Science.gov

Sample records for accepted animal model

  1. Regulatory acceptance of animal models of disease to support clinical trials of medicines and advanced therapy medicinal products.

    PubMed

    Cavagnaro, Joy; Silva Lima, Beatriz

    2015-07-15

    The utility of animal models of disease for assessing the safety of novel therapeutic modalities has become an increasingly important topic of discussion as research and development efforts focus on improving the predictive value of animal studies to support accelerated clinical development. Medicines are approved for marketing based upon a determination that their benefits outweigh foreseeable risks in specific indications, specific populations, and at specific dosages and regimens. No medicine is 100% safe. A medicine is less safe if the actual risks are greater than the predicted risks. The purpose of preclinical safety assessment is to understand the potential risks to aid clinical decision-making. Ideally preclinical studies should identify potential adverse effects and design clinical studies that will minimize their occurrence. Most regulatory documents delineate the utilization of conventional "normal" animal species to evaluate the safety risk of new medicines (i.e., new chemical entities and new biological entities). Animal models of human disease are commonly utilized to gain insight into the pathogenesis of disease and to evaluate efficacy but less frequently utilized in preclinical safety assessment. An understanding of the limitations of the animal disease models together with a better understanding of the disease and how toxicity may be impacted by the disease condition should allow for a better prediction of risk in the intended patient population. Importantly, regulatory authorities are becoming more willing to accept and even recommend data from experimental animal disease models that combine efficacy and safety to support clinical development.

  2. Regulatory acceptance of animal models of disease to support clinical trials of medicines and advanced therapy medicinal products.

    PubMed

    Cavagnaro, Joy; Silva Lima, Beatriz

    2015-07-15

    The utility of animal models of disease for assessing the safety of novel therapeutic modalities has become an increasingly important topic of discussion as research and development efforts focus on improving the predictive value of animal studies to support accelerated clinical development. Medicines are approved for marketing based upon a determination that their benefits outweigh foreseeable risks in specific indications, specific populations, and at specific dosages and regimens. No medicine is 100% safe. A medicine is less safe if the actual risks are greater than the predicted risks. The purpose of preclinical safety assessment is to understand the potential risks to aid clinical decision-making. Ideally preclinical studies should identify potential adverse effects and design clinical studies that will minimize their occurrence. Most regulatory documents delineate the utilization of conventional "normal" animal species to evaluate the safety risk of new medicines (i.e., new chemical entities and new biological entities). Animal models of human disease are commonly utilized to gain insight into the pathogenesis of disease and to evaluate efficacy but less frequently utilized in preclinical safety assessment. An understanding of the limitations of the animal disease models together with a better understanding of the disease and how toxicity may be impacted by the disease condition should allow for a better prediction of risk in the intended patient population. Importantly, regulatory authorities are becoming more willing to accept and even recommend data from experimental animal disease models that combine efficacy and safety to support clinical development. PMID:25814257

  3. Evaluating the ethical acceptability of animal research.

    PubMed

    Bout, Henriëtte J; Fentener van Vlissingen, J Martje; Karssing, Edgar D

    2014-11-01

    The ethical acceptability of animal research is typically evaluated on a case-by-case basis. Legislation such as Directive 2010/63/EU on the protection of animals used for scientific purposes provides guidance for ethical evaluation of animal use proposals but does not dictate the outcome, leaving this determination to the ethical review committees of individual institutions. The authors assess different ethics models and how these are reflected in the guidelines of Directive 2010/63/EU. They also describe a matrix for carrying out harm-benefit analyses of animal use proposals, which they identified by examining the practices of three ethical review committees in the Netherlands. Finally, they discuss how this matrix can be applied by ethical review committees at other institutions.

  4. Is it acceptable to use animals to model obese humans? A critical discussion of two arguments against the use of animals in obesity research.

    PubMed

    Lund, Thomas Bøker; Sørensen, Thorkild I A; Olsson, I Anna S; Hansen, Axel Kornerup; Sandøe, Peter

    2014-05-01

    Animal use in medical research is widely accepted on the basis that it may help to save human lives and improve their quality of life. Recently, however, objections have been made specifically to the use of animals in scientific investigation of human obesity. This paper discusses two arguments for the view that this form of animal use, unlike some other forms of animal-based medical research, cannot be defended. The first argument leans heavily on the notion that people themselves are responsible for developing obesity and so-called 'lifestyle' diseases; the second involves the claim that animal studies of obesity's causes and therapies distract attention from preventive efforts. Drawing on both empirical data and moral reasoning, we argue that the relevant attributions of responsibility and claims about distraction are not plausible, and that, therefore, there is no reason to single out the use of animals in obesity research as especially problematic.

  5. Extending the Technology Acceptance Model: Policy Acceptance Model (PAM)

    NASA Astrophysics Data System (ADS)

    Pierce, Tamra

    There has been extensive research on how new ideas and technologies are accepted in society. This has resulted in the creation of many models that are used to discover and assess the contributing factors. The Technology Acceptance Model (TAM) is one that is a widely accepted model. This model examines people's acceptance of new technologies based on variables that directly correlate to how the end user views the product. This paper introduces the Policy Acceptance Model (PAM), an expansion of TAM, which is designed for the analysis and evaluation of acceptance of new policy implementation. PAM includes the traditional constructs of TAM and adds the variables of age, ethnicity, and family. The model is demonstrated using a survey of people's attitude toward the upcoming healthcare reform in the United States (US) from 72 survey respondents. The aim is that the theory behind this model can be used as a framework that will be applicable to studies looking at the introduction of any new or modified policies.

  6. Acceptance of animal research in our science community

    PubMed Central

    Bergmeister, Konstantin; Podesser, Bruno

    2016-01-01

    Animal research is debated highly controversial, as evident by the “Stop Vivi-section” initiative in 2015. Despite widespread protest to the initiative by researchers, no data is available on the European medical research community’s opinion towards animal research. In this single-center study, we investigated this question in a survey of students and staff members at the Medical University of Vienna. A total of 906 participants responded to the survey, of which 82.8% rated the relevance of animal research high and 62% would not accept a treatment without prior animals testing. Overall, animal research was considered important, but its communication to the public considered requiring improvement. PMID:27239274

  7. Local tolerance testing under REACH: Accepted non-animal methods are not on equal footing with animal tests.

    PubMed

    Sauer, Ursula G; Hill, Erin H; Curren, Rodger D; Raabe, Hans A; Kolle, Susanne N; Teubner, Wera; Mehling, Annette; Landsiedel, Robert

    2016-07-01

    In general, no single non-animal method can cover the complexity of any given animal test. Therefore, fixed sets of in vitro (and in chemico) methods have been combined into testing strategies for skin and eye irritation and skin sensitisation testing, with pre-defined prediction models for substance classification. Many of these methods have been adopted as OECD test guidelines. Various testing strategies have been successfully validated in extensive in-house and inter-laboratory studies, but they have not yet received formal acceptance for substance classification. Therefore, under the European REACH Regulation, data from testing strategies can, in general, only be used in so-called weight-of-evidence approaches. While animal testing data generated under the specific REACH information requirements are per se sufficient, the sufficiency of weight-of-evidence approaches can be questioned under the REACH system, and further animal testing can be required. This constitutes an imbalance between the regulatory acceptance of data from approved non-animal methods and animal tests that is not justified on scientific grounds. To ensure that testing strategies for local tolerance testing truly serve to replace animal testing for the REACH registration 2018 deadline (when the majority of existing chemicals have to be registered), clarity on their regulatory acceptance as complete replacements is urgently required.

  8. Local tolerance testing under REACH: Accepted non-animal methods are not on equal footing with animal tests.

    PubMed

    Sauer, Ursula G; Hill, Erin H; Curren, Rodger D; Raabe, Hans A; Kolle, Susanne N; Teubner, Wera; Mehling, Annette; Landsiedel, Robert

    2016-07-01

    In general, no single non-animal method can cover the complexity of any given animal test. Therefore, fixed sets of in vitro (and in chemico) methods have been combined into testing strategies for skin and eye irritation and skin sensitisation testing, with pre-defined prediction models for substance classification. Many of these methods have been adopted as OECD test guidelines. Various testing strategies have been successfully validated in extensive in-house and inter-laboratory studies, but they have not yet received formal acceptance for substance classification. Therefore, under the European REACH Regulation, data from testing strategies can, in general, only be used in so-called weight-of-evidence approaches. While animal testing data generated under the specific REACH information requirements are per se sufficient, the sufficiency of weight-of-evidence approaches can be questioned under the REACH system, and further animal testing can be required. This constitutes an imbalance between the regulatory acceptance of data from approved non-animal methods and animal tests that is not justified on scientific grounds. To ensure that testing strategies for local tolerance testing truly serve to replace animal testing for the REACH registration 2018 deadline (when the majority of existing chemicals have to be registered), clarity on their regulatory acceptance as complete replacements is urgently required. PMID:27494627

  9. Modelling Farm Animal Welfare

    PubMed Central

    Collins, Lisa M.; Part, Chérie E.

    2013-01-01

    Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411

  10. Animal models of scoliosis.

    PubMed

    Bobyn, Justin D; Little, David G; Gray, Randolph; Schindeler, Aaron

    2015-04-01

    Multiple techniques designed to induce scoliotic deformity have been applied across many animal species. We have undertaken a review of the literature regarding experimental models of scoliosis in animals to discuss their utility in comprehending disease aetiology and treatment. Models of scoliosis in animals can be broadly divided into quadrupedal and bipedal experiments. Quadrupedal models, in the absence of axial gravitation force, depend upon development of a mechanical asymmetry along the spine to initiate a scoliotic deformity. Bipedal models more accurately mimic human posture and consequently are subject to similar forces due to gravity, which have been long appreciated to be a contributing factor to the development of scoliosis. Many effective models of scoliosis in smaller animals have not been successfully translated to primates and humans. Though these models may not clarify the aetiology of human scoliosis, by providing a reliable and reproducible deformity in the spine they are a useful means with which to test interventions designed to correct and prevent deformity.

  11. Animal models for osteoporosis

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Maran, A.; Lotinun, S.; Hefferan, T.; Evans, G. L.; Zhang, M.; Sibonga, J. D.

    2001-01-01

    Animal models will continue to be important tools in the quest to understand the contribution of specific genes to establishment of peak bone mass and optimal bone architecture, as well as the genetic basis for a predisposition toward accelerated bone loss in the presence of co-morbidity factors such as estrogen deficiency. Existing animal models will continue to be useful for modeling changes in bone metabolism and architecture induced by well-defined local and systemic factors. However, there is a critical unfulfilled need to develop and validate better animal models to allow fruitful investigation of the interaction of the multitude of factors which precipitate senile osteoporosis. Well characterized and validated animal models that can be recommended for investigation of the etiology, prevention and treatment of several forms of osteoporosis have been listed in Table 1. Also listed are models which are provisionally recommended. These latter models have potential but are inadequately characterized, deviate significantly from the human response, require careful choice of strain or age, or are not practical for most investigators to adopt. It cannot be stressed strongly enough that the enormous potential of laboratory animals as models for osteoporosis can only be realized if great care is taken in the choice of an appropriate species, age, experimental design, and measurements. Poor choices will results in misinterpretation of results which ultimately can bring harm to patients who suffer from osteoporosis by delaying advancement of knowledge.

  12. Animal models of tinnitus.

    PubMed

    Brozoski, Thomas J; Bauer, Carol A

    2016-08-01

    Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or

  13. Animal models of sepsis

    PubMed Central

    Fink, Mitchell P

    2014-01-01

    Sepsis remains a common, serious, and heterogeneous clinical entity that is difficult to define adequately. Despite its importance as a public health problem, efforts to develop and gain regulatory approval for a specific therapeutic agent for the adjuvant treatment of sepsis have been remarkably unsuccessful. One step in the critical pathway for the development of a new agent for adjuvant treatment of sepsis is evaluation in an appropriate animal model of the human condition. Unfortunately, the animal models that have been used for this purpose have often yielded misleading findings. It is likely that there are multiple reasons for the discrepancies between the results obtained in tests of pharmacological agents in animal models of sepsis and the outcomes of human clinical trials. One of important reason may be that the changes in gene expression, which are triggered by trauma or infection, are different in mice, a commonly used species for preclinical testing, and humans. Additionally, many species, including mice and baboons, are remarkably resistant to the toxic effects of bacterial lipopolysaccharide, whereas humans are exquisitely sensitive. New approaches toward the use of animals for sepsis research are being investigated. But, at present, results from preclinical studies of new therapeutic agents for sepsis must be viewed with a degree of skepticism. PMID:24022070

  14. Animal Models of Atherosclerosis

    PubMed Central

    Getz, Godfrey S.; Reardon, Catherine A.

    2012-01-01

    Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Both cells of the vessel wall and cells of the immune system participate in atherogenesis. This process is heavily influenced by plasma lipoproteins, genetics and the hemodynamics of the blood flow in the artery. A variety of small and large animal models have been used to study the atherogenic process. No model is ideal as each has its own advantages and limitations with respect to manipulation of the atherogenic process and modeling human atherosclerosis or lipoprotein profile. Useful large animal models include pigs, rabbits and non-human primates. Due in large part to the relative ease of genetic manipulation and the relatively short time frame for the development of atherosclerosis, murine models are currently the most extensively used. While not all aspects of murine atherosclerosis are identical to humans, studies using murine models have suggested potential biological processes and interactions that underlie this process. As it becomes clear that different factors may influence different stages of lesion development, the use of mouse models with the ability to turn on or delete proteins or cells in tissue specific and temporal manner will be very valuable. PMID:22383700

  15. Modeling animal landscapes.

    PubMed

    Porter, W P; Ostrowski, S; Williams, J B

    2010-01-01

    There is an increasing need to assess the effects of climate and land-use change on habitat quality, ideally from a mechanistic basis. The symposium "Molecules to Migration: Pressures of Life" at the Fourth International Conference in Africa for Comparative Physiology and Biochemistry, Maasai Mara National Reserve, Kenya, 2008, illustrated how the principles of biophysical ecology can capture the mechanistic links between organisms, climate, and other habitat features. These principles provide spatially explicit assessments of habitat quality from a physiological perspective (i.e., "animal landscapes") that can be validated independently of the data used to derive and parameterize them. The contents of this symposium showcased how the modeling of animal landscapes can be used to assess key issues in applied and theoretical ecology. The presentations included applications to amphibians, reptiles, birds, and mammals. The rare Arabian oryx on the Arabian Peninsula is used as an example for energetic calculations and their implications for behavior on the landscape. PMID:20670170

  16. Animal models of candidiasis.

    PubMed

    Clancy, Cornelius J; Cheng, Shaoji; Nguyen, Minh Hong

    2009-01-01

    Animal models are powerful tools to study the pathogenesis of diverse types of candidiasis. Murine models are particularly attractive because of cost, ease of handling, technical feasibility, and experience with their use. In this chapter, we describe methods for two of the most popular murine models of disease caused by Candida albicans. In an intravenously disseminated candidiasis (DC) model, immunocompetent mice are infected by lateral tail vein injections of a C. albicans suspension. Endpoints include mortality, tissue burdens of infection (most importantly in the kidneys, although spleens and livers are sometimes also assessed), and histopathology of infected organs. In a model of oral/esophageal candidiasis, mice are immunosuppressed with cortisone acetate and inoculated in the oral cavities using swabs saturated with a C. albicans suspension. Since mice do not die from oral candidiasis in this model, endpoints are tissue burden of infection and histopathology. The DC and oral/esophageal models are most commonly used for studies of C. albicans virulence, in which the disease-causing ability of a mutant strain is compared with an isogenic parent strain. Nevertheless, the basic techniques we describe are also applicable to models adapted to investigate other aspects of pathogenesis, such as spatiotemporal patterns of gene expression, specific aspects of host immune response and assessment of antifungal agents, immunomodulatory strategies, and vaccines.

  17. Integrated Model for E-Learning Acceptance

    NASA Astrophysics Data System (ADS)

    Ramadiani; Rodziah, A.; Hasan, S. M.; Rusli, A.; Noraini, C.

    2016-01-01

    E-learning is not going to work if the system is not used in accordance with user needs. User Interface is very important to encourage using the application. Many theories had discuss about user interface usability evaluation and technology acceptance separately, actually why we do not make it correlation between interface usability evaluation and user acceptance to enhance e-learning process. Therefore, the evaluation model for e-learning interface acceptance is considered important to investigate. The aim of this study is to propose the integrated e-learning user interface acceptance evaluation model. This model was combined some theories of e-learning interface measurement such as, user learning style, usability evaluation, and the user benefit. We formulated in constructive questionnaires which were shared at 125 English Language School (ELS) students. This research statistics used Structural Equation Model using LISREL v8.80 and MANOVA analysis.

  18. Model of aircraft passenger acceptance

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.

    1978-01-01

    A technique developed to evaluate the passenger response to a transportation system environment is described. Reactions to motion, noise, temperature, seating, ventilation, sudden jolts and descents are modeled. Statistics are presented for the age, sex, occupation, and income distributions of the candidates analyzed. Values are noted for the relative importance of system variables such as time savings, on-time arrival, convenience, comfort, safety, the ability to read and write, and onboard services.

  19. Animal Models in Osteosarcoma

    PubMed Central

    Guijarro, Maria V.; Ghivizzani, Steven C.; Gibbs, C. Parker

    2014-01-01

    Osteosarcoma (OS) is the most common non-hematologic primary tumor of bone in children and adults. High-dose cytotoxic chemotherapy and surgical resection have improved prognosis, with long-term survival for non-metastatic disease approaching 70%. However, most OS tumors are high grade and tend to rapidly develop pulmonary metastases. Despite clinical advances, patients with metastatic disease or relapse have a poor prognosis. Toward a better understanding of the molecular pathogenesis of human OS, several genetically modified OS mouse models have been developed and will be reviewed here. However, better animal models that more accurately recapitulate the natural progression of the disease are needed for the development of improved prognostic and diagnostic markers as well as targeted therapies for both primary and metastatic OS. PMID:25101245

  20. Novel animal models of affective disorders.

    PubMed

    Redei, E E; Ahmadiyeh, N; Baum, A E; Sasso, D A; Slone, J L; Solberg, L C; Will, C C; Volenec, A

    2001-01-01

    Is there an appropriate animal model for human affective disorders? The traditional difficulties in accepting animal models for psychopathology stem from the argument that there is no evidence for concluding that what occurs in the brain of the animal is equivalent to what occurs in the brain of a human. However, if one models any or some core aspects of affective disorder, this model can become an invaluable tool in the analysis of the multitude of causes, genetic, environmental, or pharmacological, that can bring about symptoms homologous to those of patients with affective disorders. Animal models can also allow the study of the mechanisms of specific behaviors, their pathophysiology, and can aid in developing and predicting therapeutic responses to pharmacologic agents. Although animals exhibit complex and varied social and emotional behaviors for which well-validated and standardized measures exist, an understanding that a precise replica of human affective disorders cannot be expected in a single animal model is crucial. Instead, a good animal model of a human disorder should fulfill as many of the four main criteria as possible: (1) strong behavioral similarities, (2) common cause, (3) similar pathophysiology, and (4) common treatment. An animal model fulfilling any or most of these criteria can be used to elucidate the mechanisms of the specific aspect of the model that is homologous to the human disorder. A wide range of animal models of affective disorders, primarily depression, has been developed to date. They include models in which "depressive behavior" is the result of genetic selection or manipulation, environmental stressors during development or in adulthood, or pharmacologic treatments. The assessment of these animal models is based either on behavioral tests measuring traits that are homologous to symptoms of the human disorder they model, or behavioral tests responsive to appropriate pharmacologic treatments. The goal of this review is to focus

  1. ANIMAL MODELS FOR IMMUNOTOXICITY

    EPA Science Inventory

    Greater susceptibility to infection is a hallmark of compromised immune function in humans and animals, and is often considered the benchmark against which the predictive value of immune function tests are compared. This focus of this paper is resistance to infection with the pa...

  2. Animal Models of Colorectal Cancer

    PubMed Central

    Johnson, Robert L.; Fleet, James C.

    2012-01-01

    Colorectal cancer is a heterogeneous disease that afflicts a large number of people in the United States. The use of animal models has the potential to increase our understanding of carcinogenesis, tumor biology, and the impact of specific molecular events on colon biology. In addition, animal models with features of specific human colorectal cancers can be used to test strategies for cancer prevention and treatment. In this review we provide an overview of the mechanisms driving human cancer, we discuss the approaches one can take to model colon cancer in animals, and we describe a number of specific animal models that have been developed for the study of colon cancer. We believe that there are many valuable animal models to study various aspects of human colorectal cancer. However, opportunities for improving upon these models exist. PMID:23076650

  3. Animal models of colorectal cancer.

    PubMed

    Johnson, Robert L; Fleet, James C

    2013-06-01

    Colorectal cancer is a heterogeneous disease that afflicts a large number of people in the USA. The use of animal models has the potential to increase our understanding of carcinogenesis, tumor biology, and the impact of specific molecular events on colon biology. In addition, animal models with features of specific human colorectal cancers can be used to test strategies for cancer prevention and treatment. In this review, we provide an overview of the mechanisms driving human cancer, we discuss the approaches one can take to model colon cancer in animals, and we describe a number of specific animal models that have been developed for the study of colon cancer. We believe that there are many valuable animal models to study various aspects of human colorectal cancer. However, opportunities for improving upon these models exist.

  4. Animal models of erectile dysfunction.

    PubMed

    Kapoor, Mandeep Singh; Khan, Samsroz Ahmad; Gupta, Sanjay Kumar; Choudhary, Rajesh; Bodakhe, Surendra H

    2015-01-01

    Erectile dysfunction (ED) is a prevalent male sexual dysfunction with profound adverse effects on the physical and the psychosocial health of men and, subsequently, on their partners. The expanded use of various types of rodent models has produced some advances in the study of ED, and neurophysiological studies using various animal models have provided important insights into human sexual dysfunction. At present, animal models play a key role in exploring and screening novel drugs designed to treat ED.

  5. Animal models of systemic sclerosis.

    PubMed

    Morin, Florence; Kavian, Niloufar; Batteux, Frederic

    2015-01-01

    Systemic sclerosis is a systemic connective tissue disorder characterized by the fibrosis of the skin and certain visceral organs, vasculopathy, and immunological abnormalities. Several genetic and inducible animal models of SSc have been developed and are available for research studies. The purpose of this review is to summarize the various animal models of systemic sclerosis and describe the various contributions of these models in terms of understanding the pathophysiology of the condition and searching for new therapeutic strategies for this incurable disease.

  6. Animal models of cerebral ischemia

    NASA Astrophysics Data System (ADS)

    Khodanovich, M. Yu.; Kisel, A. A.

    2015-11-01

    Cerebral ischemia remains one of the most frequent causes of death and disability worldwide. Animal models are necessary to understand complex molecular mechanisms of brain damage as well as for the development of new therapies for stroke. This review considers a certain range of animal models of cerebral ischemia, including several types of focal and global ischemia. Since animal models vary in specificity for the human disease which they reproduce, the complexity of surgery, infarct size, reliability of reproduction for statistical analysis, and adequate models need to be chosen according to the aim of a study. The reproduction of a particular animal model needs to be evaluated using appropriate tools, including the behavioral assessment of injury and non-invasive and post-mortem control of brain damage. These problems also have been summarized in the review.

  7. Animal Models in Burn Research

    PubMed Central

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury; to elucidate the pathophysiology and explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review paper aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  8. Animal models for candidiasis.

    PubMed

    Conti, Heather R; Huppler, Anna R; Whibley, Natasha; Gaffen, Sarah L

    2014-04-02

    Multiple forms of candidiasis are clinically important in humans. Established murine models of disseminated, oropharyngeal, vaginal, and cutaneous candidiasis caused by Candida albicans are described in this unit. Detailed materials and methods for C. albicans growth and detection are also described.

  9. Animal models of portal hypertension

    PubMed Central

    Abraldes, Juan G; Pasarín, Marcos; García-Pagán, Juan Carlos

    2006-01-01

    Animal models have allowed detailed study of hemodynamic alterations typical of portal hypertension and the molecular mechanisms involved in abnormalities in splanchnic and systemic circulation associated with this syndrome. Models of prehepatic portal hypertension can be used to study alterations in the splanchnic circulation and the pathophysiology of the hyperdynamic circulation. Models of cirrhosis allow study of the alterations in intrahepatic microcirculation that lead to increased resistance to portal flow. This review summarizes the currently available literature on animal models of portal hypertension and analyzes their relative utility. The criteria for choosing a particular model, depending on the specific objectives of the study, are also discussed. PMID:17075968

  10. Animal models for human diseases.

    PubMed

    Rust, J H

    1982-01-01

    The use of animal models for the study of human disease is, for the most part, a recent development. This discussion of the use of animal models for human diseases directs attention to the sterile period, early advances, some personal experiences, the human as the model, biological oddities among common laboratory animals, malignancies in laboratory animals, problems created by federal regulations, cancer tests with animals, and what the future holds in terms of the use of animal models as an aid to understanding human disease. In terms of early use of animal models, there was a school of rabbis, some of whom were also physicians, in Babylon who studied and wrote extensively on ritual slaughter and the suitability of birds and beasts for food. Considerable detailed information on animal pathology, physiology, anatomy, and medicine in general can be found in the Soncino Babylonian Talmudic Translations. The 1906 edition of the "Jewish Encyclopedia," has been a rich resource. Although it has not been possible to establish what diseases of animals were studied and their relationship to the diseases of humans, there are fascinating clues to pursue, despite the fact that these were sterile years for research in medicine. The quotation from the Talmud is of interest: "The medical knowledge of the Talmudist was based upon tradition, the dissection of human bodies, observation of disease and experiments upon animals." A bright light in the lackluster years of medical research was provided by Galen, considered the originator of research in physiology and anatomy. His dissection of animals and work on apes and other lower animals were models for human anatomy and physiology and the bases for many treatises. Yet, Galen never seemed to suggest that animals could serve as models for human diseases. Most early physicians who can be considered to have been students of disease developed their medical knowledge by observing the sick under their care. 1 early medical investigator

  11. Animal models in myopia research.

    PubMed

    Schaeffel, Frank; Feldkaemper, Marita

    2015-11-01

    Our current understanding of the development of refractive errors, in particular myopia, would be substantially limited had Wiesel and Raviola not discovered by accident that monkeys develop axial myopia as a result of deprivation of form vision. Similarly, if Josh Wallman and colleagues had not found that simple plastic goggles attached to the chicken eye generate large amounts of myopia, the chicken model would perhaps not have become such an important animal model. Contrary to previous assumptions about the mechanisms of myopia, these animal models suggested that eye growth is visually controlled locally by the retina, that an afferent connection to the brain is not essential and that emmetropisation uses more sophisticated cues than just the magnitude of retinal blur. While animal models have shown that the retina can determine the sign of defocus, the underlying mechanism is still not entirely clear. Animal models have also provided knowledge about the biochemical nature of the signal cascade converting the output of retinal image processing to changes in choroidal thickness and scleral growth; however, a critical question was, and still is, can the results from animal models be applied to myopia in children? While the basic findings from chickens appear applicable to monkeys, some fundamental questions remain. If eye growth is guided by visual feedback, why is myopic development not self-limiting? Why does undercorrection not arrest myopic progression even though positive lenses induce myopic defocus, which leads to the development of hyperopia in emmetropic animals? Why do some spectacle or contact lens designs reduce myopic progression and others not? It appears that some major differences exist between animals reared with imposed defocus and children treated with various optical corrections, although without the basic knowledge obtained from animal models, we would be lost in an abundance of untestable hypotheses concerning human myopia. PMID:26769177

  12. Animal Models of Bone Metastasis.

    PubMed

    Simmons, J K; Hildreth, B E; Supsavhad, W; Elshafae, S M; Hassan, B B; Dirksen, W P; Toribio, R E; Rosol, T J

    2015-09-01

    Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone.

  13. Animal Models of Bone Metastasis

    PubMed Central

    Simmons, J. K.; Hildreth, B. E.; Supsavhad, W.; Elshafae, S. M.; Hassan, B. B.; Dirksen, W. P.; Toribio, R. E.; Rosol, T. J.

    2015-01-01

    Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone. PMID:26021553

  14. Animal Models of Head Trauma

    PubMed Central

    Cernak, Ibolja

    2005-01-01

    Summary: Animal models of traumatic brain injury (TBI) are used to elucidate primary and secondary sequelae underlying human head injury in an effort to identify potential neuroprotective therapies for developing and adult brains. The choice of experimental model depends upon both the research goal and underlying objectives. The intrinsic ability to study injury-induced changes in behavior, physiology, metabolism, the blood/tissue interface, the blood brain barrier, and/or inflammatory- and immune-mediated responses, makes in vivo TBI models essential for neurotrauma research. Whereas human TBI is a highly complex multifactorial disorder, animal trauma models tend to replicate only single factors involved in the pathobiology of head injury using genetically well-defined inbred animals of a single sex. Although such an experimental approach is helpful to delineate key injury mechanisms, the simplicity and hence inability of animal models to reflect the complexity of clinical head injury may underlie the discrepancy between preclinical and clinical trials of neuroprotective therapeutics. Thus, a search continues for new animal models, which would more closely mimic the highly heterogeneous nature of human TBI, and address key factors in treatment optimization. PMID:16389305

  15. Optogenetics in psychiatric animal models.

    PubMed

    Wentz, Christian T; Oettl, Lars-Lennart; Kelsch, Wolfgang

    2013-10-01

    Optogenetics is the optical control of neuronal excitability by genetically delivered light-activated channels and pumps and represents a promising tool to fuel the study of circuit function in psychiatric animal models. This review highlights three developments. First, we examine the application of optogenetics in one of the neuromodulators central to the pathophysiology of many psychiatric disorders, the dopaminergic system. We then discuss recent work in translating functional magnetic resonance imaging in small animals (in which optogenetics can be employed to reveal physiological mechanisms underlying disease-related alterations in brain circuits) to patients. Finally, we describe emerging technological developments for circuit manipulation in freely behaving animals.

  16. Animal welfare and use of silkworm as a model animal.

    PubMed

    Sekimizu, N; Paudel, A; Hamamoto, H

    2012-08-01

    Sacrificing model animals is required for developing effective drugs before being used in human beings. In Japan today, at least 4,210,000 mice and other mammals are sacrificed to a total of 6,140,000 per year for the purpose of medical studies. All the animals treated in Japan, including test animals, are managed under control of "Act on Welfare and Management of Animals". Under the principle of this Act, no person shall kill, injure, or inflict cruelty on animals without due cause. "Animal" addressed in the Act can be defined as a "vertebrate animal". If we can make use of invertebrate animals in testing instead of vertebrate ones, that would be a remarkable solution for the issue of animal welfare. Furthermore, there are numerous advantages of using invertebrate animal models: less space and small equipment are enough for taking care of a large number of animals and thus are cost-effective, they can be easily handled, and many biological processes and genes are conserved between mammals and invertebrates. Today, many invertebrates have been used as animal models, but silkworms have many beneficial traits compared to mammals as well as other insects. In a Genome Pharmaceutical Institute's study, we were able to achieve a lot making use of silkworms as model animals. We would like to suggest that pharmaceutical companies and institutes consider the use of the silkworm as a model animal which is efficacious both for financial value by cost cutting and ethical aspects in animals' welfare.

  17. Animal models of pituitary neoplasia

    PubMed Central

    Lines, K.E.; Stevenson, M.; Thakker, R.V.

    2016-01-01

    Pituitary neoplasias can occur as part of a complex inherited disorder, or more commonly as sporadic (non-familial) disease. Studies of the molecular and genetic mechanisms causing such pituitary tumours have identified dysregulation of >35 genes, with many revealed by studies in mice, rats and zebrafish. Strategies used to generate these animal models have included gene knockout, gene knockin and transgenic over-expression, as well as chemical mutagenesis and drug induction. These animal models provide an important resource for investigation of tissue-specific tumourigenic mechanisms, and evaluations of novel therapies, illustrated by studies into multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome in which ∼30% of patients develop pituitary adenomas. This review describes animal models of pituitary neoplasia that have been generated, together with some recent advances in gene editing technologies, and an illustration of the use of the Men1 mouse as a pre clinical model for evaluating novel therapies. PMID:26320859

  18. ANIMAL MODELS FOR FOOD ALLERGY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal models have been used to provide insight into the complex immunological and pathophysioligical mechanisms of human Type 1 allergic diseases. Research efforts that include mechanistic studies in search of new therapies and screening models for hazard identification of potential allergens in a...

  19. Chinese Nurses' Acceptance of PDA: A Cross-Sectional Survey Using a Technology Acceptance Model.

    PubMed

    Wang, Yanling; Xiao, Qian; Sun, Liu; Wu, Ying

    2016-01-01

    This study explores Chinese nurses' acceptance of PDA, using a questionnaire based on the framework of Technology Acceptance Model (TAM). 357 nurses were involved in the study. The results reveal the scores of the nurses' acceptance of PDA were means 3.18~3.36 in four dimensions. The younger of nurses, the higher nurses' title, the longer previous usage time, the more experienced using PDA, and the more acceptance of PDA. Therefore, the hospital administrators may change strategies to enhance nurses' acceptance of PDA, and promote the wide application of PDA.

  20. Stochastic modelling of animal movement

    PubMed Central

    Smouse, Peter E.; Focardi, Stefano; Moorcroft, Paul R.; Kie, John G.; Forester, James D.; Morales, Juan M.

    2010-01-01

    Modern animal movement modelling derives from two traditions. Lagrangian models, based on random walk behaviour, are useful for multi-step trajectories of single animals. Continuous Eulerian models describe expected behaviour, averaged over stochastic realizations, and are usefully applied to ensembles of individuals. We illustrate three modern research arenas. (i) Models of home-range formation describe the process of an animal ‘settling down’, accomplished by including one or more focal points that attract the animal's movements. (ii) Memory-based models are used to predict how accumulated experience translates into biased movement choices, employing reinforced random walk behaviour, with previous visitation increasing or decreasing the probability of repetition. (iii) Lévy movement involves a step-length distribution that is over-dispersed, relative to standard probability distributions, and adaptive in exploring new environments or searching for rare targets. Each of these modelling arenas implies more detail in the movement pattern than general models of movement can accommodate, but realistic empiric evaluation of their predictions requires dense locational data, both in time and space, only available with modern GPS telemetry. PMID:20566497

  1. Animal models of eating disorders

    PubMed Central

    Kim, Sangwon F.

    2012-01-01

    Feeding is a fundamental process for basic survival, and is influenced by genetics and environmental stressors. Recent advances in our understanding of behavioral genetics have provided a profound insight on several components regulating eating patterns. However, our understanding of eating disorders such as anorexia nervosa, bulimia nervosa, and binge eating is still poor. The animal model is an essential tool in the investigation of eating behaviors and their pathological forms, yet development of an appropriate animal model for eating disorders still remains challenging due to our limited knowledge and some of the more ambiguous clinical diagnostic measures. Therefore, this review will serve to focus on the basic clinical features of eating disorders and the current advances in animal models of eating disorders. PMID:22465439

  2. Animal models of cardiac cachexia.

    PubMed

    Molinari, Francesca; Malara, Natalia; Mollace, Vincenzo; Rosano, Giuseppe; Ferraro, Elisabetta

    2016-09-15

    Cachexia is the loss of body weight associated with several chronic diseases including chronic heart failure (CHF). The cachectic condition is mainly due to loss of skeletal muscle mass and adipose tissue depletion. The majority of experimental in vivo studies on cachexia rely on animal models of cancer cachexia while a reliable and appropriate model for cardiac cachexia has not yet been established. A critical issue in generating a cardiac cachexia model is that genetic modifications or pharmacological treatments impairing the heart functionality and used to obtain the heart failure model might likely impair the skeletal muscle, this also being a striated muscle and sharing with the myocardium several molecular and physiological mechanisms. On the other hand, often, the induction of heart damage in the several existing models of heart failure does not necessarily lead to skeletal muscle loss and cachexia. Here we describe the main features of cardiac cachexia and illustrate some animal models proposed for cardiac cachexia studies; they include the genetic calsequestrin and Dahl salt-sensitive models, the monocrotaline model and the surgical models obtained by left anterior descending (LAD) ligation, transverse aortic constriction (TAC) and ascending aortic banding. The availability of a specific animal model for cardiac cachexia is a crucial issue since, besides the common aspects of cachexia in the different syndromes, each disease has some peculiarities in its etiology and pathophysiology leading to cachexia. Such peculiarities need to be unraveled in order to find new targets for effective therapies. PMID:27317993

  3. Animal models of cardiac cachexia.

    PubMed

    Molinari, Francesca; Malara, Natalia; Mollace, Vincenzo; Rosano, Giuseppe; Ferraro, Elisabetta

    2016-09-15

    Cachexia is the loss of body weight associated with several chronic diseases including chronic heart failure (CHF). The cachectic condition is mainly due to loss of skeletal muscle mass and adipose tissue depletion. The majority of experimental in vivo studies on cachexia rely on animal models of cancer cachexia while a reliable and appropriate model for cardiac cachexia has not yet been established. A critical issue in generating a cardiac cachexia model is that genetic modifications or pharmacological treatments impairing the heart functionality and used to obtain the heart failure model might likely impair the skeletal muscle, this also being a striated muscle and sharing with the myocardium several molecular and physiological mechanisms. On the other hand, often, the induction of heart damage in the several existing models of heart failure does not necessarily lead to skeletal muscle loss and cachexia. Here we describe the main features of cardiac cachexia and illustrate some animal models proposed for cardiac cachexia studies; they include the genetic calsequestrin and Dahl salt-sensitive models, the monocrotaline model and the surgical models obtained by left anterior descending (LAD) ligation, transverse aortic constriction (TAC) and ascending aortic banding. The availability of a specific animal model for cardiac cachexia is a crucial issue since, besides the common aspects of cachexia in the different syndromes, each disease has some peculiarities in its etiology and pathophysiology leading to cachexia. Such peculiarities need to be unraveled in order to find new targets for effective therapies.

  4. Animal models of cardiovascular diseases.

    PubMed

    Zaragoza, Carlos; Gomez-Guerrero, Carmen; Martin-Ventura, Jose Luis; Blanco-Colio, Luis; Lavin, Begoña; Mallavia, Beñat; Tarin, Carlos; Mas, Sebastian; Ortiz, Alberto; Egido, Jesus

    2011-01-01

    Cardiovascular diseases are the first leading cause of death and morbidity in developed countries. The use of animal models have contributed to increase our knowledge, providing new approaches focused to improve the diagnostic and the treatment of these pathologies. Several models have been developed to address cardiovascular complications, including atherothrombotic and cardiac diseases, and the same pathology have been successfully recreated in different species, including small and big animal models of disease. However, genetic and environmental factors play a significant role in cardiovascular pathophysiology, making difficult to match a particular disease, with a single experimental model. Therefore, no exclusive method perfectly recreates the human complication, and depending on the model, additional considerations of cost, infrastructure, and the requirement for specialized personnel, should also have in mind. Considering all these facts, and depending on the budgets available, models should be selected that best reproduce the disease being investigated. Here we will describe models of atherothrombotic diseases, including expanding and occlusive animal models, as well as models of heart failure. Given the wide range of models available, today it is possible to devise the best strategy, which may help us to find more efficient and reliable solutions against human cardiovascular diseases. PMID:21403831

  5. Measuring Technology Acceptance Level of Turkish Pre-Service English Teachers by Using Technology Acceptance Model

    ERIC Educational Resources Information Center

    Kirmizi, Özkan

    2014-01-01

    The aim of this study is to investigate technology acceptance of prospective English teachers by using Technology Acceptance Model (TAM) in Turkish context. The study is based on Structural Equation Model (SEM). The participants of the study from English Language Teaching Departments of Hacettepe, Gazi and Baskent Universities. The participants…

  6. Animal Models of Ricin Toxicosis

    PubMed Central

    Song, Kejing; Sivasubramani, Satheesh K.; Gardner, Donald J.; Pincus, Seth H.

    2015-01-01

    Animal models of ricin toxicosis are necessary for testing the efficacy of therapeutic measures, as well studying the mechanisms by which ricin exerts its toxicity in intact animals. Because ricin can serve as a particularly well-characterized model of tissue damage, and the host response to that damage, studies of the mechanisms of ricin toxicity may have more general applicability. For example, our studies of the molecular mechanisms underlying the development of ricin-induced hypoglycemia may help elucidate the relationship of type II diabetes, insulin resistance, and inflammation. Studies in non-human primates are most relevant for testing and developing agents having clinical utility. But these animals are expensive and limited in quantity, and so rodents are used for most mechanistic studies. PMID:21956160

  7. Technology, Demographic Characteristics and E-Learning Acceptance: A Conceptual Model Based on Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Tarhini, Ali; Elyas, Tariq; Akour, Mohammad Ali; Al-Salti, Zahran

    2016-01-01

    The main aim of this paper is to develop an amalgamated conceptual model of technology acceptance that explains how individual, social, cultural and organizational factors affect the students' acceptance and usage behaviour of the Web-based learning systems. More specifically, the proposed model extends the Technology Acceptance Model (TAM) to…

  8. Animal models of polymicrobial pneumonia

    PubMed Central

    Hraiech, Sami; Papazian, Laurent; Rolain, Jean-Marc; Bregeon, Fabienne

    2015-01-01

    Pneumonia is one of the leading causes of severe and occasionally life-threatening infections. The physiopathology of pneumonia has been extensively studied, providing information for the development of new treatments for this condition. In addition to in vitro research, animal models have been largely used in the field of pneumonia. Several models have been described and have provided a better understanding of pneumonia under different settings and with various pathogens. However, the concept of one pathogen leading to one infection has been challenged, and recent flu epidemics suggest that some pathogens exhibit highly virulent potential. Although “two hits” animal models have been used to study infectious diseases, few of these models have been described in pneumonia. Therefore the aims of this review were to provide an overview of the available literature in this field, to describe well-studied and uncommon pathogen associations, and to summarize the major insights obtained from this information. PMID:26170617

  9. Animal Models of Subjective Tinnitus

    PubMed Central

    2014-01-01

    Tinnitus is one of the major audiological diseases, affecting a significant portion of the ageing society. Despite its huge personal and presumed economic impact there are only limited therapeutic options available. The reason for this deficiency lies in the very nature of the disease as it is deeply connected to elementary plasticity of auditory processing in the central nervous system. Understanding these mechanisms is essential for developing a therapy that reverses the plastic changes underlying the pathogenesis of tinnitus. This requires experiments that address individual neurons and small networks, something usually not feasible in human patients. However, in animals such invasive experiments on the level of single neurons with high spatial and temporal resolution are possible. Therefore, animal models are a very critical element in the combined efforts for engineering new therapies. This review provides an overview over the most important features of animal models of tinnitus: which laboratory species are suitable, how to induce tinnitus, and how to characterize the perceived tinnitus by behavioral means. In particular, these aspects of tinnitus animal models are discussed in the light of transferability to the human patients. PMID:24829805

  10. Animal models of subjective tinnitus.

    PubMed

    von der Behrens, Wolfger

    2014-01-01

    Tinnitus is one of the major audiological diseases, affecting a significant portion of the ageing society. Despite its huge personal and presumed economic impact there are only limited therapeutic options available. The reason for this deficiency lies in the very nature of the disease as it is deeply connected to elementary plasticity of auditory processing in the central nervous system. Understanding these mechanisms is essential for developing a therapy that reverses the plastic changes underlying the pathogenesis of tinnitus. This requires experiments that address individual neurons and small networks, something usually not feasible in human patients. However, in animals such invasive experiments on the level of single neurons with high spatial and temporal resolution are possible. Therefore, animal models are a very critical element in the combined efforts for engineering new therapies. This review provides an overview over the most important features of animal models of tinnitus: which laboratory species are suitable, how to induce tinnitus, and how to characterize the perceived tinnitus by behavioral means. In particular, these aspects of tinnitus animal models are discussed in the light of transferability to the human patients.

  11. Animal Models of Sleep Disorders

    PubMed Central

    Toth, Linda A; Bhargava, Pavan

    2013-01-01

    Problems with sleep affect a large part of the general population, with more than half of all people in the United States reporting difficulties with sleep or insufficient sleep at various times and about 40 million affected chronically. Sleep is a complex physiologic process that is influenced by many internal and environmental factors, and problems with sleep are often related to specific personal circumstances or are based on subjective reports from the affected person. Although human subjects are used widely in the study of sleep and sleep disorders, the study of animals has been invaluable in developing our understanding about the physiology of sleep and the underlying mechanisms of sleep disorders. Historically, the use of animals for the study of sleep disorders has arguably been most fruitful for the condition of narcolepsy, in which studies of dogs and mice revealed previously unsuspected mechanisms for this condition. The current overview considers animal models that have been used to study 4 of the most common human sleep disorders—insomnia, narcolepsy, restless legs syndrome, and sleep apnea—and summarizes considerations relevant to the use of animals for the study of sleep and sleep disorders. Animal-based research has been vital to the elucidation of mechanisms that underlie sleep, its regulation, and its disorders and undoubtedly will remain crucial for discovering and validating sleep mechanisms and testing interventions for sleep disorders. PMID:23582416

  12. Animal models of source memory.

    PubMed

    Crystal, Jonathon D

    2016-01-01

    Source memory is the aspect of episodic memory that encodes the origin (i.e., source) of information acquired in the past. Episodic memory (i.e., our memories for unique personal past events) typically involves source memory because those memories focus on the origin of previous events. Source memory is at work when, for example, someone tells a favorite joke to a person while avoiding retelling the joke to the friend who originally shared the joke. Importantly, source memory permits differentiation of one episodic memory from another because source memory includes features that were present when the different memories were formed. This article reviews recent efforts to develop an animal model of source memory using rats. Experiments are reviewed which suggest that source memory is dissociated from other forms of memory. The review highlights strengths and weaknesses of a number of animal models of episodic memory. Animal models of source memory may be used to probe the biological bases of memory. Moreover, these models can be combined with genetic models of Alzheimer's disease to evaluate pharmacotherapies that ultimately have the potential to improve memory.

  13. Animal models of Kennedy disease.

    PubMed

    Merry, Diane E

    2005-07-01

    Since the identification of the polyglutamine repeat expansion responsible for Kennedy disease (KD) more than a decade ago, several laboratories have created animal models for KD. The slowly progressive nature of KD, its X-linked dominant mode of inheritance, and its recently elucidated hormone dependence have made the modeling of this lower motor neuron disease uniquely challenging. Several models have been generated in which variations in specificity, age of onset, and rate of progression have been achieved. Animal models that precisely reproduce the motor neuron specificity, delayed onset, and slow progression of disease may not support preclinical therapeutics testing, whereas models with rapidly progressing symptoms may preclude the ability to fully elucidate pathogenic pathways. Drosophila models of KD provide unique opportunities to use the power of genetics to identify pathogenic pathways at work in KD. This paper reviews the new wealth of transgenic mouse and Drosophila models for KD. Whereas differences, primarily in neuropathological findings, exist in these models, these differences may be exploited to begin to elucidate the most relevant pathological features of KD.

  14. Software Validation via Model Animation

    NASA Technical Reports Server (NTRS)

    Dutle, Aaron M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Butler, Ricky W.

    2015-01-01

    This paper explores a new approach to validating software implementations that have been produced from formally-verified algorithms. Although visual inspection gives some confidence that the implementations faithfully reflect the formal models, it does not provide complete assurance that the software is correct. The proposed approach, which is based on animation of formal specifications, compares the outputs computed by the software implementations on a given suite of input values to the outputs computed by the formal models on the same inputs, and determines if they are equal up to a given tolerance. The approach is illustrated on a prototype air traffic management system that computes simple kinematic trajectories for aircraft. Proofs for the mathematical models of the system's algorithms are carried out in the Prototype Verification System (PVS). The animation tool PVSio is used to evaluate the formal models on a set of randomly generated test cases. Output values computed by PVSio are compared against output values computed by the actual software. This comparison improves the assurance that the translation from formal models to code is faithful and that, for example, floating point errors do not greatly affect correctness and safety properties.

  15. [Animal models of cardiovascular disease].

    PubMed

    Chorro, Francisco J; Such-Belenguer, Luis; López-Merino, Vicente

    2009-01-01

    The use of animal models to study cardiovascular disease has made a substantial contribution to increasing our understanding of disease pathogenesis, has led to the development of diagnostic techniques, and has made it possible to verify the effectiveness of different preventative and therapeutic approaches, whether pharmacological or interventional. The main limitations stem from differences between human and experimentally induced pathology, in terms of both genetic regulatory mechanisms and factors that influence cardiovascular function. The experimental models and preparations used in cardiovascular research include those based on isolated cells or tissues or structures immersed in organ baths. The Langendorff system enables isolated perfused hearts to be studied directly under conditions of either no load or controlled loading. In small mammals, a number of models have been developed of cardiovascular conditions that result from spontaneous genetic mutations or, alternatively, that may be induced by specific genomic modification. One of the techniques employed is gene transfer, which can involve the controlled induction of mutations that result in the expression of abnormalities associated with the development of a broad range of different types of cardiovascular disease. Larger animals are used in experimental models in which it is important that physiological regulatory and homeostatic mechanisms are present.

  16. Animal models of erectile dysfunction

    PubMed Central

    Gajbhiye, Snehlata V.; Jadhav, Kshitij S.; Marathe, Padmaja A.; Pawar, Dattatray B.

    2015-01-01

    Animal models have contributed to a great extent to understanding and advancement in the field of sexual medicine. Many current medical and surgical therapies in sexual medicine have been tried based on these animal models. Extensive literature search revealed that the compiled information is limited. In this review, we describe various experimental models of erectile dysfunction (ED) encompassing their procedures, variables of assessment, advantages and disadvantages. The search strategy consisted of review of PubMed based articles. We included original research work and certain review articles available in PubMed database. The search terms used were “ED and experimental models,” “ED and nervous stimulation,” “ED and cavernous nerve stimulation,” “ED and central stimulation,” “ED and diabetes mellitus,” “ED and ageing,” “ED and hypercholesteremia,” “ED and Peyronie's disease,” “radiation induced ED,” “telemetric recording,” “ED and mating test” and “ED and non-contact erection test.” PMID:25624570

  17. Technological Diffusion within Educational Institutions: Applying the Technology Acceptance Model.

    ERIC Educational Resources Information Center

    Wolski, Stacy; Jackson, Sally

    Expectancy models of behavior such as the Theory of Reasoned Action (TRA) and the Technology Acceptance Model (TAM) offer guidelines that aid efforts to facilitate use of new technology. These models remind us that both acceptance of and resistance to technology use are grounded in beliefs and norms regarding the technology. Although TAM is widely…

  18. Nutraceuticals in joint health: animal models as instrumental tools.

    PubMed

    Mével, Elsa; Monfoulet, Laurent-Emmanuel; Merceron, Christophe; Coxam, Véronique; Wittrant, Yohann; Beck, Laurent; Guicheux, Jérôme

    2014-10-01

    Osteoarthritis (OA) is a degenerative joint disease with no curative treatments. Many studies have begun to demonstrate the efficacy of nutraceuticals for slowing down OA. Animal models are utilized as a compulsory step in demonstrating the protective potential of these compounds on joint health. Nevertheless, there exist a wide variety of available OA models and selecting a suitable system for evaluating the effects of a specific compound remains difficult. Here, we discuss animal studies that have investigated nutraceutical effects on OA. In particular, we highlight the large spectrum of animal models that are currently accepted for examining the OA-related effects of nutraceuticals, giving recommendations for their use. PMID:24955836

  19. Gerontechnology acceptance by elderly Hong Kong Chinese: a senior technology acceptance model (STAM).

    PubMed

    Chen, Ke; Chan, Alan Hoi Shou

    2014-01-01

    The purpose of this study was to develop and test a senior technology acceptance model (STAM) aimed at understanding the acceptance of gerontechnology by older Hong Kong Chinese people. The proposed STAM extended previous technology acceptance models and theories by adding age-related health and ability characteristics of older people. The proposed STAM was empirically tested using a cross-sectional questionnaire survey with a sample of 1012 seniors aged 55 and over in Hong Kong. The result showed that STAM was strongly supported and could explain 68% of the variance in the use of gerontechnology. For older Hong Kong Chinese, individual attributes, which include age, gender, education, gerontechnology self-efficacy and anxiety, and health and ability characteristics, as well as facilitating conditions explicitly and directly affected technology acceptance. These were better predictors of gerontechnology usage behaviour (UB) than the conventionally used attitudinal factors (usefulness and ease of use).

  20. Evaluation of the Acceptance of Audience Response System by Corporations Using the Technology Acceptance Model

    NASA Astrophysics Data System (ADS)

    Chu, Hsing-Hui; Lu, Ta-Jung; Wann, Jong-Wen

    The purpose of this research is to explore enterprises' acceptance of Audience Response System (ARS) using Technology Acceptance Model (TAM). The findings show that (1) IT characteristics and facilitating conditions could be external variables of TAM. (2) The degree of E-business has positive significant correlation with behavioral intention of employees. (3) TAM is a good model to predict and explain IT acceptance. (4) Demographic variables, industry and firm characteristics have no significant correlation with ARS acceptance. The results provide useful information to managers and ARS providers that (1) ARS providers should focus more on creating different usages to enhance interactivity and employees' using intention. (2) Managers should pay attention to build sound internal facilitating conditions for introducing IT. (3) According to the degree of E-business, managers should set up strategic stages of introducing IT. (4) Providers should increase product promotion and also leverage academic and government to promote ARS.

  1. Animal models of skin regeneration.

    PubMed

    Gawronska-Kozak, Barbara; Grabowska, Anna; Kopcewicz, Marta; Kur, Anna

    2014-03-01

    Cutaneous injury in the majority of vertebrate animals results in the formation of a scar in the post-injured area. Scar tissues, although beneficial for maintaining integrity of the post-wounded region often interferes with full recovery of injured tissues. The goal of wound-healing studies is to identify mechanisms to redirect reparative pathways from debilitating scar formation to regenerative pathways that lead to normal functionality. To perform such studies models of regeneration, which are rare in mammals, are required. In this review we discussed skin regenerative capabilities present in lower vertebrates and in models of skin scar-free healing in mammals, e.g. mammalian fetuses. However, we especially focused on the attributes of two unusual models of skin scar-free healing capabilities that occur in adult mammals, that is, those associated with nude, FOXN1-deficient mice and in wild-type African spiny mice.

  2. Animal models of cartilage repair

    PubMed Central

    Cook, J. L.; Hung, C. T.; Kuroki, K.; Stoker, A. M.; Cook, C. R.; Pfeiffer, F. M.; Sherman, S. L.; Stannard, J. P.

    2014-01-01

    Cartilage repair in terms of replacement, or regeneration of damaged or diseased articular cartilage with functional tissue, is the ‘holy grail’ of joint surgery. A wide spectrum of strategies for cartilage repair currently exists and several of these techniques have been reported to be associated with successful clinical outcomes for appropriately selected indications. However, based on respective advantages, disadvantages, and limitations, no single strategy, or even combination of strategies, provides surgeons with viable options for attaining successful long-term outcomes in the majority of patients. As such, development of novel techniques and optimisation of current techniques need to be, and are, the focus of a great deal of research from the basic science level to clinical trials. Translational research that bridges scientific discoveries to clinical application involves the use of animal models in order to assess safety and efficacy for regulatory approval for human use. This review article provides an overview of animal models for cartilage repair. Cite this article: Bone Joint Res 2014;4:89–94. PMID:24695750

  3. An animal model of fetishism.

    PubMed

    Köksal, Falih; Domjan, Michael; Kurt, Adnan; Sertel, Ozlem; Orüng, Sabiha; Bowers, Rob; Kumru, Gulsen

    2004-12-01

    An animal model of sexual fetishism was developed with male Japanese quail based on persistence of conditioned sexual responding during extinction to an inanimate object made of terrycloth (Experiments 1 and 3). This persistent responding occurred only in subjects that came to copulate with the terrycloth object, suggesting that the copulatory behavior served to maintain the fetishistic behavior. Sexual conditioning was carried out by pairing a conditioned stimulus (CS) with the opportunity to copulate with a female (the unconditioned stimulus or US). Copulation with the CS object and persistent responding did not develop if the CS was a light (Experiment 1) or if conditioning was carried out with a food US (Experiment 2). In addition, subjects that showed persistence in responding to the terrycloth CS did not persist in their responding to a light CS (Experiment 3). The results are consistent with the hypothesis that conditioned copulatory behavior creates a form of self-maintenance that leads to persistent responding to an inanimate object. The development of an animal model of such fetishistic behavior should facilitate experimental analysis of the phenomenon. PMID:15500813

  4. Animal models and conserved processes

    PubMed Central

    2012-01-01

    Background The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? Methods We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Results Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. Conclusion We conclude that even the presence of conserved processes is insufficient for inter

  5. Parathyroid diseases and animal models.

    PubMed

    Imanishi, Yasuo; Nagata, Yuki; Inaba, Masaaki

    2012-01-01

    CIRCULATING CALCIUM AND PHOSPHATE ARE TIGHTLY REGULATED BY THREE HORMONES: the active form of vitamin D (1,25-dihydroxyvitamin D), fibroblast growth factor (FGF)-23, and parathyroid hormone (PTH). PTH acts to stimulate a rapid increment in serum calcium and has a crucial role in calcium homeostasis. Major target organs of PTH are kidney and bone. The oversecretion of the hormone results in hypercalcemia, caused by increased intestinal calcium absorption, reduced renal calcium clearance, and mobilization of calcium from bone in primary hyperparathyroidism. In chronic kidney disease, secondary hyperparathyroidism of uremia is observed in its early stages, and this finally develops into the autonomous secretion of PTH during maintenance hemodialysis. Receptors in parathyroid cells, such as the calcium-sensing receptor, vitamin D receptor, and FGF receptor (FGFR)-Klotho complex have crucial roles in the regulation of PTH secretion. Genes such as Cyclin D1, RET, MEN1, HRPT2, and CDKN1B have been identified in parathyroid diseases. Genetically engineered animals with these receptors and the associated genes have provided us with valuable information on the patho-physiology of parathyroid diseases. The application of these animal models is significant for the development of new therapies.

  6. Polycystic ovarian disease: animal models.

    PubMed

    Mahajan, D K

    1988-12-01

    The reproductive systems of human beings and other vertebrates are grossly similar. In the ovary particularly, the biochemical and physiologic processes are identical not only in the formation of germ cells, the development of primordial follicles and their subsequent growth to Graafian follicles, and eventual ovulation but also in anatomic structure. In a noncarcinogenic human ovary, hypersecretion of androgen causes PCOD. Such hypersecretion may result from a nonpulsatile, constant elevated level of circulating LH or a disturbance in the action of neurotransmitters in the hypothalamus. In studying the pathophysiology of PCOD in humans, one must be aware of the limitations for manipulating the hypothalamic-pituitary axis. Although the rat is a polytocous rodent, the female has a regular ovarian cyclicity of 4 or 5 days, with distinct proestrus, estrus, and diestrus phases. Inasmuch as PCOD can be experimentally produced in the rat, that species is a good model for studying the pathophysiology of human PCOD. These PCOD models and their validity have been described: (1) estradiol-valerate, (2) DHA, (3) constant-light (LL), and (4) neonatally androgenized. Among these, the LL model is noninvasive and seems superior to the others for study of the pathophysiology of PCOD. The production of the polycystic ovarian condition in the rat by the injection of estrogens or androgens in neonate animals, or estradiol or DHA in adult rats, or the administration of antigonadotropins to these animals all cause a sudden appearance of the persistent estrus state by disturbing the metabolic and physiologic processes, whereas exposure of the adult rat to LL causes polycystic ovaries gradually, similar to what is seen in human idiopathic PCOD. After about 50 days of LL, the rat becomes anovulatory and the ovaries contain thickened tunica albuginea and many atretic follicles, and the tertiary follicles are considerably distended and cystic. The granulosa and theca cells appear normal

  7. Modeling Patients' Acceptance of Provider-delivered E-health

    PubMed Central

    Wilson, E. Vance; Lankton, Nancy K.

    2004-01-01

    Objective: Health care providers are beginning to deliver a range of Internet-based services to patients; however, it is not clear which of these e-health services patients need or desire. The authors propose that patients' acceptance of provider-delivered e-health can be modeled in advance of application development by measuring the effects of several key antecedents to e-health use and applying models of acceptance developed in the information technology (IT) field. Design: This study tested three theoretical models of IT acceptance among patients who had recently registered for access to provider-delivered e-health. Measurements: An online questionnaire administered items measuring perceptual constructs from the IT acceptance models (intrinsic motivation, perceived ease of use, perceived usefulness/extrinsic motivation, and behavioral intention to use e-health) and five hypothesized antecedents (satisfaction with medical care, health care knowledge, Internet dependence, information-seeking preference, and health care need). Responses were collected and stored in a central database. Results: All tested IT acceptance models performed well in predicting patients' behavioral intention to use e-health. Antecedent factors of satisfaction with provider, information-seeking preference, and Internet dependence uniquely predicted constructs in the models. Conclusion: Information technology acceptance models provide a means to understand which aspects of e-health are valued by patients and how this may affect future use. In addition, antecedents to the models can be used to predict e-health acceptance in advance of system development. PMID:15064290

  8. Examining Engineering & Technology Students' Acceptance of Network Virtualization Technology Using the Technology Acceptance Model

    ERIC Educational Resources Information Center

    Yousif, Wael K.

    2010-01-01

    This causal and correlational study was designed to extend the Technology Acceptance Model (TAM) and to test its applicability to Valencia Community College (VCC) Engineering and Technology students as the target user group when investigating the factors influencing their decision to adopt and to utilize VMware as the target technology. In…

  9. User Acceptance of Long-Term Evolution (LTE) Services: An Application of Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Park, Eunil; Kim, Ki Joon

    2013-01-01

    Purpose: The aim of this paper is to propose an integrated path model in order to explore user acceptance of long-term evolution (LTE) services by examining potential causal relationships between key psychological factors and user intention to use the services. Design/methodology/approach: Online survey data collected from 1,344 users are analysed…

  10. User Acceptance of YouTube for Procedural Learning: An Extension of the Technology Acceptance Model

    ERIC Educational Resources Information Center

    Lee, Doo Young; Lehto, Mark R.

    2013-01-01

    The present study was framed using the Technology Acceptance Model (TAM) to identify determinants affecting behavioral intention to use YouTube. Most importantly, this research emphasizes the motives for using YouTube, which is notable given its extrinsic task goal of being used for procedural learning tasks. Our conceptual framework included two…

  11. Animal models in today's translational medicine world.

    PubMed

    Choudhary, Abhishek; Ibdah, Jamal A

    2013-01-01

    Translational medicine drives progress of research along the continuum from basic biomedical research findings into clinical practice. Animal models play a central role in the above continuum. The recent explosion in molecular biology and generation of human physiological system in animals has led to an increasing use of in vivo animal models in today's translational medicine.

  12. Animal models to evaluate bacterial biofilm development.

    PubMed

    Thomsen, Kim; Trøstrup, Hannah; Moser, Claus

    2014-01-01

    Medical biofilms have attracted substantial attention especially in the past decade. Animal models are contributing significantly to understand the pathogenesis of medical biofilms. In addition, animal models are an essential tool in testing the hypothesis generated from clinical observations in patients and preclinical testing of agents showing in vitro antibiofilm effect. Here, we describe three animal models - two non-foreign body Pseudomonas aeruginosa biofilm models and a foreign body Staphylococcus aureus model.

  13. Potency of Animal Models in KANSEI Engineering

    NASA Astrophysics Data System (ADS)

    Ozaki, Shigeru; Hisano, Setsuji; Iwamoto, Yoshiki

    Various species of animals have been used as animal models for neuroscience and provided critical information about the brain functions. Although it seems difficult to elucidate a highly advanced function of the human brain, animal models have potency to clarify the fundamental mechanisms of emotion, decision-making and social behavior. In this review, we will pick up common animal models and point to both the merits and demerits caused by the characteristics. We will also mention that wide-ranging approaches from animal models are advantageous to understand KANSEI as well as mind in humans.

  14. Behavioral Models of Tinnitus and Hyperacusis in Animals

    PubMed Central

    Hayes, Sarah H.; Radziwon, Kelly E.; Stolzberg, Daniel J.; Salvi, Richard J.

    2014-01-01

    The phantom perception of tinnitus and reduced sound-level tolerance associated with hyperacusis have a high comorbidity and can be debilitating conditions for which there are no widely accepted treatments. One factor limiting the development of treatments for tinnitus and hyperacusis is the lack of reliable animal behavioral models of these disorders. Therefore, the purpose of this review is to highlight the current animal models of tinnitus and hyperacusis, and to detail the advantages and disadvantages of each paradigm. To date, this is the first review to include models of both tinnitus and hyperacusis. PMID:25278931

  15. Chronobiology of ethanol: animal models.

    PubMed

    Rosenwasser, Alan M

    2015-06-01

    Clinical and epidemiological observations have revealed that alcohol abuse and alcoholism are associated with widespread disruptions in sleep and other circadian biological rhythms. As with other psychiatric disorders, animal models have been very useful in efforts to better understand the cause and effect relationships underlying the largely correlative human data. This review summarizes the experimental findings indicating bidirectional interactions between alcohol (ethanol) consumption and the circadian timing system, emphasizing behavioral studies conducted in the author's laboratory. Together with convergent evidence from multiple laboratories, the work summarized here establishes that ethanol intake (or administration) alters fundamental properties of the underlying circadian pacemaker. In turn, circadian disruption induced by either environmental or genetic manipulations can alter voluntary ethanol intake. These reciprocal interactions may create a vicious cycle that contributes to the downward spiral of alcohol and drug addiction. In the future, such studies may lead to the development of chronobiologically based interventions to prevent relapse and effectively mitigate some of the societal burden associated with such disorders.

  16. Animal models and integrated nested Laplace approximations.

    PubMed

    Holand, Anna Marie; Steinsland, Ingelin; Martino, Sara; Jensen, Henrik

    2013-08-07

    Animal models are generalized linear mixed models used in evolutionary biology and animal breeding to identify the genetic part of traits. Integrated Nested Laplace Approximation (INLA) is a methodology for making fast, nonsampling-based Bayesian inference for hierarchical Gaussian Markov models. In this article, we demonstrate that the INLA methodology can be used for many versions of Bayesian animal models. We analyze animal models for both synthetic case studies and house sparrow (Passer domesticus) population case studies with Gaussian, binomial, and Poisson likelihoods using INLA. Inference results are compared with results using Markov Chain Monte Carlo methods. For model choice we use difference in deviance information criteria (DIC). We suggest and show how to evaluate differences in DIC by comparing them with sampling results from simulation studies. We also introduce an R package, AnimalINLA, for easy and fast inference for Bayesian Animal models using INLA.

  17. Development and application of an acceptance testing model

    NASA Technical Reports Server (NTRS)

    Pendley, Rex D.; Noonan, Caroline H.; Hall, Kenneth R.

    1992-01-01

    The process of acceptance testing large software systems for NASA has been analyzed, and an empirical planning model of the process constructed. This model gives managers accurate predictions of the staffing needed, the productivity of a test team, and the rate at which the system will pass. Applying the model to a new system shows a high level of agreement between the model and actual performance. The model also gives managers an objective measure of process improvement.

  18. Animal models of anxiety in mice.

    PubMed

    Bourin, Michel; Petit-Demoulière, Benoit; Dhonnchadha, Brid Nic; Hascöet, Martine

    2007-12-01

    Among the multiple possibilities to study human pathologies, animal models remain one of the most used pathways. They allow to access to unavailable answers in human patients and to learn about mechanisms of action of drugs. Primarily developed with rats, animal models in anxiety have been adapted with a mixed success for mice, an easy-to-use mammal with better genetic possibilities than rats. In this review, we have focused on the most used animal models in anxiety in mice. Both conditioned and unconditioned models are described, to represent all types of animal models of anxiety. Behavioural studies require strong care for variable parameters, linked to environment, handling or paradigm; we have discussed about this topic. Finally, we focused on the consequences of re-exposure to the apparatus. Test-retest procedures can bring in new answers, but should be deeply studied, to revalidate the whole paradigm as an animal model of anxiety.

  19. A Causal Model of Teacher Acceptance of Technology

    ERIC Educational Resources Information Center

    Chang, Jui-Ling; Lieu, Pang-Tien; Liang, Jung-Hui; Liu, Hsiang-Te; Wong, Seng-lee

    2012-01-01

    This study proposes a causal model for investigating teacher acceptance of technology. We received 258 effective replies from teachers at public and private universities in Taiwan. A questionnaire survey was utilized to test the proposed model. The Lisrel was applied to test the proposed hypotheses. The result shows that computer self-efficacy has…

  20. Evaluation of spinal cord injury animal models

    PubMed Central

    Zhang, Ning; Fang, Marong; Chen, Haohao; Gou, Fangming; Ding, Mingxing

    2014-01-01

    Because there is no curative treatment for spinal cord injury, establishing an ideal animal model is important to identify injury mechanisms and develop therapies for individuals suffering from spinal cord injuries. In this article, we systematically review and analyze various kinds of animal models of spinal cord injury and assess their advantages and disadvantages for further studies. PMID:25598784

  1. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis.

    PubMed

    Zhan, Xianbao; Wang, Fan; Bi, Yan; Ji, Baoan

    2016-09-01

    Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mainly focus on rodent models because of their popularity. Autoimmune pancreatitis and genetically engineered animal models will be reviewed elsewhere. PMID:27418683

  2. Acceptance of evolutionary explanations as they are applied to plants, animals, and humans

    NASA Astrophysics Data System (ADS)

    Thanukos, Anastasia

    In four investigations using Likert-scale questionnaires and think-aloud protocols with 173 university students in total, the willingness to accept evolutionary explanations regarding plant, animal, and human characteristics was examined. Participants were presented with evolutionary explanations for features and behaviors and were asked to rate how much they agreed with evolution as an explanation for each scenario. Some were also asked to explain their reasoning in think-aloud protocols or to discuss item ratings with one another. Overall, participants thought evolutionary explanations appropriate, with median ratings in the upper quarter of the rating scale. They were slightly more willing to ascribe evolutionary explanations to plant than to human phenomena; however, this general effect was mediated by more specific aspects of the evolutionary scenarios in question. Participants who were generally negative regarding evolution were particularly negative towards human evolution. Those who were positive or neutral towards evolution in general were more willing to accept human evolution, but were more likely to use evolution to explain similarities between humans and other species than to explain particular human adaptations. For example, they were more likely to agree that evolution is responsible for the DNA similarities between humans and chimpanzees than that evolution is responsible for human behavioral characteristics, such as the fight or flight response. Think-aloud protocols suggest that, while people are more familiar with human evolutionary relationships than plant evolutionary relationships, they may be less likely to see human characteristics as adaptively valuable. One plausible explanation for these patterns is that an evolutionary explanation is judged jointly by its availability in an individual's memory and its plausibility (i.e., its congruence with the individual's worldview). Popular media coverage, with its focus on controversy and litigation

  3. Experimental Animal Models in Periodontology: A Review

    PubMed Central

    Struillou, Xavier; Boutigny, Hervé; Soueidan, Assem; Layrolle, Pierre

    2010-01-01

    In periodontal research, animal studies are complementary to in vitro experiments prior to testing new treatments. Animal models should make possible the validation of hypotheses and prove the safety and efficacy of new regenerating approaches using biomaterials, growth factors or stem cells. A review of the literature was carried out by using electronic databases (PubMed, ISI Web of Science). Numerous animal models in different species such as rats, hamsters, rabbits, ferrets, canines and primates have been used for modeling human periodontal diseases and treatments. However, both the anatomy and physiopathology of animals are different from those of humans, making difficult the evaluation of new therapies. Experimental models have been developed in order to reproduce major periodontal diseases (gingivitis, periodontitis), their pathogenesis and to investigate new surgical techniques. The aim of this review is to define the most pertinent animal models for periodontal research depending on the hypothesis and expected results. PMID:20556202

  4. Animal models for the study of tendinopathy

    PubMed Central

    Warden, S J

    2007-01-01

    Tendinopathy is a common and significant clinical problem characterised by activity‐related pain, focal tendon tenderness and intratendinous imaging changes. Recent histopathological studies have indicated the underlying pathology to be one of tendinosis (degeneration) as opposed to tendinitis (inflammation). Relatively little is known about tendinosis and its pathogenesis. Contributing to this is an absence of validated animal models of the pathology. Animal models of tendinosis represent potential efficient and effective means of furthering our understanding of human tendinopathy and its underlying pathology. By selecting an appropriate species and introducing known risk factors for tendinopathy in humans, it is possible to develop tendon changes in animal models that are consistent with the human condition. This paper overviews the role of animal models in tendinopathy research by discussing the benefits and development of animal models of tendinosis, highlighting potential outcome measures that may be used in animal tendon research, and reviewing current animal models of tendinosis. It is hoped that with further development of animal models of tendinosis, new strategies for the prevention and treatment of tendinopathy in humans will be generated. PMID:17127722

  5. Use of animal models in musculoskeletal research.

    PubMed Central

    Neyt, J. G.; Buckwalter, J. A.; Carroll, N. C.

    1998-01-01

    Understanding of the human musculoskeletal system and common clinical disorders of bones, joints and soft tissues has been enhanced by the use of experimental animal models. Articles reporting on the results of these biomedical experiments frequently include conclusions that are based on the assumption that the biology of the animal model is similar to that of a human being for the disease process under investigation. The purpose of this investigation was to study the criteria and the considerations for selection of an animal model in musculoskeletal research. Selected journals from the musculoskeletal literature published between January 1991 and November 1995 were scrutinized for the use of animal models, and several criteria used in the selection of the various animal models were investigated. The selection criteria analyzed in this study included the biologic characteristics of the model, budget issues, the reproducibility of a musculoskeletal disease, and animal handling factors. A computer-assisted search of the musculoskeletal literature published from 1965 to 1995 was also performed to screen for reports comparing mammals used as animal models in terms of these selection criteria. Our findings imply that the selection of animal models in research of the musculoskeletal system is based partly on non-standardized criteria that are not necessarily based on the biology of the disease process being studied. In addition, there are limited comparative data on the selection and use of different animals for musculoskeletal research. We believe the selection of models should be more standardized based on both biological and non-biological criteria. Researchers would then be able to put in a more meaningful perspective the results of research using animal models and their clinical implications. PMID:9807717

  6. Animal Models in Behçet's Disease

    PubMed Central

    Yildirim, Ozlem

    2012-01-01

    Behçet's disease is a chronic, recurrent, multisystemic, inflammatory disorder affecting mainly the oral and urogenital mucosa and the uveal tract. Although the etiology and pathogenesis of Behçet's disease are unknown, numerous etiologies have been proposed, including environmental, infectious, and immunological factors; an autoimmune basis, characterized by circulating immune complexes and complement activation, has gained increasing acceptance. To test and understand immunopathogenesis of Behçet's disease, animal models were developed based on enviromental pollutants, bacterial and human heat shock protein derived peptides, and virus injections. Using these animal models separately and/or concurrently allows for a more effective investigation into Behçet's disease. Animal models developed in the last 10 years aim at the development of efficient and safe treatment options. PMID:22482083

  7. Animal Models in Studying Cerebral Arteriovenous Malformation

    PubMed Central

    Xu, Ming; Xu, Hongzhi; Qin, Zhiyong

    2015-01-01

    Brain arteriovenous malformation (AVM) is an important cause of hemorrhagic stroke. The etiology is largely unknown and the therapeutics are controversial. A review of AVM-associated animal models may be helpful in order to understand the up-to-date knowledge and promote further research about the disease. We searched PubMed till December 31, 2014, with the term “arteriovenous malformation,” limiting results to animals and English language. Publications that described creations of AVM animal models or investigated AVM-related mechanisms and treatments using these models were reviewed. More than 100 articles fulfilling our inclusion criteria were identified, and from them eight different types of the original models were summarized. The backgrounds and procedures of these models, their applications, and research findings were demonstrated. Animal models are useful in studying the pathogenesis of AVM formation, growth, and rupture, as well as in developing and testing new treatments. Creations of preferable models are expected. PMID:26649296

  8. Engineering large animal models of human disease.

    PubMed

    Whitelaw, C Bruce A; Sheets, Timothy P; Lillico, Simon G; Telugu, Bhanu P

    2016-01-01

    The recent development of gene editing tools and methodology for use in livestock enables the production of new animal disease models. These tools facilitate site-specific mutation of the genome, allowing animals carrying known human disease mutations to be produced. In this review, we describe the various gene editing tools and how they can be used for a range of large animal models of diseases. This genomic technology is in its infancy but the expectation is that through the use of gene editing tools we will see a dramatic increase in animal model resources available for both the study of human disease and the translation of this knowledge into the clinic. Comparative pathology will be central to the productive use of these animal models and the successful translation of new therapeutic strategies.

  9. Ethical acceptability of research on human-animal chimeric embryos: summary of opinions by the Japanese Expert Panel on Bioethics.

    PubMed

    Mizuno, Hiroshi; Akutsu, Hidenori; Kato, Kazuto

    2015-01-01

    Human-animal chimeric embryos are embryos obtained by introducing human cells into a non-human animal embryo. It is envisaged that the application of human-animal chimeric embryos may make possible many useful research projects including producing three-dimensional human organs in animals and verification of the pluripotency of human ES cells or iPS cells in vivo. The use of human-animal chimeric embryos, however, raises several ethical and moral concerns. The most fundamental one is that human-animal chimeric embryos possess the potential to develop into organisms containing human-derived tissue, which may lead to infringing upon the identity of the human species, and thus impairing human dignity. The Japanese Expert Panel on Bioethics in the Cabinet Office carefully considered the scientific significance and ethical acceptability of the issue and released its "Opinions regarding the handling of research using human-animal chimeric embryos". The Panel proposed a framework of case-by-case review, and suggested that the following points must be carefully reviewed from the perspective of ethical acceptability: (a) Types of animal embryos and types of animals receiving embryo transfers, particularly in dealing with non-human primates; (b) Types of human cells and organs intended for production, particularly in dealing with human nerve or germ cells; and (c) Extent of the period required for post-transfer studies. The scientific knowledge that can be gained from transfer into an animal uterus and from the production of an individual must be clarified to avoid unnecessary generation of chimeric animals. The time is ripe for the scientific community and governments to start discussing the ethical issues for establishing a global consensus. PMID:26694481

  10. Ethical acceptability of research on human-animal chimeric embryos: summary of opinions by the Japanese Expert Panel on Bioethics.

    PubMed

    Mizuno, Hiroshi; Akutsu, Hidenori; Kato, Kazuto

    2015-01-01

    Human-animal chimeric embryos are embryos obtained by introducing human cells into a non-human animal embryo. It is envisaged that the application of human-animal chimeric embryos may make possible many useful research projects including producing three-dimensional human organs in animals and verification of the pluripotency of human ES cells or iPS cells in vivo. The use of human-animal chimeric embryos, however, raises several ethical and moral concerns. The most fundamental one is that human-animal chimeric embryos possess the potential to develop into organisms containing human-derived tissue, which may lead to infringing upon the identity of the human species, and thus impairing human dignity. The Japanese Expert Panel on Bioethics in the Cabinet Office carefully considered the scientific significance and ethical acceptability of the issue and released its "Opinions regarding the handling of research using human-animal chimeric embryos". The Panel proposed a framework of case-by-case review, and suggested that the following points must be carefully reviewed from the perspective of ethical acceptability: (a) Types of animal embryos and types of animals receiving embryo transfers, particularly in dealing with non-human primates; (b) Types of human cells and organs intended for production, particularly in dealing with human nerve or germ cells; and (c) Extent of the period required for post-transfer studies. The scientific knowledge that can be gained from transfer into an animal uterus and from the production of an individual must be clarified to avoid unnecessary generation of chimeric animals. The time is ripe for the scientific community and governments to start discussing the ethical issues for establishing a global consensus.

  11. Animal Models of Corneal Injury

    PubMed Central

    Chan, Matilda F.; Werb, Zena

    2015-01-01

    The cornea is an excellent model system to use for the analysis of wound repair because of its accessibility, lack of vascularization, and simple anatomy. Corneal injuries may involve only the superficial epithelial layer or may penetrate deeper to involve both the epithelial and stromal layers. Here we describe two well-established in vivo corneal wound models: a mechanical wound model that allows for the study of re-epithelialization and a chemical wound model that may be used to study stromal activation in response to injury (Stepp et al., 2014; Carlson et al., 2003). PMID:26191536

  12. Examining the Factors Affecting PDA Acceptance among Physicians: An Extended Technology Acceptance Model.

    PubMed

    Basak, Ecem; Gumussoy, Cigdem Altin; Calisir, Fethi

    2015-01-01

    This study aims at identifying the factors affecting the intention to use personal digital assistant (PDA) technology among physicians in Turkey using an extended Technology Acceptance Model (TAM). A structural equation-modeling approach was used to identify the variables that significantly affect the intention to use PDA technology. The data were collected from 339 physicians in Turkey. Results indicated that 71% of the physicians' intention to use PDA technology is explained by perceived usefulness and perceived ease of use. On comparing both, the perceived ease of use has the strongest effect, whereas the effect of perceived enjoyment on behavioral intention to use is found to be insignificant. This study concludes with the recommendations for managers and possible future research.

  13. Predicting User Acceptance of Collaborative Technologies: An Extension of the Technology Acceptance Model for E-Learning

    ERIC Educational Resources Information Center

    Cheung, Ronnie; Vogel, Doug

    2013-01-01

    Collaborative technologies support group work in project-based environments. In this study, we enhance the technology acceptance model to explain the factors that influence the acceptance of Google Applications for collaborative learning. The enhanced model was empirically evaluated using survey data collected from 136 students enrolled in a…

  14. Acceptance of health information technology in health professionals: an application of the revised technology acceptance model.

    PubMed

    Ketikidis, Panayiotis; Dimitrovski, Tomislav; Lazuras, Lambros; Bath, Peter A

    2012-06-01

    The response of health professionals to the use of health information technology (HIT) is an important research topic that can partly explain the success or failure of any HIT application. The present study applied a modified version of the revised technology acceptance model (TAM) to assess the relevant beliefs and acceptance of HIT systems in a sample of health professionals (n = 133). Structured anonymous questionnaires were used and a cross-sectional design was employed. The main outcome measure was the intention to use HIT systems. ANOVA was employed to examine differences in TAM-related variables between nurses and medical doctors, and no significant differences were found. Multiple linear regression analysis was used to assess the predictors of HIT usage intentions. The findings showed that perceived ease of use, but not usefulness, relevance and subjective norms directly predicted HIT usage intentions. The present findings suggest that a modification of the original TAM approach is needed to better understand health professionals' support and endorsement of HIT. Perceived ease of use, relevance of HIT to the medical and nursing professions, as well as social influences, should be tapped by information campaigns aiming to enhance support for HIT in healthcare settings.

  15. Rethinking animal models and human obesity.

    PubMed

    Joyner, Michael J

    2014-11-01

    Human obesity is a complex phenomenon where economic, cultural, behavioral, and biological factors intersect in the physiological space. Developing animal models that capture several elements of the many potential interactions between these factors will only increase their translational value.

  16. [Animal models of Peyronie's disease: An update].

    PubMed

    Li, Jin-hong; Yuan, Jiu-hong

    2016-05-01

    Peyronie's disease is characterized by local fibrosis of the tunica albuginea and relatively rare clinically. Few relevant basic researches could be retrieved, which might be attributed to the absence of a robust animal model of the disease as well as to its rareness. At present, some animal models available for Peyronie's disease have their own merits and demerits. TGF-β1-induced and Fibrin-induced models are lack of penile curvature and calcification/ossification. A surgical model might be established for the acute phase of the disease. The characteristic of a widespread fibrotic process involving many organs in the spontaneous model is quite different from that of human Peyronie's disease. Therefore, choosing the right model is essential for researches. This paper presents an overview of the animal models of Peyronie's disease, meant to provide some reference for the basic research of the disease. PMID:27416671

  17. Development of osteoporosis animal model using micropigs.

    PubMed

    Kim, Sang-Woo; Kim, Kyoung-Shim; Solis, Chester D; Lee, Myeong-Seop; Hyun, Byung-Hwa

    2013-09-01

    Osteoporosis is a known major health problem and a serious disease of the bone, there has been a great need to develop more and newer animal models for this disease. Among animal models used for testing drug efficacy, the minipig model has become useful and effective due to its close similarity with humans (validity), particularly with the pharmacokinetics of compounds via subcutaneous administration, the structure and function of the organs, the morphology of bone and the overall metabolic nature. Based on these advantages, we sought to develop a new animal model of osteoporosis using micropig, which differs from other miniature pigs in the genetic background. Female micropigs were used for the induction of a moderate osteoporosis model by bilateral ovariectomy (OVX) and compared with shamoperated animals. For osteoporosis evaluation, clinical biomarkers such as blood osteocalcin (OSC) and parathyroid hormone (PTH) levels were measured, as well as bone mineral density (BMD) using micro-computed tomography (micro-CT). Compared to sham, OVX animals have decreased blood OSC level, while the blood PTH level increased in blood sera. In addition, we observed the significantly decreased BMDs of tibia region in OVX animals. Based on these results, we report that the micropig model developed in this study can be used to develop a new and effective medical method for diagnosis and treatment of osteoporosis.

  18. Animal models of orthopedic implant infection.

    PubMed

    An, Y H; Friedman, R J

    1998-01-01

    Prosthetic infection following total joint replacement can have catastrophic results both physically and psychologically for patients, leading to complete failure of the arthroplasty, possible amputation, prolonged hospitalization, and even death. Although with the use of prophylactic antibiotics and greatly improved operating room techniques the infection rate has decreased markedly during the years, challenges still remain for better preventive and therapeutic measures. In this review the in vivo experimental methods for studies of prosthetic infection are discussed, concentrating on (1) the animal models that have been established and the use of these animal models for studies of pathogenesis of bacteria, behavior of biofilm, effect of biomaterials on prosthetic infection rate, and the effect of infection on biomaterial surfaces, and (2) how to design and conduct an animal model of orthopedic prosthetic infection including animal selection, implant fabrication, bacterial inoculation, surgical technique, and the methods for evaluating the results.

  19. Animal models for SARS and MERS coronaviruses

    PubMed Central

    Gretebeck, Lisa M; Subbarao, Kanta

    2015-01-01

    The emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), two strains of animal coronaviruses that crossed the species barrier to infect and cause severe respiratory infections in humans within the last 12 years, have taught us that coronaviruses represent a global threat that does not recognize international borders. We can expect to see other novel coronaviruses emerge in the future. An ideal animal model should reflect the clinical signs, viral replication and pathology seen in humans. In this review, we present factors to consider in establishing an animal model for the study of novel coronaviruses and compare the different animal models that have been employed to study SARS-CoV and MERS-CoV. PMID:26184451

  20. Progress With Nonhuman Animal Models of Addiction.

    PubMed

    Crabbe, John C

    2016-09-01

    Nonhuman animals have been major contributors to the science of the genetics of addiction. Given the explosion of interest in genetics, it is fair to ask, are we making reasonable progress toward our goals with animal models? I will argue that our goals are changing and that overall progress has been steady and seems likely to continue apace. Genetics tools have developed almost incredibly rapidly, enabling both more reductionist and more synthetic or integrative approaches. I believe that these approaches to making progress have been unbalanced in biomedical science, favoring reductionism, particularly in animal genetics. I argue that substantial, novel progress is also likely to come in the other direction, toward synthesis and abstraction. Another area in which future progress with genetic animal models seems poised to contribute more is the reconciliation of human and animal phenotypes, or consilience. The inherent power of the genetic animal models could be more profitably exploited. In the end, animal research has continued to provide novel insights about how genes influence individual differences in addiction risk and consequences. The rules of the genetics game are changing so fast that it is hard to remember how comparatively little we knew even a generation ago. Rather than worry about whether we have been wasting time and resources asking the questions we have been, we should look to the future and see if we can come up with some new ones. The valuable findings from the past will endure, and the sidetracks will be forgotten. PMID:27588527

  1. Animal models of monogenic migraine.

    PubMed

    Chen, Shih-Pin; Tolner, Else A; Eikermann-Haerter, Katharina

    2016-06-01

    Migraine is a highly prevalent and disabling neurological disorder with a strong genetic component. Rare monogenic forms of migraine, or syndromes in which migraine frequently occurs, help scientists to unravel pathogenetic mechanisms of migraine and its comorbidities. Transgenic mouse models for rare monogenic mutations causing familial hemiplegic migraine (FHM), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and familial advanced sleep-phase syndrome (FASPS), have been created. Here, we review the current state of research using these mutant mice. We also discuss how currently available experimental approaches, including epigenetic studies, biomolecular analysis and optogenetic technologies, can be used for characterization of migraine genes to further unravel the functional and molecular pathways involved in migraine. PMID:27154999

  2. Animal models in motion sickness research

    NASA Technical Reports Server (NTRS)

    Daunton, Nancy G.

    1990-01-01

    Practical information on candidate animal models for motion sickness research and on methods used to elicit and detect motion sickness in these models is provided. Four good potential models for use in motion sickness experiments include the dog, cat, squirrel monkey, and rat. It is concluded that the appropriate use of the animal models, combined with exploitation of state-of-the-art biomedical techniques, should generate a great step forward in the understanding of motion sickness mechanisms and in the development of efficient and effective approaches to its prevention and treatment in humans.

  3. Uncertainty in spatially explicit animal dispersal models

    USGS Publications Warehouse

    Mooij, Wolf M.; DeAngelis, Donald L.

    2003-01-01

    Uncertainty in estimates of survival of dispersing animals is a vexing difficulty in conservation biology. The current notion is that this uncertainty decreases the usefulness of spatially explicit population models in particular. We examined this problem by comparing dispersal models of three levels of complexity: (1) an event-based binomial model that considers only the occurrence of mortality or arrival, (2) a temporally explicit exponential model that employs mortality and arrival rates, and (3) a spatially explicit grid-walk model that simulates the movement of animals through an artificial landscape. Each model was fitted to the same set of field data. A first objective of the paper is to illustrate how the maximum-likelihood method can be used in all three cases to estimate the means and confidence limits for the relevant model parameters, given a particular set of data on dispersal survival. Using this framework we show that the structure of the uncertainty for all three models is strikingly similar. In fact, the results of our unified approach imply that spatially explicit dispersal models, which take advantage of information on landscape details, suffer less from uncertainly than do simpler models. Moreover, we show that the proposed strategy of model development safeguards one from error propagation in these more complex models. Finally, our approach shows that all models related to animal dispersal, ranging from simple to complex, can be related in a hierarchical fashion, so that the various approaches to modeling such dispersal can be viewed from a unified perspective.

  4. Animal models of human disease: inflammation.

    PubMed

    Webb, David R

    2014-01-01

    Animals have been used as models to study inflammation and autoimmunity for more than 80 years. During that time it has been understood that although the use of such models is an important and necessary part of understanding human disease, they inevitably display significant differences from the human disease state. Since our understanding of human inflammation and autoimmunity is necessarily incomplete, it may be concluded that the animal models will also be reflective of the state of knowledge regarding such diseases. Nevertheless, animal models of rheumatoid arthritis, inflammatory bowel disease and multiple sclerosis have been successfully used to enhance the understanding of the human disease and have made significant contributions to the development of powerful new therapies. However, there are exceptions. One of the most persistent has been the study of sepsis where the animal models have been woefully inadequate in uncovering targets for drug discovery and have led to repeated clinical failures. As will be explained, only by using newly developed genomics tools has it been possible to uncover the differences between sepsis in mice and sepsis in man. It is concluded that approaches using the newer genomic and proteomic data derived from human tissues, will make possible the development of animal models with more predictive power as aids to drug discovery.

  5. Animal Eye Models for Uveal Melanoma

    PubMed Central

    Cao, Jinfeng; Jager, Martine J.

    2015-01-01

    Animal models play an important role in understanding tumor growth and may be used to develop novel therapies against human malignancies. The significance of the results from animal experiments depends on the selection of the proper model. Many attempts have been made to create appropriate animal models for uveal melanoma and its characteristic metastatic behavior. One approach is to use transgenic animal models or to implant tumor cells. A variety of tumor types have been used for this purpose: tumor cells, such as Greene melanoma, murine B16 melanoma, and human uveal melanoma cells, may be implanted in the eyes of hamsters, rats, rabbits, and mice, among others. Various inoculation routes, including into the anterior chamber and posterior compartment, and retro-orbitally, have been applied to obtain tumor growth mimicking ocular uveal melanoma. However, when we choose animal models, we must be conscious of many disadvantages, such as variable tumor growth, or the need for immunosuppression in xenogeneic grafts. In this paper, we will discuss the various eye models. PMID:27172424

  6. Animal Eye Models for Uveal Melanoma.

    PubMed

    Cao, Jinfeng; Jager, Martine J

    2015-04-01

    Animal models play an important role in understanding tumor growth and may be used to develop novel therapies against human malignancies. The significance of the results from animal experiments depends on the selection of the proper model. Many attempts have been made to create appropriate animal models for uveal melanoma and its characteristic metastatic behavior. One approach is to use transgenic animal models or to implant tumor cells. A variety of tumor types have been used for this purpose: tumor cells, such as Greene melanoma, murine B16 melanoma, and human uveal melanoma cells, may be implanted in the eyes of hamsters, rats, rabbits, and mice, among others. Various inoculation routes, including into the anterior chamber and posterior compartment, and retro-orbitally, have been applied to obtain tumor growth mimicking ocular uveal melanoma. However, when we choose animal models, we must be conscious of many disadvantages, such as variable tumor growth, or the need for immunosuppression in xenogeneic grafts. In this paper, we will discuss the various eye models. PMID:27172424

  7. Animal models of human response to dioxins.

    PubMed Central

    Grassman, J A; Masten, S A; Walker, N J; Lucier, G W

    1998-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most potent member of a class of chlorinated hydrocarbons that interact with the aryl hydrocarbon receptor (AhR). TCDD and dioxinlike compounds are environmentally and biologically stable and as a result, human exposure is chronic and widespread. Studies of highly exposed human populations show that dioxins produce developmental effects, chloracne, and an increase in all cancers and suggest that they may also alter immune and endocrine function. In contrast, the health effects of low-level environmental exposure have not been established. Experimental animal models can enhance the understanding of the effects of low-level dioxin exposure, particularly when there is evidence that humans respond similarly to the animal models. Although there are species differences in pharmacokinetics, experimental animal models demonstrate AhR-dependent health effects that are similar to those found in exposed human populations. Comparisons of biochemical changes show that humans and animal models have similar degrees of sensitivity to dioxin-induced effects. The information gained from animal models is important for developing mechanistic models of dioxin toxicity and critical for assessing the risks to human populations under different circumstances of exposure. PMID:9599728

  8. Animal Models for Viral Hemorrhagic Fever.

    PubMed

    Falzarano, Darryl; Bente, Dennis A

    2014-04-01

    Viral hemorrhagic fever can be caused by one of a diverse group of viruses that come from four different families of RNA viruses. Disease severity can vary from mild self-limiting febrile illness to severe disease characterized by high fever, high-level viremia, increased vascular permeability that can progress to shock, multi-organ failure, and death. Despite the urgent need, effective treatments and preventative vaccines are currently lacking for the majority of these viruses. A number of factors preclude the effective study of these diseases in humans including the high virulence of the agents involved, the sporadic nature of outbreaks of these viruses which are typically in geographically isolated areas with underserviced diagnostic capabilities, and the requirements for high level bio-containment. As a result, animal models that accurately mimic human disease are essential for advancing our understanding of the pathogenesis of viral hemorrhagic fevers. Moreover, animal models for viral hemorrhagic fevers are necessary to test vaccines and therapeutic intervention strategies. Here, we present an overview of the animal models that have been established for each of the hemorrhagic fever viruses and identify which aspects of human disease are modeled. Furthermore, we discuss how experimental design considerations, such as choice of species and virus strain as well as route and dose of inoculation, have an influence on animal model development. We also bring attention to some of the pitfalls that need to be avoided when extrapolating results from animal models. This article is protected by copyright. All rights reserved.

  9. Computer-generated animal model stimuli.

    PubMed

    Woo, Kevin L

    2007-01-01

    Communication between animals is diverse and complex. Animals may communicate using auditory, seismic, chemosensory, electrical, or visual signals. In particular, understanding the constraints on visual signal design for communication has been of great interest. Traditional methods for investigating animal interactions have used basic observational techniques, staged encounters, or physical manipulation of morphology. Less intrusive methods have tried to simulate conspecifics using crude playback tools, such as mirrors, still images, or models. As technology has become more advanced, video playback has emerged as another tool in which to examine visual communication (Rosenthal, 2000). However, to move one step further, the application of computer-animation now allows researchers to specifically isolate critical components necessary to elicit social responses from conspecifics, and manipulate these features to control interactions. Here, I provide detail on how to create an animation using the Jacky dragon as a model, but this process may be adaptable for other species. In building the animation, I elected to use Lightwave 3D to alter object morphology, add texture, install bones, and provide comparable weight shading that prevents exaggerated movement. The animation is then matched to select motor patterns to replicate critical movement features. Finally, the sequence must rendered into an individual clip for presentation. Although there are other adaptable techniques, this particular method had been demonstrated to be effective in eliciting both conspicuous and social responses in staged interactions.

  10. Pharmacokinetic modeling in aquatic animals. 1. Models and concepts

    USGS Publications Warehouse

    Barron, M.G.; Stehly, Guy R.; Hayton, W.L.

    1990-01-01

    While clinical and toxicological applications of pharmacokinetics have continued to evolve both conceptually and experimentally, pharmacokinetics modeling in aquatic animals has not progressed accordingly. In this paper we present methods and concepts of pharmacokinetic modeling in aquatic animals using multicompartmental, clearance-based, non-compartmental and physiologically-based pharmacokinetic models. These models should be considered as alternatives to traditional approaches, which assume that the animal acts as a single homogeneous compartment based on apparent monoexponential elimination.

  11. Current status: Animal models of nausea

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    The advantages, and possible benefits of a valid, reliable animal model for nausea are discussed, and difficulties inherent to the development of a model are considered. A principle problem for developing models arises because nausea is a subjective sensation that can be identified only in humans. Several putative measures of nausea in animals are considered, with more detailed consideration directed to variation in cardiac rate, levels of vasopressin, and conditioned taste aversion. Demonstration that putative measures are associated with reported nausea in humans is proposed as a requirement for validating measures to be used in animal models. The necessity for a 'real-time' measure of nausea is proposed as an important factor for future research; and the need for improved understanding of the neuroanatomy underlying the emetic syndrome is discussed.

  12. Animal models of human granulocyte diseases.

    PubMed

    Schäffer, Alejandro A; Klein, Christoph

    2013-02-01

    In vivo animal models have proven very useful to the understanding of basic biologic pathways of the immune system, a prerequisite for the development of innovate therapies. This article addresses currently available models for defined human monogenetic defects of neutrophil granulocytes, including murine, zebrafish, and larger mammalian species. Strengths and weaknesses of each system are summarized, and clinical investigators may thus be inspired to develop further lines of research to improve diagnosis and therapy by use of the appropriate animal model system. PMID:23351993

  13. Retinal Cell Degeneration in Animal Models

    PubMed Central

    Niwa, Masayuki; Aoki, Hitomi; Hirata, Akihiro; Tomita, Hiroyuki; Green, Paul G.; Hara, Akira

    2016-01-01

    The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage. PMID:26784179

  14. Optogenetics in animal model of alcohol addiction

    NASA Astrophysics Data System (ADS)

    Nalberczak, Maria; Radwanska, Kasia

    2014-11-01

    Our understanding of the neuronal and molecular basis of alcohol addiction is still not satisfactory. As a consequence we still miss successful therapy of alcoholism. One of the reasons for such state is the lack of appropriate animal models which would allow in-depth analysis of biological basis of addiction. Here we will present our efforts to create the animal model of alcohol addiction in the automated learning device, the IntelliCage setup. Applying this model to optogenetically modified mice with remotely controlled regulation of selected neuronal populations by light may lead to very precise identification of neuronal circuits involved in coding addiction-related behaviors.

  15. Role of Animal Models in Coronary Stenting.

    PubMed

    Iqbal, Javaid; Chamberlain, Janet; Francis, Sheila E; Gunn, Julian

    2016-02-01

    Coronary angioplasty initially employed balloon dilatation only. This technique revolutionized the treatment of coronary artery disease, although outcomes were compromised by acute vessel closure, late constrictive remodeling, and restenosis due to neointimal proliferation. These processes were studied in animal models, which contributed to understanding the biology of endovascular arterial injury. Coronary stents overcome acute recoil, with improvements in the design and metallurgy since then, leading to the development of drug-eluting stents and bioresorbable scaffolds. These devices now undergo computer modeling and benchtop and animal testing before evaluation in clinical trials. Animal models, including rabbit, sheep, dog and pig are available, all with individual benefits and limitations. In smaller mammals, such as mouse and rabbit, the target for stenting is generally the aorta; whereas in larger animals, such as the pig, it is generally the coronary artery. The pig coronary stenting model is a gold-standard for evaluating safety; but insights into biomechanical properties, the biology of stenting, and efficacy in controlling neointimal proliferation can also be gained. Intra-coronary imaging modalities such as intravascular ultrasound and optical coherence tomography allow precise serial evaluation in vivo, and recent developments in genetically modified animal models of atherosclerosis provide realistic test beds for future stents and scaffolds.

  16. Animal Models for HIV Cure Research.

    PubMed

    Policicchio, Benjamin B; Pandrea, Ivona; Apetrei, Cristian

    2016-01-01

    The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal.

  17. Animal Models for HIV Cure Research

    PubMed Central

    Policicchio, Benjamin B.; Pandrea, Ivona; Apetrei, Cristian

    2016-01-01

    The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal. PMID:26858716

  18. Lessons from Animal Models of Arterial Aneurysm

    PubMed Central

    Gertz, S. David; Mintz, Yoav; Beeri, Ronen; Rubinstein, Chen; Gilon, Dan; Gavish, Leah; Berlatzky, Yacov; Appelbaum, Liat; Gavish, Lilach

    2013-01-01

    We review the results from the most common animal models of arterial aneurysm, including recent findings from our novel, laparoscopy-based pig model of abdominal aortic aneurysm, that contribute important insights into early pathogenesis. We emphasize the relevance of these findings for evaluation of treatment protocols and novel device prototypes for mechanism-based prevention of progression and rupture. PMID:26798701

  19. Large animal models for stem cell therapy.

    PubMed

    Harding, John; Roberts, R Michael; Mirochnitchenko, Oleg

    2013-03-28

    The field of regenerative medicine is approaching translation to clinical practice, and significant safety concerns and knowledge gaps have become clear as clinical practitioners are considering the potential risks and benefits of cell-based therapy. It is necessary to understand the full spectrum of stem cell actions and preclinical evidence for safety and therapeutic efficacy. The role of animal models for gaining this information has increased substantially. There is an urgent need for novel animal models to expand the range of current studies, most of which have been conducted in rodents. Extant models are providing important information but have limitations for a variety of disease categories and can have different size and physiology relative to humans. These differences can preclude the ability to reproduce the results of animal-based preclinical studies in human trials. Larger animal species, such as rabbits, dogs, pigs, sheep, goats, and non-human primates, are better predictors of responses in humans than are rodents, but in each case it will be necessary to choose the best model for a specific application. There is a wide spectrum of potential stem cell-based products that can be used for regenerative medicine, including embryonic and induced pluripotent stem cells, somatic stem cells, and differentiated cellular progeny. The state of knowledge and availability of these cells from large animals vary among species. In most cases, significant effort is required for establishing and characterizing cell lines, comparing behavior to human analogs, and testing potential applications. Stem cell-based therapies present significant safety challenges, which cannot be addressed by traditional procedures and require the development of new protocols and test systems, for which the rigorous use of larger animal species more closely resembling human behavior will be required. In this article, we discuss the current status and challenges of and several major directions

  20. Large animal models for stem cell therapy

    PubMed Central

    2013-01-01

    The field of regenerative medicine is approaching translation to clinical practice, and significant safety concerns and knowledge gaps have become clear as clinical practitioners are considering the potential risks and benefits of cell-based therapy. It is necessary to understand the full spectrum of stem cell actions and preclinical evidence for safety and therapeutic efficacy. The role of animal models for gaining this information has increased substantially. There is an urgent need for novel animal models to expand the range of current studies, most of which have been conducted in rodents. Extant models are providing important information but have limitations for a variety of disease categories and can have different size and physiology relative to humans. These differences can preclude the ability to reproduce the results of animal-based preclinical studies in human trials. Larger animal species, such as rabbits, dogs, pigs, sheep, goats, and non-human primates, are better predictors of responses in humans than are rodents, but in each case it will be necessary to choose the best model for a specific application. There is a wide spectrum of potential stem cell-based products that can be used for regenerative medicine, including embryonic and induced pluripotent stem cells, somatic stem cells, and differentiated cellular progeny. The state of knowledge and availability of these cells from large animals vary among species. In most cases, significant effort is required for establishing and characterizing cell lines, comparing behavior to human analogs, and testing potential applications. Stem cell-based therapies present significant safety challenges, which cannot be addressed by traditional procedures and require the development of new protocols and test systems, for which the rigorous use of larger animal species more closely resembling human behavior will be required. In this article, we discuss the current status and challenges of and several major directions

  1. Modeling of the charge acceptance of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Thele, M.; Schiffer, J.; Karden, E.; Surewaard, E.; Sauer, D. U.

    This paper presents a model for flooded and VRLA batteries that is parameterized by impedance spectroscopy and includes the overcharging effects to allow charge-acceptance simulations (e.g. for regenerative-braking drive-cycle profiles). The full dynamic behavior and the short-term charge/discharge history is taken into account. This is achieved by a detailed modeling of the sulfate crystal growth and modeling of the internal gas recombination cycle. The model is applicable in the full realistic temperature and current range of automotive applications. For model validation, several load profiles (covering the dynamics and the current range appearing in electrically assisted or hybrid cars) are examined and the charge-acceptance limiting effects are elaborately discussed. The validation measurements have been performed for different types of lead-acid batteries (flooded and VRLA). The model is therefore an important tool for the development of automotive power nets, but it also allows to analyze different charging strategies and energy gains which can be achieved during regenerative-braking.

  2. Standardization of A Physiologic Hypoparathyroidism Animal Model

    PubMed Central

    Jung, Soo Yeon; Kim, Ha Yeong; Park, Hae Sang; Yin, Xiang Yun; Chung, Sung Min; Kim, Han Su

    2016-01-01

    Ideal hypoparathyroidism animal models are a prerequisite to developing new treatment modalities for this disorder. The purpose of this study was to evaluate the feasibility of a model whereby rats were parathyroidectomized (PTX) using a fluorescent-identification method and the ideal calcium content of the diet was determined. Thirty male rats were divided into surgical sham (SHAM, n = 5) and PTX plus 0, 0.5, and 2% calcium diet groups (PTX-FC (n = 5), PTX-NC (n = 10), and PTX-HC (n = 10), respectively). Serum parathyroid hormone levels decreased to non-detectable levels in all PTX groups. All animals in the PTX—FC group died within 4 days after the operation. All animals survived when supplied calcium in the diet. However, serum calcium levels were higher in the PTX-HC than the SHAM group. The PTX-NC group demonstrated the most representative modeling of primary hypothyroidism. Serum calcium levels decreased and phosphorus levels increased, and bone volume was increased. All animals survived without further treatment and did not show nephrotoxicity including calcium deposits. These findings demonstrate that PTX animal models produced by using the fluorescent-identification method, and fed a 0.5% calcium diet, are appropriate for hypoparathyroidism treatment studies. PMID:27695051

  3. Animal models of traumatic brain injury

    PubMed Central

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity in both civilian life and the battlefield worldwide. Survivors of TBI frequently experience long-term disabling changes in cognition, sensorimotor function and personality. Over the past three decades, animal models have been developed to replicate the various aspects of human TBI, to better understand the underlying pathophysiology and to explore potential treatments. Nevertheless, promising neuroprotective drugs, which were identified to be effective in animal TBI models, have all failed in phase II or phase III clinical trials. This failure in clinical translation of preclinical studies highlights a compelling need to revisit the current status of animal models of TBI and therapeutic strategies. PMID:23329160

  4. Animal and cellular models of Friedreich ataxia.

    PubMed

    Perdomini, Morgane; Hick, Aurore; Puccio, Hélène; Pook, Mark A

    2013-08-01

    The development and use of animal and cellular models of Friedreich ataxia (FRDA) are essential requirements for the understanding of FRDA disease mechanisms and the investigation of potential FRDA therapeutic strategies. Although animal and cellular models of lower organisms have provided valuable information on certain aspects of FRDA disease and therapy, it is intuitive that the most useful models are those of mammals and mammalian cells, which are the closest in physiological terms to FRDA patients. To date, there have been considerable efforts put into the development of several different FRDA mouse models and relevant FRDA mouse and human cell line systems. We summarize the principal mammalian FRDA models, discuss the pros and cons of each system, and describe the ways in which such models have been used to address two of the fundamental, as yet unanswered, questions regarding FRDA. Namely, what is the exact pathophysiology of FRDA and what is the detailed genetic and epigenetic basis of FRDA?

  5. Pathophysiology and animal modeling of underactive bladder.

    PubMed

    Tyagi, Pradeep; Smith, Phillip P; Kuchel, George A; de Groat, William C; Birder, Lori A; Chermansky, Christopher J; Adam, Rosalyn M; Tse, Vincent; Chancellor, Michael B; Yoshimura, Naoki

    2014-09-01

    While the symptomology of underactive bladder (UAB) may imply a primary dysfunction of the detrusor muscle, insights into pathophysiology indicate that both myogenic and neurogenic mechanisms need to be considered. Due to lack of proper animal models, the current understanding of the UAB pathophysiology is limited, and much of what is known about the clinical etiology of the condition has been derived from epidemiological data. We hereby review current state of the art in the understanding of the pathophysiology of and animal models used to study the UAB.

  6. Animal models of anorexia and cachexia

    PubMed Central

    DeBoer, Mark Daniel

    2009-01-01

    Background Cachexia is a devastating syndrome of body wasting that worsens quality of life and survival for patients suffering from diseases such as cancer, chronic kidney disease and chronic heart failure. Successful treatments have been elusive in humans, leaving a clear need for the development of new treatment compounds. Animal models of cachexia are able to recapitulate the clinical findings from human disease and have provided a much-needed means of testing the efficacy of prospective therapies. Objective This review focuses on animal models of cachexia caused by cancer, chronic heart failure and chronic kidney disease, including the features of these models, their implementation, and commonly-followed outcome measures. Conclusion Given a dire clinical need for effective treatments of cachexia, animal models will continue a vital role in assessing the efficacy and safety of potential treatments prior to testing in humans. Also important in the future will be the use of animal models to assess the durability of effect from anti-cachexia treatments and their effect on prognosis of the underlying disease states. PMID:20160874

  7. [Diabetes mellitus and its animal models].

    PubMed

    Duhault, J; Koenig-Berard, E

    1997-01-01

    This review presents the major animal models usually used for the study of the pathological processes related to insulin-dependent diabetes mellitus (IDDM), non-insulin-dependent diabetes mellitus (NIDDM) and to the main diabetic complications. These models can be observed spontaneously or can be obtained by selective cross-breeding or toxic exposure (chemical or viral), as well as genetically induced. They reproduce some aspects of the human pathology without combining them all in a single model. Consequently, a pertinent pharmacological approach may compare the results obtained with several models. The examination of the recent results obtained with transgenesis does not allow these animal models to replace more classical ones but they may constitute a future challenge for gene therapy despite the multifactorial aspect of diabetic disease. PMID:9501560

  8. Are animal models predictive for humans?

    PubMed Central

    2009-01-01

    It is one of the central aims of the philosophy of science to elucidate the meanings of scientific terms and also to think critically about their application. The focus of this essay is the scientific term predict and whether there is credible evidence that animal models, especially in toxicology and pathophysiology, can be used to predict human outcomes. Whether animals can be used to predict human response to drugs and other chemicals is apparently a contentious issue. However, when one empirically analyzes animal models using scientific tools they fall far short of being able to predict human responses. This is not surprising considering what we have learned from fields such evolutionary and developmental biology, gene regulation and expression, epigenetics, complexity theory, and comparative genomics. PMID:19146696

  9. Attitudes to animal euthanasia do not correlate with acceptance of human euthanasia or suicide.

    PubMed

    Ogden, U; Kinnison, T; May, S A

    2012-08-18

    Several reasons have been suggested for the elevated risk of suicide experienced by those in the veterinary profession. The current study aimed to investigate possible links between veterinarians' attitudes to 'convenience' or non-justified animal euthanasia and attitudes towards human euthanasia and suicide. Veterinary students and graduates had a negative attitude towards convenience animal euthanasia, but their attitudes changed over time (pre-clinical studies, clinical studies and recently graduated). A greater tolerance to euthanasia was displayed in the later years of study and post qualification - primarily by males. Attitudes towards both human euthanasia and suicide, however, remained stable over time and indicated on average a neutral stance. No correlations were found between attitudes to convenience euthanasia and either human euthanasia or suicide, suggesting a tolerance to convenience euthanasia of animals does not lead to desensitisation in valuing human life and a changed attitude to human euthanasia or suicide, or vice versa. Attitudes to human euthanasia and suicide were predictably correlated, perhaps suggesting an overarching attitude towards control over human death. The results of the current study throw into question the argument that it is the changes in attitudes to animal life that affect veterinarian's attitudes to human life and contribute to the high suicide rate. PMID:22791520

  10. Animal models for photodynamic therapy (PDT)

    PubMed Central

    Silva, Zenildo Santos; Bussadori, Sandra Kalil; Fernandes, Kristianne Porta Santos; Huang, Ying-Ying; Hamblin, Michael R.

    2015-01-01

    Photodynamic therapy (PDT) employs non-toxic dyes called photosensitizers (PSs), which absorb visible light to give the excited singlet state, followed by the long-lived triplet state that can undergo photochemistry. In the presence of ambient oxygen, reactive oxygen species (ROS), such as singlet oxygen and hydroxyl radicals are formed that are able to kill cancer cells, inactivate microbial pathogens and destroy unwanted tissue. Although there are already several clinically approved PSs for various disease indications, many studies around the world are using animal models to investigate the further utility of PDT. The present review will cover the main groups of animal models that have been described in the literature. Cancer comprises the single biggest group of models including syngeneic mouse/rat tumours that can either be subcutaneous or orthotopic and allow the study of anti-tumour immune response; human tumours that need to be implanted in immunosuppressed hosts; carcinogen-induced tumours; and mice that have been genetically engineered to develop cancer (often by pathways similar to those in patients). Infections are the second biggest class of animal models and the anatomical sites include wounds, burns, oral cavity, ears, eyes, nose etc. Responsible pathogens can include Gram-positive and Gram-negative bacteria, fungi, viruses and parasites. A smaller and diverse group of miscellaneous animal models have been reported that allow PDT to be tested in ophthalmology, atherosclerosis, atrial fibrillation, dermatology and wound healing. Successful studies using animal models of PDT are blazing the trail for tomorrow's clinical approvals. PMID:26415497

  11. Animal models for photodynamic therapy (PDT).

    PubMed

    Silva, Zenildo Santos; Bussadori, Sandra Kalil; Fernandes, Kristianne Porta Santos; Huang, Ying-Ying; Hamblin, Michael R

    2015-01-01

    Photodynamic therapy (PDT) employs non-toxic dyes called photosensitizers (PSs), which absorb visible light to give the excited singlet state, followed by the long-lived triplet state that can undergo photochemistry. In the presence of ambient oxygen, reactive oxygen species (ROS), such as singlet oxygen and hydroxyl radicals are formed that are able to kill cancer cells, inactivate microbial pathogens and destroy unwanted tissue. Although there are already several clinically approved PSs for various disease indications, many studies around the world are using animal models to investigate the further utility of PDT. The present review will cover the main groups of animal models that have been described in the literature. Cancer comprises the single biggest group of models including syngeneic mouse/rat tumours that can either be subcutaneous or orthotopic and allow the study of anti-tumour immune response; human tumours that need to be implanted in immunosuppressed hosts; carcinogen-induced tumours; and mice that have been genetically engineered to develop cancer (often by pathways similar to those in patients). Infections are the second biggest class of animal models and the anatomical sites include wounds, burns, oral cavity, ears, eyes, nose etc. Responsible pathogens can include Gram-positive and Gram-negative bacteria, fungi, viruses and parasites. A smaller and diverse group of miscellaneous animal models have been reported that allow PDT to be tested in ophthalmology, atherosclerosis, atrial fibrillation, dermatology and wound healing. Successful studies using animal models of PDT are blazing the trail for tomorrow's clinical approvals. PMID:26415497

  12. Animation of finite element models and results

    NASA Technical Reports Server (NTRS)

    Lipman, Robert R.

    1992-01-01

    This is not intended as a complete review of computer hardware and software that can be used for animation of finite element models and results, but is instead a demonstration of the benefits of visualization using selected hardware and software. The role of raw computational power, graphics speed, and the use of videotape are discussed.

  13. Animal models for genetic neuromuscular diseases.

    PubMed

    Vainzof, Mariz; Ayub-Guerrieri, Danielle; Onofre, Paula C G; Martins, Poliana C M; Lopes, Vanessa F; Zilberztajn, Dinorah; Maia, Lucas S; Sell, Karen; Yamamoto, Lydia U

    2008-03-01

    The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse

  14. Animal models of chronic obstructive pulmonary disease.

    PubMed

    Pérez-Rial, Sandra; Girón-Martínez, Álvaro; Peces-Barba, Germán

    2015-03-01

    Animal models of disease have always been welcomed by the scientific community because they provide an approach to the investigation of certain aspects of the disease in question. Animal models of COPD cannot reproduce the heterogeneity of the disease and usually only manage to represent the disease in its milder stages. Moreover, airflow obstruction, the variable that determines patient diagnosis, not always taken into account in the models. For this reason, models have focused on the development of emphysema, easily detectable by lung morphometry, and have disregarded other components of the disease, such as airway injury or associated vascular changes. Continuous, long-term exposure to cigarette smoke is considered the main risk factor for this disease, justifying the fact that the cigarette smoke exposure model is the most widely used. Some variations on this basic model, related to exposure time, the association of other inducers or inhibitors, exacerbations or the use of transgenic animals to facilitate the identification of pathogenic pathways have been developed. Some variations or heterogeneity of this disease, then, can be reproduced and models can be designed for resolving researchers' questions on disease identification or treatment responses. PMID:25201221

  15. Animal models of chronic obstructive pulmonary disease.

    PubMed

    Pérez-Rial, Sandra; Girón-Martínez, Álvaro; Peces-Barba, Germán

    2015-03-01

    Animal models of disease have always been welcomed by the scientific community because they provide an approach to the investigation of certain aspects of the disease in question. Animal models of COPD cannot reproduce the heterogeneity of the disease and usually only manage to represent the disease in its milder stages. Moreover, airflow obstruction, the variable that determines patient diagnosis, not always taken into account in the models. For this reason, models have focused on the development of emphysema, easily detectable by lung morphometry, and have disregarded other components of the disease, such as airway injury or associated vascular changes. Continuous, long-term exposure to cigarette smoke is considered the main risk factor for this disease, justifying the fact that the cigarette smoke exposure model is the most widely used. Some variations on this basic model, related to exposure time, the association of other inducers or inhibitors, exacerbations or the use of transgenic animals to facilitate the identification of pathogenic pathways have been developed. Some variations or heterogeneity of this disease, then, can be reproduced and models can be designed for resolving researchers' questions on disease identification or treatment responses.

  16. Small mammalian animal models of heart disease

    PubMed Central

    Camacho, Paula; Fan, Huimin; Liu, Zhongmin; He, Jia-Qiang

    2016-01-01

    There is an urgent clinical need to develop new therapeutic approaches for treating cardiovascular disease, but the biology of cardiovascular regeneration is complex. Model systems are required to advance our understanding of the pathogenesis, progression, and mechanisms underlying cardiovascular disease as well as to test therapeutic approaches to regenerate tissue and restore cardiac function following injury. An ideal model system should be inexpensive, easily manipulated, reproducible, physiologically representative of human disease, and ethically sound. The choice of animal model needs to be considered carefully since it affects experimental outcomes and whether findings of the study can be reasonably translated to humans. This review presents a guideline for the commonly used small animal models (mice, rats, rabbits, and cats) used in cardiac research as an effort to standardize the most relevant procedures and obtain translatable and reproducible results.

  17. The modelling cycle for collective animal behaviour

    PubMed Central

    Sumpter, David J. T.; Mann, Richard P.; Perna, Andrea

    2012-01-01

    Collective animal behaviour is the study of how interactions between individuals produce group level patterns, and why these interactions have evolved. This study has proved itself uniquely interdisciplinary, involving physicists, mathematicians, engineers as well as biologists. Almost all experimental work in this area is related directly or indirectly to mathematical models, with regular movement back and forth between models, experimental data and statistical fitting. In this paper, we describe how the modelling cycle works in the study of collective animal behaviour. We classify studies as addressing questions at different levels or linking different levels, i.e. as local, local to global, global to local or global. We also describe three distinct approaches—theory-driven, data-driven and model selection—to these questions. We show, with reference to our own research on species across different taxa, how we move between these different levels of description and how these various approaches can be applied to link levels together. PMID:23173077

  18. Animal models for meniscus repair and regeneration.

    PubMed

    Deponti, Daniela; Di Giancamillo, Alessia; Scotti, Celeste; Peretti, Giuseppe M; Martin, Ivan

    2015-05-01

    The meniscus plays an important role in knee function and mechanics. Meniscal lesions, however, are common phenomena and this tissue is not able to achieve spontaneous successful repair, particularly in the inner avascular zone. Several animal models have been studied and proposed for testing different reparative approaches, as well as for studying regenerative methods aiming to restore the original shape and function of this structure. This review summarizes the gross anatomy, function, ultrastructure and biochemical composition of the knee meniscus in several animal models in comparison with the human meniscus. The relevance of the models is discussed from the point of view of basic research as well as of clinical translation for meniscal repair, substitution and regeneration. Finally, the advantages and disadvantages of each model for various research directions are critically discussed.

  19. Animal models for HIV/AIDS research.

    PubMed

    Hatziioannou, Theodora; Evans, David T

    2012-12-01

    The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection.

  20. Traumatic Brain Injury Models in Animals.

    PubMed

    Rostami, Elham

    2016-01-01

    Traumatic brain injury (TBI) is the leading cause of death in young adults in industrialized nations and in the developing world the WHO considers TBI a silent epidemic caused by an increasing number of traffic accidents. Despite the major improvement of TBI outcome in the acute setting in the past 20 years, the assessment, therapeutic interventions, and prevention of long-term complications remain a challenge. In order to get a deeper insight into the pathology of TBI and advancement of medical understanding and clinical progress experimental animal models are an essential requirement. This chapter provides an overview of most commonly used experimental animal TBI models and the pathobiological findings based on current data. In addition, limitations and advantages of each TBI model are mentioned. This will hopefully give an insight into the possibilities of each model and be of value in choosing one when designing a study. PMID:27604712

  1. Small mammalian animal models of heart disease.

    PubMed

    Camacho, Paula; Fan, Huimin; Liu, Zhongmin; He, Jia-Qiang

    2016-01-01

    There is an urgent clinical need to develop new therapeutic approaches for treating cardiovascular disease, but the biology of cardiovascular regeneration is complex. Model systems are required to advance our understanding of the pathogenesis, progression, and mechanisms underlying cardiovascular disease as well as to test therapeutic approaches to regenerate tissue and restore cardiac function following injury. An ideal model system should be inexpensive, easily manipulated, reproducible, physiologically representative of human disease, and ethically sound. The choice of animal model needs to be considered carefully since it affects experimental outcomes and whether findings of the study can be reasonably translated to humans. This review presents a guideline for the commonly used small animal models (mice, rats, rabbits, and cats) used in cardiac research as an effort to standardize the most relevant procedures and obtain translatable and reproducible results. PMID:27679742

  2. Small mammalian animal models of heart disease

    PubMed Central

    Camacho, Paula; Fan, Huimin; Liu, Zhongmin; He, Jia-Qiang

    2016-01-01

    There is an urgent clinical need to develop new therapeutic approaches for treating cardiovascular disease, but the biology of cardiovascular regeneration is complex. Model systems are required to advance our understanding of the pathogenesis, progression, and mechanisms underlying cardiovascular disease as well as to test therapeutic approaches to regenerate tissue and restore cardiac function following injury. An ideal model system should be inexpensive, easily manipulated, reproducible, physiologically representative of human disease, and ethically sound. The choice of animal model needs to be considered carefully since it affects experimental outcomes and whether findings of the study can be reasonably translated to humans. This review presents a guideline for the commonly used small animal models (mice, rats, rabbits, and cats) used in cardiac research as an effort to standardize the most relevant procedures and obtain translatable and reproducible results. PMID:27679742

  3. Animal models for the study of HCV

    PubMed Central

    Vercauteren, Koen; de Jong, Ype P.; Meuleman, Philip

    2015-01-01

    1 Summary The development and evaluation of effective therapies and vaccines for the hepatitis C virus (HCV) and the study of its interactions with the mammalian host have been hindered for a long time by the absence of suitable small animal models. Immune compromised mouse models that recapitulate the complete HCV life cycle have been useful to investigate many aspects of the HCV life cycle including antiviral interventions. However, HCV has a high propensity to establish persistence and associated histopathological manifestations such as steatosis, fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Better understanding of these processes requires the development of a permissive and fully immunocompetent small animal model. In this review we summarize the in vivo models that are available for the study of HCV. PMID:26304554

  4. Cholestasis: human disease and experimental animal models.

    PubMed

    Rodríguez-Garay, Emilio Alberto

    2003-01-01

    Cholestasis may result from a failure in bile secretion in hepatocytes or ductular cells, or from a blockade to the free bile flow. Human cholestasis may be induced by many drugs, being antibiotics the more common. Other types of cholestasis seen in humans are a group of familial cholestatic disorders, obstructive cholestasis, primary biliary cirrhosis, extrahepatic biliary atresia, primary sclerosing cholangitis, cholestasis of pregnancy, oral contraceptive-induced cholestasis, and sepsis-induced cholestasis. Experimental animal models allow the understanding of pathophysiological mechanisms involved and their clinical correlates. The most common experimental models of intrahepatic cholestasis are estrogen-induced, endotoxin-induced and drug-induced cholestasis. A well known model of extrahepatic biliary obstruction is common bile duct ligation. Drug-induced cholestasis were described using different drugs. On this regard, alpha naphthylisothiocyanate treatment has been extensively used, permitting to describe not only cholestatic alterations but also compensatory mechanisms. Congenital defficiency of transport proteins also were studied in natural rat models of cholestasis. The experimental animal models allow to define down-regulated alterations of hepatocyte transport proteins, and up-regulated ones acting as compensatory mechanisms. In conclusion, animal model and transport protein studies are necessary for the progressive understanding of congenital and acquired human cholestasis, and regulatory mechanisms that operate on liver cells.

  5. Evaluation of Surrogate Animal Models of Melioidosis

    PubMed Central

    Warawa, Jonathan Mark

    2010-01-01

    Burkholderia pseudomallei is the Gram-negative bacterial pathogen responsible for the disease melioidosis. B. pseudomallei establishes disease in susceptible individuals through multiple routes of infection, all of which may proceed to a septicemic disease associated with a high mortality rate. B. pseudomallei opportunistically infects humans and a wide range of animals directly from the environment, and modeling of experimental melioidosis has been conducted in numerous biologically relevant models including mammalian and invertebrate hosts. This review seeks to summarize published findings related to established animal models of melioidosis, with an aim to compare and contrast the virulence of B. pseudomallei in these models. The effect of the route of delivery on disease is also discussed for intravenous, intraperitoneal, subcutaneous, intranasal, aerosol, oral, and intratracheal infection methodologies, with a particular focus on how they relate to modeling clinical melioidosis. The importance of the translational validity of the animal models used in B. pseudomallei research is highlighted as these studies have become increasingly therapeutic in nature. PMID:21772830

  6. Potential animal models of seasonal affective disorder.

    PubMed

    Workman, Joanna L; Nelson, Randy J

    2011-01-01

    Seasonal affective disorder (SAD) is characterized by depressive episodes during winter that are alleviated during summer and by morning bright light treatment. Currently, there is no animal model of SAD. However, it may be possible to use rodents that respond to day length (photoperiod) to understand how photoperiod can shape the brain and behavior in humans. As nights lengthen in the autumn, the duration of the nightly elevation of melatonin increase; seasonally breeding animals use this information to orchestrate seasonal changes in physiology and behavior. SAD may originate from the extended duration of nightly melatonin secretion during fall and winter. These similarities between humans and rodents in melatonin secretion allows for comparisons with rodents that express more depressive-like responses when exposed to short day lengths. For instance, Siberian hamsters, fat sand rats, Nile grass rats, and Wistar rats display a depressive-like phenotype when exposed to short days. Current research in depression and animal models of depression suggests that hippocampal plasticity may underlie the symptoms of depression and depressive-like behaviors, respectively. It is also possible that day length induces structural changes in human brains. Many seasonally breeding rodents undergo changes in whole brain and hippocampal volume in short days. Based on strict validity criteria, there is no animal model of SAD, but rodents that respond to reduced day lengths may be useful to approximate the neurobiological phenomena that occur in people with SAD, leading to greater understanding of the etiology of the disorder as well as novel therapeutic interventions.

  7. Large genetic animal models of Huntington's Disease.

    PubMed

    Morton, A Jennifer; Howland, David S

    2013-01-01

    The dominant nature of the Huntington's disease gene mutation has allowed genetic models to be developed in multiple species, with the mutation causing an abnormal neurological phenotype in all animals in which it is expressed. Many different rodent models have been generated. The most widely used of these, the transgenic R6/2 mouse, carries the mutation in a fragment of the human huntingtin gene and has a rapidly progressive and fatal neurological phenotype with many relevant pathological changes. Nevertheless, their rapid decline has been frequently questioned in the context of a disease that takes years to manifest in humans, and strenuous efforts have been made to make rodent models that are genetically more 'relevant' to the human condition, including full length huntingtin gene transgenic and knock-in mice. While there is no doubt that we have learned, and continue to learn much from rodent models, their usefulness is limited by two species constraints. First, the brains of rodents differ significantly from humans in both their small size and their neuroanatomical organization. Second, rodents have much shorter lifespans than humans. Here, we review new approaches taken to these challenges in the development of models of Huntington's disease in large brained, long-lived animals. We discuss the need for such models, and how they might be used to fill specific niches in preclinical Huntington's disease research, particularly in testing gene-based therapeutics. We discuss the advantages and disadvantages of animals in which the prodromal period of disease extends over a long time span. We suggest that there is considerable 'value added' for large animal models in preclinical Huntington's disease research.

  8. Animal models of enteroaggregative Escherichia coli infection

    PubMed Central

    Philipson, Casandra W.; Bassaganya-Riera, Josep; Hontecillas, Raquel

    2013-01-01

    Enteroaggregative Escherichia coli (EAEC) has been acknowledged as an emerging cause of gastroenteritis worldwide for over two decades. Epidemiologists are revealing the role of EAEC in diarrheal outbreaks as a more common occurrence than ever suggested before. EAEC induced diarrhea is most commonly associated with travelers, children and immunocompromised individuals however its afflictions are not limited to any particular demographic. Many attributes have been discovered and characterized surrounding the capability of EAEC to provoke a potent pro-inflammatory immune response, however cellular and molecular mechanisms underlying initiation, progression and outcomes are largely unknown. This limited understanding can be attributed to heterogeneity in strains and the lack of adequate animal models. This review aims to summarize current knowledge about EAEC etiology, pathogenesis and clinical manifestation. Additionally, current animal models and their limitations will be discussed along with the value of applying systems-wide approaches such as computational modeling to study host-EAEC interactions. PMID:23680797

  9. Animal models of antimuscle specific kinase myasthenia

    PubMed Central

    Richman, David P.; Nishi, Kayoko; Ferns, Michael J.; Schnier, Joachim; Pytel, Peter; Maselli, Ricardo A.; Agius, Mark A.

    2014-01-01

    Antimuscle specific kinase (anti-MuSK) myasthenia (AMM) differs from antiacetylcholine receptor myasthenia gravis in exhibiting more focal muscle involvement (neck, shoulder, facial, and bulbar muscles) with wasting of the involved, primarily axial, muscles. AMM is not associated with thymic hyperplasia and responds poorly to anticholinesterase treatment. Animal models of AMM have been induced in rabbits, mice, and rats by immunization with purified xenogeneic MuSK ectodomain, and by passive transfer of large quantities of purified serum IgG from AMM patients into mice. The models have confirmed the pathogenic role of the MuSK antibodies in AMM and have demonstrated the involvement of both the presynaptic and postsynaptic components of the neuromuscular junction. The observations in this human disease and its animal models demonstrate the role of MuSK not only in the formation of this synapse but also in its maintenance. PMID:23252909

  10. Animal models of HIV peripheral neuropathy

    PubMed Central

    Burdo, Tricia H; Miller, Andrew D

    2014-01-01

    The use of animal models in the study of HIV and AIDS has advanced our understanding of the underlying pathophysiologic mechanisms of infection. Of the multitude of HIV disease manifestations, peripheral neuropathy remains one of the most common long-term side effects. Several of the most important causes of peripheral neuropathy in AIDS patients include direct association with HIV infection with or without antiretroviral medication and infection with opportunistic agents. Because the pathogeneses of these diseases are difficult to study in human patients, animal models have allowed for significant advancement in the understanding of the role of viral infection and the immune system in disease genesis. This review focuses on rodent, rabbit, feline and rhesus models used to study HIV-associated peripheral neuropathies, focusing specifically on sensory neuropathy and antiretroviral-associated neuropathies. PMID:25214880

  11. Animal models of anxiety disorders and stress.

    PubMed

    Campos, Alline C; Fogaça, Manoela V; Aguiar, Daniele C; Guimarães, Francisco S

    2013-01-01

    Anxiety and stress-related disorders are severe psychiatric conditions that affect performance in daily tasks and represent a high cost to public health. The initial observation of Charles Darwin that animals and human beings share similar characteristics in the expression of emotion raise the possibility of studying the mechanisms of psychiatric disorders in other mammals (mainly rodents). The development of animal models of anxiety and stress has helped to identify the pharmacological mechanisms and potential clinical effects of several drugs. Animal models of anxiety are based on conflict situations that can generate opposite motivational states induced by approach-avoidance situations. The present review revisited the main rodent models of anxiety and stress responses used worldwide. Here we defined as "ethological" the tests that assess unlearned/unpunished responses (such as the elevated plus maze, light-dark box, and open field), whereas models that involve learned/punished responses are referred to as "conditioned operant conflict tests" (such as the Vogel conflict test). We also discussed models that involve mainly classical conditioning tests (fear conditioning). Finally, we addressed the main protocols used to induce stress responses in rodents, including psychosocial (social defeat and neonatal isolation stress), physical (restraint stress), and chronic unpredictable stress.

  12. Factors Influencing the Acceptance of Web-Based Training in Malaysia: Applying the Technology Acceptance Model

    ERIC Educational Resources Information Center

    Hashim, Junaidah

    2008-01-01

    Companies in Malaysia are beginning to use web-based training to reduce the cost of training and to provide employees with greater access to instruction. However, some people are uncomfortable with technology and prefer person-to-person methods of training. This study examines the acceptance of web-based training among a convenience sample of 261…

  13. Fantastic animals as an experimental model to teach animal adaptation

    PubMed Central

    Guidetti, Roberto; Baraldi, Laura; Calzolai, Caterina; Pini, Lorenza; Veronesi, Paola; Pederzoli, Aurora

    2007-01-01

    Background Science curricula and teachers should emphasize evolution in a manner commensurate with its importance as a unifying concept in science. The concept of adaptation represents a first step to understand the results of natural selection. We settled an experimental project of alternative didactic to improve knowledge of organism adaptation. Students were involved and stimulated in learning processes by creative activities. To set adaptation in a historic frame, fossil records as evidence of past life and evolution were considered. Results The experimental project is schematized in nine phases: review of previous knowledge; lesson on fossils; lesson on fantastic animals; planning an imaginary world; creation of an imaginary animal; revision of the imaginary animals; adaptations of real animals; adaptations of fossil animals; and public exposition. A rubric to evaluate the student's performances is reported. The project involved professors and students of the University of Modena and Reggio Emilia and of the "G. Marconi" Secondary School of First Degree (Modena, Italy). Conclusion The educational objectives of the project are in line with the National Indications of the Italian Ministry of Public Instruction: knowledge of the characteristics of living beings, the meanings of the term "adaptation", the meaning of fossils, the definition of ecosystem, and the particularity of the different biomes. At the end of the project, students will be able to grasp particular adaptations of real organisms and to deduce information about the environment in which the organism evolved. This project allows students to review previous knowledge and to form their personalities. PMID:17767729

  14. Animal Models of Depression: Molecular Perspectives

    PubMed Central

    Krishnan, Vaishnav; Nestler, Eric J.

    2012-01-01

    Much of the current understanding about the pathogenesis of altered mood, impaired concentration and neurovegetative symptoms in major depression has come from animal models. However, because of the unique and complex features of human depression, the generation of valid and insightful depression models has been less straightforward than modeling other disabling diseases like cancer or autoimmune conditions. Today’s popular depression models creatively merge ethologically valid behavioral assays with the latest technological advances in molecular biology and automated video-tracking. This chapter reviews depression assays involving acute stress (e.g., forced swim test), models consisting of prolonged physical or social stress (e.g., social defeat), models of secondary depression, genetic models, and experiments designed to elucidate the mechanisms of antidepressant action. These paradigms are critically evaluated in relation to their ease, validity and replicability, the molecular insights that they have provided, and their capacity to offer the next generation of therapeutics for depression. PMID:21225412

  15. Pharmacological animal models of tic disorders.

    PubMed

    McCairn, Kevin W; Isoda, Masaki

    2013-01-01

    This review summarizes animal models of Tourette syndrome (TS) and associated tic disorders that have been developed through pharmacological manipulation. These models provide a useful platform to explore the pathophysiology and the therapeutic interventions available for these disorders. The current pharmacological models, primarily using rodents and nonhuman primates, are classified in this review into two major categories depending on the methodology used for administration, that is, systemic and focal (intracerebral) injection protocols. The systemic protocol primarily targets monoamines such as dopamine and serotonin, whereas the focal protocol mainly manipulates local transmission of gamma-aminobutyric acid (GABA). Each category is capable of inducing behavioral abnormalities that are characteristic of TS spectrum disorders, ranging from sensorimotor to cognitive and emotional symptoms to various degrees. Among a variety of pharmacological models, focal microinjection of GABA antagonists into the sensorimotor striatum has helped identify abnormal neural discharge in the global networks which underlie tourettism, including not only the cerebral cortex and basal ganglia but also the cerebellum, consistent with recent neuroimaging studies for TS subjects. This unique model also provides the opportunity to clarify the effect and mechanisms of therapeutic deep brain stimulation. Continuing efforts to incorporate cutting-edge knowledge into the existing models, as well as to combine different model platforms, will allow further refinement of animal models, thereby leading to a greater understanding of TS and associated tic disorders.

  16. The History of UTAUT Model and Its Impact on ICT Acceptance and Usage by Academicians

    ERIC Educational Resources Information Center

    Oye, N. D.; Iahad, N. A.; Rahim, N. Ab.

    2014-01-01

    This paper started with the review of the history of technology acceptance model from TRA to UTAUT. The expected contribution is to bring to lime light the current development stage of the technology acceptance model. Based on this, the paper examined the impact of UTAUT model on ICT acceptance and usage in HEIs. The UTAUT model theory was…

  17. Influence of Gender and Computer Teaching Efficacy on Computer Acceptance among Malaysian Student Teachers: An Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Wong, Kung-Teck; Teo, Timothy; Russo, Sharon

    2012-01-01

    The purpose of this study is to validate the technology acceptance model (TAM) in an educational context and explore the role of gender and computer teaching efficacy as external variables. From the literature, it appeared that only limited studies had developed models to explain statistically the chain of influence of computer teaching efficacy…

  18. Animal models of Diamond Blackfan Anemia

    PubMed Central

    McGowan, Kelly A.; Mason, Philip J.

    2011-01-01

    Diamond Blackfan anemia is a genetic syndrome characterized by red blood cell aplasiain association with developmental abnormalities such as growth retardation, orofacial, hand or limb malformations, urogenital anomalies and heart defects. The only known cause is heterozygosity for mutations in genes encoding ribosomal proteins. Understanding how defective ribosome biogenesis and function, important for all cells, causes defects in erythropoiesis and tissue-specific phenotypes during development is paramount to the evolution of effective treatment protocols. Here, we discuss how animal models based on mammals, insects and fish replicate genetic or developmental aspects of DBA and have led to the identification of pathways and candidate molecules that are important in the pathogenesis of the disease. A recurring theme in many of these models suggests that defective ribosome biogenesis induces a p53-dependent cell cycle checkpoint in cells that require high levels of ribosome production and leads to cell type-specific, whole animal phenotypes. PMID:21435507

  19. Standardised animal models of host microbial mutualism

    PubMed Central

    Macpherson, A J; McCoy, K D

    2015-01-01

    An appreciation of the importance of interactions between microbes and multicellular organisms is currently driving research in biology and biomedicine. Many human diseases involve interactions between the host and the microbiota, so investigating the mechanisms involved is important for human health. Although microbial ecology measurements capture considerable diversity of the communities between individuals, this diversity is highly problematic for reproducible experimental animal models that seek to establish the mechanistic basis for interactions within the overall host-microbial superorganism. Conflicting experimental results may be explained away through unknown differences in the microbiota composition between vivaria or between the microenvironment of different isolated cages. In this position paper, we propose standardised criteria for stabilised and defined experimental animal microbiotas to generate reproducible models of human disease that are suitable for systematic experimentation and are reproducible across different institutions. PMID:25492472

  20. Pediatric Epileptic Encephalopathies: Pathophysiology and Animal Models.

    PubMed

    Shao, Li-Rong; Stafstrom, Carl E

    2016-05-01

    Epileptic encephalopathies are syndromes in which seizures or interictal epileptiform activity contribute to or exacerbate brain function, beyond that caused by the underlying pathology. These severe epilepsies begin early in life, are associated with poor lifelong outcome, and are resistant to most treatments. Therefore, they represent an immense challenge for families and the medical care system. Furthermore, the pathogenic mechanisms underlying the epileptic encephalopathies are poorly understood, hampering attempts to devise novel treatments. This article reviews animal models of the three classic epileptic encephalopathies-West syndrome (infantile spasms), Lennox-Gastaut syndrome, and continuous spike waves during sleep or Landau-Kleffner syndrome-with discussion of how animal models are revealing underlying pathophysiological mechanisms that might be amenable to targeted therapy. PMID:27544466

  1. Modeling interdependent animal movement in continuous time.

    PubMed

    Niu, Mu; Blackwell, Paul G; Skarin, Anna

    2016-06-01

    This article presents a new approach to modeling group animal movement in continuous time. The movement of a group of animals is modeled as a multivariate Ornstein Uhlenbeck diffusion process in a high-dimensional space. Each individual of the group is attracted to a leading point which is generally unobserved, and the movement of the leading point is also an Ornstein Uhlenbeck process attracted to an unknown attractor. The Ornstein Uhlenbeck bridge is applied to reconstruct the location of the leading point. All movement parameters are estimated using Markov chain Monte Carlo sampling, specifically a Metropolis Hastings algorithm. We apply the method to a small group of simultaneously tracked reindeer, Rangifer tarandus tarandus, showing that the method detects dependency in movement between individuals. PMID:26812666

  2. Animal models of age related macular degeneration

    PubMed Central

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  3. Experimental Diabetes Mellitus in Different Animal Models.

    PubMed

    Al-Awar, Amin; Kupai, Krisztina; Veszelka, Médea; Szűcs, Gergő; Attieh, Zouhair; Murlasits, Zsolt; Török, Szilvia; Pósa, Anikó; Varga, Csaba

    2016-01-01

    Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. PMID:27595114

  4. Experimental Diabetes Mellitus in Different Animal Models

    PubMed Central

    Al-awar, Amin; Veszelka, Médea; Szűcs, Gergő; Attieh, Zouhair; Murlasits, Zsolt; Török, Szilvia; Pósa, Anikó; Varga, Csaba

    2016-01-01

    Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans.

  5. Experimental Diabetes Mellitus in Different Animal Models

    PubMed Central

    Al-awar, Amin; Veszelka, Médea; Szűcs, Gergő; Attieh, Zouhair; Murlasits, Zsolt; Török, Szilvia; Pósa, Anikó; Varga, Csaba

    2016-01-01

    Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. PMID:27595114

  6. Diabetic Retinopathy: Animal Models, Therapies, and Perspectives

    PubMed Central

    Cai, Xue; McGinnis, James F.

    2016-01-01

    Diabetic retinopathy (DR) is one of the major complications of diabetes. Although great efforts have been made to uncover the mechanisms underlying the pathology of DR, the exact causes of DR remain largely unknown. Because of multifactor involvement in DR etiology, currently no effective therapeutic treatments for DR are available. In this paper, we review the pathology of DR, commonly used animal models, and novel therapeutic approaches. Perspectives and future directions for DR treatment are discussed. PMID:26881246

  7. Diabetic Retinopathy: Animal Models, Therapies, and Perspectives.

    PubMed

    Cai, Xue; McGinnis, James F

    2016-01-01

    Diabetic retinopathy (DR) is one of the major complications of diabetes. Although great efforts have been made to uncover the mechanisms underlying the pathology of DR, the exact causes of DR remain largely unknown. Because of multifactor involvement in DR etiology, currently no effective therapeutic treatments for DR are available. In this paper, we review the pathology of DR, commonly used animal models, and novel therapeutic approaches. Perspectives and future directions for DR treatment are discussed. PMID:26881246

  8. Animal Models of Compulsive Eating Behavior

    PubMed Central

    Di Segni, Matteo; Patrono, Enrico; Patella, Loris; Puglisi-Allegra, Stefano; Ventura, Rossella

    2014-01-01

    Eating disorders are multifactorial conditions that can involve a combination of genetic, metabolic, environmental, and behavioral factors. Studies in humans and laboratory animals show that eating can also be regulated by factors unrelated to metabolic control. Several studies suggest a link between stress, access to highly palatable food, and eating disorders. Eating “comfort foods” in response to a negative emotional state, for example, suggests that some individuals overeat to self-medicate. Clinical data suggest that some individuals may develop addiction-like behaviors from consuming palatable foods. Based on this observation, “food addiction” has emerged as an area of intense scientific research. A growing body of evidence suggests that some aspects of food addiction, such as compulsive eating behavior, can be modeled in animals. Moreover, several areas of the brain, including various neurotransmitter systems, are involved in the reinforcement effects of both food and drugs, suggesting that natural and pharmacological stimuli activate similar neural systems. In addition, several recent studies have identified a putative connection between neural circuits activated in the seeking and intake of both palatable food and drugs. The development of well-characterized animal models will increase our understanding of the etiological factors of food addiction and will help identify the neural substrates involved in eating disorders such as compulsive overeating. Such models will facilitate the development and validation of targeted pharmacological therapies. PMID:25340369

  9. Humanized animal exercise model for clinical implication.

    PubMed

    Seo, Dae Yun; Lee, Sung Ryul; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo; Han, Jin

    2014-09-01

    Exercise and physical activity function as a patho-physiological process that can prevent, manage, and regulate numerous chronic conditions, including metabolic syndrome and age-related sarcopenia. Because of research ethics and technical difficulties in humans, exercise models using animals are requisite for the future development of exercise mimetics to treat such abnormalities. Moreover, the beneficial or adverse outcomes of a new regime or exercise intervention in the treatment of a specific condition should be tested prior to implementation in a clinical setting. In rodents, treadmill running (or swimming) and ladder climbing are widely used as aerobic and anaerobic exercise models, respectively. However, exercise models are not limited to these types. Indeed, there are no golden standard exercise modes or protocols for managing or improving health status since the types (aerobic vs. anaerobic), time (morning vs. evening), and duration (continuous vs. acute bouts) of exercise are the critical determinants for achieving expected beneficial effects. To provide insight into the understanding of exercise and exercise physiology, we have summarized current animal exercise models largely based on aerobic and anaerobic criteria. Additionally, specialized exercise models that have been developed for testing the effect of exercise on specific physiological conditions are presented. Finally, we provide suggestions and/or considerations for developing a new regime for an exercise model.

  10. Animal models in drug development for MRSA.

    PubMed

    Marra, Andrea

    2014-01-01

    One of the foremost challenges of drug discovery in any therapeutic area is that of solidifying the correlation between in vitro activity and clinical efficacy. Between these is the confirmation that affecting a particular target in vivo will lead to a therapeutic benefit. In antibacterial drug discovery, there is a key advantage from the start, since the targets are bacteria-therefore, it is simple to ascertain in vitro whether a drug has the desired effect, i.e., bacterial cell inhibition or killing, and to understand the mechanism by which that occurs. The downstream criteria, whether a compound reaches the infection site and achieves appropriately high levels to affect bacterial viability, can be evaluated in animal models of infection. In this way animal models of infection can be a highly valuable and predictive bridge between in vitro drug discovery and early clinical evaluation.The Gram-positive pathogen Staphylococcus aureus causes a wide variety of infections in humans (Archer, Clin Infect Dis 26:1179-1181, 1998) and has been said to be able to infect every tissue type. Fortunately, over the years a great deal of effort has been expended toward developing infection models in rodents using this organism, with good success. This chapter will describe the advantages, methods, and outcome measurements of the rodent models most used in drug discovery for S. aureus. Mouse models will be the focus of this chapter, as they are the most economical and thus most commonly used, but a rat infection model is included as well.

  11. Modeling Computer Usage Intentions of Tertiary Students in a Developing Country through the Technology Acceptance Model

    ERIC Educational Resources Information Center

    Afari-Kumah, Eben; Achampong, Akwasi Kyere

    2010-01-01

    This study aims to examine the computer usage intentions of Ghanaian Tertiary Students. The Technology Acceptance Model was adopted as the theoretical framework to ascertain whether it could help explain behavioral intentions of individuals to accept and use technology. Factor analysis was used to assess the construct validity of the initial…

  12. Proliferative retinopathies: animal models and therapeutic opportunities.

    PubMed

    Villacampa, Pilar; Haurigot, Virginia; Bosch, Fatima

    2015-01-01

    Proliferative retinopathies are the leading causes of blindness in Western societies. The development of new, more efficacious treatments that take advantage of recent advances in the fields of gene and cell therapy requires further investigations on the mechanisms underlying disease onset and progression, and adequate animal models that recapitulate the pathogenesis of human proliferative retinopathy and allow evaluation of the long-term therapeutic benefits that these therapies can offer. Unfortunately, most models of retinal neovascularization have short-term evolution and diabetic rodents show a very mild retinal phenotype, limited to non-proliferative changes, and do not develop proliferative retinopathy at all. Transgenic mice overexpressing Insulin-like Growth Factor-I (IGF-I) in the retina (TgIGF-I) constitute the only rodent model currently available that develops most of the retinal alterations observed in diabetic eyes, with a temporal evolution that resembles that of the human disease. TgIGF-I have retinal vascular alterations that progress as animals age from non-proliferative to proliferative disease, making these mice an excellent model of proliferative retinopathy that, due to its slow progression, allows long-term evaluation of novel antiangiogenic therapies. At the molecular level, transgenic retinas recapitulate a variety of changes that are also observed in diabetic retinas, which reinforces the validity of this model. In addition to vascular and glial alterations, Tg-IGF-I mice show progressive neurodegeneration that leads to blindness in old animals. Thus, TgIGF-I are a useful model for testing the long-term efficacy and safety of innovative antiangiogenic, glial-modulating and neuroprotective therapies for the treatment of diabetic retinopathy and other retinal proliferative disorders.

  13. Animating Event B Models by Formal Data Models

    NASA Astrophysics Data System (ADS)

    Ait-Sadoune, Idir; Ait-Ameur, Yamine

    We present a formal approach allowing to animate event B formal models. Invariants, deadlock freeness properties are expressed and proved on these models. This paper presents an approach that suggests to complete the proof activity in the event B method by animation activity. The obtained animator may be used to check if the event B models obtained fulfill user requirements, or to provide a help to the developer when describing its formal event B models and particularly in defining event B invariants and guards. More precisely, event B models are translated into data models expressed in the EXPRESS formal data modeling technique. The obtained data models are instantiated and provide an animation of the original B models. Following this approach, it becomes possible to trigger event B models, which themselves trigger entity instantiation on the EXPRESS side. As a further step, we show that the B models can be used as a monitoring system raising alarms in case of incorrect systems behavior. The proposed approach is operationally implemented in the B2EXPRESS tool which handles animation of event B models. It has been experimented for the validation of multimodal human interfaces in the context of VERBATIM project.

  14. Animal infection models and ethics -- the perfect infection model.

    PubMed

    Zak, Oto; O'Reilly, Terence

    1993-05-01

    Experimental infection models have long been recognized as an essential part of testing anti-infective therapies. A perfect animal model would be a model that satisfied not only scientific criteria, but ethical criteria as well. In the design and execution of such experiments, scientific and ethical considerations are not mutually exclusive, but should be convergent and therefore result in the optimal model.

  15. Identifying Ghanaian Pre-Service Teachers' Readiness for Computer Use: A Technology Acceptance Model Approach

    ERIC Educational Resources Information Center

    Gyamfi, Stephen Adu

    2016-01-01

    This study extends the technology acceptance model to identify factors that influence technology acceptance among pre-service teachers in Ghana. Data from 380 usable questionnaires were tested against the research model. Utilising the extended technology acceptance model (TAM) as a research framework, the study found that: pre-service teachers'…

  16. Animal models of chronic liver diseases.

    PubMed

    Liu, Yan; Meyer, Christoph; Xu, Chengfu; Weng, Honglei; Hellerbrand, Claus; ten Dijke, Peter; Dooley, Steven

    2013-03-01

    Chronic liver diseases are frequent and potentially life threatening for humans. The underlying etiologies are diverse, ranging from viral infections, autoimmune disorders, and intoxications (including alcohol abuse) to imbalanced diets. Although at early stages of disease the liver regenerates in the absence of the insult, advanced stages cannot be healed and may require organ transplantation. A better understanding of underlying mechanisms is mandatory for the design of new drugs to be used in clinic. Therefore, rodent models are being developed to mimic human liver disease. However, no model to date can completely recapitulate the "corresponding" human disorder. Limiting factors are the time frame required in humans to establish a certain liver disease and the fact that rodents possess a distinct immune system compared with humans and have different metabolic rates affecting liver homeostasis. These features account for the difficulties in developing adequate rodent models for studying disease progression and for testing new pharmaceuticals to be translated into the clinic. Nevertheless, traditional and new promising animal models that mimic certain attributes of chronic liver diseases are established and being used to deepen our understanding in the underlying mechanisms of distinct liver diseases. This review aims at providing a comprehensive overview of recent advances in animal models recapitulating different features and etiologies of human liver diseases. PMID:23275613

  17. Hormones and autoimmunity: animal models of arthritis.

    PubMed

    Wilder, R L

    1996-05-01

    Hormones, particularly those involved in the hypothalamic-pituitary-gonadal and -adrenal axes (HPG and HPA), play important roles in various animal models of autoimmunity such as systemic lupus erythematosus in mice and collagen-induced arthritis (CIA) in mice and rats, and the streptococcal cell wall, adjuvant and avridine arthritis models in rats. Intimately linked to the subject of hormones and autoimmunity are gender, sex chromosomes and age. The importance of these factors in the various animal models is emphasized in this chapter. Several major themes are apparent. First, oestrogens promote B-cell dependent immune-complex mediated disease (e.g. lupus nephritis) but suppress T-cell dependent pathology (CIA in mice and rats), and vice versa. Second, testosterone's effects are complicated and depend on species and disease model. In rats, testosterone suppresses both T-cell and B-cell immunity. In mice, the effects are complex and difficult to interpret, e.g. they tend to enhance CIA arthritis and suppress lupus. Sex chromosome/sex hormone interactions are clearly involved in generating these complicated effects. Third, studies in Lewis and Fischer F344 rats exemplify the importance of corticosteroids, corticotrophin releasing hormone and the HPA axis in the regulation of inflammation and the predisposition to autoimmune diseases. Fourth, the HPA axis is intimately linked to the HPG axis and is sexually dimorphic. Oestrogens stimulate higher corticosteroid responses in females. The animal model data have major implications for understanding autoimmunity in humans. In particular, adrenal and gonadal hormone deficiency is likely to facilitate T-cell dependent diseases like rheumatoid arthritis, while high oestrogen levels or effects, relative to testosterone, are likely to promote B-cell dependent immune-complex-mediated diseases such as lupus nephritis.

  18. Animal models of depression: are there any?

    PubMed

    O'Neil, Michael F; Moore, Nicholas A

    2003-06-01

    Simple tests for antidepressant-like activity, such as 5-HTP-induced syndrome or reserpine-induced hypomotility, are often mechanism-based tests, pharmacologically specific for certain known classes of therapeutically successful antidepressant agents. Many of these behavioural assays have been superseded by neurochemical techniques such as in vivo microdialysis. In contrast to these mechanistic-based models, investigators have also endeavoured to reproduce in the laboratory, factors that are believed to precipitate depression in people. It is a strong assumption in this approach that depression is a response to stress. This strategy profiles the consequences of chronic stress particularly psychosocial stress or early life events, in order to reproduce in animals the behavioural signs and pathologies associated with depression. The advances in the social psychological, clinical pathological and new areas such as neuroimaging research offer the possibility of establishing more sophisticated models for depression in animals with a broader range of biomarkers from the immunological and endocrinological to neurochemical and behavioural. Combining these novel insights with more traditional tests of depression may not only increase our understanding of the neurobiology of depression but also afford more precise and predictive preclinical models of depression. The responsiveness of different strains or genetically modified animals to stress is likely to be a key area of study. Furthermore we must look to individual differences in subjects, even within the same strain, to more fully understand why some individuals show pathological responses to stress whereas others appear unaffected. Conversely in validating our models using currently available treatments we must include the concept of non-responders so as not to disregard models that may extend therapeutic possibilities in these patients. PMID:12766928

  19. Modeling eBook acceptance: A study on mathematics teachers

    NASA Astrophysics Data System (ADS)

    Jalal, Azlin Abd; Ayub, Ahmad Fauzi Mohd; Tarmizi, Rohani Ahmad

    2014-12-01

    The integration and effectiveness of eBook utilization in Mathematics teaching and learning greatly relied upon the teachers, hence the need to understand their perceptions and beliefs. The eBook, an individual laptop completed with digitized textbook sofwares, were provided for each students in line with the concept of 1 student:1 laptop. This study focuses on predicting a model on the acceptance of the eBook among Mathematics teachers. Data was collected from 304 mathematics teachers in selected schools using a survey questionnaire. The selection were based on the proportionate stratified sampling. Structural Equation Modeling (SEM) were employed where the model was tested and evaluated and was found to have a good fit. The variance explained for the teachers' attitude towards eBook is approximately 69.1% where perceived usefulness appeared to be a stronger determinant compared to perceived ease of use. This study concluded that the attitude of mathematics teachers towards eBook depends largely on the perception of how useful the eBook is on improving their teaching performance, implying that teachers should be kept updated with the latest mathematical application and sofwares to use with the eBook to ensure positive attitude towards using it in class.

  20. A Large Animal Survival Model to Evaluate Bariatric Surgery Mechanisms

    PubMed Central

    Simianu, Vlad V.; Sham, Jonathan G.; Wright, Andrew S.; Stewart, Skye D.; Alloosh, Mouhamad; Sturek, Michael; Cummings, David E.; Flum, David R.

    2016-01-01

    Background The impact of Roux-en-Y gastric bypass (RYGB) on type 2 diabetes mellitus is thought to result from upper and/or lower gut hormone alterations. Evidence supporting these mechanisms is incomplete, in part because of limitations in relevant bariatric-surgery animal models, specifically the lack of naturally insulin-resistant large animals. With overfeeding, Ossabaw swine develop a robust metabolic syndrome, and may be suitable for studying post-surgical physiology. Whether bariatric surgery is feasible in these animals with acceptable survival is unknown. Methods Thirty-two Ossabaws were fed a high-fat, high-cholesterol diet to induce obesity and insulin resistance. These animals were assigned to RYGB (n = 8), RYGB with vagotomy (RYGB-V, n = 5), gastrojejunostomy (GJ, n = 10), GJ with duodenal exclusion (GJD, n = 7), or sham operation (n = 2) and were euthanized 60 days post-operatively. Post-operative changes in weight and food intake are reported. Results Survival to scheduled necropsy among surgical groups was 77%, living an average of 57 days post-operatively. Cardiac arrest under anesthesia occurred in 4 pigs. Greatest weight loss (18.0% ± 6%) and food intake decrease (57.0% ± 20%) occurred following RYGB while animals undergoing RYGB-V showed only 6.6% ± 3% weight loss despite 50.8% ± 25% food intake decrease. GJ (12.7% ± 4%) and GJD (1.2% ± 1%) pigs gained weight, but less than sham controls (13.4% ± 10%). Conclusions A survival model of metabolic surgical procedures is feasible, leads to significant weight loss, and provides the opportunity to evaluate new interventions and subtle variations in surgical technique (e.g. vagus nerve sparing) that may provide new mechanistic insights. PMID:27213116

  1. Domestic animals as models for biomedical research

    PubMed Central

    Andersson, Leif

    2016-01-01

    Domestic animals are unique models for biomedical research due to their long history (thousands of years) of strong phenotypic selection. This process has enriched for novel mutations that have contributed to phenotype evolution in domestic animals. The characterization of such mutations provides insights in gene function and biological mechanisms. This review summarizes genetic dissection of about 50 genetic variants affecting pigmentation, behaviour, metabolic regulation, and the pattern of locomotion. The variants are controlled by mutations in about 30 different genes, and for 10 of these our group was the first to report an association between the gene and a phenotype. Almost half of the reported mutations occur in non-coding sequences, suggesting that this is the most common type of polymorphism underlying phenotypic variation since this is a biased list where the proportion of coding mutations are inflated as they are easier to find. The review documents that structural changes (duplications, deletions, and inversions) have contributed significantly to the evolution of phenotypic diversity in domestic animals. Finally, we describe five examples of evolution of alleles, which means that alleles have evolved by the accumulation of several consecutive mutations affecting the function of the same gene. PMID:26479863

  2. Stem cells, regenerative medicine, and animal models of disease.

    PubMed

    Steindler, Dennis A

    2007-01-01

    The field of stem cell biology and regenerative medicine is rapidly moving toward translation to clinical practice, and in doing so has become even more dependent on animal donors and hosts for generating cellular reagents and assaying their potential therapeutic efficacy in models of human disease. Advances in cell culture technologies have revealed a remarkable plasticity of stem cells from embryonic and adult tissues, and transplantation models are now needed to test the ability of these cells to protect at-risk cells and replace cells lost to injury or disease. With such a mandate, issues related to acceptable sources and controversial (e.g., chimeric) models have challenged the field to provide justification of their potential efficacy before the passage of new restrictions that may curb anticipated breakthroughs. Progress from the use of both in vitro and in vivo regenerative medicine models already offers hope both for the facilitation of stem cell phenotyping in recursive gene expression profile models and for the use of stem cells as powerful new therapeutic reagents for cancer, stroke, Parkinson's, and other challenging human diseases that result in movement disorders. This article describes research in support of the following three objectives: (1) To discover the best stem or progenitor cell in vitro protocols for isolating, expanding, and priming these cells to facilitate their massive propagation into just the right type of neuronal precursor cell for protection or replacement protocols for brain injury or disease, including those that affect movement such as Parkinson's disease and stroke; (2) To discover biogenic factors--compounds that affect stem/progenitor cells (e.g., from high-throughput screening and other bioassay approaches)--that will encourage reactive cell genesis, survival, selected differentiation, and restoration of connectivity in central nervous system movement and other disorders; and (3) To establish the best animal models of human

  3. Animal models of glucocorticoid-induced glaucoma.

    PubMed

    Overby, Darryl R; Clark, Abbot F

    2015-12-01

    Glucocorticoid (GC) therapy is widely used to treat a variety of inflammatory diseases and conditions. While unmatched in their anti-inflammatory and immunosuppressive activities, GC therapy is often associated with the significant ocular side effect of GC-induced ocular hypertension (OHT) and iatrogenic open-angle glaucoma. Investigators have generated GC-induced OHT and glaucoma in at least 8 different species besides man. These models mimic many features of this condition in man and provide morphologic and molecular insights into the pathogenesis of GC-OHT. In addition, there are many clinical, morphological, and molecular similarities between GC-induced glaucoma and primary open-angle glaucoma (POAG), making animals models of GC-induced OHT and glaucoma attractive models in which to study specific aspects of POAG.

  4. Macrophages and Uveitis in Experimental Animal Models

    PubMed Central

    Mérida, Salvador; Palacios, Elena; Bosch-Morell, Francisco

    2015-01-01

    Resident and infiltrated macrophages play relevant roles in uveitis as effectors of innate immunity and inductors of acquired immunity. They are major effectors of tissue damage in uveitis and are also considered to be potent antigen-presenting cells. In the last few years, experimental animal models of uveitis have enabled us to enhance our understanding of the leading role of macrophages in eye inflammation processes, including macrophage polarization in experimental autoimmune uveoretinitis and the major role of Toll-like receptor 4 in endotoxin-induced uveitis. This improved knowledge should guide advantageous iterative research to establish mechanisms and possible therapeutic targets for human uveitis resolution. PMID:26078494

  5. Do I Have to Learn Something New? Mental Models and the Acceptance of Replacement Technologies

    ERIC Educational Resources Information Center

    Zhang, Wei; Xu, Peng

    2011-01-01

    Few studies in technology acceptance have explicitly addressed the acceptance of replacement technologies, technologies that replace legacy ones that have been in use. This article explores this issue through the theoretical lens of mental models. We contend that accepting replacement technologies entails both mental model maintenance and mental…

  6. Animal model of neuropathic tachycardia syndrome

    NASA Technical Reports Server (NTRS)

    Carson, R. P.; Appalsamy, M.; Diedrich, A.; Davis, T. L.; Robertson, D.

    2001-01-01

    Clinically relevant autonomic dysfunction can result from either complete or partial loss of sympathetic outflow to effector organs. Reported animal models of autonomic neuropathy have aimed to achieve complete lesions of sympathetic nerves, but incomplete lesions might be more relevant to certain clinical entities. We hypothesized that loss of sympathetic innervation would result in a predicted decrease in arterial pressure and a compensatory increase in heart rate. Increased heart rate due to loss of sympathetic innervation is seemingly paradoxical, but it provides a mechanistic explanation for clinical autonomic syndromes such as neuropathic postural tachycardia syndrome. Partially dysautonomic animals were generated by selectively lesioning postganglionic sympathetic neurons with 150 mg/kg 6-hydroxydopamine hydrobromide in male Sprague-Dawley rats. Blood pressure and heart rate were monitored using radiotelemetry. Systolic blood pressure decreased within hours postlesion (Delta>20 mm Hg). Within 4 days postlesion, heart rate rose and remained elevated above control levels. The severity of the lesion was determined functionally and pharmacologically by spectral analysis and responsiveness to tyramine. Low-frequency spectral power of systolic blood pressure was reduced postlesion and correlated with the diminished tyramine responsiveness (r=0.9572, P=0.0053). The tachycardia was abolished by treatment with the beta-antagonist propranolol, demonstrating that it was mediated by catecholamines acting on cardiac beta-receptors. Partial lesions of the autonomic nervous system have been hypothesized to underlie many disorders, including neuropathic postural tachycardia syndrome. This animal model may help us better understand the pathophysiology of autonomic dysfunction and lead to development of therapeutic interventions.

  7. A model for the assessment of the animal disease risks associated with the importation of animals and animal products.

    PubMed

    Morley, R S

    1993-12-01

    A simple mathematical model to assess the disease risks associated with the importation of animals and animal products is presented. This model is dependent on the animal health and disease statistics reported by the Member Countries of the Office International des Epizooties (OIE), and provides a structured approach to using information about a particular importation. The model can incorporate any number of determinants; these may be related to the animal health status of the exporting country, the commodity (whether animal or animal product), the properties of the disease agent and the epidemiology of the disease. All disease risks can be considered. Examples illustrate the model with respect to the importation of cattle, swine and related products. PMID:8312611

  8. Dogs on the Move: Factors Impacting Animal Shelter and Rescue Organizations' Decisions to Accept Dogs from Distant Locations.

    PubMed

    Simmons, Kaitlyn E; Hoffman, Christy L

    2016-01-01

    Long-distance dog transfer programs are a topic of burgeoning interest in the animal welfare community, but little research has focused on such programs. This exploratory study, which surveyed 193 individuals associated with animal shelter and rescue organizations in the United States, evaluated factors that impacted organizations' decisions to transfer in dogs over long distances (>100 miles) and assessed what criteria were commonly valued by destination organizations. Specifically, we examined the following aspects of long-distance transfer programs: (1) logistics of long-distance dog transfers; (2) factors impacting dog selection; (3) medical requirements; (4) partnerships formed between source and destination organizations; and (5) perceptions of long-distance dog transfer programs by individuals affiliated with the destination organizations. This study revealed that many logistical considerations factor into transfer decisions and the formation of healthy partnerships between source and destination organizations. Participants indicated their organization's willingness to receive dogs of various sizes, coat colors and ages, but organizations often had restrictions regarding the breeds they would accept. Study findings indicate some organizations have strict quarantine policies and pre-transfer medical requirements, while others have no such requirements. PMID:26848694

  9. Dogs on the Move: Factors Impacting Animal Shelter and Rescue Organizations’ Decisions to Accept Dogs from Distant Locations

    PubMed Central

    Simmons, Kaitlyn E.; Hoffman, Christy L.

    2016-01-01

    Long-distance dog transfer programs are a topic of burgeoning interest in the animal welfare community, but little research has focused on such programs. This exploratory study, which surveyed 193 individuals associated with animal shelter and rescue organizations in the United States, evaluated factors that impacted organizations’ decisions to transfer in dogs over long distances (>100 miles) and assessed what criteria were commonly valued by destination organizations. Specifically, we examined the following aspects of long-distance transfer programs: (1) logistics of long-distance dog transfers; (2) factors impacting dog selection; (3) medical requirements; (4) partnerships formed between source and destination organizations; and (5) perceptions of long-distance dog transfer programs by individuals affiliated with the destination organizations. This study revealed that many logistical considerations factor into transfer decisions and the formation of healthy partnerships between source and destination organizations. Participants indicated their organization’s willingness to receive dogs of various sizes, coat colors and ages, but organizations often had restrictions regarding the breeds they would accept. Study findings indicate some organizations have strict quarantine policies and pre-transfer medical requirements, while others have no such requirements. PMID:26848694

  10. Animal models in obesity and hypertension.

    PubMed

    Segal-Lieberman, Gabriella; Rosenthal, Talma

    2013-06-01

    Although obesity is a well-known risk factor for hypertension, the mechanisms by which hypertension develops in obese patients are not entirely clear. Animal models of obesity and their different susceptibilities to develop hypertension have revealed some of the mechanisms linking obesity and hypertension. Adipose tissue is an endocrine organ secreting hormones that impact blood pressure, such as elements of the renin-angiotensin system whose role in hypertension have been established. In addition, the appetite-suppressing adipokine leptin activates the sympathetic nervous system via the melanocortin system, and this activation, especially in the kidney, increases blood pressure. Leptin secretion from adipocytes is increased in most models of obesity due to leptin resistance, although the resistance is often selective to the anorexigenic effect, while the susceptibility to the hypertensive effect remains intact. Understanding the pathways by which obesity contributes to increased blood pressure will hopefully pave the way to and better define the appropriate treatment for obesity-induced hypertension.

  11. Animal models of anxiety and benzodiazepine actions.

    PubMed

    Iversen, S D

    1980-01-01

    If rats trained to press a lever for food, then receive a shock to the feet following every response, their behavioural output is severely depressed. This procedure is termed immediately punishment and it was used by Geller and Seifter in the task devised to demonstrate the anxiolytic effect of benzodiazepines. These drugs and a number of others with anxiolytic activity (e. g. barbiturates, ethanol) reverse the suppression induced by the presentation of a highly aversive stimulus, like electric shock. The Geller-Seifter procedure has figured prominently in behavioural studies of benzodiazepines and in the efforts to determine the neuropharmacological basis of their anxiolytic action. Experiments involving the manipulation of brain noradrenaline (NA) and 5-hydroxytryptamine (5-HT) levels with drugs or lesions are discussed. The Geller-Seifter procedure is, however, a time consuming and difficult behavioural baseline to work with. It is important, therefore, to devise equally specific but simpler animal models of anxiety. Electric shock, as the anxiety-inducing event has dominated the tasks devised by behavioural psychologists. It is essential to search for more biologically relevant events with which to control the level of anxiety in experimental animals. Tests involving the manipulation of novelty and uncertainty will be presented and their responsiveness to anxiolytic drugs and neuropharmacological manipulation discussed. Recent advances in defining the biochemical and pharmacological properties of benzodiazepine receptors and particularly of their differential distribution in brain, makes it likely that simple reliable animal tests of anxiety would serve neuropharmacology well and be of great value in understanding the functional importance of the benzodiazepine receptors of brain.

  12. Bronze baby syndrome: an animal model.

    PubMed

    Jori, G; Reddi, E; Rubaltelli, F F

    1990-01-01

    We evaluated the appropriateness of an animal model for the bronze baby syndrome. Ligation of the common bile duct in adult Wistar rats induces an accumulation of porphyrins and copper in the liver and a 20% conversion of protoporphyrin IX into (Cu(II)-protoporphyrin IX. Upon irradiation of these animals with super-blue lamps, the plasma content of Cu(II)-protoporphyrin increases by about 30%. Cholestasis also increases the recovery of porphyrins in the urine, although light treatment of ligated rats further increases urinary porphyrin excretion. The spectroscopic changes induced by irradiation of sera of ligated rats are consistent with the formation of products that have the typical spectrum found in bronze baby syndrome patients, i.e. a reduced absorbance in the visible region and an increased absorption in near-UV and red spectral regions. The products responsible for the brown discoloration found in bronze baby syndrome seem to result from phototransformation of copper-porphyrins subsequent to an electron transfer between photoexcited bilirubin and the copper ion.

  13. Animal models for investigating chronic pancreatitis

    PubMed Central

    2011-01-01

    Chronic pancreatitis is defined as a continuous or recurrent inflammatory disease of the pancreas characterized by progressive and irreversible morphological changes. It typically causes pain and permanent impairment of pancreatic function. In chronic pancreatitis areas of focal necrosis are followed by perilobular and intralobular fibrosis of the parenchyma, by stone formation in the pancreatic duct, calcifications in the parenchyma as well as the formation of pseudocysts. Late in the course of the disease a progressive loss of endocrine and exocrine function occurs. Despite advances in understanding the pathogenesis no causal treatment for chronic pancreatitis is presently available. Thus, there is a need for well characterized animal models for further investigations that allow translation to the human situation. This review summarizes existing experimental models and distinguishes them according to the type of pathological stimulus used for induction of pancreatitis. There is a special focus on pancreatic duct ligation, repetitive overstimulation with caerulein and chronic alcohol feeding. Secondly, attention is drawn to genetic models that have recently been generated and which mimic features of chronic pancreatitis in man. Each technique will be supplemented with data on the pathophysiological background of the model and their limitations will be discussed. PMID:22133269

  14. Animal models for prenatal gene therapy: choosing the right model.

    PubMed

    Mehta, Vedanta; Peebles, Donald; David, Anna L

    2012-01-01

    Testing in animal models is an essential requirement during development of prenatal gene therapy for -clinical application. Some information can be derived from cell lines or cultured fetal cells, such as the efficiency of gene transfer and the vector dose that might be required. Fetal tissues can also be maintained in culture for short periods of time and transduced ex vivo. Ultimately, however, the use of animals is unavoidable since in vivo experiments allow the length and level of transgene expression to be measured, and provide an assessment of the effect of the delivery procedure and the gene therapy on fetal and neonatal development. The choice of animal model is determined by the nature of the disease and characteristics of the animal, such as its size, lifespan, and immunology, the number of fetuses and their development, parturition, and the length of gestation and the placentation. The availability of a disease model is also critical. In this chapter, we discuss the various animal models that can be used and consider how their characteristics can affect the results obtained. The projection to human application and the regulatory hurdles are also presented.

  15. Mousepox, a small animal model of smallpox.

    PubMed

    Esteban, David; Parker, Scott; Schriewer, Jill; Hartzler, Hollyce; Buller, R Mark

    2012-01-01

    Ectromelia virus infections in the laboratory mouse have emerged as a valuable model to investigate human orthopoxvirus infections to understand the progression of disease, to discover and characterize antiviral treatments, and to study the host-pathogen relationship as it relates to pathogenesis and the immune response. Here we describe how to safely work with the virus and protocols for common procedures for the study of ectromelia virus in the laboratory mouse including the preparation of virus stocks, the use of various routes of inoculation, and collection of blood and tissue from infected animals. In addition, several procedures are described for assessing the host response to infection: for example, measurement of virus-specific CD8 T cells and the use of ELISA and neutralization assays to measure orthopoxvirus-specific antibody titers.

  16. Peroxisome deficient invertebrate and vertebrate animal models

    PubMed Central

    Van Veldhoven, Paul P.; Baes, Myriam

    2013-01-01

    Although peroxisomes are ubiquitous organelles in all animal species, their importance for the functioning of tissues and organs remains largely unresolved. Because peroxins are essential for the biogenesis of peroxisomes, an obvious approach to investigate their physiological role is to inactivate a Pex gene or to suppress its translation. This has been performed in mice but also in more primitive organisms including D. melanogaster, C. elegans, and D. rerio, and the major findings and abnormalities in these models will be highlighted. Although peroxisomes are generally not essential for embryonic development and organogenesis, a generalized inactivity of peroxisomes affects lifespan and posthatching/postnatal growth, proving that peroxisomal metabolism is necessary for the normal maturation of these organisms. Strikingly, despite the wide variety of model organisms, corresponding tissues are affected including the central nervous system and the testis. By inactivating peroxisomes in a cell type selective way in the brain of mice, it was also demonstrated that peroxisomes are necessary to prevent neurodegeneration. As these peroxisome deficient model organisms recapitulate pathologies of patients affected with peroxisomal diseases, their further analysis will contribute to the elucidation of still elusive pathogenic mechanisms. PMID:24319432

  17. The Adult Roles Models Program: Feasibility, Acceptability, and Initial Outcomes

    PubMed Central

    Silver, Ellen Johnson; Dean, Randa; Perez, Amanda; Rivera, Angelic

    2014-01-01

    We present the feasibility and acceptability of a parent sexuality education program led by peer educators in community settings. We also report the results of an outcome evaluation with 71 parents who were randomized to the intervention or a control group, and surveyed one month prior to and six months after the 4-week intervention. The program was highly feasible and acceptable to participants, and the curriculum was implemented with a high level of fidelity and facilitator quality. Pilot data show promising outcomes for increasing parental knowledge, communication, and monitoring of their adolescent children. PMID:24883051

  18. Animal models of tumorigenic herpesviruses--an update.

    PubMed

    Dittmer, Dirk P; Damania, Blossom; Sin, Sang-Hoon

    2015-10-01

    Any one model system, be it culture or animal, only recapitulates one aspect of the viral life cycle in the human host. By providing recent examples of animal models for Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus, we would argue that multiple animal models are needed to gain a comprehensive understanding of the pathogenesis associated with human oncogenic herpesviruses. Transgenic mice, homologous animal herpesviruses, and tumorgraft and humanized mouse models all complement each other in the study of viral pathogenesis. The use of animal model systems facilitates the exploration of novel anti-viral and anti-cancer treatment modalities for diseases associated with oncogenic herpesviruses. PMID:26476352

  19. Animal Model of Acute Deep Vein Thrombosis

    SciTech Connect

    Roy, Sumit; Laerum, Frode; Brosstad, Frank; Kvernebo, Knut; Sakariassen, Kjell S.

    1998-07-15

    Purpose: To develop an animal model of acute deep vein thrombosis (DVT). Methods: In part I of the study nine juvenile domestic pigs were used. Each external iliac vein was transluminally occluded with a balloon catheter. Thrombin was infused through a microcatheter in one leg according to one of the following protocols: (1) intraarterial (IA): 1250 U at 25 U/min in the common femoral artery (n= 3); (2) intravenous (IV): 5000 U in the popliteal vein at 500 U/min (n= 3), or at 100 U/min (n= 3). Saline was administered in the opposite leg. After the animals were killed, the mass of thrombus in the iliofemoral veins was measured. The pudendoepiploic (PEV), profunda femoris (PF), and popliteal veins (PV) were examined. Thrombosis in the tributaries of the superficial femoral vein (SFVt) was graded according to a three-point scale (0, +, ++). In part II of the study IV administration was further investigated in nine pigs using the following three regimens with 1000 U at 25 U/min serving as the control: (1) 1000 U at 100 U/min, (2) 250 U at 25 U/min, (3) 250 U at 6.25 U/min. Results: All animals survived. In part I median thrombus mass in the test limbs was 1.40 g as compared with 0.25 g in the controls (p= 0.01). PEV, PFV and PV were thrombosed in all limbs infused with thrombin. IV infusion was more effective in inducing thrombosis in both the parent veins (mass 1.32-1.78 g) and SVFt (++ in 4 of 6 legs), as compared with IA infusion (mass 0.0-1.16 g; SFVt ++ in 1 of 3 legs). In part II thrombus mass in axial veins ranged from 1.23 to 2.86 g, and showed no relationship with the dose of thrombin or the rate of infusion. Tributary thrombosis was less extensive with 250 U at 25 U/min than with the other regimens. Conclusion: Slow distal intravenous thrombin infusion in the hind legs of pigs combined with proximal venous occlusion induces thrombosis in the leg veins that closely resembles clinical DVT in distribution.

  20. Hybrid E-Learning Acceptance Model: Learner Perceptions

    ERIC Educational Resources Information Center

    Ahmed, Hassan M. Selim

    2010-01-01

    E-learning tools and technologies have been used to supplement conventional courses in higher education institutions creating a "hybrid" e-learning module that aims to enhance the learning experiences of students. Few studies have addressed the acceptance of hybrid e-learning by learners and the factors affecting the learners'…

  1. RASopathies: unraveling mechanisms with animal models

    PubMed Central

    Jindal, Granton A.; Goyal, Yogesh; Burdine, Rebecca D.; Rauen, Katherine A.; Shvartsman, Stanislav Y.

    2015-01-01

    ABSTRACT RASopathies are developmental disorders caused by germline mutations in the Ras-MAPK pathway, and are characterized by a broad spectrum of functional and morphological abnormalities. The high incidence of these disorders (∼1/1000 births) motivates the development of systematic approaches for their efficient diagnosis and potential treatment. Recent advances in genome sequencing have greatly facilitated the genotyping and discovery of mutations in affected individuals, but establishing the causal relationships between molecules and disease phenotypes is non-trivial and presents both technical and conceptual challenges. Here, we discuss how these challenges could be addressed using genetically modified model organisms that have been instrumental in delineating the Ras-MAPK pathway and its roles during development. Focusing on studies in mice, zebrafish and Drosophila, we provide an up-to-date review of animal models of RASopathies at the molecular and functional level. We also discuss how increasingly sophisticated techniques of genetic engineering can be used to rigorously connect changes in specific components of the Ras-MAPK pathway with observed functional and morphological phenotypes. Establishing these connections is essential for advancing our understanding of RASopathies and for devising rational strategies for their management and treatment. PMID:26203125

  2. Goats as an osteopenic animal model.

    PubMed

    Leung, K S; Siu, W S; Cheung, N M; Lui, P Y; Chow, D H; James, A; Qin, L

    2001-12-01

    A large osteopenic animal model that resembles human osteoporotic changes is essential for osteoporosis research. This study aimed at establishing a large osteopenic animal model in goats. Twenty-five Chinese mountain goats were used in which they were either ovariectomized (OVX) and fed with a low-calcium diet (n = 16) or sham-operated (SHAM; n = 9). Monthly photodensitometric analysis on proximal tibial metaphysis and calcaneus was performed. Two iliac crest biopsy specimens obtained before and 6 months after OVX were used for bone mineral density (BMD) measurement with peripheral quantitative computed tomography (pQCT). Lumbar vertebrae (L2 and L7), humeral heads, and calcanei were collected for BMD measurement after euthanasia. The humeral heads and calcanei were used in biomechanical indentation test. BMD measurement showed a significant 25.0% (p = 0.006) decrease in BMD of the iliac crest biopsy specimens 6 months after OVX. It also was statistically significant when compared with the SHAM (p = 0.028). BMD at L2, L7, calcaneus, and humeral head reduced by 24-33% (p ranged from 0.001 to 0.011) when compared with the SHAM. Photodensitometry showed a continuous decrease in bone density after OVX. There were significant decreases of 18.9% in proximal tibial metaphysis (p = 0.003) and 21.8% in calcaneus (p = 0.023) in the OVX group 6 months postoperatively. Indentation test on the humeral head and calcaneus showed a significant decrease 52% (p = 0.006) and 54% (p = 0.001), respectively, in energy required for displacement of 3 mm in the OVX group compared with the SHAM group. The decreases correlated significantly to the decrease in BMD of the corresponding specimens (r2 = 0.439 and 0.581; p < 0.001 for both). In conclusion, this study showed that OVX plus a low-calcium diet could induce significant osteopenia and deterioration of mechanical properties of the cancellous bone in goats.

  3. A highly predictable animal model of retinoblastoma.

    PubMed

    Kobayashi, M; Mukai, N; Solish, S P; Pomeroy, M E

    1982-01-01

    A new animal model of retinoblastoma was developed in newborn inbred CDF rats by intravitreous inoculation of retinal tumor cells (5 X 10(4)/5 microliter) derived from the cultured tumor cell line EXP-5. The retinal tumor from which the cell line originated was induced by a single intravitreous inoculation of human adenovirus serotype 12 (5 microliter of 10(8) TCID 50/0.1 ml) in syngeneic rats. Within 1 month after intravitreous inoculation of EXP-5 cells, a clinically recognizable ocular tumor was obtained in all 39 rats. Ad 12-specific T-antigens were demonstrated in the cultured tumor cells using immunofluorescent techniques. Morphologically these tumor cells closely resembled retinoblastoma, with poorly differentiated intracytoplasmic organelles, solitary cilia with a 9 + 0 tubule pattern, and abnormal nuclear membrane associated with a set of basal bodies. The significance of this highly manipulable retinal tumor cell line is the capability of providing a full-fledged intravitreous tumor in 1-month-old CDF rats, whose actual life span is known to be 42 months. Transplantable retinal tumors described to date are reviewed briefly and compared with the presently reported cell line.

  4. Animal model of Mycoplasma fermentans respiratory infection

    PubMed Central

    2013-01-01

    Background Mycoplasma fermentans has been associated with respiratory, genitourinary tract infections and rheumatoid diseases but its role as pathogen is controversial. The purpose of this study was to probe that Mycoplasma fermentans is able to produce respiratory tract infection and migrate to several organs on an experimental infection model in hamsters. One hundred and twenty six hamsters were divided in six groups (A-F) of 21 hamsters each. Animals of groups A, B, C were intratracheally injected with one of the mycoplasma strains: Mycoplasma fermentans P 140 (wild strain), Mycoplasma fermentans PG 18 (type strain) or Mycoplasma pneumoniae Eaton strain. Groups D, E, F were the negative, media, and sham controls. Fragments of trachea, lungs, kidney, heart, brain and spleen were cultured and used for the histopathological study. U frequency test was used to compare recovery of mycoplasmas from organs. Results Mycoplasmas were detected by culture and PCR. The three mycoplasma strains induced an interstitial pneumonia; they also migrated to several organs and persisted there for at least 50 days. Mycoplasma fermentans P 140 induced a more severe damage in lungs than Mycoplasma fermentans PG 18. Mycoplasma pneumoniae produced severe damage in lungs and renal damage. Conclusions Mycoplasma fermentans induced a respiratory tract infection and persisted in different organs for several weeks in hamsters. This finding may help to explain the ability of Mycoplasma fermentans to induce pneumonia and chronic infectious diseases in humans. PMID:23298636

  5. The maternal deprivation animal model revisited.

    PubMed

    Marco, Eva M; Llorente, Ricardo; López-Gallardo, Meritxell; Mela, Virginia; Llorente-Berzal, Álvaro; Prada, Carmen; Viveros, María-Paz

    2015-04-01

    Early life stress, in the form of MD (24h at pnd 9), interferes with brain developmental trajectories modifying both behavioral and neurobiochemical parameters. MD has been reported to enhance neuroendocrine responses to stress, to affect emotional behavior and to impair cognitive function. More recently, changes in body weight gain, metabolic parameters and immunological responding have also been described. Present data give support to the fact that neuronal degeneration and/or astrocyte proliferation are present in specific brain regions, mainly hippocampus, prefrontal cortex and hypothalamus, which are particularly vulnerable to the effects of neonatal stress. The MD animal model arises as a valuable tool for the investigation of the brain processes occurring at the narrow time window comprised between pnd 9 and 10 that are critical for the establishment of brain circuitries critical for the regulation of behavior, metabolism and energy homeostasis. In the present review we will discuss three possible mechanisms that might be crucial for the effects of MD, namely, the rapid increase in glucocorticoids, the lack of the neonatal leptin surge, and the enhanced endocannabinoid signaling during the specific critical period of MD. A better understanding of the mechanisms underlying the detrimental consequences of MD is a concern for public health and may provide new insights into mental health prevention strategies and into novel therapeutic approaches in neuropsychiatry. PMID:25616179

  6. The maternal deprivation animal model revisited.

    PubMed

    Marco, Eva M; Llorente, Ricardo; López-Gallardo, Meritxell; Mela, Virginia; Llorente-Berzal, Álvaro; Prada, Carmen; Viveros, María-Paz

    2015-04-01

    Early life stress, in the form of MD (24h at pnd 9), interferes with brain developmental trajectories modifying both behavioral and neurobiochemical parameters. MD has been reported to enhance neuroendocrine responses to stress, to affect emotional behavior and to impair cognitive function. More recently, changes in body weight gain, metabolic parameters and immunological responding have also been described. Present data give support to the fact that neuronal degeneration and/or astrocyte proliferation are present in specific brain regions, mainly hippocampus, prefrontal cortex and hypothalamus, which are particularly vulnerable to the effects of neonatal stress. The MD animal model arises as a valuable tool for the investigation of the brain processes occurring at the narrow time window comprised between pnd 9 and 10 that are critical for the establishment of brain circuitries critical for the regulation of behavior, metabolism and energy homeostasis. In the present review we will discuss three possible mechanisms that might be crucial for the effects of MD, namely, the rapid increase in glucocorticoids, the lack of the neonatal leptin surge, and the enhanced endocannabinoid signaling during the specific critical period of MD. A better understanding of the mechanisms underlying the detrimental consequences of MD is a concern for public health and may provide new insights into mental health prevention strategies and into novel therapeutic approaches in neuropsychiatry.

  7. Varicocele-Induced Infertility in Animal Models

    PubMed Central

    Razi, Mazdak; Malekinejad, Hassan

    2015-01-01

    Varicocele is characterized by abnormal tortuosity and dilation of the veins of the pampiniform plexus within the spermatic cord. Although several reports show the mechanisms by which the varicocele exerts its infertility impact, the exact pathophysiology for varicocele-induced inflammation and its relationship with testicular endocrine disruption remain largely unknown. This review article will update previous findings by discussing the pathophysiology of long term-induced varicocele in rats. Testicular endocrine disruption in experimentally-induced varicocele, new findings related to biochemical alterations in germinal epithelium, and sperm cells apoptosis are highlighted. Recent observations show that varicocele down-regulates first and second maturation divisions, results in Leydig and Sertoli cell inflammation, and increases immune cell infiltration in the testes of the rat as an animal model. Ultimately, previous findings of our laboratory have revealed that varicocele decreased sperm motility, viability and severe DNA damage. Damage in sperm significantly lowers the animal’s fertility potential. Varicocele not only exerts its pathologic impact by lowering the testicular antioxidant capacity but it also down-regulates first and second maturation divisions by exerting biochemical alterations such as reducing the intracytoplasmic carbohydrate ratio in germinal epithelium. PMID:26246871

  8. Systematic Review of Traumatic Brain Injury Animal Models.

    PubMed

    Phipps, Helen W

    2016-01-01

    The goals of this chapter are to provide an introduction into the variety of animal models available for studying traumatic brain injury (TBI) and to provide a concise systematic review of the general materials and methods involved in each model. Materials and methods were obtained from a literature search of relevant peer-reviewed articles. Strengths and weaknesses of each animal choice were presented to include relative cost, anatomical and physiological features, and mechanism of injury desired. Further, a variety of homologous, isomorphic/induced, and predictive animal models were defined, described, and compared with respect to their relative ease of use, characteristics, range, adjustability (e.g., amplitude, duration, mass/size, velocity, and pressure), and rough order of magnitude cost. Just as the primary mechanism of action of TBI is limitless, so are the animal models available to study TBI. With such a wide variety of available animals, types of injury models, along with the research needs, there exists no single "gold standard" model of TBI rendering cross-comparison of data extremely difficult. Therefore, this chapter reflects a representative sampling of the TBI animal models available and is not an exhaustive comparison of every possible model and associated parameters. Throughout this chapter, special considerations for animal choice and TBI animal model classification are discussed. Criteria central to choosing appropriate animal models of TBI include ethics, funding, complexity (ease of use, safety, and controlled access requirements), type of model, model characteristics, and range of control (scope). PMID:27604713

  9. Animal models of rheumatoid arthritis: How informative are they?

    PubMed

    McNamee, Kay; Williams, Richard; Seed, Michael

    2015-07-15

    Animal models of arthritis are widely used to de-convolute disease pathways and to identify novel drug targets and therapeutic approaches. However, the high attrition rates of drugs in Phase II/III rates means that a relatively small number of drugs reach the market, despite showing efficacy in pre-clinical models. There is also increasing awareness of the ethical issues surrounding the use of animal models of disease and it is timely, therefore, to review the relevance and translatability of animal models of arthritis. In this paper we review the most commonly used animal models in terms of their pathological similarities to human rheumatoid arthritis as well as their response to drug therapy. In general, the ability of animal models to predict efficacy of biologics in man has been good. However, the predictive power of animal models for small molecules has been variable, probably because of differences in the levels of target knockdown achievable in vivo.

  10. Animal models in virus research: their utility and limitations.

    PubMed

    Louz, Derrick; Bergmans, Hans E; Loos, Birgit P; Hoeben, Rob C

    2013-11-01

    Viral diseases are important threats to public health worldwide. With the number of emerging viral diseases increasing the last decades, there is a growing need for appropriate animal models for virus studies. The relevance of animal models can be limited in terms of mimicking human pathophysiology. In this review, we discuss the utility of animal models for studies of influenza A viruses, HIV and SARS-CoV in light of viral emergence, assessment of infection and transmission risks, and regulatory decision making. We address their relevance and limitations. The susceptibility, immune responses, pathogenesis, and pharmacokinetics may differ between the various animal models. These complexities may thwart translating results from animal experiments to the humans. Within these constraints, animal models are very informative for studying virus immunopathology and transmission modes and for translation of virus research into clinical benefit. Insight in the limitations of the various models may facilitate further improvements of the models.

  11. Modeling individual animal histories with multistate capture–recapture models

    USGS Publications Warehouse

    Lebreton, Jean-Dominique; Nichols, James D.; Barker, Richard J.; Pradel, Roger; Spendelow, Jeffrey A.

    2009-01-01

    Many fields of science begin with a phase of exploration and description, followed by investigations of the processes that account for observed patterns. The science of ecology is no exception, and recent decades have seen a focus on understanding key processes underlying the dynamics of ecological systems. In population ecology, emphasis has shifted from the state variable of population size to the demographic processes responsible for changes in this state variable: birth, death, immigration, and emigration. In evolutionary ecology, some of these same demographic processes, rates of birth and death, are also the determinants of fitness. In animal population ecology, the estimation of state variables and their associated vital rates is especially problematic because of the difficulties in sampling such populations and detecting individual animals. Indeed, early capture–recapture models were developed for the purpose of estimating population size, given the reality that all animals are not caught or detected at any sampling occasion. More recently, capture–recapture models for open populations were developed to draw inferences about survival in the face of these same sampling problems. The focus of this paper is on multi‐state mark–recapture models (MSMR), which first appeared in the 1970s but have undergone substantial development in the last 15 years. These models were developed to deal explicitly with biological variation, in that animals in different “states” (classes defined by location, physiology, behavior, reproductive status, etc.) may have different probabilities of survival and detection. Animal transitions between states are also stochastic and themselves of interest. These general models have proven to be extremely useful and provide a way of thinking about a remarkably wide range of important ecological processes. These methods are now at a stage of refinement and sophistication where they can readily be used by biologists to tackle a wide

  12. Acceptance and Commitment Therapy as a Unified Model of Behavior Change

    ERIC Educational Resources Information Center

    Hayes, Steven C.; Pistorello, Jacqueline; Levin, Michael E.

    2012-01-01

    The present article summarizes the assumptions, model, techniques, evidence, and diversity/social justice commitments of Acceptance and Commitment Therapy (ACT). ACT focused on six processes (acceptance, defusion, self, now, values, and action) that bear on a single overall target (psychological flexibility). The ACT model of behavior change has…

  13. Applying the Technology Acceptance Model and flow theory to Cyworld user behavior: implication of the Web2.0 user acceptance.

    PubMed

    Shin, Dong-Hee; Kim, Won-Yong; Kim, Won-Young

    2008-06-01

    This study explores attitudinal and behavioral patterns when using Cyworld by adopting an expanded Technology Acceptance Model (TAM). A model for Cyworld acceptance is used to examine how various factors modified from the TAM influence acceptance and its antecedents. This model is examined through an empirical study involving Cyworld users using structural equation modeling techniques. The model shows reasonably good measurement properties and the constructs are validated. The results not only confirm the model but also reveal general factors applicable to Web2.0. A set of constructs in the model can be the Web2.0-specific factors, playing as enhancing factor to attitudes and intention.

  14. An animal model for chorioamnionitis at term

    PubMed Central

    Dell'Ovo, Valeria; Rosenzweig, Jason; Burd, Irina; Merabova, Nana; Darbinian, Nune; Goetzl, Laura

    2016-01-01

    OBJECTIVE The purpose of this study was to develop an animal model for intrapartum inflammation at term to investigate the interactions between maternal and fetal inflammatory responses and adverse neurologic outcome. STUDY DESIGN Lipopolysaccharide (160, 320, or 640 μg/kg) was administered intraperitoneally to day 20 term-pregnant Sprague Dawley rat dams 2, 4, and 6 hours before sample collection. Maternal outcomes included dam core temperature and plasma interleukin 6 (IL-6). Fetal outcomes included plasma IL-6, brain IL-6 messenger RNA expression, and brain IL-6 protein expression. Primary cortical cell cultures were prepared to examine neuronal morphologic condition. Neurite counts were obtained with the use of automated Sholl analysis. RESULTS Maternal plasma IL-6 levels peaked 2 hours after lipopolysaccharide stimulus and rapidly resolved, except for an observed low level persistence at 6 hours with 640 μg/kg. Fetal plasma and placental IL-6 expression also peaked rapidly but only persisted in placental samples. Fetal brain IL-6 RNA and protein expression was significantly higher than control litters at 6 hours after the exposure to both 320 μg/kg (P ≤ .05) and 640 μg/kg (P ≤ .01). Cortical cells from fetuses that were exposed for 6 hours to maternal systemic inflammation showed reduced neurite number and neurite length (P < .001) with increasing lipopolysaccharide dose. CONCLUSION Our results demonstrate that fetal brain injury follows isolated systemic maternal inflammation and that fetal brain inflammation lags after maternal stimulus, which creates a potential 4-hour clinical window for therapeutic intervention. PMID:25979619

  15. Animal models to evaluate anti-atherosclerotic drugs.

    PubMed

    Priyadharsini, Raman P

    2015-08-01

    Atherosclerosis is a multifactorial condition characterized by endothelial injury, fatty streak deposition, and stiffening of the blood vessels. The pathogenesis is complex and mediated by adhesion molecules, inflammatory cells, and smooth muscle cells. Statins have been the major drugs in treating hypercholesterolemia for the past two decades despite little efficacy. There is an urgent need for new drugs that can replace statins or combined with statins. The preclinical studies evaluating atherosclerosis require an ideal animal model which resembles the disease condition, but there is no single animal model which mimics the disease. The animal models used are rabbits, rats, mice, hamsters, mini pigs, etc. Each animal model has its own advantages and disadvantages. The method of induction of atherosclerosis includes diet, chemical induction, mechanically induced injuries, and genetically manipulated animal models. This review mainly focuses on the various animal models, method of induction, the advantages, disadvantages, and the current perspectives with regard to preclinical studies on atherosclerosis.

  16. [Relevance of animal models in the development of compounds targeting multidrug resistant cancer].

    PubMed

    Füredi, András; Tóth, Szilárd; Hámori, Lilla; Nagy, Veronika; Tóvári, József; Szakács, Gergely

    2015-12-01

    Anticancer compounds are typically identified in in vitro screens. Unfortunately, the in vitro drug sensitivity of cell lines does not reflect treatment efficiency in animal models, and neither show acceptable correlation to clinical results. While cell lines and laboratory animals can be readily "cured", the treatment of malignancies remains hampered by the multidrug resistance (MDR) of tumors. Genetically engineered mouse models (GEMMs) giving rise to spontaneous tumors offer a new possibility to characterize the evolution of drug resistance mechanisms and to target multidrug resistant cancer. PMID:26665195

  17. The Importance of Animal Models in Tuberculosis Vaccine Development

    PubMed Central

    Acosta, Armando; Norazmi, Mohd Nor; Hernandez-Pando, Rogelio; Alvarez, Nadine; Borrero, Reinier; Infante, Juan F; Sarmiento, Maria E

    2011-01-01

    Research, development, and production of vaccines are still highly dependent on the use of animal models in the various evaluation steps. Despite this fact, there are strong interests and ongoing efforts to reduce the use of animals in vaccine development. Tuberculosis vaccine development is one important example of the complexities involved in the use of animal models for the production of new vaccines. This review summarises some of the general aspects related with the use of animals in vaccine research and production, as well as achievements and challenges towards the rational use of animals, particularly in the case of tuberculosis vaccine development. PMID:22589668

  18. Animal models of bronchopulmonary dysplasia. The term rat models.

    PubMed

    O'Reilly, Megan; Thébaud, Bernard

    2014-12-15

    Bronchopulmonary dysplasia (BPD) is the chronic lung disease of prematurity that affects very preterm infants. Although advances in perinatal care have enabled the survival of infants born as early as 23-24 wk of gestation, the challenge of promoting lung growth while protecting the ever more immature lung from injury is now bigger. Consequently, BPD remains one of the most common complications of extreme prematurity and still lacks specific treatments. Progress in our understanding of BPD and the potential of developing therapeutic strategies have arisen from large (baboons, sheep, and pigs) and small (rabbits, rats, and mice) animal models. This review focuses specifically on the use of the rat to model BPD and summarizes how the model is used in various research studies and the advantages and limitations of this particular model, and it highlights recent therapeutic advances in BPD by using this rat model.

  19. Animal models of bronchopulmonary dysplasia. The term rat models.

    PubMed

    O'Reilly, Megan; Thébaud, Bernard

    2014-12-15

    Bronchopulmonary dysplasia (BPD) is the chronic lung disease of prematurity that affects very preterm infants. Although advances in perinatal care have enabled the survival of infants born as early as 23-24 wk of gestation, the challenge of promoting lung growth while protecting the ever more immature lung from injury is now bigger. Consequently, BPD remains one of the most common complications of extreme prematurity and still lacks specific treatments. Progress in our understanding of BPD and the potential of developing therapeutic strategies have arisen from large (baboons, sheep, and pigs) and small (rabbits, rats, and mice) animal models. This review focuses specifically on the use of the rat to model BPD and summarizes how the model is used in various research studies and the advantages and limitations of this particular model, and it highlights recent therapeutic advances in BPD by using this rat model. PMID:25305248

  20. Regulatory acceptance and use of 3R models for pharmaceuticals and chemicals: expert opinions on the state of affairs and the way forward.

    PubMed

    Schiffelers, Marie-Jeanne W A; Blaauboer, Bas J; Bakker, Wieger E; Beken, Sonja; Hendriksen, Coenraad F M; Koëter, Herman B W M; Krul, Cyrille

    2014-06-01

    Pharmaceuticals and chemicals are subjected to regulatory safety testing accounting for approximately 25% of laboratory animal use in Europe. This testing meets various objections and has led to the development of a range of 3R models to Replace, Reduce or Refine the animal models. However, these models must overcome many barriers before being accepted for regulatory risk management purposes. This paper describes the barriers and drivers and options to optimize this acceptance process as identified by two expert panels, one on pharmaceuticals and one on chemicals. To untangle the complex acceptance process, the multilevel perspective on technology transitions is applied. This perspective defines influences at the micro-, meso- and macro level which need alignment to induce regulatory acceptance of a 3R model. This paper displays that there are many similar mechanisms within both sectors that prevent 3R models from becoming accepted for regulatory risk assessment and management. Shared barriers include the uncertainty about the value of the new 3R models (micro level), the lack of harmonization of regulatory requirements and acceptance criteria (meso level) and the high levels of risk aversion (macro level). In optimizing the process commitment, communication, cooperation and coordination are identified as critical drivers.

  1. ANIMAL MODELS OF CHRONIC PESTICIDE NEUROTOXICITY.

    EPA Science Inventory

    There is a wealth of literature on neurotoxicological outcomes of acute and short-term exposure to pesticides in laboratory animals, but there are relatively few studies of- long-term exposure. Many reports in the literature describing ;chronic' exposures to pesticides are, in fa...

  2. ANIMAL MODELS OF CHRONIC PESTICIDE NEUROTOXICITY.

    EPA Science Inventory

    There is a wealth of literature on neurotoxicological outcomes of acute and short-term exposure to pesticides in laboratory animals, but there are relatively few reports of long-term exposure. Reports in the literature describing "chronic" exposures to pesticides are, in fact, a...

  3. Institutional Animal Care and Use Committee Considerations for Animal Models of Peripheral Neuropathy

    PubMed Central

    Brabb, Thea; Carbone, Larry; Snyder, Jessica; Phillips, Nona

    2014-01-01

    Peripheral neuropathy and neuropathic pain are debilitating, life-altering conditions that affect a significant proportion of the human population. Animal models, used to study basic disease mechanisms and treatment modalities, are diverse and provide many challenges for institutional animal care and use committee (IACUC) review and postapproval monitoring. Items to consider include regulatory and ethical imperatives in animal models that may be designed to study pain, the basic mechanism of neurodegeneration, and different disease processes for which neuropathic pain is a side effect. Neuropathic pain can be difficult to detect or quantify in many models, and pain management is often unsuccessful in both humans and animals, inspiring the need for more research. Design of humane endpoints requires clear communication of potential adverse outcomes and solutions. Communication with the IACUC, researchers, and veterinary staff is also key for successful postapproval monitoring of these challenging models. PMID:24615447

  4. Animal Models of Ischemic Stroke. Part One: Modeling Risk Factors

    PubMed Central

    Bacigaluppi, Marco; Comi, Giancarlo; Hermann, Dirk M.

    2010-01-01

    Ischemic stroke is one of the leading causes of long-term disability and death in developed and developing countries. As emerging disease, stroke related mortality and morbidity is going to step up in the next decades. This is both due to the poor identification of risk factors and persistence of unhealthy habits, as well as to the aging of the population. To counteract the estimated increase in stroke incidence, it is of primary importance to identify risk factors, study their effects, to promote primary and secondary prevention, and to extend the therapeutic repertoire that is currently limited to the very first hours after stroke. While epidemiologic studies in the human population are essential to identify emerging risk factors, adequate animal models represent a fundamental tool to dissect stroke risk factors to their molecular mechanism and to find efficacious therapeutic strategies for this complex multi- factorial disorder. The present review is organized into two parts: the first part deals with the animal models that have been developed to study stroke and its related risk factors and the second part analyzes the specific stroke models. These models represent an indispensable tool to investigate the mechanisms of cerebral injury and to develop novel therapies. PMID:20802809

  5. Overview of Vertebrate Animal Models of Fungal Infection

    PubMed Central

    Hohl, Tobias M.

    2014-01-01

    Fungi represent emerging infectious threats to human populations worldwide. Mice and other laboratory animals have proved invaluable in modeling clinical syndromes associated with superficial and life-threatening invasive mycoses. This review outlines salient features of common vertebrate animal model systems to study fungal pathogenesis, host antifungal immune responses, and antifungal compounds. PMID:24709390

  6. The Various Roles of Animal Models in Understanding Human Development

    ERIC Educational Resources Information Center

    Gottlieb, Gilbert; Lickliter, Robert

    2004-01-01

    In this article, the authors take a very conservative view of the contribution of animal models to an understanding of human development. We do not think that homologies can be readily documented with even our most closely related relatives' behavior and psychological functioning. The major contribution of animal models is their provision of food…

  7. Are animal models as good as we think?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Models have been a tool of science at least since the 18th century and serve a variety of purposes from focusing abstract thoughts to representing scaled down version of things for study. Generally, animal models are needed when it is impractical or unethical to study the target animal. Biologists...

  8. Animal models of human respiratory syncytial virus disease

    PubMed Central

    Domachowske, Joseph B.; Rosenberg, Helene F.

    2011-01-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for novel therapies and preventative strategies. Present animal models include several target species for hRSV, including chimpanzees, cattle, sheep, cotton rats, and mice, as well as alternative animal pneumovirus models, such as bovine RSV and pneumonia virus of mice. These diverse animal models reproduce different features of hRSV disease, and their utilization should therefore be based on the scientific hypothesis under investigation. The purpose of this review is to summarize the strengths and limitations of each of these animal models. Our intent is to provide a resource for investigators and an impetus for future research. PMID:21571908

  9. Translational research challenges: finding the right animal models.

    PubMed

    Prabhakar, Sharma

    2012-12-01

    Translation of scientific discoveries into meaningful human applications, particularly novel therapies of human diseases, requires development of suitable animal models. Experimental approaches to test new drugs in preclinical phases often necessitated animal models that not only replicate human disease in etiopathogenesis and pathobiology but also biomarkers development and toxicity prediction. Whereas the transgenic and knockout techniques have revolutionized manipulation of rodents and other species to get greater insights into human disease pathogenesis, we are far from generating ideal animal models of most human disease states. The challenges in using the currently available animal models for translational research, particularly for developing potentially new drugs for human disease, coupled with the difficulties in toxicity prediction have led some researchers to develop a scoring system for translatability. These aspects and the challenges in selecting an animal model among those that are available to study human disease pathobiology and drug development are the topics covered in this detailed review.

  10. Modelling acceptance of sunlight in high and low photovoltaic concentration

    SciTech Connect

    Leutz, Ralf

    2014-09-26

    A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV.

  11. Serotonin in animal models of alcoholism.

    PubMed

    Compagnon, P; Ernouf, D; Narcisse, G; Daoust, M

    1993-01-01

    Ethanol naive alcohol preferring rodents have low serotonin transmission. Both pharmacological, biochemical and behavioral studies show that increased serotonin transmission influence reduces ethanol consumption in animals. This paper develops the role of serotonin in different lines of ethanol preferring rats and mice, and shows a regulation of 5-HT1A receptors in alcoholised dependent mice. Different sensitivities to ethanol observed between ethanol-preferring and non-preferring rats or mice seems to be at the root of the maintenance of alcohol intake.

  12. Animal models of oral candidiasis. A review.

    PubMed

    Allen, C M

    1994-08-01

    Candida albicans is the most common fungal infection of the human oral mucosa, yet much remains to be understood with respect to the pathogenesis of the disease. Numerous difficulties are inherent in designing studies that use human beings as subjects. The use of various animal species in experimental contexts has helped to provide insight with respect to this condition. A variety of manipulations of the system can be performed, including altering the host immune response, the mucosal environment, or the systemic environment. In addition, organism-related factors can be examined in a more controlled setting. The information obtained from such studies could not be obtained in an in vitro situation.

  13. Animal Models of Tourette Syndrome—From Proliferation to Standardization

    PubMed Central

    Yael, Dorin; Israelashvili, Michal; Bar-Gad, Izhar

    2016-01-01

    Tourette syndrome (TS) is a childhood onset disorder characterized by motor and vocal tics and associated with multiple comorbid symptoms. Over the last decade, the accumulation of findings from TS patients and the emergence of new technologies have led to the development of novel animal models with high construct validity. In addition, animal models which were previously associated with other disorders were recently attributed to TS. The proliferation of TS animal models has accelerated TS research and provided a better understanding of the mechanism underlying the disorder. This newfound success generates novel challenges, since the conclusions that can be drawn from TS animal model studies are constrained by the considerable variation across models. Typically, each animal model examines a specific subset of deficits and centers on one field of research (physiology/genetics/pharmacology/etc.). Moreover, different studies do not use a standard lexicon to characterize different properties of the model. These factors hinder the evaluation of individual model validity as well as the comparison across models, leading to a formation of a fuzzy, segregated landscape of TS pathophysiology. Here, we call for a standardization process in the study of TS animal models as the next logical step. We believe that a generation of standard examination criteria will improve the utility of these models and enable their consolidation into a general framework. This should lead to a better understanding of these models and their relationship to TS, thereby improving the research of the mechanism underlying this disorder and aiding the development of new treatments. PMID:27065791

  14. Naturally occurring animal models of human hepatitis E virus infection.

    PubMed

    Yugo, Danielle M; Cossaboom, Caitlin M; Meng, Xiang-Jin

    2014-01-01

    Hepatitis E virus (HEV) is a single-stranded, positive-sense RNA virus in the family Hepeviridae. Hepatitis E caused by HEV is a clinically important global disease. There are currently four well-characterized genotypes of HEV in mammalian species, although numerous novel strains of HEV likely belonging to either new genotypes or species have recently been identified from several other animal species. HEV genotypes 1 and 2 are limited to infection in humans, whereas genotypes 3 and 4 infect an expanding host range of animal species and are zoonotic to humans. Historical animal models include various species of nonhuman primates, which have been indispensable for the discovery of human HEV and for understanding its pathogenesis and course of infection. With the genetic identification and characterization of animal strains of HEV, a number of naturally occurring animal models such as swine, chicken, and rabbit have recently been developed for various aspects of HEV research, including vaccine trials, pathogenicity, cross-species infection, mechanism of virus replication, and molecular biology studies. Unfortunately, the current available animal models for HEV are still inadequate for certain aspects of HEV research. For instance, an animal model is still lacking to study the underlying mechanism of severe and fulminant hepatitis E during pregnancy. Also, an animal model that can mimic chronic HEV infection is critically needed to study the mechanism leading to chronicity in immunocompromised individuals. Genetic identification of additional novel animal strains of HEV may lead to the development of better naturally occurring animal models for HEV. This article reviews the current understanding of animal models of HEV infection in both natural and experimental infection settings and identifies key research needs and limitations.

  15. Animal Models for Salmonellosis: Applications in Vaccine Research.

    PubMed

    Higginson, Ellen E; Simon, Raphael; Tennant, Sharon M

    2016-09-01

    Salmonellosis remains an important cause of human disease worldwide. While there are several licensed vaccines for Salmonella enterica serovar Typhi, these vaccines are generally ineffective against other Salmonella serovars. Vaccines that target paratyphoid and nontyphoidal Salmonella serovars are very much in need. Preclinical evaluation of candidate vaccines is highly dependent on the availability of appropriate scientific tools, particularly animal models. Many different animal models exist for various Salmonella serovars, from whole-animal models to smaller models, such as those recently established in insects. Here, we discuss various mouse, rat, rabbit, calf, primate, and insect models for Salmonella infection, all of which have their place in research. However, choosing the right model is imperative in selecting the best vaccine candidates for further clinical testing. In this minireview, we summarize the various animal models that are used to assess salmonellosis, highlight some of the advantages and disadvantages of each, and discuss their value in vaccine development.

  16. Animal Models for Salmonellosis: Applications in Vaccine Research.

    PubMed

    Higginson, Ellen E; Simon, Raphael; Tennant, Sharon M

    2016-09-01

    Salmonellosis remains an important cause of human disease worldwide. While there are several licensed vaccines for Salmonella enterica serovar Typhi, these vaccines are generally ineffective against other Salmonella serovars. Vaccines that target paratyphoid and nontyphoidal Salmonella serovars are very much in need. Preclinical evaluation of candidate vaccines is highly dependent on the availability of appropriate scientific tools, particularly animal models. Many different animal models exist for various Salmonella serovars, from whole-animal models to smaller models, such as those recently established in insects. Here, we discuss various mouse, rat, rabbit, calf, primate, and insect models for Salmonella infection, all of which have their place in research. However, choosing the right model is imperative in selecting the best vaccine candidates for further clinical testing. In this minireview, we summarize the various animal models that are used to assess salmonellosis, highlight some of the advantages and disadvantages of each, and discuss their value in vaccine development. PMID:27413068

  17. Systematic Reviews of Animal Models: Methodology versus Epistemology

    PubMed Central

    Greek, Ray; Menache, Andre

    2013-01-01

    Systematic reviews are currently favored methods of evaluating research in order to reach conclusions regarding medical practice. The need for such reviews is necessitated by the fact that no research is perfect and experts are prone to bias. By combining many studies that fulfill specific criteria, one hopes that the strengths can be multiplied and thus reliable conclusions attained. Potential flaws in this process include the assumptions that underlie the research under examination. If the assumptions, or axioms, upon which the research studies are based, are untenable either scientifically or logically, then the results must be highly suspect regardless of the otherwise high quality of the studies or the systematic reviews. We outline recent criticisms of animal-based research, namely that animal models are failing to predict human responses. It is this failure that is purportedly being corrected via systematic reviews. We then examine the assumption that animal models can predict human outcomes to perturbations such as disease or drugs, even under the best of circumstances. We examine the use of animal models in light of empirical evidence comparing human outcomes to those from animal models, complexity theory, and evolutionary biology. We conclude that even if legitimate criticisms of animal models were addressed, through standardization of protocols and systematic reviews, the animal model would still fail as a predictive modality for human response to drugs and disease. Therefore, systematic reviews and meta-analyses of animal-based research are poor tools for attempting to reach conclusions regarding human interventions. PMID:23372426

  18. Systematic reviews of animal models: methodology versus epistemology.

    PubMed

    Greek, Ray; Menache, Andre

    2013-01-01

    Systematic reviews are currently favored methods of evaluating research in order to reach conclusions regarding medical practice. The need for such reviews is necessitated by the fact that no research is perfect and experts are prone to bias. By combining many studies that fulfill specific criteria, one hopes that the strengths can be multiplied and thus reliable conclusions attained. Potential flaws in this process include the assumptions that underlie the research under examination. If the assumptions, or axioms, upon which the research studies are based, are untenable either scientifically or logically, then the results must be highly suspect regardless of the otherwise high quality of the studies or the systematic reviews. We outline recent criticisms of animal-based research, namely that animal models are failing to predict human responses. It is this failure that is purportedly being corrected via systematic reviews. We then examine the assumption that animal models can predict human outcomes to perturbations such as disease or drugs, even under the best of circumstances. We examine the use of animal models in light of empirical evidence comparing human outcomes to those from animal models, complexity theory, and evolutionary biology. We conclude that even if legitimate criticisms of animal models were addressed, through standardization of protocols and systematic reviews, the animal model would still fail as a predictive modality for human response to drugs and disease. Therefore, systematic reviews and meta-analyses of animal-based research are poor tools for attempting to reach conclusions regarding human interventions.

  19. A Statistical Quality Model for Data-Driven Speech Animation.

    PubMed

    Ma, Xiaohan; Deng, Zhigang

    2012-11-01

    In recent years, data-driven speech animation approaches have achieved significant successes in terms of animation quality. However, how to automatically evaluate the realism of novel synthesized speech animations has been an important yet unsolved research problem. In this paper, we propose a novel statistical model (called SAQP) to automatically predict the quality of on-the-fly synthesized speech animations by various data-driven techniques. Its essential idea is to construct a phoneme-based, Speech Animation Trajectory Fitting (SATF) metric to describe speech animation synthesis errors and then build a statistical regression model to learn the association between the obtained SATF metric and the objective speech animation synthesis quality. Through delicately designed user studies, we evaluate the effectiveness and robustness of the proposed SAQP model. To the best of our knowledge, this work is the first-of-its-kind, quantitative quality model for data-driven speech animation. We believe it is the important first step to remove a critical technical barrier for applying data-driven speech animation techniques to numerous online or interactive talking avatar applications.

  20. Family support and acceptance, gay male identity formation, and psychological adjustment: a path model.

    PubMed

    Elizur, Y; Ziv, M

    2001-01-01

    While heterosexist family undermining has been demonstrated to be a developmental risk factor in the life of persons with same-gender orientation, the issue of protective family factors is both controversial and relatively neglected. In this study of Israeli gay males (N = 114), we focused on the interrelations of family support, family acceptance and family knowledge of gay orientation, and gay male identity formation, and their effects on mental health and self-esteem. A path model was proposed based on the hypotheses that family support, family acceptance, family knowledge, and gay identity formation have an impact on psychological adjustment, and that family support has an effect on gay identity formation that is mediated by family acceptance. The assessment of gay identity formation was based on an established stage model that was streamlined for cross-cultural practice by defining three basic processes of same-gender identity formation: self-definition, self-acceptance, and disclosure (Elizur & Mintzer, 2001). The testing of our conceptual path model demonstrated an excellent fit with the data. An alternative model that hypothesized effects of gay male identity on family acceptance and family knowledge did not fit the data. Interpreting these results, we propose that the main effect of family support/acceptance on gay identity is related to the process of disclosure, and that both general family support and family acceptance of same-gender orientation play a significant role in the psychological adjustment of gay men.

  1. Mathematical models of behavior of individual animals.

    PubMed

    Tsibulsky, Vladimir L; Norman, Andrew B

    2007-01-01

    This review is focused on mathematical modeling of behaviors of a whole organism with special emphasis on models with a clearly scientific approach to the problem that helps to understand the mechanisms underlying behavior. The aim is to provide an overview of old and contemporary mathematical models without complex mathematical details. Only deterministic and stochastic, but not statistical models are reviewed. All mathematical models of behavior can be divided into two main classes. First, models that are based on the principle of teleological determinism assume that subjects choose the behavior that will lead them to a better payoff in the future. Examples are game theories and operant behavior models both of which are based on the matching law. The second class of models are based on the principle of causal determinism, which assume that subjects do not choose from a set of possibilities but rather are compelled to perform a predetermined behavior in response to specific stimuli. Examples are perception and discrimination models, drug effects models and individual-based population models. A brief overview of the utility of each mathematical model is provided for each section.

  2. 24 CFR 200.926c - Model code provisions for use in partially accepted code jurisdictions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Model code provisions for use in... Minimum Property Standards § 200.926c Model code provisions for use in partially accepted code..., those portions of one of the model codes with which the property must comply. Schedule for Model...

  3. Animal Models of Diabetic Neuropathy: Progress Since 1960s

    PubMed Central

    Islam, Md. Shahidul

    2013-01-01

    Diabetic or peripheral diabetic neuropathy (PDN) is one of the major complications among some other diabetic complications such as diabetic nephropathy, diabetic retinopathy, and diabetic cardiomyopathy. The use of animal models in the research of diabetes and diabetic complications is very common when rats and mice are most commonly used for many reasons. A numbers of animal models of diabetic and PDN have been developed in the last several decades such as streptozotocin-induced diabetic rat models, conventional or genetically modified or high-fat diet-fed C57BL/Ks (db/db) mice models, streptozotocin-induced C57BL6/J and ddY mice models, Chinese hamster neuropathic model, rhesus monkey PDN model, spontaneously diabetic WBN/Kob rat model, L-fucose-induced neropathic rat model, partial sciatic nerve ligated rat model, nonobese diabetic (NOD) mice model, spontaneously induced Ins2 Akita mice model, leptin-deficient (ob/ob) mice model, Otsuka Long-Evans Tokushima Fatty (OLETF) rat model, surgically-induced neuropathic model, and genetically modified Spontaneously Diabetic Torii (SDT) rat model, none of which are without limitations. An animal model of diabetic or PDN should mimic the all major pathogeneses of human diabetic neuropathy. Hence, this review comparatively evaluates the animal models of diabetic and PDN which are developed since 1960s with their advantages and disadvantages to help diabetic research groups in order to more accurately choose an appropriate model to meet their specific research objectives. PMID:23984428

  4. Animal models of attention-deficit hyperactivity disorder

    PubMed Central

    Russell, Vivienne A; Sagvolden, Terje; Johansen, Espen Borgå

    2005-01-01

    Although animals cannot be used to study complex human behaviour such as language, they do have similar basic functions. In fact, human disorders that have animal models are better understood than disorders that do not. ADHD is a heterogeneous disorder. The relatively simple nervous systems of rodent models have enabled identification of neurobiological changes that underlie certain aspects of ADHD behaviour. Several animal models of ADHD suggest that the dopaminergic system is functionally impaired. Some animal models have decreased extracellular dopamine concentrations and upregulated postsynaptic dopamine D1 receptors (DRD1) while others have increased extracellular dopamine concentrations. In the latter case, dopamine pathways are suggested to be hyperactive. However, stimulus-evoked release of dopamine is often decreased in these models, which is consistent with impaired dopamine transmission. It is possible that the behavioural characteristics of ADHD result from impaired dopamine modulation of neurotransmission in cortico-striato-thalamo-cortical circuits. There is considerable evidence to suggest that the noradrenergic system is poorly controlled by hypofunctional α2-autoreceptors in some models, giving rise to inappropriately increased release of norepinephrine. Aspects of ADHD behaviour may result from an imbalance between increased noradrenergic and decreased dopaminergic regulation of neural circuits that involve the prefrontal cortex. Animal models of ADHD also suggest that neural circuits may be altered in the brains of children with ADHD. It is therefore of particular importance to study animal models of the disorder and not normal animals. Evidence obtained from animal models suggests that psychostimulants may not be acting on the dopamine transporter to produce the expected increase in extracellular dopamine concentration in ADHD. There is evidence to suggest that psychostimulants may decrease motor activity by increasing serotonin levels. In

  5. Large animal models for vaccine development and testing.

    PubMed

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing.

  6. Using animal models to develop new treatments for tuberculosis.

    PubMed

    Nuermberger, Eric

    2008-10-01

    Animal models have an important role in the preclinical evaluation of new antituberculosis drug candidates. Although it does not recapitulate the clinicopathological manifestations of tuberculosis in humans, the mouse remains the best characterized and most economical animal model for experimental chemotherapy. Provided care is taken to optimize the experimental conditions, the mouse has produced reliable data on the bactericidal and sterilizing activity of existing antituberculosis drugs and informed numerous clinical trials. Still, other animal models, especially the guinea pig, may have utility as confirmatory, or even alternative, models under certain circumstances. This chapter reviews some of the important considerations when selecting an animal model and presents a model for the sequential evaluation of a new compound with promising antituberculosis activity.

  7. Adolescents' unconditional acceptance by parents and teachers and educational outcomes: A structural model of gender differences.

    PubMed

    Makri-Botsari, Evi

    2015-08-01

    The purpose of this study was to detect gender specific patterns in the network of relations between unconditionality of parental and teacher acceptance in the form of unconditional positive regard and a range of educational outcomes, as indexed by academic self-perception, academic intrinsic motivation, and academic achievement. To test the role of gender as a moderator, a multi-group analysis was employed within the framework of structural equation modelling with increasing restrictions placed on the structural paths across genders. The results on a sample of 427 adolescents in grades 7-9 showed that conditionality of acceptance undermined level of perceived acceptance for both social agents. Moreover, unconditionality of teacher acceptance exerted stronger influences on students' educational outcomes than unconditionality of parental acceptance, with effect sizes being larger for girls than for boys. PMID:26057875

  8. Adolescents' unconditional acceptance by parents and teachers and educational outcomes: A structural model of gender differences.

    PubMed

    Makri-Botsari, Evi

    2015-08-01

    The purpose of this study was to detect gender specific patterns in the network of relations between unconditionality of parental and teacher acceptance in the form of unconditional positive regard and a range of educational outcomes, as indexed by academic self-perception, academic intrinsic motivation, and academic achievement. To test the role of gender as a moderator, a multi-group analysis was employed within the framework of structural equation modelling with increasing restrictions placed on the structural paths across genders. The results on a sample of 427 adolescents in grades 7-9 showed that conditionality of acceptance undermined level of perceived acceptance for both social agents. Moreover, unconditionality of teacher acceptance exerted stronger influences on students' educational outcomes than unconditionality of parental acceptance, with effect sizes being larger for girls than for boys.

  9. Theory development in health care informatics: Information and communication technology acceptance model (ICTAM) improves the explanatory and predictive power of technology acceptance models.

    PubMed

    An, Ji-Young

    2006-01-01

    The purpose of this web-based study was to explain and predict consumers' acceptance and usage behavior of Internet health information and services. Toward this goal, the Information and Communication Technology Acceptance Model (ICTAM) was developed and tested. Individuals who received a flyer through the LISTSERV of HealthGuide were eligible to participate. The study population was eighteen years old and older who had used Internet health information and services for a minimum of 6 months. For the analyses, SPSS (version 13.0) and AMOS (version 5.0) were employed. More than half of the respondents were women (n = 110, 55%). The average age of the respondents was 35.16 years (S.D. = 10.07). A majority reported at least some college education (n = 126, 63%). All of the observed factors accounted for 75.53% of the total variance explained. The fit indices of the structural model were within an acceptable range: chi2/df = 2.38 (chi2 = 1786.31, df = 752); GFI = .71; RMSEA = .08; CFI = .86; NFI = .78. The results of this study provide empirical support for the continued development of ICTAM in the area of health consumers' information and communication technology acceptance.

  10. Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology

    PubMed Central

    Olivier, Alicia K.; Gibson-Corley, Katherine N.

    2015-01-01

    Multiple organ systems, including the gastrointestinal tract, pancreas, and hepatobiliary systems, are affected by cystic fibrosis (CF). Many of these changes begin early in life and are difficult to study in young CF patients. Recent development of novel CF animal models has expanded opportunities in the field to better understand CF pathogenesis and evaluate traditional and innovative therapeutics. In this review, we discuss manifestations of CF disease in gastrointestinal, pancreatic, and hepatobiliary systems of humans and animal models. We also compare the similarities and limitations of animal models and discuss future directions for modeling CF. PMID:25591863

  11. Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology.

    PubMed

    Olivier, Alicia K; Gibson-Corley, Katherine N; Meyerholz, David K

    2015-03-15

    Multiple organ systems, including the gastrointestinal tract, pancreas, and hepatobiliary systems, are affected by cystic fibrosis (CF). Many of these changes begin early in life and are difficult to study in young CF patients. Recent development of novel CF animal models has expanded opportunities in the field to better understand CF pathogenesis and evaluate traditional and innovative therapeutics. In this review, we discuss manifestations of CF disease in gastrointestinal, pancreatic, and hepatobiliary systems of humans and animal models. We also compare the similarities and limitations of animal models and discuss future directions for modeling CF.

  12. Animator

    ERIC Educational Resources Information Center

    Tech Directions, 2008

    2008-01-01

    Art and animation work is the most significant part of electronic game development, but is also found in television commercials, computer programs, the Internet, comic books, and in just about every visual media imaginable. It is the part of the project that makes an abstract design idea concrete and visible. Animators create the motion of life in…

  13. A systematic review of animal models for Staphylococcus aureus osteomyelitis

    PubMed Central

    Reizner, W.; Hunter, J.G.; O’Malley, N.T.; Southgate, R.D.; Schwarz, E.M.; Kates, S.L.

    2015-01-01

    Staphylococcus aureus (S. aureus) osteomyelitis is a significant complication for orthopaedic patients undergoing surgery, particularly with fracture fixation and arthroplasty. Given the difficulty in studying S. aureus infections in human subjects, animal models serve an integral role in exploring the pathogenesis of osteomyelitis, and aid in determining the efficacy of prophylactic and therapeutic treatments. Animal models should mimic the clinical scenarios seen in patients as closely as possible to permit the experimental results to be translated to the corresponding clinical care. To help understand existing animal models of S. aureus, we conducted a systematic search of PubMed & Ovid MEDLINE to identify in vivo animal experiments that have investigated the management of S. aureus osteomyelitis in the context of fractures and metallic implants. In this review, experimental studies are categorized by animal species and are further classified by the setting of the infection. Study methods are summarized and the relevant advantages and disadvantages of each species and model are discussed. While no ideal animal model exists, the understanding of a model’s strengths and limitations should assist clinicians and researchers to appropriately select an animal model to translate the conclusions to the clinical setting. PMID:24668594

  14. Predicting nurses' use of healthcare technology using the technology acceptance model: an integrative review.

    PubMed

    Strudwick, Gillian

    2015-05-01

    The benefits of healthcare technologies can only be attained if nurses accept and intend to fully use them. One of the most common models utilized to understand user acceptance of technology is the Technology Acceptance Model. This model and modified versions of it have only recently been applied in the healthcare literature among nurse participants. An integrative literature review was conducted on this topic. Ovid/MEDLINE, PubMed, Google Scholar, and CINAHL were searched yielding a total of 982 references. Upon eliminating duplicates and applying the inclusion and exclusion criteria, the review included a total of four dissertations, three symposium proceedings, and 13 peer-reviewed journal articles. These documents were appraised and reviewed. The results show that a modified Technology Acceptance Model with added variables could provide a better explanation of nurses' acceptance of healthcare technology. These added variables to modified versions of the Technology Acceptance Model are discussed, and the studies' methodologies are critiqued. Limitations of the studies included in the integrative review are also examined.

  15. Atherosclerosis and Thrombosis: Insights from Large Animal Models

    PubMed Central

    Vilahur, Gemma; Padro, Teresa; Badimon, Lina

    2011-01-01

    Atherosclerosis and its thrombotic complications are responsible for remarkably high numbers of deaths. The combination of in vitro, ex vivo, and in vivo experimental approaches has largely contributed to a better understanding of the mechanisms underlying the atherothrombotic process. Indeed, different animal models have been implemented in atherosclerosis and thrombosis research in order to provide new insights into the mechanisms that have already been outlined in isolated cells and protein studies. Yet, although no model completely mimics the human pathology, large animal models have demonstrated better suitability for translation to humans. Indeed, direct translation from mice to humans should be taken with caution because of the well-reported species-related differences. This paper provides an overview of the available atherothrombotic-like animal models, with a particular focus on large animal models of thrombosis and atherosclerosis, and examines their applicability for translational research purposes as well as highlights species-related differences with humans. PMID:21274431

  16. Animal Models of Psychosis: Current State and Future Directions

    PubMed Central

    Forrest, Alexandra D.; Coto, Carlos A.; Siegel, Steven J.

    2014-01-01

    Psychosis is an abnormal mental state characterized by disorganization, delusions and hallucinations. Animal models have become an increasingly important research tool in the effort to understand both the underlying pathophysiology and treatment of psychosis. There are multiple animal models for psychosis, with each formed by the coupling of a manipulation and a measurement. In this manuscript we do not address the diseases of which psychosis is a prominent comorbidity. Instead, we summarize the current state of affairs and future directions for animal models of psychosis. To accomplish this, our manuscript will first discuss relevant behavioral and electrophysiological measurements. We then provide an overview of the different manipulations that are combined with these measurements to produce animal models. The strengths and limitations of each model will be addressed in order to evaluate its cross-species comparability. PMID:25215267

  17. Animal models are reliably mimicking human diseases? A morphological study that compares animal with human NAFLD.

    PubMed

    Solinas, Paola; Isola, Michela; Lilliu, Maria Alberta; Conti, Gabriele; Civolani, Alberto; Demelia, Luigi; Loy, Francesco; Isola, Raffaella

    2014-10-01

    Non-alcoholic fatty liver disease (NAFLD) is a clinical-pathological syndrome that includes a wide spectrum of morphological alterations. In research, animal models are crucial in evaluating not only the pathogenesis of NAFLD and its progression, but also the therapeutic effects of various agents. Investigations on the ultrastructural features of NAFLD in humans are not copious, due to the difficulty to obtain human samples and to the long time of NAFLD to evolve. Translational comparative studies on the reliability of animal models in representing the histopathologic picture as seen in humans are missing. To overcome this lack of investigations, we compared the ultrastructural NAFLD features of an animal model versus human. Sprague-Dawley rats were fed with a high fat diet (HFD) for 1-4 weeks, while control rats were fed with a standard diet. Human specimens were collected from patients with diagnosed fatty liver disease, undergoing liver biopsies or surgery. Rat and human samples were examined by light microscopy and by transmission and high resolution scanning electron microscopy. The present work demonstrated that NAFLD in animal model and in human, share overlapping ultrastructural features. In conclusion, animal HFD represent an appropriate tool in studying the pathogenesis of NAFLD.

  18. Animal models for testing anti-prion drugs.

    PubMed

    Fernández-Borges, Natalia; Elezgarai, Saioa R; Eraña, Hasier; Castilla, Joaquín

    2013-01-01

    Prion diseases belong to a group of fatal infectious diseases with no effective therapies available. Throughout the last 35 years, less than 50 different drugs have been tested in different experimental animal models without hopeful results. An important limitation when searching for new drugs is the existence of appropriate models of the disease. The three different possible origins of prion diseases require the existence of different animal models for testing anti-prion compounds. Wild type, over-expressing transgenic mice and other more sophisticated animal models have been used to evaluate a diversity of compounds which some of them were previously tested in different in vitro experimental models. The complexity of prion diseases will require more pre-screening studies, reliable sporadic (or spontaneous) animal models and accurate chemical modifications of the selected compounds before having an effective therapy against human prion diseases. This review is intended to put on display the more relevant animal models that have been used in the search of new antiprion therapies and describe some possible procedures when handling chemical compounds presumed to have anti-prion activity prior to testing them in animal models.

  19. Emerging preclinical animal models for FSHD.

    PubMed

    Lek, Angela; Rahimov, Fedik; Jones, Peter L; Kunkel, Louis M

    2015-05-01

    Facioscapulohumeral dystrophy (FSHD) is a unique and complex genetic disease that is not entirely solved. Recent advances in the field have led to a consensus genetic premise for the disorder, enabling researchers to now pursue the design of preclinical models. In this review we explore all available FSHD models (DUX4-dependent and -independent) for their utility in therapeutic discovery and potential to yield novel disease insights. Owing to the complex nature of FSHD, there is currently no single model that accurately recapitulates the genetic and pathophysiological spectrum of the disorder. Existing models emphasize only specific aspects of the disease, highlighting the need for more collaborative research and novel paradigms to advance the translational research space of FSHD. PMID:25801126

  20. Exploring the Validity of Valproic Acid Animal Model of Autism

    PubMed Central

    Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Ji-woon; Kim, Ki Chan

    2015-01-01

    The valproic acid (VPA) animal model of autism spectrum disorder (ASD) is one of the most widely used animal model in the field. Like any other disease models, it can't model the totality of the features seen in autism. Then, is it valid to model autism? This model demonstrates many of the structural and behavioral features that can be observed in individuals with autism. These similarities enable the model to define relevant pathways of developmental dysregulation resulting from environmental manipulation. The uncovering of these complex pathways resulted to the growing pool of potential therapeutic candidates addressing the core symptoms of ASD. Here, we summarize the validity points of VPA that may or may not qualify it as a valid animal model of ASD. PMID:26713077

  1. Animal Models of Posttraumatic Seizures and Epilepsy.

    PubMed

    Glushakov, Alexander V; Glushakova, Olena Y; Doré, Sylvain; Carney, Paul R; Hayes, Ronald L

    2016-01-01

    Posttraumatic epilepsy (PTE) is one of the most common and devastating complications of traumatic brain injury (TBI). Currently, the etiopathology and mechanisms of PTE are poorly understood and as a result, there is no effective treatment or means to prevent it. Antiepileptic drugs remain common preventive strategies in the management of TBI to control acute posttraumatic seizures and to prevent the development of PTE, although their efficacy in the latter case is disputed. Different strategies of PTE prophylaxis have been showing promise in preclinical models, but their translation to the clinic still remains elusive due in part to the variability of these models and the fact they do not recapitulate all complex pathologies associated with human TBI. TBI is a multifaceted disorder reflected in several potentially epileptogenic alterations in the brain, including mechanical neuronal and vascular damage, parenchymal and subarachnoid hemorrhage, subsequent toxicity caused by iron-rich hemoglobin breakdown products, and energy disruption resulting in secondary injuries, including excitotoxicity, gliosis, and neuroinflammation, often coexisting to a different degree. Several in vivo models have been developed to reproduce the acute TBI cascade of events, to reflect its anatomical pathologies, and to replicate neurological deficits. Although acute and chronic recurrent posttraumatic seizures are well-recognized phenomena in these models, there is only a limited number of studies focused on PTE. The most used mechanical TBI models with documented electroencephalographic and behavioral seizures with remote epileptogenesis include fluid percussion, controlled cortical impact, and weight-drop. This chapter describes the most popular models of PTE-induced TBI models, focusing on the controlled cortical impact and the fluid percussion injury models, the methods of behavioral and electroencephalogram seizure assessments, and other approaches to detect epileptogenic properties

  2. A Multivariate Model for the Study of Parental Acceptance-Rejection and Child Abuse.

    ERIC Educational Resources Information Center

    Rohner, Ronald P.; Rohner, Evelyn C.

    This paper proposes a multivariate strategy for the study of parental acceptance-rejection and child abuse and describes a research study on parental rejection and child abuse which illustrates the advantages of using a multivariate, (rather than a simple-model) approach. The multivariate model is a combination of three simple models used to study…

  3. A proposed model of factors influencing hydrogen fuel cell vehicle acceptance

    NASA Astrophysics Data System (ADS)

    Imanina, N. H. Noor; Kwe Lu, Tan; Fadhilah, A. R.

    2016-03-01

    Issues such as environmental problem and energy insecurity keep worsening as a result of energy use from household to huge industries including automotive industry. Recently, a new type of zero emission vehicle, hydrogen fuel cell vehicle (HFCV) has received attention. Although there are argues on the feasibility of hydrogen as the future fuel, there is another important issue, which is the acceptance of HFCV. The study of technology acceptance in the early stage is a vital key for a successful introduction and penetration of a technology. This paper proposes a model of factors influencing green vehicle acceptance, specifically HFCV. This model is built base on two technology acceptance theories and other empirical studies of vehicle acceptance. It aims to provide a base for finding the key factors influencing new sustainable energy fuelled vehicle, HFCV acceptance which is achieved by explaining intention to accept HFCV. Intention is influenced by attitude, subjective norm and perceived behavioural control from Theory of Planned Behaviour and personal norm from Norm Activation Theory. In the framework, attitude is influenced by perceptions of benefits and risks, and social trust. Perceived behavioural control is influenced by government interventions. Personal norm is influenced by outcome efficacy and problem awareness.

  4. Sex differences in animal models of psychiatric disorders.

    PubMed

    Kokras, N; Dalla, C

    2014-10-01

    Psychiatric disorders are characterized by sex differences in their prevalence, symptomatology and treatment response. Animal models have been widely employed for the investigation of the neurobiology of such disorders and the discovery of new treatments. However, mostly male animals have been used in preclinical pharmacological studies. In this review, we highlight the need for the inclusion of both male and female animals in experimental studies aiming at gender-oriented prevention, diagnosis and treatment of psychiatric disorders. We present behavioural findings on sex differences from animal models of depression, anxiety, post-traumatic stress disorder, substance-related disorders, obsessive-compulsive disorder, schizophrenia, bipolar disorder and autism. Moreover, when available, we include studies conducted across different stages of the oestrous cycle. By inspection of the relevant literature, it is obvious that robust sex differences exist in models of all psychiatric disorders. However, many times results are conflicting, and no clear conclusion regarding the direction of sex differences and the effect of the oestrous cycle is drawn. Moreover, there is a lack of considerable amount of studies using psychiatric drugs in both male and female animals, in order to evaluate the differential response between the two sexes. Notably, while in most cases animal models successfully mimic drug response in both sexes, test parameters and treatment-sensitive behavioural indices are not always the same for male and female rodents. Thus, there is an increasing need to validate animal models for both sexes and use standard procedures across different laboratories. PMID:24697577

  5. ICT and OTs: a model of information and communication technology acceptance and utilisation by occupational therapists.

    PubMed

    Schaper, Louise K; Pervan, Graham P

    2007-06-01

    There is evidence to suggest that health professionals are reluctant to accept and utilise information and communication technologies (ICT) and concern is growing within health informatics research that this is contributing to the lag in adoption and utilisation of ICT across the health sector. Technology acceptance research within the field of information systems has been limited in its application to health and there is a concurrent need to develop and gain empirical support for models of technology acceptance within health and to examine acceptance and utilisation issues amongst health professionals to improve the success of information system implementation in this arena. This paper outlines a project that examines ICT acceptance and utilisation by Australian occupational therapists. It describes the theoretical basis behind the development of a research model and the methodology being employed to empirically validate the model using substantial quantitative, qualitative and longitudinal data. Preliminary results from Phase II of the study are presented. The theoretical significance of this work is that it uses a thoroughly constructed research model, with potentially the largest sample size ever tested, to extend technology acceptance research into the health sector.

  6. GHRH treatment: studies in an animal model.

    PubMed

    Shakutsui, S; Abe, H; Chihara, K

    1989-01-01

    This study examined the effects of chronic deletion of circulating growth hormone-releasing (GHRH) and/or somatostatin (SRIF) on normal growing male rats, as well as the effects of exogenous GHRH (1-29)NH2 and/or SMS 201-995 administration on the growth of rats with hypothalamic ablation. Passive immunization with anti-rat GHRH goat gamma-globulin (GHRH-Ab) for 3 weeks caused a marked decrease in the levels of pituitary GH mRNA and severe growth failure. Treatment with anti-SRIF goat gamma-globulin (SRIF-Ab) for 3 weeks produced a more modest decrease in GH mRNA levels in the pituitary and a slight but significant inhibition of normal somatic growth. Hypothalamic ablation produced a marked decrease in the level of mRNA in the pituitary. Chronic continuous administration of GHRH (1-29)NH2 stimulated pituitary GH synthesis, elevated serum levels of insulin-like growth factor I and increased body weight gain in rats with hypothalamic ablation treated with replacement doses of cortisone, testosterone and L-thyroxine. Combined treatment with GHRH (1-29)NH2 and SMS 201-995 appeared to promote the effect of GHRH on pituitary GH release and somatic growth in these animals. The results suggest that continuous administration of GHRH will be useful in the treatment of children with growth retardation resulting from hypothalamic disorders. In children with combined GHRH and somatostatin deficiencies, the addition of somatostatin to a GHRH treatment regimen may produce better results. PMID:2568726

  7. Animal models for screening anxiolytic-like drugs: a perspective.

    PubMed

    Bourin, Michel

    2015-09-01

    Contemporary biological psychiatry uses experimental animal models to increase our understanding of affective disorder pathogenesis. Modern anxiolytic drug discovery mainly targets specific pathways and molecular determinants within a single phenotypic domain. However, greater understanding of the mechanisms of action is possible through animal models. Primarily developed with rats, animal models in anxiety have been adapted with mixed success for mice, easy-to-use mammals with better genetic possibilities than rats. In this review, we focus on the three most common animal models of anxiety in mice used in the screening of anxiolytics. Both conditioned and unconditioned models are described, in order to represent all types of animal models of anxiety. Behavioral studies require careful attention to variable parameters linked to environment, handling, or paradigms; this is also discussed. Finally, we focus on the consequences of re-exposure to the apparatus. Test-retest procedures can provide new answers, but should be intensively studied in order to revalidate the entire paradigm as an animal model of anxiety.

  8. Animal Models in Cardiovascular Research: Hypertension and Atherosclerosis

    PubMed Central

    Ng, Chun-Yi; Jaarin, Kamsiah

    2015-01-01

    Hypertension and atherosclerosis are among the most common causes of mortality in both developed and developing countries. Experimental animal models of hypertension and atherosclerosis have become a valuable tool for providing information on etiology, pathophysiology, and complications of the disease and on the efficacy and mechanism of action of various drugs and compounds used in treatment. An animal model has been developed to study hypertension and atherosclerosis for several reasons. Compared to human models, an animal model is easily manageable, as compounding effects of dietary and environmental factors can be controlled. Blood vessels and cardiac tissue samples can be taken for detailed experimental and biomolecular examination. Choice of animal model is often determined by the research aim, as well as financial and technical factors. A thorough understanding of the animal models used and complete analysis must be validated so that the data can be extrapolated to humans. In conclusion, animal models for hypertension and atherosclerosis are invaluable in improving our understanding of cardiovascular disease and developing new pharmacological therapies. PMID:26064920

  9. Animal models for screening anxiolytic-like drugs: a perspective

    PubMed Central

    Bourin, Michel

    2015-01-01

    Contemporary biological psychiatry uses experimental animal models to increase our understanding of affective disorder pathogenesis. Modern anxiolytic drug discovery mainly targets specific pathways and molecular determinants within a single phenotypic domain. However, greater understanding of the mechanisms of action is possible through animal models. Primarily developed with rats, animal models in anxiety have been adapted with mixed success for mice, easy-to-use mammals with better genetic possibilities than rats. In this review, we focus on the three most common animal models of anxiety in mice used in the screening of anxiolytics. Both conditioned and unconditioned models are described, in order to represent all types of animal models of anxiety. Behavioral studies require careful attention to variable parameters linked to environment, handling, or paradigms; this is also discussed. Finally, we focus on the consequences of re-exposure to the apparatus. Test-retest procedures can provide new answers, but should be intensively studied in order to revalidate the entire paradigm as an animal model of anxiety. PMID:26487810

  10. Animal models for arthritis: innovative tools for prevention and treatment.

    PubMed

    Kollias, George; Papadaki, Piyi; Apparailly, Florence; Vervoordeldonk, Margriet J; Holmdahl, Rikard; Baumans, Vera; Desaintes, Christian; Di Santo, James; Distler, Jörg; Garside, Paul; Hegen, Martin; Huizinga, Tom W J; Jüngel, Astrid; Klareskog, Lars; McInnes, Iain; Ragoussis, Ioannis; Schett, Georg; Hart, Bert 't; Tak, Paul P; Toes, Rene; van den Berg, Wim; Wurst, Wolfgang; Gay, Steffen

    2011-08-01

    The development of novel treatments for rheumatoid arthritis (RA) requires the interplay between clinical observations and studies in animal models. Given the complex molecular pathogenesis and highly heterogeneous clinical picture of RA, there is an urgent need to dissect its multifactorial nature and to propose new strategies for preventive, early and curative treatments. Research on animal models has generated new knowledge on RA pathophysiology and aetiology and has provided highly successful paradigms for innovative drug development. Recent focus has shifted towards the discovery of novel biomarkers, with emphasis on presymptomatic and emerging stages of human RA, and towards addressing the pathophysiological mechanisms and subsequent efficacy of interventions that underlie different disease variants. Shifts in the current paradigms underlying RA pathogenesis have also led to increased demand for new (including humanised) animal models. There is therefore an urgent need to integrate the knowledge on human and animal models with the ultimate goal of creating a comprehensive 'pathogenesis map' that will guide alignment of existing and new animal models to the subset of disease they mimic. This requires full and standardised characterisation of all models at the genotypic, phenotypic and biomarker level, exploiting recent technological developments in 'omics' profiling and computational biology as well as state of the art bioimaging. Efficient integration and dissemination of information and resources as well as outreach to the public will be necessary to manage the plethora of data accumulated and to increase community awareness and support for innovative animal model research in rheumatology.

  11. ASSESSMENT OF VENOUS THROMBOSIS IN ANIMAL MODELS

    PubMed Central

    SP, Grover; CE, Evans; AS, Patel; B, Modarai; P, Saha; A, Smith

    2016-01-01

    Deep vein thrombosis and common complications, including pulmonary embolism and post thrombotic syndrome, represent a major source of morbidity and mortality worldwide. Experimental models of venous thrombosis have provided considerable insight into the cellular and molecular mechanisms that regulate thrombus formation and subsequent resolution. Here we critically appraise the ex vivo and in vivo techniques used to assess venous thrombosis in these models. Particular attention is paid to imaging modalities, including magnetic resonance imaging, micro computed tomography and high frequency ultrasound that facilitate longitudinal assessment of thrombus size and composition. PMID:26681755

  12. Assessment of Venous Thrombosis in Animal Models.

    PubMed

    Grover, Steven P; Evans, Colin E; Patel, Ashish S; Modarai, Bijan; Saha, Prakash; Smith, Alberto

    2016-02-01

    Deep vein thrombosis and common complications, including pulmonary embolism and post-thrombotic syndrome, represent a major source of morbidity and mortality worldwide. Experimental models of venous thrombosis have provided considerable insight into the cellular and molecular mechanisms that regulate thrombus formation and subsequent resolution. Here, we critically appraise the ex vivo and in vivo techniques used to assess venous thrombosis in these models. Particular attention is paid to imaging modalities, including magnetic resonance imaging, micro-computed tomography, and high-frequency ultrasound that facilitate longitudinal assessment of thrombus size and composition.

  13. Animal Models of Uveal Melanoma: Methods, Applicability, and Limitations.

    PubMed

    Stei, Marta M; Loeffler, Karin U; Holz, Frank G; Herwig, Martina C

    2016-01-01

    Animal models serve as powerful tools for investigating the pathobiology of cancer, identifying relevant pathways, and developing novel therapeutic agents. They have facilitated rapid scientific progress in many tumor entities. However, for establishing a powerful animal model of uveal melanoma fundamental challenges remain. To date, no animal model offers specific genetic attributes as well as histologic, immunologic, and metastatic features of uveal melanoma. Syngeneic models with intraocular injection of cutaneous melanoma cells may suit best for investigating immunologic/tumor biology aspects. However, differences between cutaneous and uveal melanoma regarding genetics and metastasis remain problematic. Human xenograft models are widely used for evaluating novel therapeutics but require immunosuppression to allow tumor growth. New approaches aim to establish transgenic mouse models of spontaneous uveal melanoma which recently provided preliminary promising results. Each model provides certain benefits and may render them suitable for answering a respective scientific question. However, all existing models also exhibit relevant limitations which may have led to delayed research progress. Despite refined therapeutic options for the primary ocular tumor, patients' prognosis has not improved since the 1970s. Basic research needs to further focus on a refinement of a potent animal model which mimics uveal melanoma specific mechanisms of progression and metastasis. This review will summarise and interpret existing animal models of uveal melanoma including recent advances in the field. PMID:27366747

  14. Animal Models of Uveal Melanoma: Methods, Applicability, and Limitations

    PubMed Central

    Stei, Marta M.; Loeffler, Karin U.; Holz, Frank G.; Herwig, Martina C.

    2016-01-01

    Animal models serve as powerful tools for investigating the pathobiology of cancer, identifying relevant pathways, and developing novel therapeutic agents. They have facilitated rapid scientific progress in many tumor entities. However, for establishing a powerful animal model of uveal melanoma fundamental challenges remain. To date, no animal model offers specific genetic attributes as well as histologic, immunologic, and metastatic features of uveal melanoma. Syngeneic models with intraocular injection of cutaneous melanoma cells may suit best for investigating immunologic/tumor biology aspects. However, differences between cutaneous and uveal melanoma regarding genetics and metastasis remain problematic. Human xenograft models are widely used for evaluating novel therapeutics but require immunosuppression to allow tumor growth. New approaches aim to establish transgenic mouse models of spontaneous uveal melanoma which recently provided preliminary promising results. Each model provides certain benefits and may render them suitable for answering a respective scientific question. However, all existing models also exhibit relevant limitations which may have led to delayed research progress. Despite refined therapeutic options for the primary ocular tumor, patients' prognosis has not improved since the 1970s. Basic research needs to further focus on a refinement of a potent animal model which mimics uveal melanoma specific mechanisms of progression and metastasis. This review will summarise and interpret existing animal models of uveal melanoma including recent advances in the field. PMID:27366747

  15. Test of the technology acceptance model for the internet in pediatrics.

    PubMed Central

    Chismar, William G.; Wiley-Patton, Sonja

    2002-01-01

    There is growing recognition of the importance of the Internet and, more generally, information technology to pediatric care. However, acceptance of these technologies has been low. Attitudes of physicians can play a pivotal role in the adoption session. This study tests the extension to a widely used model in the information systems literature: the Technology Acceptance Model (TAM). Data were collected in a survey of pediatricians to see how well the extended model, TAM2, fits in the medical arena. Our results partially confirm the model; significant parts of the model were not confirmed. The primary factors in pediatricians' acceptance of technology applications relate to their usefulness and job relevance. Little weight is given to ease of use and social factors. We discuss possible explanations for the discrepancies and suggest future research. PMID:12463806

  16. Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges.

    PubMed

    Greenwood-Van Meerveld, Beverley; Prusator, Dawn K; Johnson, Anthony C

    2015-06-01

    Visceral pain describes pain emanating from the thoracic, pelvic, or abdominal organs. In contrast to somatic pain, visceral pain is generally vague, poorly localized, and characterized by hypersensitivity to a stimulus such as organ distension. Animal models have played a pivotal role in our understanding of the mechanisms underlying the pathophysiology of visceral pain. This review focuses on animal models of visceral pain and their translational relevance. In addition, the challenges of using animal models to develop novel therapeutic approaches to treat visceral pain will be discussed.

  17. Mathematical modelling of animate and intentional motion.

    PubMed Central

    Rittscher, Jens; Blake, Andrew; Hoogs, Anthony; Stein, Gees

    2003-01-01

    Our aim is to enable a machine to observe and interpret the behaviour of others. Mathematical models are employed to describe certain biological motions. The main challenge is to design models that are both tractable and meaningful. In the first part we will describe how computer vision techniques, in particular visual tracking, can be applied to recognize a small vocabulary of human actions in a constrained scenario. Mainly the problems of viewpoint and scale invariance need to be overcome to formalize a general framework. Hence the second part of the article is devoted to the question whether a particular human action should be captured in a single complex model or whether it is more promising to make extensive use of semantic knowledge and a collection of low-level models that encode certain motion primitives. Scene context plays a crucial role if we intend to give a higher-level interpretation rather than a low-level physical description of the observed motion. A semantic knowledge base is used to establish the scene context. This approach consists of three main components: visual analysis, the mapping from vision to language and the search of the semantic database. A small number of robust visual detectors is used to generate a higher-level description of the scene. The approach together with a number of results is presented in the third part of this article. PMID:12689374

  18. Retinal degeneration in animal models with a defective visual cycle

    PubMed Central

    Maeda, Akiko; Palczewski, Krzysztof

    2014-01-01

    Continuous generation of visual chromophore through the visual (retinoid) cycle is essential to maintain eyesight and retinal heath. Impairments in this cycle and related pathways adversely affect vision. In this review, we summarize the chemical reactions of vitamin A metabolites involved in the retinoid cycle and describe animal models of associated human diseases. Development of potential therapies for retinal disorders in these animal models is also introduced. PMID:25210527

  19. Proteomics in farm animals models of human diseases.

    PubMed

    Ceciliani, Fabrizio; Restelli, Laura; Lecchi, Cristina

    2014-10-01

    The need to provide in vivo complex environments to understand human diseases strongly relies on the use of animal models, which traditionally include small rodents and rabbits. It is becoming increasingly evident that the few species utilised to date cannot be regarded as universal. There is a great need for new animal species that are naturally endowed with specific features relevant to human diseases. Farm animals, including pigs, cows, sheep and horses, represent a valid alternative to commonly utilised rodent models. There is an ample scope for the application of proteomic techniques in farm animals, and the establishment of several proteomic maps of plasma and tissue has clearly demonstrated that farm animals provide a disease environment that closely resembles that of human diseases. The present review offers a snapshot of how proteomic techniques have been applied to farm animals to improve their use as biomedical models. Focus will be on specific topics of biomedical research in which farm animal models have been characterised through the application of proteomic techniques.

  20. Current and new cytomegalovirus antivirals and novel animal model strategies.

    PubMed

    McGregor, Alistair

    2010-09-01

    Cytomegalovirus (CMV) is a significant health problem among immunosuppressed individuals. In particular, transplant and AIDS patients and the developing fetus in utero are highly susceptible to CMV. In these vulnerable populations, infection leads to life threatening end organ viral disease or in surviving newborn babies to deafness or to mental retardation. Currently, the most effective way to control CMV infection, given the lack of an effective vaccine, is by antiviral therapy. However, available antivirals suffer from complications associated with prolonged use, such as drug toxicity as well as the emergence of resistant strains of virus. Additionally, since CMV has multiple complex immune evasion strategies, to avoid innate and adaptive immune responses, there is a need for new antiviral development. Any antiviral should be tested in a controlled animal model but species specificity of HCMV precludes the direct study of the virus in an animal model. Consequently, animal CMV in their respective animal host are used to study intervention strategies. In this review, both current and new antiviral strategies are discussed as are the various animal models and strategies to improve existing antiviral animal models by humanizing animal CMV.

  1. Chimeric animal models in human stem cell biology.

    PubMed

    Glover, Joel C; Boulland, Jean-Luc; Halasi, Gabor; Kasumacic, Nedim

    2009-01-01

    The clinical use of stem cells for regenerative medicine is critically dependent on preclinical studies in animal models. In this review we examine some of the key issues and challenges in the use of animal models to study human stem cell biology-experimental standardization, body size, immunological barriers, cell survival factors, fusion of host and donor cells, and in vivo imaging and tracking. We focus particular attention on the various imaging modalities that can be used to track cells in living animals, comparing their strengths and weaknesses and describing technical developments that are likely to lead to new opportunities for the dynamic assessment of stem cell behavior in vivo. We then provide an overview of some of the most commonly used animal models, their advantages and disadvantages, and examples of their use for xenotypic transplantation of human stem cells, with separate reviews of models involving rodents, ungulates, nonhuman primates, and the chicken embryo. As the use of human somatic, embryonic, and induced pluripotent stem cells increases, so too will the range of applications for these animal models. It is likely that increasingly sophisticated uses of human/animal chimeric models will be developed through advances in genetic manipulation, cell delivery, and in vivo imaging.

  2. How animals move along? Exactly solvable model of superdiffusive spread resulting from animal's decision making.

    PubMed

    Tilles, Paulo F C; Petrovskii, Sergei V

    2016-07-01

    Patterns of individual animal movement have been a focus of considerable attention recently. Of particular interest is a question how different macroscopic properties of animal dispersal result from the stochastic processes occurring on the microscale of the individual behavior. In this paper, we perform a comprehensive analytical study of a model where the animal changes the movement velocity as a result of its behavioral response to environmental stochasticity. The stochasticity is assumed to manifest itself through certain signals, and the animal modifies its velocity as a response to the signals. We consider two different cases, i.e. where the change in the velocity is or is not correlated to its current value. We show that in both cases the early, transient stage of the animal movement is super-diffusive, i.e. ballistic. The large-time asymptotic behavior appears to be diffusive in the uncorrelated case but super-ballistic in the correlated case. We also calculate analytically the dispersal kernel of the movement and show that, whilst it converge to a normal distribution in the large-time limit, it possesses a fatter tail during the transient stage, i.e. at early and intermediate time. Since the transients are known to be highly relevant in ecology, our findings may indicate that the fat tails and superdiffusive spread that are sometimes observed in the movement data may be a feature of the transitional dynamics rather than an inherent property of the animal movement. PMID:26650504

  3. The Use of Animal Models for Stroke Research: A Review

    PubMed Central

    Casals, Juliana B; Pieri, Naira CG; Feitosa, Matheus LT; Ercolin, Anna CM; Roballo, Kelly CS; Barreto, Rodrigo SN; Bressan, Fabiana F; Martins, Daniele S; Miglino, Maria A; Ambrósio, Carlos E

    2011-01-01

    Stroke has been identified as the second leading cause of death worldwide. Stroke is a focal neurologic deficit caused by a change in cerebral circulation. The use of animal models in recent years has improved our understanding of the physiopathology of this disease. Rats and mice are the most commonly used stroke models, but the demand for larger models, such as rabbits and even nonhuman primates, is increasing so as to better understand the disease and its treatment. Although the basic mechanisms of stroke are nearly identical among mammals, we here discuss the differences between the human encephalon and various animals. In addition, we compare common surgical techniques used to induce animal models of stroke. A more complete anatomic knowledge of the cerebral vessels of various model species is needed to develop more reliable models for objective results that improve knowledge of the pathology of stroke in both human and veterinary medicine. PMID:22330245

  4. The Fuzzy Model for Diagnosis of Animal Disease

    NASA Astrophysics Data System (ADS)

    Jianhua, Xiao; Luyi, Shi; Yu, Zhang; Li, Gao; Honggang, Fan; Haikun, Ma; Hongbin, Wang

    The knowledge of animal disease diagnosis was fuzzy; the fuzzy model can imitate the character of clinical diagnosis for veterinary. The fuzzy model of disease, the methods for class the disease group of differential diagnosis and the fuzzy diagnosis model were discussed in this paper.

  5. THE TECHNOLOGY ACCEPTANCE MODEL: ITS PAST AND ITS FUTURE IN HEALTH CARE

    PubMed Central

    HOLDEN, RICHARD J.; KARSH, BEN-TZION

    2009-01-01

    Increasing interest in end users’ reactions to health information technology (IT) has elevated the importance of theories that predict and explain health IT acceptance and use. This paper reviews the application of one such theory, the Technology Acceptance Model (TAM), to health care. We reviewed 16 data sets analyzed in over 20 studies of clinicians using health IT for patient care. Studies differed greatly in samples and settings, health ITs studied, research models, relationships tested, and construct operationalization. Certain TAM relationships were consistently found to be significant, whereas others were inconsistent. Several key relationships were infrequently assessed. Findings show that TAM predicts a substantial portion of the use or acceptance of health IT, but that the theory may benefit from several additions and modifications. Aside from improved study quality, standardization, and theoretically motivated additions to the model, an important future direction for TAM is to adapt the model specifically to the health care context, using beliefs elicitation methods. PMID:19615467

  6. The technology acceptance model: its past and its future in health care.

    PubMed

    Holden, Richard J; Karsh, Ben-Tzion

    2010-02-01

    Increasing interest in end users' reactions to health information technology (IT) has elevated the importance of theories that predict and explain health IT acceptance and use. This paper reviews the application of one such theory, the Technology Acceptance Model (TAM), to health care. We reviewed 16 data sets analyzed in over 20 studies of clinicians using health IT for patient care. Studies differed greatly in samples and settings, health ITs studied, research models, relationships tested, and construct operationalization. Certain TAM relationships were consistently found to be significant, whereas others were inconsistent. Several key relationships were infrequently assessed. Findings show that TAM predicts a substantial portion of the use or acceptance of health IT, but that the theory may benefit from several additions and modifications. Aside from improved study quality, standardization, and theoretically motivated additions to the model, an important future direction for TAM is to adapt the model specifically to the health care context, using beliefs elicitation methods.

  7. Animal Models of Cystic Fibrosis Pathology: Phenotypic Parallels and Divergences.

    PubMed

    Lavelle, Gillian M; White, Michelle M; Browne, Niall; McElvaney, Noel G; Reeves, Emer P

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The resultant characteristic ion transport defect results in decreased mucociliary clearance, bacterial colonisation, and chronic neutrophil-dominated inflammation. Much knowledge surrounding the pathophysiology of the disease has been gained through the generation of animal models, despite inherent limitations in each. The failure of certain mouse models to recapitulate the phenotypic manifestations of human disease has initiated the generation of larger animals in which to study CF, including the pig and the ferret. This review will summarise the basic phenotypes of three animal models and describe the contributions of such animal studies to our current understanding of CF. PMID:27340661

  8. Animal Models of Cystic Fibrosis Pathology: Phenotypic Parallels and Divergences

    PubMed Central

    McElvaney, Noel G.

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The resultant characteristic ion transport defect results in decreased mucociliary clearance, bacterial colonisation, and chronic neutrophil-dominated inflammation. Much knowledge surrounding the pathophysiology of the disease has been gained through the generation of animal models, despite inherent limitations in each. The failure of certain mouse models to recapitulate the phenotypic manifestations of human disease has initiated the generation of larger animals in which to study CF, including the pig and the ferret. This review will summarise the basic phenotypes of three animal models and describe the contributions of such animal studies to our current understanding of CF. PMID:27340661

  9. Are animal models relevant to key aspects of human parturition?

    PubMed

    Mitchell, Bryan F; Taggart, Michael J

    2009-09-01

    Preterm birth remains the most serious complication of pregnancy and is associated with increased rates of infant death or permanent neurodevelopmental disability. Our understanding of the regulation of parturition remains inadequate. The scientific literature, largely derived from rodent animal models, suggests two major mechanisms regulating the timing of parturition: the withdrawal of the steroid hormone progesterone and a proinflammatory response by the immune system. However, available evidence strongly suggests that parturition in the human has significantly different regulators and mediators from those in most of the animal models. Our objectives are to critically review the data and concepts that have arisen from use of animal models for parturition and to rationalize the use of a new model. Many animal models have contributed to advances in our understanding of the regulation of parturition. However, we suggest that those animals dependent on progesterone withdrawal to initiate parturition clearly have a limitation to their translation to the human. In such models, a linear sequence of events (e.g., luteolysis, progesterone withdrawal, uterine activation, parturition) gives rise to the concept of a "trigger" mechanism. Conversely, we propose that human parturition may arise from the concomitant maturation of several systems in parallel. We have termed this novel concept "modular accumulation of physiological systems" (MAPS). We also emphasize the urgency to determine the precise role of the immune system in the process of parturition in situations other than intrauterine infection. Finally, we accentuate the need to develop a nonprimate animal model whose physiology is more relevant to human parturition. We suggest that the guinea pig displays several key physiological characteristics of gestation that more closely resemble human pregnancy than do currently favored animal models. We conclude that the application of novel concepts and new models are

  10. Animal models for prion-like diseases.

    PubMed

    Fernández-Borges, Natalia; Eraña, Hasier; Venegas, Vanesa; Elezgarai, Saioa R; Harrathi, Chafik; Castilla, Joaquín

    2015-09-01

    Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are a group of fatal neurodegenerative disorders affecting several mammalian species being Creutzfeldt-Jacob Disease (CJD) the most representative in human beings, scrapie in ovine, Bovine Spongiform Encephalopathy (BSE) in bovine and Chronic Wasting Disease (CWD) in cervids. As stated by the "protein-only hypothesis", the causal agent of TSEs is a self-propagating aberrant form of the prion protein (PrP) that through a misfolding event acquires a β-sheet rich conformation known as PrP(Sc) (from scrapie). This isoform is neurotoxic, aggregation prone and induces misfolding of native cellular PrP. Compelling evidence indicates that disease-specific protein misfolding in amyloid deposits could be shared by other disorders showing aberrant protein aggregates such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Amyotrophic lateral sclerosis (ALS) and systemic Amyloid A amyloidosis (AA amyloidosis). Evidences of shared mechanisms of the proteins related to each disease with prions will be reviewed through the available in vivo models. Taking prion research as reference, typical prion-like features such as seeding and propagation ability, neurotoxic species causing disease, infectivity, transmission barrier and strain evidences will be analyzed for other protein-related diseases. Thus, prion-like features of amyloid β peptide and tau present in AD, α-synuclein in PD, SOD-1, TDP-43 and others in ALS and serum α-amyloid (SAA) in systemic AA amyloidosis will be reviewed through models available for each disease. PMID:25907990

  11. [Animal models in urological laparoscopic training].

    PubMed

    Usón Gargallo, J; Sánchez Margallo, F M; Díaz-Güemes Martín-Portugués, I; Loscertales Martín de Agar, B; Soria Gálvez, F; Pascual Sánchez-Gijón, S

    2006-05-01

    We present the experience of the Minimally Invasive Surgery Centre (MISC) in the development of a modular training model in laparoscopic surgery. The experience analysis includes the description of the training objectives, the learning process of simple and advance laparoscopic urologic techniques, as well as some current and future considerations before applying the laparoscopic techniques. This learning program pretends to optimize the knowledge of the surgeon and the clinical practice of these surgical techniques. The phases of the learning process have been classified in four levels, which include different modules and models and whose application will depend on the experience and surgical skills. This pyramidal training system permits the student to advance step by step through each level depending on her surgical skills. We have presented our experience in twelve courses about laparoscopic urology and four courses of laparoscopic radical prostatectomy, in which more than 300 urologists have assisted. Furthermore, some Spanish Urology Units have been developing special experimental training programs on laparoscopic radical prostatectomy, partial nephrectomy or laparoscopic dismembered pyeloplasty with Anderson-Hynes technique. It has been previously described that laparoscopic modular learning constitutes a very useful concept to avoid problems related to an incomplete and incorrect learning process. Also it seems clear that the laparoscopic training reduces the learning curve in laparoscopic urologic techniques.

  12. The utility of animal models in developing immunosuppressive agents.

    PubMed

    McDaid, James; Scott, Christopher J; Kissenpfennig, Adrien; Chen, Huifang; Martins, Paulo N

    2015-07-15

    The immune system comprises an integrated network of cellular interactions. Some responses are predictable, while others are more stochastic. While in vitro the outcome of stimulating a single type of cell may be stereotyped and reproducible, in vivo this is often not the case. This phenomenon often merits the use of animal models in predicting the impact of immunosuppressant drugs. A heavy burden of responsibility lies on the shoulders of the investigator when using animal models to study immunosuppressive agents. The principles of the three R׳s: refine (less suffering,), reduce (lower animal numbers) and replace (alternative in vitro assays) must be applied, as described elsewhere in this issue. Well designed animal model experiments have allowed us to develop all the immunosuppressive agents currently available for treating autoimmune disease and transplant recipients. In this review, we examine the common animal models used in developing immunosuppressive agents, focusing on drugs used in transplant surgery. Autoimmune diseases, such as multiple sclerosis, are covered elsewhere in this issue. We look at the utility and limitations of small and large animal models in measuring potency and toxicity of immunosuppressive therapies.

  13. Cytomegalovirus Antivirals and Development of Improved Animal Models

    PubMed Central

    McGregor, Alistair; Choi, K. Yeon

    2015-01-01

    Introduction Cytomegalovirus (CMV) is a ubiquitous pathogen that establishes a life long asymptomatic infection in healthy individuals. Infection of immunesuppressed individuals causes serious illness. Transplant and AIDS patients are highly susceptible to CMV leading to life threatening end organ disease. Another vulnerable population is the developing fetus in utero, where congenital infection can result in surviving newborns with long term developmental problems. There is no vaccine licensed for CMV and current antivirals suffer from complications associated with prolonged treatment. These include drug toxicity and emergence of resistant strains. There is an obvious need for new antivirals. Candidate intervention strategies are tested in controlled pre-clinical animal models but species specificity of HCMV precludes the direct study of the virus in an animal model. Areas covered This review explores the current status of CMV antivirals and development of new drugs. This includes the use of animal models and the development of new improved models such as humanized animal CMV and bioluminescent imaging of virus in animals in real time. Expert Opinion Various new CMV antivirals are in development, some with greater spectrum of activity against other viruses. Although the greatest need is in the setting of transplant patients there remains an unmet need for a safe antiviral strategy against congenital CMV. This is especially important since an effective CMV vaccine remains an elusive goal. In this capacity greater emphasis should be placed on suitable pre-clinical animal models and greater collaboration between industry and academia. PMID:21883024

  14. Noninvasive fluorescence imaging in animal models of stroke.

    PubMed

    Stemmer, N; Mehnert, J; Steinbrink, J; Wunder, A

    2012-01-01

    Noninvasive fluorescence imaging (NFI) is a powerful tool to study physiology and pathophysiology in animal disease models. NFI has been successfully applied in a number of animal disease models including cancer, arthritis, and stroke. Furthermore, several applications in humans have been described. NFI is widely available in research laboratories because it has a number of advantages: It uses non-ionizing radiation and requires comparably simple, inexpensive instrumentation, and easy to handle. Fluorochromes can be detected with high sensitivity, and image acquisition time is relatively short. Furthermore, a plethora of fluorescent imaging agents is available including unspecific, target-specific, and activatable imaging probes. With these probes, biological processes such as inflammation, cell death or enzyme activity, and many others can be visualized in living animals. This review offers an overview of current approaches in NFI of stroke pathophysiology in animal models of cerebral ischemia. First, the instrumentation and the different types of imaging agents for NFI are described. Second, a short introduction to animal models of stroke is provided. Third, examples for NFI in animal models of stroke are given. Finally, the use of NFI in human stroke is critically discussed.

  15. Sex differences in animal models of psychiatric disorders

    PubMed Central

    Kokras, N; Dalla, C

    2014-01-01

    Psychiatric disorders are characterized by sex differences in their prevalence, symptomatology and treatment response. Animal models have been widely employed for the investigation of the neurobiology of such disorders and the discovery of new treatments. However, mostly male animals have been used in preclinical pharmacological studies. In this review, we highlight the need for the inclusion of both male and female animals in experimental studies aiming at gender-oriented prevention, diagnosis and treatment of psychiatric disorders. We present behavioural findings on sex differences from animal models of depression, anxiety, post-traumatic stress disorder, substance-related disorders, obsessive–compulsive disorder, schizophrenia, bipolar disorder and autism. Moreover, when available, we include studies conducted across different stages of the oestrous cycle. By inspection of the relevant literature, it is obvious that robust sex differences exist in models of all psychiatric disorders. However, many times results are conflicting, and no clear conclusion regarding the direction of sex differences and the effect of the oestrous cycle is drawn. Moreover, there is a lack of considerable amount of studies using psychiatric drugs in both male and female animals, in order to evaluate the differential response between the two sexes. Notably, while in most cases animal models successfully mimic drug response in both sexes, test parameters and treatment-sensitive behavioural indices are not always the same for male and female rodents. Thus, there is an increasing need to validate animal models for both sexes and use standard procedures across different laboratories. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20 PMID:24697577

  16. [Efficient and rapid liquid reduction animal model].

    PubMed

    Han, Bing; Kou, Shu-ming; Chen, Biao; Peng, Yao-zong; Wang, Yue; Han, Yu-long; Ye, Xiao-li; Li, Xue-gang

    2015-11-01

    To investigate the practicability of establishing zebrafish lipid-lowering drug screening model and the effect of berberine (BBR) on hyperlipidemic zebrafish. Three-month-old zebrafishes were fed with 4% cholesterol for 0, 2, 4, 8, 14, 20, 25, 30 days, and the level of total cholesterol in serum was measured. Zebrafish were randomly divided into four groups: the control group, the high cholesterol diet group, the 0.01% simvastatin-treated group, the 0.1% berberine-treated group and the 0.2% berberine-treated group. The levels of total cholesterol (TC), triglyceride (TC), low density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c) in serum were measured; the expression of hepatic HMGCR, LDLR and CYP7A1a mRNA expressions were detected by real time PCR. Oil red O staining was performed to observe the changes in fat content in the liver. According to the result, the level of serum TC in the 4% cholesterol diet group significantly was higher than that of the normal control group in a time-dependent manner and reached a stable level at the 20th day. The BBR group showed significant decreases in the levels of TC, TG and LDL-c, HMGCR mRNA expression and fat content and increases in LDLR and CYP7A1a mRNA. The hyperlipidemia zebrafish model was successfully established by feeding with 4% cholesterol for 20 days. The findings lay a foundation for further screenings on lipid-lowering drugs.

  17. Utilizing Gaussian Markov random field properties of Bayesian animal models.

    PubMed

    Steinsland, Ingelin; Jensen, Henrik

    2010-09-01

    In this article, we demonstrate how Gaussian Markov random field properties give large computational benefits and new opportunities for the Bayesian animal model. We make inference by computing the posteriors for important quantitative genetic variables. For the single-trait animal model, a nonsampling-based approximation is presented. For the multitrait model, we set up a robust and fast Markov chain Monte Carlo algorithm. The proposed methodology was used to analyze quantitative genetic properties of morphological traits of a wild house sparrow population. Results for single- and multitrait models were compared.

  18. Animal models for studying dengue pathogenesis and therapy.

    PubMed

    Chan, Kitti Wing Ki; Watanabe, Satoru; Kavishna, Ranmali; Alonso, Sylvie; Vasudevan, Subhash G

    2015-11-01

    Development of a suitable animal model for dengue virus disease is critical for understanding pathogenesis and for preclinical testing of antiviral drugs and vaccines. Many laboratory animal models of dengue virus infection have been investigated, but the challenges of recapitulating the complete disease still remain. In this review, we provide a comprehensive coverage of existing models, from man to mouse, with a specific focus on recent advances in mouse models for addressing the mechanistic aspects of severe dengue in humans. This article forms part of a symposium in Antiviral Research on flavivirus drug discovery. PMID:26304704

  19. Animal models for studying dengue pathogenesis and therapy.

    PubMed

    Chan, Kitti Wing Ki; Watanabe, Satoru; Kavishna, Ranmali; Alonso, Sylvie; Vasudevan, Subhash G

    2015-11-01

    Development of a suitable animal model for dengue virus disease is critical for understanding pathogenesis and for preclinical testing of antiviral drugs and vaccines. Many laboratory animal models of dengue virus infection have been investigated, but the challenges of recapitulating the complete disease still remain. In this review, we provide a comprehensive coverage of existing models, from man to mouse, with a specific focus on recent advances in mouse models for addressing the mechanistic aspects of severe dengue in humans. This article forms part of a symposium in Antiviral Research on flavivirus drug discovery.

  20. Animal models of obsessive-compulsive disorder: utility and limitations.

    PubMed

    Alonso, Pino; López-Solà, Clara; Real, Eva; Segalàs, Cinto; Menchón, José Manuel

    2015-01-01

    Obsessive-compulsive disorder (OCD) is a disabling and common neuropsychiatric condition of poorly known etiology. Many attempts have been made in the last few years to develop animal models of OCD with the aim of clarifying the genetic, neurochemical, and neuroanatomical basis of the disorder, as well as of developing novel pharmacological and neurosurgical treatments that may help to improve the prognosis of the illness. The latter goal is particularly important given that around 40% of patients with OCD do not respond to currently available therapies. This article summarizes strengths and limitations of the leading animal models of OCD including genetic, pharmacologically induced, behavioral manipulation-based, and neurodevelopmental models according to their face, construct, and predictive validity. On the basis of this evaluation, we discuss that currently labeled "animal models of OCD" should be regarded not as models of OCD but, rather, as animal models of different psychopathological processes, such as compulsivity, stereotypy, or perseverance, that are present not only in OCD but also in other psychiatric or neurological disorders. Animal models might constitute a challenging approach to study the neural and genetic mechanism of these phenomena from a trans-diagnostic perspective. Animal models are also of particular interest as tools for developing new therapeutic options for OCD, with the greatest convergence focusing on the glutamatergic system, the role of ovarian and related hormones, and the exploration of new potential targets for deep brain stimulation. Finally, future research on neurocognitive deficits associated with OCD through the use of analogous animal tasks could also provide a genuine opportunity to disentangle the complex etiology of the disorder. PMID:26346234

  1. Animal models of obsessive–compulsive disorder: utility and limitations

    PubMed Central

    Alonso, Pino; López-Solà, Clara; Real, Eva; Segalàs, Cinto; Menchón, José Manuel

    2015-01-01

    Obsessive–compulsive disorder (OCD) is a disabling and common neuropsychiatric condition of poorly known etiology. Many attempts have been made in the last few years to develop animal models of OCD with the aim of clarifying the genetic, neurochemical, and neuroanatomical basis of the disorder, as well as of developing novel pharmacological and neurosurgical treatments that may help to improve the prognosis of the illness. The latter goal is particularly important given that around 40% of patients with OCD do not respond to currently available therapies. This article summarizes strengths and limitations of the leading animal models of OCD including genetic, pharmacologically induced, behavioral manipulation-based, and neurodevelopmental models according to their face, construct, and predictive validity. On the basis of this evaluation, we discuss that currently labeled “animal models of OCD” should be regarded not as models of OCD but, rather, as animal models of different psychopathological processes, such as compulsivity, stereotypy, or perseverance, that are present not only in OCD but also in other psychiatric or neurological disorders. Animal models might constitute a challenging approach to study the neural and genetic mechanism of these phenomena from a trans-diagnostic perspective. Animal models are also of particular interest as tools for developing new therapeutic options for OCD, with the greatest convergence focusing on the glutamatergic system, the role of ovarian and related hormones, and the exploration of new potential targets for deep brain stimulation. Finally, future research on neurocognitive deficits associated with OCD through the use of analogous animal tasks could also provide a genuine opportunity to disentangle the complex etiology of the disorder. PMID:26346234

  2. Neuroimaging in Animal Seizure Models with 18FDG-PET

    PubMed Central

    Mirrione, Martine M.; Tsirka, Stella E.

    2011-01-01

    Small animal neuroimaging has become increasingly available to researchers, expanding the breadth of questions studied with these methods. Applying these noninvasive techniques to the open questions underlying epileptogenesis is no exception. A major advantage of small animal neuroimaging is its translational appeal. Studies can be well controlled and manipulated, examining the living brain in the animal before, during, and after the disease onset or disease treatment. The results can also be compared to data collected on human patients. Over the past decade, we and others have explored metabolic patterns in animal models of epilepsy to gain insight into the circuitry underlying development of the disease. In this paper, we provide technical details on how metabolic imaging that uses 2-deoxy-2[18F]fluoro-D-glucose (18FDG) and positron emission tomography (PET) is performed and explain the strengths and limitations of these studies. We will also highlight recent advances toward understanding epileptogenesis through small animal imaging. PMID:22937232

  3. Impairments of Synaptic Plasticity in Aged Animals and in Animal Models of Alzheimer's Disease

    PubMed Central

    Balietti, Marta; Tamagnini, Francesco; Fattoretti, Patrizia; Burattini, Costanza; Casoli, Tiziana; Platano, Daniela; Lattanzio, Fabrizia

    2012-01-01

    Abstract Aging is associated with a gradual decline in cognitive functions, and more dramatic cognitive impairments occur in patients affected by Alzheimer's disease (AD). Electrophysiological and molecular studies performed in aged animals and in animal models of AD have shown that cognitive decline is associated with significant modifications in synaptic plasticity (i.e., activity-dependent changes in synaptic strength) and have elucidated some of the cellular mechanisms underlying this process. Morphological studies have revealed a correlation between the quality of memory performance and the extent of structural changes of synaptic contacts occurring during memory consolidation. We briefly review recent experimental evidence here. PMID:22533439

  4. Modeling the acceptance of clinical information systems among hospital medical staff: an extended TAM model.

    PubMed

    Melas, Christos D; Zampetakis, Leonidas A; Dimopoulou, Anastasia; Moustakis, Vassilis

    2011-08-01

    Recent empirical research has utilized the Technology Acceptance Model (TAM) to advance the understanding of doctors' and nurses' technology acceptance in the workplace. However, the majority of the reported studies are either qualitative in nature or use small convenience samples of medical staff. Additionally, in very few studies moderators are either used or assessed despite their importance in TAM based research. The present study focuses on the application of TAM in order to explain the intention to use clinical information systems, in a random sample of 604 medical staff (534 physicians) working in 14 hospitals in Greece. We introduce physicians' specialty as a moderator in TAM and test medical staff's information and communication technology (ICT) knowledge and ICT feature demands, as external variables. The results show that TAM predicts a substantial proportion of the intention to use clinical information systems. Findings make a contribution to the literature by replicating, explaining and advancing the TAM, whereas theory is benefited by the addition of external variables and medical specialty as a moderator. Recommendations for further research are discussed.

  5. Transcription factors in pancreatic development. Animal models.

    PubMed

    Martin, Merce; Hauer, Viviane; Messmer, Mélanie; Orvain, Christophe; Gradwohl, Gérard

    2007-01-01

    Through the analysis of genetically modified mice a hierarchy of transcription factors regulating pancreas specification, endocrine destiny as well as endocrine subtype specification and differentiation has been established. In addition to conventional approaches such as transgenic technologies and gene targeting, recombinase fate mapping in mice has been key in establishing the lineage relationship between progenitor cells and their progeny in understanding pancreas formation. Moreover, the design of specific mouse models to conditionally express transcription factors in different populations of progenitor cells has revealed to what extent transcription factors required for islet cell development are also sufficient to induce endocrine differentiation and the importance of the competence of progenitor cells to respond to the genetic program implemented by these factors. Taking advantage of this basic science knowledge acquired in rodents, immature insulin-producing cells have recently been differentiated in vitro from human embryonic stem cells. Taken together these major advances emphasize the need to gain further in-depth knowledge of the molecular and cellular mechanisms controlling beta-cell differentiation in mice to generate functional beta-cells in the future that could be used for cell therapy in diabetes. PMID:17923766

  6. Uncertainty in urban stormwater quality modelling: the effect of acceptability threshold in the GLUE methodology.

    PubMed

    Freni, Gabriele; Mannina, Giorgio; Viviani, Gaspare

    2008-04-01

    Uncertainty analysis in integrated urban drainage modelling is of growing importance in the field of water quality. However, only few studies deal with uncertainty quantification in urban drainage modelling; furthermore, the few existing studies mainly focus on quantitative sewer flow modelling rather than uncertainty in water quality aspects. In this context, the generalised likelihood uncertainty estimation (GLUE) methodology was applied for the evaluation of the uncertainty of an integrated urban drainage model and some of its subjective hypotheses have been explored. More specifically, the influence of the subjective choice of the acceptability threshold has been detected in order to gain insights regarding its effect on the model results. The model has been applied to the Savena case study (Bologna, Italy) where water quality and quantity data were available. The model results show a strong influence of the acceptability threshold selection and confirm the importance of modeller's experience in the application of GLUE uncertainty analysis.

  7. Extending the Technology Acceptance Model to Explore the Intention to Use Second Life for Enhancing Healthcare Education

    ERIC Educational Resources Information Center

    Chow, Meyrick; Herold, David Kurt; Choo, Tat-Ming; Chan, Kitty

    2012-01-01

    Learners need to have good reasons to engage and accept e-learning. They need to understand that unless they do, the outcomes will be less favourable. The technology acceptance model (TAM) is the most widely recognized model addressing why users accept or reject technology. This study describes the development and evaluation of a virtual…

  8. Animal models in epigenetic research: institutional animal care and use committee considerations across the lifespan.

    PubMed

    Harris, Craig

    2012-01-01

    The rapid expansion and evolution of epigenetics as a core scientific discipline have raised new questions about how endogenous and environmental factors can inform the mechanisms through which biological form and function are regulated. Existing and proposed animal models used for epigenetic research have targeted a myriad of health and disease endpoints that may be acute, chronic, and transgenerational in nature. Initiating events and outcomes may extend across the entire lifespan to elicit unanticipated phenotypes that are of particular concern to institutional animal care and use committees (IACUCs). The dynamics and plasticity of epigenetic mechanisms produce effects and consequences that are manifest differentially within discreet spatial and temporal contexts, including prenatal development, stem cells, assisted reproductive technologies, production of sexual dimorphisms, senescence, and others. Many dietary and nutritional interventions have also been shown to have a significant impact on biological functions and disease susceptibilities through altered epigenetic programming. The environmental, chemical, toxic, therapeutic, and psychosocial stressors used in animal studies to elicit epigenetic changes can become extreme and should raise IACUC concerns for the well-being and proper care of all research animals involved. Epigenetics research is rapidly becoming an integral part of the search for mechanisms in every major area of biomedical and behavioral research and will foster the continued development of new animal models. From the IACUC perspective, care must be taken to acknowledge the particular needs and concerns created by superimposition of epigenetic mechanisms over diverse fields of investigation to ensure the proper care and use of animals without impeding scientific progress. PMID:23744973

  9. Life sciences research in space: The requirement for animal models

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Philips, R. W.; Ballard, R. W.

    1987-01-01

    Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.

  10. Current animal models of bladder cancer: Awareness of translatability (Review)

    PubMed Central

    DING, JIE; XU, DING; PAN, CHUNWU; YE, MIN; KANG, JIAN; BAI, QIANG; QI, JUN

    2014-01-01

    Experimental animal models are crucial in the study of biological behavior and pathological development of cancer, and evaluation of the efficacy of novel therapeutic or preventive agents. A variety of animal models that recapitulate human urothelial cell carcinoma have thus far been established and described, while models generated by novel techniques are emerging. At present a number of reviews on animal models of bladder cancer comprise the introduction of one type of method, as opposed to commenting on and comparing all classifications, with the merits of a certain method being explicit but the shortcomings not fully clarified. Thus the aim of the present study was to provide a summary of the currently available animal models of bladder cancer including transplantable (which could be divided into xenogeneic or syngeneic, heterotopic or orthotopic), carcinogen-induced and genetically engineered models in order to introduce their materials and methods and compare their merits as well as focus on the weaknesses, difficulties in operation, associated problems and translational potential of the respective models. Findings of these models would provide information for authors and clinicians to select an appropriate model or to judge relevant preclinical study findings. Pertinent detection methods are therefore briefly introduced and compared. PMID:25120584

  11. How valuable are animal models in defining antidepressant activity?

    PubMed

    Bourin, M; Fiocco, A. J; Clenet, F

    2001-01-01

    Animal models of depression have been utilised to screen novel compounds with antidepressant potential although uncertainty lingers concerning their clinical relevance. In order for a model to be considered of any value, it must possess predictive validity (does drug action in the model correspond to that in the clinic?), face validity (are there phenomenological similarities between the model and the clinic?) and construct validity (does the model possess a strong theoretical rationale?). On the one hand, there are models based on stress such as the learned helplessness model, the forced swimming test and the chronic mild stress model and, on the other hand, models based on neuronal deficits such as the olfactory bulbectomy model. To date, among models more frequently used in depression, none of them meet all these criteria. Moreover, improvements to tests are often poorly validated and estimating time of onset of action of antidepressants remains a major challenge in animal model research. Finally, reproducing the tests outside the laboratory of origin continues to be problematic and leads to variability in results. Although animal models of depression fail to be unequivocally valid, they represent the best tool to define potential antidepressant activity of drugs, to investigate their mechanism of action and, to a greater extent, explore this complex heterogeneous illness. Copyright 2001 John Wiley & Sons, Ltd.

  12. Use of Animal Models to Develop Antiaddiction Medications

    PubMed Central

    Gardner, Eliot L.

    2008-01-01

    Although addiction is a uniquely human phenomenon, some of its pathognomonic features can be modeled at the animal level. Such features include the euphoric “high” produced by acute administration of addictive drugs; the dysphoric “crash” produced by acute withdrawal, drug-seeking, and drug-taking behaviors; and relapse to drug-seeking behavior after achieving successful abstinence. Animal models exist for each of these features. In this review, I focus on various animal models of addiction and how they can be used to search for clinically effective antiaddiction medications. I conclude by noting some of the new and novel medications that have been developed preclinically using such models and the hope for further developments along such lines. PMID:18803910

  13. Canine tumors: a spontaneous animal model of human carcinogenesis.

    PubMed

    Pinho, Salomé S; Carvalho, Sandra; Cabral, Joana; Reis, Celso A; Gärtner, Fátima

    2012-03-01

    The enormous biologic complexity of human cancer has stimulated the development of more appropriate experimental models that could resemble in a natural and spontaneous manner the physiopathologic aspects of cancer biology. Companion animals have many desired characteristics that fill the gap between in vitro and in vivo studies, and these characteristics have proven to be important in understanding many complex molecular aspects of human cancer. Spontaneous tumors in dogs share a wide variety of epidemiologic, biologic, and clinical features with human cancer, which makes this animal model both attractive and underused in oncology research. In this review, we summarize the importance of naturally occurring canine tumors as valuable tools for studying numerous aspects of human cancer as well as the potential use of this animal model for the development of new cancer treatments. We address specifically the use of canine mammary tumors as an increasingly powerful model to study human breast cancer. PMID:22340765

  14. Immunology of fungal infections: lessons learned from animal models.

    PubMed

    Steele, Chad; Wormley, Floyd L

    2012-08-01

    The continuing AIDS epidemic coupled with increased usage of immunosuppressive drugs to prevent organ rejection or treat autoimmune diseases has resulted in an increase in individuals at risk for acquiring fungal diseases. These concerns highlight the need to elucidate mechanisms of inducing protective immune responses against fungal pathogens. Consequently, several experimental models of human mycoses have been developed to study these diseases. The availability of transgenic animal models allows for in-depth analysis of specific components, receptors, and signaling pathways that elicit protection against fungal diseases. This review focuses on recent advances in our understanding of immune responses to fungal infections gained using animal models.

  15. Animal models of post-traumatic stress disorder: face validity

    PubMed Central

    Goswami, Sonal; Rodríguez-Sierra, Olga; Cascardi, Michele; Paré, Denis

    2013-01-01

    Post-traumatic stress disorder (PTSD) is a debilitating condition that develops in a proportion of individuals following a traumatic event. Despite recent advances, ethical limitations associated with human research impede progress in understanding PTSD. Fortunately, much effort has focused on developing animal models to help study the pathophysiology of PTSD. Here, we provide an overview of animal PTSD models where a variety of stressors (physical, psychosocial, or psychogenic) are used to examine the long-term effects of severe trauma. We emphasize models involving predator threat because they reproduce human individual differences in susceptibility to, and in the long-term consequences of, psychological trauma. PMID:23754973

  16. Animal models of GM2 gangliosidosis: utility and limitations.

    PubMed

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay-Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described.

  17. How Animal Models Inform Child and Adolescent Psychiatry

    PubMed Central

    Stevens, Hanna E.; Vaccarino, Flora M.

    2015-01-01

    Objective Every available approach should be utilized to advance the field of child and adolescent psychiatry. Biological systems are important for the behavioral problems of children. Close examination of non-human animals and the biology and behavior they share with humans is an approach that must be used to advance the clinical work of child psychiatry. Method We review here how model systems are used to contribute to significant insights into childhood psychiatric disorders. Model systems have not only demonstrated causality of risk factors for psychiatric pathophysiology but have also allowed child psychiatrists to think in different ways about risks for psychiatric disorders and multiple levels that might be the basis of recovery and prevention. Results We present examples of how animal systems are utilized to benefit child psychiatry, including through environmental, genetic, and acute biological manipulations. Animal model work has been essential in our current thinking about childhood disorders, including the importance of dose and timing of risk factors, specific features of risk factors that are significant, neurochemistry involved in brain functioning, molecular components of brain development, and the importance of cellular processes previously neglected in psychiatric theories. Conclusion Animal models have clear advantages and disadvantages that must both be considered for these systems to be useful. Coupled with increasingly sophisticated methods for investigating human behavior and biology, animal model systems will continue to make essential contributions to our field. PMID:25901771

  18. Animal models of GM2 gangliosidosis: utility and limitations

    PubMed Central

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay–Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay–Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described. PMID:27499644

  19. A novel animal model for skin flap prelamination with biomaterials

    PubMed Central

    Zhou, Xianyu; Luo, Xusong; Liu, Fei; Gu, Chuan; Wang, Xi; Yang, Qun; Qian, Yunliang; Yang, Jun

    2016-01-01

    Several animal models of skin flap construction were reported using biomaterials in a way similar to prefabrication. However, there are few animal model using biomaterials similar to prelamination, another main way of clinical skin flap construction that has been proved to be reliable. Can biomaterials be added in skin flap prelamination to reduce the use of autogenous tissues? Beside individual clinical attempts, animal model is needed for randomized controlled trial to objectively evaluate the feasibility and further investigation. Combining human Acellular Dermal Matrix (hADM) and autologous skin graft, we prelaminated flaps based on inguinal fascia. One, two, three and four weeks later, hADM exhibited a sound revascularization and host cell infiltration. Prelaminated skin flaps were then raised and microsurgically transplanted back to groin region. Except for flaps after one week of prelamination, flaps from other subgroups successfully reconstructed defects. After six to sixteen weeks of transplantation, hADM was proved to being able to maintain its original structure, having a wealth of host tissue cells and achieving full revascularization.To our knowledge, this is the first animal model of prelaminating skin flap with biomaterials. Success of this animal model indicates that novel flap prelamination with biomaterials is feasible. PMID:27659066

  20. Animal models of GM2 gangliosidosis: utility and limitations.

    PubMed

    Lawson, Cheryl A; Martin, Douglas R

    2016-01-01

    GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay-Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described. PMID:27499644

  1. Animal models to study the pathogenesis of human and animal Clostridium perfringens infections.

    PubMed

    Uzal, Francisco A; McClane, Bruce A; Cheung, Jackie K; Theoret, James; Garcia, Jorge P; Moore, Robert J; Rood, Julian I

    2015-08-31

    The most common animal models used to study Clostridium perfringens infections in humans and animals are reviewed here. The classical C. perfringens-mediated histotoxic disease of humans is clostridial myonecrosis or gas gangrene and the use of a mouse myonecrosis model coupled with genetic studies has contributed greatly to our understanding of disease pathogenesis. Similarly, the use of a chicken model has enhanced our understanding of type A-mediated necrotic enteritis in poultry and has led to the identification of NetB as the primary toxin involved in disease. C. perfringens type A food poisoning is a highly prevalent bacterial illness in the USA and elsewhere. Rabbits and mice are the species most commonly used to study the action of enterotoxin, the causative toxin. Other animal models used to study the effect of this toxin are rats, non-human primates, sheep and cattle. In rabbits and mice, CPE produces severe necrosis of the small intestinal epithelium along with fluid accumulation. C. perfringens type D infection has been studied by inoculating epsilon toxin (ETX) intravenously into mice, rats, sheep, goats and cattle, and by intraduodenal inoculation of whole cultures of this microorganism in mice, sheep, goats and cattle. Molecular Koch's postulates have been fulfilled for enterotoxigenic C. perfringens type A in rabbits and mice, for C. perfringens type A necrotic enteritis and gas gangrene in chickens and mice, respectively, for C. perfringens type C in mice, rabbits and goats, and for C. perfringens type D in mice, sheep and goats. PMID:25770894

  2. The use of animal models in behavioural neuroscience research.

    PubMed

    Bovenkerk, Bernice; Kaldewaij, Frederike

    2015-01-01

    Animal models are used in experiments in the behavioural neurosciences that aim to contribute to the prevention and treatment of cognitive and affective disorders in human beings, such as anxiety and depression. Ironically, those animals that are likely to be the best models for psychopathology are also likely to be considered the ones that are most morally problematic to use, if it seems probable that (and if indeed they are initially selected as models because) they have experiences that are similar to human experiences that we have strong reasons to avoid causing, and indeed aim to alleviate (such as pain, anxiety or sadness). In this paper, against the background of contemporary discussions in animal ethics and the philosophy of animal minds, we discuss the views that it is morally permissible to use animals in these kinds of experiments, and that it is better to use less cognitively complex animals (such as zebrafish) than more complex animals (such as dogs). First, we criticise some justifications for the claim that human beings and more complex animals have higher moral status. We argue that contemporary approaches that attribute equal moral status to all beings that are capable of conscious strivings strivings (e.g. avoiding pain and anxiety; aiming to eat and play) are based on more plausible assumptions. Second, we argue that it is problematic to assume that less cognitively complex animals have a lesser sensory and emotional experience than more complex beings across the board. In specific cases, there might be good reasons to assume that more complex beings would be harmed more by a specific physical or environmental intervention, but it might also be that they sometimes are harmed less because of a better ability to cope. Determining whether a specific experiment is justified is therefore a complex issue. Our aim in this chapter is to stimulate further reflection on these common assumptions behind the use of animal models for psychopathologies. In

  3. The pain of pain: challenges of animal behavior models.

    PubMed

    Barrett, James E

    2015-04-15

    Berend Olivier has had a long-standing interest in the utility of animal models for a wide variety of therapeutic indications. His work has spanned multiple types of models, blending ethological, or species typical and naturalistic behaviors, along with methodologies based on learned behavior. He has consistently done so, from an analytical as well as predictive perspective, and has made multiple contributions while working in both the pharmaceutical industry and within an academic institution. Although focused primarily on psychiatric disorders, Berend has conducted research in the area of pain in humans and in animals, demonstrating an expansive appreciation for the breadth, scope and significance of the science and applications of the discipline of pharmacology to these diverse areas. This review focuses on the use of animal models in pain research from the perspective of the long-standing deficiencies in the development of therapeutics in this area and from a preclinical perspective where the translational weaknesses have been quite problematic. The challenges confronting animal models of pain, however, are not unique to this area of research, as they cut across several therapeutic areas. Despite the deficiencies, failures and concerns, existing animal models of pain continue to be of widespread use and are essential to progress in pain research as well as in other areas. Although not focusing on specific animal models of pain, this paper seeks to examine general issues facing the use of these models. It does so by exploring alternative approaches which capture recent developments, which build upon principles and concepts we have learned from Berend's contributions, and which provide the prospect of helping to address the absence of novel therapeutics in this area.

  4. Amphibians as animal models for laboratory research in physiology.

    PubMed

    Burggren, Warren W; Warburton, Stephen

    2007-01-01

    The concept of animal models is well honored, and amphibians have played a prominent part in the success of using key species to discover new information about all animals. As animal models, amphibians offer several advantages that include a well-understood basic physiology, a taxonomic diversity well suited to comparative studies, tolerance to temperature and oxygen variation, and a greater similarity to humans than many other currently popular animal models. Amphibians now account for approximately 1/4 to 1/3 of lower vertebrate and invertebrate research, and this proportion is especially true in physiological research, as evident from the high profile of amphibians as animal models in Nobel Prize research. Currently, amphibians play prominent roles in research in the physiology of musculoskeletal, cardiovascular, renal, respiratory, reproductive, and sensory systems. Amphibians are also used extensively in physiological studies aimed at generating new insights in evolutionary biology, especially in the investigation of the evolution of air breathing and terrestriality. Environmental physiology also utilizes amphibians, ranging from studies of cryoprotectants for tissue preservation to physiological reactions to hypergravity and space exploration. Amphibians are also playing a key role in studies of environmental endocrine disruptors that are having disproportionately large effects on amphibian populations and where specific species can serve as sentinel species for environmental pollution. Finally, amphibian genera such as Xenopus, a genus relatively well understood metabolically and physiologically, will continue to contribute increasingly in this new era of systems biology and "X-omics."

  5. Animal models in alcoholic pancreatitis--what can we learn?

    PubMed

    Schneider, Alexander; Whitcomb, David C; Singer, Manfred V

    2002-01-01

    Although the majority of patients with chronic pancreatitis present a history of excessive alcohol consumption, the pathophysiology underlying chronic alcoholic pancreatitis remains poorly defined. Since experimental animal models represent helpful tools in understanding human disease, numerous laboratory studies have been designed to study the effects of alcohol on the pancreas. In the present article we summarize the existing animal models that have been used to investigate the effects of acute and chronic alcohol application on the development of morphological alterations and pancreatic injury. Despite considerable experimental effort, acute or chronic ethanol feeding alone failed to cause acute or chronic pancreatitis in animals. However, ethanol-feeding and the combination with other procedures has demonstrated several mechanisms that play a role in ethanol-induced pancreatic injury. Among these ethanol-induced alterations and mechanisms are the reduction of pancreatic blood-flow and microcirculation, damaging effects of ethanol metabolites, increased pancreatic acinar cell expression of digestive and lysosomal enzymes, increased glandular enzyme content, additional nutritional factors, pancreatic duct obstruction, and limitations of pancreatic regeneration. Although no satisfactory animal model for alcoholic pancreatitis has been developed, these animal models have provided insights in several factors that predispose the pancreas to development of pancreatic injury and contribute to alcoholic pancreatitis.

  6. Animal Models of Tick-Borne Hemorrhagic Fever Viruses

    PubMed Central

    Zivcec, Marko; Safronetz, David; Feldmann, Heinz

    2013-01-01

    Tick-borne hemorrhagic fever viruses (TBHFV) are detected throughout the African and Eurasian continents and are an emerging or re-emerging threat to many nations. Due to the largely sporadic incidences of these severe diseases, information on human cases and research activities in general have been limited. In the past decade, however, novel TBHFVs have emerged and areas of endemicity have expanded. Therefore, the development of countermeasures is of utmost importance in combating TBHFV as elimination of vectors and interrupting enzootic cycles is all but impossible and ecologically questionable. As in vivo models are the only way to test efficacy and safety of countermeasures, understanding of the available animal models and the development and refinement of animal models is critical in negating the detrimental impact of TBHFVs on public and animal health. PMID:25437041

  7. Engineering Large Animal Species to Model Human Diseases.

    PubMed

    Rogers, Christopher S

    2016-07-01

    Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc.

  8. Engineering Large Animal Species to Model Human Diseases.

    PubMed

    Rogers, Christopher S

    2016-01-01

    Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc. PMID:27367161

  9. Accept/decline decision module for the liver simulated allocation model.

    PubMed

    Kim, Sang-Phil; Gupta, Diwakar; Israni, Ajay K; Kasiske, Bertram L

    2015-03-01

    Simulated allocation models (SAMs) are used to evaluate organ allocation policies. An important component of SAMs is a module that decides whether each potential recipient will accept an offered organ. The objective of this study was to develop and test accept-or-decline classifiers based on several machine-learning methods in an effort to improve the SAM for liver allocation. Feature selection and imbalance correction methods were tested and best approaches identified for application to organ transplant data. Then, we used 2011 liver match-run data to compare classifiers based on logistic regression, support vector machines, boosting, classification and regression trees, and Random Forests. Finally, because the accept-or-decline module will be embedded in a simulation model, we also developed an evaluation tool for comparing performance of predictors, which we call sample-path accuracy. The Random Forest method resulted in the smallest overall error rate, and boosting techniques had greater accuracy when both sensitivity and specificity were simultaneously considered important. Our comparisons show that no method dominates all others on all performance measures of interest. A logistic regression-based classifier is easy to implement and allows for pinpointing the contribution of each feature toward the probability of acceptance. Other methods we tested did not have a similar interpretation. The Scientific Registry of Transplant Recipients decided to use the logistic regression-based accept-decline decision module in the next generation of liver SAM.

  10. Histological features of oral epithelium in seven animal species: As a reference for selecting animal models.

    PubMed

    Sa, Guoliang; Xiong, Xuepeng; Wu, Tianfu; Yang, Jincheng; He, Sangang; Zhao, Yifang

    2016-01-01

    Several animals have been used as models for basic and clinical research on oral mucosa. Few studies have focused on the selection of an appropriate animal model. This study aimed to provide histological references for selecting a potential model. Histological features were assessed by exploring 6 morphological characteristics and 2 immunohistochemical markers. The morphological characteristics included keratinization, basal membrane appearance, epithelial thickness, rete ridge length, adjacent rete ridge distance, and regional variation; the immunohistochemical markers included Ki67 (a proliferative marker) and Cytokeratin 19 (CK19; a stemness marker). The histological similarity of each species compared to humans was calculated according to the designated scoring criteria. The results showed that the buccal mucosae from dog and pig were non-keratinized, with similar rete ridge length and distance, compared to that of humans. The dog, rat, and cavy mucosae had analogous gross appearances in the basal membrane. The dog oral mucosae shared similar epithelial thickness with human oral mucosae. Compared to the human mucosa, the dog, pig, rat, and rabbit mucosae exhibited corresponding regional variations. The Ki67-positive cells in human and canine mucosae were predominantly localized in the suprabasal layers, whereas most of the proliferative cells were in the basal layer in other species. CK19 immunoreactivities were detected only in human and canine mucosae. The canine mucosae gained the highest point value (14), whereas the scores for the pig, rat, rabbit, cavy, sheep, and buffalo mucosae were 8, 6, 5, 5, 5, and 2, respectively. The histological variations in the oral epithelium of diverse animal species are considerable; the mucosae from dogs are most similar to human mucosae, implicating its histological basis as an animal model.

  11. Plant G-Proteins Come of Age: Breaking the Bond with Animal Models

    PubMed Central

    Trusov, Yuri; Botella, José R.

    2016-01-01

    G-proteins are universal signal transducers mediating many cellular responses. Plant G-protein signaling has been modeled on the well-established animal paradigm but accumulated experimental evidence indicates that G-protein-dependent signaling in plants has taken a very different evolutionary path. Here we review the differences between plant and animal G-proteins reported over past two decades. Most importantly, while in animal systems the G-protein signaling cycle is activated by seven transmembrane-spanning G-protein coupled receptors, the existence of these type of receptors in plants is highly controversial. Instead plant G-proteins have been proven to be functionally associated with atypical receptors such as the Arabidopsis RGS1 and a number of receptor-like kinases. We propose that, instead of the GTP/GDP cycle used in animals, plant G-proteins are activated/de-activated by phosphorylation/de-phosphorylation. We discuss the need of a fresh new look at these signaling molecules and provide a hypothetical model that departs from the accepted animal paradigm. PMID:27252940

  12. Plant G-proteins come of age: Breaking the bond with animal models

    NASA Astrophysics Data System (ADS)

    Botella, Jimmy; Trusov, Yuri

    2016-05-01

    G-proteins are universal signal transducers mediating many cellular responses. Plant G-protein signaling has been modeled on the well-established animal paradigm but accumulated experimental evidence indicates that G-protein-dependent signaling in plants has taken a very different evolutionary path. Here we review the differences between plant and animal G-proteins reported over past two decades. Most importantly, while in animal systems the G-protein signaling cycle is activated by seven transmembrane-spanning G-protein coupled receptors, the existence of these type of receptors in plants is highly controversial. Instead plant G-proteins have been proven to be functionally associated with atypical receptors such as the Arabidopsis RGS1 and a number of receptor-like kinases. We propose that, instead of the GTP/GDP cycle used in animals, plant G-proteins are activated/de-activated by phosphorylation/de-phosphorylation. We discuss the need of a fresh new look at these signaling molecules and provide a hypothetical model that departs fromthe accepted animal paradigm.

  13. Continuous-time discrete-space models for animal movement

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Alldredge, Mat W.

    2015-01-01

    The processes influencing animal movement and resource selection are complex and varied. Past efforts to model behavioral changes over time used Bayesian statistical models with variable parameter space, such as reversible-jump Markov chain Monte Carlo approaches, which are computationally demanding and inaccessible to many practitioners. We present a continuous-time discrete-space (CTDS) model of animal movement that can be fit using standard generalized linear modeling (GLM) methods. This CTDS approach allows for the joint modeling of location-based as well as directional drivers of movement. Changing behavior over time is modeled using a varying-coefficient framework which maintains the computational simplicity of a GLM approach, and variable selection is accomplished using a group lasso penalty. We apply our approach to a study of two mountain lions (Puma concolor) in Colorado, USA.

  14. Animal models of skin disease for drug discovery

    PubMed Central

    Avci, Pinar; Sadasivam, Magesh; Gupta, Asheesh; De Melo, Wanessa CMA; Huang, Ying-Ying; Yin, Rui; Rakkiyappan, Chandran; Kumar, Raj; Otufowora, Ayodeji; Nyame, Theodore; Hamblin, Michael R

    2013-01-01

    Introduction Discovery of novel drugs, treatments, and testing of consumer products in the field of dermatology is a multi-billion dollar business. Due to the distressing nature of many dermatological diseases, and the enormous consumer demand for products to reverse the effects of skin photodamage, aging, and hair loss, this is a very active field. Areas covered In this paper, we will cover the use of animal models that have been reported to recapitulate to a greater or lesser extent the features of human dermatological disease. There has been a remarkable increase in the number and variety of transgenic mouse models in recent years, and the basic strategy for constructing them is outlined. Expert opinion Inflammatory and autoimmune skin diseases are all represented by a range of mouse models both transgenic and normal. Skin cancer is mainly studied in mice and fish. Wound healing is studied in a wider range of animal species, and skin infections such as acne and leprosy also have been studied in animal models. Moving to the more consumer-oriented area of dermatology, there are models for studying the harmful effect of sunlight on the skin, and testing of sunscreens, and several different animal models of hair loss or alopecia. PMID:23293893

  15. Rhythm and blues: animal models of epilepsy and depression comorbidity

    PubMed Central

    Epps, S. Alisha; Weinshenker, David

    2014-01-01

    Clinical evidence shows a strong, bidirectional comorbidity between depression and epilepsy that is associated with decreased quality of life and responsivity to pharmacotherapies. At present, the neurobiological underpinnings of this comorbidity remain hazy. To complicate matters, anticonvulsant drugs can cause mood disturbances, while antidepressant drugs can lower seizure threshold, making it difficult to treat patients suffering from both depression and epilepsy. Animal models have been created to untangle the mechanisms behind the relationship between these disorders and to serve as screening tools for new therapies targeted to treat both simultaneously. These animal models are based on chemical interventions (e.g. pentylenetetrazol, kainic acid, pilocarpine), electrical stimulations (e.g. kindling, electroshock), and genetic/selective breeding paradigms (e.g. Genetically Epilepsy-Prone Rats (GEPRs), Genetic Absence Epilepsy Rat from Strasbourg (GAERS), WAG/Rij rats, Swim Lo-Active rats (SwLo)). Studies on these animal models point to some potential mechanisms that could explain epilepsy and depression comorbidity, such as various components of the dopaminergic, noradrenergic, serotonergic, and GABAergic systems, as well as key brain regions, like the amygdala and hippocampus. These models have also been used to screen possible therapies. The purpose of the present review is to highlight the importance of animal models in research on comorbid epilepsy and depression and to explore the contributions of these models to our understanding of the mechanisms and potential treatments for these disorders. PMID:22940575

  16. Rhythm and blues: animal models of epilepsy and depression comorbidity.

    PubMed

    Epps, S Alisha; Weinshenker, David

    2013-01-15

    Clinical evidence shows a strong, bidirectional comorbidity between depression and epilepsy that is associated with decreased quality of life and responsivity to pharmacotherapies. At present, the neurobiological underpinnings of this comorbidity remain hazy. To complicate matters, anticonvulsant drugs can cause mood disturbances, while antidepressant drugs can lower seizure threshold, making it difficult to treat patients suffering from both depression and epilepsy. Animal models have been created to untangle the mechanisms behind the relationship between these disorders and to serve as screening tools for new therapies targeted to treat both simultaneously. These animal models are based on chemical interventions (e.g. pentylenetetrazol, kainic acid, pilocarpine), electrical stimulations (e.g. kindling, electroshock), and genetic/selective breeding paradigms (e.g. genetically epilepsy-prone rats (GEPRs), genetic absence epilepsy rat from Strasbourg (GAERS), WAG/Rij rats, swim lo-active rats (SwLo)). Studies on these animal models point to some potential mechanisms that could explain epilepsy and depression comorbidity, such as various components of the dopaminergic, noradrenergic, serotonergic, and GABAergic systems, as well as key brain regions, like the amygdala and hippocampus. These models have also been used to screen possible therapies. The purpose of the present review is to highlight the importance of animal models in research on comorbid epilepsy and depression and to explore the contributions of these models to our understanding of the mechanisms and potential treatments for these disorders.

  17. Animal models of depression: navigating through the clinical fog.

    PubMed

    Matthews, Keith; Christmas, David; Swan, John; Sorrell, Eleanor

    2005-01-01

    Animal models of human disease have proven of considerable value in elucidating basic pathophysiological mechanisms and in developing novel treatments. However, modelling human mental disorders in experimental animals is fraught with difficulties. Depression models generally lack both clinical and scientific credibility and have, thus far, failed to inform treatment strategies previously acquired through serendipity. The complexity and heterogeneity of the clinical states labelled 'depression' dictate that we continue to work with a crude and uninformative taxonomy within which 'core' clinical and pathophysiological features of depression are not clearly identified. Consequently, much of the neuroscience of animal modelling is framed around physiological and neurobiological phenomena that may be of relevance to only a minority of patients. Additionally, inferring pathophysiology from apparent treatment responses overestimates the efficacy of existing treatments and tends to ignore reliable demonstrations of the 'antidepressant effects' of non-pharmacological interventions. Whilst animal modelling remains a potentially important approach towards understanding neurobiological mechanisms in depression, we need to address the poverty of reliable clinical science that should inform model development.

  18. The role of animal models in tendon research

    PubMed Central

    Hast, M. W.; Zuskov, A.; Soslowsky, L. J.

    2014-01-01

    Tendinopathy is a debilitating musculoskeletal condition which can cause significant pain and lead to complete rupture of the tendon, which often requires surgical repair. Due in part to the large spectrum of tendon pathologies, these disorders continue to be a clinical challenge. Animal models are often used in this field of research as they offer an attractive framework to examine the cascade of processes that occur throughout both tendon pathology and repair. This review discusses the structural, mechanical, and biological changes that occur throughout tendon pathology in animal models, as well as strategies for the improvement of tendon healing. Cite this article: Bone Joint Res 2014;3:193–202. PMID:24958818

  19. An Investigation of the Integrated Model of User Technology Acceptance: Internet User Samples in Four Countries

    ERIC Educational Resources Information Center

    Fusilier, Marcelline; Durlabhji, Subhash; Cucchi, Alain

    2008-01-01

    National background of users may influence the process of technology acceptance. The present study explored this issue with the new, integrated technology use model proposed by Sun and Zhang (2006). Data were collected from samples of college students in India, Mauritius, Reunion Island, and United States. Questionnaire methodology and…

  20. Perceived Convenience in an Extended Technology Acceptance Model: Mobile Technology and English Learning for College Students

    ERIC Educational Resources Information Center

    Chang, Chi-Cheng; Yan, Chi-Fang; Tseng, Ju-Shih

    2012-01-01

    Since convenience is one of the features for mobile learning, does it affect attitude and intention of using mobile technology? The technology acceptance model (TAM), proposed by David (1989), was extended with perceived convenience in the present study. With regard to English language mobile learning, the variables in the extended TAM and its…

  1. Invariance of an Extended Technology Acceptance Model Across Gender and Age Group

    ERIC Educational Resources Information Center

    Ahmad, Tunku Badariah Tunku; Madarsha, Kamal Basha; Zainuddin, Ahmad Marzuki; Ismail, Nik Ahmad Hisham; Khairani, Ahmad Zamri; Nordin, Mohamad Sahari

    2011-01-01

    In this study, we examined the likelihood of a TAME (extended technology acceptance model), in which the interrelationships among computer self-efficacy, perceived usefulness, intention to use and self-reported use of computer-mediated technology were tested. In addition, the gender- and age-invariant of its causal structure were evaluated. The…

  2. Extended TAM Model: Impacts of Convenience on Acceptance and Use of Moodle

    ERIC Educational Resources Information Center

    Hsu, Hsiao-hui; Chang, Yu-ying

    2013-01-01

    The increasing online access to courses, programs, and information has shifted the control and responsibility of learning process from instructors to learners. Learners' perceptions of and attitudes toward e-learning constitute a critical factor to the success of such system. The purpose of this study is to take TAM (technology acceptance model)…

  3. The technology acceptance model: predicting nurses' intention to use telemedicine technology (eICU).

    PubMed

    Kowitlawakul, Yanika

    2011-07-01

    The purposes of this study were to determine factors and predictors that influence nurses' intention to use the eICU technology, to examine the applicability of the Technology Acceptance Model in explaining nurses' intention to use the eICU technology in healthcare settings, and to provide psychometric evidence of the measurement scales used in the study. The study involved 117 participants from two healthcare systems. The Telemedicine Technology Acceptance Model was developed based on the original Technology Acceptance Model that was initially developed by Fred Davis in 1986. The eICU Acceptance Survey was used as an instrument for the study. Content validity was examined, and the reliability of the instrument was tested. The results show that perceived usefulness is the most influential factor that influences nurses' intention to use the eICU technology. The principal factors that influence perceived usefulness are perceived ease of use, support from physicians, and years working in the hospital. The model fit was reasonably adequate and able to explain 58% of the variance (R = 0.58) in intention to use the eICU technology with the nursing sample.

  4. Examining the Factors That Contribute to Successful Database Application Implementation Using the Technology Acceptance Model

    ERIC Educational Resources Information Center

    Nworji, Alexander O.

    2013-01-01

    Most organizations spend millions of dollars due to the impact of improperly implemented database application systems as evidenced by poor data quality problems. The purpose of this quantitative study was to use, and extend, the technology acceptance model (TAM) to assess the impact of information quality and technical quality factors on database…

  5. Improving sleep with mindfulness and acceptance: a metacognitive model of insomnia.

    PubMed

    Ong, Jason C; Ulmer, Christi S; Manber, Rachel

    2012-11-01

    While there is an accumulating evidence to suggest that therapies using mindfulness and acceptance-based approaches have benefits for improving the symptoms of insomnia, it is unclear how these treatments work. The goal of this paper is to present a conceptual framework for the cognitive mechanisms of insomnia based upon mindfulness and acceptance approaches. The existing cognitive and behavioral models of insomnia are first reviewed and a two-level model of cognitive (primary) and metacognitive (secondary) arousal is presented in the context of insomnia. We then focus on the role of metacognition in mindfulness and acceptance-based therapies, followed by a review of these therapies in the treatment of insomnia. A conceptual framework is presented detailing the mechanisms of metacognition in the context of insomnia treatments. This model proposes that increasing awareness of the mental and physical states that are present when experiencing insomnia symptoms and then learning how to shift mental processes can promote an adaptive stance to one's response to these symptoms. These metacognitive processes are characterized by balanced appraisals, cognitive flexibility, equanimity, and commitment to values and are posited to reduce sleep-related arousal, leading to remission from insomnia. We hope that this model will further the understanding and impact of mindfulness and acceptance-based approaches to insomnia.

  6. 24 CFR 200.926c - Model code provisions for use in partially accepted code jurisdictions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Model code provisions for use in partially accepted code jurisdictions. 200.926c Section 200.926c Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT...

  7. Understanding Student Teachers' Behavioural Intention to Use Technology: Technology Acceptance Model (TAM) Validation and Testing

    ERIC Educational Resources Information Center

    Wong, Kung-Teck; Osman, Rosma bt; Goh, Pauline Swee Choo; Rahmat, Mohd Khairezan

    2013-01-01

    This study sets out to validate and test the Technology Acceptance Model (TAM) in the context of Malaysian student teachers' integration of their technology in teaching and learning. To establish factorial validity, data collected from 302 respondents were tested against the TAM using confirmatory factor analysis (CFA), and structural equation…

  8. Translational value of animal models of kidney failure.

    PubMed

    Ortiz, Alberto; Sanchez-Niño, Maria D; Izquierdo, Maria C; Martin-Cleary, Catalina; Garcia-Bermejo, Laura; Moreno, Juan A; Ruiz-Ortega, Marta; Draibe, Juliana; Cruzado, Josep M; Garcia-Gonzalez, Miguel A; Lopez-Novoa, Jose M; Soler, Maria J; Sanz, Ana B

    2015-07-15

    Acute kidney injury (AKI) and chronic kidney disease (CKD) are associated with decreased renal function and increased mortality risk, while the therapeutic armamentarium is unsatisfactory. The availability of adequate animal models may speed up the discovery of biomarkers for disease staging and therapy individualization as well as design and testing of novel therapeutic strategies. Some longstanding animal models have failed to result in therapeutic advances in the clinical setting, such as kidney ischemia-reperfusion injury and diabetic nephropathy models. In this regard, most models for diabetic nephropathy are unsatisfactory in that they do not evolve to renal failure. Satisfactory models for additional nephropathies are needed. These include anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, IgA nephropathy, anti-phospholipase-A2-receptor (PLA2R) membranous nephropathy and Fabry nephropathy. However, recent novel models hold promise for clinical translation. Thus, the AKI to CKD translation has been modeled, in some cases with toxins of interest for human CKD such as aristolochic acid. Genetically modified mice provide models for Alport syndrome evolving to renal failure that have resulted in clinical recommendations, polycystic kidney disease models that have provided clues for the development of tolvaptan, that was recently approved for the human disease in Japan; and animal models also contributed to target C5 with eculizumab in hemolytic uremic syndrome. Some ongoing trials explore novel concepts derived from models, such TWEAK targeting as tissue protection for lupus nephritis. We now review animal models reproducing diverse, genetic and acquired, causes of AKI and CKD evolving to kidney failure and discuss the contribution to clinical translation and prospects for the future. PMID:25814248

  9. Translational value of animal models of kidney failure.

    PubMed

    Ortiz, Alberto; Sanchez-Niño, Maria D; Izquierdo, Maria C; Martin-Cleary, Catalina; Garcia-Bermejo, Laura; Moreno, Juan A; Ruiz-Ortega, Marta; Draibe, Juliana; Cruzado, Josep M; Garcia-Gonzalez, Miguel A; Lopez-Novoa, Jose M; Soler, Maria J; Sanz, Ana B

    2015-07-15

    Acute kidney injury (AKI) and chronic kidney disease (CKD) are associated with decreased renal function and increased mortality risk, while the therapeutic armamentarium is unsatisfactory. The availability of adequate animal models may speed up the discovery of biomarkers for disease staging and therapy individualization as well as design and testing of novel therapeutic strategies. Some longstanding animal models have failed to result in therapeutic advances in the clinical setting, such as kidney ischemia-reperfusion injury and diabetic nephropathy models. In this regard, most models for diabetic nephropathy are unsatisfactory in that they do not evolve to renal failure. Satisfactory models for additional nephropathies are needed. These include anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, IgA nephropathy, anti-phospholipase-A2-receptor (PLA2R) membranous nephropathy and Fabry nephropathy. However, recent novel models hold promise for clinical translation. Thus, the AKI to CKD translation has been modeled, in some cases with toxins of interest for human CKD such as aristolochic acid. Genetically modified mice provide models for Alport syndrome evolving to renal failure that have resulted in clinical recommendations, polycystic kidney disease models that have provided clues for the development of tolvaptan, that was recently approved for the human disease in Japan; and animal models also contributed to target C5 with eculizumab in hemolytic uremic syndrome. Some ongoing trials explore novel concepts derived from models, such TWEAK targeting as tissue protection for lupus nephritis. We now review animal models reproducing diverse, genetic and acquired, causes of AKI and CKD evolving to kidney failure and discuss the contribution to clinical translation and prospects for the future.

  10. Animal models and brain circuits in drug addiction.

    PubMed

    Kalivas, Peter W; Peters, Jamie; Knackstedt, Lori

    2006-12-01

    Animal models in the field of addiction are considered to be among the best available models of neuropsychiatric disease. These models have undergone a number of refinements that allow deeper understanding of the circuitry involved in initiating drug seeking and relapse. Notably, the demonstrable involvement of classic corticostriatal habit circuitry and the engagement of prefrontal cortical circuits in extinction training may have relevance to the therapeutic modulation of habit circuitry and drug addiction in humans. PMID:17200461

  11. Contemporary Animal Models For Human Gene Therapy Applications.

    PubMed

    Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Remington Nelson, Everette Jacob

    2015-01-01

    Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial. PMID:26415576

  12. Cardiovascular imaging: what have we learned from animal models?

    PubMed Central

    Santos, Arnoldo; Fernández-Friera, Leticia; Villalba, María; López-Melgar, Beatriz; España, Samuel; Mateo, Jesús; Mota, Ruben A.; Jiménez-Borreguero, Jesús; Ruiz-Cabello, Jesús

    2015-01-01

    Cardiovascular imaging has become an indispensable tool for patient diagnosis and follow up. Probably the wide clinical applications of imaging are due to the possibility of a detailed and high quality description and quantification of cardiovascular system structure and function. Also phenomena that involve complex physiological mechanisms and biochemical pathways, such as inflammation and ischemia, can be visualized in a non-destructive way. The widespread use and evolution of imaging would not have been possible without animal studies. Animal models have allowed for instance, (i) the technical development of different imaging tools, (ii) to test hypothesis generated from human studies and finally, (iii) to evaluate the translational relevance assessment of in vitro and ex-vivo results. In this review, we will critically describe the contribution of animal models to the use of biomedical imaging in cardiovascular medicine. We will discuss the characteristics of the most frequent models used in/for imaging studies. We will cover the major findings of animal studies focused in the cardiovascular use of the repeatedly used imaging techniques in clinical practice and experimental studies. We will also describe the physiological findings and/or learning processes for imaging applications coming from models of the most common cardiovascular diseases. In these diseases, imaging research using animals has allowed the study of aspects such as: ventricular size, shape, global function, and wall thickening, local myocardial function, myocardial perfusion, metabolism and energetic assessment, infarct quantification, vascular lesion characterization, myocardial fiber structure, and myocardial calcium uptake. Finally we will discuss the limitations and future of imaging research with animal models. PMID:26539113

  13. Contemporary Animal Models For Human Gene Therapy Applications.

    PubMed

    Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Remington Nelson, Everette Jacob

    2015-01-01

    Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial.

  14. Animal models in the drug discovery pipeline for Alzheimer's disease

    PubMed Central

    Van Dam, Debby; De Deyn, Peter Paul

    2011-01-01

    With increasing feasibility of predicting conversion of mild cognitive impairment to dementia based on biomarker profiling, the urgent need for efficacious disease-modifying compounds has become even more critical. Despite intensive research, underlying pathophysiological mechanisms remain insufficiently documented for purposeful target discovery. Translational research based on valid animal models may aid in alleviating some of the unmet needs in the current Alzheimer's disease pharmaceutical market, which includes disease-modification, increased efficacy and safety, reduction of the number of treatment unresponsive patients and patient compliance. The development and phenotyping of animal models is indeed essential in Alzheimer's disease-related research as valid models enable the appraisal of early pathological processes – which are often not accessible in patients, and subsequent target discovery and evaluation. This review paper summarizes and critically evaluates currently available animal models, and discusses their value to the Alzheimer drug discovery pipeline. Models dealt with include spontaneous models in various species, including senescence-accelerated mice, chemical and lesion-induced rodent models, and genetically modified models developed in Drosophila melanogaster, Caenorhabditis elegans, Danio rerio and rodents. Although highly valid animal models exist, none of the currently available models recapitulates all aspects of human Alzheimer's disease, and one should always be aware of the potential dangers of uncritical extrapolating from model organisms to a human condition that takes decades to develop and mainly involves higher cognitive functions. LINKED ARTICLES This article is part of a themed issue on Translational Neuropharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:21371009

  15. [Animal models for the study of Helicobacter pylori infection].

    PubMed

    Miszczyk, Eliza; Walencka, Maria; Mikołajczyk-Chmiela, Magdalena

    2014-05-15

    The Gram-negative bacillus Helicobacter pylori is widely recognized as a major etiologic agent responsible for chronic active gastritis, peptic ulcers, the development of gastric cancer and mucosa-associated lymphoid tissue (MALT lymphoma). Still, little is known about the natural history of H. pylori infection, since patients usually after many years of not suffering from symptoms of the infection are simply asymptomatic. Since the research investigators carried out on human models has many limitations, there is an urgent need for the development of an animal model optimal and suitable for the monitoring of H. pylori infections. This review summarizes the recent findings on the suitability of animal models used in H. pylori research. Several animal models are useful for the assessment of pathological, microbiological and immunological consequences of infection, which makes it possible to monitor the natural history of H. pylori infection. Preclinical investigations on animal models are an essential stage of research which enrich the knowledge on treatment and prevention strategies.

  16. Large Animal Models of Neurological Disorders for Gene Therapy

    PubMed Central

    Gagliardi, Christine; Bunnell, Bruce A.

    2009-01-01

    The development of therapeutic interventions for genetic disorders and diseases that affect the central nervous system (CNS) has proven challenging. There has been significant progress in the development of gene therapy strategies in murine models of human disease, but gene therapy outcomes in these models do not always translate to the human setting. Therefore, large animal models are crucial to the development of diagnostics, treatments, and eventual cures for debilitating neurological disorders. This review focuses on the description of large animal models of neurological diseases such as lysosomal storage diseases, Parkinson’s disease, Huntington’s disease, and neuroAIDS. The review also describes the contributions of these models to progress in gene therapy research. PMID:19293458

  17. Animal models of self-destructive behavior and suicide.

    PubMed

    Crawley, J N; Sutton, M E; Pickar, D

    1985-06-01

    In this article we have addressed selected aspects of animal models that may have ramifications in our understanding of suicide and human self-destructive behavior. It should be kept in mind that these human behaviors have many determinants. In considering animal models, we do not propose that similar behaviors necessarily have the same causation nor that a particular experimental manipulation that produces a behavioral syndrome in one species will produce that response in another species. Even if environmental conditions or the resulting behaviors vary for different species, the biochemical intermediaries may be similar. The simplification inherent in the laboratory modeling of an aspect of human behavior should not mean that the complexity of the human syndrome be forgotten. However, if a simple explanation can account for the production of a particular behavioral syndrome in animals, it can help to structure our thoughts regarding the etiology of the behavior in humans. The ethologic observations discussed in this article may help to place human self-destructive behavior in a continuum with that of animals in the wild. Although care should be given to drawing direct parallels, the clear conclusion is that humans are not alone in exhibiting self-initiated behaviors that ultimately produce self-harm or death. Whereas laboratory models have been extensively used for modeling psychiatric illnesses or for producing specific pharmacologic manipulations of the CNS, surprisingly little attention has been given to the modeling of self-destructive behaviors themselves. Emphasis on self-destructive behaviors, as well as on their biologic and genetic underpinnings, represent an important future direction for work on animal models in psychiatry.

  18. Use of Animal Models in Plant Sterol and Stanol Research.

    PubMed

    Solati, Zahra; Moghadasian, Mohammed H

    2015-01-01

    Cholesterol-lowering properties of plant sterols were reported approximately six decades ago. However, over the past couple of decades we have learnt more about other cardiovascular benefits of regular consumption of plant sterols and/or plant stanols. In particular a series of animal studies has consistently reported that dietary plant sterols and/or plant stanols or their fatty acid esters can reduce atherogenesis to a different extent in different animal models. Such effects may be mediated not only through reductions in LDL cholesterol levels, but also through other mechanisms including anti-inflammatory effects. In this manuscript, various animal models including mice, rabbits, hamsters, and others which have been used to establish cardiovascular benefits of plant sterols are discussed. PMID:25942701

  19. [Animal models of injury and repair in developing brain].

    PubMed

    Cuestas, Eduardo; Caceres, Alfredo; Palacio, Santiago

    2007-01-01

    Animal models of injury and repair in developing brain. Brain injury is a major contributor to neonatal morbidity and mortality, a considerable group of these children will develop long term neurological sequels. Despite the great clinical and social significance and the advances in neonatal medicine, no therapy yet does exist that prevent or decrease detrimental effects in cases of neonatal brain injury. Our objective was to review recent research in relation to the hypothesis for repair mechanism in the developing brain, based in animal models that show developmental compensatory mechanisms that promote neural and functional plasticity. A better understanding of these adaptive mechanisms will help clinicians to apply knowledge derived from animals to human clinical situations.

  20. An opinion diffusion model with decision-making groups: The influence of the opinion's acceptability

    NASA Astrophysics Data System (ADS)

    Cheng, Zhichao; Xiong, Yang; Xu, Yiwen

    2016-11-01

    An opinion dynamic model with decision-making groups was proposed to study the process of adopting new opinions or ideas by individuals. The opinion's acceptability is introduced to distinguish the general character of different opinions. The simulation results on a free-scale network demonstrate that when two opinions have similar acceptability, the opinion supported by more decision-making groups in the beginning will eventually win the support of more agents, whereas an opinion supported by fewer decision-making groups in the beginning may be supported by the majority at the end only if it has better acceptability, and if the tolerance threshold of the society is higher than a specific value.

  1. Principles for developing animal models of military PTSD

    PubMed Central

    Daskalakis, Nikolaos P.; Yehuda, Rachel

    2014-01-01

    The extent to which animal studies can be relevant to military posttraumatic stress disorder (PTSD) continues to be a matter of discussion. Some features of the clinical syndrome are more easily modeled than others. In the animal literature, a great deal of attention is focused on modeling the characteristics of military exposures and their impact on measurable behaviors and biological parameters. There are many issues to consider regarding the ecological validity of predator, social defeat or immobilization stress to combat-related experience. In contrast, less attention has been paid to individual variation following these exposures. Such variation is critical to understand how individual differences in the response to military trauma exposure may result to PTSD or resilience. It is important to consider potential differences in biological findings when comparing extremely exposed to non-exposed animals, versus those that result from examining individual differences. Animal models of military PTSD are also critical in advancing efforts in clinical treatment. In an ideal translational approach to study deployment related outcomes, information from humans and animals, blood and brain, should be carefully considered in tandem, possibly even computed simultaneously, to identify molecules, pathways and networks that are likely to be the key drivers of military PTSD symptoms. With the use novel biological methodologies (e.g., optogenetics) in the animal models, critical genes and pathways can be tuned up or down (rather than over-expressed or ablated completely) in discrete brain regions. Such techniques together with pre-and post-deployment human imaging will accelerate the identification of novel pharmacological and non-pharmacological intervention strategies. PMID:25206946

  2. Modeling of a Parabolic Trough Solar Field for Acceptance Testing: A Case Study

    SciTech Connect

    Wagner, M. J.; Mehos, M. S.; Kearney, D. W.; McMahan, A. C.

    2011-01-01

    As deployment of parabolic trough concentrating solar power (CSP) systems ramps up, the need for reliable and robust performance acceptance test guidelines for the solar field is also amplified. Project owners and/or EPC contractors often require extensive solar field performance testing as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guaranties between the involved parties. Performance test code work is currently underway at the National Renewable Energy Laboratory (NREL) in collaboration with the SolarPACES Task-I activity, and within the ASME PTC-52 committee. One important aspect of acceptance testing is the selection of a robust technology performance model. NREL1 has developed a detailed parabolic trough performance model within the SAM software tool. This model is capable of predicting solar field, sub-system, and component performance. It has further been modified for this work to support calculation at subhourly time steps. This paper presents the methodology and results of a case study comparing actual performance data for a parabolic trough solar field to the predicted results using the modified SAM trough model. Due to data limitations, the methodology is applied to a single collector loop, though it applies to larger subfields and entire solar fields. Special consideration is provided for the model formulation, improvements to the model formulation based on comparison with the collected data, and uncertainty associated with the measured data. Additionally, this paper identifies modeling considerations that are of particular importance in the solar field acceptance testing process and uses the model to provide preliminary recommendations regarding acceptable steady-state testing conditions at the single-loop level.

  3. Hyperbolic value addition and general models of animal choice.

    PubMed

    Mazur, J E

    2001-01-01

    Three mathematical models of choice--the contextual-choice model (R. Grace, 1994), delay-reduction theory (N. Squires & E. Fantino, 1971), and a new model called the hyperbolic value-added model--were compared in their ability to predict the results from a wide variety of experiments with animal subjects. When supplied with 2 or 3 free parameters, all 3 models made fairly accurate predictions for a large set of experiments that used concurrent-chain procedures. One advantage of the hyperbolic value-added model is that it is derived from a simpler model that makes accurate predictions for many experiments using discrete-trial adjusting-delay procedures. Some results favor the hyperbolic value-added model and delay-reduction theory over the contextual-choice model, but more data are needed from choice situations for which the models make distinctly different predictions.

  4. Concise Review: Stem Cell Trials Using Companion Animal Disease Models.

    PubMed

    Hoffman, Andrew M; Dow, Steven W

    2016-07-01

    Studies to evaluate the therapeutic potential of stem cells in humans would benefit from more realistic animal models. In veterinary medicine, companion animals naturally develop many diseases that resemble human conditions, therefore, representing a novel source of preclinical models. To understand how companion animal disease models are being studied for this purpose, we reviewed the literature between 2008 and 2015 for reports on stem cell therapies in dogs and cats, excluding laboratory animals, induced disease models, cancer, and case reports. Disease models included osteoarthritis, intervertebral disc degeneration, dilated cardiomyopathy, inflammatory bowel diseases, Crohn's fistulas, meningoencephalomyelitis (multiple sclerosis-like), keratoconjunctivitis sicca (Sjogren's syndrome-like), atopic dermatitis, and chronic (end-stage) kidney disease. Stem cells evaluated in these studies included mesenchymal stem-stromal cells (MSC, 17/19 trials), olfactory ensheathing cells (OEC, 1 trial), or neural lineage cells derived from bone marrow MSC (1 trial), and 16/19 studies were performed in dogs. The MSC studies (13/17) used adipose tissue-derived MSC from either allogeneic (8/13) or autologous (5/13) sources. The majority of studies were open label, uncontrolled studies. Endpoints and protocols were feasible, and the stem cell therapies were reportedly safe and elicited beneficial patient responses in all but two of the trials. In conclusion, companion animals with naturally occurring diseases analogous to human conditions can be recruited into clinical trials and provide realistic insight into feasibility, safety, and biologic activity of novel stem cell therapies. However, improvements in the rigor of manufacturing, study design, and regulatory compliance will be needed to better utilize these models. Stem Cells 2016;34:1709-1729.

  5. An Animal Oral Exposure Model – Sensitization vs. Tolerance

    EPA Science Inventory

    Animal models are needed to assess novel proteins produced through biotechnology for potential dietary allergenicity. The exact characteristics that give certain foods allergenic potential are unclear, but must include both the potential to sensitize (induce IgE) as well as the c...

  6. Animal models and high field imaging and spectroscopy.

    PubMed

    Öz, Gülin; Tkáč, Ivan; Uğurbil, Kamil

    2013-09-01

    A plethora of magnetic resonance (MR) techniques developed in the last two decades provide unique and noninvasive measurement capabilities for studies of basic brain function and brain diseases in humans. Animal model experiments have been an indispensible part of this development. MR imaging and spectroscopy measurements have been employed in animal models, either by themselves or in combination with complementary and often invasive techniques, to enlighten us about the information content of such MR methods and/or verify observations made in the human brain. They have also been employed, with or independently of human efforts, to examine mechanisms underlying pathological developments in the brain, exploiting the wealth of animal models available for such studies. In this endeavor, the desire to push for ever-higher spatial and/or spectral resolution, better signal-to-noise ratio, and unique image contrast has inevitably led to the introduction of increasingly higher magnetic fields. As a result, today, animal model studies are starting to be conducted at magnetic fields ranging from ~ 11 to 17 Tesla, significantly enhancing the armamentarium of tools available for the probing brain function and brain pathologies.

  7. Aquatic Animal Models – Not Just for Ecotox Anymore

    EPA Science Inventory

    A wide range of internationally harmonized toxicity test guidelines employing aquatic animal models have been established for regulatory use. For fish alone, there are over a dozen internationally harmonized toxicity test guidelines that have been, or are being, validated. To dat...

  8. Animation Model to Conceptualize ATP Generation: A Mitochondrial Oxidative Phosphorylation

    ERIC Educational Resources Information Center

    Jena, Ananta Kumar

    2015-01-01

    Adenosine triphosphate (ATP) is the molecular unit of intracellular energy and it is the product of oxidative phosphorylation of cellular respiration uses in cellular processes. The study explores the growth of the misconception levels amongst the learners and evaluates the effectiveness of animation model over traditional methods. The data…

  9. An Aerosolized Brucella spp. Challenge Model for Laboratory Animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To characterize the optimal aerosol dosage of Brucella abortus strain 2308 (S2308) and B. melitensis (S16M) in a laboratory animal model of brucellosis, dosages of 10**3 to 10**10 CFU were nebulized to mice. Although tissue weights were minimally influenced, total colony-forming units (CFU) per tis...

  10. Getting neurorehabilitation right: what can be learned from animal models?

    PubMed

    Krakauer, John W; Carmichael, S Thomas; Corbett, Dale; Wittenberg, George F

    2012-10-01

    Animal models suggest that a month of heightened plasticity occurs in the brain after stroke, accompanied by most of the recovery from impairment. This period of peri-infarct and remote plasticity is associated with changes in excitatory/inhibitory balance and the spatial extent and activation of cortical maps and structural remodeling. The best time for experience and training to improve outcome is unclear. In animal models, very early (<5 days from onset) and intense training may lead to increased histological damage. Conversely, late rehabilitation (>30 days) is much less effective both in terms of outcome and morphological changes associated with plasticity. In clinical practice, rehabilitation after disabling stroke involves a relatively brief period of inpatient therapy that does not come close to matching intensity levels investigated in animal models and includes the training of compensatory strategies that have minimal impact on impairment. Current rehabilitation treatments have a disappointingly modest effect on impairment early or late after stroke. Translation from animal models will require the following: (1) substantial increases in the intensity and dosage of treatments offered in the first month after stroke with an emphasis on impairment; (2) combinational approaches such as noninvasive brain stimulation with robotics, based on current understanding of motor learning and brain plasticity; and (3) research that emphasizes mechanistic phase II studies over premature phase III clinical trials.

  11. Animal Models of Diabetes Mellitus for Islet Transplantation

    PubMed Central

    Sakata, Naoaki; Yoshimatsu, Gumpei; Tsuchiya, Haruyuki; Egawa, Shinichi; Unno, Michiaki

    2012-01-01

    Due to current improvements in techniques for islet isolation and transplantation and protocols for immunosuppressants, islet transplantation has become an effective treatment for severe diabetes patients. Many diabetic animal models have contributed to such improvements. In this paper, we focus on 3 types of models with different mechanisms for inducing diabetes mellitus (DM): models induced by drugs including streptozotocin (STZ), pancreatomized models, and spontaneous models due to autoimmunity. STZ-induced diabetes is one of the most commonly used experimental diabetic models and is employed using many specimens including rodents, pigs or monkeys. The management of STZ models is well established for islet studies. Pancreatomized models reveal different aspects compared to STZ-induced models in terms of loss of function in the increase and decrease of blood glucose and therefore are useful for evaluating the condition in total pancreatomized patients. Spontaneous models are useful for preclinical studies including the assessment of immunosuppressants because such models involve the same mechanisms as type 1 DM in the clinical setting. In conclusion, islet researchers should select suitable diabetic animal models according to the aim of the study. PMID:23346100

  12. Animal models of diabetes mellitus for islet transplantation.

    PubMed

    Sakata, Naoaki; Yoshimatsu, Gumpei; Tsuchiya, Haruyuki; Egawa, Shinichi; Unno, Michiaki

    2012-01-01

    Due to current improvements in techniques for islet isolation and transplantation and protocols for immunosuppressants, islet transplantation has become an effective treatment for severe diabetes patients. Many diabetic animal models have contributed to such improvements. In this paper, we focus on 3 types of models with different mechanisms for inducing diabetes mellitus (DM): models induced by drugs including streptozotocin (STZ), pancreatomized models, and spontaneous models due to autoimmunity. STZ-induced diabetes is one of the most commonly used experimental diabetic models and is employed using many specimens including rodents, pigs or monkeys. The management of STZ models is well established for islet studies. Pancreatomized models reveal different aspects compared to STZ-induced models in terms of loss of function in the increase and decrease of blood glucose and therefore are useful for evaluating the condition in total pancreatomized patients. Spontaneous models are useful for preclinical studies including the assessment of immunosuppressants because such models involve the same mechanisms as type 1 DM in the clinical setting. In conclusion, islet researchers should select suitable diabetic animal models according to the aim of the study. PMID:23346100

  13. Animal Stroke Model: Ischemia-Reperfusion and Intracerebral Hemorrhage.

    PubMed

    Ren, Changhong; Sy, Christopher; Gao, Jinhuan; Ding, Yuchuan; Ji, Xunming

    2016-01-01

    Stroke is a major health issue worldwide-one with serious financial and public health implications. As a result, ongoing clinical research on novel and improved stroke therapies is not only pertinent but also paramount. Due to the complexity of a stroke-like event and its many sequelae, devising usable methods and experimental models are necessary to study and better understand the pathophysiological processes that ensue. As it stands, animal models that simulate stroke-like events have proven to be the most logical and effective options in regards to experimental studies. A number of animal stroke models exist and have been demonstrated in previous studies on ischemic as well as hemorrhagic stroke. Considering the efficiency and reproducibility of animal models, here, we introduce an ischemic stroke model induced by middle cerebral artery occlusion (MCAO) and an intracerebral hemorrhagic stroke model induced by collagenase injection. The models outlined here have been proven to demonstrate the clinical relevance desired for use in continued research on stroke pathophysiology and the study of future therapeutic options. PMID:27604729

  14. A systematic review of animal models for experimental neuroma.

    PubMed

    Toia, Francesca; Giesen, Thomas; Giovanoli, Pietro; Calcagni, Maurizio

    2015-10-01

    Peripheral neuromas can result in an unbearable neuropathic pain and functional impairment. Their treatment is still challenging, and their optimal management is to be defined. Experimental research still plays a major role, but - although numerous neuroma models have been proposed on different animals - there is still no single model recognised as being the reference. Several models show advantages over the others in specific aspects of neuroma physiopathology, prevention or treatment, making it unlikely that a single model could be of reference. A reproducible and standardised model of peripheral neuroma would allow better comparison of results from different studies. We present a systematic review of the literature on experimental in vivo models, analysing advantages and disadvantages, specific features and indications, with the goal of providing suggestions to help their standardisation. Published models greatly differ in the animal and the nerve employed, the mechanisms of nerve injury and the evaluation methods. Specific experimental models exist for terminal neuromas and neuromas in continuity (NIC). The rat is the most widely employed animal, the rabbit being the second most popular model. NIC models are more actively researched, but it is more difficult to generate such studies in a reproducible manner. Nerve transection is considered the best method to cause terminal neuromas, whereas partial transection is the best method to cause NIC. Traditional histomorphology is the historical gold-standard evaluation method, but immunolabelling, reverse transcriptase-polymerase chain reaction (RT-PCR) and proteomics are gaining increasing popularity. Computerised gait analysis is the gold standard for motor-recovery evaluation, whereas mechanical testing of allodynia and hyperalgesia reproducibly assesses sensory recovery. This review summarises current knowledge on experimental neuroma models, and it provides a useful tool for defining experimental protocols

  15. Clinical Strategies and Animal Models for Developing Senolytic Agents

    PubMed Central

    Kirkland, James L.; Tchkonia, Tamara

    2014-01-01

    Aging is associated with increasing predisposition to multiple chronic diseases. One fundamental aging process that is often operative at sites of the pathology underlying chronic age-related diseases is cellular senescence. Small molecule senolytic agents are being developed. For successful drug development: 1) appropriate animal models of human age-related diseases need to be devised. 2) Models have to be made in which it can be proven that beneficial phenotypic effects are actually caused through clearing senescent cells by putative senolytic agents, as opposed to “off-target” effects of these agents on non-senescent cells. 3) Models are needed to test efficacy of drugs and to uncover potential side effects of senolytic agents. Development of the optimal animal models and clinical trial paradigms for senolytic agents warrants an intensive effort, since senolytic agents, if successful in delaying, preventing, alleviating, or reversing age-related diseases as a group would be transformative. PMID:25446976

  16. How animal models of leukaemias have already benefited patients.

    PubMed

    Ablain, Julien; Nasr, Rihab; Zhu, Jun; Bazarbachi, Ali; Lallemand-Breittenbach, Valérie; de Thé, Hugues

    2013-04-01

    The relative genetic simplicity of leukaemias, the development of which likely relies on a limited number of initiating events has made them ideal for disease modelling, particularly in the mouse. Animal models provide incomparable insights into the mechanisms of leukaemia development and allow exploration of the molecular pillars of disease maintenance, an aspect often biased in cell lines or ex vivo systems. Several of these models, which faithfully recapitulate the characteristics of the human disease, have been used for pre-clinical purposes and have been instrumental in predicting therapy response in patients. We plea for a wider use of genetically defined animal models in the design of clinical trials, with a particular focus on reassessment of existing cancer or non-cancer drugs, alone or in combination.

  17. Freshwater Planarians as an Alternative Animal Model for Neurotoxicology

    PubMed Central

    Hagstrom, Danielle; Cochet-Escartin, Olivier; Zhang, Siqi; Khuu, Cindy; Collins, Eva-Maria S.

    2015-01-01

    Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment “at will” through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models. PMID:26116028

  18. Effects of exercise on brain functions in diabetic animal models

    PubMed Central

    Yi, Sun Shin

    2015-01-01

    Human life span has dramatically increased over several decades, and the quality of life has been considered to be equally important. However, diabetes mellitus (DM) characterized by problems related to insulin secretion and recognition has become a serious health problem in recent years that threatens human health by causing decline in brain functions and finally leading to neurodegenerative diseases. Exercise is recognized as an effective therapy for DM without medication administration. Exercise studies using experimental animals are a suitable option to overcome this drawback, and animal studies have improved continuously according to the needs of the experimenters. Since brain health is the most significant factor in human life, it is very important to assess brain functions according to the different exercise conditions using experimental animal models. Generally, there are two types of DM; insulin-dependent type 1 DM and an insulin-independent type 2 DM (T2DM); however, the author will mostly discuss brain functions in T2DM animal models in this review. Additionally, many physiopathologic alterations are caused in the brain by DM such as increased adiposity, inflammation, hormonal dysregulation, uncontrolled hyperphagia, insulin and leptin resistance, and dysregulation of neurotransmitters and declined neurogenesis in the hippocampus and we describe how exercise corrects these alterations in animal models. The results of changes in the brain environment differ according to voluntary, involuntary running exercises and resistance exercise, and gender in the animal studies. These factors have been mentioned in this review, and this review will be a good reference for studying how exercise can be used with therapy for treating DM. PMID:25987956

  19. Freshwater Planarians as an Alternative Animal Model for Neurotoxicology.

    PubMed

    Hagstrom, Danielle; Cochet-Escartin, Olivier; Zhang, Siqi; Khuu, Cindy; Collins, Eva-Maria S

    2015-09-01

    Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment "at will" through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models.

  20. Freshwater Planarians as an Alternative Animal Model for Neurotoxicology.

    PubMed

    Hagstrom, Danielle; Cochet-Escartin, Olivier; Zhang, Siqi; Khuu, Cindy; Collins, Eva-Maria S

    2015-09-01

    Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment "at will" through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models. PMID:26116028

  1. Effects of exercise on brain functions in diabetic animal models.

    PubMed

    Yi, Sun Shin

    2015-05-15

    Human life span has dramatically increased over several decades, and the quality of life has been considered to be equally important. However, diabetes mellitus (DM) characterized by problems related to insulin secretion and recognition has become a serious health problem in recent years that threatens human health by causing decline in brain functions and finally leading to neurodegenerative diseases. Exercise is recognized as an effective therapy for DM without medication administration. Exercise studies using experimental animals are a suitable option to overcome this drawback, and animal studies have improved continuously according to the needs of the experimenters. Since brain health is the most significant factor in human life, it is very important to assess brain functions according to the different exercise conditions using experimental animal models. Generally, there are two types of DM; insulin-dependent type 1 DM and an insulin-independent type 2 DM (T2DM); however, the author will mostly discuss brain functions in T2DM animal models in this review. Additionally, many physiopathologic alterations are caused in the brain by DM such as increased adiposity, inflammation, hormonal dysregulation, uncontrolled hyperphagia, insulin and leptin resistance, and dysregulation of neurotransmitters and declined neurogenesis in the hippocampus and we describe how exercise corrects these alterations in animal models. The results of changes in the brain environment differ according to voluntary, involuntary running exercises and resistance exercise, and gender in the animal studies. These factors have been mentioned in this review, and this review will be a good reference for studying how exercise can be used with therapy for treating DM.

  2. Understanding intention to use electronic information resources: A theoretical extension of the technology acceptance model (TAM).

    PubMed

    Tao, Donghua

    2008-11-06

    This study extended the Technology Acceptance Model (TAM) by examining the roles of two aspects of e-resource characteristics, namely, information quality and system quality, in predicting public health students' intention to use e-resources for completing research paper assignments. Both focus groups and a questionnaire were used to collect data. Descriptive analysis, data screening, and Structural Equation Modeling (SEM) techniques were used for data analysis. The study found that perceived usefulness played a major role in determining students' intention to use e-resources. Perceived usefulness and perceived ease of use fully mediated the impact that information quality and system quality had on behavior intention. The research model enriches the existing technology acceptance literature by extending TAM. Representing two aspects of e-resource characteristics provides greater explanatory information for diagnosing problems of system design, development, and implementation.

  3. Social trust, risk perceptions and public acceptance of recycled water: testing a social-psychological model.

    PubMed

    Ross, Victoria L; Fielding, Kelly S; Louis, Winnifred R

    2014-05-01

    Faced with a severe drought, the residents of the regional city of Toowoomba, in South East Queensland, Australia were asked to consider a potable wastewater reuse scheme to supplement drinking water supplies. As public risk perceptions and trust have been shown to be key factors in acceptance of potable reuse projects, this research developed and tested a social-psychological model of trust, risk perceptions and acceptance. Participants (N = 380) were surveyed a few weeks before a referendum was held in which residents voted against the controversial scheme. Analysis using structural equation modelling showed that the more community members perceived that the water authority used fair procedures (e.g., consulting with the community and providing accurate information), the greater their sense of shared identity with the water authority. Shared social identity in turn influenced trust via increased source credibility, that is, perceptions that the water authority is competent and has the community's interest at heart. The findings also support past research showing that higher levels of trust in the water authority were associated with lower perceptions of risk, which in turn were associated with higher levels of acceptance, and vice versa. The findings have a practical application for improving public acceptance of potable recycled water schemes. PMID:24603028

  4. Social trust, risk perceptions and public acceptance of recycled water: testing a social-psychological model.

    PubMed

    Ross, Victoria L; Fielding, Kelly S; Louis, Winnifred R

    2014-05-01

    Faced with a severe drought, the residents of the regional city of Toowoomba, in South East Queensland, Australia were asked to consider a potable wastewater reuse scheme to supplement drinking water supplies. As public risk perceptions and trust have been shown to be key factors in acceptance of potable reuse projects, this research developed and tested a social-psychological model of trust, risk perceptions and acceptance. Participants (N = 380) were surveyed a few weeks before a referendum was held in which residents voted against the controversial scheme. Analysis using structural equation modelling showed that the more community members perceived that the water authority used fair procedures (e.g., consulting with the community and providing accurate information), the greater their sense of shared identity with the water authority. Shared social identity in turn influenced trust via increased source credibility, that is, perceptions that the water authority is competent and has the community's interest at heart. The findings also support past research showing that higher levels of trust in the water authority were associated with lower perceptions of risk, which in turn were associated with higher levels of acceptance, and vice versa. The findings have a practical application for improving public acceptance of potable recycled water schemes.

  5. The acceptance of in silico models for REACH: Requirements, barriers, and perspectives

    PubMed Central

    2011-01-01

    In silico models have prompted considerable interest and debate because of their potential value in predicting the properties of chemical substances for regulatory purposes. The European REACH legislation promotes innovation and encourages the use of alternative methods, but in practice the use of in silico models is still very limited. There are many stakeholders influencing the regulatory trajectory of quantitative structure-activity relationships (QSAR) models, including regulators, industry, model developers and consultants. Here we outline some of the issues and challenges involved in the acceptance of these methods for regulatory purposes. PMID:21982269

  6. The Cambridge MRI database for animal models of Huntington disease.

    PubMed

    Sawiak, Stephen J; Morton, A Jennifer

    2016-01-01

    We describe the Cambridge animal brain magnetic resonance imaging repository comprising 400 datasets to date from mouse models of Huntington disease. The data include raw images as well as segmented grey and white matter images with maps of cortical thickness. All images and phenotypic data for each subject are freely-available without restriction from (http://www.dspace.cam.ac.uk/handle/1810/243361/). Software and anatomical population templates optimised for animal brain analysis with MRI are also available from this site.

  7. Animal models of neuropsychiatry revisited: a personal tribute to Teitelbaum.

    PubMed

    Robbins, T W

    2012-06-01

    Several themes and principles of behavioural neuroscience are evident in the work of Phillip Teitelbaum. He has emphasised the importance of studying behaviour in simple preparations, of re-synthesising complex behavioural patterns from these elemental 'building-blocks' and understanding their often hierarchical organisation. He also more recently has become interested in the possible power of behavioural endophenotypes. His work has resulted in a new emphasis on animal neuropsychology which is highly relevant to human psychopathology. This article illustrates these themes from examples taken from animal models of sensory neglect, drug addiction and cognitive syndromes associated with schizophrenia and other neuropsychiatric disorders. PMID:22440232

  8. Malarial birds: modeling infectious human disease in animals.

    PubMed

    Slater, Leo B

    2005-01-01

    Through the examination of avian malarias as models of infectious human disease, this paper reveals the kinds of claims that scientists and physicians made on the basis of animal models-biological systems in the laboratory and the field-and what characteristics made for congruence between these models and human malaria. The focus is on the period between 1895 and 1945, and on the genesis and trajectory of certain animal models of malaria within specific locations, such as the Johns Hopkins School of Hygiene and Public Health in Baltimore and Bayer (I. G. Farben) in Elberfeld. These exemplars illustrate a diversity of approaches to malaria-as-disease, and the difficulties of framing aspects of this disease complex within an animal or laboratory system. The diversity and nearness to wild types of the birds, protozoan parasites, and mosquitoes that made up these malaria models contributed a great deal to the complexity of the models. Avian malarias, adopted with enthusiasm, were essential to the success of the U.S. antimalarial program during World War II.

  9. Functional GI disorders: from animal models to drug development

    PubMed Central

    Mayer, E A; Bradesi, S; Chang, L; Spiegel, B M R; Bueller, J A; Naliboff, B D

    2014-01-01

    Despite considerable efforts by academic researchers and by the pharmaceutical industry, the development of novel pharmacological treatments for irritable bowel syndrome (IBS) and other functional gastrointestinal (GI) disorders has been slow and disappointing. The traditional approach to identifying and evaluating novel drugs for these symptom-based syndromes has relied on a fairly standard algorithm using animal models, experimental medicine models and clinical trials. In the current article, the empirical basis for this process is reviewed, focusing on the utility of the assessment of visceral hypersensitivity and GI transit, in both animals and humans, as well as the predictive validity of preclinical and clinical models of IBS for identifying successful treatments for IBS symptoms and IBS-related quality of life impairment. A review of published evidence suggests that abdominal pain, defecation-related symptoms (urgency, straining) and psychological factors all contribute to overall symptom severity and to health-related quality of life. Correlations between readouts obtained in preclinical and clinical models and respective symptoms are small, and the ability to predict drug effectiveness for specific as well as for global IBS symptoms is limited. One possible drug development algorithm is proposed which focuses on pharmacological imaging approaches in both preclinical and clinical models, with decreased emphasis on evaluating compounds in symptom-related animal models, and more rapid screening of promising candidate compounds in man. PMID:17965064

  10. Animal Models of Osteoarthritis: Comparisons and Key Considerations.

    PubMed

    McCoy, A M

    2015-09-01

    Osteoarthritis (OA) is unquestionably one of the most important chronic health issues in humans, affecting millions of individuals and costing billions of dollars annually. Despite widespread awareness of this disease and its devastating impact, the pathogenesis of early OA is not completely understood, hampering the development of effective tools for early diagnosis and disease-modifying therapeutics. Most human tissue available for study is obtained at the time of joint replacement, when OA lesions are end stage and little can be concluded about the factors that played a role in disease development. To overcome this limitation, over the past 50 years, numerous induced and spontaneous animal models have been utilized to study disease onset and progression, as well as to test novel therapeutic interventions. Reflecting the heterogeneity of OA itself, no single "gold standard" animal model for OA exists; thus, a challenge for researchers lies in selecting the most appropriate model to answer a particular scientific question of interest. This review provides general considerations for model selection, as well as important features of species such as mouse, rat, guinea pig, sheep, goat, and horse, which researchers should be mindful of when choosing the "best" animal model for their intended purpose. Special consideration is given to key variations in pathology among species as well as recommended guidelines for reporting the histologic features of each model. PMID:26063173

  11. Adding Innovation Diffusion Theory to the Technology Acceptance Model: Supporting Employees' Intentions to Use E-Learning Systems

    ERIC Educational Resources Information Center

    Lee, Yi-Hsuan; Hsieh, Yi-Chuan; Hsu, Chia-Ning

    2011-01-01

    This study intends to investigate factors affecting business employees' behavioral intentions to use the e-learning system. Combining the innovation diffusion theory (IDT) with the technology acceptance model (TAM), the present study proposes an extended technology acceptance model. The proposed model was tested with data collected from 552…

  12. The Effects of a Modified Treatment Package with and without Feeder Modeling on One Child's Acceptance of Novel Foods

    ERIC Educational Resources Information Center

    Seiverling, Laura; Harclerode, Whitney; Williams, Keith

    2014-01-01

    The purpose of this study was to examine if sequential presentation with feeder modeling would lead to an increase in bites accepted of new foods compared to sequential presentation without feeder modeling in a typically developing 4-year-old boy with food selectivity. The participant's acceptance of novel foods increased both in the modeling and…

  13. Modelling animal waste pathogen transport from agricultural land to streams

    NASA Astrophysics Data System (ADS)

    Pandey, Pramod K.; Soupir, Michelle L.; Ikenberry, Charles

    2014-03-01

    The transport of animal waste pathogens from crop land to streams can potentially elevate pathogen levels in stream water. Applying animal manure into crop land as fertilizers is a common practice in developing as well as in developed countries. Manure application into the crop land, however, can cause potential human health. To control pathogen levels in ambient water bodies such as streams, improving our understanding of pathogen transport at farm scale as well as at watershed scale is required. To understand the impacts of crop land receiving animal waste as fertilizers on stream's pathogen levels, here we investigate pathogen indicator transport at watershed scale. We exploited watershed scale hydrological model to estimate the transport of pathogens from the crop land to streams. Pathogen indicator levels (i.e., E. coli levels) in the stream water were predicted. With certain assumptions, model results are reasonable. This study can be used as guidelines for developing the models for calculating the impacts of crop land's animal manure on stream water.

  14. Animal Models for Medical Countermeasures to Radiation Exposure

    PubMed Central

    Williams, Jacqueline P.; Brown, Stephen L.; Georges, George E.; Hauer-Jensen, Martin; Hill, Richard P.; Huser, Amy K.; Kirsch, David G.; MacVittie, Thomas J.; Mason, Kathy A.; Medhora, Meetha M.; Moulder, John E.; Okunieff, Paul; Otterson, Mary F.; Robbins, Michael E.; Smathers, James B.; McBride, William H.

    2011-01-01

    Since September 11, 2001, there has been the recognition of a plausible threat from acts of terrorism, including radiological or nuclear attacks. A network of Centers for Medical Countermeasures against Radiation (CMCRs) has been established across the U.S.; one of the missions of this network is to identify and develop mitigating agents that can be used to treat the civilian population after a radiological event. The development of such agents requires comparison of data from many sources and accumulation of information consistent with the “Animal Rule” from the Food and Drug Administration (FDA). Given the necessity for a consensus on appropriate animal model use across the network to allow for comparative studies to be performed across institutions, and to identify pivotal studies and facilitate FDA approval, in early 2008, investigators from each of the CMCRs organized and met for an Animal Models Workshop. Working groups deliberated and discussed the wide range of animal models available for assessing agent efficacy in a number of relevant tissues and organs, including the immune and hematopoietic systems, gastrointestinal tract, lung, kidney and skin. Discussions covered the most appropriate species and strains available as well as other factors that may affect differential findings between groups and institutions. This report provides the workshop findings. PMID:20334528

  15. Review of Nonprimate, Large Animal Models for Osteoporosis Research

    PubMed Central

    Reinwald, Susan; Burr, David

    2008-01-01

    Large animal models are required for preclinical prevention and intervention studies related to osteoporosis research. The challenging aspect of this requirement is that no single animal model exactly mimics the progression of this human-specific chronic condition. There are pros and cons associated with the skeletal, hormonal, and metabolic conditions of each species that influence their relevance and applicability to human physiology. Of all larger mammalian species, nonhuman primates (NHPs) are preeminent in terms of replicating important aspects of human physiology. However, NHPs are very expensive, putting them out of reach of the vast majority of researchers. Practical, cost-effective alternatives to NHPs are sought after among ungulate (porcine, caprine, and ovine) and canine species that are the focus of this review. The overriding caveat to using large lower-order species is to take the time in advance to understand and appreciate the limitations and strengths of each animal model. Under these circumstances, experiments can be strategically designed to optimize the potential of an animal to develop the cardinal features of postmenopausal bone loss and/or yield information of relevance to treatment. PMID:18505374

  16. Trait and state anxiety in animal models: Is there correlation?

    PubMed

    Goes, Tiago Costa; Antunes, Fabrício Dias; Teixeira-Silva, Flavia

    2009-02-01

    It is believed that subjects with high trait anxiety levels tend to present state anxiety reactions with greater intensity than individuals with low trait anxiety levels. In order to verify if this premise is valid for animal models of anxiety, the present work investigated the possible correlation between two behavioral tests: the elevated plus-maze, a classic model of state-anxiety, and the free-exploratory paradigm, which has been proposed as a model of trait anxiety. The behavior of 46 drug-naive, adult, Wistar, male rats was measured in these two models on two occasions, 1 week apart. Subsequently, the intraclass correlation coefficient (ICC) was calculated for the parameters "percentage of time in the novel side" (%TNS; free-exploratory paradigm), "percentage of time in the open arms" (%TOA; elevated plus-maze) and "percentage of entries into the open arms" (%EOA; elevated plus-maze). These parameters were also used to classify the animals into groups presenting high, medium or low levels of anxiety in both tests, so that the concordance between the models could be evaluated through the kappa test. The analysis resulted in low ICC (%TNSx%TOA: -0.127; %TNSx%EOA: 0.040) and low kappa index (%TNSx%TOA: -0.017; %TNSx%EOA: -0.044), suggesting a poor correspondence between the free-exploratory paradigm and the elevated plus-maze. In conclusion, the data presented here indicate that the premise of correlation between trait and state anxiety is not necessarily true for animal models of anxiety and, therefore, care must be exercised when using state anxiety models in order to determine animals' anxiety profile.

  17. Animal models of schizophrenia: developmental preparation in rats.

    PubMed

    Ratajczak, Piotr; Wozniak, Anna; Nowakowska, Elzbieta

    2013-01-01

    Schizophrenia manifests itself primarily with positive symptoms, negative symptoms and cognitive disorders. Animal models of mental diseases seem to be an important tool in understanding key theories related with pathophysiology of the disorder and are used to assess efficacy of new drugs. References describe four basic groups of animal models of schizophrenia, such as: models created by pharmacological intervention, genetic models, lesion models and models of developmental disorders of primary brain structures. Of the models referred to above, the group of developmental disorder models is particularly noteworthy, as they are primarily easy to use, and the methods are highly sensitive. High scientific value of these models is associated with the neurodevelopmental theory which stipulates that at an early stage of body development, a number of interactions between genetic and environmental factors may affect the development of neurons which may cause disorders of brain cytoarchitecture development. We review six developmental models of schizophrenia in rats (MAM--methylooxymethanol acetate, prenatal stress, maternal deprivation, isolation rearing, prenatal immune challenge and maternal malnutrition) that are all validated by disruption in PPI. PMID:24457639

  18. Muscle wasting in animal models of severe illness

    PubMed Central

    Holecek, Milan

    2012-01-01

    Summary Muscle wasting is a serious complication of various clinical conditions that significantly worsens the prognosis of the illnesses. Clinically relevant models of muscle wasting are essential for understanding its pathogenesis and for selective preclinical testing of potential therapeutic agents. The data presented here indicate that muscle wasting has been well characterized in rat models of sepsis (endotoxaemia, and caecal ligation and puncture), in rat models of chronic renal failure (partial nephrectomy), in animal models of intensive care unit patients (corticosteroid treatment combined with peripheral denervation or with administration of neuromuscular blocking drugs) and in murine and rat models of cancer (tumour cell transplantation). There is a need to explore genetically engineered mouse models of cancer. The degree of protein degradation in skeletal muscle is not well characterized in animal models of liver cirrhosis, chronic heart failure and chronic obstructive pulmonary disease. The major difficulties with all models are standardization and high variation in disease progression and a lack of reflection of clinical reality in some of the models. The translation of the information obtained by using these models to clinical practice may be problematic. PMID:22564195

  19. Animal models of enterovirus 71 infection: applications and limitations.

    PubMed

    Wang, Ya-Fang; Yu, Chun-Keung

    2014-04-17

    Human enterovirus 71 (EV71) has emerged as a neuroinvasive virus that is responsible for several outbreaks in the Asia-Pacific region over the past 15 years. Appropriate animal models are needed to understand EV71 neuropathogenesis better and to facilitate the development of effective vaccines and drugs. Non-human primate models have been used to characterize and evaluate the neurovirulence of EV71 after the early outbreaks in late 1990s. However, these models were not suitable for assessing the neurovirulence level of the virus and were associated with ethical and economic difficulties in terms of broad application. Several strategies have been applied to develop mouse models of EV71 infection, including strategies that employ virus adaption and immunodeficient hosts. Although these mouse models do not closely mimic human disease, they have been applied to determine the pathogenesis of and treatment and prevention of the disease. EV71 receptor-transgenic mouse models have recently been developed and have significantly advanced our understanding of the biological features of the virus and the host-parasite interactions. Overall, each of these models has advantages and disadvantages, and these models are differentially suited for studies of EV71 pathogenesis and/or the pre-clinical testing of antiviral drugs and vaccines. In this paper, we review the characteristics, applications and limitation of these EV71 animal models, including non-human primate and mouse models.

  20. An Animal Model Using Metallic Ions to Produce Autoimmune Nephritis.

    PubMed

    Ramírez-Sandoval, Roxana; Luévano-Rodríguez, Nayeli; Rodríguez-Rodríguez, Mayra; Pérez-Pérez, María Elena; Saldívar-Elias, Sergio; Gurrola-Carlos, Reinaldo; Avalos-Díaz, Esperanza; Bollain-y-Goytia, Juan José; Herrera-Esparza, Rafael

    2015-01-01

    Autoimmune nephritis triggered by metallic ions was assessed in a Long-Evans rat model. The parameters evaluated included antinuclear autoantibody production, kidney damage mediated by immune complexes detected by immunofluorescence, and renal function tested by retention of nitrogen waste products and proteinuria. To accomplish our goal, the animals were treated with the following ionic metals: HgCl2, CuSO4, AgNO3, and Pb(NO3)2. A group without ionic metals was used as the control. The results of the present investigation demonstrated that metallic ions triggered antinuclear antibody production in 60% of animals, some of them with anti-DNA specificity. Furthermore, all animals treated with heavy metals developed toxic glomerulonephritis with immune complex deposition along the mesangium and membranes. These phenomena were accompanied by proteinuria and increased concentrations of urea. Based on these results, we conclude that metallic ions may induce experimental autoimmune nephritis.

  1. An Animal Model Using Metallic Ions to Produce Autoimmune Nephritis

    PubMed Central

    Ramírez-Sandoval, Roxana; Luévano-Rodríguez, Nayeli; Rodríguez-Rodríguez, Mayra; Pérez-Pérez, María Elena; Saldívar-Elias, Sergio; Gurrola-Carlos, Reinaldo; Avalos-Díaz, Esperanza; Bollain-y-Goytia, Juan José

    2015-01-01

    Autoimmune nephritis triggered by metallic ions was assessed in a Long-Evans rat model. The parameters evaluated included antinuclear autoantibody production, kidney damage mediated by immune complexes detected by immunofluorescence, and renal function tested by retention of nitrogen waste products and proteinuria. To accomplish our goal, the animals were treated with the following ionic metals: HgCl2, CuSO4, AgNO3, and Pb(NO3)2. A group without ionic metals was used as the control. The results of the present investigation demonstrated that metallic ions triggered antinuclear antibody production in 60% of animals, some of them with anti-DNA specificity. Furthermore, all animals treated with heavy metals developed toxic glomerulonephritis with immune complex deposition along the mesangium and membranes. These phenomena were accompanied by proteinuria and increased concentrations of urea. Based on these results, we conclude that metallic ions may induce experimental autoimmune nephritis. PMID:26064998

  2. MAKING ANIMALS ALCOHOLIC: SHIFTING LABORATORY MODELS OF ADDICTION

    PubMed Central

    RAMSDEN, EDMUND

    2015-01-01

    The use of animals as experimental organisms has been critical to the development of addiction research from the nineteenth century. They have been used as a means of generating reliable data regarding the processes of addiction that was not available from the study of human subjects. Their use, however, has been far from straightforward. Through focusing on the study of alcoholism, where the nonhuman animal proved a most reluctant collaborator, this paper will analyze the ways in which scientists attempted to deal with its determined sobriety and account for their consistent failure to replicate the volitional consumption of ethanol to the point of physical dependency. In doing so, we will see how the animal model not only served as a means of interrogating a complex pathology, but also came to embody competing definitions of alcoholism as a disease process, and alternative visions for the very structure and purpose of a research field. PMID:25740698

  3. Integrating Health Belief Model and Technology Acceptance Model: An Investigation of Health-Related Internet Use

    PubMed Central

    2015-01-01

    Background Today, people use the Internet to satisfy health-related information and communication needs. In Malaysia, Internet use for health management has become increasingly significant due to the increase in the incidence of chronic diseases, in particular among urban women and their desire to stay healthy. Past studies adopted the Technology Acceptance Model (TAM) and Health Belief Model (HBM) independently to explain Internet use for health-related purposes. Although both the TAM and HBM have their own merits, independently they lack the ability to explain the cognition and the related mechanism in which individuals use the Internet for health purposes. Objective This study aimed to examine the influence of perceived health risk and health consciousness on health-related Internet use based on the HBM. Drawing on the TAM, it also tested the mediating effects of perceived usefulness of the Internet for health information and attitude toward Internet use for health purposes for the relationship between health-related factors, namely perceived health risk and health consciousness on health-related Internet use. Methods Data obtained for the current study were collected using purposive sampling; the sample consisted of women in Malaysia who had Internet access. The partial least squares structural equation modeling method was used to test the research hypotheses developed. Results Perceived health risk (β=.135, t 1999=2.676) and health consciousness (β=.447, t 1999=9.168) had a positive influence on health-related Internet use. Moreover, perceived usefulness of the Internet and attitude toward Internet use for health-related purposes partially mediated the influence of health consciousness on health-related Internet use (β=.025, t 1999=3.234), whereas the effect of perceived health risk on health-related Internet use was fully mediated by perceived usefulness of the Internet and attitude (β=.029, t 1999=3.609). These results suggest the central role of

  4. Neuronal and brain morphological changes in animal models of schizophrenia.

    PubMed

    Flores, Gonzalo; Morales-Medina, Julio César; Diaz, Alfonso

    2016-03-15

    Schizophrenia, a severe and debilitating disorder with a high social burden, affects 1% of the adult world population. Available therapies are unable to treat all the symptoms, and result in strong side effects. For this reason, numerous animal models have been generated to elucidate the pathophysiology of this disorder. All these models present neuronal remodeling and abnormalities in spine stability. It is well known that the complexity in dendritic arborization determines the number of receptive synaptic contacts. Also the loss of dendritic spines and arbor stability are strongly associated with schizophrenia. This review evaluates changes in spine density and dendritic arborization in animal models of schizophrenia. By understanding these changes, pharmacological treatments can be designed to target specific neural systems to attenuate neuronal remodeling and associated behavioral deficits.

  5. Coarse-grained dynamics of alignment in animal group models

    NASA Astrophysics Data System (ADS)

    Moon, Sung Joon; Levin, Simon; Kevrekidis, Yannis

    2006-03-01

    Coordinated motion in animal groups, such as bird flocks and fish schools, and their models gives rise to remarkable coherent structures. Using equation-free computational tools we explore the coarse-grained dynamics of a model for the orientational movement decision in animal groups, consisting of a small number of informed "leaders" and a large number of uninformed, nonidentical ``followers.'' The direction in which each group member is headed is characterized by a phase angle of a limit-cycle oscillator, whose dynamics are nonlinearly coupled with those of all the other group members. We identify a small number of proper coarse-grained variables (using uncertainty quantification methods) that describe the collective dynamics, and perform coarse projective integration and equation-free bifurcation analysis of the coarse-grained model behavior in these variables.

  6. Animal models of antimuscle-specific kinase myasthenia.

    PubMed

    Richman, David P; Nishi, Kayoko; Ferns, Michael J; Schnier, Joachim; Pytel, Peter; Maselli, Ricardo A; Agius, Mark A

    2012-12-01

    Antimuscle-specific kinase (anti-MuSK) myasthenia (AMM) differs from antiacetylcholine receptor myasthenia gravis in exhibiting more focal muscle involvement (neck, shoulder, facial, and bulbar muscles) with wasting of the involved, primarily axial, muscles. AMM is not associated with thymic hyperplasia and responds poorly to anticholinesterase treatment. Animal models of AMM have been induced in rabbits, mice, and rats by immunization with purified xenogeneic MuSK ectodomain, and by passive transfer of large quantities of purified serum IgG from AMM patients into mice. The models have confirmed the pathogenic role of the MuSK antibodies in AMM and have demonstrated the involvement of both the presynaptic and postsynaptic components of the neuromuscular junction. The observations in this human disease and its animal models demonstrate the role of MuSK not only in the formation of this synapse but also in its maintenance.

  7. Animal Models of Nonalcoholic Steatohepatitis: Eat, Delete, and Inflame

    PubMed Central

    Ibrahim, Samar H.; Hirsova, Petra; Malhi, Harmeet; Gores, Gregory J.

    2016-01-01

    With the obesity epidemic, nonalcoholic fatty liver disease (NAFLD) has become a public health problem with increasing prevalence. The mechanism of disease progression remains obscure and effective therapy is lacking. Therefore, there is a need to understand the pathogenic mechanisms responsible for disease development and progression in order to develop innovative therapies. To accomplish this goal, experimental animal models that recapitulate the human disease are necessary, especially, since causative mechanistic studies of NAFLD are more difficult or unethical to perform in humans. A large number of studies regarding the pathophysiology and treatment of NASH have been undertaken in mice to model human NAFLD and nonalcoholic steatohepatitis (NASH). This review discusses the known dietary, genetic and inflammation based animal models of NASH described in recent years, with a focus on the major advances made in this field. PMID:26626909

  8. Immunology and Homeopathy. 3. Experimental Studies on Animal Models

    PubMed Central

    Bellavite, Paolo; Ortolani, Riccardo; Conforti, Anita

    2006-01-01

    A search of the literature and the experiments carried out by the authors of this review show that there are a number of animal models where the effect of homeopathic dilutions or the principles of homeopathic medicine have been tested. The results relate to the immunostimulation by ultralow doses of antigens, the immunological models of the ‘simile’, the regulation of acute or chronic inflammatory processes and the use of homeopathic medicines in farming. The models utilized by different research groups are extremely etherogeneous and differ as the test medicines, the dilutions and the outcomes are concerned. Some experimental lines, particularly those utilizing mice models of immunomodulation and anti-inflammatory effects of homeopathic complex formulations, give support to a real effect of homeopathic high dilutions in animals, but often these data are of preliminary nature and have not been independently replicated. The evidence emerging from animal models is supporting the traditional ‘simile’ rule, according to which ultralow doses of compounds, that in high doses are pathogenic, may have paradoxically a protective or curative effect. Despite a few encouraging observational studies, the effectiveness of the homeopathic prevention or therapy of infections in veterinary medicine is not sufficiently supported by randomized and controlled trials. PMID:16786046

  9. Generation of animation sequences of three dimensional models

    NASA Technical Reports Server (NTRS)

    Poi, Sharon (Inventor); Bell, Brad N. (Inventor)

    1990-01-01

    The invention is directed toward a method and apparatus for generating an animated sequence through the movement of three-dimensional graphical models. A plurality of pre-defined graphical models are stored and manipulated in response to interactive commands or by means of a pre-defined command file. The models may be combined as part of a hierarchical structure to represent physical systems without need to create a separate model which represents the combined system. System motion is simulated through the introduction of translation, rotation and scaling parameters upon a model within the system. The motion is then transmitted down through the system hierarchy of models in accordance with hierarchical definitions and joint movement limitations. The present invention also calls for a method of editing hierarchical structure in response to interactive commands or a command file such that a model may be included, deleted, copied or moved within multiple system model hierarchies. The present invention also calls for the definition of multiple viewpoints or cameras which may exist as part of a system hierarchy or as an independent camera. The simulated movement of the models and systems is graphically displayed on a monitor and a frame is recorded by means of a video controller. Multiple movement and hierarchy manipulations are then recorded as a sequence of frames which may be played back as an animation sequence on a video cassette recorder.

  10. An Empirical Assessment of a Technology Acceptance Model for Apps in Medical Education.

    PubMed

    Briz-Ponce, Laura; García-Peñalvo, Francisco José

    2015-11-01

    The evolution and the growth of mobile applications ("apps") in our society is a reality. This general trend is still upward and the app use has also penetrated the medical education community. However, there is a lot of unawareness of the students' and professionals' point of view about introducing "apps" within Medical School curriculum. The aim of this research is to design, implement and verify that the Technology Acceptance Model (TAM) can be employed to measure and explain the acceptance of mobile technology and "apps" within Medical Education. The methodology was based on a survey distributed to students and medical professionals from University of Salamanca. This model explains 46.7% of behavioral intention to use mobile devise or "apps" for learning and will help us to justify and understand the current situation of introducing "apps" into the Medical School curriculum. PMID:26411928

  11. An Empirical Assessment of a Technology Acceptance Model for Apps in Medical Education.

    PubMed

    Briz-Ponce, Laura; García-Peñalvo, Francisco José

    2015-11-01

    The evolution and the growth of mobile applications ("apps") in our society is a reality. This general trend is still upward and the app use has also penetrated the medical education community. However, there is a lot of unawareness of the students' and professionals' point of view about introducing "apps" within Medical School curriculum. The aim of this research is to design, implement and verify that the Technology Acceptance Model (TAM) can be employed to measure and explain the acceptance of mobile technology and "apps" within Medical Education. The methodology was based on a survey distributed to students and medical professionals from University of Salamanca. This model explains 46.7% of behavioral intention to use mobile devise or "apps" for learning and will help us to justify and understand the current situation of introducing "apps" into the Medical School curriculum.

  12. In search of an animal model for postmenopausal diseases.

    PubMed

    Thorndike, E A; Turner, A S

    1998-04-16

    The purpose of this review is to discuss the use of the aged ovariectomized ewe as a cost-effective large animal model to study coronary artery disease (CAD), osteoporosis, osteoarthritis (OA), and oral bone loss--conditions seen after menopause. Earlier studies from our laboratory showed a significant decline in the bone mineral density (BMD) of the iliac crest following ovariectomy in sheep, while subsequent studies demonstrated decreased bone loss (measured by dual energy X-ray absorptiometry (DXA)) in the lumbar vertebrae following ovariectomy. We examined the effects of estrogen deficiency and estrogen therapy on the terminal aorta of the aged ovariectomized (OVX) ewes and demonstrated subintimal thickening in the distal aorta of animals that were estrogen deficient when compared to the control groups. A popular model to study OA is the knee joint of sheep following medial or lateral meniscus removal combined with exercise, but there is a need for an estrogen-deficient large animal model of OA to study articular cartilage changes occurring after menopause. We saw an effect of ovariectomy on the biomechanical properties (aggregate modulus and shear modulus) of articular cartilage. Estrogen deficiency had a detrimental effect on the articular cartilage of the knee even though the cartilage of the OVX animals appeared grossly normal. In another study, 13.5 months following ovariectomy, we found an increase in estrogen receptor binding capacity of the articular cartilage suggesting that articular cartilage is a sex-hormone sensitive tissue. There is intense interest in the correlation between systemic osteoporosis and bone loss of the mandible and maxilla. We studied mandibular bone loss in OVX sheep using DXA. The mean BMD of the OVX group versus sham and estradiol-treated animals was lower, indicating that systemic bone loss in OVX ewes may be accompanied by oral bone loss. Coronary artery disease, osteoporosis, osteoarthritis (OA) and oral bone loss all have a

  13. Longitudinal functional magnetic resonance imaging in animal models.

    PubMed

    Silva, Afonso C; Liu, Junjie V; Hirano, Yoshiyuki; Leoni, Renata F; Merkle, Hellmut; Mackel, Julie B; Zhang, Xian Feng; Nascimento, George C; Stefanovic, Bojana

    2011-01-01

    Functional magnetic resonance imaging (fMRI) has had an essential role in furthering our understanding of brain physiology and function. fMRI techniques are nowadays widely applied in neuroscience research, as well as in translational and clinical studies. The use of animal models in fMRI studies has been fundamental in helping elucidate the mechanisms of cerebral blood-flow regulation, and in the exploration of basic neuroscience questions, such as the mechanisms of perception, behavior, and cognition. Because animals are inherently non-compliant, most fMRI performed to date have required the use of anesthesia, which interferes with brain function and compromises interpretability and applicability of results to our understanding of human brain function. An alternative approach that eliminates the need for anesthesia involves training the animal to tolerate physical restraint during the data acquisition. In the present chapter, we review these two different approaches to obtaining fMRI data from animal models, with a specific focus on the acquisition of longitudinal data from the same subjects.

  14. Sex Differences in Animal Models: Focus on Addiction.

    PubMed

    Becker, Jill B; Koob, George F

    2016-04-01

    The purpose of this review is to discuss ways to think about and study sex differences in preclinical animal models. We use the framework of addiction, in which animal models have excellent face and construct validity, to illustrate the importance of considering sex differences. There are four types of sex differences: qualitative, quantitative, population, and mechanistic. A better understanding of the ways males and females can differ will help scientists design experiments to characterize better the presence or absence of sex differences in new phenomena that they are investigating. We have outlined major quantitative, population, and mechanistic sex differences in the addiction domain using a heuristic framework of the three established stages of the addiction cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Female rats, in general, acquire the self-administration of drugs and alcohol more rapidly, escalate their drug taking with extended access more rapidly, show more motivational withdrawal, and (where tested in animal models of "craving") show greater reinstatement. The one exception is that female rats show less motivational withdrawal to alcohol. The bases for these quantitative sex differences appear to be both organizational, in that estradiol-treated neonatal animals show the male phenotype, and activational, in that the female phenotype depends on the effects of gonadal hormones. In animals, differences within the estrous cycle can be observed but are relatively minor. Such hormonal effects seem to be most prevalent during the acquisition of drug taking and less influential once compulsive drug taking is established and are linked largely to progesterone and estradiol. This review emphasizes not only significant differences in the phenotypes of females and males in the domain of addiction but emphasizes the paucity of data to date in our understanding of those differences.

  15. Sex Differences in Animal Models: Focus on Addiction.

    PubMed

    Becker, Jill B; Koob, George F

    2016-04-01

    The purpose of this review is to discuss ways to think about and study sex differences in preclinical animal models. We use the framework of addiction, in which animal models have excellent face and construct validity, to illustrate the importance of considering sex differences. There are four types of sex differences: qualitative, quantitative, population, and mechanistic. A better understanding of the ways males and females can differ will help scientists design experiments to characterize better the presence or absence of sex differences in new phenomena that they are investigating. We have outlined major quantitative, population, and mechanistic sex differences in the addiction domain using a heuristic framework of the three established stages of the addiction cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Female rats, in general, acquire the self-administration of drugs and alcohol more rapidly, escalate their drug taking with extended access more rapidly, show more motivational withdrawal, and (where tested in animal models of "craving") show greater reinstatement. The one exception is that female rats show less motivational withdrawal to alcohol. The bases for these quantitative sex differences appear to be both organizational, in that estradiol-treated neonatal animals show the male phenotype, and activational, in that the female phenotype depends on the effects of gonadal hormones. In animals, differences within the estrous cycle can be observed but are relatively minor. Such hormonal effects seem to be most prevalent during the acquisition of drug taking and less influential once compulsive drug taking is established and are linked largely to progesterone and estradiol. This review emphasizes not only significant differences in the phenotypes of females and males in the domain of addiction but emphasizes the paucity of data to date in our understanding of those differences. PMID:26772794

  16. A comprehensive examination of the model underlying acceptance and commitment therapy for chronic pain.

    PubMed

    Vowles, Kevin E; Sowden, Gail; Ashworth, Julie

    2014-05-01

    The therapeutic model underlying Acceptance and Commitment Therapy (ACT) is reasonably well-established as it applies to chronic pain. Several studies have examined measures of single ACT processes, or subsets of processes, and have almost uniformly indicated reliable relations with patient functioning. To date, however, no study has performed a comprehensive examination of the entire ACT model, including all of its component processes, as it relates to functioning. The present study performed this examination in 274 individuals with chronic pain presenting for an assessment appointment. Participants completed a battery of self-report questionnaires, assessing multiple aspects of the ACT model, as well as pain intensity, disability, and emotional distress. Initial exploratory factor analyses examined measures of the ACT model and measures of patient functioning separately with each analysis identifying three factors. Next, the fit of a model including ACT processes on the one hand and patient functioning on the other was examined using Structural Equation Modeling. Overall model fit was acceptable and indicated moderate correlations among the ACT processes themselves, as well as significant relations with pain intensity, emotional distress, and disability. These analyses build on the existing literature by providing, to our knowledge, the most comprehensive evaluation of the ACT theoretical model in chronic pain to date.

  17. New alternative to animal models for surgical training.

    PubMed

    Aboud, Emad; Suarez, Carlos Ernesto; Al-Mefty, Ossama; Yasargil, M Gazi

    2004-06-01

    Laboratory training models are essential for developing and refining surgical skills, especially in microsurgery. A perfect training model is the one that can provide the same situation during surgery, in the same anatomy; the closer to live surgery the model is, the greater the benefit. The lack of an accurate vascular model has sometimes necessitated the use of live models when bleeding, and vascular liquid filling is desired for optional learning. We developed a new model utilising human cadavers that can replace the use of live anaesthetised animals for surgical training. The vessels in a cadaveric specimen were connected to artificial blood reservoirs. The arterial side was connected to a pump to provide pulsating pressure inside the arteries, while the venous side was kept under static pressure that applied to the reservoir. This method provides a condition that simulates live surgery in terms of bleeding, pulsation and liquid filling of the vascular tree. It is an excellent alternative model and can be applied to the whole cadaver or to a particular cadaveric specimen (head, arm, leg) or to an isolated organ. It is distinctive and of a great practical value for training in a wide range of surgical procedures, Utilising this technique could forever eliminate the use of live anaesthetised animals for surgical training. The model and device are patent pending application no. 10/339,053. PMID:23581125

  18. Animal models of social contact and drug self-administration.

    PubMed

    Strickland, Justin C; Smith, Mark A

    2015-09-01

    Social learning theories of drug abuse propose that individuals imitate drug use behaviors modeled by social peers, and that these behaviors are selectively reinforced and/or punished depending on group norms. Historically, animal models of social influence have focused on distal factors (i.e., those factors outside the drug-taking context) in drug self-administration studies. Recently, several investigators have developed novel models, or significantly modified existing models, to examine the role of proximal factors (i.e., those factors that are immediately present at the time of drug taking) on measures of drug self-administration. Studies using these newer models have revealed several important conclusions regarding the effects of social learning on drug abuse: 1) the presence of a social partner influences drug self-administration, 2) the behavior of a social partner determines whether social contact will increase or decrease drug intake, and 3) social partners can model and imitate specific patterns of drug self-administration. These findings are congruent with those obtained in the human laboratory, providing support for the cross-species generality and validity of these preclinical models. This mini-review describes in detail some of the preclinical animal models used to study social contact and drug self-administration to guide future research on social learning and drug abuse.

  19. Animal Models of Social Contact and Drug Self-Administration

    PubMed Central

    Strickland, Justin C.; Smith, Mark A.

    2015-01-01

    Social learning theories of drug abuse propose that individuals imitate drug use behaviors modeled by social peers, and that these behaviors are selectively reinforced and/or punished depending on group norms. Historically, animal models of social influence have focused on distal factors (i.e., those factors outside the drug-taking context) in drug self-administration studies. Recently, several investigators have developed novel models, or significantly modified existing models, to examine the role of proximal factors (i.e., those factors that are immediately present at the time of drug taking) on measures of drug self-administration. Studies using these newer models have revealed several important conclusions regarding the effects of social learning on drug abuse: 1) the presence of a social partner influences drug self-administration, 2) the behavior of a social partner determines whether social contact will increase or decrease drug intake, and 3) social partners can model and imitate specific patterns of drug self-administration. These findings are congruent with those obtained in the human laboratory, providing support for the cross-species generality and validity of these preclinical models. This mini-review describes in detail some of the preclinical animal models used to study social contact and drug self-administration to guide future research on social learning and drug abuse. PMID:26159089

  20. Animal models of systemic sclerosis: their utility and limitations

    PubMed Central

    Artlett, Carol M

    2014-01-01

    Without doubt, animal models have provided significant insights into our understanding of the rheumatological diseases; however, no model has accurately replicated all aspects of any autoimmune disease. Recent years have seen a plethora of knockouts and transgenics that have contributed to our knowledge of the initiating events of systemic sclerosis, an autoimmune disease. In this review, the focus is on models of systemic sclerosis and how they have progressed our understanding of fibrosis and vasculopathy, and whether they are relevant to the pathogenesis of systemic sclerosis.

  1. Neural models on temperature regulation for cold-stressed animals

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.

    1975-01-01

    The present review evaluates several assumptions common to a variety of current models for thermoregulation in cold-stressed animals. Three areas covered by the models are discussed: signals to and from the central nervous system (CNS), portions of the CNS involved, and the arrangement of neurons within networks. Assumptions in each of these categories are considered. The evaluation of the models is based on the experimental foundations of the assumptions. Regions of the nervous system concerned here include the hypothalamus, the skin, the spinal cord, the hippocampus, and the septal area of the brain.

  2. Behavioral impairments in animal models for zinc deficiency.

    PubMed

    Hagmeyer, Simone; Haderspeck, Jasmin Carmen; Grabrucker, Andreas Martin

    2014-01-01

    Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies. PMID:25610379

  3. Neural circuit dysfunction in schizophrenia: Insights from animal models.

    PubMed

    Sigurdsson, T

    2016-05-01

    Despite decades of research, the neural circuit abnormalities underlying schizophrenia remain elusive. Although studies on schizophrenia patients have yielded important insights they have not been able to fully reveal the details of how neural circuits are disrupted in the disease, which is essential for understanding its pathophysiology and developing new treatment strategies. Animal models of schizophrenia are likely to play an important role in this effort. Such models allow neural circuit dysfunction to be investigated in detail and the role of risk factors and pathophysiological mechanisms to be experimentally assessed. The goal of this review is to summarize what we have learned from electrophysiological studies that have examined neural circuit function in animal models of schizophrenia. Although these studies have revealed diverse manifestations of neural circuit dysfunction spanning multiple levels of analysis, common themes have nevertheless emerged across different studies and animal models, revealing a core set of neural circuit abnormalities. These include an imbalance between excitation and inhibition, deficits in synaptic plasticity, disruptions in local and long-range synchrony and abnormalities in dopaminergic signaling. The relevance of these findings to the pathophysiology of the disease is discussed, as well as outstanding questions for future research.

  4. Microscopic transport model animation visualisation on KML base

    NASA Astrophysics Data System (ADS)

    Yatskiv, I.; Savrasovs, M.

    2012-10-01

    By reading classical literature devoted to the simulation theory it could be found that one of the greatest possibilities of simulation is the ability to present processes inside the system by animation. This gives to the simulation model additional value during presentation of simulation results for the public and authorities who are not familiar enough with simulation. That is why most of universal and specialised simulation tools have the ability to construct 2D and 3D representation of the model. Usually the development of such representation could take much time and there must be put a lot forces into creating an adequate 3D representation of the model. For long years such well-known microscopic traffic flow simulation software tools as VISSIM, AIMSUN and PARAMICS have had a possibility to produce 2D and 3D animation. But creation of realistic 3D model of the place where traffic flows are simulated, even in these professional software tools it is a hard and time consuming action. The goal of this paper is to describe the concepts of use the existing on-line geographical information systems for visualisation of animation produced by simulation software. For demonstration purposes the following technologies and tools have been used: PTV VISION VISSIM, KML and Google Earth.

  5. Behavioral impairments in animal models for zinc deficiency

    PubMed Central

    Hagmeyer, Simone; Haderspeck, Jasmin Carmen; Grabrucker, Andreas Martin

    2015-01-01

    Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies. PMID:25610379

  6. Results of an emergency response atmospheric dispersion model comparison using a state accepted statistical protocol

    SciTech Connect

    Ciolek, J.T. Jr.

    1993-10-01

    The Rocky Flats Plant, located approximately 26 km northwest of downtown Denver, Colorado, has developed an emergency response atmospheric dispersion model for complex terrain applications. Plant personnel would use the model, known as the Terrain-Responsive Atmospheric Code (TRAC) (Hodgin 1985) to project plume impacts and provide off-site protective action recommendations to the State of Colorado should a hazardous material release occur from the facility. The Colorado Department of Health (CDH) entered into an interagency agreement with the Rocky Flats Plant prime contractor, EG&G Rocky Flats, and the US Department of Energy to evaluate TRAC as an acceptable emergency response tool. After exhaustive research of similar evaluation processes from other emergency response and regulatory organizations, the interagency committee devised a formal acceptance process. The process contains an evaluation protocol (Hodgin and Smith 1992), descriptions of responsibilities, an identified experimental data set to use in the evaluation, and judgment criteria for model acceptance. The evaluation protocol is general enough to allow for different implementations. This paper explains one implementation, shows protocol results for a test case, and presents results of a comparison between versions of TRAC with different wind Field codes: a two dimensional mass consistent code called WINDS (Fosberg et al. 1976) that has been extended to three dimensions, and a fully 3 dimensional mass conserving code called NUATMOS (Ross and Smith 1987, Ross et al. 1988).

  7. Human task animation from performance models and natural language input

    NASA Technical Reports Server (NTRS)

    Esakov, Jeffrey; Badler, Norman I.; Jung, Moon

    1989-01-01

    Graphical manipulation of human figures is essential for certain types of human factors analyses such as reach, clearance, fit, and view. In many situations, however, the animation of simulated people performing various tasks may be based on more complicated functions involving multiple simultaneous reaches, critical timing, resource availability, and human performance capabilities. One rather effective means for creating such a simulation is through a natural language description of the tasks to be carried out. Given an anthropometrically-sized figure and a geometric workplace environment, various simple actions such as reach, turn, and view can be effectively controlled from language commands or standard NASA checklist procedures. The commands may also be generated by external simulation tools. Task timing is determined from actual performance models, if available, such as strength models or Fitts' Law. The resulting action specification are animated on a Silicon Graphics Iris workstation in real-time.

  8. Exploring host–microbiota interactions in animal models and humans

    PubMed Central

    Kostic, Aleksandar D.; Howitt, Michael R.; Garrett, Wendy S.

    2013-01-01

    The animal and bacterial kingdoms have coevolved and coadapted in response to environmental selective pressures over hundreds of millions of years. The meta'omics revolution in both sequencing and its analytic pipelines is fostering an explosion of interest in how the gut microbiome impacts physiology and propensity to disease. Gut microbiome studies are inherently interdisciplinary, drawing on approaches and technical skill sets from the biomedical sciences, ecology, and computational biology. Central to unraveling the complex biology of environment, genetics, and microbiome interaction in human health and disease is a deeper understanding of the symbiosis between animals and bacteria. Experimental model systems, including mice, fish, insects, and the Hawaiian bobtail squid, continue to provide critical insight into how host–microbiota homeostasis is constructed and maintained. Here we consider how model systems are influencing current understanding of host–microbiota interactions and explore recent human microbiome studies. PMID:23592793

  9. [Obstruction of the upper airways in humans and animal models].

    PubMed

    Schulz, R

    2010-07-01

    Obstructive sleep apnea (OSA) is caused by repetitive collapse of a narrow upper airway during sleep with the main risk factor being obesity. Apneas are followed by hypoxia, sympathetic activation, intrathoracic pressure swings and arousals. In most animal studies, only the cyclical pattern of hypoxia characteristic of OSA is simulated, however, more complex models have also been developed which additionally reflect the other pathophysiological changes associated with sleep-disordered breathing. These models have contributed to a deeper understanding of the cardiovascular and metabolic consequences of OSA. From other experiments the concept of the pharynx behaving like a collapsible tube, i. e. a Starling resistor, has emerged. Finally, the neurotransmitter modulation of upper airway muscle tone has been elucidated by using IN VIVO microdialysis of the caudal medulla of rats. It is hoped that findings from animal studies will in the future impact on the management of patients with OSA, in particular if they are non-compliant with CPAP therapy. PMID:20632239

  10. Animal models for influenza virus pathogenesis, transmission, and immunology

    PubMed Central

    Thangavel, Rajagowthamee R.; Bouvier, Nicole M.

    2014-01-01

    In humans, infection with an influenza A or B virus manifests typically as an acute and self-limited upper respiratory tract illness characterized by fever, cough, sore throat, and malaise. However, influenza can present along a broad spectrum of disease, ranging from sub-clinical or even asymptomatic infection to a severe primary viral pneumonia requiring advanced medical supportive care. Disease severity depends upon the virulence of the influenza virus strain and the immune competence and previous influenza exposures of the patient. Animal models are used in influenza research not only to elucidate the viral and host factors that affect influenza disease outcomes in and spread among susceptible hosts, but also to evaluate interventions designed to prevent or reduce influenza morbidity and mortality in man. This review will focus on the three animal models currently used most frequently in influenza virus research -- mice, ferrets, and guinea pigs -- and discuss the advantages and disadvantages of each. PMID:24709389

  11. On numerical modeling of animal swimming and flight

    NASA Astrophysics Data System (ADS)

    Deng, Hong-Bin; Xu, Yuan-Qing; Chen, Duan-Duan; Dai, Hu; Wu, Jian; Tian, Fang-Bao

    2013-12-01

    Aquatic and aerial animals have developed their superior and complete mechanisms of swimming and flight. These mechanisms bring excellent locomotion performances to natural creatures, including high efficiency, long endurance ability, high maneuverability and low noise, and can potentially provide inspiration for the design of the man-made vehicles. As an efficient research approach, numerical modeling becomes more and more important in studying the mechanisms of swimming and flight. This review is focused on assessing the recent progress in numerical techniques of solving animal swimming and flight problems. According to the complexity of the problems considered, numerical studies are classified into five stages, of which the main characteristics and the numerical strategies are described and discussed. In addition, the body-conformal mesh, Cartesian-mesh, overset-grid, and meshfree methods are briefly introduced. Finally, several open issues in numerical modeling in this field are highlighted.

  12. AN ANIMAL MODEL OF A BEHAVIORAL INTERVENTION FOR DEPRESSION

    PubMed Central

    Pollak, Daniela D.; Monje, Francisco J.; Zuckerman, Lee; Denny, Christine A.; Drew, Michael R.; Kandel, Eric R.

    2008-01-01

    Although conditioned inhibition of fear (or learned safety) is a learning process critical for preventing chronic stress, a predisposing factor for depression and other psychopathologies, little is known about its functional purposes or molecular mechanisms. To obtain better insight into learned safety, we investigated its behavioral and molecular characteristics and found that it acts as a behavioral antidepressant in two animal models. Learned safety promotes the survival of newborn cells in the dentate gyrus of the hippocampus, while its antidepressant effect is abolished in mice with ablated hippocampal neurogenesis. Learned safety also increases the expression of BDNF in the hippocampus and leads to down-regulation of genes involved in the dopaminergic and neuropeptidergic but not the serotonergic system, in the basolateral amygdala. These data suggest that learned safety is an animal model of a behavioral antidepressant that shares some neuronal hallmarks of pharmacological antidepressants, but is mediated by different molecular pathways. PMID:18940595

  13. A silicon early visual system as a model animal.

    PubMed

    Delbrück, Tobi; Liu, Shih-Chii

    2004-01-01

    Examples that show the transfer of our basic knowledge of brain function into practical electronic models are rare. Here we present a user-friendly silicon model of the early visual system that contributes to animal welfare. The silicon chip emulates the neurons in the visual system by using analog Very Large Scale Integration (aVLSI) circuits. It substitutes for a live animal in experiment design and lecture demonstrations. The neurons on this chip display properties that are central to biological vision: receptive fields, spike coding, adaptation, band-pass filtering, and complementary signaling. Unlike previous laboratory devices whose complexity was limited by the use of discrete components on printed circuit boards, this battery-powered chip is a self-contained patch of the visual system. The realistic responses of the chip's cells and the self-contained adjustment-free correct operation of the chip suggest the possibility of implementation of similar circuits for visual prosthetics.

  14. Relevance of animal models to human tardive dyskinesia

    PubMed Central

    2012-01-01

    Tardive dyskinesia remains an elusive and significant clinical entity that can possibly be understood via experimentation with animal models. We conducted a literature review on tardive dyskinesia modeling. Subchronic antipsychotic drug exposure is a standard approach to model tardive dyskinesia in rodents. Vacuous chewing movements constitute the most common pattern of expression of purposeless oral movements and represent an impermanent response, with individual and strain susceptibility differences. Transgenic mice are also used to address the contribution of adaptive and maladaptive signals induced during antipsychotic drug exposure. An emphasis on non-human primate modeling is proposed, and past experimental observations reviewed in various monkey species. Rodent and primate models are complementary, but the non-human primate model appears more convincingly similar to the human condition and better suited to address therapeutic issues against tardive dyskinesia. PMID:22404856

  15. Animal models of osteoarthritis in an era of molecular biology.

    PubMed

    Bendele, A M

    2002-12-01

    Animal models of osteoarthritis (OA) are used to study the pathogenesis of cartilage degeneration and to evaluate potential anti-arthritic drugs for clinical use. In general, these models fall into 2 categories, spontaneous and induced (surgical instability or genetic manipulation). Animal models of naturally occurring OA occur in knee joints of guinea pigs, mice and Syrian hamsters. Commonly utilized surgical instability models include medial meniscal tear in guinea pigs and rats, medial or lateral partial meniscectomy in rabbits, medial partial or total meniscectomy or anterior cruciate transection in dogs. Transgenic models have been developed in mice. These models all have potential use in the study of molecular mechanisms associated with OA development via use of immunohistochemistry, biochemistry and molecular probes to identify altered matrix molecules at different stages in disease progression. Testing of specific types of inhibitors developed through evaluation of matrix changes in the disease process will ultimately help identify key processes which initiate and perpetuate the disease and will lead to discovery of new disease modifying pharmaceutical agents for OA patients. This paper will focus on the discussion of several models which are likely to be useful in the molecular dissection of processes involved in cartilage degeneration. PMID:15758375

  16. Applying the Extended Technology Acceptance Model to the Use of Clickers in Student Learning: Some Evidence from Macroeconomics Classes

    ERIC Educational Resources Information Center

    Wu, Xiaoyu; Gao, Yuan

    2011-01-01

    This paper applies the extended technology acceptance model (exTAM) in information systems research to the use of clickers in student learning. The technology acceptance model (TAM) posits that perceived ease of use and perceived usefulness of technology influence users' attitudes toward using and intention to use technology. Research subsequent…

  17. The Acceptance Model of Intuitive Eating: A Comparison of Women in Emerging Adulthood, Early Adulthood, and Middle Adulthood

    ERIC Educational Resources Information Center

    Augustus-Horvath, Casey L.; Tylka, Tracy L.

    2011-01-01

    The acceptance model of intuitive eating (Avalos & Tylka, 2006) posits that body acceptance by others helps women appreciate their body and resist adopting an observer's perspective of their body, which contribute to their eating intuitively/adaptively. We extended this model by integrating body mass index (BMI) into its structure and…

  18. Animal models of tic disorders: A translational perspective

    PubMed Central

    Godar, Sean C.; Mosher, Laura J.; Di Giovanni, Giuseppe; Bortolato, Marco

    2014-01-01

    Tics are repetitive, sudden movements and/or vocalizations, typically enacted as maladaptive responses to intrusive premonitory urges. The most severe tic disorder, Tourette syndrome (TS), is a childhood-onset condition featuring multiple motor and at least one phonic tic for a duration longer than 1 year. The pharmacological treatment of TS is mainly based on antipsychotic agents; while these drugs are often effective in reducing tic severity and frequency, their therapeutic compliance is limited by serious motor and cognitive side effects. The identification of novel therapeutic targets and development of better treatments for tic disorders is conditional on the development of animal models with high translational validity. In addition, these experimental tools can prove extremely useful to test hypotheses on the etiology and neurobiological bases of TS and related conditions. In recent years, the translational value of these animal models has been enhanced, thanks to a significant re-organization of our conceptual framework of neuropsychiatric disorders, with a greater focus on endophenotypes and quantitative indices, rather than qualitative descriptors. Given the complex and multifactorial nature of TS and other tic disorders, the selection of animal models that can appropriately capture specific symptomatic aspects of these conditions can pose significant theoretical and methodological challenges. In this article, we will review the state of the art on the available animal models of tic disorders, based on genetic mutations, environmental interventions as well as pharmacological manipulations. Furthermore, we will outline emerging lines of translational research showing how some of these experimental preparations have led to significant progress in the identification of novel therapeutic targets for tic disorders. PMID:25244952

  19. The Pleurodele, an animal model for space biology studies

    NASA Astrophysics Data System (ADS)

    Gualandris, L.; Grinfeld, S.; Foulquier, F.; Kan, P.; Duprat, A. M.

    Pleurodeles waltl, an Urodele amphibian is proposed as a model for space biology studies. Our laboratory is developing three types of experiments in space using this animal: 1) in vivo fertilization and development (``FERTILE'' project); 2) influence of microgravity and space radiation on the organization and preservation of spacialized structures in the neurons and muscle cells (in vitro; ``CELIMENE'' PROJECT); 3) influence of microgravity on tissue regeneration (muscle, bone, epidermis and spinal cord).

  20. Animal models of Middle East Respiratory Syndrome coronavirus infection

    PubMed Central

    van Doremalen, Neeltje; Munster, Vincent J.

    2015-01-01

    The emergence of the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 marked the second time that a new, highly pathogenic coronavirus has emerged in the human population in the 21st century. In this review, we discuss the current state of knowledge of animal models of MERS-CoV infection. Commonly used laboratory animal species such as Syrian hamsters, mice and ferrets are not susceptible to MERS-CoV, due to differences in the MERS-CoV receptor dipeptyl peptidase 4 (DPP4). The initially developed animal models comprise two nonhuman primate species, the rhesus macaque and the common marmoset. Rhesus macaques develop a mild to moderate respiratory disease upon inoculation, reminiscent of milder MERS cases, whereas marmosets develop a moderate to severe respiratory disease, recapitulating the severe disease observed in some patients. Dromedary camels, considered to be the reservoir for MERS-CoV, develop a mild upper respiratory tract infection with abundant viral shedding. Although normal mice are not susceptible to MERS-CoV, expression of the human DPP4 (hDPP4) overcomes the lack of susceptibility. Transgenic hDPP4 mice develop severe and lethal respiratory disease upon inoculation with MERS-CoV. These hDPP4 transgenic mice are potentially the ideal first line animal model for efficacy testing of therapeutic and prophylactic countermeasures. Further characterization of identified countermeasures would ideally be performed in the common marmoset model, due to the more severe disease outcome. This article forms part of a symposium in Antiviral Research on “From SARS to MERS: research on highly pathogenic human coronaviruses.” PMID:26192750

  1. Animal models of tic disorders: a translational perspective.

    PubMed

    Godar, Sean C; Mosher, Laura J; Di Giovanni, Giuseppe; Bortolato, Marco

    2014-12-30

    Tics are repetitive, sudden movements and/or vocalizations, typically enacted as maladaptive responses to intrusive premonitory urges. The most severe tic disorder, Tourette syndrome (TS), is a childhood-onset condition featuring multiple motor and at least one phonic tic for a duration longer than 1 year. The pharmacological treatment of TS is mainly based on antipsychotic agents; while these drugs are often effective in reducing tic severity and frequency, their therapeutic compliance is limited by serious motor and cognitive side effects. The identification of novel therapeutic targets and development of better treatments for tic disorders is conditional on the development of animal models with high translational validity. In addition, these experimental tools can prove extremely useful to test hypotheses on the etiology and neurobiological bases of TS and related conditions. In recent years, the translational value of these animal models has been enhanced, thanks to a significant re-organization of our conceptual framework of neuropsychiatric disorders, with a greater focus on endophenotypes and quantitative indices, rather than qualitative descriptors. Given the complex and multifactorial nature of TS and other tic disorders, the selection of animal models that can appropriately capture specific symptomatic aspects of these conditions can pose significant theoretical and methodological challenges. In this article, we will review the state of the art on the available animal models of tic disorders, based on genetic mutations, environmental interventions as well as pharmacological manipulations. Furthermore, we will outline emerging lines of translational research showing how some of these experimental preparations have led to significant progress in the identification of novel therapeutic targets for tic disorders.

  2. A novel animal model of dysphagia following stroke.

    PubMed

    Sugiyama, Naoto; Nishiyama, Eiji; Nishikawa, Yukitoshi; Sasamura, Takashi; Nakade, Shinji; Okawa, Katsumasa; Nagasawa, Tadashi; Yuki, Akane

    2014-02-01

    Patients who have an ischemic stroke are at high risk of swallowing disorders. Aspiration due to swallowing disorders, specifically delayed trigger of the pharyngeal stage of swallowing, predisposes such patients to pneumonia. In the present study, we evaluated swallowing reflex in a rat model of transient middle cerebral artery occlusion (tMCAO), which is one of the most common experimental animal models of cerebral ischemia, in order to develop a novel animal model of dysphagia following ischemic stroke. A swallowing reflex was elicited by a 10-s infusion of distilled water (DW) to the pharyngolaryngeal region in the tMCAO rat model. Swallowing reflex was estimated using the electromyographic activity of the mylohyoid muscle from 1 to 3 weeks after surgery. Two weeks after tMCAO, the number of swallows significantly decreased and the onset latency of the first swallow was prolonged compared with that of the sham group. The number of swallows in rats significantly increased by infusions of 10 mM citric acid and 0.6 μM capsaicin to the pharyngolaryngeal region compared with the number from infusion of DW. It has been reported that sensory stimulation of the pharyngolaryngeal region with citric acid, capsaicin, and L-menthol ameliorates hypofunction of pharyngeal-stage swallowing in dysphagia patients. Therefore, the tMCAO rat model may show some of the symptoms of pharyngeal-stage swallowing disorders, similar to those in patients with ischemic stroke. This rat tMCAO model has the potential to become a novel animal model of dysphagia following stroke that is useful for development of therapeutic methods and drugs.

  3. Transgene-like animal models using intronic microRNAs.

    PubMed

    Lin, Shi-Lung; Chang, Shin-Ju E; Ying, Shao-Yao

    2013-01-01

    Transgenic animal models are valuable tools for testing gene functions and drug mechanisms in vivo. They are also the best similitude for a human body for etiological and pathological research of diseases. All pharmaceutically developed drugs must be proven to be safe and effective in animals before approval by the Food and Drug Administration to be used in clinical trials. To this end, the transgenic animal models of diseases serve as the front line of drug evaluation. However, there is currently no transgenic animal model for microRNA (miRNA) research. miRNAs, small single-stranded regulatory RNAs capable of silencing intracellular gene transcripts (mRNAs) that contain either complete or partial complementarity to the miRNA, are useful for the design of new therapies against cancer polymorphism and viral mutation. Recently, varieties of natural miRNAs have been found to derived from hairpin-like RNA precursors in almost all eukaryotes, including yeast (Schizosaccharomyces pombe), plant (Arabidopsis spp.), nematode (Caenorhabditis elegans), fly (Drosophila melanogaster), fish, mouse, and human, involving intracellular defense against viral infections and regulation of certain gene expressions during development. To facilitate the miRNA research in vivo, we have developed a state-of-the-art transgenic strategy for silencing specific genes in zebrafish, chicken, and mouse, using intronic miRNAs. By insertion of a hairpin-like pre-miRNA structure into the intron region of a gene, we have found that mature miRNAs were successfully transcribed by RNA polymerases type II (Pol II), coexpressed with the encoding gene transcript, and excised out of the encoding gene transcript by natural RNA splicing and processing mechanisms. In conjunction with retroviral transfection systems, the designed hairpin-like pre-miRNA construct was further tested to insert into the intron regions of a cellular gene for tissue-specific expression regulated by the gene promoter. Because the

  4. Animal models of bipolar mania: The past, present and future.

    PubMed

    Logan, R W; McClung, C A

    2016-05-01

    Bipolar disorder (BD) is the sixth leading cause of disability in the world according to the World Health Organization and affects nearly six million (∼2.5% of the population) adults in the United State alone each year. BD is primarily characterized by mood cycling of depressive (e.g., helplessness, reduced energy and activity, and anhedonia) and manic (e.g., increased energy and hyperactivity, reduced need for sleep, impulsivity, reduced anxiety and depression), episodes. The following review describes several animal models of bipolar mania with a focus on more recent findings using genetically modified mice, including several with the potential of investigating the mechanisms underlying 'mood' cycling (or behavioral switching in rodents). We discuss whether each of these models satisfy criteria of validity (i.e., face, predictive, and construct), while highlighting their strengths and limitations. Animal models are helping to address critical questions related to pathophysiology of bipolar mania, in an effort to more clearly define necessary targets of first-line medications, lithium and valproic acid, and to discover novel mechanisms with the hope of developing more effective therapeutics. Future studies will leverage new technologies and strategies for integrating animal and human data to reveal important insights into the etiology, pathophysiology, and treatment of BD.

  5. Animal models of bipolar mania: The past, present and future.

    PubMed

    Logan, R W; McClung, C A

    2016-05-01

    Bipolar disorder (BD) is the sixth leading cause of disability in the world according to the World Health Organization and affects nearly six million (∼2.5% of the population) adults in the United State alone each year. BD is primarily characterized by mood cycling of depressive (e.g., helplessness, reduced energy and activity, and anhedonia) and manic (e.g., increased energy and hyperactivity, reduced need for sleep, impulsivity, reduced anxiety and depression), episodes. The following review describes several animal models of bipolar mania with a focus on more recent findings using genetically modified mice, including several with the potential of investigating the mechanisms underlying 'mood' cycling (or behavioral switching in rodents). We discuss whether each of these models satisfy criteria of validity (i.e., face, predictive, and construct), while highlighting their strengths and limitations. Animal models are helping to address critical questions related to pathophysiology of bipolar mania, in an effort to more clearly define necessary targets of first-line medications, lithium and valproic acid, and to discover novel mechanisms with the hope of developing more effective therapeutics. Future studies will leverage new technologies and strategies for integrating animal and human data to reveal important insights into the etiology, pathophysiology, and treatment of BD. PMID:26314632

  6. Modeling DNA structure and processes through animation and kinesthetic visualizations

    NASA Astrophysics Data System (ADS)

    Hager, Christine

    There have been many studies regarding the effectiveness of visual aids that go beyond that of static illustrations. Many of these have been concentrated on the effectiveness of visual aids such as animations and models or even non-traditional visual aid activities like role-playing activities. This study focuses on the effectiveness of three different types of visual aids: models, animation, and a role-playing activity. Students used a modeling kit made of Styrofoam balls and toothpicks to construct nucleotides and then bond nucleotides together to form DNA. Next, students created their own animation to depict the processes of DNA replication, transcription, and translation. Finally, students worked in teams to build proteins while acting out the process of translation. Students were given a pre- and post-test that measured their knowledge and comprehension of the four topics mentioned above. Results show that there was a significant gain in the post-test scores when compared to the pre-test scores. This indicates that the incorporated visual aids were effective methods for teaching DNA structure and processes.

  7. Facial animation on an anatomy-based hierarchical face model

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Prakash, Edmond C.; Sung, Eric

    2003-04-01

    In this paper we propose a new hierarchical 3D facial model based on anatomical knowledge that provides high fidelity for realistic facial expression animation. Like real human face, the facial model has a hierarchical biomechanical structure, incorporating a physically-based approximation to facial skin tissue, a set of anatomically-motivated facial muscle actuators and underlying skull structure. The deformable skin model has multi-layer structure to approximate different types of soft tissue. It takes into account the nonlinear stress-strain relationship of the skin and the fact that soft tissue is almost incompressible. Different types of muscle models have been developed to simulate distribution of the muscle force on the skin due to muscle contraction. By the presence of the skull model, our facial model takes advantage of both more accurate facial deformation and the consideration of facial anatomy during the interactive definition of facial muscles. Under the muscular force, the deformation of the facial skin is evaluated using numerical integration of the governing dynamic equations. The dynamic facial animation algorithm runs at interactive rate with flexible and realistic facial expressions to be generated.

  8. Theory development in nursing and healthcare informatics: a model explaining and predicting information and communication technology acceptance by healthcare consumers.

    PubMed

    An, Ji-Young; Hayman, Laura L; Panniers, Teresa; Carty, Barbara

    2007-01-01

    About 110 million American adults are looking for health information and services on the Internet. Identification of the factors influencing healthcare consumers' technology acceptance is requisite to understanding their acceptance and usage behavior of online health information and related services. The purpose of this article is to describe the development of the Information and Communication Technology Acceptance Model (ICTAM). From the literature reviewed, ICTAM was developed with emphasis on integrating multidisciplinary perspectives from divergent frameworks and empirical findings into a unified model with regard to healthcare consumers' acceptance and usage behavior of information and services on the Internet.

  9. Predictive animal models of mania: hits, misses and future directions

    PubMed Central

    Young, Jared W; Henry, Brook L; Geyer, Mark A

    2011-01-01

    Mania has long been recognized as aberrant behaviour indicative of mental illness. Manic states include a variety of complex and multifaceted symptoms that challenge clear clinical distinctions. Symptoms include over-activity, hypersexuality, irritability and reduced need for sleep, with cognitive deficits recently linked to functional outcome. Current treatments have arisen through serendipity or from other disorders. Hence, treatments are not efficacious for all patients, and there is an urgent need to develop targeted therapeutics. Part of the drug discovery process is the assessment of therapeutics in animal models. Here we review pharmacological, environmental and genetic manipulations developed to test the efficacy of therapeutics in animal models of mania. The merits of these models are discussed in terms of the manipulation used and the facet of mania measured. Moreover, the predictive validity of these models is discussed in the context of differentiating drugs that succeed or fail to meet criteria as approved mania treatments. The multifaceted symptomatology of mania has not been reflected in the majority of animal models, where locomotor activity remains the primary measure. This approach has resulted in numerous false positives for putative treatments. Recent work highlights the need to utilize multivariate strategies to enable comprehensive assessment of affective and cognitive dysfunction. Advances in therapeutic treatment may depend on novel models developed with an integrated approach that includes: (i) a comprehensive battery of tests for different aspects of mania, (ii) utilization of genetic information to establish aetiological validity and (iii) objective quantification of patient behaviour with translational cross-species paradigms. LINKED ARTICLES This article is part of a themed issue on Translational Neuropharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:21410454

  10. Modelling Facebook Usage among University Students in Thailand: The Role of Emotional Attachment in an Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Teo, Timothy

    2016-01-01

    The aim of this study is to examine the factors that influenced the use of Facebook among university students. Using an extended technology acceptance model (TAM) with emotional attachment (EA) as an external variable, a sample of 498 students from a public-funded Thailand university were surveyed on their responses to five variables hypothesized…

  11. Gene therapy in animal models of autosomal dominant retinitis pigmentosa.

    PubMed

    Rossmiller, Brian; Mao, Haoyu; Lewin, Alfred S

    2012-01-01

    Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success.

  12. [Animal models for assessment of GMO allergenicity: advantages and limitations].

    PubMed

    Adel-Patient, K; Wal, J M

    2004-03-01

    Incidence of IgE-mediated allergic reactions to foods is increasing as well as the severity of associated symptoms and numerous foods are now incriminated, probably in relation with modifications of dietary habits and increased exposure to new or modified food ingredients. Therefore, the introduction on the market of food composed of or derived from genetically modified organisms (GMOs) raised the question of their potential allergenicity. Particularly with regards to the allergenicity of a newly expressed protein, it is necessary to obtain, from several steps in the risk assessment process, a cumulative body of evidence which minimises any uncertainty. This may include the use of animal model despite no fully reliable validated model is available yet. Such animal models should allow to address 3 major issues: Is the novel protein a sensitizer, i.e. does it possess intrinsic properties that allow to sensitize a predisposed individual? Is the protein an elicitor i.e. is it able to elicit an allergic reaction in a sensitised individual? And is the protein an adjuvant, i.e. can it facilitate or enhance the sensitisation to an other protein? Animal models under investigation currently include mice, rats and guinea pigs but models such as dogs and swine also appeared a few years ago. The aim is to mimic the mechanism and characteristics of the sensitisation phase and/or the elicitation phase of the allergic reaction as it occurs in atopic humans. They are necessary because sensitisation studies can obviously not be done in human and because in vitro tests cannot reproduce the complexity of the immune system. We propose a mouse model which mimics both phases of the allergic reaction. It has permitted to evidence that biochemical and clinical manifestations occuring during the active phases of the allergic reaction differ according to the structure of the allergen used for the challenge. This may allow to compare the allergenic potential of a genetically modified protein

  13. Measuring the Moderating Effect of Gender and Age on E-Learning Acceptance in England: A Structural Equation Modeling Approach for an Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Tarhini, Ali; Hone, Kate; Liu, Xiaohui

    2014-01-01

    The success of an e-learning intervention depends to a considerable extent on student acceptance and use of the technology. Therefore, it has become imperative for practitioners and policymakers to understand the factors affecting the user acceptance of e-learning systems in order to enhance the students' learning experience. Based on an extended…

  14. Genetic animal models of dystonia: common features and diversities.

    PubMed

    Richter, Franziska; Richter, Angelika

    2014-10-01

    Animal models are pivotal for studies of pathogenesis and treatment of disorders of the central nervous system which in its complexity cannot yet be modeled in vitro or using computer simulations. The choice of a specific model to test novel therapeutic strategies for a human disease should be based on validity of the model for the approach: does the model reflect symptoms, pathogenesis and treatment response present in human patients? In the movement disorder dystonia, prior to the availability of genetically engineered mice, spontaneous mutants were chosen based on expression of dystonic features, including abnormal muscle contraction, movements and postures. Recent discovery of a number of genes and gene products involved in dystonia initiated research on pathogenesis of the disorder, and the creation of novel models based on gene mutations. Here we present a review of current models of dystonia, with a focus on genetic rodent models, which will likely be first choice in the future either for pathophysiological or for preclinical drug testing or both. In order to help selection of a model depending on expression of a specific feature of dystonia, this review is organized by symptoms and current knowledge of pathogenesis of dystonia. We conclude that albeit there is increasing need for research on pathogenesis of the disease and development of improved models, current models do replicate features of dystonia and are useful tools to develop urgently demanded treatment for this debilitating disorder.

  15. Whole tobacco smoke extracts to model tobacco dependence in animals.

    PubMed

    Brennan, Katharine A; Laugesen, Murray; Truman, Penelope

    2014-11-01

    Smoking tobacco is highly addictive and a leading preventable cause of death. The main addictive constituent is nicotine; consequently it has been administered to laboratory animals to model tobacco dependence. Despite extensive use, this model might not best reflect the powerful nature of tobacco dependence because nicotine is a weak reinforcer, the pharmacology of smoke is complex and non-pharmacological factors have a critical role. These limitations have led researchers to expose animals to smoke via the inhalative route, or to administer aqueous smoke extracts to produce more representative models. The aim was to review the findings from molecular/behavioural studies comparing the effects of nicotine to tobacco/smoke extracts to determine whether the extracts produce a distinct model. Indeed, nicotine and tobacco extracts yielded differential effects, supporting the initiative to use extracts as a complement to nicotine. Of the behavioural tests, intravenous self-administration experiments most clearly revealed behavioural differences between nicotine and extracts. Thus, future applications for use of this behavioural model were proposed that could offer new insights into tobacco dependence.

  16. Animal models of autism spectrum disorders: Information for neurotoxicologists

    PubMed Central

    Halladay, Alycia K.; Amaral, David; Aschner, Michael; Bolivar, Valerie J.; Bowman, Aaron; DiCicco-Bloom, Emanuel; Hyman, Susan L.; Keller, Flavio; Lein, Pamela; Pessah, Isaac; Restifo, Linda; Threadgill, David W.

    2010-01-01

    Recent findings derived from large-scale datasets and biobanks link multiple genes to autism spectrum disorders. Consequently, novel rodent mutants with deletions, truncations and in some cases, overexpression of these candidate genes have been developed and studied both behaviorally and biologically. At the Annual Neurotoxicology Meeting in Rochester, NY in October of 2008, a symposium of clinicians and basic scientists gathered to present the behavioral features of autism, as well as strategies to model those behavioral features in mice and primates. The aim of the symposium was to provide researchers with up-to-date information on both the genetics of autism and how they are used in differing in vivo and in vitro animal models as well as to provide a background on the environmental exposures being tested on several animal models. In addition, researchers utilizing complementary approaches, presented on cell culture, in vitro or more basic models, which target neurobiological mechanisms, including Drosophila. Following the presentation, a panel convened to explore the opportunities and challenges of using model systems to investigate genetic and environment interactions in autism spectrum disorders. The following paper represents a summary of each presentation, as well as the discussion that followed at the end of the symposium. PMID:19596370

  17. Animal models as tools to study the pathophysiology of depression.

    PubMed

    Abelaira, Helena M; Réus, Gislaine Z; Quevedo, João

    2013-01-01

    The incidence of depressive illness is high worldwide, and the inadequacy of currently available drug treatments contributes to the significant health burden associated with depression. A basic understanding of the underlying disease processes in depression is lacking; therefore, recreating the disease in animal models is not possible. Popular current models of depression creatively merge ethologically valid behavioral assays with the latest technological advances in molecular biology. Within this context, this study aims to evaluate animal models of depression and determine which has the best face, construct, and predictive validity. These models differ in the degree to which they produce features that resemble a depressive-like state, and models that include stress exposure are widely used. Paradigms that employ acute or sub-chronic stress exposure include learned helplessness, the forced swimming test, the tail suspension test, maternal deprivation, chronic mild stress, and sleep deprivation, to name but a few, all of which employ relatively short-term exposure to inescapable or uncontrollable stress and can reliably detect antidepressant drug response.

  18. Evaluation of combination therapy in animal models of cerebral ischemia.

    PubMed

    O'Collins, Victoria E; Macleod, Malcolm R; Donnan, Geoffrey A; Howells, David W

    2012-04-01

    Combination therapy has been identified as a promising strategy to improve stroke management. We conducted a systematic review and meta-analysis of evidence from animal models of ischemic stroke to determine whether combining treatments improved efficacy. Multiple databases were searched and data were extracted from focal ischemia experiments comparing control groups, single treatments, and combination treatments. Of 11,430 papers identified, 142 met the inclusion criteria; these tested 126 treatments in 373 experiments using 8,037 animals (I(2)=85 to 96%). Taken together, single treatments reduced infarct size by 20% and improved neurological score by 12% compared with control; a second therapy improved efficacy by an additional 18% and 25%, respectively. Publication bias may affect combination efficacy for infarct size but not neurological score. Combining thrombolysis with other therapies may extend the time window from 4.4 to 8 hours in animal models, although testing beyond 6 hours is required to confirm this. Benefits of additional therapy decreased as the efficacy of the primary treatment increased, with combination efficacy reaching a ceiling at 60% to 80% protection. Combining treatments may bring benefits and extend the time window for treatment. More evidence is needed due to potential publication bias and heterogeneity.

  19. Animal Models, Prophylaxis, and Therapeutics for Arenavirus Infections

    PubMed Central

    Vela, Eric

    2012-01-01

    Arenaviruses are enveloped, bipartite negative single-stranded RNA viruses that can cause a wide spectrum of disease in humans and experimental animals including hemorrhagic fever. The majority of these viruses are rodent-borne and the arenavirus family can be divided into two groups: the Lassa-Lymphocytic choriomeningitis serocomplex and the Tacaribe serocomplex. Arenavirus-induced disease may include characteristic symptoms ranging from fever, malaise, body aches, petechiae, dehydration, hemorrhage, organ failure, shock, and in severe cases death. Currently, there are few prophylactic and therapeutic treatments available for arenavirus-induced symptoms. Supportive care and ribavirin remain the predominant strategies for treating most of the arenavirus-induced diseases. Therefore, efficacy testing of novel therapeutic and prophylactic strategies in relevant animal models is necessary. Because of the potential for person-to-person spread, the ability to cause lethal or debilitating disease in humans, limited treatment options, and potential as a bio-weapon, the development of prophylactics and therapeutics is essential. This article reviews the current arenavirus animal models and prophylactic and therapeutic strategies under development to treat arenavirus infection. PMID:23170184

  20. Collective behavior in animal groups: theoretical models and empirical studies

    PubMed Central

    Giardina, Irene

    2008-01-01

    Collective phenomena in animal groups have attracted much attention in the last years, becoming one of the hottest topics in ethology. There are various reasons for this. On the one hand, animal grouping provides a paradigmatic example of self-organization, where collective behavior emerges in absence of centralized control. The mechanism of group formation, where local rules for the individuals lead to a coherent global state, is very general and transcends the detailed nature of its components. In this respect, collective animal behavior is a subject of great interdisciplinary interest. On the other hand, there are several important issues related to the biological function of grouping and its evolutionary success. Research in this field boasts a number of theoretical models, but much less empirical results to compare with. For this reason, even if the general mechanisms through which self-organization is achieved are qualitatively well understood, a quantitative test of the models assumptions is still lacking. New analysis on large groups, which require sophisticated technological procedures, can provide the necessary empirical data. PMID:19404431

  1. Animal models and different therapies for treatment of retinitis pigmentosa.

    PubMed

    Rivas, Miren Agurtzane; Vecino, Elena

    2009-10-01

    Retinitis pigmentosa (RP) is a heterogeneous group of retinal degenerative diseases initially affecting the rod photoreceptor. Patients present with night blindness, loss of peripheral vision and finally the loss of central vision, as a consequence of death of cone photoreceptors. RP is a genetic disease, showing inheritance of autosomal dominant (AD), autosomal recessive (AR) or X-linked (XL) recessive traits, although some patients have no family history of RP (simplex RP). Many animal models of RP are available and have led to a better understanding of the pathology of the disease, and to the development of therapeutic strategies aimed at curing or slowing down the genetic disorder. In this review, we describe the selected animal models (natural and transgenic) and their phenotypes and genotypes, as well as the advantages and disadvantages of the use of each animal. Also, we look at different therapeutic strategies being studied worldwide and report the latest results. Nevertheless, many obstacles will have to be overcome before most of these strategies can be applied to humans. PMID:19688697

  2. Biochemical correlates in an animal model of depression

    SciTech Connect

    Johnson, J.O.

    1986-01-01

    A valid animal model of depression was used to explore specific adrenergic receptor differences between rats exhibiting aberrant behavior and control groups. Preliminary experiments revealed a distinct upregulation of hippocampal beta-receptors (as compared to other brain regions) in those animals acquiring a response deficit as a result of exposure to inescapable footshock. Concurrent studies using standard receptor binding techniques showed no large changes in the density of alpha-adrenergic, serotonergic, or dopaminergic receptor densities. This led to the hypothesis that the hippocampal beta-receptor in responses deficient animals could be correlated with the behavioral changes seen after exposure to the aversive stimulus. Normalization of the behavior through the administration of antidepressants could be expected to reverse the biochemical changes if these are related to the mechanism of action of antidepressant drugs. This study makes three important points: (1) there is a relevant biochemical change in the hippocampus of response deficient rats which occurs in parallel to a well-defined behavior, (2) the biochemical and behavioral changes are normalized by antidepressant treatments exhibiting both serotonergic and adrenergic mechanisms of action, and (3) the mode of action of antidepressants in this model is probably a combination of serotonergic and adrenergic influences modulating the hippocampal beta-receptor. These results are discussed in relation to anatomical and biochemical aspects of antidepressant action.

  3. Making an animal model for Korean mummy studies.

    PubMed

    Oh, Chang Seok; Shin, Dong Hoon

    2014-01-01

    The recent findings of a series of thorough investigations into Korean mummies notwithstanding, many questions on the exact mechanism of the mummification process remain. For the purposes of a more comprehensive understanding of this mechanism, we employed an animal model involving Sprague-Dawley rats and miniature lime-soil-mixture barrier (LSMB)-surrounded Joseon tombs constructed in our lab. The results showed that long-duration burial in these LSMB tombs successfully induced animal mummification. Indeed, our gross and microscopic examinations confirmed that the rats were perfectly mummified in the manner of actual Korean mummies dating to the Joseon period. In light of the fact that the extent of mummification was not remarkable in other miniature tombs without LSMB, it seemed that the LSMB is somehow closely correlated with mummification in Korea. In the future, use of the present animal models and miniature tombs no doubt will experimentally verify the many possible factors operative in the specific mechanism of mummification in Korea. PMID:25774982

  4. Critical Behavior in Cellular Automata Animal Disease Transmission Model

    NASA Astrophysics Data System (ADS)

    Morley, P. D.; Chang, Julius

    Using cellular automata model, we simulate the British Government Policy (BGP) in the 2001 foot and mouth epidemic in Great Britain. When clinical symptoms of the disease appeared in a farm, there is mandatory slaughter (culling) of all livestock in an infected premise (IP). Those farms in the neighboring of an IP (contiguous premise, CP), are also culled, aka nearest neighbor interaction. Farms where the disease may be prevalent from animal, human, vehicle or airborne transmission (dangerous contact, DC), are additionally culled, aka next-to-nearest neighbor interactions and lightning factor. The resulting mathematical model possesses a phase transition, whereupon if the physical disease transmission kernel exceeds a critical value, catastrophic loss of animals ensues. The nonlocal disease transport probability can be as low as 0.01% per day and the disease can still be in the high mortality phase. We show that the fundamental equation for sustainable disease transport is the criticality equation for neutron fission cascade. Finally, we calculate that the percentage of culled animals that are actually healthy is ≈30%.

  5. Improved animal models for testing gene therapy for atherosclerosis.

    PubMed

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A

    2014-04-01

    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long

  6. Assessment of myocardial angiogenesis and vascularity in small animal models.

    PubMed

    Springer, Matthew L

    2010-01-01

    Therapies that aim to prevent myocardial tissue from dying or to regenerate new myocardium all rely on the preservation or growth of a functional vasculature. The amount of blood that supplies the myocardium is dependent on the number and nature of the microvessels, as well as the ability of the arteries to supply blood and the veins to remove it. All of these factors can be assessed when success of an experimental therapy is being evaluated. Different kinds of information can be obtained from these different parameters, and it is important to understand what each one involves and how it can be misinterpreted. This chapter describes the various approaches to the assessment of vascularity in the heart with a focus on small animal models, dealing both with those approaches that are purely histological endpoint studies and those that are functional measurements in living animals.

  7. Comparative cephalometric study of nasal cavity growth patterns in seven animal models.

    PubMed

    Losken, A; Mooney, M P; Siegel, M I

    1994-01-01

    Although primates have been the craniofacial growth models of choice, recent circumstances have stimulated the search for nonprimate models. In a series of studies we have described changes in various regions of the craniofacial complex for seven commonly used animal models. The present study examined the bony nasal cavity. One hundred and forty-four serial and cross-sectional lateral head x-rays were obtained for unoperated controls from previous growth studies. The sample consisted of data from 26 rats, 21 rabbits, 21 domestic cats, 23 domestic dogs, 17 baboons, 16 rhesus monkeys, and 20 chimpanzees. Comparative human data was taken from the Bolton Standards. The samples were divided into three age categories based on dental and somatic development. Midsagittal nasal cavity measurements included length, height, shape index, and area. Analysis was based on the percent increase in measures from the infant condition. Three major shapes were discerned at adulthood (1) vertical quadrangles (humans and cats); (2) triangles (chimpanzees, rhesus monkeys, and baboons), and (3) horizontal quadrangles (rabbits, rats, and dogs). Results showed that overall shape was best modeled by the chimpanzee and, as a nonprimate model, the laboratory cat. Rabbits and rats also showed similar percent changes for length or height dimensions at different ages, suggesting that these animals may be acceptable, inexpensive alternatives to primates in some experimental situations.

  8. Furthering our understanding of SUDEP: the role of animal models.

    PubMed

    Pansani, Aline P; Colugnati, Diego B; Scorza, Carla A; de Almeida, Antonio-Carlos G; Cavalheiro, Esper A; Scorza, Fulvio A

    2016-05-01

    Sudden and unexpected death in epilepsy (SUDEP) is the most common type of death among patients with epilepsy. Here, we address the importance of the experimental models in search of the mechanisms underlying SUDEP. Most studies have investigated the cardiovascular responses in animal models of epilepsy. However, there are few proposed SUDEP models in literature. Hypoventilation, apnea, respiratory distress, pulmonary hypertension, autonomic dysregulation and arrhythmia are common findings in epilepsy models. Impairments on adenosinergic and serotonergic systems, brainstem spreading depolarization, seizure-activation of neural substrates related to cardiorespiratory control, altered autonomic control, and mutations on sodium and potassium channels are hypothesis suggested. Overall, current research highlights the evident multifactorial nature of SUDEP, which involves acute and chronic aspects ranging from systemic to molecular alterations. Thus, we are convinced that elucidation and prevention of SUDEP can be achieved only through the interaction between basic and clinical science. PMID:27029803

  9. Tissue culture and animal models for hepatitis C virus.

    PubMed

    Pietschmann, Thomas; Bartenschlager, Ralf

    2003-02-01

    In recent years, significant advances have been achieved both in the development of animal- and tissue-culture models for HCV. Among all the new systems, the small animal model based on transgenic mice with chimeric mouse-human livers and the replicon system will presumably have the most profound impact on future HCV research. Yet, in spite of this progress, much more work will be required to optimizse both systems. In case of the mouse model, breeding homozygous Alb-uPa animals is difficult because of the toxicity of the transgene, and the transplantation of primary human hepatocytes into mice a few days after birth is technically challenging. These are immunodeficient, and, therefore, it will be desirable to furnish them with components of the human immune system in order to expand the applicability of this in vivo model to questions related to pathogenesis. Advances in cryopreservation techniques are urgently needed, moreover, as this would improve the availability of primary hepatocytes and in turn also the accessibility of this small animal model. As regards the replicon system, a number of open questions remain that will hopefully be answered by future research. Why, for instance, has replication in cell culture so far been achieved only with genotype 1b isolates, whereas an isolate with proven infectivity derived from genotype 1a failed to replicate in Huh-7 cells? And why can replicons so far be propagated only in this particular cell line? Is this attributable to the lack of certain inhibitory factors, or the presence of specific activators? What are the mechanisms underlying cell-culture adaptation. and what determines whether a certain Huh-7 cell replicates HCV RNA more efficiently? Finally, the replicon system may also lead the way to the development of systems for efficient virus production in cell culture, and ultimately also a permissive cell line. These developments would at last allow us to model the complete viral life cycle, something researchers

  10. Variation transmission model for setting acceptance criteria in a multi-staged pharmaceutical manufacturing process.

    PubMed

    Montes, Richard O

    2012-03-01

    Pharmaceutical manufacturing processes consist of a series of stages (e.g., reaction, workup, isolation) to generate the active pharmaceutical ingredient (API). Outputs at intermediate stages (in-process control) and API need to be controlled within acceptance criteria to assure final drug product quality. In this paper, two methods based on tolerance interval to derive such acceptance criteria will be evaluated. The first method is serial worst case (SWC), an industry risk minimization strategy, wherein input materials and process parameters of a stage are fixed at their worst-case settings to calculate the maximum level expected from the stage. This maximum output then becomes input to the next stage wherein process parameters are again fixed at worst-case setting. The procedure is serially repeated throughout the process until the final stage. The calculated limits using SWC can be artificially high and may not reflect the actual process performance. The second method is the variation transmission (VT) using autoregressive model, wherein variation transmitted up to a stage is estimated by accounting for the recursive structure of the errors at each stage. Computer simulations at varying extent of variation transmission and process stage variability are performed. For the scenarios tested, VT method is demonstrated to better maintain the simulated confidence level and more precisely estimate the true proportion parameter than SWC. Real data examples are also presented that corroborate the findings from the simulation. Overall, VT is recommended for setting acceptance criteria in a multi-staged pharmaceutical manufacturing process.

  11. Development of a prediction model on the acceptance of electronic laboratory notebooks in academic environments.

    PubMed

    Kloeckner, Frederik; Farkas, Robert; Franken, Tobias; Schmitz-Rode, Thomas

    2014-04-01

    Documentation of research data plays a key role in the biomedical engineering innovation processes. It makes an important contribution to the protection of intellectual property, the traceability of results and fulfilling the regulatory requirement. Because of the increasing digitalization in laboratories, an electronic alternative to the commonly-used paper-bound notebooks could contribute to the production of sophisticated documentation. However, compared to in an industrial environment, the use of electronic laboratory notebooks is not widespread in academic laboratories. Little is known about the acceptance of an electronic documentation system and the underlying reasons for this. Thus, this paper aims to establish a prediction model on the potential preference and acceptance of scientists either for paper-based or electronic documentation. The underlying data for the analysis originate from an online survey of 101 scientists in industrial, academic and clinical environments. Various parameters were analyzed to identify crucial factors for the system preference using binary logistic regression. The analysis showed significant dependency between the documentation system preference and the supposed workload associated with the documentation system (p<0.006; odds ratio=58.543) and an additional personal component. Because of the dependency of system choice on specific parameters it is possible to predict the acceptance of an electronic laboratory notebook before implementation.

  12. Evaluation of teledermatology adoption by health-care professionals using a modified Technology Acceptance Model.

    PubMed

    Orruño, Estibalitz; Gagnon, Marie Pierre; Asua, José; Ben Abdeljelil, Anis

    2011-01-01

    We examined the main factors affecting the intention of physicians to use teledermatology using a modified Technology Acceptance Model (TAM). The investigation was carried out during a teledermatology pilot study conducted in Spain. A total of 276 questionnaires were sent to physicians by email and 171 responded (62%). Cronbach's alpha was acceptably high for all constructs. Theoretical variables were well correlated with each other and with the dependent variable (Intention to Use). Logistic regression indicated that the original TAM model was good at predicting physicians' intention to use teledermatology and that the variables Perceived Usefulness and Perceived Ease of Use were both significant (odds ratios of 8.4 and 7.4, respectively). When other theoretical variables were added, the model was still significant and it also became more powerful. However, the only significant predictor in the modified model was Facilitators with an odds ratio of 9.9. Thus the TAM was good at predicting physicians' intention to use teledermatology. However, the most important variable was the perception of Facilitators to using the technology (e.g. infrastructure, training and support).

  13. Acceptability of telemedicine and other cancer genetic counseling models of service delivery in geographically remote settings.

    PubMed

    McDonald, Eileen; Lamb, Amanda; Grillo, Barbara; Lucas, Lee; Miesfeldt, Susan

    2014-04-01

    This work examined acceptability of cancer genetic counseling models of service delivery among Maine residents at risk for hereditary cancer susceptibility disorders. Pre-counseling, participants ranked characteristics reflecting models of care from most to least important including: mode-of-communication (in-person versus telegenetics), provider level of training (genetic specialty versus some training/experience), delivery format (one-on-one versus group counseling), and location (local versus tertiary service requiring travel). Associations between models of care characteristic rankings and patient characteristics, including rural residence, perceived cancer risk, and perceived risk for a hereditary cancer risk susceptibility disorder were examined. A total of 149/300 (49.7% response rate) individuals from 11/16 Maine counties responded; 30.8% were from rural counties; 92.2% indicated that an important/the most important model of care characteristic is provider professional qualifications. Among other characteristics, 65.1% ranked one-on-one counseling as important/the most important. In-person and local counseling were ranked the two least important characteristics (51.8% and 52.1% important/the most important, respectively). Responses did not vary by patient characteristics with the exception of greater acceptance of group counseling among those at perceived high personal cancer risk. Cancer telegenetic services hold promise for access to expert providers in a one-on-one format for rurally remote clients.

  14. Computational model of collective nest selection by ants with heterogeneous acceptance thresholds

    PubMed Central

    Masuda, Naoki; O'shea-Wheller, Thomas A.; Doran, Carolina; Franks, Nigel R.

    2015-01-01

    Collective decision-making is a characteristic of societies ranging from ants to humans. The ant Temnothorax albipennis is known to use quorum sensing to collectively decide on a new home; emigration to a new nest site occurs when the number of ants favouring the new site becomes quorate. There are several possible mechanisms by which ant colonies can select the best nest site among alternatives based on a quorum mechanism. In this study, we use computational models to examine the implications of heterogeneous acceptance thresholds across individual ants in collective nest choice behaviour. We take a minimalist approach to develop a differential equation model and a corresponding non-spatial agent-based model. We show, consistent with existing empirical evidence, that heterogeneity in acceptance thresholds is a viable mechanism for efficient nest choice behaviour. In particular, we show that the proposed models show speed–accuracy trade-offs and speed–cohesion trade-offs when we vary the number of scouts or the quorum threshold. PMID:26543578

  15. Computational model of collective nest selection by ants with heterogeneous acceptance thresholds.

    PubMed

    Masuda, Naoki; O'shea-Wheller, Thomas A; Doran, Carolina; Franks, Nigel R

    2015-06-01

    Collective decision-making is a characteristic of societies ranging from ants to humans. The ant Temnothorax albipennis is known to use quorum sensing to collectively decide on a new home; emigration to a new nest site occurs when the number of ants favouring the new site becomes quorate. There are several possible mechanisms by which ant colonies can select the best nest site among alternatives based on a quorum mechanism. In this study, we use computational models to examine the implications of heterogeneous acceptance thresholds across individual ants in collective nest choice behaviour. We take a minimalist approach to develop a differential equation model and a corresponding non-spatial agent-based model. We show, consistent with existing empirical evidence, that heterogeneity in acceptance thresholds is a viable mechanism for efficient nest choice behaviour. In particular, we show that the proposed models show speed-accuracy trade-offs and speed-cohesion trade-offs when we vary the number of scouts or the quorum threshold. PMID:26543578

  16. Quality of Methods Reporting in Animal Models of Colitis

    PubMed Central

    Bramhall, Michael; Flórez-Vargas, Oscar; Stevens, Robert; Brass, Andy

    2015-01-01

    Background: Current understanding of the onset of inflammatory bowel diseases relies heavily on data derived from animal models of colitis. However, the omission of information concerning the method used makes the interpretation of studies difficult or impossible. We assessed the current quality of methods reporting in 4 animal models of colitis that are used to inform clinical research into inflammatory bowel disease: dextran sulfate sodium, interleukin-10−/−, CD45RBhigh T cell transfer, and 2,4,6-trinitrobenzene sulfonic acid (TNBS). Methods: We performed a systematic review based on PRISMA guidelines, using a PubMed search (2000–2014) to obtain publications that used a microarray to describe gene expression in colitic tissue. Methods reporting quality was scored against a checklist of essential and desirable criteria. Results: Fifty-eight articles were identified and included in this review (29 dextran sulfate sodium, 15 interleukin-10−/−, 5 T cell transfer, and 16 TNBS; some articles use more than 1 colitis model). A mean of 81.7% (SD = ±7.038) of criteria were reported across all models. Only 1 of the 58 articles reported all essential criteria on our checklist. Animal age, gender, housing conditions, and mortality/morbidity were all poorly reported. Conclusions: Failure to include all essential criteria is a cause for concern; this failure can have large impact on the quality and replicability of published colitis experiments. We recommend adoption of our checklist as a requirement for publication to improve the quality, comparability, and standardization of colitis studies and will make interpretation and translation of data to human disease more reliable. PMID:25989337

  17. Alpha-1 Antitrypsin Investigations Using Animal Models of Emphysema.

    PubMed

    Ni, Kevin; Serban, Karina A; Batra, Chanan; Petrache, Irina

    2016-08-01

    Animal models of disease help accelerate the translation of basic science discoveries to the bedside, because they permit experimental interrogation of mechanisms at relatively high throughput, while accounting for the complexity of an intact organism. From the groundbreaking observation of emphysema-like alveolar destruction after direct instillation of elastase in the lungs to the more clinically relevant model of airspace enlargement induced by chronic exposure to cigarette smoke, animal models have advanced our understanding of alpha-1 antitrypsin (AAT) function. Experimental in vivo models that, at least in part, replicate clinical human phenotypes facilitate the translation of mechanistic findings into individuals with chronic obstructive pulmonary disease and with AAT deficiency. In addition, unexpected findings of alveolar enlargement in various transgenic mice have led to novel hypotheses of emphysema development. Previous challenges in manipulating the AAT genes in mice can now be overcome with new transgenic approaches that will likely advance our understanding of functions of this essential, lung-protective serine protease inhibitor (serpin). PMID:27564666

  18. Therapeutic effects of progesterone in animal models of neurological disorders.

    PubMed

    De Nicola, Alejandro F; Coronel, Florencia; Garay, Laura I; Gargiulo-Monachelli, Gisella; Gonzalez Deniselle, Maria Claudia; Gonzalez, Susana L; Labombarda, Florencia; Meyer, Maria; Guennoun, Rachida; Schumacher, Michael

    2013-12-01

    Substantial evidence supports that progesterone exerts many functions in the central and peripheral nervous system unrelated to its classical role in reproduction. In this review we first discussed progesterone effects following binding to the classical intracellular progesterone receptors A and B and several forms of membrane progesterone receptors, the modulation of intracellular signalling cascades and the interaction of progesterone reduced metabolites with neurotransmitter receptors. We next described our results involving animal models of human neuropathologies to elucidate the protective roles of progesterone. We described: (a) the protective and promyelinating effects of progesterone in experimental spinal cord injury; (b) the progesterone protective effects exerted upon motoneurons in the degenerating spinal cord of Wobbler mouse model of amyotropic lateral sclerosis; (c) the protective and anti-inflammatory effects of progesterone in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis and after lysolecithin demyelination; (d) the progesterone prevention of nociception and neuropathic pain which follow spinal cord injury; and (e) the protective effect of progesterone in experimental ischemic stroke. Whenever available, the molecular mechanisms involved in these progesterone effects were examined. The multiplicity of progesterone beneficial effects has opened new venues of research for neurological disorders. In this way, results obtained in animal models could provide the basis for novel therapeutic strategies and pre-clinical studies.

  19. 75 FR 54349 - Animal Models-Essential Elements To Address Efficacy Under the Animal Rule; Notice of Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... . SUPPLEMENTARY INFORMATION: I. Background In the Federal Register of January 21, 2009 (74 FR 3610), FDA announced... established under the ``Animal Rule'' (May 31, 2002, 67 FR 37988). FDA requested comments on the Draft... HUMAN SERVICES Food and Drug Administration Animal Models--Essential Elements To Address Efficacy...

  20. Zebrafish: an animal model for research in veterinary medicine.

    PubMed

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  1. RADAR Realistic Animal Model Series for Dose Assessment

    PubMed Central

    Keenan, Mary A.; Stabin, Michael G.; Segars, William P.; Fernald, Michael J.

    2010-01-01

    Rodent species are widely used in the testing and approval of new radiopharmaceuticals, necessitating murine phantom models. As more therapy applications are being tested in animal models, calculating accurate dose estimates for the animals themselves becomes important to explain and control potential radiation toxicity or treatment efficacy. Historically, stylized and mathematically based models have been used for establishing doses to small animals. Recently, a series of anatomically realistic human phantoms was developed using body models based on nonuniform rational B-spline. Realistic digital mouse whole-body (MOBY) and rat whole-body (ROBY) phantoms were developed on the basis of the same NURBS technology and were used in this study to facilitate dose calculations in various species of rodents. Methods Voxel-based versions of scaled MOBY and ROBY models were used with the Vanderbilt multinode computing network (Advanced Computing Center for Research and Education), using geometry and tracking radiation transport codes to calculate specific absorbed fractions (SAFs) with internal photon and electron sources. Photon and electron SAFs were then calculated for relevant organs in all models. Results The SAF results were compared with values from similar studies found in reference literature. Also, the SAFs were used with standardized decay data to develop dose factors to be used in radiation dose calculations. Representative plots were made of photon electron SAFs, evaluating the traditional assumption that all electron energy is absorbed in the source organs. Conclusion The organ masses in the MOBY and ROBY models are in reasonable agreement with models presented by other investigators noting that considerable variation can occur between reported masses. Results consistent with those found by other investigators show that absorbed fractions for electrons for organ self-irradiation were significantly less than 1.0 at energies above 0.5 MeV, as expected for many of

  2. Zebrafish: an animal model for research in veterinary medicine.

    PubMed

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  3. Using Computational and Mechanical Models to Study Animal Locomotion

    PubMed Central

    Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas

    2012-01-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: “Integrating living and physical systems.” PMID:22988026

  4. Evaluation of the silver iontophoretic catheter in an animal model.

    PubMed

    Hachem, Ray Y; Wright, Kenneth C; Zermeno, Alfonso; Bodey, Gerald P; Raad, Issam I

    2003-09-01

    Silver iontophoretic catheters (SIC) were shown to be highly efficacious in preventing catheter infections in vitro and in a rabbit model (J. Infect. Dis. 173 (1996) 495). Furthermore, we sought to determine the safety and durability of SIC prior to use in humans. A total of 30 New Zealand white rabbits (3-4 kg) were randomly assigned to one of three groups whereby SIC or Arrow Guard (AG) catheters were tunneled and inserted in the jugular vein. All animals were followed for 2-12 weeks after catheter implantation. Blood was collected from each rabbit for assessment of toxicity and determination of silver levels. The electrical current generated by each SIC was measured once daily. At the end of the follow-up period, tissue samples were collected from the skin surrounding the catheter, the lungs, spleen, and liver. Microscopically, none of the tissues examined from any of the animals showed evidence of silver deposits, silver toxicity, thermal or electrical injury. The silver levels in the animals that received the SIC ranged from 0.1 to 2.23 microg/l with a mean of 0.62 (+/-0.44 SD). In conclusion SIC were safe with normal serum silver levels and were not associated with any local or systemic toxicity. PMID:12809792

  5. Comparative aspects of rodent and nonrodent animal models for mechanistic and translational diabetes research.

    PubMed

    Renner, Simone; Dobenecker, Britta; Blutke, Andreas; Zöls, Susanne; Wanke, Rüdiger; Ritzmann, Mathias; Wolf, Eckhard

    2016-07-01

    The prevalence of diabetes mellitus, which currently affects 387 million people worldwide, is permanently rising in both adults and adolescents. Despite numerous treatment options, diabetes mellitus is a progressive disease with severe comorbidities, such as nephropathy, neuropathy, and retinopathy, as well as cardiovascular disease. Therefore, animal models predictive of the efficacy and safety of novel compounds in humans are of great value to address the unmet need for improved therapeutics. Although rodent models provide important mechanistic insights, their predictive value for therapeutic outcomes in humans is limited. In recent years, the pig has gained importance for biomedical research because of its close similarity to human anatomy, physiology, size, and, in contrast to non-human primates, better ethical acceptance. In this review, anatomic, biochemical, physiological, and morphologic aspects relevant to diabetes research will be compared between different animal species, that is, mouse, rat, rabbit, pig, and non-human primates. The value of the pig as a model organism for diabetes research will be highlighted, and (dis)advantages of the currently available approaches for the generation of pig models exhibiting characteristics of metabolic syndrome or type 2 diabetes mellitus will be discussed. PMID:27180329

  6. An Elaboration Likelihood Model Based Longitudinal Analysis of Attitude Change during the Process of IT Acceptance via Education Program

    ERIC Educational Resources Information Center

    Lee, Woong-Kyu

    2012-01-01

    The principal objective of this study was to gain insight into attitude changes occurring during IT acceptance from the perspective of elaboration likelihood model (ELM). In particular, the primary target of this study was the process of IT acceptance through an education program. Although the Internet and computers are now quite ubiquitous, and…

  7. An Investigation of Employees' Use of E-Learning Systems: Applying the Technology Acceptance Model

    ERIC Educational Resources Information Center

    Lee, Yi-Hsuan; Hsieh, Yi-Chuan; Chen, Yen-Hsun

    2013-01-01

    The purpose of this study is to apply the technology acceptance model to examine the employees' attitudes and acceptance of electronic learning (e-learning) systems in organisations. This study examines four factors (organisational support, computer self-efficacy, prior experience and task equivocality) that are believed to influence…

  8. An Exploration of Student Internet Use in India: The Technology Acceptance Model and the Theory of Planned Behaviour

    ERIC Educational Resources Information Center

    Fusilier, Marcelline; Durlabhji, Subhash

    2005-01-01

    Purpose: The purpose of this paper is to explore behavioral processes involved in internet technology acceptance and use with a sample in India, a developing country that can potentially benefit from greater participation in the web economy. Design/methodology/approach - User experience was incorporated into the technology acceptance model (TAM)…

  9. Investigating Students' Acceptance and Self-Efficacy of E-Learning at Al-Aqsa University Based on TAM Model

    ERIC Educational Resources Information Center

    Mahdi, Hasan Rebhi

    2014-01-01

    The study aimed at investigating the influence of E-learning Self-Efficacy (ELSE) on the acceptance of e-learning by using the Technology Acceptance Model (TAM). According to the TAM which used as the theoretical basis, both of the Perceived Usefulness (PU) and the Perceived Ease of Use (PEOU) influence directly the end user's Behavioral Intention…

  10. An economic approach to animal models of alcoholism.

    PubMed

    Heyman, G M

    2000-01-01

    Researchers have long sought an animal model for human alcohol consumption. This article describes an economic-based approach to a model of alcohol preference in rats. The procedures are based on an analogy between clinical accounts of human drinking and the economic analysis of consumption. Both clinical and economic investigators typically define consumption patterns in terms of the influence of negative consequences. For example, the clinical account emphasizes the persistence of heavy drinking despite mounting alcohol-related aversive consequences, and in economic analyses, the term "inelastic demand" is used to refer to the persistence of consumption despite large increases in prices. In the experimental procedure described here, rats worked for alcohol and food. Presses on one lever earned a drink of 10 percent alcohol plus saccharin, and presses on a second lever earned isocaloric drinks of a starch solution. After behavior stabilized, the response requirements (which are analogous to prices) for one or both drinks were increased. The rats maintained baseline alcohol consumption levels despite large increases in the "price" of alcohol. In contrast, the same price increases markedly reduced starch intake. That is, food consumption was sensitive to price hikes, but alcohol consumption was not. The results demonstrate that a common economic framework can be used to describe human and animal behavior and, hence, the possibility of an animal model of human alcohol consumption. The article also points out that economic concepts provide a framework for understanding a wide range of human drinking patterns, including controlled social drinking and excessive alcoholic drinking. PMID:11199280

  11. [Animal models for bone and joint disease. CIA, CAIA model].

    PubMed

    Hirose, Jun; Tanaka, Sakae

    2011-02-01

    The collagen-induced arthritis (collagen-induced arthritis, CIA) is an autoimmune arthritis that resembles rheumatoid arthritis (RA) in many ways, therefore it has been used most commonly as a model of RA. CIA is induced by immunization with an emulsion of complete Freund's adjuvant (CFA) and type II collagen (C II ) . Collagen antibody-induced arthritis (CAIA) is induced by the administration of a cocktail of monoclonal antibodies recognizing conserved epitopes located within the CB11 fragment. CAIA offers several advantages over CIA, including rapid disease onset, high uptake rate, and the capacity to use genetically modified mice, such as transgenics and knockouts.

  12. Factors of adoption of mobile information technology by homecare nurses: a technology acceptance model 2 approach.

    PubMed

    Zhang, Huiying; Cocosila, Mihail; Archer, Norm

    2010-01-01

    Pervasive healthcare support through mobile information technology solutions is playing an increasing role in the attempt to improve healthcare and reduce costs. Despite the apparent attractiveness, many mobile applications have failed or have not been implemented as predicted. Among factors possibly leading to such outcomes, technology adoption is a key problem. This must be investigated early in the development process because healthcare is a particularly sensitive area with vital social implications. Moreover, it is important to investigate technology acceptance using the support of scientific tools validated for relevant information systems research. This article presents an empirical study based on the Technology Acceptance Model 2 in mobile homecare nursing. The study elicited the perceptions of 91 Canadian nurses who used personal digital assistants for 1 month in their daily activities. A partial least squares modeling data analysis revealed that nurse's perception of usefulness is the main factor in the adoption of mobile technology, having subjective norm and image within the organization as significant antecedents. Overall, this study was the first attempt at investigating scientifically, through a pertinent information systems research model, user adoption of mobile systems by homecare nursing personnel.

  13. Animal Models of Vascular Cognitive Impairment and Dementia (VCID).

    PubMed

    Gooch, Jennifer; Wilcock, Donna M

    2016-03-01

    Vascular cognitive impairment and dementia (VCID) is the most common etiology of dementia in the elderly. Both, vascular and Alzheimer's disease, pathologies work synergistically to create neurodegeneration and cognitive impairments. The main causes of VCID include hemorrhage/microbleed (i.e., hyperhomocysteinemia), cerebral small vessel disease, multi-infarct dementia, severe hypoperfusion (i.e., bilateral common carotid artery stenosis), strategic infarct, angiopathy (i.e., cerebral angiopathy), and hereditary vasculopathy (i.e., cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy). In this review, we will discuss the experimental animal models that have been developed to study these pathologies. We will discuss the limitations and strengths of these models and the important research findings that have advanced the field through the use of the models. PMID:26988696

  14. Animal models for influenza virus transmission studies: A historical perspective

    PubMed Central

    Bouvier, Nicole M.

    2015-01-01

    Animal models are used to simulate, under experimental conditions, the complex interactions among host, virus, and environment that affect the person-to-person spread of influenza viruses. The three species that have been most frequently employed, both past and present, as influenza virus transmission models -- ferrets, mice, and guinea pigs -- have each provided unique insights into the factors governing the efficiency with which these viruses pass from an infected host to a susceptible one. This review will highlight a few of these noteworthy discoveries, with a particular focus on the historical contexts in which each model was developed and the advantages and disadvantages of each species with regard to the study of influenza virus transmission among mammals. PMID:26126082

  15. Three-dimensional temporomandibular joint modeling and animation.

    PubMed

    Cascone, Piero; Rinaldi, Fabrizio; Pagnoni, Mario; Marianetti, Tito Matteo; Tedaldi, Massimiliano

    2008-11-01

    The three-dimensional (3D) temporomandibular joint (TMJ) model derives from a study of the cranium by 3D virtual reality and mandibular function animation. The starting point of the project is high-fidelity digital acquisition of a human dry skull. The cooperation between the maxillofacial surgeon and the cartoonist enables the reconstruction of the fibroconnective components of the TMJ that are the keystone for comprehension of the anatomic and functional features of the mandible. The skeletal model is customized with the apposition of the temporomandibular ligament, the articular disk, the retrodiskal tissue, and the medial and the lateral ligament of the disk. The simulation of TMJ movement is the result of the integration of up-to-date data on the biomechanical restrictions. The 3D TMJ model is an easy-to-use application that may be run on a personal computer for the study of the TMJ and its biomechanics. PMID:19098544

  16. Placental Ischemia and Resultant Phenotype in Animal Models of Preeclampsia.

    PubMed

    LaMarca, Babbette; Amaral, Lorena M; Harmon, Ashlyn C; Cornelius, Denise C; Faulkner, Jessica L; Cunningham, Mark W

    2016-04-01

    Preeclampsia is new onset (or worsening of preexisting) hypertension that occurs during pregnancy. It is accompanied by chronic inflammation, intrauterine growth restriction, elevated anti-angiogenic factors, and can occur with or without proteinuria. Although the exact etiology is unknown, it is thought that preeclampsia begins early in gestation with reduced uterine spiral artery remodeling leading to decreased vasculogenesis of the placenta as the pregnancy progresses. Soluble factors, stimulated by the ischemic placenta, shower the maternal vascular endothelium and are thought to cause endothelial dysfunction and to contribute to the development of hypertension during pregnancy. Due to the difficulty in studying such soluble factors in pregnant women, various animal models have been designed. Studies from these models have contributed to a better understanding of how factors released in response to placental ischemia may lead to increased blood pressure and reduced fetal weight during pregnancy. This review will highlight various animal models and the major findings indicating the importance of placental ischemia to lead to the pathophysiology observed in preeclamptic patients. PMID:27076345

  17. In vivo imaging of small animal models by photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Ye, Shuoqi; Yang, Ran; Xiong, Jingwei; Shung, K. Kirk; Zhou, Qifa; Li, Changhui; Ren, Qiushi

    2012-02-01

    Small animal models, such as zebrafish, drosophila, C. elegan, is considered to be important models in comparative biology and diseases researches. Traditional imaging methods primarily employ several optical microscopic imaging modalities that rely on fluorescence labeling, which may have potential to affect the natural physiological progress. Thus a label-free imaging method is desired. Photoacoustic (PA) microscopy (PAM) is an emerging biomedical imaging method that combines optical contrast with ultrasonic detection, which is highly sensitive to the optical absorption contrast of living tissues, such as pigments, the vasculature and other optically absorbing organs. In this work, we reported the whole body label-free imaging of zebrafish larvae and drosophila pupa by PAM. Based on intrinsic optical absorption contrast, high resolution images of pigments, microvasculature and several other major organs have been obtained in vivo and non-invasively, and compared with their optical counterparts. We demonstrated that PAM has the potential to be a powerful non-invasive imaging method for studying larvae and pupa of various animal models.

  18. A model for nonexercising hindlimb muscles in exercising animals.

    PubMed

    Bonen, A; Blewett, C; McDermott, J C; Elder, G C

    1990-07-01

    Nonexercising muscles appear to be metabolically active during exercise. Animal models for this purpose have not been established. However, we have been able to teach animals to run on their forelimbs while their hindlimbs are suspended above the treadmill with no visible limb movement. To document that indeed this mode of exercise does not provoke additional muscle activity, we have compared the levels of neural activation of the soleus and plantaris muscles using a computer analysis of the electromyographic interference pattern, recorded from bipolar fine wire electrodes implanted across each muscle. Via computer analyses of the electromyographic interference patterns the frequencies and amplitudes of motor unit action potentials were obtained. The data were sampled during 20 s of every minute of observation. Comparisons were made in four conditions: (i) resting on the treadmill while bearing weight on the hindlimbs (normal rest), (ii) running on the treadmill (15 m/min, 8% grade) on all four limbs (normal exercise), (iii) resting while the hindlimbs were suspended in a harness above the treadmill (suspended rest), and (iv) exercising with the forelimbs (15 m/min, 8% grade) while the hindlimbs were suspended above the treadmill (suspended exercise). All four experimental conditions were carried out for 90 min each and were performed by each animal. The results clearly show that muscle activities (frequencies and amplitudes), when the hindlimbs are suspended above the treadmill, at rest or during exercise, are lower than the activities in these same muscles when the animals are at rest, supporting only their body weight. Activities in the same muscles during exercise were from 300 to 2000% greater than during hindlimb suspension.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Estimating genetic parameters in natural populations using the "animal model".

    PubMed Central

    Kruuk, Loeske E B

    2004-01-01

    Estimating the genetic basis of quantitative traits can be tricky for wild populations in natural environments, as environmental variation frequently obscures the underlying evolutionary patterns. I review the recent application of restricted maximum-likelihood "animal models" to multigenerational data from natural populations, and show how the estimation of variance components and prediction of breeding values using these methods offer a powerful means of tackling the potentially confounding effects of environmental variation, as well as generating a wealth of new areas of investigation. PMID:15306404

  20. Rhabdomyosarcomas: an overview on the experimental animal models

    PubMed Central

    Zanola, Alessandra; Rossi, Stefania; Faggi, Fiorella; Monti, Eugenio; Fanzani, Alessandro

    2012-01-01

    Abstract Rhabdomyosarcomas (RMS) are aggressive childhood soft-tissue malignancies deriving from mesenchymal progenitors that are committed to muscle-specific lineages. Despite the histopathological signatures associated with three main histological variants, termed embryonal, alveolar and pleomorphic, a plethora of genetic and molecular changes are recognized in RMS. Over the years, exposure to carcinogens or ionizing radiations and gene-targeting approaches in vivo have greatly contributed to disclose some of the mechanisms underlying RMS onset. In this review, we describe the principal distinct features associated with RMS variants and focus on the current available experimental animal models to point out the molecular determinants cooperating with RMS development and progression. PMID:22225829