOE PAGES

    Zhang, Feng; Ji, Min; Fang, Xiao-Wei; ...

    2014-09-18

    The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motifmore » with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.« less

  7. Composition-dependent stability of the medium-range order responsible for metallic glass formation

    SciTech Connect

    Zhang, Feng; Ji, Min; Fang, Xiao-Wei; Sun, Yang; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Kramer, M. J.; Napolitano, Ralph E.; Ho, Kai-Ming

    2014-09-18

    The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motif with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.

  8. Simultaneous Application of Fibrous Piezoresistive Sensors for Compression and Traction Detection in Glass Laminate Composites

    PubMed Central

    Nauman, Saad; Cristian, Irina; Koncar, Vladan

    2011-01-01

    This article describes further development of a novel Non Destructive Evaluation (NDE) approach described in one of our previous papers. Here these sensors have been used for the first time as a Piecewise Continuous System (PCS), which means that they are not only capable of following the deformation pattern but can also detect distinctive fracture events. In order to characterize the simultaneous compression and traction response of these sensors, multilayer glass laminate composite samples were prepared for 3-point bending tests. The laminate sample consisted of five layers of plain woven glass fabrics placed one over another. The sensors were placed at two strategic locations during the lay-up process so as to follow traction and compression separately. The reinforcements were then impregnated in epoxy resin and later subjected to 3-point bending tests. An appropriate data treatment and recording device has also been developed and used for simultaneous data acquisition from the two sensors. The results obtained, under standard testing conditions have shown that our textile fibrous sensors can not only be used for simultaneous detection of compression and traction in composite parts for on-line structural health monitoring but their sensitivity and carefully chosen location inside the composite ensures that each fracture event is indicated in real time by the output signal of the sensor. PMID:22163707

  9. Microtensile bond strength of composite resin to glass-infiltrated alumina composite conditioned with Er,Cr:YSGG laser.

    PubMed

    Eduardo, Carlos de Paula; Bello-Silva, Marina Stella; Moretto, Simone Gonçalves; Cesar, Paulo Francisco; de Freitas, Patricia Moreira

    2012-01-01

    Tribochemical silica-coating is the recommended conditioning method for improving glass-infiltrated alumina composite adhesion to resin cement. High-intensity lasers have been considered as an alternative for this purpose. This study evaluated the morphological effects of Er,Cr:YSGG laser irradiation on aluminous ceramic, and verified the microtensile bond strength of composite resin to ceramic following silica coating or laser irradiation. In-Ceram Alumina ceramic blocks were polished, submitted to airborne particle abrasion (110 μm Al(2)O(3)), and conditioned with: (CG) tribochemical silica coating (110 μm SiO(2)) + silanization (control group); (L1-L10) Er,Cr:YSGG laser (2.78 μm, 20 Hz, 0.5 to 5.0 W) + silanization. Composite resin blocks were cemented to the ceramic blocks with resin cement. These sets were stored in 37°C distilled water (24 h), embedded in acrylic resin, and sectioned to produce bar specimens that were submitted to microtensile testing. Bond strength values (MPa) were statistically analyzed (α ≤0.05), and failure modes were determined. Additional ceramic blocks were conditioned for qualitative analysis of the topography under SEM. There were no significant differences among silicatization and laser treatments (p > 0.05). Microtensile bond strength ranged from 19.2 to 27.9 MPa, and coefficients of variation ranged from 30 to 55%. Mixed failure of adhesive interface was predominant in all groups (75-96%). No chromatic alteration, cracks or melting were observed after laser irradiation with all parameters tested. Surface conditioning of glass-infiltrated alumina composite with Er,Cr:YSGG laser should be considered an innovative alternative for promoting adhesion of ceramics to resin cement, since it resulted in similar bond strength values compared to the tribochemical treatment.

  10. CO2-laser-assisted processing of glass fiber-reinforced thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Emonts, Michael; Schares, Richard Ludwig; Stimpfl, Joffrey

    2013-02-01

    To fully exploit the potential of fiber-reinforced thermoplastic composites (FRTC) and to achieve a broad industrial application, automated manufacturing systems are crucial. Investigations at Fraunhofer IPT have proven that the use of laser system technology in processing FRTC allows to achieve high throughput, quality, flexibility, reproducibility and out-of-autoclave processing simultaneously. As 90% of the FRP in Europe1 are glass fiber-reinforced a high impact can be achieved by introducing laser-assisted processing with all its benefits to glass fiber-reinforced thermoplastics (GFRTC). Fraunhofer IPT has developed the diode laser-assisted tape placement (laying and winding) to process carbon fiber-reinforced thermoplastic composites (CFRTC) for years. However, this technology cannot be transferred unchanged to process milky transparent GFRTC prepregs (preimpregnated fibers). Due to the short wavelength (approx. 980 nm) and therefore high transmission less than 20% of the diode laser energy is absorbed as heat into non-colored GFRTC prepregs. Hence, the use of a different wave length, e.g. CO2-laser (10.6 μm) with more than 90% laser absorption, is required to allow the full potential of laser-assisted processing of GFRTC. Also the absorption of CO2-laser radiation at the surface compared to volume absorption of diode laser radiation is beneficial for the interlaminar joining of GFRTC. Fraunhofer IPT is currently developing and investigating the CO2-laser-assisted tape placement including new system, beam guiding, process and monitoring technology to enable a resource and energy efficient mass production of GFRP composites, e.g. pipes, tanks, masts. The successful processing of non-colored glass fiber-reinforced Polypropylene (PP) and Polyphenylene Sulfide (PPS) has already been proven.

  11. Effect of the Dosage of Tourmaline on Far Infrared Emission Properties of Tourmaline/Glass Composite Materials.

    PubMed

    Zhang, Hongchen; Meng, Junping; Liang, Jinsheng; Liu, Jie; Zeng, Zhaoyang

    2016-04-01

    Tourmaline/glass composite materials were prepared by sintering at 600 °C using micron-size tourmaline mineral and glass powders as raw materials. The glass has lower melting point than the transition temperature of tourmaline. The Fourier transform infrared spectroscopy showed that the far infrared emissivity of composite was significantly higher than that of either tourmaline or glass powders. A highest far infrared emissivity of 0.925 was obtained when the dosage of tourmaline was 10 wt%. The effects of the amount of tourmaline on the far infrared emission properties of composite was also systematically studied by field emission scanning electron microscope and X-ray diffraction. The tourmaline phase was observed in the composite, showing a particle size of about 70 nm. This meant that the tourmaline particles showed nanocrystallization. They distributed homogenous in the glass matrix when the dosage of tourmaline was not more than 20 wt%. Two reasons were attributed to the improved far infrared emission properties of composite: the particle size of tourmaline-doped was nanocrystallized and the oxidation of Fe2+ (0.076 nm in radius) to Fe3+ (0.064 nm in radius) took place inside the tourmaline-doped. This resulted in the shrinkage of unit cell of the tourmaline in the composite.

  12. Gold nanoparticle incorporated polymer/bioactive glass composite for controlled drug delivery application.

    PubMed

    Jayalekshmi, A C; Sharma, Chandra P

    2015-02-01

    The present study discusses the development of a biodegradable polymer encapsulated-nanogold incorporated-bioactive glass composite (AuPBG) by a low-temperature method. The composite was analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG), fluorescence and dissolution analysis. The composite exhibited aggregation behaviour in solid and solution states and exhibited negative zeta potential (-13.3 ± 1.4 mV). The composite exhibited fast degradation starting from the 5(th) day onwards in phosphate buffered saline (PBS) for a period of 14 days. The composite showed fluorescence quenching effect at pH 7 and the fluorescence recovered at pH 5. The composite has been found to be suitable for the release of doxorubicin at high rates at acidic pH (∼ 5) which is the intracellular pH of tumour cells. The drug loading ratio is also high and it exhibited a controlled release for a period of 8 days in PBS. The system serves as a promising material for targeted drug delivery applications.

  13. Esthetic rehabilitation of severely decayed primary incisors using glass fiber reinforced composite: a case report.

    PubMed

    Metha, Deepak; Gulati, Akanksha; Basappa, N; Raju, O S

    2012-01-01

    Restoration of primary maxillary incisors severely damaged by caries or trauma is a clinical challenge in pediatric dental clinics. Early childhood caries is observed in approximately half the child population. In the past, the only treatment option would have been to extract the affected teeth and replace them with prosthetic substitutes. With the introduction of new adhesive systems and restorative materials, alternative approaches in treating these teeth have been proposed. The purpose of this paper was to describe the rehabilitation of primary anterior teeth in a 5-year-old patient using glass fiber reinforced composite resin as an intracanal post.

  14. Effects of cyclic stressing on attachment bond strength using glass ionomer cement and composite resin.

    PubMed

    Moseley, H C; Horrocks, E N; Pearson, G J; Davies, E H

    1995-02-01

    Bonded orthodontic brackets were subjected to cyclic loading in order to simulate the effect of occlusal forces. The subsequent effect on bond strength was determined. Stainless steel, mesh-based brackets were bonded to extracted teeth with either composite resin or glass ionomer cement. A jig was designed to subject each bracket to a preselected loading level and the 24-hour shear/peel bond strength of both stressed and unstressed brackets was subsequently measured. Cyclic loading brought about a comparative decrease in bond strength when using both types of material. The potential implications of selecting these different types of bonding material for clinical use are discussed.

  15. Analysis of stress-rupture data from S-glass composites.

    NASA Technical Reports Server (NTRS)

    Robinson, E. Y.; Chiao, T. T.

    1972-01-01

    Both composite and free strands have been tested to study matrix effectiveness. Glass from different lots were used, and processing parameters were varied to demonstrate the effects of material variability. The statistical patterns that emerge from these experiments show that lifetime distributions are characteristically skewed. As a class, the lifetime distributions are well approximated by the reduced form of the Weibull distribution. The strength retention data display little early degradation. The retained-strength distributions can also be classed as Weibull distributions. A statistical model applied to the data gives predictions of progressive failure, strength retention path, and expected life for two basic types of internal fracture processes.

  16. Improvement of Mode I Interlaminar Fracture Toughness of Stitched Glass/Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Göktaş, D.; Kennon, W. R.; Potluri, P.

    2016-11-01

    This study examines the improvement of Interlaminar Fracture Toughness (IFT) of multilayered 3D glass/epoxy textile composites when through thickness reinforcement is introduced. Three stitching techniques have been examined: Modified Lockstitch (ISO-301), Single-yarn Orthogonal-stitch (ISO-205) and Double-yarn Orthogonal-stitch (ISO-205). It was found that the use of class ISO-205 manual-type stitched reinforcement significantly enhanced the Mode I-IFT, GIC measured using a Double Cantilever Beam technique. Furthermore, in every case, the use of class ISO-205 stitching and high stitch densities offer a significant improvement of 74.5 % on Mode I-IFT against interlaminar delamination.

  17. Improvement of Mode I Interlaminar Fracture Toughness of Stitched Glass/Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Göktaş, D.; Kennon, W. R.; Potluri, P.

    2017-04-01

    This study examines the improvement of Interlaminar Fracture Toughness (IFT) of multilayered 3D glass/epoxy textile composites when through thickness reinforcement is introduced. Three stitching techniques have been examined: Modified Lockstitch (ISO-301), Single-yarn Orthogonal-stitch (ISO-205) and Double-yarn Orthogonal-stitch (ISO-205). It was found that the use of class ISO-205 manual-type stitched reinforcement significantly enhanced the Mode I-IFT, GIC measured using a Double Cantilever Beam technique. Furthermore, in every case, the use of class ISO-205 stitching and high stitch densities offer a significant improvement of 74.5 % on Mode I-IFT against interlaminar delamination.

  18. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    PubMed

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum.

  19. Effect of silver nanoparticles on the fluorescence of Pb2+ and compositional dependence of Sm3+ fluorescence in borate glasses

    NASA Astrophysics Data System (ADS)

    Olumoroti, Akinloluwa T.

    Borate glasses have been widely studied due to their good optical and mechanical properties. Lead and bismuth (PbO/Bi2O 3:B2O3) borate glasses belong to a family of heavy metal oxide (HMO) glasses which are well known to be chemically durable, stable against atmospheric moisture, have low melting temperatures and good corrosion resistance. The first part of this work deals with lead borate glasses with silver nanoparticles (NPs) introduced into the glass matrix. Transmission electron microscopy characterization is done to verify the nucleation of NPs. Fluorescence and optical absorption experiments are then carried out after different heat treatment duration to investigate the influence of silver NPs on the optical properties of lead (Pb2+) by comparing with a glass sample without silver NPs. Optical absorption experiments show that a well-defined surface plasmon resonance (SPR) peak due to Ag NPs can be observed only for samples that were annealed for 36 hrs. Pb2+ fluorescence spectra reveal that the presence of silver NPs creates new emission centers for Pb2+ ions by altering their chemical environment. The second part of the work involves the use of samarium (a rare earth ion) as a dopant in lead and bismuth borate glasses. The concentration of samarium (Sm3+) is fixed and the base glass composition is varied. The goal is to investigate the compositional dependence of optical properties of samarium in the base glass (PbO/Bi2O3:B 2O3). Optical absorption spectra have been collected and the oscillator strength of each transition - including the hypersensitive - is obtained. The Optical absorption edge is found to shift toward lower energies with increasing PbO/Bi2O3 concentration. Both the oscillator strength and the peak position of the hypersensitive transition show significant variation with glass composition. Strong interaction between Sm3+ ions and Pb2+/Bi3+ ions can also be seen from the variations in the fluorescence emission properties of Sm3+ as a

  20. Evaluation of the antibacterial effects of vancomycin hydrochloride released from agar-gelatin-bioactive glass composites.

    PubMed

    Rivadeneira, Josefina; Di Virgilio, Ana Laura; Audisio, M Carina; Boccaccini, Aldo R; Gorustovich, Alejandro A

    2015-01-13

    The aim of this work was to evaluate the perfomance of agar-gelatin (AG) composites and AG-containing 45S5 bioactive glass (BG) microparticles (AGBG) in relation to their water uptake capacity, sustained release of a drug over time, and antibacterial effects. The composites were fabricated by the gel-casting method. To impart the local drug release capacity, vancomycin hydrochloride (VC) was loaded in the composites in concentrations of 0.5 and 1 mg ml(-1). VC release was assessed in distilled water at 37 °C up to 72 h and quantified spectrophotometrically. The antibacterial activity of composites was evaluated by the inhibition zone test and the plate count method. The experiments were performed in vitro up to 48 h on three staphylococcus strains: Staphylococcus aureus ATCC29213, S. aureus ATCC6538 and Staphylococcus epidermidis ATCC12228. The results showed that the addition of BG to AG composites did not affect the degree of water uptake. The release of VC was significantly affected by the presence of BG. VC release was higher from AGBGVC films than from AGVC ones over prolonged incubation times. Bacterial inhibition zones were found around the composites. The halos were larger when the cells were put in contact with AGVC composites than when they were put in contact with AGBGVC ones. Nevertheless, the viable count method demonstrated that the composites inhibited Staphylococcus cell growth with no statistical differences. In conclusion, the addition of BG did not reflect an improvement in the parameters studied. On the other hand, composites loaded with VC would have a role in prophylaxis against bacterial infection.

  1. Transverse isotropic modeling of the ballistic response of glass reinforced plastic composites

    SciTech Connect

    Taylor, P.A.

    1997-12-31

    The use of glass reinforced plastic (GRP) composites is gaining significant attention in the DoD community for use in armor applications. These materials typically possess a laminate structure consisting of up to 100 plies, each of which is constructed of a glass woven roving fabric that reinforces a plastic matrix material. Current DoD attention is focused on a high strength, S-2 glass cross-weave (0/90) fabric reinforcing a polyester matrix material that forms each ply of laminate structure consisting anywhere from 20 to 70 plies. The resulting structure displays a material anisotropy that is, to a reasonable approximation, transversely isotropic. When subjected to impact and penetration from a metal fragment projectile, the GRP displays damage and failure in an anisotropic manner due to various mechanisms such as matrix cracking, fiber fracture and pull-out, and fiber-matrix debonding. In this presentation, the author will describe the modeling effort to simulate the ballistic response of the GRP material described above using the transversely isotropic (TI) constitutive model which has been implemented in the shock physics code, CTH. The results of this effort suggest that the model is able to describe the delamination behavior of the material but has some difficulty capturing the in-plane (i.e., transverse) response of the laminate due to its cross-weave fabric reinforcement pattern which causes a departure from transverse isotropy.

  2. Environmental effects on the hybrid glass fiber/carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Tsai, Yun-I.

    2009-12-01

    Fiber reinforced polymer composites (FRPCs) have been widely used to replace conventional metals due to the high specific strength, fatigue resistance, and light weight. In the power distribution industry, an advanced composites rod has been developed to replace conventional steel cable as the load-bearing core of overhead conductors. Such conductors, called aluminum conductor composite core (ACCC) significantly increases the transmitting efficiency of existing power grid system without extensive rebuilding expenses, while meeting future demand for electricity. In general, the service life of such overhead conductors is required to be at least 30 years. Therefore, the long-term endurance of the composite core in various environments must be well-understood. Accelerated aging by hygrothermal exposure was conducted to determine the effect of moisture on the glass fiber (GF)/carbon fiber (CF) hybrid composites. The influence of water immersion and humid air exposure on mechanical properties is investigated. Results indicated that immersion in water is the most severe environment for such hybrid GF/CF composites, and results in greater saturation and degradation of properties. When immersed directly in water, the hybrid GF/CF composites exhibit a moisture uptake behavior that is more complex than composite materials reinforced with only one type of fiber. The unusual diffusion behavior is attributed to a higher packing density of fibers at the annular GF/CF interface, which acts as a temporary moisture barrier. Moisture uptake leads to the mechanical and thermal degradation of such hybrid GF/CF composites. Findings presented here indicate that the degradation is a function of exposure temperature, time, and moisture uptake level. Results also indicate that such hybrid GF/CF composites recover short beam shear (SBS) strength and glass transition temperature (Tg) values comparable to pre-aged samples after removal of the absorbed moisture. In the hygrothermal environment

  3. Oxidation-state dependence of rheology in peralkaline glasses of phonolitic composition

    NASA Astrophysics Data System (ADS)

    Scherrer, M. C.; Hess, K.-U.; Fehr, K. T.; Dingwell, D. B.

    2012-04-01

    The precise description of magmatic melts rheology at the glass transition is crucial in understanding dynamic processes in volcanology. The glass transition has been described to scale with the viscosity of the material according to Maxwell's relaxation theory for viscoelastic liquids (Dingwell and Webb, 1989). The temperature dependence of the viscosity of multi-component systems can adequately be calculated using empirical models such as Hess et al. (1996), Giordano et al. (2008) and Hui and Zhang (2008); yet, within these calculations, the influence of oxidation state has been so far considered minor and was consequently neglected. The rheological behavior of some iron-rich silicate melts has shown noteworthy oxidation state-dependent variations (Cukierman and Uhlmann 1974, Dingwell and Virgo 1987). The focus of our study is to improve the viscosity models by investigating the necessity of an additional redox-parameter. Thirteen re-melted glass samples of natural phonolitic composition (peralkaline lavas with 8.5 wt. % FeOtot) were produced under different oxygen fugacity (fO2) conditions in a CO/CO2 gas-mixing furnace. Their oxidation-state (Fe3+/Fetot) ranges from 0.44 to 0.93 (±0.05). The viscosity above the liquidus was recorded via the concentric cylinder technique at a constant temperature of 1186 ° C. Additionally, viscosities were measured in the interval of 107to 1011Pa swith temperatures up to 900 ° C at ambient pressure via a BAEHR micro-penetration viscometer. Glass transition temperatures (Tg) have been determined with a constant heating/cooling rate of 10K/min on a SETARAM Sensys evo DSC using the peak of the specific heat capacity curve. Under a constant temperature in the super-liquidus state, the viscosity increases strongly with increasing fO2. In the sub-liquidus state, the measured calorimetric Tgis shifted to lower temperatures as the ratio of ferrous/total iron decreases from 638 ° C to 610 ° C. However, there is no equivalent

  4. Raman Spectra, Structural Units and Durability of Nuclear Waste Glasses With Variations in Composition and Crystallization: Implications for Intermediate Order in the Glass Network

    SciTech Connect

    Raman, Swaminathan Venkat

    2002-11-01

    The Raman spectra of nuclear waste glasses are composed of large variations in half-width and intensity for the commonly observed bridging (Q0) and nonbridging (Q1 to Q4) bands in silicate structures. With increase in waste concentration in a boroaluminosilicate melt, the bands of quenched glasses are distinctly localized with half-width and intensity indicative of increase in atomic order. Since the nuclear waste glasses contain disparate components, and since the bands depart from the typical random network, a systematic study for the origin of these bands as a function of composition and crystallization was undertaken. From a comparative study of Raman spectra of boroaluminosilicate glasses containing Na2O-ZrO2, Na2O-MgO, MgO-Na2O-ZrO2, Na2O-CaO-ZrO2, Na2O-CaO, and Na2O-MgO-CaF2 component sets and orthosilicate crystals of zircon and forsterite, intermediate order is inferred. An edge-sharing polyhedral structural unit is proposed to account for narrow bandwidth and high intensity for Q2 antisymmetric modes, and decreased leaching of sodium with ZrO2 concentration in glass. The intense Q4 band in nuclear waste glass is similar to the intertetrahedral antisymmetric modes in forsterite. The Raman spectra of zircon contains intratetrahedral quartz-like peaks and intertetrahedral non-bridging silicate peaks. The quartz-like peaks nearly vanish in the background of forsterite spectrum. This difference between the Raman spectra of the two orthosilicate crystals presumably results from their biaxial and uniaxial effects on polarizability ellipsoids. The results also reveal formation of 604, 956 and 961 cm-1 defect bands with composition and crystallization.

  5. Optical properties and infrared optics applications of composite films based on polyethylene and low-melting-point chalcogenide glass

    NASA Astrophysics Data System (ADS)

    Bormashenko, Edward; Pogreb, Roman; Sutovski, Semion; Levin, Mark

    2002-02-01

    A novel composite material based on medium-density polyethylene and thermoplastic chalcogenide glass has been produced. Both materials are highly transparent in the middle and far IR, but their refractive indices differ dramatically. The polymer and the glass have nearly equal viscosities at the temperature of polyethylene processing. This fact allowed the use of extrusion for homogenization. Single- and twin-screw extrusion processes yielded compositions that contain up to 40% of chalcogenide glass particles, which were dispersed in the polymer matrix. Highly homogeneous compositions that contain perfectly spherical glass particles 1 to 2 micrometers in diameter dispersed in the polymer matrix were obtained. Highly oriented structures involving chalcogenide glass fibers immersed in the polymer matrix were prepared at high stretch speeds. It was established that it is possible to produce a composite that is opaque in the visible and near IR, and highly transparent in the 2 to 25-micrometers wavelength band. The use of oriented films as IR laser light-shaping diffusers is possible. The composite films obtained were tried successfully as immersion adhesive layers for the contacting of IR fibers.

  6. Preparation and characterization of PVDF-glass fiber composite membrane reinforced by interfacial UV-grafting copolymerization.

    PubMed

    Luo, Nan; Xu, Rongle; Yang, Min; Yuan, Xing; Zhong, Hui; Fan, Yaobo

    2015-12-01

    A novel inorganic-organic composite membrane, namely poly(vinylidene fluoride) PVDF-glass fiber (PGF) composite membrane, was prepared and reinforced by interfacial ultraviolet (UV)-grafting copolymerization to improve the interfacial bonding strength between the membrane layer and the glass fiber. The interfacial polymerization between inorganic-organic interfaces is a chemical cross-linking reaction that depends on the functionalized glass fiber with silane coupling (KH570) as the initiator and the polymer solution with acrylamide monomer (AM) as the grafting block. The Fourier transform infrared spectrometer-attenuated total reflectance (FTIR-ATR) spectra and the energy dispersive X-ray (EDX) pictures of the interface between the glass fiber and polymer matrix confirmed that the AM was grafted to the surface of the glass fiber fabric and that the grafting polymer was successfully embedded in the membrane matrix. The formation mechanisms, permeation, and anti-fouling performance of the PGF composite membrane were measured with different amounts of AM in the doping solutions. The results showed that the grafting composite membrane improved the interfacial bonding strength and permeability, and the peeling strength was improved by 32.6% for PGF composite membranes with an AM concentration at 2wt.%.

  7. Resorbable composites with bioresorbable glass fibers for load-bearing applications. In vitro degradation and degradation mechanism.

    PubMed

    Lehtonen, Timo J; Tuominen, Jukka U; Hiekkanen, Elina

    2013-01-01

    An in vitro degradation study of three bioresorbable glass fiber-reinforced poly(l-lactide-co-dl-lactide) (PLDLA) composites was carried out in simulated body fluid (SBF), to simulate body conditions, and deionized water, to evaluate the nature of the degradation products. The changes in mechanical and chemical properties were systematically characterized over 52 weeks dissolution time to determine the degradation mechanism and investigate strength retention by the bioresorbable glass fiber-reinforced PLDLA composite. The degradation mechanism was found to be a combination of surface and bulk erosion and does not follow the typical core-accelerated degradation mechanism of poly(α-hydroxyacids). Strength retention by bioresorbable glass fiber-reinforced PLDLA composites can be tailored by changing the oxide composition of the glass fibers, but the structure-property relationship of the glass fibers has to be understood and controlled so that the phenomenon of ion leaching can be utilized to control the degradation rate. Therefore, these high performance composites are likely to open up several new possibilities for utilizing resorbable materials in clinical applications which could not be realized in the past.

  8. Investigation of Fiber Waviness in a Thick Glass Composite Beam Using THz NDE

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.

    2008-01-01

    Fiber waviness in laminated composite material is introduced during manufacture because of uneven curing, resin shrinkage, or ply buckling caused by bending the composite lay-up into its final shape prior to curing. The resulting waviness has a detrimental effect on mechanical properties, therefore this condition is important to detect and characterize. Ultrasonic characterization methods are difficult to interpret because elastic wave propagation is highly dependent on ply orientation and material stresses. By comparison, the pulsed terahertz response of the composite is shown to provide clear indications of the fiber waviness. Pulsed Terahertz NDE is an electromagnetic inspection method that operates in the frequency range between 300 GHz and 3 THz. Its propagation is influenced by refractive index variations and interfaces. This work applies pulsed Terahertz NDE to the inspection of a thick composite beam with fiber waviness. The sample is a laminated glass composite material approximately 15mm thick with a 90-degree bend. Terahertz response from the planar section, away from the bend, is indicative of a homogeneous material with no major reflections from internal plies, while the multiple reflections at the bend area correspond to the fiber waviness. Results of these measurements are presented for the planar and bend areas.

  9. In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites.

    PubMed

    Ji, Lijun; Wang, Wenjun; Jin, Duo; Zhou, Songtao; Song, Xiaoli

    2015-01-01

    Nanoparticles of bioactive glass (NBG) with a diameter of 50-90 nm were synthesized using the Stöber method. NBG/PCL composites with different NBG contents (0 wt.%, 10 wt.%, 20 wt.%, 30 wt.% and 40 wt.%) were prepared by a melt blending and thermal injection moulding technique, and characterized with XRD, FTIR, and SEM to study the effect of NBG on the mechanical properties and in vitro bioactivity of the NBG/PCL composites. In spite of the high addition up to 40 wt.%, the NBG could be dispersed homogeneously in the PCL matrix. The elastic modulus of the NBG/PCL composites was improved remarkably from 198±13 MPa to 851±43 MPa, meanwhile the tensile strength was retained in the range of 19-21.5 MPa. The hydrophilic property and degradation behavior of the NBG/PCL composites were also improved with the addition of the NBG. Moreover, the composites with high NBG content showed outstanding in vitro bioactivity after being immersed in simulated body fluid, which could be attributed to the excellent bioactivity of the synthesized NBG.

  10. Noncontact detection of Teflon inclusions in glass-fiber-reinforced polymer composites using terahertz imaging.

    PubMed

    Zhang, Jin; Wang, Jie; Han, Xiaohui; Cui, Hong-Liang; Shi, Changcheng; Zhang, Jinbo; Shen, Yan

    2016-12-20

    We employed terahertz (THz) time-domain spectroscopy (TDS) imaging technology, a new nondestructive testing method, to detect the inclusions of glass-fiber-reinforced polymer (GFRP) composites. The refractive index and absorption coefficient of two types of GFRP composites (epoxy GFRP composites and polyester GFRP composites) were first extracted, and GFRP composites with Teflon inclusions were examined, including an epoxy GFRP solid panel with a smaller Teflon inclusion hidden behind a larger Teflon inclusion, and polyester GFRP solid panels with Teflon inclusions of various sizes, at different depths. It was experimentally demonstrated that THz TDS imaging technology could clearly detect a smaller inclusion hidden behind a larger inclusion. When the reflected THz pulse from the inclusion did not overlap with that from the front surface of the sample, removal of the latter before Fourier transform was shown to be helpful in imaging the inclusions. With sufficiently strong incident THz radiation, inclusion insertion depth had little impact on the ability of the THz wave to detect inclusions. However, as the thickness of the inclusion became thinner, the inclusion detection ability of the THz wave deteriorated. In addition, with a combination of reflected C-scan imaging and B-scan imaging using the reflected time-domain waveform, both the lateral sizes and locations of the inclusions and the depths and thicknesses of the inclusions were clearly ascertained.

  11. Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation.

    PubMed

    Killion, John A; Kehoe, Sharon; Geever, Luke M; Devine, Declan M; Sheehan, Eoin; Boyd, Daniel; Higginbotham, Clement L

    2013-10-01

    Due to the deficiencies of current commercially available biological bone grafts, alternative bone graft substitutes have come to the forefront of tissue engineering in recent times. The main challenge for scientists in manufacturing bone graft substitutes is to obtain a scaffold that has sufficient mechanical strength and bioactive properties to promote formation of new tissue. The ability to synthesise hydrogel based composite scaffolds using photopolymerisation has been demonstrated in this study. The prepared hydrogel based composites were characterised using techniques including Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectrometry (EDX), rheological studies and compression testing. In addition, gel fraction, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), porosity and swelling studies of the composites were carried out. It was found that these novel hydrogel bioglass composite formulations did not display the inherent brittleness that is typically associated with bioactive glass based bone graft materials and exhibited enhanced biomechanical properties compared to the polyethylene glycol hydrogel scaffolds along. Together, the combination of enhanced mechanical properties and the deposition of apatite on the surface of these hydrogel based composites make them an ideal candidate as bone graft substitutes in cancellous bone defects or low load bearing applications.

  12. Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites

    NASA Astrophysics Data System (ADS)

    Maaroufi, A.; Oabi, O.; Lucas, B.

    2016-07-01

    The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO-55 mol%P2O5, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator - semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10-1 S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10-8 S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 105 for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson-Cole and Havriliak-Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson-Cole model, and an account of the interpretation of results is given.

  13. Effect of nano-sized bioactive glass particles on the angiogenic properties of collagen based composites.

    PubMed

    Vargas, Gabriela E; Haro Durand, Luis A; Cadena, Vanesa; Romero, Marcela; Mesones, Rosa Vera; Mačković, Mirza; Spallek, Stefanie; Spiecker, Erdmann; Boccaccini, Aldo R; Gorustovich, Alejandro A

    2013-05-01

    Angiogenesis is essential for tissue regeneration and repair. A growing body of evidence shows that the use of bioactive glasses (BG) in biomaterial-based tissue engineering (TE) strategies may improve angiogenesis and induce increased vascularization in TE constructs. This work investigated the effect of adding nano-sized BG particles (n-BG) on the angiogenic properties of bovine type I collagen/n-BG composites. Nano-sized (20-30 nm) BG particles of nominally 45S5 Bioglass® composition were used to prepare composite films, which were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in vivo angiogenic response was evaluated using the quail chorioallantoic membrane (CAM) as an model of angiogenesis. At 24 h post-implantation, 10 wt% n-BG containing collagen films stimulated angiogenesis by increasing by 41 % the number of blood vessels branch points. In contrast, composite films containing 20 wt% n-BG were found to inhibit angiogenesis. This experimental study provides the first evidence that addition of a limited concentration of n-BG (10 wt%) to collagen films induces an early angiogenic response making selected collagen/n-BG composites attractive matrices for tissue engineering and regenerative medicine.

  14. The importance of material structure in the laser cutting of glass fiber reinforced plastic composites

    SciTech Connect

    Caprino, G. . Dipt. di Ingegneria dei Materiali e della Produzione); Tagliaferri, V. . Istituto di Ingegneria Meccanica); Covelli, L. )

    1995-01-01

    A previously proposed micromechanical formula, aiming to predict the vaporization energy Q[sub v] of composite materials as a function of fiber and matrix properties and fiber volume ratio, was assessed. The experimental data, obtained on glass fiber reinforced plastic panels with different fiber contents cut by a medium power CO[sub 2] cw laser, were treated according to a procedure previously suggested, in order to evaluate Q[sub v]. An excellent agreement was found between experimental and theoretical Q[sub v] values. Theory was then used to predict the response to laser cutting of a composite material with a fiber content varying along the thickness. The theoretical predictions indicated that, in this case, the interpretation of the experimental results may be misleading, bringing to errors in the evaluation of the material thermal properties, or in the prediction of the kerf depth. Some experimental data were obtained, confirming the theoretical findings.

  15. Effect of chemical composition on the shock response of Zr-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Brown, A. D.; Wang, F.; Laws, K. J.; Eakins, D.; Chapman, D. J.; Hazell, P. J.; Ferry, M.; Escobedo, J. P.

    2015-06-01

    Plate impact experiments were conducted on Zr-based bulk metallic glasses (BMG) with nominal compositions of Zr55Cu30Ni5Al30 and Zr46Cu38Ag8Al38. Velocity interferometry was used to measure the free surface velocity (FSV) histories. These measurements allowed calculation of the Hugoniot elastic limits and onset stresses of fracture (i.e. spall strength) for each alloy. The soft recovered specimens were fully characterized by means of optical and electron microscopy, x-ray diffraction and differential scanning calorimetry. The characterization results aided to assess the effect of chemical composition on the microstructural evolution, i.e. phase changes or crystallization, within the BMGs during shock loading. These changes were then correlated to the differences in strength and ductility on the nominally brittle amorphous BMGs. The most significant results from this study will be presented. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology.

  16. Characterization of E-glass/polyester woven fabric composite laminates and tubes

    SciTech Connect

    Guess, T.R.; Reedy, E.D. Jr.; Stavig, M.E.

    1995-12-01

    This report describes an experimental study that supported the LDRD program ``A General Approach for Analyzing Composite Structures``. The LDRD was a tightly coupled analytical / experimental effort to develop models for predicting post-yield progressive failure in E-glass fabric/polyester composites subjected to a variety of loading conditions. Elastic properties, fracture toughness parameters, and failure responses were measured on flat laminates, rings and tubes to support the development and validation of material and structural models. Test procedures and results are presented for laminates tested in tension, compression, flexure, short beam shear, double cantilever beam Mode I fracture toughness, and end notched flexure Mode II fracture toughness. Structural responses, including failure, of rings loaded in diametral compression and tubes tested in axial compression, are also documented.

  17. Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass

    SciTech Connect

    Ziemath, E. C.; Araujo, V. D.; Escanhoela, C. A. Jr.

    2008-09-01

    Applying high dc electric fields at elevated temperatures on silicate glasses results in displacement of ions, causing compositional and structural changes in the anodic surface. In this work, the ionic displacement was accompanied by electric current measurements during poling. The thickness of the Na{sup +} depletion layer calculated from the current curves agrees with the thickness measured by EDS only if displacement of Ca{sup 2+} and O{sup -} are also taken into account. A depletion of Ca{sup 2+} in the anodic surface has in fact been observed. Structural changes were confirmed by infrared diffuse and specular reflectance spectroscopies. A narrowing of the band at about 1070 cm{sup -1} can be attributed to an increase in the structural ordering degree. Refractive index measurements confirm compositional changes and contact angle measurements indicate the existence of a negative charge density at the anodic surface.

  18. Highly conductive electrolyte composites containing glass and ceramic, and method of manufacture

    DOEpatents

    Hash, Mark C.; Bloom, Ira D.

    1992-01-01

    An electrolyte composite is manufactured by pressurizing a mixture of sodium ion conductive glass and an ionically conductive compound at between 12,000 and 24,000 pounds per square inch to produce a pellet. The resulting pellet is then sintered at relatively lower temperatures (800.degree. C.-1200.degree. C.), for example 1000.degree. C., than are typically required (1400.degree. C.) when fabricating single constituent ceramic electrolytes. The resultant composite is 100 percent conductive at 250.degree. C. with conductivity values of 2.5 to 4.times.10.sup.-2 (ohm-cm).sup.-1. The matrix exhibits chemical stability against sodium for 100 hours at 250.degree. to 300.degree. C.

  19. Plasticity-improved Zr-Cu-Al bulk metallic glass matrix composites containing martensite phase

    SciTech Connect

    Sun, Y.F.; Wei, B.C.; Wang, Y.R.; Li, W.H.; Cheung, T.L.; Shek, C.H.

    2005-08-01

    Zr{sub 48.5}Cu{sub 46.5}Al{sub 5} bulk metallic glass matrix composites with diameters of 3 and 4 mm were produced through water-cooled copper mold casting. Micrometer-sized bcc based B2 structured CuZr phase containing martensite plate, together with some densely distributed nanocrystalline Zr{sub 2}Cu and plate-like Cu{sub 10}Zr{sub 7} compound, was found embedded in a glassy matrix. The microstructure formation strongly depends on the composition and cooling rate. Room temperature compression tests reveal significant strain hardening and plastic strains of 7.7% and 6.4% before failure are obtained for the 3-mm- and 4-mm-diam samples, respectively. The formation of the martensite phase is proposed to contribute to the strain hardening and plastic deformation of the materials.

  20. Composition-structure-property relationships for non-classical ionomer cements formulated with zinc-boron germanium-based glasses.

    PubMed

    Zhang, Xiaofang; Werner-Zwanziger, Ulrike; Boyd, Daniel

    2015-04-01

    Non-classical ionomer glasses like those based on zinc-boron-germanium glasses are of special interest in a variety of medical applications owning to their unique combination of properties and potential therapeutic efficacy. These features may be of particular benefit with respect to the utilization of glass ionomer cements for minimally invasive dental applications such as the atruamatic restorative treatment, but also for expanded clinical applications in orthopedics and oral-maxillofacial surgery. A unique system of zinc-boron-germanium-based glasses (10 compositions in total) has been designed using a Design of Mixtures methodology. In the first instance, ionomer glasses were examined via differential thermal analysis, X-ray diffraction, and (11)B MAS NMR spectroscopy to establish fundamental composition - structure-property relationships for the unique system. Secondly, cements were synthesized based on each glass and handling characteristics (working time, Wt, and setting time, St) and compression strength were quantified to facilitate the development of both experimental and mathematical composition-structure-property relationships for the new ionomer cements. The novel glass ionomer cements were found to provide Wt, St, and compression strength in the range of 48-132 s, 206-602 s, and 16-36 MPa, respectively, depending on the ZnO/GeO2 mol fraction of the glass phase. A lower ZnO mol fraction in the glass phase provides higher glass transition temperature, higher N4 rate, and in combination with careful modulation of GeO2 mol fraction in the glass phase provides a unique approach to extending the Wt and St of glass ionomer cement without compromising (in fact enhancing) compression strength. The data presented in this work provide valuable information for the formulation of alternative glass ionomer cements for applications within and beyond the dental clinic, especially where conventional approaches to modulating working time and strength exhibit co

  1. Polypropylene/glass fiber hierarchical composites incorporating inorganic fullerene-like nanoparticles for advanced technological applications.

    PubMed

    Díez-Pascual, Ana M; Naffakh, Mohammed

    2013-10-09

    Novel isotactic polypropylene (iPP)/glass fiber (GF) laminates reinforced with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles as environmentally friendly fillers have been successfully fabricated by simple melt-blending and fiber impregnation in a hot-press without the addition of any compatibilizer. The influence of IF-WS2 concentration on the morphology, viscosity. and thermal and mechanical behavior of the hierarchical composites has been investigated. Results revealed an unprecedented 62 °C increase in the degradation temperature of iPP/GF upon addition of only 4.0 wt % IF-WS2. The coexistence of both micro- and nanoscale fillers resulted in synergistic effects on enhancing the stiffness, strength, crystallinity, thermal stability, glass transition (Tg) and heat distortion temperature (HDT) of the matrix. The approach used in this work is an efficient, versatile, scalable and economic strategy to improve the mechanical and thermal behavior of GF-reinforced thermoplastics with a view to extend their use in advanced technological applications. This new type of composite materials shows great potential to improve the efficiency and sustainability of many forms of transport.

  2. Piloted Ignition of Polypropylene/Glass Composites in a Forced Air Flow

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Rich, D.; Lautenberger, C.; Stefanovich, A.; Metha, S.; Torero, J.; Yuan, Z.; Ross, H.

    2003-01-01

    The Forced Ignition and Spread Test (FIST) is being used to study the flammability characteristics of combustible materials in forced convective flows. The FIST methodology is based on the ASTM E-1321, Lateral Ignition and Flame Spread Test (LIFT) which is used to determine the ignition and flame spread characteristics of materials, and to produce 'Flammability Diagrams' of materials. The LIFT apparatus, however, relies on natural convection to bring air to the combustion zone and the fuel vapor to the pilot flame, and thus cannot describe conditions where the oxidizer flow velocity may change. The FIST on the other hand, by relying on a forced flow as the dominant transport mechanism, can be used to examine variable oxidizer flow characteristics, such as velocity, oxygen concentration, and turbulence intensity, and consequently has a wider applicability. Particularly important is its ability to determine the flammability characteristics of materials used in spacecraft since in the absence of gravity the only flow present is that forced by the HVAC of the space facility. In this paper, we report work on the use of the FIST approach on the piloted ignition of a blended polypropylene fiberglass (PP/GL) composite material exposed to an external radiant flux in a forced convective flow of air. The effect of glass concentration under varying external radiant fluxes is examined and compared qualitatively with theoretical predictions of the ignition process. The results are used to infer the effect of glass content on the fire safety characteristics of composites.

  3. Irreversible deformation processes in PVC and its short glass fiber reinforced composites

    SciTech Connect

    Yuan, J.Y.

    1985-01-01

    The tensile mechanical behavior of PVC and its short glass fiber reinforced composites under superimposed hydrostatic pressure was studied up to 3 x 10/sup 8/ Pa. For rigid PVC, the brittle-to-ductile transition was observed at a pressure between 1 x 10/sup 7/ Pa and 2 x 10/sup 7/ Pa. This pressure-induced brittle-to-ductile transition was controlled by the competitive microdeformation processes of crazing and shear banding. Deformation in the post-yield region occurred by neck formation and subsequent drawing to produce chain orientation. A strong environmental stress-cracking effect was observed when PVC samples were exposed to the pressure-transmitting fluid, silicone oil. Three types of pressure dependent deformation processes was observed for the short glass fiber reinforced composites of PVC. Type I behavior shows debonding at the interface between fiber and matrix followed by brittle fracture of the matrix. Type II behavior, which was observed for the first time, exhibits a sharp stress drop due to debonding at the interface followed by matrix shear yielding. In Type III behavior, only upper shear yielding of matrix was observed. The transitional behavior from Type I and Type II was controlled by the pressure induced brittle to ductile transition of the matrix, while the Type II-III transition was strongly affected by debonding at the interface.

  4. Composition dependent mechanical behaviour of S53P4 bioactive glass putty for bone defect grafting.

    PubMed

    van Gestel, N A P; Hulsen, D J W; Geurts, J; Hofmann, S; Ito, K; Arts, J J; van Rietbergen, B

    2017-05-01

    To improve the handling properties of S53P4 bioactive glass granules for clinical applications, bioactive glass putty formulations were developed. These formulations contain both granules and a synthetic binder to form an injectable material that is easy to shape. To explore its applicability in load-bearing bone defect grafting, the relation between the putty composition and its mechanical behaviour was assessed in this study. Five putty formulations with variations in synthetic binder and granule content were mechanically tested in confined compression. The results showed that the impaction strains significantly decreased and the residual strains significantly increased with an increasing binder content. The stiffness of all tested formulations was found to be in the same range as the reported stiffness of cancellous bone. The measured creep strains were low and no significant differences between formulations were observed. The stiffness significantly increased when the samples were subjected to a second loading stage. The residual strains calculated from this second loading stage were also significantly different from the first loading stage, showing an increasing difference with an increasing binder content. Since residual strains are detrimental for graft layer stability in load-bearing defects, putty compositions with a low binder content would be most beneficial for confined, load-bearing bone defect grafting.

  5. Nuclear Waste Glasses: Beautiful Simplicity of Complex Systems

    SciTech Connect

    Hrma, Pavel R.

    2009-01-01

    The behavior of glasses with a large number of components, such as waste glasses, is not more complex than the behavior of simple glasses. On the contrary, the presence of many components restricts the composition region of these glasses in a way that allows approximating composition-property relationships by linear functions. This has far-reaching practical consequences for formulating nuclear waste glasses. On the other hand, processing high-level and low-activity waste glasses presents various problems, such as crystallization, foaming, and salt segre-gation in the melter. The need to decrease the settling of solids in the melter to an acceptable level and to maximize the rate of melting presents major challenges to processing technology. However, the most important property of the glass product is its chemical durability, a somewhat vague concept in lieu of the assessment of the glass resistance to aqueous attack while the radioactivity decays over tens of thousands of years.

  6. Chemical composition analysis and product consistency tests supporting refinement of the Nepheline model for the high aluminum Hanford Glass composition region

    SciTech Connect

    Fox, K. M.; Edwards, T. B.; Mcclane, D. L.

    2016-02-17

    In this report, SRNL provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated HLW glasses fabricated by Pacific Northwest National Laboratory (PNNL) as part of an ongoing nepheline crystallization study. The results of these analyses will be used to improve the ability to predict crystallization of nepheline as a function of composition and heat treatment for glasses formulated at high alumina concentrations.

  7. Chemical composition analysis and product consistency tests supporting refinement of the Nepheline Model for the high aluminum Hanford glass composition region

    SciTech Connect

    Fox, K. M.; Edwards, T. B.; Mcclane, D. L.

    2016-03-01

    In this report, Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated high level waste (HLW) glasses fabricated by Pacific Northwest National Laboratory (PNNL) as part of an ongoing nepheline crystallization study. The results of these analyses will be used to improve the ability to predict crystallization of nepheline as a function of composition and heat treatment for glasses formulated at high alumina concentrations.

  8. IMPACT OF COMPOSITION AND HEAT TREATMENT ON PORE SIZE IN POROUS WALLED HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Raszewski, F; Erich Hansen, E; Ray Schumacher, R; David Peeler, D

    2007-12-04

    The Savannah River National Laboratory (SRNL) developed a new geometric form: hollow glass microspheres (HGMs), with unique porous walls. The new geometric form combines the existing technology of HGMs with basic glass science knowledge in the realm of glass-in-glass phase separation. Conceptually, the development of a HGM with porous walls (referred to as a PWHGM) provides a unique system in which various media or filling agents can be incorporated into the PWHGM (via transport through the porous walls) and ultimately has the capacity to serve as a functional delivery system in various industrial applications. Applications of these types of systems could range from hydrogen storage, molecular sieves, drug and bioactive delivery systems, to environmental, chemical and biological indicators, relevant to Energy, Environmental Processing and Homeland Security fields. As a specific example, previous studies at SRNL have introduced materials capable of hydrogen storage (as well as other materials) into the interior of the PWHGMs. The goal of this project was to determine if the microstructure (i.e., pore size and pore size distribution) of a PWHGM could be altered or tailored by varying composition and/or heat treatment (time and/or temperature) conditions. The ability to tailor the microstructure through composition or heat treatments could provide the opportunity to design the PWHGM system to accommodate different additives or fill agents. To meet this objective, HGMs of various alkali borosilicate compositions were fabricated using a flame forming apparatus installed at the Aiken County Technical Laboratory (ACTL). HGMs were treated under various heat treatment conditions to induce and/or enhance glass in glass phase separation. Heat treatment temperatures ranged from 580 C to 620 C, while heat treatment times were either 8 or 24 hours. Of the two primary variables assessed in this study, heat treatment temperature was determined to be most effective in changing the

  9. Study of thermal, structural and optical properties of tellurite glass with different TiO2 composition

    NASA Astrophysics Data System (ADS)

    Stambouli, W.; Elhouichet, H.; Ferid, M.

    2012-11-01

    Tellurite glasses with different TiO2 composition are elaborated and characterized. Differential Scanning Calorimetry (DSC) measurements show an improvement of the stability factor ΔT of the glass with the increase of TiO2 composition which can indicate a reinforcement of the network. Both Raman and FTIR results prove that the Te-O-Te inter-chain linkages are progressively substituted by stronger Te-O-Ti bridges that are at the origin of the increase of the thermal stability of the glass. However, for glasses with high TiO2 composition, some TiO4 polyhedron and crystalline phases of TiTe3O8 can be formed in the amorphous phase. It was found that TiO2 contributes in the highest extent to decrease the glass energy gap and to increase the refraction index due to Ti4+ that could have a role as network modifier. The Urbach energy Eu was found to decrease with TiO2 compositions which suggest the possibility of long range order locally arising from the formation of TiTe3O8 groups.

  10. Predicting composition-property relationships for glass ionomer cements: a multifactor central composite approach to material optimization.

    PubMed

    Kiri, Lauren; Boyd, Daniel

    2015-06-01

    Adjusting powder-liquid ratio (P/L) and polyacrylic acid concentration (AC) has been documented as a means of tailoring the handling and mechanical properties of glass ionomer cements (GICs). This work implemented a novel approach in which the interactive effects of these two factors on three key GIC properties (working time, setting time, and compressive strength) were investigated using a central composite design of experiments. Using nonlinear regression analysis, formulation-property relationships were derived for each property, which enabled prediction of an optimal formulation (P/L and AC) through application of the desirability approach. A novel aluminum free GIC was investigated, as this material may present the first clinically viable GIC for use in injectable spinal applications, such as vertebroplasty. Ultimately, this study presents the first series of predictive regression models that explain the formulation-dependence of a GIC, and the first statistical method for optimizing both P/L and AC depending on user-defined inputs.

  11. Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants.

    PubMed

    Pishbin, Fatemehsadat; Mouriño, Viviana; Flor, Sabrina; Kreppel, Stefan; Salih, Vehid; Ryan, Mary P; Boccaccini, Aldo R

    2014-06-11

    Despite their widespread application, metallic orthopaedic prosthesis failure still occurs because of lack of adequate bone-bonding and the incidence of post-surgery infections. The goal of this research was to develop multifunctional composite chitosan/Bioglass coatings loaded with gentamicin antibiotic as a suitable strategy to improve the surface properties of metallic implants. Electrophoretic deposition (EPD) was applied as a single-step technology to simultaneously deposit the biopolymer, bioactive glass particles, and the antibiotic on stainless steel substrate. The microstructure and composition of the coatings were characterized using SEM/EDX, XRD, FTIR, and TGA/DSC, respectively. The in vitro bioactivity of the coatings was demonstrated by formation of hydroxyapatite after immersion in simulated body fluid (SBF) in a short period of 2 days. High-performance liquid chromatography (HPLC) measurements indicated the release of 40% of the loaded gentamicin in phosphate buffered saline (PBS) within the first 5 days. The developed composite coating supported attachment and proliferation of MG-63 cells up to 10 days. Moreover, disc diffusion test showed improved bactericidal effect of gentamicin-loaded composite coatings against S. aureus compared to control non-gentamicin-loaded coatings.

  12. GLASS TRANSITION AND DEGREE OF CONVERSION OF A LIGHT-CURED ORTHODONTIC COMPOSITE

    PubMed Central

    Sostena, Michela M. D. S.; Nogueira, Renata A.; Grandini, Carlos R.; Moraes, João Carlos Silos

    2009-01-01

    Objective: This study evaluated the glass transition temperature (Tg) and degree of conversion (DC) of a light-cured (Fill Magic) versus a chemically cured (Concise) orthodontic composite. Material and Methods: Anelastic relaxation spectroscopy was used for the first time to determine the Tg of a dental composite, while the DC was evaluated by infrared spectroscopy. The light-cured composite specimens were irradiated with a commercial LED light-curing unit using different exposure times (40, 90 and 120 s). Results: Fill Magic presented lower Tg than Concise (35-84°C versus 135°C), but reached a higher DC. Conclusions: The results of this study suggest that Fill Magic has lower Tg than Concise due to its higher organic phase content, and that when this light-cured composite is used to bond orthodontic brackets, a minimum energy density of 7.8 J/cm2 is necessary to reach adequate conversion level and obtain satisfactory adhesion. PMID:20027428

  13. Influence of the curing cycles on the fatigue performance of unidirectional glass fiber reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Hüther, Jonas; Brøndsted, Povl

    2016-07-01

    During the manufacturing process of fiber reinforced polymers the curing reaction of the resin results in shrinkage of the resin and introduces internal stresses in the composites. When curing at higher temperatures in order to shorten up the processing time, higher curing stresses and thermal stresses are built up and frozen, as residual stresses occur. In the present work, a glass fiber reinforced epoxy composite laminate with an unidirectional architecture based on non-crimp fabrics with backing fibers is investigated. Three different curing cycles (time-temperature cycles) are used, leading to different levels of internal stresses. The mechanical properties, static strength and fatigue life time, are measured in three different directions of the material, i.e. the fiber direction, 0°, the 30° off axis direction, and the 90° direction transverse to the fiber direction. It is experimentally demonstrated that the resulting residual stresses barely influences the quasi-static mechanical properties of reinforced glass-fiber composites. It is found that the fatigue performance in the 0° direction is significantly influenced by the internal stresses, whereas the fatigue performance in the off axes directions so is not significantly influenced of these stresses. This is related to the observations that the damage mechanisms in the off axes directions are mainly related to shear failure in the matrix and in the interface between fiber and matrix and different from the damage mechanisms in the fiber direction, where the damage initiates in the transverse backing fibers and is directly related to fiber fractures in the load-carrying axial fiber bundles.

  14. Effects of etching and adhesive applications on the bond strength between composite resin and glass-ionomer cements

    PubMed Central

    PAMIR, Tijen; ŞEN, Bilge Hakan; EVCIN, Özgür

    2012-01-01

    Objective This study determined the effects of various surface treatment modalities on the bond strength of composite resins to glass-ionomer cements. Material and Methods Conventional (KetacTM Molar Quick ApplicapTM) or resin-modified (PhotacTM Fil Quick AplicapTM) glass-ionomer cements were prepared. Two-step etch-rinse & bond adhesive (AdperTM Single Bond 2) or single-step self-etching adhesive (AdperTM PromptTM L-PopTM) was applied to the set cements. In the etch-rinse & bond group, the sample surfaces were pre-treated as follows: (1) no etching, (2) 15 s of etching with 35% phosphoric acid, (3) 30 s of etching, and (4) 60 s of etching. Following the placement of the composite resin (FiltekTM Z250), the bond strength was measured in a universal testing machine and the data obtained were analyzed with the two-way analysis of variance (ANOVA) followed by the Tukey's HSD post hoc analysis (p=0.05). Then, the fractured surfaces were examined by scanning electron microscopy. Results The bond strength of the composite resin to the conventional glass-ionomer cement was significantly lower than that to the resin-modified glass-ionomer cement (p<0.001). No significant differences were determined between the self-etching and etch-rinse & bond adhesives at any etching time (p>0.05). However, a greater bond strength was obtained with 30 s of phosphoric acid application. Conclusions The resin-modified glass-ionomer cement improved the bond strength of the composite resin to the glass-ionomer cement. Both etch-rinse & bond and self-etching adhesives may be used effectively in the lamination of glass-ionomer cements. However, an etching time of at least 30 s appears to be optimal. PMID:23329245

  15. Application of piezoelectric macro-fiber-composite actuators to the suppression of noise transmission through curved glass plates.

    PubMed

    Nováková, Katerina; Mokrý, Pavel; Václavík, Jan

    2012-09-01

    This paper analyzes the possibility of increasing the acoustic transmission loss of sound transmitted through planar or curved glass shells using attached piezoelectric macro fiber composite (MFC) actuators shunted by active circuits with a negative capacitance. The key features that control the sound transmission through the curved glass shells are analyzed using an analytical approximative model. A detailed analysis of the particular arrangement of MFC actuators on the glass shell is performed using a finite element method (FEM) model. The FEM model takes into account the effect of a flexible frame that clamps the glass shell at its edges. A method is presented for the active control of the Young's modulus and the bending stiffness coefficient of the composite sandwich structure that consists of a glass plate and the attached piezoelectric MFC actuator. The predictions of the acoustic transmission loss frequency dependencies obtained by the FEM model are compared with experimental data. The results indicate that it is possible to increase the acoustic transmission loss by 20 and 25 dB at the frequencies of the first and second resonant modes of the planar and curved glass shells, respectively, using the effect of the shunt circuit with a negative capacitance.

  16. Development of beta-tricalcium phosphate/sol-gel derived bioactive glass composites: physical, mechanical, and in vitro biological evaluations.

    PubMed

    Hesaraki, Saeed; Safari, Mojgan; Shokrgozar, Mohammad Ali

    2009-10-01

    In this study, composites of beta-tricalcium phosphate (beta-TCP) and sol gel derived bioactive glass (10, 25, and 40 wt %) based on the SiO(2)-CaO-MgO-P(2)O(5) system were prepared and sintered at 1000-1200 degrees C. The mechanical properties were investigated by measuring bending strength, Vickers hardness and fracture toughness. Structural properties were evaluated by XRD and SEM analysis, and the biological properties were studied by soaking the samples in simulated body fluid (SBF) and in contact with osteoblastic cell for viability assay. When the samples were sintered at 1200 degrees C, the mechanical strength increased, up to 34%, by increasing the amount of bioactive glass phase. In contrast, it decreased when the samples were sintered at 1000 and 1100 degrees C. The results showed that the strength could be improved up to 56% when more firing period was used. Incorporation of the bioactive glass phase into beta-TCP increased the microhardness but did not significantly change the fracture toughness. Phase analysis revealed that beta-TCP or magnesium-substituted beta-TCP was the main crystalline phase of the composites beside some calcium silicate crystallized in the bioactive glass phase. Plenty precipitation of calcium phosphate layer onto the surfaces of the beta-TCP/bioactive glass composites soaked in SBF indicated superior bioactivity of these materials compared to pure beta-TCP without any precipitation. The ability of beta-TCP/bioactive glass composites to support the growth of human osteoblastic cells was considerably better than that of pure beta-TCP. These results may be used to indicate which compositions and processing conditions can provide appropriate materials for hard tissue regeneration.

  17. The effect of composition on ion release from Ca-Sr-Na-Zn-Si glass bone grafts.

    PubMed

    Murphy, S; Boyd, D; Moane, S; Bennett, M

    2009-11-01

    Controlled delivery of active ions from biomaterials has become critical in bone regeneration. Some silica-based materials, in particular bioactive glasses, have received much attention due to the ability of their dissolution products to promote cell proliferation, cell differentiation and activate gene expression. However, many of these materials offer little therapeutic potential for diseased tissue. Incorporating trace elements, such as zinc and strontium, known to have beneficial and therapeutic effects on bone may provide a more viable bone graft option for those suffering from metabolic bone diseases such as osteoporosis. Rational compositional design may also allow for controlled release of these active ions at desirable dose levels in order to enhance therapeutic efficacy. In this study, six differing compositions of calcium-strontium-sodium-zinc-silicate (Ca-Sr-Na-Zn-Si) glass bone grafts were immersed in pH 7.4 and pH 3 solutions to study the effect of glass composition on zinc and strontium release in a normal and extreme physiological environment. The zinc release levels over 30 days for all zinc-containing glasses in the pH 7.4 solution were 3.0-7.65 ppm. In the more acidic pH 3 environment, the zinc levels were higher (89-750 ppm) than those reported to be beneficial and may produce cytotoxic or negative effects on bone tissue. Strontium levels released from all examined glasses in both pH environments similarly fell within apparent beneficial ranges--7.5-3500 ppm. Glass compositions with identical SrO content but lower ZnO:Na(2)O ratios, showed higher levels of Sr(2+) release. Whereas, zinc release from zinc-containing glasses appeared related to ZnO compositional content. Sustainable strontium and zinc release was seen in the pH 7.4 environment up to day 7. These results indicate that the examined Ca-Sr-Na-Zn-Si glass compositions show good potential as therapeutic bone grafts, and that the graft composition can be tailored to allow therapeutic

  18. Microyielding of core-shell crystal dendrites in a bulk-metallic-glass matrix composite

    DOE PAGES

    Huang, E. -Wen; Qiao, Junwei; Winiarski, Bartlomiej; ...

    2014-03-18

    In-situ synchrotron x-ray experiments have been used to follow the evolution of the diffraction peaks for crystalline dendrites embedded in a bulk metallic glass matrix subjected to a compressive loading-unloading cycle. We observe irreversible diffraction-peak splitting even though the load does not go beyond half of the bulk yield strength. The chemical analysis coupled with the transmission electron microscopy mapping suggests that the observed peak splitting originates from the chemical heterogeneity between the core (major peak) and the stiffer shell (minor peak) of the dendrites. A molecular dynamics model has been developed to compare the hkl-dependent microyielding of the bulkmore » metallic-glass matrix composite. As a result, the complementary diffraction measurements and the simulation results suggest that the interfaces between the amorphous matrix and the (211) crystalline planes relax under prolonged load that causes a delay in the reload curve which ultimately catches up with the original path.« less

  19. Glass fibre polyester composite with in vivo vascular channel for use in self-healing

    NASA Astrophysics Data System (ADS)

    Fifo, Omosola; Ryan, Kevin; Basu, Biswajit

    2014-09-01

    The embedment of adhesive-filled hollow glass fibres (HGF) has been reported as a way of combating micro-crack development in fibre-reinforced polymer (FRP) structures. However, hollow fibres can critically undermine the effectiveness of self-healing systems and have been reported to be a potential impediment to the healing agent flow path. On the other hand, attempting to use non-hollow vascular systems in higher dimensions has largely been restricted to bulk polymers that lack reinforcing fibres. This paper investigates an alternative technique where a simple two-dimensional (2D) network of hollow channels is created within a glass-fibre-reinforced polyester-composite structure. The network is created using a fugitive preforming material at the ply level of interest, similar to a direct ink writing procedure. The temporary structure is extracted as a part of the curing and post-curing processes. The channels formed are used to deliver cyanoacrylate adhesive (CA) to areas that have been damaged under a flexural three-point bending test. Subsequent post-repair mechanical testing, under the same mode, evaluates the success of the repair process. The results show good recovery of the stiffness, a paramount mechanical property, and indicate how the grade of the repairing agent used influences the recovered loading strength of the FRP samples.

  20. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    NASA Astrophysics Data System (ADS)

    R, Lisha; T, Hysen; P, Geetha; B, Aravind P.; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.; Anantharaman, M. R.

    2015-06-01

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.