Science.gov

Sample records for accepted chemical engineering

  1. Chemical Engineering Education Revisited.

    ERIC Educational Resources Information Center

    Theodore, Louis

    1978-01-01

    The opinion is presented that chemical engineering education seems to emphasize the professor's research and/or professional interests with little regard for the real needs of the student who intends to become a practicing engineer. (BB)

  2. Chemical Engineering at NASA

    NASA Technical Reports Server (NTRS)

    Collins, Jacob

    2008-01-01

    This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.

  3. Engineering Clostridium Strain to Accept Unmethylated DNA

    PubMed Central

    Dong, Hongjun; Zhang, Yanping; Dai, Zongjie; Li, Yin

    2010-01-01

    It is difficult to genetically manipulate the medically and biotechnologically important genus Clostridium due to the existence of the restriction and modification (RM) systems. We identified and engineered the RM system of a model clostridial species, C. acetobutylicum, with the aim to allow the host to accept the unmethylated DNA efficiently. A gene CAC1502 putatively encoding the type II restriction endonuclease Cac824I was identified from the genome of C. acetobutylicum DSM1731, and disrupted using the ClosTron system based on group II intron insertion. The resulting strain SMB009 lost the type II restriction endonuclease activity, and can be transformed with unmethylated DNA as efficiently as with methylated DNA. The strategy reported here makes it easy to genetically modify the clostridial species using unmethylated DNA, which will help to advance the understanding of the clostridial physiology from the molecular level. PMID:20161730

  4. Chemical Engineering in Space

    NASA Technical Reports Server (NTRS)

    Lobmeyer, Dennis A.; Meneghelli, Barry; Steinrock, Todd (Technical Monitor)

    2001-01-01

    The aerospace industry has long been perceived as the domain of both physicists and mechanical engineers. This perception has endured even though the primary method of providing the thrust necessary to launch a rocket into space is chemical in nature. The chemical engineering and chemistry personnel behind the systems that provide access to space have labored in the shadows of the physicists and mechanical engineers. As exploration into the cosmos moves farther away from Earth, there is a very distinct need for new chemical processes to help provide the means for advanced space exploration. The state of the art in launch systems uses chemical propulsion systems, primarily liquid hydrogen and liquid oxygen, to provide the energy necessary to achieve orbit. As we move away from Earth, there are additional options for propulsion. Unfortunately, few of these options can compare to the speed or ease of use provided by the chemical propulsion agents. It is with great care and significant cost that gaseous compounds such as hydrogen and oxygen are liquefied and become dense enough to use for rocket fuel. These low-temperature liquids fall within a specialty area known as cryogenics. Cryogenics, the science and art of producing cold operating conditions for use on Earth, in orbit, or on some other nonterrestrial body, has become increasingly important to our ability to travel within our solar system. The production of cryogenic fuels and the long-term storage of these fluids are necessary for travel. As our explorations move farther away from Earth, we need to address how to produce the necessary fuels to make a round-trip. The cost and the size of these expeditions are extreme at best. If we take everything necessary for our survival for the round-trip, we invalidate any chance of travel in the near future. As with the early explorers on Earth, we need to harvest much of our energy and our life support from the celestial bodies. The in situ production of these energy

  5. The Chemical Engineer in the Chemical Industry.

    ERIC Educational Resources Information Center

    Zabicky, Jacob

    1986-01-01

    Describes a course for third- or fourth-year chemical engineering students designed to acquaint them with the chemical industry. The course deals with productivity, characteristics of the chemical industry, sources of information, industrial intelligence, research and development, patent law, technology transfer, and quality control. (TW)

  6. Teaching Chemical Engineers about Teaching

    ERIC Educational Resources Information Center

    Heath, Daniel E.; Hoy, Mary; Rathman, James F.; Rohdieck, Stephanie

    2013-01-01

    The Chemical and Biomolecular Engineering Department at The Ohio State University in collaboration with the University Center for the Advancement of Teaching developed the Chemical Engineering Mentored Teaching Experience. The Mentored Teaching Experience is an elective for Ph.D. students interested in pursuing faculty careers. Participants are…

  7. Job Prospects for Chemical Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    The job situation for new chemical engineers with bachelor's degrees is continuing to reflect the gradual improvement that began in 1983. However, companies are looking for graduates with technical expertise as well as marketing, sales, or communications skills. Smaller classes may lead to shortages of chemical engineering graduates in the future.…

  8. Examining Engineering & Technology Students' Acceptance of Network Virtualization Technology Using the Technology Acceptance Model

    ERIC Educational Resources Information Center

    Yousif, Wael K.

    2010-01-01

    This causal and correlational study was designed to extend the Technology Acceptance Model (TAM) and to test its applicability to Valencia Community College (VCC) Engineering and Technology students as the target user group when investigating the factors influencing their decision to adopt and to utilize VMware as the target technology. In…

  9. Chemical Engineering in Space

    NASA Technical Reports Server (NTRS)

    Lobmeyer, Dennis A.; Meneghelli, Barry J.

    2001-01-01

    The state of the art in launch systems uses chemical propulsion systems, primarily liquid hydrogen and liquid oxygen, to provide the energy necessary to achieve orbit and escape the bonds of Earth's gravity. In the future there may be other means available; however, currently few of these alternatives can compare to the speed or the ease of use provided by cryogenic chemical propulsion agents. Cryogenics, the science and art of producing cold operating conditions, has become increasingly important to our ability to travel within our solar system. The production and transport of cryogenic fuels as well as the long-term storage of these fluids are necessary for mankind to travel within our solar system. It is with great care and at a significant cost that gaseous compounds such as hydrogen and oxygen are liquified and become dense enough to use for rocket fuel. As our explorations move farther away from Earth, we need to address how to produce the necessary fuels to make a complete round-trip. The cost and the size of any expedition to another celestial body are extreme. If we are constrained by the need to take everything necessary (fuel, life support, etc.) for our survival and return, we greatly increase the risk of being able to go. As with the early explorers on Earth, we will need to harvest much of our energy and our life support from the celestial bodies. The in situ production of these energy sources is paramount to success. Due to the current propulsion system designs, the in-situ processes will require liquefaction and the application of cryogenics. The challenge we face for the near future is to increase our understanding of cryogenic long-term storage and off-world production of cryogenic fluids. We must do this all within the boundaries of very restricted size, weight, and robustness parameters so that we may launch these apparatus from Earth and utilize them elsewhere. Miniaturization, efficiency, and physically robust systems will all play a part in

  10. Sustainability in Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Glassey, Jarka; Haile, Sue

    2012-01-01

    Purpose: The purpose of this paper is to describe a concentrated strategy to embed sustainability teaching into a (chemical) engineering undergraduate curriculum throughout the whole programme. Innovative teaching approaches in subject-specific context are described and their efficiency investigated. Design/methodology/approach: The activities in…

  11. Chemical Engineering: A Crisis of Maturity.

    ERIC Educational Resources Information Center

    Jorne, Jacob

    1986-01-01

    Argues that the field of chemical engineering is going through a major transition. Discusses trends in microchemical and biochemical engineering and warns that the overall field of chemical engineering is departing from the fundamentals of science. Urges chemical engineering educators to restructure their programs to again emphasize basic science.…

  12. Chemical Engineering Students: A Distinct Group among Engineers

    ERIC Educational Resources Information Center

    Godwin, Allison; Potvin, Geoff

    2013-01-01

    This paper explores differences between chemical engineering students and students of other engineering disciplines, as identified by their intended college major. The data used in this analysis was taken from the nationally representative Sustainability and Gender in Engineering (SaGE) survey. Chemical engineering students differ significantly…

  13. Engineered enzymes for chemical production.

    PubMed

    Luetz, Stephan; Giver, Lori; Lalonde, James

    2008-11-01

    In order to enable competitive manufacturing routes, most biocatalysts must be tailor-made for their processes. Enzymes from nature rarely have the combined properties necessary for industrial chemical production such as high activity and selectivity on non-natural substrates and toleration of high concentrations of organic media over the wide range of conditions (decreasing substrate, increasing product concentrations, solvents, etc.,) that will be present over the course of a manufacturing process. With the advances in protein engineering technologies, a variety of enzyme properties can be altered simultaneously, if the appropriate screening parameters are employed. Here we discuss the process of directed evolution for the generation of commercially viable biocatalysts for the production of fine chemicals, and how novel approaches have helped to overcome some of the challenges.

  14. Protein engineering approaches to chemical biotechnology.

    PubMed

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products.

  15. Chemical Engineering in the "BIO" World.

    PubMed

    Chiarappa, Gianluca; Grassi, Mario; Abrami, Michela; Abbiati, Roberto Andrea; Barba, Anna Angela; Boisen, Anja; Brucato, Valerio; Ghersi, Giulio; Caccavo, Diego; Cascone, Sara; Caserta, Sergio; Elvassore, Nicola; Giomo, Monica; Guido, Stefano; Lamberti, Gaetano; Larobina, Domenico; Manca, Davide; Marizza, Paolo; Tomaiuolo, Giovanna; Grassi, Gabriele

    2017-01-01

    Modern Chemical Engineering was born around the end of the 19th century in Great Britain, Germany, and the USA, the most industrialized countries at that time. Milton C. Whitaker, in 1914, affirmed that the difference between Chemistry and Chemical Engineering lies in the capability of chemical engineers to transfer laboratory findings to the industrial level. Since then, Chemical Engineering underwent huge transformations determining the detachment from the original Chemistry nest. The beginning of the sixties of the 20th century saw the development of a new branch of Chemical Engineering baptized Biomedical Engineering by Peppas and Langer and that now we can name Biological Engineering. Interestingly, although Biological Engineering focused on completely different topics from Chemical Engineering ones, it resorted to the same theoretical tools such as, for instance, mass, energy and momentum balances. Thus, the birth of Biological Engineering may be considered as a Darwinian evolution of Chemical Engineering similar to that experienced by mammals which, returning to water, used legs and arms to swim. From 1960 on, Biological Engineering underwent a considerable evolution as witnessed by the great variety of topics covered such as hemodialysis, release of synthetic drugs, artificial organs and, more recently, delivery of small interfering RNAs (siRNA). This review, based on the activities developed in the frame of our PRIN 2010-11 (20109PLMH2) project, tries to recount origins and evolution of Chemical Engineering illustrating several examples of recent and successful applications in the biological field. This, in turn, may stimulate the discussion about the Chemical Engineering students curriculum studiorum update.

  16. Chemical Engineering in the Spectrum of Knowledge.

    ERIC Educational Resources Information Center

    Sutija, Davor P.; Prausnitz, John M.

    1990-01-01

    Provides three classroom examples showing students how chemical engineering techniques can supply partial answers to social questions, such as environmental issues. Examples are depletion of the ozone layer, nuclear winter, and air pollution by chemical solvents. (YP)

  17. Heat Exchanger Lab for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  18. Progress in reforming chemical engineering education.

    PubMed

    Wankat, Phillip C

    2013-01-01

    Three successful historical reforms of chemical engineering education were the triumph of chemical engineering over industrial chemistry, the engineering science revolution, and Engineering Criteria 2000. Current attempts to change teaching methods have relied heavily on dissemination of the results of engineering-education research that show superior student learning with active learning methods. Although slow dissemination of education research results is probably a contributing cause to the slowness of reform, two other causes are likely much more significant. First, teaching is the primary interest of only approximately one-half of engineering faculty. Second, the vast majority of engineering faculty have no training in teaching, but trained professors are on average better teachers. Significant progress in reform will occur if organizations with leverage-National Science Foundation, through CAREER grants, and the Engineering Accreditation Commission of ABET-use that leverage to require faculty to be trained in pedagogy.

  19. Systems metabolic engineering for chemicals and materials.

    PubMed

    Lee, Jeong Wook; Kim, Tae Yong; Jang, Yu-Sin; Choi, Sol; Lee, Sang Yup

    2011-08-01

    Metabolic engineering has contributed significantly to the enhanced production of various value-added and commodity chemicals and materials from renewable resources in the past two decades. Recently, metabolic engineering has been upgraded to the systems level (thus, systems metabolic engineering) by the integrated use of global technologies of systems biology, fine design capabilities of synthetic biology, and rational-random mutagenesis through evolutionary engineering. By systems metabolic engineering, production of natural and unnatural chemicals and materials can be better optimized in a multiplexed way on a genome scale, with reduced time and effort. Here, we review the recent trends in systems metabolic engineering for the production of chemicals and materials by presenting general strategies and showcasing representative examples.

  20. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1981-01-01

    An analytical study evaluating thrust chamber cooling engine cycles and preliminary engine design for low thrust chemical rocket engines for orbit transfer vehicles is described. Oxygen/hydrogen, oxygen/methane, and oxygen/RP-1 engines with thrust levels from 444.8 N to 13345 N, and chamber pressures from 13.8 N/sq cm to 689.5 N/sq cm were evaluated. The physical and thermodynamic properties of the propellant theoretical performance data, and transport properties are documented. The thrust chamber cooling limits for regenerative/radiation and film/radiation cooling are defined and parametric heat transfer data presented. A conceptual evaluation of a number of engine cycles was performed and a 2224.1 N oxygen/hydrogen engine cycle configuration and a 2224.1 N oxygen/methane configuration chosen for preliminary engine design. Updated parametric engine data, engine design drawings, and an assessment of technology required are presented.

  1. Electrochemical energy engineering: a new frontier of chemical engineering innovation.

    PubMed

    Gu, Shuang; Xu, Bingjun; Yan, Yushan

    2014-01-01

    One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum.

  2. Ionic liquids in chemical engineering.

    PubMed

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  3. ENGINEERING BULLETIN: CHEMICAL OXIDATION TREATMENT

    EPA Science Inventory

    Oxidation destroys hazardous contaminants by chemically converting them to nonhazardous or less toxic compounds that are ideally more stable, less mobile, and/or inert. However, under some conditions, other hazardous compounds may be formed. The oxidizing agents most commonly use...

  4. Engineering microbes for efficient production of chemicals

    DOEpatents

    Gong, Wei; Dole, Sudhanshu; Grabar, Tammy; Collard, Andrew Christopher; Pero, Janice G; Yocum, R Rogers

    2015-04-28

    This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.

  5. Chemical Kinetic Models for Advanced Engine Combustion

    SciTech Connect

    Pitz, William J.; Mehl, Marco; Westbrook, Charles K.

    2014-10-22

    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  6. Engineered Barrier System: Physical and Chemical Environment

    SciTech Connect

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  7. Drug Transport and Pharmacokinetics for Chemical Engineers

    ERIC Educational Resources Information Center

    Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok

    2010-01-01

    Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…

  8. Centrifugal Pump Experiment for Chemical Engineering Undergraduates

    ERIC Educational Resources Information Center

    Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.

    2012-01-01

    The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…

  9. Chemical engineering education: a gallimaufry of thoughts.

    PubMed

    Bird, R Byron

    2010-01-01

    To discuss various facets of chemical engineering education, I proceed step by step through my own education and career. In this way, I touch on various points concerning the operation of the educational system that may be of interest to others.

  10. Interactive Mathematica Simulations in Chemical Engineering Courses

    ERIC Educational Resources Information Center

    Falconer, John L.; Nicodemus, Garret D.

    2014-01-01

    Interactive Mathematica simulations with graphical displays of system behavior are an excellent addition to chemical engineering courses. The Manipulate command in Mathematica creates on-screen controls that allow users to change system variables and see the graphical output almost instantaneously. They can be used both in and outside class. More…

  11. Conceptests for a Chemical Engineering Thermodynamics Course

    ERIC Educational Resources Information Center

    Falconer, John L.

    2007-01-01

    Examples of conceptests and suggestions for preparing them for use in an undergraduate, chemical engineering thermodynamics course are presented. Conceptests, combined with hand-held transmitters (clickers), is an effective method to engage students in class. This method motivates students, improves their functional understanding of…

  12. A First Chemical Engineering Lab Experience.

    ERIC Educational Resources Information Center

    Punzi, Vito L.

    1987-01-01

    Describes a simple thermodynamics experiment recommended for use in beginning chemical engineering laboratory courses. Outlines the theory behind the experiment, which determines the specific heat of a liquid. Discusses the construction, operation, and maintenance of the apparatus involved, along with the experimental procedure. (TW)

  13. CFD applications in chemical propulsion engines

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.

    1991-01-01

    The present research is aimed at developing analytical procedures for predicting the performance and stability characteristics of chemical propulsion engines. Specific emphasis is being placed on understanding the physical and chemical processes in the small engines that are used for applications such as spacecraft attitude control and drag make-up. The small thrust sizes of these engines lead to low nozzle Reynolds numbers with thick boundary layers which may even meet at the nozzle centerline. For this reason, the classical high Reynolds number procedures that are commonly used in the industry are inaccurate and of questionable utility for design. A complete analysis capability for the combined viscous and inviscid regions as well as for the subsonic, transonic, and supersonic portions of the flowfield is necessary to estimate performance levels and to enable tradeoff studies during design procedures.

  14. Chemical-text hybrid search engines.

    PubMed

    Zhou, Yingyao; Zhou, Bin; Jiang, Shumei; King, Frederick J

    2010-01-01

    As the amount of chemical literature increases, it is critical that researchers be enabled to accurately locate documents related to a particular aspect of a given compound. Existing solutions, based on text and chemical search engines alone, suffer from the inclusion of "false negative" and "false positive" results, and cannot accommodate diverse repertoire of formats currently available for chemical documents. To address these concerns, we developed an approach called Entity-Canonical Keyword Indexing (ECKI), which converts a chemical entity embedded in a data source into its canonical keyword representation prior to being indexed by text search engines. We implemented ECKI using Microsoft Office SharePoint Server Search, and the resultant hybrid search engine not only supported complex mixed chemical and keyword queries but also was applied to both intranet and Internet environments. We envision that the adoption of ECKI will empower researchers to pose more complex search questions that were not readily attainable previously and to obtain answers at much improved speed and accuracy.

  15. Big Data Analytics in Chemical Engineering.

    PubMed

    Chiang, Leo; Lu, Bo; Castillo, Ivan

    2017-02-27

    Big data analytics is the journey to turn data into insights for more informed business and operational decisions. As the chemical engineering community is collecting more data (volume) from different sources (variety), this journey becomes more challenging in terms of using the right data and the right tools (analytics) to make the right decisions in real time (velocity). This article highlights recent big data advancements in five industries, including chemicals, energy, semiconductors, pharmaceuticals, and food, and then discusses technical, platform, and culture challenges. To reach the next milestone in multiplying successes to the enterprise level, government, academia, and industry need to collaboratively focus on workforce development and innovation. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering Volume 8 is June 7, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  16. Engineering electrical properties of graphene: chemical approaches

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Jin; Kim, Yuna; Novoselov, Konstantin; Hong, Byung Hee

    2015-12-01

    To ensure the high performance of graphene-based devices, it is necessary to engineer the electrical properties of graphene with enhanced conductivity, controlled work function, opened or closed bandgaps, etc. This can be performed by various non-covalent chemical approaches, including molecular adsorption, substrate-induced doping, polymerization on graphene, deposition of metallic thin films or nanoparticles, etc. In addition, covalent approaches such as the substitution of carbon atoms with boron or nitrogen and the functionalization with hydrogen or fluorine are useful to tune the bandgaps more efficiently, with better uniformity and stability. In this review, representative examples of chemically engineered graphene and its device applications will be reviewed, and remaining challenges will be discussed.

  17. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    SciTech Connect

    G.H. Nieder-Westermann

    2005-04-07

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  18. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    SciTech Connect

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  19. Engineering cyanobacteria for fuels and chemicals production.

    PubMed

    Zhou, Jie; Li, Yin

    2010-03-01

    The world's energy and global warming crises call for sustainable, renewable, carbon-neutral alternatives to replace fossil fuel resources. Currently, most biofuels are produced from agricultural crops and residues, which lead to concerns about food security and land shortage. Compared to the current biofuel production system, cyanobacteria, as autotrophic prokaryotes, do not require arable land and can grow to high densities by efficiently using solar energy, CO(2), water, and inorganic nutrients. Moreover, powerful genetic techniques of cyanobacteria have been developed. For these reasons, cyanobacteria, which carry out oxygenic photosynthesis, are attractive hosts for production of fuels and chemicals. Recently, several chemicals including ethanol, isobutanol and isoprene have been produced by engineered cyanobacteria directly using solar energy, CO(2), and water. Cyanobacterium is therefore a potential novel cell factory for fuels and chemicals production to address global energy security and climate change issues.

  20. Acceptance Criteria for Aerospace Structural Adhesives.

    DTIC Science & Technology

    ADHESIVES, *AIRFRAMES, PRIMERS, STRUCTURAL ENGINEERING, CHEMICAL COMPOSITION, MECHANICAL PROPERTIES, INDUSTRIAL PRODUCTION , DATA ACQUISITION , PARTICLE SIZE, ACCEPTANCE TESTS, ELASTOMERS, BONDING, QUALITY CONTROL, .

  1. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    SciTech Connect

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs documents. The updates

  2. Scholarship in the Chemical Sciences and Engineering

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    2000-11-01

    Literature Cited

    1. Moore, J. W. J. Chem. Educ. 1997, 74, 741. Moore, J. W. J. Chem. Educ. 1997, 74, 1381. Moore, J. W. J. Chem. Educ. 1998, 75, 935.
    2. Boyer, Ernest L. Scholarship Reconsidered: Priorities of the Professoriate; Carnegie Foundation for the Advancement of Teaching: Princeton, NJ, 1990.
    3. Advisory Committee to the National Science Foundation Directorate for Education and Human Resources. Shaping the Future: New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology; NSF 96-139, 1996 (accessed Sep 2000); Executive Summary, NSF 96-141, 1996.
    4. Task Force on Chemical Education Research. J. Chem. Educ. 1994, 71, 850.

  3. Selective Guide to Literature on Chemical Engineering. Engineering Literature Guides, Number 9.

    ERIC Educational Resources Information Center

    Rousseau, Rosemary, Comp.

    The material in this guide covers areas important to the chemical industries. Topics such as heat and mass transfer, plastics, polymers, fluid flow, and process engineering are included. This document is a survey of information sources in chemical engineering and is intended to identify those core resources which can help engineers and librarians…

  4. Results of the 2010 Survey on Teaching Chemical Reaction Engineering

    ERIC Educational Resources Information Center

    Silverstein, David L.; Vigeant, Margot A. S.

    2012-01-01

    A survey of faculty teaching the chemical reaction engineering course or sequence during the 2009-2010 academic year at chemical engineering programs in the United States and Canada reveals change in terms of content, timing, and approaches to teaching. The report consists of two parts: first, a statistical and demographic characterization of the…

  5. Frontiers in Chemical Engineering. Research Needs and Opportunities.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    Chemical engineers play a key role in industries such as petroleum, food, artificial fibers, petrochemicals, plastics and many others. They are needed to tailor manufacturing technology to the requirements of products and to integrate product and process design. This report discusses how chemical engineers are continuing to address technological…

  6. Brewing as a Comprehensive Learning Platform in Chemical Engineering

    ERIC Educational Resources Information Center

    Nielsen, Rudi P.; Sørensen, Jens L.; Simonsen, Morten E.; Madsen, Henrik T.; Muff, Jens; Strandgaard, Morten; Søgaard, Erik G.

    2016-01-01

    Chemical engineering is mostly taught using traditional classroom teaching and laboratory experiments when possible. Being a wide discipline encompassing topics such as analytical chemistry, process design, and microbiology, it may be argued that brewing of beer has many relations to chemical engineering topic-wise. This work illustrates how…

  7. Chemical Engineering Data Analysis Made Easy with DataFit

    ERIC Educational Resources Information Center

    Brenner, James R.

    2006-01-01

    The outline for half of a one-credit-hour course in analysis of chemical engineering data is presented, along with a range of typical problems encountered later on in the chemical engineering curriculum that can be used to reinforce the data analysis skills learned in the course. This mini course allows students to be exposed to a variety of ChE…

  8. At Age 100, Chemical Engineering Education Faces Changing World.

    ERIC Educational Resources Information Center

    Krieger, James

    1988-01-01

    Stresses the need for chemical engineering education to keep abreast of current needs. Explores the need for global economics, marketing strategy, product differentiation, and patent law in the curriculum. Questions the abilities of current chemical engineering graduate students in those areas. (MVL)

  9. Semiconductor Chemical Reactor Engineering and Photovoltaic Unit Operations.

    ERIC Educational Resources Information Center

    Russell, T. W. F.

    1985-01-01

    Discusses the nature of semiconductor chemical reactor engineering, illustrating the application of this engineering with research in physical vapor deposition of cadmium sulfide at both the laboratory and unit operations scale and chemical vapor deposition of amorphous silicon at the laboratory scale. (JN)

  10. Introducing DAE Systems in Undergraduate and Graduate Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Mandela, Ravi Kumar; Sridhar, L. N.; Rengaswamy, Raghunathan

    2010-01-01

    Models play an important role in understanding chemical engineering systems. While differential equation models are taught in standard modeling and control courses, Differential Algebraic Equation (DAE) system models are not usually introduced. These models appear naturally in several chemical engineering problems. In this paper, the introduction…

  11. A Course in Chemical Engineering Practice: Graduate Plant Design.

    ERIC Educational Resources Information Center

    Marnell, Paul

    1984-01-01

    Describes a year-long graduate plant design course. The course provides students with an appreciation of the profit motive that drives business activity, the role of the chemical engineer in achieving this goal, and historical and contemporary perspectives on chemical engineering practice. (JN)

  12. Enhancing the Undergraduate Computing Experience in Chemical Engineering CACHE Corporation

    ERIC Educational Resources Information Center

    Edgar, Thomas F.

    2006-01-01

    This white paper focuses on the integration and enhancement of the computing experience for undergraduates throughout the chemical engineering curriculum. The computing experience for undergraduates in chemical engineering should have continuity and be coordinated from course to course, because a single software solution is difficult to achieve in…

  13. Chemical engineering design of CO oxidation catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1987-01-01

    How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture.

  14. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1981-01-01

    Engine data and information are presented to perform system studies on cargo orbit-transfer vehicles which would deliver large space structures to geosynchronous equatorial orbit. Low-thrust engine performance, weight, and envelope parametric data were established, preliminary design information was generated, and technologies for liquid rocket engines were identified. Two major engine design drivers were considered in the study: cooling and engine cycle options. Both film-cooled and regeneratively cooled engines were evaluated. The propellant combinations studied were hydrogen/oxygen, methane/oxygen, and kerosene/oxygen.

  15. Introducing High School Students and Science Teachers to Chemical Engineering.

    ERIC Educational Resources Information Center

    Bayles, Taryn Melkus; Aguirre, Fernando J.

    1992-01-01

    Describes a summer institute for science teachers and their students in which the main goal was to increase enrollment in engineering and to encourage women and minority groups to increase their representation in the engineering workforce. Includes a description of typical chemical engineering jobs and general instruction in material balances,…

  16. Performance deterioration due to acceptance testing and flight loads; JT90 jet engine diagnostic program

    NASA Technical Reports Server (NTRS)

    Olsson, W. J.

    1982-01-01

    The results of a flight loads test of the JT9D-7 engine are presented. The goals of this test program were to: measure aerodynamic and inertia loads on the engine during flight, explore the effects of airplane gross weight and typical maneuvers on these flight loads, simultaneously measure the changes in engine running clearances and performance resulting from the maneuvers, make refinements of engine performance deterioration prediction models based on analytical results of the tests, and make recommendations to improve propulsion system performance retention. The test program included a typical production airplane acceptance test plus additional flights and maneuvers to encompass the range of flight loads in revenue service. The test results indicated that aerodynamic loads, primarily at take-off, were the major cause of rub-indicated that aerodynamic loads, primarily at take-off, were the major cause of rub-induced deterioration in the cold sectin of the engine. Differential thermal expansion between rotating and static parts plus aerodynamic loads combined to cause blade-to-seal rubs in the turbine.

  17. Acceptance Data Package: SXI Stepper Motor/Encoder. Aeroflex P/N 16187. A; Engineering Drawings and Associated Lists

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Acceptance data package - engineering drawings and associated lists for fabrication, assembly and maintenance (cleaning, fluidized bed coating, bounding and staking) motor/encoded solar x-ray imager (SXI) (Aeroflex p/n 16187) were given.

  18. ENVIRONMENTAL ENGINEERING AND ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Endocrine disruptors are a class of chemicals of growing interest to the environmental community. USEPA's Risk Assessment Forum defined an endocrine disrupting chemical (EDC) as "an exogenous agent that interferes with the synthesis, secretion, transport, binding, action, or elim...

  19. Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals.

    PubMed

    Dhamankar, Himanshu; Prather, Kristala L J

    2011-08-01

    The dwindling nature of petroleum and other fossil reserves has provided impetus towards microbial synthesis of fuels and value added chemicals from biomass-derived sugars as a renewable resource. Microbes have naturally evolved enzymes and pathways that can convert biomass into hundreds of unique chemical structures, a property that can be effectively exploited for their engineering into Microbial Chemical Factories (MCFs). De novo pathway engineering facilitates expansion of the repertoire of microbially synthesized compounds beyond natural products. In this review, we visit some recent successes in such novel pathway engineering and optimization, with particular emphasis on the selection and engineering of pathway enzymes and balancing of their accessory cofactors.

  20. Implementation of SI Units in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Youngquist, Gordon R.

    1976-01-01

    Discusses the results of a survey of U.S. Chemical Engineering Departments to determine established policy concerning the use of SI units in courses and plans for future implementation of the SI system of units. (MLH)

  1. Laboratory Planning for Chemistry and Chemical Engineering.

    ERIC Educational Resources Information Center

    Lewis, Harry F., Ed.

    This study is the result of a project of the Committee on Design, Construction and Equipment of Laboratories, Division of Chemistry and Chemical Technology, of the National Academy of Sciences. The problems and methods of planning, designing and constructing varying types of chemical laboratories for research and developmental buildings are…

  2. Chemical Information in Scirus and BASE (Bielefeld Academic Search Engine)

    ERIC Educational Resources Information Center

    Bendig, Regina B.

    2009-01-01

    The author sought to determine to what extent the two search engines, Scirus and BASE (Bielefeld Academic Search Engines), would be useful to first-year university students as the first point of searching for chemical information. Five topics were searched and the first ten records of each search result were evaluated with regard to the type of…

  3. Incorporating Six Sigma Methodology Training into Chemical Engineering Education

    ERIC Educational Resources Information Center

    Dai, Lenore L.

    2007-01-01

    Six Sigma is a buzz term in today's technology and business world and there has been increasing interest to initiate Six Sigma training in college education. We have successfully incorporated Six Sigma methodology training into a traditional chemical engineering course, Engineering Experimentation, at Texas Tech University. The students have…

  4. New Laboratory Course for Senior-Level Chemical Engineering Students

    ERIC Educational Resources Information Center

    Aronson, Mark T.; Deitcher, Robert W.; Xi, Yuanzhou; Davis, Robert J.

    2009-01-01

    A new laboratory course has been developed at the University of Virginia for senior- level chemical engineering students. The new course is based on three 4-week long experiments in bioprocess engineering, energy conversion and catalysis, and polymer synthesis and characterization. The emphasis is on the integration of process steps and the…

  5. Discrete-Event Simulation in Chemical Engineering.

    ERIC Educational Resources Information Center

    Schultheisz, Daniel; Sommerfeld, Jude T.

    1988-01-01

    Gives examples, descriptions, and uses for various types of simulation systems, including the Flowtran, Process, Aspen Plus, Design II, GPSS, Simula, and Simscript. Explains similarities in simulators, terminology, and a batch chemical process. Tables and diagrams are included. (RT)

  6. Chemical Stimulation of Engineered Geothermal Systems

    SciTech Connect

    Rose, Peter, E.

    2008-08-08

    The objective of this project is to design, develop and demonstrate methods for the chemical stimulation of candidate EGS reservoirs as well as the chemical treatment of mineral-scaled wellbores. First, a set of candidate chemical compounds capable of dissolving calcite was identified. A series of tests was then performed on each candidate in order to screen it for thermal stability and reactivity towards calcite. A detailed analysis was then performed on each compound that emerged from the screening tests in order to characterize its decay kinetics and reaction kinetics as functions of temperature and chemical composition. From among the compounds emerging from the laboratory studies, one compounds was chosen for a field experiment in order to verify the laboratory predictions.

  7. Challenges and opportunities in synthetic biology for chemical engineers

    PubMed Central

    Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin

    2012-01-01

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. PMID:24222925

  8. Challenges and opportunities in synthetic biology for chemical engineers

    SciTech Connect

    Luo, YZ; Lee, JK; Zhao, HM

    2013-11-15

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. (C) 2012 Elsevier Ltd. All rights reserved.

  9. Acceptance Testing of the Vapor Phase Catalytic Ammonia Removal Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Fisher, John; Kliss, Mark; Tleimat, Maher; Quinn, Gregory; Fort, James; Nalette, Tim; Baker, Gale

    2005-01-01

    This paper describes the results of acceptance testing of the Vapor Phase Catalytic Ammonia Removal (VPCAR) technology. The VPCAR technology is currently being developed by NASA as a Mars transit vehicle water recycling system. NASA has recently completed a grant to develop a next generation VPCAR system. This grant was peer reviewed and funded through the Advanced Life Support (ALS) National Research Announcement (NRA). The grant funded a contract with Water Reuse Technology Inc. to construct an engineering development unit. This contract concluded with the shipment of the final deliverable to NASA on 8/31/03. The objective of the acceptance testing was to characterize the performance of this new system. This paper presents the results of mass power, and volume measurements for the delivered system. In addition, product water purity analysis for a Mars transit mission and a planetary base wastewater ersatz are provided. Acoustic noise levels, interface specifications and system reliability results are also discussed. An assessment of the readiness of the technology for human testing and recommendations for future improvements are provided.

  10. Chemical engineering: Measurements for a competitive age

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The NIST (National Institute of Standards and Technology) activities supporting chemical research, environmental research, combustion and fuel research, and related industries are described in this video. Highlights include private sector involvement in the research and associated and guest scientist programs, the calibration of customers' instruments, and the direct funding for the NIST research projects by outside industries.

  11. Process Security in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Piluso, Cristina; Uygun, Korkut; Huang, Yinlun; Lou, Helen H.

    2005-01-01

    The threats of terrorism have greatly alerted the chemical process industries to assure plant security at all levels: infrastructure-improvement-focused physical security, information-protection-focused cyber security, and design-and-operation-improvement-focused process security. While developing effective plant security methods and technologies…

  12. Reverse engineering chemical structures from molecular descriptors : how many solutions?

    SciTech Connect

    Brown, William Michael; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-06-01

    Physical, chemical and biological properties are the ultimate information of interest for chemical compounds. Molecular descriptors that map structural information to activities and properties are obvious candidates for information sharing. In this paper, we consider the feasibility of using molecular descriptors to safely exchange chemical information in such a way that the original chemical structures cannot be reverse engineered. To investigate the safety of sharing such descriptors, we compute the degeneracy (the number of structure matching a descriptor value) of several 2D descriptors, and use various methods to search for and reverse engineer structures. We examine degeneracy in the entire chemical space taking descriptors values from the alkane isomer series and the PubChem database. We further use a stochastic search to retrieve structures matching specific topological index values. Finally, we investigate the safety of exchanging of fragmental descriptors using deterministic enumeration.

  13. Characterization of Chemicals on Engine Exhaust Particles

    DTIC Science & Technology

    1989-06-01

    Chromatography /Mass Spectrometry (NCI GC/MS). The NCI on- column injection GC/MS method provides significant benefits for the analysis of nitro-aromatic...found is quite small. The two columns of data for tne TF33-P7 engine operated at 30 percent power were obtained on separate days, so that factors other...alkane 19 736 Long chain alkane 20 775 C1, fluorene 21 811 Fluorenone 22 834 Long chain alkane 23 844 Long chain alkane 24 859 Phenanthrene 25 869

  14. Chemically engineered persistent luminescence nanoprobes for bioimaging

    PubMed Central

    Lécuyer, Thomas; Teston, Eliott; Ramirez-Garcia, Gonzalo; Maldiney, Thomas; Viana, Bruno; Seguin, Johanne; Mignet, Nathalie; Scherman, Daniel; Richard, Cyrille

    2016-01-01

    Imaging nanoprobes are a group of nanosized agents developed for providing improved contrast for bioimaging. Among various imaging probes, optical sensors capable of following biological events or progresses at the cellular and molecular levels are actually actively developed for early detection, accurate diagnosis, and monitoring of the treatment of diseases. The optical activities of nanoprobes can be tuned on demand by chemists by engineering their composition, size and surface nature. This review will focus on researches devoted to the conception of nanoprobes with particular optical properties, called persistent luminescence, and their use as new powerful bioimaging agents in preclinical assays. PMID:27877248

  15. Carbon cycle in advanced coal chemical engineering.

    PubMed

    Yi, Qun; Li, Wenying; Feng, Jie; Xie, Kechang

    2015-08-07

    This review summarizes how the carbon cycle occurs and how to reduce CO2 emissions in highly efficient carbon utilization from the most abundant carbon source, coal. Nowadays, more and more attention has been paid to CO2 emissions and its myriad of sources. Much research has been undertaken on fossil energy and renewable energy and current existing problems, challenges and opportunities in controlling and reducing CO2 emission with technologies of CO2 capture, utilization, and storage. The coal chemical industry is a crucial area in the (CO2 value chain) Carbon Cycle. The realization of clean and effective conversion of coal resources, improving the utilization and efficiency of resources, whilst reducing CO2 emissions is a key area for further development and investigation by the coal chemical industry. Under a weak carbon mitigation policy, the value and price of products from coal conversion are suggested in the carbon cycle.

  16. Chemical-oxidation treatment. Engineering bulletin

    SciTech Connect

    Not Available

    1991-10-01

    Oxidation destroys hazardous contaminants by chemically converting them to nonhazardous or less toxic compounds that are ideally more stable, less mobile, and/or inert. However, under some conditions, other hazardous compounds may be formed. The oxidizing agents most commonly used for the treatment of hazardous contaminants are ozone, hydrogen peroxide, hypochlorites, chlorine, and chlorine dioxide. Current research has shown the combination of these reagents or ultraviolet (UV) light and an oxidizing agent(s) makes the process more effective. Treatability studies are necessary to document the applicability and performance of chemical oxidation systems technology for a specific site. The bulletin provides information on the technology applicability, limitations, a technology description, the types of residuals produced, site requirements, current performance data, status of the technology, and sources of further information.

  17. Engineering the prion protein using chemical synthesis.

    PubMed

    Ball, H L; King, D S; Cohen, F E; Prusiner, S B; Baldwin, M A

    2001-11-01

    In recent years, the technology of solid-phase peptide synthesis (SPPS) has improved to the extent that chemical synthesis of small proteins may be a viable complementary strategy to recombinant expression. We have prepared several modified and wild-type prion protein (PrP) polypeptides, of up to 112 residues, that demonstrate the flexibility of a chemical approach to protein synthesis. The principal event in prion disease is the conformational change of the normal, alpha-helical cellular protein (PrPc) into a beta-sheet-rich pathogenic isoform (PrP(Sc)). The ability to form PrP(Sc) in transgenic mice is retained by a 106 residue 'mini-prion' (PrP106), with the deletions 23-88 and 141-176. Synthetic PrP106 (sPrP106) and a His-tagged analog (sPrP106HT) have been prepared successfully using a highly optimized Fmoc chemical methodology involving DCC/HOBt activation and an efficient capping procedure with N-(2-chlorobenzyloxycarbonyloxy) succinimide. A single reversed-phase purification step gave homogeneous protein, in excellent yield. With respect to its conformational and aggregational properties and its response to proteinase digestion, sPrP106 was indistinguishable from its recombinant analog (rPrP106). Certain sequences that proved to be more difficult to synthesize using the Fmoc approach, such as bovine (Bo) PrP(90-200), were successfully prepared using a combination of the highly activated coupling reagent HATU and t-Boc chemistry. To mimic the glycosylphosphatidyl inositol (GPI) anchor and target sPrP to cholesterol-rich domains on the cell surface, where the conversion of PrPc is believed to occur, a lipophilic group or biotin, was added to an orthogonally side-chain-protected Lys residue at the C-terminus of sPrP sequences. These groups enabled sPrP to be immobilized on either the cell surface or a streptavidin-coated ELISA plate, respectively, in an orientation analogous to that of membrane-bound, GPI-anchored PrPc. The chemical manipulation of such

  18. Cofactor engineering for advancing chemical biotechnology.

    PubMed

    Wang, Yipeng; San, Ka-Yiu; Bennett, George N

    2013-12-01

    Cofactors provide redox carriers for biosynthetic reactions, catabolic reactions and act as important agents in transfer of energy for the cell. Recent advances in manipulating cofactors include culture conditions or additive alterations, genetic modification of host pathways for increased availability of desired cofactor, changes in enzyme cofactor specificity, and introduction of novel redox partners to form effective circuits for biochemical processes and biocatalysts. Genetic strategies to employ ferredoxin, NADH and NADPH most effectively in natural or novel pathways have improved yield and efficiency of large-scale processes for fuels and chemicals and have been demonstrated with a variety of microbial organisms.

  19. My contribution to broadening the base of chemical engineering.

    PubMed

    Sargent, Roger W H

    2011-01-01

    This paper is a short account, from a personal viewpoint, of the various contributions I have made to expand the academic basis of chemical engineering from its origin in the unifying concept of unit operations, focussed on process design, to encompassing all the professional activities of industrial chemical engineers. This includes all aspects of planning and scheduling the operations as well as designing and controlling the process plant. The span of my career also happens to include the birth of the age of computing, with all the consequential implications.

  20. Automotive fuels and internal combustion engines: a chemical perspective.

    PubMed

    Wallington, T J; Kaiser, E W; Farrell, J T

    2006-04-01

    Commercial transportation fuels are complex mixtures containing hundreds or thousands of chemical components, whose composition has evolved considerably during the past 100 years. In conjunction with concurrent engine advancements, automotive fuel composition has been fine-tuned to balance efficiency and power demands while minimizing emissions. Pollutant emissions from internal combustion engines (ICE), which arise from non-ideal combustion, have been dramatically reduced in the past four decades. Emissions depend both on the engine operating parameters (e.g. engine temperature, speed, load, A/F ratio, and spark timing) and the fuel. These emissions result from complex processes involving interactions between the fuel and engine parameters. Vehicle emissions are comprised of volatile organic compounds (VOCs), CO, nitrogen oxides (NO(x)), and particulate matter (PM). VOCs and NO(x) form photochemical smog in urban atmospheres, and CO and PM may have adverse health impacts. Engine hardware and operating conditions, after-treatment catalysts, and fuel composition all affect the amount and composition of emissions leaving the vehicle tailpipe. While engine and after-treatment effects are generally larger than fuel effects, engine and after-treatment hardware can require specific fuel properties. Consequently, the best prospects for achieving the highest efficiency and lowest emissions lie with optimizing the entire fuel-engine-after-treatment system. This review provides a chemical perspective on the production, combustion, and environmental aspects of automotive fuels. We hope this review will be of interest to workers in the fields of chemical kinetics, fluid dynamics of reacting flows, atmospheric chemistry, automotive catalysts, fuel science, and governmental regulations.

  1. The role of chemical engineering in medicinal research including Alzheimer's.

    PubMed

    Kontogeorgis, Georgios M

    2015-01-01

    Various disciplines of chemical engineering, especially thermodynamics and kinetics, play an important role in medicinal research and this has been particularly recognized during the last 10-15 years (von Stockar and van der Wielen, J Biotechnol 59:25, 1997; Prausnitz, Fluid Phase Equilib 53:439, 1989; Prausnitz, Pure Appl Chem 79:1435, 2007; Dey and Prausnitz, Ind Eng Chem Res 50:3, 2011; Prausnitz, J Chem Thermodynamics 35:21, 2003; Tsivintzelis et al. AIChE J 55:756, 2009). It is expected that during the twenty-first century chemical engineering and especially thermodynamics can contribute as significantly to the life sciences development as it has been done with the oil and gas and chemical sectors in the twentieth century. Moreover, it has during the recent years recognized that thermodynamics can help in understanding diseases like human cataract, sickle-cell anemia, Creuzfeldt-Jacob ("mad cow" disease), and Alzheimer's which are connected to "protein aggregation." Several articles in the Perspectives section of prominent chemical engineering journals have addressed this issue (Hall, AIChE J 54:1956, 2008; Vekilov, AIChE J 54:2508, 2008). This work reviews recent applications of thermodynamics (and other areas of chemical engineering) first in drug development and then in the understanding of the mechanism of Alzheimer's and similar diseases.

  2. Engineered Barrier System: Physical and Chemical Environment Model

    SciTech Connect

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  3. Cyanobacterial metabolic engineering for biofuel and chemical production.

    PubMed

    Oliver, Neal J; Rabinovitch-Deere, Christine A; Carroll, Austin L; Nozzi, Nicole E; Case, Anna E; Atsumi, Shota

    2016-12-01

    Rising levels of atmospheric CO2 are contributing to the global greenhouse effect. Large scale use of atmospheric CO2 may be a sustainable and renewable means of chemical and liquid fuel production to mitigate global climate change. Photosynthetic organisms are an ideal platform for efficient, natural CO2 conversion to a broad range of chemicals. Cyanobacteria are especially attractive for these purposes, due to their genetic malleability and relatively fast growth rate. Recent years have yielded a range of work in the metabolic engineering of cyanobacteria and have led to greater knowledge of the host metabolism. Understanding of endogenous and heterologous carbon regulation mechanisms leads to the expansion of productive capacity and chemical variety. This review discusses the recent progress in metabolic engineering of cyanobacteria for biofuel and bulk chemical production since 2014.

  4. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.

    PubMed

    Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2016-04-01

    To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production.

  5. Synthesis of chemicals by metabolic engineering of microbes.

    PubMed

    Sun, Xinxiao; Shen, Xiaolin; Jain, Rachit; Lin, Yuheng; Wang, Jian; Sun, Jing; Wang, Jia; Yan, Yajun; Yuan, Qipeng

    2015-06-07

    Metabolic engineering is a powerful tool for the sustainable production of chemicals. Over the years, the exploration of microbial, animal and plant metabolism has generated a wealth of valuable genetic information. The prudent application of this knowledge on cellular metabolism and biochemistry has enabled the construction of novel metabolic pathways that do not exist in nature or enhance existing ones. The hand in hand development of computational technology, protein science and genetic manipulation tools has formed the basis of powerful emerging technologies that make the production of green chemicals and fuels a reality. Microbial production of chemicals is more feasible compared to plant and animal systems, due to simpler genetic make-up and amenable growth rates. Here, we summarize the recent progress in the synthesis of biofuels, value added chemicals, pharmaceuticals and nutraceuticals via metabolic engineering of microbes.

  6. A Chemical Engineer's Perspective on Health and Disease

    PubMed Central

    Androulakis, Ioannis P.

    2014-01-01

    Chemical process systems engineering considers complex supply chains which are coupled networks of dynamically interacting systems. The quest to optimize the supply chain while meeting robustness and flexibility constraints in the face of ever changing environments necessitated the development of theoretical and computational tools for the analysis, synthesis and design of such complex engineered architectures. However, it was realized early on that optimality is a complex characteristic required to achieve proper balance between multiple, often competing, objectives. As we begin to unravel life's intricate complexities, we realize that that living systems share similar structural and dynamic characteristics; hence much can be learned about biological complexity from engineered systems. In this article, we draw analogies between concepts in process systems engineering and conceptual models of health and disease; establish connections between these concepts and physiologic modeling; and describe how these mirror onto the physiological counterparts of engineered systems. PMID:25506103

  7. A Chemical Engineer's Perspective on Health and Disease.

    PubMed

    Androulakis, Ioannis P

    2014-12-04

    Chemical process systems engineering considers complex supply chains which are coupled networks of dynamically interacting systems. The quest to optimize the supply chain while meeting robustness and flexibility constraints in the face of ever changing environments necessitated the development of theoretical and computational tools for the analysis, synthesis and design of such complex engineered architectures. However, it was realized early on that optimality is a complex characteristic required to achieve proper balance between multiple, often competing, objectives. As we begin to unravel life's intricate complexities, we realize that that living systems share similar structural and dynamic characteristics; hence much can be learned about biological complexity from engineered systems. In this article, we draw analogies between concepts in process systems engineering and conceptual models of health and disease; establish connections between these concepts and physiologic modeling; and describe how these mirror onto the physiological counterparts of engineered systems.

  8. Chemical Engineering Division research highlights, 1979

    SciTech Connect

    Burris, L.; Webster, D. S.; Barney, D. L.; Cafasso, F. A.; Steindler, M. J.

    1980-06-01

    In 1979, CEN conducted research and development in the following areas: (1) high-temperature, rechargeable lithium/iron sulfide batteries for electric vehicles and electric utility load leveling; (2) ambient-temperature batteries - improved lead-acid, nickel/zinc, and nickel/iron - for electric vehicles; (3) molten carbonate fuel cells for use by electric utilities; (4) coal technology - mainly fluidized-bed combustion of coal in the presence of SO/sub 2/ sorbent of limestone; (5) heat- and seed- recovery technology for open-cycle magnetohydrodynamic systems; (6) solar energy collectors and thermal energy storage; (7) fast breeder reactor chemistry research - chemical support of reactor safety studies, chemistry of irradiated fuels, and sodium technology; (8) fuel cycle technology - reprocessing of nuclear fuels, management of nuclear wastes, geologic migration studies, and proof-of-breeding studies for the Light Water Breeder Reactor; (9) magnetic fusion research - lithium processing technology and materials research; and (10) basic energy sciences - homogeneous catalysis, thermodynamics of inorganic and organic materials, environmental chemistry, electrochemistry, and physical properties of salt vapors. Separate abstracts were prepared for each of these areas.

  9. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    SciTech Connect

    Not Available

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  10. Introducing Water-Treatment Subjects into Chemical Engineering Education.

    ERIC Educational Resources Information Center

    Caceres, L.; And Others

    1992-01-01

    Proposes that inclusion of waste water treatment subjects within the chemical engineering curriculum can provide students with direct access to environmental issues from both a biotechnological and an ethical perspective. The descriptive details of water recycling at a copper plant and waste water stabilization ponds exemplify this approach from…

  11. Chemical Reaction Engineering: Current Status and Future Directions.

    ERIC Educational Resources Information Center

    Dudukovic, M. P.

    1987-01-01

    Describes Chemical Reaction Engineering (CRE) as the discipline that quantifies the interplay of transport phenomena and kinetics in relating reactor performance to operating conditions and input variables. Addresses the current status of CRE in both academic and industrial settings and outlines future trends. (TW)

  12. Group Projects in Chemical Engineering Using a Wiki

    ERIC Educational Resources Information Center

    Heys, Jeffrey J.

    2008-01-01

    Group projects are common in undergraduate chemical engineering course. Wikis are a new medium for group projects because they are Webpages that are edited using the same software used to view the Webpage. Advantages include the ability to record changes made by each individual (helpful for grading), ability to continuously monitor progress, and a…

  13. Teaching Technical Writing in a Lab Course in Chemical Engineering

    ERIC Educational Resources Information Center

    Lombardo, Stephen J.

    2010-01-01

    Techniques are presented for improving the technical writing of chemical engineering students enrolled in an undergraduate laboratory course. The principles of writing covered are adopted from the book, Style: Lessons in Clarity and Grace, by Joseph M. Williams: General examples of writing are taken from this book and then are recast into examples…

  14. Two-Compartment Pharmacokinetic Models for Chemical Engineers

    ERIC Educational Resources Information Center

    Kanneganti, Kumud; Simon, Laurent

    2011-01-01

    The transport of potassium permanganate between two continuous-stirred vessels was investigated to help chemical and biomedical engineering students understand two-compartment pharmacokinetic models. Concepts of modeling, mass balance, parameter estimation and Laplace transform were applied to the two-unit process. A good agreement was achieved…

  15. Topological engineering of glass for modulating chemical state of dopants.

    PubMed

    Zhou, Shifeng; Guo, Qiangbing; Inoue, Hiroyuki; Ye, Qun; Masuno, Atsunobu; Zheng, Binbin; Yu, Yongze; Qiu, Jianrong

    2014-12-17

    A novel approach to modulating the chemical state of dopants by engineering the topological features of a glass matrix is presented. The method allows selective stabilization of dopants on a wide range of length scales, from dispersed ions to aggregated clusters to nanoparticles, leading to various intriguing optical phenomena, such as great emission enhancement and ultra-broadband optical amplification.

  16. Application of Plagiarism Screening Software in the Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Cooper, Matthew E.; Bullard, Lisa G.

    2014-01-01

    Plagiarism is an area of increasing concern for written ChE assignments, such as laboratory and design reports, due to ease of access to text and other materials via the internet. This study examines the application of plagiarism screening software to four courses in a university chemical engineering curriculum. The effectiveness of plagiarism…

  17. Incorporating Computational Chemistry into the Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Wilcox, Jennifer

    2006-01-01

    A graduate-level computational chemistry course was designed and developed and carried out in the Department of Chemical Engineering at Worcester Polytechnic Institute in the Fall of 2005. The thrust of the course was a reaction assignment that led students through a series of steps, beginning with energetic predictions based upon fundamental…

  18. Hazardous Waste Processing in the Chemical Engineering Curriculum.

    ERIC Educational Resources Information Center

    Dorland, Dianne; Baria, Dorab N.

    1995-01-01

    Describes a sequence of two courses included in the chemical engineering program at the University of Minnesota, Duluth that deal with the processing of hazardous wastes. Covers course content and structure, and discusses developments in pollution prevention and waste management that led to the addition of these courses to the curriculum.…

  19. Microfluidics and Microfabrication in a Chemical Engineering Lab

    ERIC Educational Resources Information Center

    Archer, Shivaun D.

    2011-01-01

    Microfluidics, the manipulation of fluids in channels with micron dimensions, has emerged as an exciting new field that impacts the broad area of nano/microtechnology. This is an important area to train the next generation of chemical engineers. This paper describes an experiment where students are given a problem to design a microfluidic mixer…

  20. Interactive Graphics in CAD/CAI in Chemical Engineering.

    ERIC Educational Resources Information Center

    Lewin, D. R.

    This paper describes the development of a software program which incorporates interactive graphics techniques into a teaching and research environment at the Department of Chemical Engineering, Technion, Israel, and the experience of transferring the software from mainframe to personal computer (PC) operating systems at the California Institute of…

  1. Pretest uncertainty analysis for chemical rocket engine tests

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.

    1987-01-01

    A parametric pretest uncertainty analysis has been performed for a chemical rocket engine test at a unique 1000:1 area ratio altitude test facility. Results from the parametric study provide the error limits required in order to maintain a maximum uncertainty of 1 percent on specific impulse. Equations used in the uncertainty analysis are presented.

  2. A Vision of the Chemical Engineering Curriculum of the Future

    ERIC Educational Resources Information Center

    Armstrong, Robert C.

    2006-01-01

    A dramatic shift in chemical engineering undergraduate education is envisioned, based on discipline-wide workshop discussions that have taken place over the last two years. Faculty from more than 53 universities and industry representatives from 19 companies participated. Through this process broad consensus has been developed regarding basic…

  3. Total chemical synthesis of a 77-nucleotide-long RNA sequence having methionine-acceptance activity.

    PubMed Central

    Ogilvie, K K; Usman, N; Nicoghosian, K; Cedergren, R J

    1988-01-01

    Chemical synthesis is described of a 77-nucleotide-long RNA molecule that has the sequence of an Escherichia coli Ado-47-containing tRNA(fMet) species in which the modified nucleosides have been substituted by their unmodified parent nucleosides. The sequence was assembled on a solid-phase, controlled-pore glass support in a stepwise manner with an automated DNA synthesizer. The ribonucleotide building blocks used were fully protected 5'-monomethoxytrityl-2'-silyl-3'-N,N-diisopropylaminophosphoram idites. p-Nitro-phenylethyl groups were used to protect the O6 of guanine residues. The fully deprotected tRNA analogue was characterized by polyacrylamide gel electrophoresis (sizing), terminal nucleotide analysis, sequencing, and total enzyme degradation, all of which indicated that the sequence was correct and contained only 3-5 linkages. The 77-mer was then assayed for amino acid acceptor activity by using E. coli methionyl-tRNA synthetase. The results indicated that the synthetic product, lacking modified bases, is a substrate for the enzyme and has an amino acid acceptance 11% of that of the major native species, tRNA(fMet) containing 7-methylguanosine at position 47. Images PMID:3413059

  4. Women in biomedical engineering and health informatics and its impact on gender representation for accepted publications at IEEE EMBC 2007.

    PubMed

    McGregor, Carolyn; Smith, Kathleen P; Percival, Jennifer

    2008-01-01

    The study of women within the professions of Engineering and Computer Science has consistently been found to demonstrate women as a minority within these professions. However none of that previous work has assessed publication behaviours based on gender. This paper presents research findings on gender distribution of authors of accepted papers for the IEEE Engineering and Medicine Society annual conference for 2007 (EMBC '07) held in Lyon, France. This information is used to present a position statement of the current state of gender representation for conference publication within the domain of biomedical engineering and health informatics. Issues in data preparation resulting from the lack of inclusion of gender in information gathered from accepted authors are presented and discussed.

  5. The History of Chemical Engineering and Pedagogy: The Paradox of Tradition and Innovation

    ERIC Educational Resources Information Center

    Wankat, Phillip C.

    2009-01-01

    The Massachusetts Institute of Technology started the first US chemical engineering program six score years ago. Since that time, the chemical engineering curriculum has evolved. The latest versions of the curriculum are attempts to broaden chemical engineering to add product engineering, biology and nanotechnology to the traditional process…

  6. Curriculum Assessment as a Direct Tool in ABET Outcomes Assessment in a Chemical Engineering Programme

    ERIC Educational Resources Information Center

    Abu-Jdayil, Basim; Al-Attar, Hazim

    2010-01-01

    The chemical engineering programme at the United Arab Emirates University is designed to fulfil the Accreditation Board for Engineering and Technology (ABET) (A-K) EC2000 criteria. The Department of Chemical & Petroleum Engineering has established a well-defined process for outcomes assessment for the chemical engineering programme in order to…

  7. Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Muehlner, E.

    1943-01-01

    Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "prelinminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.

  8. Genetic engineering and chemical conjugation of potato virus X.

    PubMed

    Lee, Karin L; Uhde-Holzem, Kerstin; Fischer, Rainer; Commandeur, Ulrich; Steinmetz, Nicole F

    2014-01-01

    Here we report the genetic engineering and chemical modification of potato virus X (PVX) for the presentation of various peptides, proteins, and fluorescent dyes, or other chemical modifiers. Three different ways of genetic engineering are described and by these means, peptides are successfully expressed not only when the foot and mouth disease virus (FMDV) 2A sequence or a flexible glycine-serine linker is included, but also when the peptide is fused directly to the PVX coat protein. When larger proteins or unfavorable peptide sequences are presented, a partial fusion via the FMDV 2A sequence is preferable. When these PVX chimeras retain the ability to assemble into viral particles and are thus able to infect plants systemically, they can be utilized to inoculate susceptible plants for isolation of sufficient amounts of virus particles for subsequent chemical modification. Chemical modification is required for the display of nonbiological ligands such as fluorophores, polymers, and small drug compounds. We present three methods of chemical bioconjugation. For direct conjugation of small chemical modifiers to solvent exposed lysines, N-hydroxysuccinimide chemistry can be applied. Bio-orthogonal reactions such as copper-catalyzed azide-alkyne cycloaddition or hydrazone ligation are alternatives to achieve more efficient conjugation (e.g., when working with high molecular weight or insoluble ligands). Furthermore, hydrazone ligation offers an attractive route for the introduction of pH-cleavable cargos (e.g., therapeutic molecules).

  9. Chemical engineering challenges and investment opportunities in sustainable energy.

    PubMed

    Heller, Adam

    2008-01-01

    The chemical and energy industries are transforming as they adjust to the new era of high-priced petroleum and severe global warming. As a result of the transformation, engineering challenges and investment opportunities abound. Rapid evolution and fast growth are expected in cathode and anode materials as well as polymeric electrolytes for vehicular batteries and in high-performance polymer-ceramic composites for wind turbines, fuel-efficient aircraft, and lighter and safer cars. Unique process-engineering opportunities exist in sand-oil, coal, and possibly also shale liquefaction to produce transportation fuel; and also in genetic engineering of photosynthesizing plants and other organisms for their processing into high-performance biodegradable polymers and high-value-added environmentally friendly chemicals. Also, research on the feasibility of mitigation of global warming through enhancement of CO(2) uptake by the southern oceans by fertilization with trace amounts of iron is progressing. Because chemical engineers are uniquely well trained in mathematical modeling of mass transport, flow, and mixing, and also in cost analysis, they are likely to join the oceanographers and marine biologists in this important endeavor.

  10. The applicability of chemical alternatives assessment for engineered nanomaterials.

    PubMed

    Hjorth, Rune; Hansen, Steffen Foss; Jacobs, Molly; Tickner, Joel; Ellenbecker, Michael; Baun, Anders

    2017-01-01

    The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case for alternatives assessment approaches, because they can be considered both emerging "chemicals" of concern, as well as potentially safer alternatives to hazardous chemicals. However, comparing the hazards of nanomaterials to traditional chemicals or to other nanomaterials is challenging, and critical elements in chemical hazard and exposure assessment may have to be fundamentally altered to sufficiently address nanomaterials. The aim of this paper is to assess the overall applicability of alternatives assessment methods for nanomaterials and to outline recommendations to enhance their use in this context. The present paper focuses on the adaptability of existing hazard and exposure assessment approaches to engineered nanomaterials as well as strategies to design inherently safer nanomaterials. We argue that alternatives assessment for nanomaterials is complicated by the sheer number of nanomaterials possible. As a result, the inclusion of new data tools that can efficiently and effectively evaluate nanomaterials as substitutes is needed to strengthen the alternatives assessment process. However, we conclude that with additional tools to enhance traditional hazard and exposure assessment modules of alternatives assessment, such as the use of mechanistic toxicity screens and control banding tools, alternatives assessment can be adapted to evaluate engineered nanomaterials as potential substitutes for chemicals of concern and to ensure safer nanomaterials are incorporated in the design of new products. Integr Environ Assess Manag 2017;13:177-187. © 2016 SETAC.

  11. Atomic layer engineering of perovskite oxides for chemically sharp heterointerfaces.

    PubMed

    Choi, Woo Seok; Rouleau, Christopher M; Seo, Sung Seok A; Luo, Zhenlin; Zhou, Hua; Fister, Timothy T; Eastman, Jeffrey A; Fuoss, Paul H; Fong, Dillon D; Tischler, Jonathan Z; Eres, Gyula; Chisholm, Matthew F; Lee, Ho Nyung

    2012-12-18

    Atomic layer engineering enables fabrication of a chemically sharp oxide heterointerface. The interface formation and strain evolution during the initial growth of LaAlO(3) /SrTiO(3) heterostructures by pulsed laser deposition are investigated in search of a means for controlling the atomic-sharpness of the interface. This study shows that inserting a monolayer of LaAlO(3) grown at high oxygen pressure dramatically enhances interface abruptness.

  12. A New Venture in Graduate Education: Co-Op Ph.D. Programme in Chemical Engineering.

    ERIC Educational Resources Information Center

    Fahidy, Thomas Z.

    1980-01-01

    Describes a cooperative Ph.D. program at the University of Waterloo, Ontario, Canada, in which industrial and governmental employers participate with the Department of Chemical Engineering in training chemical engineers. (CS)

  13. Engineering Education: Environmental and Chemical Engineering or Technology Curricula--A European Perspective

    ERIC Educational Resources Information Center

    Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo

    2009-01-01

    Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…

  14. Metabolic engineering is key to a sustainable chemical industry.

    PubMed

    Murphy, Annabel C

    2011-08-01

    The depletion of fossil fuel stocks will prohibit their use as the main feedstock of future industrial processes. Biocatalysis is being increasingly used to reduce fossil fuel reliance and to improve the sustainability, efficiency and cost of chemical production. Even with their current small market share, biocatalyzed processes already generate approximately US$50 billion and it has been estimated that they could be used to produce up to 20% of fine chemicals by 2020. Until the advent of molecular biological technologies, the compounds that were readily accessible from renewable biomass were restricted to naturally-occurring metabolites. However, metabolic engineering has considerably broadened the range of compounds now accessible, providing access to compounds that cannot be otherwise reliably sourced, as well as replacing established chemical processes. This review presents the case for continued efforts to promote the adoption of biocatalyzed processes, highlighting successful examples of industrial chemical production from biomass and/or via biocatalyzed processes. A selection of emerging technologies that may further extend the potential and sustainability of biocatalysis are also presented. As the field matures, metabolic engineering will be increasingly crucial in maintaining our quality of life into a future where our current resources and feedstocks cannot be relied upon.

  15. Showcasing Chemical Engineering Principles through the Production of Biodiesel from Spent Coffee Grounds

    ERIC Educational Resources Information Center

    Bendall, Sophie; Birdsall-Wilson, Max; Jenkins, Rhodri; Chew, Y. M. John; Chuck, Christopher J.

    2015-01-01

    Chemical engineering is rarely encountered before higher-level education in the U.S. or in Europe, leaving prospective students unaware of what an applied chemistry or chemical engineering degree entails. In this lab experiment, we report the implementation of a three-day course to showcase chemical engineering principles for 16-17 year olds…

  16. Future of Chemical Engineering: Integrating Biology into the Undergraduate ChE Curriculum

    ERIC Educational Resources Information Center

    Mosto, Patricia; Savelski, Mariano; Farrell, Stephanie H.; Hecht, Gregory B.

    2007-01-01

    Integrating biology in the chemical engineering curriculum seems to be the future for chemical engineering programs nation and worldwide. Rowan University's efforts to address this need include a unique chemical engineering curriculum with an intensive biology component integrated throughout from freshman to senior years. Freshman and Sophomore…

  17. Improving the Practical Education of Chemical and Pharmaceutical Engineering Majors in Chinese Universities

    ERIC Educational Resources Information Center

    Zhao, Feng-qing; Yu, Yi-feng; Ren, Shao-feng; Liu, Shao-jie; Rong, Xin-yu

    2014-01-01

    Practical education in chemical engineering has drawn increasing attention in recent years. This paper discusses two approaches to teaching and learning about experiments among upper-level chemical and pharmaceutical engineering majors in China. On the basis of years of experience in teaching chemical and pharmaceutical engineering, we propose the…

  18. Engineered ion channels as emerging tools for chemical biology.

    PubMed

    Mayer, Michael; Yang, Jerry

    2013-12-17

    Over the last 25 years, researchers have developed exogenously expressed, genetically engineered, semi-synthetic, and entirely synthetic ion channels. These structures have sufficient fidelity to serve as unique tools that can reveal information about living organisms. One of the most exciting success stories is optogenetics: the use of light-gated channels to trigger action potentials in specific neurons combined with studies of the response from networks of cells or entire live animals. Despite this breakthrough, the use of molecularly engineered ion channels for studies of biological systems is still in its infancy. Historically, researchers studied ion channels in the context of their own function in single cells or in multicellular signaling and regulation. Only recently have researchers considered ion channels and pore-forming peptides as responsive tools to report on the chemical and physical changes produced by other biochemical processes and reactions. This emerging class of molecular probes has a number of useful characteristics. For instance, these structures can greatly amplify the signal of chemical changes: the binding of one molecule to a ligand-gated ion channel can result in flux of millions of ions across a cell membrane. In addition, gating occurs on sub-microsecond time scales, resulting in fast response times. Moreover, the signal is complementary to existing techniques because the output is ionic current rather than fluorescence or radioactivity. And finally, ion channels are also localized at the membrane of cells where essential processes such as signaling and regulation take place. This Account highlights examples, mostly from our own work, of uses of ion channels and pore-forming peptides such as gramicidin in chemical biology. We discuss various strategies for preparing synthetically tailored ion channels that range from de novo designed synthetic molecules to genetically engineered or simply exogenously expressed or reconstituted wild

  19. Assessing the Higher National Diploma Chemical Engineering Programme in Ghana: Students' Perspective

    ERIC Educational Resources Information Center

    Boateng, Cyril D.; Bensah, Edem Cudjoe; Ahiekpor, Julius C.

    2012-01-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering…

  20. Fatigue strength testing employed for evaluation and acceptance of jet-engine instrumentation probes

    NASA Astrophysics Data System (ADS)

    Armentrout, E. C.

    1980-03-01

    This report outlines the fatigue type testing performed on instrumentation rakes and probes intended for use in the air flow passages of jet-engines during full-scale engine tests at Lewis Research Center. Included is a discussion of each type of test performed, the results that may be derived and means of inspection. A design and testing sequence outlines the procedures and considerations involved in the generation of suitable instrument probes.

  1. Toxic chemical hazard classification and risk acceptance guidelines for use in DOE facilities. Revision 2

    SciTech Connect

    Craig, D.K.; Davis, J.S.; Prowse, J.; Hoffman, P.W.

    1995-03-24

    The concentration-limit guidelines presented in this document apply to airborne releases of chemicals evaluated with respect to human health effects for the purposes of hazard classification and categorization, risk assessment and safety analysis. They apply to all DOE facilities and operations involving the use of potentially hazardous chemicals. The guidelines do not address other nonradiological hazards such as fire, pressure releases (including explosions), and chemical reactivity, but the guidelines are applicable to hazardous chemical releases resulting from these events. This report presents the subcommittee`s evaluation and recommendations regarding analyses of accidentally released toxic chemicals. The premise upon which these recommendations are based is that the mechanism of action of toxic chemicals is fundamentally different from that associated with radionuclides, with the exception of carcinogens. The recommendations reported herein are restricted to the airborne pathway because in an accident scenario this typically represents the most immediately significant route of public exposure. However, the subcommittee recognizes that exposure to chemicals through other pathways, in particular waterborne, can have significant impacts on human health and the environment. Although there are a number of chemicals for which absorption through the skin can contribute measurably to the total dose in chronic (e.g., occupational) exposure situations, this pathway has not been considered for the acute exposure scenarios considered in this report. Later studies. will address these issues if it appears desirable.

  2. Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride.

    PubMed

    Ba, Kun; Jiang, Wei; Cheng, Jingxin; Bao, Jingxian; Xuan, Ningning; Sun, Yangye; Liu, Bing; Xie, Aozhen; Wu, Shiwei; Sun, Zhengzong

    2017-04-03

    Monolayer hexagonal boron nitride (h-BN) possesses a wide bandgap of ~6 eV. Trimming down the bandgap is technically attractive, yet poses remarkable challenges in chemistry. One strategy is to topological reform the h-BN's hexagonal structure, which involves defects or grain boundaries (GBs) engineering in the basal plane. The other way is to invite foreign atoms, such as carbon, to forge bizarre hybrid structures like hetero-junctions or semiconducting h-BNC materials. Here we successfully developed a general chemical method to synthesize these different h-BN derivatives, showcasing how the chemical structure can be manipulated with or without a graphene precursor, and the bandgap be tuned to ~2 eV, only one third of the pristine one's.

  3. Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride

    PubMed Central

    Ba, Kun; Jiang, Wei; Cheng, Jingxin; Bao, Jingxian; Xuan, Ningning; Sun, Yangye; Liu, Bing; Xie, Aozhen; Wu, Shiwei; Sun, Zhengzong

    2017-01-01

    Monolayer hexagonal boron nitride (h-BN) possesses a wide bandgap of ~6 eV. Trimming down the bandgap is technically attractive, yet poses remarkable challenges in chemistry. One strategy is to topological reform the h-BN’s hexagonal structure, which involves defects or grain boundaries (GBs) engineering in the basal plane. The other way is to invite foreign atoms, such as carbon, to forge bizarre hybrid structures like hetero-junctions or semiconducting h-BNC materials. Here we successfully developed a general chemical method to synthesize these different h-BN derivatives, showcasing how the chemical structure can be manipulated with or without a graphene precursor, and the bandgap be tuned to ~2 eV, only one third of the pristine one’s. PMID:28367992

  4. Engineering small interfering RNAs by strategic chemical modification.

    PubMed

    Bramsen, Jesper B; Kjems, Jørgen

    2013-01-01

    Synthetic small interfering RNAs (siRNAs) have revolutionized functional genomics in mammalian cell cultures due to their reliability, efficiency, and ease of use. This success, however, has not fully translated into siRNA applications in vivo and in siRNA therapeutics where initial optimism has been dampened by a lack of efficient delivery strategies and reports of siRNA off-target effects and immunogenicity. Encouragingly, most aspects of siRNA behavior can be addressed by careful engineering of siRNAs incorporating beneficial chemical modifications into discrete nucleotide positions during siRNA synthesis. Here, we review the literature (Subheadings 1 -3) and provide a quick guide (Subheading 4) to how the performance of siRNA can be improved by chemical modification to suit specific applications in vitro and in vivo.

  5. Engineered Barrier Systems Thermal-Hydraulic-Chemical Column Test Report

    SciTech Connect

    W.E. Lowry

    2001-12-13

    The Engineered Barrier System (EBS) Thermal-Hydraulic-Chemical (THC) Column Tests provide data needed for model validation. The EBS Degradation, Flow, and Transport Process Modeling Report (PMR) will be based on supporting models for in-drift THC coupled processes, and the in-drift physical and chemical environment. These models describe the complex chemical interaction of EBS materials, including granular materials, with the thermal and hydrologic conditions that will be present in the repository emplacement drifts. Of particular interest are the coupled processes that result in mineral and salt dissolution/precipitation in the EBS environment. Test data are needed for thermal, hydrologic, and geochemical model validation and to support selection of introduced materials (CRWMS M&O 1999c). These column tests evaluated granular crushed tuff as potential invert ballast or backfill material, under accelerated thermal and hydrologic environments. The objectives of the THC column testing are to: (1) Characterize THC coupled processes that could affect performance of EBS components, particularly the magnitude of permeability reduction (increases or decreases), the nature of minerals produced, and chemical fractionation (i.e., concentrative separation of salts and minerals due to boiling-point elevation). (2) Generate data for validating THC predictive models that will support the EBS Degradation, Flow, and Transport PMR, Rev. 01.

  6. Applications of neural networks in chemical engineering: Hybrid systems

    SciTech Connect

    Ferrada, J.J.; Osborne-Lee, I.W. ); Grizzaffi, P.A. )

    1990-01-01

    Expert systems are known to be useful in capturing expertise and applying knowledge to chemical engineering problems such as diagnosis, process control, process simulation, and process advisory. However, expert system applications are traditionally limited to knowledge domains that are heuristic and involve only simple mathematics. Neural networks, on the other hand, represent an emerging technology capable of rapid recognition of patterned behavior without regard to mathematical complexity. Although useful in problem identification, neural networks are not very efficient in providing in-depth solutions and typically do not promote full understanding of the problem or the reasoning behind its solutions. Hence, applications of neural networks have certain limitations. This paper explores the potential for expanding the scope of chemical engineering areas where neural networks might be utilized by incorporating expert systems and neural networks into the same application, a process called hybridization. In addition, hybrid applications are compared with those using more traditional approaches, the results of the different applications are analyzed, and the feasibility of converting the preliminary prototypes described herein into useful final products is evaluated. 12 refs., 8 figs.

  7. Engineering microbial chemical factories to produce renewable “biomonomers”

    PubMed Central

    Adkins, Jake; Pugh, Shawn; McKenna, Rebekah; Nielsen, David R.

    2012-01-01

    By applying metabolic engineering tools and strategies to engineer synthetic enzyme pathways, the number and diversity of commodity and specialty chemicals that can be derived directly from renewable feedstocks is rapidly and continually expanding. This of course includes a number of monomer building-block chemicals that can be used to produce replacements to many conventional plastic materials. This review aims to highlight numerous recent and important advancements in the microbial production of these so-called “biomonomers.” Relative to naturally-occurring renewable bioplastics, biomonomers offer several important advantages, including improved control over the final polymer structure and purity, the ability to synthesize non-natural copolymers, and allowing products to be excreted from cells which ultimately streamlines downstream recovery and purification. To highlight these features, a handful of biomonomers have been selected as illustrative examples of recent works, including polyamide monomers, styrenic vinyls, hydroxyacids, and diols. Where appropriate, examples of their industrial penetration to date and end-product uses are also highlighted. Novel biomonomers such as these are ultimately paving the way toward new classes of renewable bioplastics that possess a broader diversity of properties than ever before possible. PMID:22969753

  8. Report of the Polymer Core Course Committee: Polymer Principles for the Chemical Engineering Curriculum.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1985

    1985-01-01

    Offers suggestions for introducing polymer topics into: (1) introductory chemical engineering; (2) transport phenomena and unit operations; (3) chemical engineering thermodynamics; and (4) reaction engineering. Also included for each area are examples of textbooks in current use and a few typical problems. (JN)

  9. "Human Nature": Chemical Engineering Students' Ideas about Human Relationships with the Natural World

    ERIC Educational Resources Information Center

    Goldman, Daphne; Assaraf, Orit Ben-Zvi; Shemesh, Julia

    2014-01-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was…

  10. 46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... manufacture, and complete chemical and mechanical test results with an accepted material specification. (3...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings...

  11. 46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... manufacture, and complete chemical and mechanical test results with an accepted material specification. (3...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings...

  12. Nanostructure Engineered Chemical Sensors for Hazardous Gas and Vapor Detection

    NASA Technical Reports Server (NTRS)

    Li, Jing; Lu, Yijiang

    2005-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a silicon based microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.

  13. An Introductory Course in Bioengineering and Biotechnology for Chemical Engineering Sophomores

    ERIC Educational Resources Information Center

    O'Connor, Kim C.

    2007-01-01

    Advances in the biological sciences necessitate the training of chemical engineers to translate these fundamental discoveries into applications that will benefit society. Accordingly, Tulane University revised its core chemical engineering curriculum in 2005 to include a new introductory course in bioengineering and biotechnology for sophomores.…

  14. Peer-Assisted Tutoring in a Chemical Engineering Curriculum: Tutee and Tutor Experiences

    ERIC Educational Resources Information Center

    Kieran, Patricia; O'Neill, Geraldine

    2009-01-01

    Peer-Assisted Tutorials (PATs), a form of Peer-Assisted Learning (PAL), were introduced to a conventional 4-year honours degree programme in Chemical Engineering. PATs were designed to support students in becoming more self-directed in their learning, to develop student confidence in tackling Chemical Engineering problems and to promote effective…

  15. Use of the LITEE Lorn Manufacturing Case Study in a Senior Chemical Engineering Unit Operations Laboratory

    ERIC Educational Resources Information Center

    Abraham, Nithin Susan; Abulencia, James Patrick

    2011-01-01

    This study focuses on the effectiveness of incorporating the Laboratory for Innovative Technology and Engineering Education (LITEE) Lorn Manufacturing case into a senior level chemical engineering unit operations course at Manhattan College. The purpose of using the case study is to demonstrate the relevance of ethics to chemical engineering…

  16. Work-Based Higher Degrees: Responding to the Knowledge Needs of Chemical Engineers

    ERIC Educational Resources Information Center

    Winberg, Christine

    2007-01-01

    University-workplace partnerships are strategies increasingly called for in higher education. This article reports on collaborative knowledge production between employed professional chemical engineers (registered for higher degrees) and their university-based supervisors (researchers in the field of chemical engineering). The study draws on a…

  17. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, John; Escher, Claus

    1988-01-01

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction.

  18. Biotechnology for a renewable resources chemicals and fuels industry, biochemical engineering R and D

    SciTech Connect

    Villet, R.H.

    1980-04-01

    To establish an effective biotechnology of biomass processing for the production of fuels and chemicals, an integration of research in biochemical engineering, microbial genetics, and biochemistry is required. Reduction of the costs of producing chemicals and fuels from renewable resources will hinge on extensive research in biochemical engineering.

  19. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  20. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis

    SciTech Connect

    Mahal, L.K.; Yareme, K.J.; Bertozzi, C.R.

    1997-05-16

    Cell surface oligosaccharide can be engineered to display unusual functional groups for the selective chemical remodeling of cell surfaces. An unnatural derivative of N-acetyl-mannosamine, which has a ketone group, was converted to the corresponding sialic acid and incorporated into cell surface oligosaccharide metabolically, resulting in the cell surface display of ketone groups. The ketone group on the cell surface can then be covalently ligated under physiological conditions with molecules carrying a complementary reactive functional group such as the hydrazide. Cell surface reactions of this kind should prove useful in the introduction of new recognition epitopes, such as peptides, oligosaccharide, or small organic molecules, onto cell surfaces and in the subsequent modulation of cell-cell or cell-small molecule binding events. The versatility of this technology was demonstrated by an example of selective drug delivery. Cells were decorated with biotin through selective conjugation to ketone groups, and selectively killed in the presence of a ricin A chain-avidin conjugate. 30 refs., 4 figs.

  1. The Use of the Software MATLAB To Improve Chemical Engineering Education.

    ERIC Educational Resources Information Center

    Damatto, T.; Maegava, L. M.; Filho, R. Maciel

    In all the Brazilian Universities involved with the project "Prodenge-Reenge", the main objective is to improve teaching and learning procedures for the engineering disciplines. The Chemical Engineering College of Campinas State University focused its effort on the use of engineering softwares. The work developed by this project has…

  2. Building an Evaluation Strategy for an Integrated Curriculum in Chemical Engineering

    ERIC Educational Resources Information Center

    McCarthy, Joseph J.; Parker, Robert S.; Abatan, Adetola; Besterfield-Sacre, Mary

    2011-01-01

    Increasing knowledge integration has gained wide-spread support as an important goal in engineering education. The Chemical Engineering Pillars curriculum at the University of Pittsburgh, unique for its use of block scheduling, is one of the first four-year, integrated curricula in engineering, and is specifically designed to facilitate knowledge…

  3. Online Data Resources in Chemical Engineering Education: Impact of the Uncertainty Concept for Thermophysical Properties

    ERIC Educational Resources Information Center

    Kim, Sun Hyung; Kang, Jeong Won; Kroenlein, Kenneth; Magee, Joseph W.; Diky, Vladimir; Muzny, Chris D.; Kazakov, Andrei F.; Chirico, Robert D.; Frenkel, Michael

    2013-01-01

    We review the concept of uncertainty for thermophysical properties and its critical impact for engineering applications in the core courses of chemical engineering education. To facilitate the translation of developments to engineering education, we employ NIST Web Thermo Tables to furnish properties data with their associated expanded…

  4. A Summer Leadership Development Program for Chemical Engineering Students

    ERIC Educational Resources Information Center

    Simpson, Annie E.; Evans, Greg J.; Reeve, Doug

    2012-01-01

    The Engineering Leaders of Tomorrow Program (LOT) is a comprehensive curricular, co-curricular, extra-curricular leadership development initiative for engineering students. LOT envisions: "an engineering education that is a life-long foundation for transformational leaders and outstanding citizens." Academic courses, co-curricular certificate…

  5. Assessing the Higher National Diploma Chemical Engineering programme in Ghana: students' perspective

    NASA Astrophysics Data System (ADS)

    Boateng, Cyril D.; Cudjoe Bensah, Edem; Ahiekpor, Julius C.

    2012-05-01

    Chemical engineers have played key roles in the growth of the chemical and allied industries in Ghana but indigenous industries that have traditionally been the domain of the informal sector need to be migrated to the formal sector through the entrepreneurship and innovation of chemical engineers. The Higher National Diploma Chemical Engineering programme is being migrated from a subject-based to a competency-based curriculum. This paper evaluates the programme from the point of view of students. Data were drawn from a survey conducted in the department and were analysed using SPSS. The survey involved administering questionnaires to students at all levels in the department. Analysis of the responses indicated that the majority of the students had decided to pursue chemical engineering due to the career opportunities available. Their knowledge of the programme learning outcomes was, however, poor. The study revealed that none of the students was interested in developing indigenous industries.

  6. Chemical compound navigator: a web-based chem-BLAST, chemical taxonomy-based search engine for browsing compounds.

    PubMed

    Prasanna, M D; Vondrasek, Jiri; Wlodawer, Alexander; Rodriguez, H; Bhat, T N

    2006-06-01

    A novel technique to annotate, query, and analyze chemical compounds has been developed and is illustrated by using the inhibitor data on HIV protease-inhibitor complexes. In this method, all chemical compounds are annotated in terms of standard chemical structural fragments. These standard fragments are defined by using criteria, such as chemical classification; structural, chemical, or functional groups; and commercial, scientific or common names or synonyms. These fragments are then organized into a data tree based on their chemical substructures. Search engines have been developed to use this data tree to enable query on inhibitors of HIV protease (http://xpdb.nist.gov/hivsdb/hivsdb.html). These search engines use a new novel technique, Chemical Block Layered Alignment of Substructure Technique (Chem-BLAST) to search on the fragments of an inhibitor to look for its chemical structural neighbors. This novel technique to annotate and query compounds lays the foundation for the use of the Semantic Web concept on chemical compounds to allow end users to group, sort, and search structural neighbors accurately and efficiently. During annotation, it enables the attachment of "meaning" (i.e., semantics) to data in a manner that far exceeds the current practice of associating "metadata" with data by creating a knowledge base (or ontology) associated with compounds. Intended users of the technique are the research community and pharmaceutical industry, for which it will provide a new tool to better identify novel chemical structural neighbors to aid drug discovery.

  7. Engineering microbial electrocatalysis for chemical and fuel production.

    PubMed

    Rosenbaum, Miriam A; Henrich, Alexander W

    2014-10-01

    In many biotechnological areas, metabolic engineering and synthetic biology have become core technologies for biocatalyst development. Microbial electrocatalysis for biochemical and fuel production is still in its infancy and reactions rates and the product spectrum are currently very low. Therefore, molecular engineering strategies will be crucial for the advancement and realization of many new bioproduction routes using electroactive microorganisms. The complex and unresolved biochemistry and physiology of extracellular electron transfer and the lack of molecular tools for these new non-model hosts for genetic engineering constitute the major challenges for this effort. This review is providing an insight into the current status, challenges and promising approaches of pathway engineering for microbial electrocatalysis.

  8. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis.

    PubMed

    Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran

    2013-04-19

    Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.

  9. Characterization of chemical and particulate emissions from aircraft engines

    NASA Astrophysics Data System (ADS)

    Agrawal, Harshit; Sawant, Aniket A.; Jansen, Karel; Wayne Miller, J.; Cocker, David R.

    2008-06-01

    This paper presents a series of measurements from four on-wing, commercial aircraft engines, including two newer CFM56-7 engines and two earlier CFM56-3 engines. Samples were collected from each engine using a probe positioned behind the exhaust nozzle of the aircraft, chocked on a concrete testing pad. The emission factors for particulate matter mass, elemental and organic carbon, carbonyls, polycyclic aromatic hydrocarbons, n-alkanes, dioxins, metals and ions are reported for four different engine power setting modes. The emissions indices of particulate matter, elemental and organic carbon are highly power dependent for these engines. Particulate matter emission indices (g kg-1 fuel) are found to increase from 1.1E-02 to 2.05E-01 with increase in power from idle to 85%. The elemental carbon to organic carbon varies from 0.5 to 3.8 with change in power from idle to 85%. The carbonyl emissions are dominated by formaldehyde. The emission index of formaldehyde ranges from 2.3E-01 to 4.8E-01 g kg-1 fuel. The distribution of metals depends on the difference in the various engines. The dioxin emissions from the aircraft engines are observed to be below detection limit.

  10. Transcriptional Engineering of Microalgae: Prospects for High-Value Chemicals.

    PubMed

    Bajhaiya, Amit K; Ziehe Moreira, Javiera; Pittman, Jon K

    2017-02-01

    Microalgae are diverse microorganisms that are of interest as novel sources of metabolites for various industrial, nutritional, and pharmaceutical applications. Recent studies have demonstrated transcriptional engineering of some metabolic pathways. We propose here that transcriptional engineering could be a viable means to manipulate the biosynthesis of specific high-value metabolic products.

  11. The Chemical Engineering behind How Carbonated Beverages Go Flat: A Hands-On Experiment for Freshmen Students

    ERIC Educational Resources Information Center

    Hohn, Keith L.

    2007-01-01

    A hands-on project was developed to educate new chemical engineering students about the types of problems chemical engineers solve and to improve student enthusiasm for studying chemical engineering. In this project, students studied the phenomenon of carbonated beverages going flat. The project was implemented in 2003 and 2004 at Kansas State…

  12. GFO and JASON Altimeter Engineering Assessment Report. Update: GFO--Acceptance to December 27, 2007, JASON--Acceptance to December 26, 2007. Version 1: June 2008

    NASA Technical Reports Server (NTRS)

    Conger, A. M.; Hancock, D. W.; Hayne, G. S.; Brooks, R. L.

    2008-01-01

    The purpose of this document is to present and document GEOSAT Follow-On (GFO) performance analyses and results. This is the eighth Assessment Report since the initial report. This report extends the performance assessment since acceptance to 27 December 2007. Since launch, a variety of GFO performance studies have been performed: Appendix A provides an accumulative index of those studies. We began the inclusion of analyses of the JASON altimeter after the end of the Topographic Experiment (TOPEX) mission. Prior to this, JASON and TOPEX were compared during our assessment of theTOPEX altimeter. With the end of the TOPEX mission, we developed methods to report on JASON as it relates to GFO.

  13. Students' Metacognitive Development in an Innovative Second Year Chemical Engineering Course

    NASA Astrophysics Data System (ADS)

    Case, Jennifer; Gunstone, Richard; Lewis, Alison

    2001-06-01

    In this paper the metacognitive development of students in a second year chemical engineering course (which had such development as an explicit aim) is investigated. Journal data from the class were analysed and a framework comprising four different areas of metacognitive development was arrived at. Within each area, key shifts in approach were identified. The first area (category 1) concerns students' knowledge and awareness (conceptions) of learning, and the important development in this area was from a focus on solving problems towards a stronger valuing of conceptual understanding. The second and third areas deal with aspects of control. The second area (category 2a) is that of organising one's learning, and here students were seen to develop from an uninformed focus on discipline and time management, towards a more metacognitively informed use of resources. The third area (category 2b) is monitoring of learning, with the key shift here from naïvely accepting outside judgements, to using them strategically for purposes of self-assessment. The fourth area (category 3) involves students' sense of a purpose for learning beyond the subject. Important developments here were both in terms of a career goal, as well as personal growth. Data from interviews with five students largely confirmed the validity of these categories, as well as illustrating that different students showed development in different areas.

  14. Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology.

    PubMed

    Jarboe, Laura R; Zhang, Xueli; Wang, Xuan; Moore, Jonathan C; Shanmugam, K T; Ingram, Lonnie O

    2010-01-01

    Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  15. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    PubMed Central

    Jarboe, Laura R.; Zhang, Xueli; Wang, Xuan; Moore, Jonathan C.; Shanmugam, K. T.; Ingram, Lonnie O.

    2010-01-01

    Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors. PMID:20414363

  16. Regulatory acceptance and use of 3R models for pharmaceuticals and chemicals: expert opinions on the state of affairs and the way forward.

    PubMed

    Schiffelers, Marie-Jeanne W A; Blaauboer, Bas J; Bakker, Wieger E; Beken, Sonja; Hendriksen, Coenraad F M; Koëter, Herman B W M; Krul, Cyrille

    2014-06-01

    Pharmaceuticals and chemicals are subjected to regulatory safety testing accounting for approximately 25% of laboratory animal use in Europe. This testing meets various objections and has led to the development of a range of 3R models to Replace, Reduce or Refine the animal models. However, these models must overcome many barriers before being accepted for regulatory risk management purposes. This paper describes the barriers and drivers and options to optimize this acceptance process as identified by two expert panels, one on pharmaceuticals and one on chemicals. To untangle the complex acceptance process, the multilevel perspective on technology transitions is applied. This perspective defines influences at the micro-, meso- and macro level which need alignment to induce regulatory acceptance of a 3R model. This paper displays that there are many similar mechanisms within both sectors that prevent 3R models from becoming accepted for regulatory risk assessment and management. Shared barriers include the uncertainty about the value of the new 3R models (micro level), the lack of harmonization of regulatory requirements and acceptance criteria (meso level) and the high levels of risk aversion (macro level). In optimizing the process commitment, communication, cooperation and coordination are identified as critical drivers.

  17. IN-SITU CHEMICAL OXIDATION--ENGINEERING ISSUE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Engineering Issue Papers are a series of technology transfer documents that summarize the latest available information on specific technical issues, including fate and transport, specific contaminants, selected treatment and site rem...

  18. 46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings of... specifications by comparing details of the materials' chemical composition, mechanical properties, method...

  19. 46 CFR 50.25-10 - Acceptance of piping components by specific letter or approved plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) MARINE ENGINEERING GENERAL PROVISIONS Acceptance of Material and Piping Components § 50.25-10 Acceptance... approved plan must do the following: (1) Submit an engineering type catalog or representative drawings of... specifications by comparing details of the materials' chemical composition, mechanical properties, method...

  20. Conservation of Life as a Unifying Theme for Process Safety in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Klein, James A.; Davis, Richard A.

    2011-01-01

    This paper explores the use of "conservation of life" as a concept and unifying theme for increasing awareness, application, and integration of process safety in chemical engineering education. Students need to think of conservation of mass, conservation of energy, and conservation of life as equally important in engineering design and analysis.…

  1. CURRICULUM: A Chemical Engineering Course for Liberal Arts Students--Indigo: A World of Blues

    ERIC Educational Resources Information Center

    Piergiovanni, Polly R.

    2012-01-01

    Sophomore liberal arts and engineering students enrolled in a course to learn and practice some basic chemical engineering side by side. The course was developed around the theme of indigo dyeing, which has an interesting history, fascinating chemistry and is accessible to all students. The students participated in a variety of active learning…

  2. Incorporating Molecular and Cellular Biology into a Chemical Engineering Degree Program

    ERIC Educational Resources Information Center

    O'Connor, Kim C.

    2005-01-01

    There is a growing need for a workforce that can apply engineering principles to molecular based discovery and product development in the biological sciences. To this end, Tulane University established a degree program that incorporates molecular and cellular biology into the chemical engineering curriculum. In celebration of the tenth anniversary…

  3. Biomass as a Sustainable Energy Source: An Illustration of Chemical Engineering Thermodynamic Concepts

    ERIC Educational Resources Information Center

    Mohan, Marguerite A.; May, Nicole; Assaf-Anid, Nada M.; Castaldi, Marco J.

    2006-01-01

    The ever-increasing global demand for energy has sparked renewed interest within the engineering community in the study of sustainable alternative energy sources. This paper discusses a power generation system which uses biomass as "fuel" to illustrate the concepts taught to students taking a graduate level chemical engineering process…

  4. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    ERIC Educational Resources Information Center

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  5. GFO and JASON Altimeter Engineering Assessment Report. Update: GFO-Acceptance to End of Mission on October 22, 2008, JASON-Acceptance to September 29, 2008

    NASA Technical Reports Server (NTRS)

    Conger, A. M.; Hancock, D. W., III; Hayne, G. S.; Brooks, R. L.

    2009-01-01

    The purpose of this document is to present and document GEOSAT Follow-On (GFO) performance analyses and results. This is the ninth Assessment Report since the initial report and is our final one. This report extends the performance assessment since acceptance on November 29, 2000 to the end of mission (EOM) on October 22, 2008. Since launch, February 10, 1998 to the EOM, we performed a variety of GFO performance studies; Appendix A provides an accumulative index of those studies. We began the inclusion of analyses of the JASON altimeter after the end of the Topographic Experiment (TOPEX) mission. Prior to this, JASON and TOPEX were compared during our assessment of the TOPEX altimeter. With the end of the TOPEX mission, we developed methods to report on JASON as it related to GFO. It should be noted the GFO altimeter, after operating for over 7 years, was power cycled off to on and on to off approximately 14 times a day for over 18 months in space with no failure. The GFO altimeter proved to be a remarkable instrument providing stable ocean surface measurements for nearly eight years. This report completes our GFO altimeter performance assessment.

  6. Analyzing the Function of Cartilage Replacements: A Laboratory Activity to Teach High School Students Chemical and Tissue Engineering Concepts

    ERIC Educational Resources Information Center

    Renner, Julie N.; Emady, Heather N.; Galas, Richards J., Jr.; Zhange, Rong; Baertsch, Chelsey D.; Liu, Julie C.

    2013-01-01

    A cartilage tissue engineering laboratory activity was developed as part of the Exciting Discoveries for Girls in Engineering (EDGE) Summer Camp sponsored by the Women In Engineering Program (WIEP) at Purdue University. Our goal was to increase awareness of chemical engineering and tissue engineering in female high school students through a…

  7. Effects of chemical equilibrium on turbine engine performance for various fuels and combustor temperatures

    NASA Technical Reports Server (NTRS)

    Tran, Donald H.; Snyder, Christopher A.

    1992-01-01

    A study was performed to quantify the differences in turbine engine performance with and without the chemical dissociation effects for various fuel types over a range of combustor temperatures. Both turbojet and turbofan engines were studied with hydrocarbon fuels and cryogenic, nonhydrocarbon fuels. Results of the study indicate that accuracy of engine performance decreases when nonhydrocarbon fuels are used, especially at high temperatures where chemical dissociation becomes more significant. For instance, the deviation in net thrust for liquid hydrogen fuel can become as high as 20 percent at 4160 R. This study reveals that computer central processing unit (CPU) time increases significantly when dissociation effects are included in the cycle analysis.

  8. From Petroleum to Penicillin. The First Hundred Years of Modern Chemical Engineering: 1859-1959.

    ERIC Educational Resources Information Center

    Burnett, J. N.

    1986-01-01

    Presents a description of the course "From Petroleum to Penicillin" which examines chemical engineering and the chemical industry from a scientific, social and symbolic view. Explains the goals, organization, and requirements of the course. Lists case study and lecture topics. (ML)

  9. Use of Research-Based Instructional Strategies in Core Chemical Engineering Courses

    ERIC Educational Resources Information Center

    Prince, Michael; Borrego, Maura; Henderson, Charles; Cutler, Stephanie; Froyd, Jeff

    2013-01-01

    Traditional lecturing remains the most prevalent mode of instruction despite overwhelming research showing the increased effectiveness of many alternate instructional strategies. This study examines chemical engineering instructors' awareness and use of 12 such instructional strategies. The study also examines how chemical engineering…

  10. Introduction to Chemical Engineering Reactor Analysis: A Web-Based Reactor Design Game

    ERIC Educational Resources Information Center

    Orbey, Nese; Clay, Molly; Russell, T.W. Fraser

    2014-01-01

    An approach to explain chemical engineering through a Web-based interactive game design was developed and used with college freshman and junior/senior high school students. The goal of this approach was to demonstrate how to model a lab-scale experiment, and use the results to design and operate a chemical reactor. The game incorporates both…

  11. Developing a Course in Chemical Engineering Ethics: One Class' Experiences.

    ERIC Educational Resources Information Center

    Watters, James C.; Zoeller, Dominic A.

    1991-01-01

    Discusses several options for the incorporation of minimal coursework involving engineering ethics into an already tightly packed curriculum. Topics include integration versus the stand-alone approach; timeliness of course addition; outline of course content and instructional format; students' reflections and instructor's musings; and an annotated…

  12. Chemical kinetics of octane sensitivity in a spark-ignition engine (Chemical Kinetics of Octane Sensitivity in a Spark Ignition Engine)

    SciTech Connect

    Westbrook, Charles K.; Mehl, Marco; Pitz, William J.; Sjöberg, Magnus

    2016-07-11

    This article uses a chemical kinetic modeling approach to study the influences of fuel molecular structure on Octane Sensitivity (OS) in Spark Ignition (SI) engines. Octane Sensitivity has the potential to identify fuels that can be used in next-generation high compression, turbocharged SI engines to avoid unwanted knocking conditions and extend the range of operating conditions that can be used in such engines. While the concept of octane numbers of different fuels has been familiar for many years, the variations of their values and their role in determining Octane Sensitivity have not been addressed previously in terms of the basic structures of the fuel molecules. In particular, the importance of electron delocalization on low temperature hydrocarbon reactivity and its role in determining OS in engine fuel is described here for the first time. Finally, the role of electron delocalization on fuel reactivity and Octane Sensitivity is illustrated for a very wide range of engine fuel types, including n-alkane, 1-olefin, n-alcohol, and n-alkyl benzenes, and the unifying features of these fuels and their common trends, using existing detailed chemical kinetic reaction mechanisms that have been collected and unified to produce an overall model with unprecedented capabilities.

  13. Chemical kinetics of octane sensitivity in a spark-ignition engine (Chemical Kinetics of Octane Sensitivity in a Spark Ignition Engine)

    DOE PAGES

    Westbrook, Charles K.; Mehl, Marco; Pitz, William J.; ...

    2016-07-11

    This article uses a chemical kinetic modeling approach to study the influences of fuel molecular structure on Octane Sensitivity (OS) in Spark Ignition (SI) engines. Octane Sensitivity has the potential to identify fuels that can be used in next-generation high compression, turbocharged SI engines to avoid unwanted knocking conditions and extend the range of operating conditions that can be used in such engines. While the concept of octane numbers of different fuels has been familiar for many years, the variations of their values and their role in determining Octane Sensitivity have not been addressed previously in terms of the basicmore » structures of the fuel molecules. In particular, the importance of electron delocalization on low temperature hydrocarbon reactivity and its role in determining OS in engine fuel is described here for the first time. Finally, the role of electron delocalization on fuel reactivity and Octane Sensitivity is illustrated for a very wide range of engine fuel types, including n-alkane, 1-olefin, n-alcohol, and n-alkyl benzenes, and the unifying features of these fuels and their common trends, using existing detailed chemical kinetic reaction mechanisms that have been collected and unified to produce an overall model with unprecedented capabilities.« less

  14. Chemical Engineering Curricula for the Future: Synopsis of Proceedings of a U.S.-India Conference, January, 1988.

    ERIC Educational Resources Information Center

    Ramkrishna, D.; And Others

    1989-01-01

    This is a summary of a seminar for changing the undergraduate chemical engineering curriculum in India. Identifies and describes biotechnology, materials for structural and microelectronic catalysis, and new separation processes as emerging areas. Evaluates the current curriculum, including basic science, engineering lore, chemical engineering,…

  15. Circumventing Graphical User Interfaces in Chemical Engineering Plant Design

    ERIC Educational Resources Information Center

    Romey, Noel; Schwartz, Rachel M.; Behrend, Douglas; Miao, Peter; Cheung, H. Michael; Beitle, Robert

    2007-01-01

    Graphical User Interfaces (GUIs) are pervasive elements of most modern technical software and represent a convenient tool for student instruction. For example, GUIs are used for [chemical] process design software (e.g., CHEMCAD, PRO/II and ASPEN) typically encountered in the senior capstone course. Drag and drop aspects of GUIs are challenging for…

  16. Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical.

    PubMed

    Valdehuesa, Kris Niño G; Liu, Huaiwei; Nisola, Grace M; Chung, Wook-Jin; Lee, Seung Hwan; Park, Si Jae

    2013-04-01

    Development of sustainable technologies for the production of 3-hydroxypropionic acid (3HP) as a platform chemical has recently been gaining much attention owing to its versatility in applications for the synthesis of other specialty chemicals. Several proposed biological synthesis routes and strategies for producing 3HP from glucose and glycerol are reviewed presently. Ten proposed routes for 3HP production from glucose are described and one of which was recently constructed successfully in Escherichia coli with malonyl-Coenzyme A as a precursor. This resulted in a yield still far from the required level for industrial application. On the other hand, strategies employing engineered E. coli and Klebsiella pneumoniae capable of producing 3HP from glycerol are also evaluated. The titers produced by these recombinant strains reached around 3 %. At its current state, it is evident that a bulk of engineering works is yet to be done to acquire a biosynthesis route for 3HP that is acceptable for industrial-scale production.

  17. PREFACE: Selected papers from the Fourth Topical Conference on Nanoscale Science and Engineering of the American Institute of Chemical Engineers

    NASA Astrophysics Data System (ADS)

    Wong, Michael S.; Lee, Gil U.

    2005-07-01

    This special issue of Nanotechnology contains research papers contributed by the participants of the Fourth Topical Conference on Nanoscale Science and Engineering at the Annual Meeting of the American Institute of Chemical Engineers (AIChE), which was held in Austin, Texas, USA, 7-12 November, 2004. This conference saw 284 oral presentations from institutions around the world, which is the highest number for this topical conference series to date. These presentations were organized into 64 sessions, covering the range of nanotechnology subject areas in which chemical engineers are currently engaged. These sessions included the following areas. • Fundamentals: thermodynamics at the nanoscale; applications of nanostructured fluids; transport properties in nanophase and nanoscale systems; molecular modelling methods; self and directed assembly at the nanoscale; nanofabrication and nanoscale processing; manipulation of nanophases by external fields; nanoscale systems; adsorption and transport in carbon nanotubes; nanotribology; making the transition from materials and phenomena to new technologies; operation of micro-and nano-systems. • Materials: nanoparticle synthesis and stabilization; nanoscale structure in polymers; nanotemplating of polymers; synthesis of carbon nanotubes and nanotube-based materials; nanowires; nanoparticle assemblies and superlattices; nanoelectronic materials; self-assembly of templated inorganic materials; nanostructured hybrid organic/inorganic materials; gas phase synthesis of nanoparticles; multicomponent structured particles; nano energetic materials; liquid-phase synthesis of nanoparticles. • Energy: synthesis and characterization of nanostructured catalytic materials; nanomaterials and devices for energy applications. • Biotechnology: nanobiotechnology; nanotechnology for the biotechnology and pharmaceuticals industries; nanotechnology and nanobiotechnology for sensors; advances in biomaterials, bionanotechnology, biomimetic

  18. Molecular and chemical engineering of bacteriophages for potential medical applications.

    PubMed

    Hodyra, Katarzyna; Dąbrowska, Krystyna

    2015-04-01

    Recent progress in molecular engineering has contributed to the great progress of medicine. However, there are still difficult problems constituting a challenge for molecular biology and biotechnology, e.g. new generation of anticancer agents, alternative biosensors or vaccines. As a biotechnological tool, bacteriophages (phages) offer a promising alternative to traditional approaches. They can be applied as anticancer agents, novel platforms in vaccine design, or as target carriers in drug discovery. Phages also offer solutions for modern cell imaging, biosensor construction or food pathogen detection. Here we present a review of bacteriophage research as a dynamically developing field with promising prospects for further development of medicine and biotechnology.

  19. Solar photochemical process engineering for production of fuels and chemicals

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1985-01-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6 percent are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6 percent. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  20. Solar photochemical process engineering for production of fuels and chemicals

    NASA Astrophysics Data System (ADS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6 percent are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6 percent. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  1. Solar photochemical process engineering for production of fuels and chemicals

    NASA Astrophysics Data System (ADS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1984-05-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6% are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6%. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  2. Solar photochemical process engineering for production of fuels and chemicals

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1984-01-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6% are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6%. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  3. Solar photochemical process engineering for production of fuels and chemicals

    SciTech Connect

    Biddle, J.R.; Peterson, D.B.; Fujita, T.

    1984-05-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water have been studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6% are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6%. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. Results predict energy costs in the range of $34 to $55/10/sup 6/ kJ ($36 to $59/10/sup 6/ Btu) for the flat-plate system and $94 to $141/10/sup 6/ kJ ($99 to $149/10/sup 6/ Btu) for the trough system. The overall plant efficiency is the single most important factor in determining the cost of the fuel. Therefore, solar quantum conversion processes were reviewed for the purpose of identifying processes which promise better performance and lower costs. Operating and systems options, including operation at elevated temperatures and hybrid and coupled quantum-thermal conversion processes, were also briefly examined.

  4. Reversed Janus Micro/Nanomotors with Internal Chemical Engine

    PubMed Central

    2016-01-01

    Self-motile Janus colloids are important for enabling a wide variety of microtechnology applications as well as for improving our understanding of the mechanisms of motion of artificial micro- and nanoswimmers. We present here micro/nanomotors which possess a reversed Janus structure of an internal catalytic “chemical engine”. The catalytic material (here platinum (Pt)) is embedded within the interior of the mesoporous silica (mSiO2)-based hollow particles and triggers the decomposition of H2O2 when suspended in an aqueous peroxide (H2O2) solution. The pores/gaps at the noncatalytic (Pt) hemisphere allow the exchange of chemical species in solution between the exterior and the interior of the particle. By varying the diameter of the particles, we observed size-dependent motile behavior in the form of enhanced diffusion for 500 nm particles, and self-phoretic motion, toward the nonmetallic part, for 1.5 and 3 μm ones. The direction of motion was rationalized by a theoretical model based on self-phoresis. For the 3 μm particles, a change in the morphology of the porous part is observed, which is accompanied by a change in the mechanism of propulsion via bubble nucleation and ejection as well as a change in the direction of motion. PMID:27598543

  5. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    PubMed

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources.

  6. `Human nature': Chemical engineering students' ideas about human relationships with the natural world

    NASA Astrophysics Data System (ADS)

    Goldman, Daphne; Ben-Zvi Assaraf, Orit; Shemesh, Julia

    2014-05-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was conducted with 247 3rd-4th year chemical engineering students in Israeli Universities. It employed the New Ecological Paradigm (NEP)-questionnaire to which students added written explanations. Quantitative analysis of NEP-scale results shows that the students demonstrated moderately ecocentric orientation. Explanations to the NEP-items reveal diverse, ambivalent ideas regarding the notions embodied in the NEP, strong scientific orientation and reliance on technology for addressing environmental challenges. Endorsing sustainability implies that today's engineers be equipped with an ecological perspective. The capacity of Higher Education to enable engineers to develop dispositions about human-nature interrelationships requires adaptation of curricula towards multidisciplinary, integrative learning addressing social-political-economic-ethical perspectives, and implementing critical-thinking within the socio-scientific issues pedagogical approach.

  7. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.

    PubMed

    Borodina, Irina; Nielsen, Jens

    2014-05-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production.

  8. Thermodynamic Modeling of the Chemical Composition of Calcine at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    C. M. Frazee; J. D. Christian

    2004-02-01

    To send calcine produced at Idaho National Engineering and Environmental Laboratory to the Yucca Mountain Project for disposal, characterization information will be required. To sample calcine from its existing storage location would require extensive personnel exposure. Sufficient analyses of the chemical composition of the calcine would be extremely difficult and very expensive. In support of characterization development, the chemical composition of calcine from Bin 3 of Calcine Solid Storage Facility II was thermodynamic modeled. This calcine was produced in the Waste Calcination Facility during its second processing campaign, operating with indirect heating at 400 C and 0.744 bar (0.734 atm) during processing of aluminum high-level liquid waste (first cycle extraction raffinate from reprocessing aluminum-clad fuels) from tanks WM-180 and -182 from December 27, 1966 through August 26, 1967. The current modeling effort documents the input compositional data (liquid feed and calciner off-gas) for Batches 300 - 620 and a methodology for estimating the calcine chemical composition. The results, along with assumptions and limitations of the thermodynamic calculations, will serve as a basis for benchmarking subsequent calculations. This will be done by comparing the predictions against extensive analytical results that are currently being obtained on representative samples of the modeled calcine. A commercial free-energy minimization program and database, HSC 5.1, was used to perform the thermodynamic calculations. Currently available experimental data and process information on the calcine were used to make judgments about specific phases and compounds to include and eliminate in the thermodynamic calculations. Some off-gas species were eliminated based on kinetics restrictions evidenced by experimental data and other estimates, and some calcine components and off-gas compounds were eliminated as improbable species (unreliable thermodynamic data). The current Yucca

  9. The Role of Electronic Preprints in Chemical Communication: Analysis of Citation, Usage, and Acceptance in the Journal Literature.

    ERIC Educational Resources Information Center

    Brown, Cecelia

    2003-01-01

    Characterizes the use and acceptance of electronic preprints in chemistry literature based on a survey of authors of preprints appearing in the Chemistry Preprint Server (CPS). Shows that preprints are convenient for disseminating research findings and for receiving feedback before submitting to a peer-review journal, but that reception of…

  10. The role of chemical engineering in space manufacturing

    NASA Technical Reports Server (NTRS)

    Waldron, R. D.; Criswell, D. R.; Erstfeld, T. E.

    1979-01-01

    A survey of factors involved in space manufacturing is presented. It is shown that it will be more economical to obtain the necessary raw materials from the moon than from earth due to earth's greater gravity and atmosphere. Discussion covers what resources can be mined and recovered from the moon and what ranges of industrial feedstock can be provided from lunar materials, noting that metallurgy will be different in space due to the lack of key elements such as H, C, Na, Cl, etc. Also covered are chemical plant design, space environmental factors such as vacuum and zero gravity, recycling requirments, reagent and equipment mass, and unit operations such as materials handling and phase separation. It is concluded that a pilot plant in space could be an economic boon to mankind.

  11. Engineering and Functional Analysis of Mitotic Kinases Through Chemical Genetics.

    PubMed

    Jones, Mathew J K; Jallepalli, Prasad V

    2016-01-01

    During mitosis, multiple protein kinases transform the cytoskeleton and chromosomes into new and highly dynamic structures that mediate the faithful transmission of genetic information and cell division. However, the large number and strong conservation of mammalian kinases in general pose significant obstacles to interrogating them with small molecules, due to the difficulty in identifying and validating those which are truly selective. To overcome this problem, a steric complementation strategy has been developed, in which a bulky "gatekeeper" residue within the active site of the kinase of interest is replaced with a smaller amino acid, such as glycine or alanine. The enlarged catalytic pocket can then be targeted in an allele-specific manner with bulky purine analogs. This strategy provides a general framework for dissecting kinase function with high selectivity, rapid kinetics, and reversibility. In this chapter we discuss the principles and techniques needed to implement this chemical genetic approach in mammalian cells.

  12. Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models

    PubMed Central

    Battin-Leclerc, Frédérique; Blurock, Edward; Bounaceur, Roda; Fournet, René; Glaude, Pierre-Alexandre; Herbinet, Olivier; Sirjean, Baptiste; Warth, V.

    2013-01-01

    In the context of limiting the environmental impact of transportation, this paper reviews new directions which are being followed in the development of more predictive and more accurate detailed chemical kinetic models for the combustion of fuels. In the first part, the performance of current models, especially in terms of the prediction of pollutant formation, is evaluated. In the next parts, recent methods and ways to improve these models are described. An emphasis is given on the development of detailed models based on elementary reactions, on the production of the related thermochemical and kinetic parameters, and on the experimental techniques available to produce the data necessary to evaluate model predictions under well defined conditions. PMID:21597604

  13. Engineering chemically modified viruses for prostate cancer cell recognition.

    PubMed

    Mohan, K; Weiss, G A

    2015-12-01

    Specific detection of circulating tumor cells and characterization of their aggressiveness could improve cancer diagnostics and treatment. Metastasis results from such tumor cells, and causes the majority of cancer deaths. Chemically modified viruses could provide an inexpensive and efficient approach to detect tumor cells and quantitate their cell surface biomarkers. However, non-specific adhesion between the cell surface receptors and the virus surface presents a challenge. This report describes wrapping the virus surface with different PEG architectures, including as fusions to oligolysine, linkers, spacers and scaffolded ligands. The reported PEG wrappers can reduce by >75% the non-specific adhesion of phage to cell surfaces. Dynamic light scattering verified the non-covalent attachment by the reported wrappers as increased sizes of the virus particles. Further modifications resulted in specific detection of prostate cancer cells expressing PSMA, a key prostate cancer biomarker. The approach allowed quantification of PSMA levels on the cell surface, and could distinguish more aggressive forms of the disease.

  14. Lessons Learned on University Education Programs of Chemical Engineering Principles for Nuclear Plant Operations - 13588

    SciTech Connect

    Ryu, Jun-hyung

    2013-07-01

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a huge opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)

  15. The bioartificial pancreas (BAP): Biological, chemical and engineering challenges.

    PubMed

    Iacovacci, Veronica; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2016-01-15

    The bioartificial pancreas (BAP) represents a viable solution for the treatment of type 1 diabetes (T1D). By encapsulating pancreatic cells in a semipermeable membrane to allow nutrient, insulin and glucose exchange, the side effects produced by islets and whole organ transplantation-related immunosuppressive therapy can be circumvented. Several factors, mainly related to materials properties, capsule morphology and biological environment, play a key role in optimizing BAP systems. The BAP is an extremely complex delivery system for insulin. Despite considerable efforts, in some instances meeting with limited degree of success, a BAP capable of restoring physiological pancreas functions without the need for immunosuppressive drugs and of controlling blood glucose levels especially in large animal models and a few clinical trials, does not exist. The state of the art in terms of materials, fabrication techniques and cell sources, as well as the current status of commercial devices and clinical trials, are described in this overview from an interdisciplinary viewpoint. In addition, challenges to the creation of effective BAP systems are highlighted including future perspectives in terms of component integration from both a biological and an engineering viewpoint.

  16. Formulation of engineered particulate systems for chemical mechanical polishing applications

    NASA Astrophysics Data System (ADS)

    Basim, Gul Bahar

    Chemical mechanical polishing (CMP) is widely used in the microelectronics industry to achieve planarization and patterning of metal and dielectric layers for microelectronic device manufacturing. Rapid advances in the microelectronics industry demand a decrease in the sizes of the devices, resulting in the requirement of a very thin layer of material removal with atomically flat and clean surface finish by CMP. Furthermore, new materials, such as copper and polymeric dielectrics, are introduced to build faster microprocessors, which are more vulnerable to defect formation and also demand more complicated chemistries. These trends necessitate improved control of the CMP that can be achieved by studying the slurry chemical and particulate properties to gain better fundamental understanding on the process. In this study, the impacts of slurry particle size distribution and stability on pad-particle-surface interactions during polishing are investigated. One of the main problems in CMP is the scratch or pit formation as a result of the presence of larger size particles in the slurries. Therefore, in this investigation, impacts of hard and soft (transient) agglomerates on polishing performance are quantified in terms of the material removal rate and the quality of the surface finish. It is shown that the presence of both types of agglomerates must be avoided in CMP slurries and robust stabilization schemes are needed to prevent the transient agglomerate formation. To stabilize the CMP slurries at extreme pH and ionic strength environments, under applied shear and normal forces, repulsive force barriers provided by the self-assembled surfactant structures at the solid/liquid interface are utilized. A major finding of this work is that slurry stabilization has to be achieved by controlling not only the particle-particle interactions, but also the pad-particle-substrate interactions. Perfect lubrication of surfaces by surfactants prevented polishing. Thus, effective

  17. Application of friction welding in petroleum and chemical engineering

    SciTech Connect

    Dzhabarov, R.D.; Fataliev, N.S.; Tkachev, Yu.A.; Timofeev, V.I.; Abdullaev, V.G.

    1995-05-01

    Welding, as a technological process, is widely practiced in modern engineering. Resistance or arc welding is most common, but these techniques are increasingly giving way to friction welding which has several advantages, namely higher labor productivity and better quality, possibility of joining diverse and poorly weldable metals and alloys, dispensing with high-grade welding materials and highly skilled welders, ecological cleanness of the process, etc. The major criterion of efficient application of friction welding is its use in large-scale manufacture of a specific equipment, whereupon the cost of the machine is recovered in a short period. That is why friction welding with creation and fabrication of specific machines was adopted by the petroleum machinery manufacture (manufacture of geological prospecting and drill pipes, pump rods of the welded design, and gate valves of high-pressure Christmas trees). By applying friction welding for the manufacture of geological prospecting and drill pipes in place of resistance butt welding, accidents during drilling due to failure of the welded joints were prevented totally. Application of friction welding for making pump rods of the welded design (with welded nipples and heads) made it possible to save costly high-strength and corrosion-resistance alloy steel to the extent of 90%. Use of friction welding in the manufacture of high-pressure gate valves with welded flanges simplifies the valve-making technology and improves the reliability of the welded joints, even at temperatures as low as -60{degrees}C. In particular, cast gate valve bodies with friction-welded side flanges were tested before their breakdown. The welded joints of the branch pipes, even though they were sharpened to reduce wall thickness, did not fail, which shows high reliability of the gate valve bodies of the welded design.

  18. Chemical Strain Engineering of Magnetism in Oxide Thin Films.

    PubMed

    Copie, Olivier; Varignon, Julien; Rotella, Hélène; Steciuk, Gwladys; Boullay, Philippe; Pautrat, Alain; David, Adrian; Mercey, Bernard; Ghosez, Philippe; Prellier, Wilfrid

    2017-04-03

    Transition metal oxides having a perovskite structure form a wide and technologically important class of compounds. In these systems, ferroelectric, ferromagnetic, ferroelastic, or even orbital and charge orderings can develop and eventually coexist. These orderings can be tuned by external electric, magnetic, or stress field, and the cross-couplings between them enable important multifunctional properties, such as piezoelectricity, magneto-electricity, or magneto-elasticity. Recently, it has been proposed that additional to typical fields, the chemical potential that controls the concentration of ion vacancies in these systems may reveal an efficient alternative parameter to further tune their properties and achieve new functionalities. In this study, concretizing this proposal, the authors show that the control of the content of oxygen vacancies in perovskite thin films can indeed be used to tune their magnetic properties. Growing PrVO3 thin films epitaxially on an SrTiO3 substrate, the authors reveal a concrete pathway to achieve this effect. The authors demonstrate that monitoring the concentration of oxygen vacancies through the oxygen partial pressure or the growth temperature can produce a substantial macroscopic tensile strain of a few percent. In turn, this strain affects the exchange interactions, producing a nontrivial evolution of Néel temperature in a range of 30 K.

  19. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.

    PubMed

    Runguphan, Weerawat; Keasling, Jay D

    2014-01-01

    As the serious effects of global climate change become apparent and access to fossil fuels becomes more limited, metabolic engineers and synthetic biologists are looking towards greener sources for transportation fuels. In recent years, microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce fatty acid-derived biofuels and chemicals from simple sugars. Specifically, we overexpressed all three fatty acid biosynthesis genes, namely acetyl-CoA carboxylase (ACC1), fatty acid synthase 1 (FAS1) and fatty acid synthase 2 (FAS2), in S. cerevisiae. When coupled to triacylglycerol (TAG) production, the engineered strain accumulated lipid to more than 17% of its dry cell weight, a four-fold improvement over the control strain. Understanding that TAG cannot be used directly as fuels, we also engineered S. cerevisiae to produce drop-in fuels and chemicals. Altering the terminal "converting enzyme" in the engineered strain led to the production of free fatty acids at a titer of approximately 400 mg/L, fatty alcohols at approximately 100mg/L and fatty acid ethyl esters (biodiesel) at approximately 5 mg/L directly from simple sugars. We envision that our approach will provide a scalable, controllable and economic route to this important class of chemicals.

  20. High-Performance Liquid Chromatography in the Undergraduate Chemical Engineering Laboratory

    ERIC Educational Resources Information Center

    Frey, Douglas D.; Guo, Hui; Karnik, Nikhila

    2013-01-01

    This article describes the assembly of a simple, low-cost, high-performance liquid chromatography (HPLC) system and its use in the undergraduate chemical engineering laboratory course to perform simple experiments. By interpreting the results from these experiments students are able to gain significant experience in the general method of…

  1. Chemical Engineering Education in Japan and the United States: A Perspective (Part 2).

    ERIC Educational Resources Information Center

    Floyd, Sigmund

    1988-01-01

    Compares graduate chemical engineering education practices of the U.S. and Japan. States that Japanese universities have set time limits on degrees due to industrial hiring practices. Concludes that Japanese graduates are highly trained and uniform. They tend to stay in the same job throughout their career. (MVL)

  2. Molecular Modeling as a Self-Taught Component of a Conventional Undergraduate Chemical Reaction Engineering Course

    ERIC Educational Resources Information Center

    Rothe, Erhard W.; Zygmunt, William E.

    2016-01-01

    We inserted a self-taught molecular modeling project into an otherwise conventional undergraduate chemical-reaction-engineering course. Our objectives were that students should (a) learn with minimal instructor intervention, (b) gain an appreciation for the relationship between molecular structure and, first, macroscopic state functions in…

  3. Class and Home Problems: Humidification, a True "Home" Problem for p. Chemical Engineer

    ERIC Educational Resources Information Center

    Condoret, Jean-Stephane

    2012-01-01

    The problem of maintaining hygrothermal comfort in a house is addressed using the chemical engineer's toolbox. A simple dynamic modelling proved to give a good description of the humidification of the house in winter, using a domestic humidifier. Parameters of the model were identified from a simple experiment. Surprising results, especially…

  4. From Petroleum to Penicillin. The First Hundred Years of Modern Chemical Engineering 1859-1959.

    ERIC Educational Resources Information Center

    Burnett, J. Nicholas

    1986-01-01

    Describes a chemical engineering course for liberal arts students that is taught from a scientific, social, and symbolic perspective. A summary of the early days of oil refining is included as representative of one of the major content segments of the course. (ML)

  5. Incorporating Risk Assessment and Inherently Safer Design Practices into Chemical Engineering Education

    ERIC Educational Resources Information Center

    Seay, Jeffrey R.; Eden, Mario R.

    2008-01-01

    This paper introduces, via case study example, the benefit of including risk assessment methodology and inherently safer design practices into the curriculum for chemical engineering students. This work illustrates how these tools can be applied during the earliest stages of conceptual process design. The impacts of decisions made during…

  6. Ideas to Consider for New Chemical Engineering Educators: Part 1 (Courses Offered Earlier in the Curriculum)

    ERIC Educational Resources Information Center

    Keith, Jason M.; Silverstein, David L.; Visco, Donald P., Jr.

    2009-01-01

    Chemical engineering faculty members are often asked to teach a core course that they have not taught before. The immediate thought is to come up with some new ideas to revolutionize that core course in ways that will engage students and maximize learning. This paper summarizes the authors' selection of the most effective, innovative approaches…

  7. Mitigating the Mathematical Knowledge Gap between High School and First Year University Chemical Engineering Mathematics Course

    ERIC Educational Resources Information Center

    Basitere, Moses; Ivala, Eunice

    2015-01-01

    This paper reports on a study carried out at a University of Technology, South Africa, aimed at identifying the existence of the mathematical knowledge gap and evaluating the intervention designed to bridge the knowledge gap amongst students studying first year mathematics at the Chemical Engineering Extended Curriculum Program (ECP). In this…

  8. Development of Chemical Engineering Course Methods Using Action Research: Case Study

    ERIC Educational Resources Information Center

    Virkki-Hatakka, Terhi; Tuunila, Ritva; Nurkka, Niina

    2013-01-01

    This paper reports on the systematic development of a teaching methodology for two chemical engineering courses. The aim was to improve the quality of teaching to achieve expected learning outcomes more effectively. The development was carried out over a period of several years based on an action research methodology with data systematically…

  9. A Multi-Institution Study of Student Demographics and Outcomes in Chemical Engineering

    ERIC Educational Resources Information Center

    Lord, Susan M.; Layton, Richard A.; Ohland, Matthew W.; Brawner, Catherine E.; Long, Russell A.

    2014-01-01

    Using a large multi-institutional dataset, we describe demographics and outcomes for students starting in and transferring into chemical engineering (ChE). In this dataset, men outnumber women in ChE except among black students. While ChE starters graduate in ChE at rates comparable to or above their racial/ethnic population average for…

  10. Effect of Continuous Assessment on Learning Outcomes on Two Chemical Engineering Courses: Case Study

    ERIC Educational Resources Information Center

    Tuunila, R.; Pulkkinen, M.

    2015-01-01

    In this paper, the effect of continuous assessment on the learning outcomes of two chemical engineering courses is studied over a several-year period. Average grades and passing percentages of courses after the final examination are reported and also student feedback on the courses is collected. The results indicate significantly better learning…

  11. Interdisciplinary Learning for Chemical Engineering Students from Organic Chemistry Synthesis Lab to Reactor Design to Separation

    ERIC Educational Resources Information Center

    Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph

    2008-01-01

    A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…

  12. Teaching Population Balances for Chemical Engineering Students: Application to Granulation Processes

    ERIC Educational Resources Information Center

    Bucala, Veronica; Pina, Juliana

    2007-01-01

    The population balance equation (PBE) is a useful tool to predict particle size distributions in granulation processes. When PBE is taught to advanced chemical engineering students, the internal coordinates (particle properties) are particularly hard to understand. In this paper, the flow of particles along different coordinates is carefully…

  13. Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes 1st edition (Preface)

    EPA Science Inventory

    This book preface explains the needs found by the book editors for assembling the state of the art of technical and scientific knowledge relevant to chemical engineering, sustainability, and sustainable uses of wastes and materials management, and to do so in an accessible and c...

  14. Incorporating Computer-Aided Software in the Undergraduate Chemical Engineering Core Courses

    ERIC Educational Resources Information Center

    Alnaizy, Raafat; Abdel-Jabbar, Nabil; Ibrahim, Taleb H.; Husseini, Ghaleb A.

    2014-01-01

    Introductions of computer-aided software and simulators are implemented during the sophomore-year of the chemical engineering (ChE) curriculum at the American University of Sharjah (AUS). Our faculty concurs that software integration within the curriculum is beneficial to our students, as evidenced by the positive feedback received from industry…

  15. Water--1970. Chemical Engineering Progress Symposium Series No. 107, Volume 67, 1971.

    ERIC Educational Resources Information Center

    Cecil, Lawrence K., Ed.

    Due to the tremendous interest in all phases of environmental control, particularly with reference to water pollution control, the American Institute of Chemical Engineers (AIChE) is attempting to provide the lay public with accurate information about water resources so they may react with proper knowledge and constructive activity. This anthology…

  16. Integrating Sustainable Development in Chemical Engineering Education: The Application of an Environmental Management System

    ERIC Educational Resources Information Center

    Montanes, M. T.; Palomares, A. E.; Sanchez-Tovar, R.

    2012-01-01

    The principles of sustainable development have been integrated in chemical engineering education by means of an environmental management system. These principles have been introduced in the teaching laboratories where students perform their practical classes. In this paper, the implementation of the environmental management system, the problems…

  17. Finding Hidden Chemistry in Ancient Egyptian Artifacts: Pigment Degradation Taught in a Chemical Engineering Course

    ERIC Educational Resources Information Center

    Gime´nez, Javier

    2015-01-01

    The main objective of this work was to show the application of the study of ancient technology and science on teaching (and learning) chemistry in Chemical Engineering Undergraduate studies. Degradation patterns of pigments used in Ancient Egypt were incorporated in the syllabus of the course entitled "Technological and Scientific…

  18. Conceptual Framework to Help Promote Retention and Transfer in the Introductory Chemical Engineering Course

    ERIC Educational Resources Information Center

    Hanyak, Michael E., Jr.

    2015-01-01

    In an introductory chemical engineering course, the conceptual framework of a holistic problem-solving methodology in conjunction with a problem-based learning approach has been shown to create a learning environment that nurtures deep learning rather than surface learning. Based on exam scores, student grades are either the same or better than…

  19. An Internet-Based Distributed Laboratory for Interactive Chemical Engineering Education

    ERIC Educational Resources Information Center

    Guo, Jing; Kettler, David J.; Al-Dahhan, Muthanna

    2007-01-01

    A common undergraduate chemical engineering experiment has been modified for on-line operation over the Internet. By adopting rapidly changing Internet and object component technologies, we developed a novel approach combining the Internet and regular laboratory equipment. The client-server applications use a Visual Basic and Labtech programming…

  20. Using an On-Line Tool To Investigate Chemical Engineering Seniors' Concept of the Design Process.

    ERIC Educational Resources Information Center

    Streveler, Ruth A.; Miller, Ronald L.; Boyd, Thomas M.

    In this study, multidimensional scaling (MDS) was used to measure how 23 chemical engineering seniors categorized key design terms at the beginning and end of a capstone design course. An on-line method was developed to collect the MDS data. The results suggest that some important design concepts were not well understood, even at the end of the…

  1. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli.

    PubMed

    Whitaker, W Brian; Jones, J Andrew; Bennett, R Kyle; Gonzalez, Jacqueline E; Vernacchio, Victoria R; Collins, Shannon M; Palmer, Michael A; Schmidt, Samuel; Antoniewicz, Maciek R; Koffas, Mattheos A; Papoutsakis, Eleftherios T

    2017-01-01

    Methanol is an attractive substrate for biological production of chemicals and fuels. Engineering methylotrophic Escherichia coli as a platform organism for converting methanol to metabolites is desirable. Prior efforts to engineer methylotrophic E. coli were limited by methanol dehydrogenases (Mdhs) with unfavorable enzyme kinetics. We engineered E. coli to utilize methanol using a superior NAD-dependent Mdh from Bacillus stearothermophilus and ribulose monophosphate (RuMP) pathway enzymes from B. methanolicus. Using (13)C-labeling, we demonstrate this E. coli strain converts methanol into biomass components. For example, the key TCA cycle intermediates, succinate and malate, exhibit labeling up to 39%, while the lower glycolytic intermediate, 3-phosphoglycerate, up to 53%. Multiple carbons are labeled for each compound, demonstrating a cycling RuMP pathway for methanol assimilation to support growth. By incorporating the pathway to synthesize the flavanone naringenin, we demonstrate the first example of in vivo conversion of methanol into a specialty chemical in E. coli.

  2. Engineering cell factories for producing building block chemicals for bio-polymer synthesis.

    PubMed

    Tsuge, Yota; Kawaguchi, Hideo; Sasaki, Kengo; Kondo, Akihiko

    2016-01-21

    Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the target chemicals at high yields and productivity are needed. Recent advances in metabolic engineering have enabled the biosynthesis of polymer compounds at high yield and productivities by governing the carbon flux towards the target chemicals. Using these methods, microbial strains have been engineered to produce monomer chemicals for replacing traditional petroleum-derived aliphatic polymers. These developments also raise the possibility of microbial production of aromatic chemicals for synthesizing high-performance polymers with desirable properties, such as ultraviolet absorbance, high thermal resistance, and mechanical strength. In the present review, we summarize recent progress in metabolic engineering approaches to optimize microbial strains for producing building blocks to synthesize aliphatic and high-performance aromatic polymers.

  3. Progressively Fostering Students' Chemical Information Skills in a Three-Year Chemical Engineering Program in France

    ERIC Educational Resources Information Center

    Gozzi, Christel; Arnoux, Marie-Jose´; Breuzard, Jere´my; Marchal, Claire; Nikitine, Clémence; Renaudat, Alice; Toulgoat, Fabien

    2016-01-01

    Literature searches are essential for scientists. Thus, courses on how to do a good literature search have been integrated in studies at CPE Lyon for many years. Recently, we modified our pedagogical approach in order to initiate students progressively in the search for chemical information. In addition, this new teaching organization is now based…

  4. Development and testing of dry chemicals in advanced extinguishing systems for jet engine nacelle fires

    NASA Technical Reports Server (NTRS)

    Altman, R. L.; Ling, A. C. (Editor); Mayer, L. A.; Myronik, D. J.

    1979-01-01

    The effectiveness of dry chemical in extinguishing and delaying reignition of fires resulting from hydrocarbon fuel leaking onto heated surfaces such as can occur in jet engine nacelles is studied. The commercial fire extinguishant dry chemical tried are sodium and potassium bicarbonate, carbonate, chloride, carbamate (Monnex), metal halogen, and metal hydroxycarbonate compounds. Synthetic and preparative procedures for new materials developed, a new concept of fire control by dry chemical agents, descriptions of experiment assemblages to test dry chemical fire extinguishant efficiencies in controlling fuel fires initiated by hot surfaces, comparative testing data for more than 25 chemical systems in a 'static' assemblage with no air flow across the heated surface, and similar comparative data for more than ten compounds in a dynamic system with air flows up to 350 ft/sec are presented.

  5. Extinction of in-flight engine fuel-leak fires with dry chemicals

    NASA Technical Reports Server (NTRS)

    Altman, R. L.

    1983-01-01

    The dry chemicals discussed here are seen as having a greater weight effectiveness than the halons in current use for controlling fuel-leak fires, especially in the presence of high airflow rates. The commercial dry chemicals K2CO3, KHCO3, and KC2N2H3O3 are found to be more effective than CF2ClBr and CF3Br in delaying the hot-surface reignition of fuel-leak fires after initial extinguishment. Experimental dry chemical formulations of potassium dawsonite, KAl(OH)2CO3, and of KCl and KI are seen as being even more weight effective than the above-mentioned commercial dry chemicals. It is noted, however, that the suitability and effectiveness of dry chemicals in controlling engine nacele fires has not yet been demonstrated in test aircraft.

  6. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    NASA Astrophysics Data System (ADS)

    Spicer, C. W.; Holdren, M. W.; Riggin, R. M.; Lyon, T. F.

    1994-10-01

    Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi) on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  7. Generation of chemically engineered ribosomes for atomic mutagenesis studies on protein biosynthesis.

    PubMed

    Erlacher, Matthias D; Chirkova, Anna; Voegele, Paul; Polacek, Norbert

    2011-05-01

    The protocol describes the site-specific chemical modification of 23S rRNA of Thermus aquaticus ribosomes. The centerpiece of this 'atomic mutagenesis' approach is the site-specific incorporation of non-natural nucleoside analogs into 23S rRNA in the context of the entire 70S ribosome. This technique exhaustively makes use of the available crystallographic structures of the ribosome for designing detailed biochemical experiments aiming at unraveling molecular insights of ribosomal functions. The generation of chemically engineered ribosomes carrying a particular non-natural 23S rRNA residue at the site of interest, a procedure that typically takes less than 2 d, allows the study of translation at the molecular level and goes far beyond the limits of standard mutagenesis approaches. This methodology, in combination with the presented tests for ribosomal functions adapted to chemically engineered ribosomes, allows unprecedented molecular insight into the mechanisms of protein biosynthesis.

  8. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.

    PubMed

    Sun, Jie; Alper, Hal S

    2015-03-01

    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  9. Biofuels and bio-based chemicals from lignocellulose: metabolic engineering strategies in strain development.

    PubMed

    Chen, Rachel; Dou, Jennifer

    2016-02-01

    Interest in developing a sustainable technology for fuels and chemicals has unleashed tremendous creativity in metabolic engineering for strain development over the last few years. This is driven by the exceptionally recalcitrant substrate, lignocellulose, and the necessity to keep the costs down for commodity products. Traditional methods of gene expression and evolutionary engineering are more effectively used with the help of synthetic biology and -omics techniques. Compared to the last biomass research peak during the 1980s oil crisis, a more diverse range of microorganisms are being engineered for a greater variety of products, reflecting the broad applicability and effectiveness of today's gene technology. We review here several prominent and successful metabolic engineering strategies with emphasis on the following four areas: xylose catabolism, inhibitor tolerance, synthetic microbial consortium, and cellulosic oligomer assimilation.

  10. NNEPEQ: Chemical equilibrium version of the Navy/NASA Engine Program

    NASA Technical Reports Server (NTRS)

    Fishbach, Laurence H.; Gordon, Sanford

    1988-01-01

    The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has bee used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.

  11. NNEPEQ - Chemical equilibrium version of the Navy/NASA Engine Program

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.; Gordon, S.

    1989-01-01

    The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.

  12. Fueling Chemical Engineering Concepts with Biodiesel Production: A Professional Development Experience for High School Pre-Service Teachers

    ERIC Educational Resources Information Center

    Gupta, Anju

    2015-01-01

    This one-day workshop for pre-service teachers was aimed at implementing a uniquely designed and ready-to-implement chemical engineering curriculum in high school coursework. This educational and professional development opportunity introduced: 1) chemical engineering curriculum and career opportunities, 2) basic industrial processes and flow…

  13. Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering.

    PubMed

    Singh, Milind; Berkland, Cory; Detamore, Michael S

    2008-12-01

    From embryonic development to wound repair, concentration gradients of bioactive signaling molecules guide tissue formation and regeneration. Moreover, gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues. Perhaps tissue engineers can take a cue from nature in attempting to regenerate tissues by incorporating gradients into engineering design strategies. Indeed, gradient-based approaches are an emerging trend in tissue engineering, standing in contrast to traditional approaches of homogeneous delivery of cells and/or growth factors using isotropic scaffolds. Gradients in tissue engineering lie at the intersection of three major paradigms in the field-biomimetic, interfacial, and functional tissue engineering-by combining physical (via biomaterial design) and chemical (with growth/differentiation factors and cell adhesion molecules) signal delivery to achieve a continuous transition in both structure and function. This review consolidates several key methodologies to generate gradients, some of which have never been employed in a tissue engineering application, and discusses strategies for incorporating these methods into tissue engineering and implant design. A key finding of this review was that two-dimensional physicochemical gradient substrates, which serve as excellent high-throughput screening tools for optimizing desired biomaterial properties, can be enhanced in the future by transitioning from two dimensions to three dimensions, which would enable studies of cell-protein-biomaterial interactions in a more native tissue-like environment. In addition, biomimetic tissue regeneration via combined delivery of graded physical and chemical signals appears to be a promising strategy for the regeneration of heterogeneous tissues and tissue interfaces. In the future, in vivo applications will shed more light on the performance of gradient-based mechanical integrity and signal delivery

  14. Physico-chemical changes during storage and sensory acceptance of low sodium probiotic Minas cheese added with arginine.

    PubMed

    Felicio, T L; Esmerino, E A; Vidal, V A S; Cappato, L P; Garcia, R K A; Cavalcanti, R N; Freitas, M Q; Conte Junior, C A; Padilha, M C; Silva, M C; Raices, R S L; Arellano, D B; Bollini, H M A; Pollonio, M A R; Cruz, A G

    2016-04-01

    The partial substitution of sodium chloride by potassium chloride (0%, 25%, and 50%) and addition of arginine (1% w/w) in probiotic Minas cheese was investigated. Microbiological (Lactococcus lactis and Lactobacillus acidophilus counts, and functionality of the prebiotics L. acidophilus), physicochemical (pH, proteolysis, organic acids, fatty acids, and volatile profiles), rheological (uniaxial compression) and sensory (hedonic test with 100 consumers) characterizations were carried out. The sodium reduction and addition of arginine did not constitute a hurdle to lactic and probiotic bacteria survival, with presented values of about 9 log CFU/g, ranging from 7.11 to 9.21 log CFU/g, respectively. In addition, lower pH values, higher proteolysis, and a decrease in toughness, elasticity and firmness were observed, as well as an increase in lactic, citric, and acetic acid contents. In contrast, no change was observed in the fatty acid profile. With respect to the sensory acceptance, the probiotic low-sodium Minas cheese presented scores above 6.00 (liked slightly) for the attributes flavor and overall acceptance. The addition of arginine can be a potential alternative for the development of probiotic dairy products with reduced sodium content.

  15. Engineering data transfer test with EDCARS using MIL-R-28002 (Raster). Laboratory Acceptance Test and User Application Test

    SciTech Connect

    Not Available

    1992-04-17

    This paper documents the results of a sequence of tests conducted to evaluate the DoD Computer-aided Acquisition and Logistic Support (CALS) data interchange capability of the Air Force Engineering Data Computer-Assisted Retrieval System (EDCARS). The CALS initiative specifies a standard digital interface to streamline the interchange of technical data between the DoD and the commercial sector. The CALS Test Network (CTN) is tasked to conduct tests of military standards which specify this digital interface. The testing results outlined in this report are intended to evaluate the EDCARS systems`s ability to sport CALS data interchanges and establish the level of technical data interoperability implemented at this DoD engineering data repository.

  16. Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol.

    PubMed

    Chen, Zhen; Liu, Dehua

    2016-01-01

    As an inevitable by-product of the biofuel industry, glycerol is becoming an attractive feedstock for biorefinery due to its abundance, low price and high degree of reduction. Converting crude glycerol into value-added products is important to increase the economic viability of the biofuel industry. Metabolic engineering of industrial strains to improve its performance and to enlarge the product spectrum of glycerol biotransformation process is highly important toward glycerol biorefinery. This review focuses on recent metabolic engineering efforts as well as challenges involved in the utilization of glycerol as feedstock for the production of fuels and chemicals, especially for the production of diols, organic acids and biofuels.

  17. Strategies and Applications for Incorporating Physical and Chemical Signal Gradients in Tissue Engineering

    PubMed Central

    Singh, Milind; Berkland, Cory

    2008-01-01

    From embryonic development to wound repair, concentration gradients of bioactive signaling molecules guide tissue formation and regeneration. Moreover, gradients in cellular and extracellular architecture as well as in mechanical properties are readily apparent in native tissues. Perhaps tissue engineers can take a cue from nature in attempting to regenerate tissues by incorporating gradients into engineering design strategies. Indeed, gradient-based approaches are an emerging trend in tissue engineering, standing in contrast to traditional approaches of homogeneous delivery of cells and/or growth factors using isotropic scaffolds. Gradients in tissue engineering lie at the intersection of three major paradigms in the field—biomimetic, interfacial, and functional tissue engineering—by combining physical (via biomaterial design) and chemical (with growth/differentiation factors and cell adhesion molecules) signal delivery to achieve a continuous transition in both structure and function. This review consolidates several key methodologies to generate gradients, some of which have never been employed in a tissue engineering application, and discusses strategies for incorporating these methods into tissue engineering and implant design. A key finding of this review was that two-dimensional physicochemical gradient substrates, which serve as excellent high-throughput screening tools for optimizing desired biomaterial properties, can be enhanced in the future by transitioning from two dimensions to three dimensions, which would enable studies of cell–protein–biomaterial interactions in a more native tissue–like environment. In addition, biomimetic tissue regeneration via combined delivery of graded physical and chemical signals appears to be a promising strategy for the regeneration of heterogeneous tissues and tissue interfaces. In the future, in vivo applications will shed more light on the performance of gradient-based mechanical integrity and signal

  18. Evaluation of Environmentally Acceptable Lubricants (EALS) for Dams Managed by the U.S. Army Corps of Engineers

    DTIC Science & Technology

    2015-08-01

    heat. They also provide a protective barrier to oxidation, thereby reducing corrosion . Additionally, they can provide insulation, transmit chemical...5 5 4 4 4 5 Hydrolytic Stability 1 1 3 4 4 5 Corrosion Protection Properties 1 1 3 4 4 5 Seal Material Compatibility 3 2 3 4 4 4 Paint & Lacquer...reactions with water), and corrosion protection properties. In focusing on these, we see that — with some exceptions — EALs tend to outperform mineral

  19. Coagulation sensors based on magnetostrictive delay lines for biomedical and chemical engineering applications

    NASA Astrophysics Data System (ADS)

    Maliaritsi, E.; Zoumpoulakis, L.; Simitzis, J.; Vassiliou, P.; Hristoforou, E.

    2006-04-01

    Coagulation sensors based on the magnetostrictive delay line technique are presented in this paper. They are based on magnetostrictive ribbons and are used for measuring the coagulation, curing or solidification time of different liquids. Experimental results indicate that the presented sensing elements can determine the blood coagulation with remarkable repeatability, thus allowing their use as blood coagulation sensors. Additionally, results indicate that they can also measure curing time of resins, solidification of fluids and coagulation of chemical substances, therefore allowing their implementation in chemical engineering applications.

  20. Mimicking Neurotransmitter Release in Chemical Synapses via Hysteresis Engineering in MoS2 Transistors.

    PubMed

    Arnold, Andrew J; Razavieh, Ali; Nasr, Joseph R; Schulman, Daniel S; Eichfeld, Chad M; Das, Saptarshi

    2017-03-28

    Neurotransmitter release in chemical synapses is fundamental to diverse brain functions such as motor action, learning, cognition, emotion, perception, and consciousness. Moreover, improper functioning or abnormal release of neurotransmitter is associated with numerous neurological disorders such as epilepsy, sclerosis, schizophrenia, Alzheimer's disease, and Parkinson's disease. We have utilized hysteresis engineering in a back-gated MoS2 field effect transistor (FET) in order to mimic such neurotransmitter release dynamics in chemical synapses. All three essential features, i.e., quantal, stochastic, and excitatory or inhibitory nature of neurotransmitter release, were accurately captured in our experimental demonstration. We also mimicked an important phenomenon called long-term potentiation (LTP), which forms the basis of human memory. Finally, we demonstrated how to engineer the LTP time by operating the MoS2 FET in different regimes. Our findings could provide a critical component toward the design of next-generation smart and intelligent human-like machines and human-machine interfaces.

  1. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    PubMed

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes.

  2. Chemical and Materials Information Management to Achieve Sustainable Engineering and Design for the 21st Century

    DTIC Science & Technology

    2011-11-01

    Approved for Public Release ; Distribution Unlimited Chemical and Materials Information Management to Achieve Sustainable Engineering and Design for...Data Sources Solution – Distributed Information System Logistics Sustainability Approved for Public Release ; Distribution Unlimited • Single point...currently valid OMB control number. 1. REPORT DATE NOV 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE

  3. Systems Engineering of Chemical Hydrogen Storage, Pressure Vessel and Balance of Plant for Onboard Hydrogen Storage

    SciTech Connect

    Brooks, Kriston P.; Simmons, Kevin L.; Weimar, Mark R.

    2014-09-02

    This is the annual report for the Hydrogen Storage Engineering Center of Excellence project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done with cryo-sorbent based and chemical-based hydrogen storage materials. Balance of plant components were developed, proof-of-concept testing performed, system costs estimated, and transient models validated as part of this work.

  4. Extinguishing in-flight engine fuel-leak fires with dry chemicals

    NASA Technical Reports Server (NTRS)

    Altman, R. L.

    1981-01-01

    The fire extinguishant storage temperature requirements were examined for several commercially available dry chemicals. Particular emphasis was placed on the development of dry powder extinguishant that, when discharged into a jet engine fuel leak fire, would stick to the hot surfaces. Moreover, after putting out the initial fire, these extinguishants would act as antireignition catalysts, even when the fuel continued to leak onto the heated surface.

  5. Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering.

    PubMed

    Nuñez, James K; Harrington, Lucas B; Doudna, Jennifer A

    2016-03-18

    The application of the CRISPR-Cas9 system for genome engineering has revolutionized the ability to interrogate genomes of mammalian cells. Programming the Cas9 endonuclease to induce DNA breaks at specified sites is achieved by simply modifying the sequence of its cognate guide RNA. Although Cas9-mediated genome editing has been shown to be highly specific, cleavage events at off-target sites have also been reported. Minimizing, and eventually abolishing, unwanted off-target cleavage remains a major goal of the CRISPR-Cas9 technology before its implementation for therapeutic use. Recent efforts have turned to chemical biology and biophysical approaches to engineer inducible genome editing systems for controlling Cas9 activity at the transcriptional and protein levels. Here, we review recent advancements to modulate Cas9-mediated genome editing by engineering split-Cas9 constructs, inteins, small molecules, protein-based dimerizing domains, and light-inducible systems.

  6. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.

    PubMed

    Turner, Timothy L; Kim, Heejin; Kong, In Iok; Liu, Jing-Jing; Zhang, Guo-Chang; Jin, Yong-Su

    2016-12-03

    To mitigate global climate change caused partly by the use of fossil fuels, the production of fuels and chemicals from renewable biomass has been attempted. The conversion of various sugars from renewable biomass into biofuels by engineered baker's yeast (Saccharomyces cerevisiae) is one major direction which has grown dramatically in recent years. As well as shifting away from fossil fuels, the production of commodity chemicals by engineered S. cerevisiae has also increased significantly. The traditional approaches of biochemical and metabolic engineering to develop economic bioconversion processes in laboratory and industrial settings have been accelerated by rapid advancements in the areas of yeast genomics, synthetic biology, and systems biology. Together, these innovations have resulted in rapid and efficient manipulation of S. cerevisiae to expand fermentable substrates and diversify value-added products. Here, we discuss recent and major advances in rational (relying on prior experimentally-derived knowledge) and combinatorial (relying on high-throughput screening and genomics) approaches to engineer S. cerevisiae for producing ethanol, butanol, 2,3-butanediol, fatty acid ethyl esters, isoprenoids, organic acids, rare sugars, antioxidants, and sugar alcohols from glucose, xylose, cellobiose, galactose, acetate, alginate, mannitol, arabinose, and lactose.

  7. Measuring adsorption, diffusion and flow in chemical engineering: applications of magnetic resonance to porous media

    NASA Astrophysics Data System (ADS)

    Gladden, Lynn F.; Mitchell, Jonathan

    2011-03-01

    Magnetic resonance (MR) techniques are increasingly used to improve our understanding of the multi-component, multi-phase processes encountered in chemical engineering. This review brings together many of the MR techniques used, and often developed specifically, to study chemical engineering systems and, in particular, processes occurring within porous media. Pulse sequences for relaxometry, pulsed field gradient measurements of diffusion, imaging and velocimetry measurements are described. Recent applications of these MR pulse sequences to microporous, mesoporous and macroporous structures are then reviewed. Considering the microporous and mesoporous systems, we focus attention on studies of rock cores, manufactured materials such as cement and gypsum plaster, and catalysts. When considering macroporous structures, the transport through packed beds of particles typical of fixed-bed catalytic reactors is reviewed; a brief overview of the increasing research interest in gas-solid fluidized beds is also presented. We highlight the field of sparse k-space sampling as an area that is in its infancy and suggest that, combined with Bayesian methods, it will offer new opportunities in both extending the application of high-field MR techniques to chemical engineering and increasing the range of measurements that can be carried out using low-field hardware.

  8. Engineering an Obligate Photoautotrophic Cyanobacterium to Utilize Glycerol for Growth and Chemical Production.

    PubMed

    Kanno, Masahiro; Atsumi, Shota

    2017-01-20

    Cyanobacteria have attracted much attention as a means to directly recycle carbon dioxide into valuable chemicals that are currently produced from petroleum. However, the titers and productivities achieved are still far below the level required in industry. To make a more industrially applicable production scheme, glycerol, a byproduct of biodiesel production, can be used as an additional carbon source for photomixotrophic chemical production. Glycerol is an ideal candidate due to its availability and low cost. In this study, we found that a heterologous glycerol respiratory pathway enabled Synechococcus elongatus PCC 7942 to utilize extracellular glycerol. The engineered strain produced 761 mg/L of 2,3-butanediol in 48 h with a 290% increase over the control strain under continuous light conditions. Glycerol supplementation also allowed for continuous cell growth and 2,3-butanediol production in diurnal light conditions. These results highlight the potential of glycerol as an additional carbon source for photomixotrophic chemical production in cyanobacteria.

  9. Identification of sensory attributes, instrumental and chemical measurements important for consumer acceptability of grilled lamb Longissimus lumborum.

    PubMed

    Oltra, O R; Farmer, L J; Gordon, A W; Moss, B W; Birnie, J; Devlin, D J; Tolland, E L C; Tollerton, I J; Beattie, A M; Kennedy, J T; Farrell, D

    2015-02-01

    In this study, important eating quality attributes that influence consumer liking for grilled lamb loin have been identified using preference mapping techniques. The eating quality attributes identified as driving the consumer liking of lamb loin steaks were “tenderness”, “sweet flavour”, “meaty aftertaste”, “roast lamb flavour” and “roast lamb aftertaste”. In contrast, the texture attribute “rubbery” and the flavour attributes “bitter flavour” and "bitter aftertaste" had a negative influence on consumer perceptions. Associations were observed between eating quality and a number of instrumental and chemical measurements. Warner Bratzler Shear Force showed an association with “rubbery” texture and a negative association with “tenderness” and consumer liking scores. The compounds, glucose, glucose-6-phosphate, inosine, inosine monophosphate and adenosine monophosphate were associated with the attributes, “sweet flavour”,“meaty aftertaste”, “roast lamb flavour”, “roast lamb aftertaste” and with consumer scores for liking of lamb which is probably caused by the role some of these compounds play as precursors of flavour and as taste compounds.

  10. Expanding the chemical palate of cells by combining systems biology and metabolic engineering.

    PubMed

    Curran, Kathleen A; Alper, Hal S

    2012-07-01

    The field of Metabolic Engineering has recently undergone a transformation that has led to a rapid expansion of the chemical palate of cells. Now, it is conceivable to produce nearly any organic molecule of interest using a cellular host. Significant advances have been made in the production of biofuels, biopolymers and precursors, pharmaceuticals and nutraceuticals, and commodity and specialty chemicals. Much of this rapid expansion in the field has been, in part, due to synergies and advances in the area of systems biology. Specifically, the availability of functional genomics, metabolomics and transcriptomics data has resulted in the potential to produce a wealth of new products, both natural and non-natural, in cellular factories. The sheer amount and diversity of this data however, means that uncovering and unlocking novel chemistries and insights is a non-obvious exercise. To address this issue, a number of computational tools and experimental approaches have been developed to help expedite the design process to create new cellular factories. This review will highlight many of the systems biology enabling technologies that have reduced the design cycle for engineered hosts, highlight major advances in the expanded diversity of products that can be synthesized, and conclude with future prospects in the field of metabolic engineering.

  11. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    PubMed

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform.

  12. Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals.

    PubMed

    Nybo, S Eric; Khan, Nymul E; Woolston, Benjamin M; Curtis, Wayne R

    2015-07-01

    The ability of autotrophic organisms to fix CO2 presents an opportunity to utilize this 'greenhouse gas' as an inexpensive substrate for biochemical production. Unlike conventional heterotrophic microorganisms that consume carbohydrates and amino acids, prokaryotic chemolithoautotrophs have evolved the capacity to utilize reduced chemical compounds to fix CO2 and drive metabolic processes. The use of chemolithoautotrophic hosts as production platforms has been renewed by the prospect of metabolically engineered commodity chemicals and fuels. Efforts such as the ARPA-E electrofuels program highlight both the potential and obstacles that chemolithoautotrophic biosynthetic platforms provide. This review surveys the numerous advances that have been made in chemolithoautotrophic metabolic engineering with a focus on hydrogen oxidizing bacteria such as the model chemolithoautotrophic organism (Ralstonia), the purple photosynthetic bacteria (Rhodobacter), and anaerobic acetogens. Two alternative strategies of microbial chassis development are considered: (1) introducing or enhancing autotrophic capabilities (carbon fixation, hydrogen utilization) in model heterotrophic organisms, or (2) improving tools for pathway engineering (transformation methods, promoters, vectors etc.) in native autotrophic organisms. Unique characteristics of autotrophic growth as they relate to bioreactor design and process development are also discussed in the context of challenges and opportunities for genetic manipulation of organisms as production platforms.

  13. Chemically Engineered Substrates for Patternable Growth of Two-Dimensional Chalcogenide Crystals.

    PubMed

    Wang, Mingzhan; Wu, Jinxiong; Lin, Li; Liu, Yujing; Deng, Bing; Guo, Yunfan; Lin, Yuanwei; Xie, Tian; Dang, Wenhui; Zhou, Yubing; Peng, Hailin

    2016-11-22

    The key challenge of direct integration of two-dimensional (2D) chalcogenide crystals into functional modules is precise control of the nucleation sites of the building blocks. Herein, we exploit the chemical activities and surface engineering of the substrates to manipulate the nucleation energy barrier of 2D crystals and thereby realize the patternable growth of 2D crystals. The selective-region chemical modifications of the substrates are achieved via microcontact printing combined with the elegant self-assembly of octadecyltrichlorosilane molecules on the substrates. The patternable growth method is versatile and can be used as a general strategy for growing a broad class of high-quality 2D chalcogenide crystals with tailorable configurations on a variety of chemically engineered substrates. Moreover, we demonstrate flexible transparent electrodes based on large-scale patterned nanogrids of topological insulator Bi2Se3, which possess tailored trade-off between electric conductivity and optical transmittance across the visible to near-infrared regime. We hope this method may open an avenue to the efficient integration and batch production of 2D chalcogenide crystals and could inspire ongoing efforts of the fabrication of van der Waals heterostructures.

  14. Direct Measurement and Chemical Speciation of Top Ring Zone Liquid During Engine Operation

    SciTech Connect

    Splitter, Derek A; Burrows, Barry Clay; Lewis Sr, Samuel Arthur

    2015-01-01

    The present manuscript consists of proof of concept experiments involving direct measurements and detailed chemical speciation from the top ring zone of a running engine. The work uses a naturally aspirated single cylinder utility engine that has been modified to allow direct liquid sample acquisition from behind the top ring. Samples were analyzed and spectated using gas chromatographic techniques. Results show that the liquid mixture in the top ring zone is neither neat lubricant nor fuel but a combination of the two with unique chemical properties. At the tested steady state no-load operating condition, the chemical species of the top ring zone liquid were found to be highly dependent on boiling point, where both low reactivity higher boiling point fuel species and lubricant are observed to be the dominant constituents. The results show that at least for the tested condition, approximately 25% of the top ring zone is comprised of gasoline fuel like molecules, which are dominated by high octane number aromatic species, while the remainder of the liquid is comprised of lubricant like species.

  15. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    SciTech Connect

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  16. Implementing a Systematic Process for Rapidly Embedding Sustainability within Chemical Engineering Education: A Case Study of James Cook University, Australia

    ERIC Educational Resources Information Center

    Sheehan, Madoc; Schneider, Phil; Desha, Cheryl

    2012-01-01

    Sustainability has emerged as a primary context for engineering education in the 21st Century, particularly the sub-discipline of chemical engineering. However, there is confusion over how to go about integrating sustainability knowledge and skills systemically within bachelor degrees. This paper addresses this challenge, using a case study of an…

  17. HYPER-­TVT: Development and Implementation of an Interactive Learning Environment for Students of Chemical and Process Engineering

    ERIC Educational Resources Information Center

    Santoro, Marina; Mazzotti, Marco

    2006-01-01

    Hyper-TVT is a computer-aided education system that has been developed at the Institute of Process Engineering at the ETH Zurich. The aim was to create an interactive learning environment for chemical and process engineering students. The topics covered are the most important multistage separation processes, i.e. fundamentals of separation…

  18. Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency

    SciTech Connect

    Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov

    2009-03-30

    The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and

  19. Wet chemical synthesis of chitosan hydrogel-hydroxyapatite composite membranes for tissue engineering applications.

    PubMed

    Madhumathi, K; Shalumon, K T; Rani, V V Divya; Tamura, H; Furuike, T; Selvamurugan, N; Nair, S V; Jayakumar, R

    2009-07-01

    Chitosan, a deacetylated derivative of chitin is a commonly studied biomaterial for tissue-engineering applications due to its biocompatibility, biodegradability, low toxicity, antibacterial activity, wound healing ability and haemostatic properties. However, chitosan has poor mechanical strength due to which its applications in orthopedics are limited. Hydroxyapatite (HAp) is a natural inorganic component of bone and teeth and has mechanical strength and osteoconductive property. In this work, HAp was deposited on the surface of chitosan hydrogel membranes by a wet chemical synthesis method by alternatively soaking the membranes in CaCl(2) (pH 7.4) and Na(2)HPO(4) solutions for different time intervals. These chitosan hydrogel-HAp membranes were characterized using SEM, AFM, EDS, FT-IR and XRD analyses. MTT assay was done to evaluate the biocompatibility of these membranes using MG-63 osteosarcoma cells. The biocompatibility studies suggest that chitosan hydrogel-HAp composite membranes can be useful for tissue-engineering applications.

  20. [Engineering of the xylose metabolic pathway for microbial production of bio-based chemicals].

    PubMed

    Liu, Weixi; Fu, Jing; Zhang, Bo; Chen, Tao

    2013-08-01

    As the rapid development of economy necessitates a large number of oil, the contradiction between energy supply and demand is further exacerbated by the dwindling reserves of petroleum resource. Therefore, the research of the renewable cellulosic biomass resources is gaining unprecedented momentum. Because xylose is the second most abundant monosaccharide after glucose in lignocellulose hydrolyzes, high-efficiency bioconversion of xylose becomes one of the vital factors that affect the industrial prospects of lignocellulose application. According to the research progresses in recent years, this review summarized the advances in bioconversion of xylose, which included identification and redesign of the xylose metabolic pathway, engineering the xylose transport pathway and bio-based chemicals production. In order to solve the energy crisis and environmental pollution issues, the development of advanced bio-fuel technology, especially engineering the microbe able to metabolize xylose and produce ethanol by synthetic biology, is environmentally benign and sustainable.

  1. Chemical kinetic modeling study of the effects of oxygenated hydrocarbons on soot emissions from diesel engines.

    PubMed

    Westbrook, Charles K; Pitz, William J; Curran, Henry J

    2006-06-01

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by the addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in the molecular structure of the oxygenated species.

  2. Effect of continuous assessment on learning outcomes on two chemical engineering courses: case study

    NASA Astrophysics Data System (ADS)

    Tuunila, R.; Pulkkinen, M.

    2015-11-01

    In this paper, the effect of continuous assessment on the learning outcomes of two chemical engineering courses is studied over a several-year period. Average grades and passing percentages of courses after the final examination are reported and also student feedback on the courses is collected. The results indicate significantly better learning results after the adoption of continuous assessment in the courses. Also student feedback suggests higher quality in teaching after the adoption of more activating teaching methods which compel students to study effectively throughout the course.

  3. Determination of Gibbs energies of formation in aqueous solution using chemical engineering tools.

    PubMed

    Toure, Oumar; Dussap, Claude-Gilles

    2016-08-01

    Standard Gibbs energies of formation are of primary importance in the field of biothermodynamics. In the absence of any directly measured values, thermodynamic calculations are required to determine the missing data. For several biochemical species, this study shows that the knowledge of the standard Gibbs energy of formation of the pure compounds (in the gaseous, solid or liquid states) enables to determine the corresponding standard Gibbs energies of formation in aqueous solutions. To do so, using chemical engineering tools (thermodynamic tables and a model enabling to predict activity coefficients, solvation Gibbs energies and pKa data), it becomes possible to determine the partial chemical potential of neutral and charged components in real metabolic conditions, even in concentrated mixtures.

  4. Radiological, physical, and chemical characterization of transuranic wastes stored at the Idaho National Engineering Laboratory

    SciTech Connect

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical and chemical characterization data for transuranic radioactive wastes and transuranic radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program (PSPI). Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 139 waste streams which represent an estimated total volume of 39,380{sup 3} corresponding to a total mass of approximately 19,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats Plant generated waste forms stored at the INEL are provided to assist in facility design specification.

  5. Massachusetts Institute of Technology School of Chemical Engineering Practice, Brookhaven station: Summary of projects, 1983-1986

    SciTech Connect

    Not Available

    1987-11-01

    The MIT Graduate School of Chemical Engineering Practice stresses engineering problem solving. The Practice School program, as it is commonly called, develops in a unique and particularly effective way the student's ability to apply fundamentals to problems in the chemical industry and thus accelerates one's professional development. The themes of atomization, emthanol production and utilization, hydrogen production and compression, localized electrochemical corrosion and biochemical engineering reflect some of the major programs at the Laboratory. The titles of all the projects are listed in chronological order in the index at the end of this document. Brief summaries are presented for each project with related projects grouped together.

  6. Chemical engineering and structural and pharmacological characterization of the α-scorpion toxin OD1.

    PubMed

    Durek, Thomas; Vetter, Irina; Wang, Ching-I Anderson; Motin, Leonid; Knapp, Oliver; Adams, David J; Lewis, Richard J; Alewood, Paul F

    2013-01-01

    Scorpion α-toxins are invaluable pharmacological tools for studying voltage-gated sodium channels, but few structure-function studies have been undertaken due to their challenging synthesis. To address this deficiency, we report a chemical engineering strategy based upon native chemical ligation. The chemical synthesis of α-toxin OD1 was achieved by chemical ligation of three unprotected peptide segments. A high resolution X-ray structure (1.8 Å) of synthetic OD1 showed the typical βαββ α-toxin fold and revealed important conformational differences in the pharmacophore region when compared with other α-toxin structures. Pharmacological analysis of synthetic OD1 revealed potent α-toxin activity (inhibition of fast inactivation) at Nav1.7, as well as Nav1.4 and Nav1.6. In addition, OD1 also produced potent β-toxin activity at Nav1.4 and Nav1.6 (shift of channel activation in the hyperpolarizing direction), indicating that OD1 might interact at more than one site with Nav1.4 and Nav1.6. Investigation of nine OD1 mutants revealed that three residues in the reverse turn contributed significantly to selectivity, with the triple OD1 mutant (D9K, D10P, K11H) being 40-fold more selective for Nav1.7 over Nav1.6, while OD1 K11V was 5-fold more selective for Nav1.6 than Nav1.7. This switch in selectivity highlights the importance of the reverse turn for engineering α-toxins with altered selectivity at Nav subtypes.

  7. A review of engineering aspects of intensification of chemical synthesis using ultrasound.

    PubMed

    Sancheti, Sonam V; Gogate, Parag R

    2017-05-01

    Cavitation generated using ultrasound can enhance the rates of several chemical reactions giving better selectivity based on the physical and chemical effects. The present review focuses on overview of the different reactions that can be intensified using ultrasound followed by the discussion on the chemical kinetics for ultrasound assisted reactions, engineering aspects related to reactor designs and effect of operating parameters on the degree of intensification obtained for chemical synthesis. The cavitational effects in terms of magnitudes of collapse temperatures and collapse pressure, number of free radicals generated and extent of turbulence are strongly dependent on the operating parameters such as ultrasonic power, frequency, duty cycle, temperature as well as physicochemical parameters of liquid medium which controls the inception of cavitation. Guidelines have been presented for the optimum selection based on the critical analysis of the existing literature so that maximum process intensification benefits can be obtained. Different reactor designs have also been analyzed with guidelines for efficient scale up of the sonochemical reactor, which would be dependent on the type of reaction, controlling mechanism of reaction, catalyst and activation energy requirements. Overall, it has been established that sonochemistry offers considerable potential for green and sustainable processing and efficient scale up procedures are required so as to harness the effects at actual commercial level.

  8. Non-Natural Sugar Analogues: Chemical Probes for Metabolic Oligosaccharide Engineering

    NASA Astrophysics Data System (ADS)

    Aich, Udayanath; Yarema, Kevin J.

    Metabolic oligosaccharide engineering (MOE) is a rapidly growing technology emerging from the field of chemical biology that allows novel chemical functionalities to be biosynthetically installed into the carbohydrates of living cells and animals. Since pioneering efforts to modulate sialic acid display through the use of non-natural N-acetyl-D-mannosamine (ManNAc) analogues were reported 15 years ago, monosaccharide probes have been developed to manipulate N-acetyl-D-galactosamine (GalNAc), N-acetyl-D-glucosamine (GlcNAc), and fucose-containing glycans. The 'first generation' of analogues, comprised of a series of ManNAc derivatives with elongated N-acyl chains, demonstrated pathway permissivity and the ability of this methodology to impinge on biological processes ranging from pathogen binding to gene expression and cell adhesion. Later analogues have incorporated chemical function groups including ketones, azides, thiols, and alkyne not normally found in carbohydrates. These groups serve as 'tags' for the subsequent use of chemoselective ligation reactions to further elaborate the chemical properties of the cell surface and thereby greatly expand the potential of MOE technology to offer control over biological processes.

  9. ["Two professions for a single task". The introduction of chemical engineering in Spain during the first Francoism].

    PubMed

    Toca, Angel

    2006-01-01

    Through the first half of the 20th century, chemical engineering was established as an academic option in the training of specialists for the North-American and European chemical industry, whereas it was not a special field of study in Spain until the 1990s. The reason for this delay was a battle of interests between chemist and industrial engineers to control this career during the first Francoism. This article will try to show the development and professionalization of specialists for the Spanish chemical industry.

  10. Characterization of chemicals on engine-exhaust particles. Final report, September 1986-December 1987

    SciTech Connect

    Kuhlman, M.R.; Chuang, J.C.

    1989-06-01

    The object of the work described in this report has been the characterization of particulate-bound chemicals emitted from military aircraft, both as they are emitted and as the exhaust ages. Three Air Force turbine engines (TF33-P3, TF33-P7, and J79C) were examined in this study, using engine test cells at Tinker AFB OK. Emissions were collected at power settings of idle, 30%, 75%, and injected into smog chambers for subsequent aging. Samples were collected from these chambers periodically during the photochemical experiments to permit measurements of the vapor phase and particle associated photochemical experiments to permit measurements of the vapor-phase and particle associated polycyclic aromatic hydrocarbon (PAH) and derivatives under experimental conditions. Throughout the course of the experiments, measurements of the concentrations of total hydrocarbons, NO, NOx, and O{sub 3} were made. The samples collected on filter and sorbent media were returned to the laboratory for extraction and analysis by gas chromatography/mass spectrometry (GC/MS) to determine masses of specific target compounds collected. The time profiles of these compounds are presented for the various engines, operating powers, sunlight levels, and photochemical reactivities examines.

  11. Band Gap Engineering in a 2D Material for Solar-to-Chemical Energy Conversion.

    PubMed

    Hu, Jun; Guo, Zhenkun; Mcwilliams, Peter E; Darges, John E; Druffel, Daniel L; Moran, Andrew M; Warren, Scott C

    2016-01-13

    The electronic structure of 2D semiconductors depends on their thickness, providing new opportunities to engineer semiconductors for energy conversion, electronics, and catalysis. Here we show how a 3D semiconductor, black phosphorus, becomes active for solar-to-chemical energy conversion when it is thinned to a 2D material. The increase in its band gap, from 0.3 eV (3D) to 2.1 eV (2D monolayer), is accompanied by a 40-fold enhancement in the formation of chemical products. Despite this enhancement, smaller flakes also have shorter excited state lifetimes. We deduce a mechanism in which recombination occurs at flake edges, while the "van der Waals" surface of black phosphorus bonds to chemical intermediates and facilitates electron transfer. The unique properties of black phosphorus highlight its potential as a customizable material for solar energy conversion and catalysis, while also allowing us to identify design rules for 2D photocatalysts that will enable further improvements in these materials.

  12. Prevention of Preharvest Sprouting through Hormone Engineering and Germination Recovery by Chemical Biology

    PubMed Central

    Nonogaki, Mariko; Nonogaki, Hiroyuki

    2017-01-01

    Vivipary, germination of seeds on the maternal plant, is observed in nature and provides ecological advantages in certain wild species, such as mangroves. However, precocious seed germination in agricultural species, such as preharvest sprouting (PHS) in cereals, is a serious issue for food security. PHS reduces grain quality and causes economical losses to farmers. PHS can be prevented by translating the basic knowledge of hormone biology in seeds into technologies. Biosynthesis of abscisic acid (ABA), which is an essential hormone for seed dormancy, can be engineered to enhance dormancy and prevent PHS. Enhancing nine-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting enzyme of ABA biosynthesis, through a chemically induced gene expression system, has successfully been used to suppress germination of Arabidopsis seeds. The more advanced system NCED positive-feedback system, which amplifies ABA biosynthesis in a seed-specific manner without chemical induction, has also been developed. The proofs of concept established in the model species are now ready to be applied to crops. A potential problem is recovery of germination from hyperdormant crop grains. Hyperdormancy induced by the NCED systems can be reversed by inducing counteracting genes, such as NCED RNA interference or gibberellin (GA) biosynthesis genes. Alternatively, seed sensitivity to ABA can be modified to rescue germination using the knowledge of chemical biology. ABA antagonists, which were developed recently, have great potential to recover germination from the hyperdormant seeds. Combination of the dormancy-imposing and -releasing approaches will establish a comprehensive technology for PHS prevention and germination recovery. PMID:28197165

  13. Prevention of Preharvest Sprouting through Hormone Engineering and Germination Recovery by Chemical Biology.

    PubMed

    Nonogaki, Mariko; Nonogaki, Hiroyuki

    2017-01-01

    Vivipary, germination of seeds on the maternal plant, is observed in nature and provides ecological advantages in certain wild species, such as mangroves. However, precocious seed germination in agricultural species, such as preharvest sprouting (PHS) in cereals, is a serious issue for food security. PHS reduces grain quality and causes economical losses to farmers. PHS can be prevented by translating the basic knowledge of hormone biology in seeds into technologies. Biosynthesis of abscisic acid (ABA), which is an essential hormone for seed dormancy, can be engineered to enhance dormancy and prevent PHS. Enhancing nine-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting enzyme of ABA biosynthesis, through a chemically induced gene expression system, has successfully been used to suppress germination of Arabidopsis seeds. The more advanced system NCED positive-feedback system, which amplifies ABA biosynthesis in a seed-specific manner without chemical induction, has also been developed. The proofs of concept established in the model species are now ready to be applied to crops. A potential problem is recovery of germination from hyperdormant crop grains. Hyperdormancy induced by the NCED systems can be reversed by inducing counteracting genes, such as NCED RNA interference or gibberellin (GA) biosynthesis genes. Alternatively, seed sensitivity to ABA can be modified to rescue germination using the knowledge of chemical biology. ABA antagonists, which were developed recently, have great potential to recover germination from the hyperdormant seeds. Combination of the dormancy-imposing and -releasing approaches will establish a comprehensive technology for PHS prevention and germination recovery.

  14. Improving dry carbon nanotube actuators by chemical modifications, material hybridization, and proper engineering

    NASA Astrophysics Data System (ADS)

    Biso, Maurizio; Ansaldo, Alberto; Ricci, Davide

    2013-04-01

    Low voltage, dry electrochemical actuators can be prepared by using a gel made of carbon nanotubes and ionic liquid.1 Their performance can be significantly improved by combining physical and chemical modifications with a proper engineering. We demonstrated that multi walled carbon nanotubes can be effectively used for actuators preparation;2 we achieved interesting performance improvements by chemically cross linking carbon nanotubes using both aromatic and aliphatic diamines;3 we introduced a novel hybrid material, made by in-situ chemical polymerization of pyrrole on carbon nanotubes, that further boosts actuation by taking advantage of the peculiar properties of both materials in terms of maximum strain and conductivity;4 we investigated the influence of actuator thickness showing that the generated strain at high frequency is strongly enhanced when thickness is reduced. To overcome limitations set by bimorphs, we designed a novel actuator in which a metal spring, embedded in the solid electrolyte of a bimorph device, is used as a non-actuating counter plate resulting in a three electrode device capable of both linear and bending motion. Finally, we propose a way to model actuators performance in terms of purely material-dependent parameters instead of geometry-dependent ones.5

  15. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks.

    PubMed

    Chen, Yun; Nielsen, Jens

    2013-12-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid.

  16. ThermoData engine (TDE): software implementation of the dynamic data evaluation concept. 4. Chemical reactions.

    PubMed

    Diky, Vladimir; Chirico, Robert D; Kazakov, Andrei F; Muzny, Chris D; Frenkel, Michael

    2009-12-01

    ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. This paper describes the first application of this concept to the evaluation of thermodynamic properties for chemical reactions. Reaction properties evaluated are the enthalpies, entropies, Gibbs energies, and thermodynamic equilibrium constants. Details of key considerations in the critical evaluation of enthalpies of formation and of standard entropies for organic compounds are discussed in relation to their application in the calculation of reaction properties. Extensions to the class structure of the program are described that allow close linkage between the derived reaction properties and the underlying pure-component properties. Derivation of pure-component enthalpies of formation and of standard entropies through the use of directly measured reaction properties (enthalpies of reaction and equilibrium constants) is described. Directions for future enhancements are outlined.

  17. Band gap engineering in polymers through chemical doping and applied mechanical strain

    NASA Astrophysics Data System (ADS)

    Lanzillo, Nicholas A.; Breneman, Curt M.

    2016-08-01

    We report simulations based on density functional theory and many-body perturbation theory exploring the band gaps of common crystalline polymers including polyethylene, polypropylene and polystyrene. Our reported band gaps of 8.6 eV for single-chain polyethylene and 9.1 eV for bulk crystalline polyethylene are in excellent agreement with experiment. The effects of chemical doping along the polymer backbone and side-groups are explored, and the use mechanical strain as a means to modify the band gaps of these polymers over a range of several eV while leaving the dielectric constant unchanged is discussed. This work highlights some of the opportunities available to engineer the electronic properties of polymers with wide-reaching implications for polymeric dielectric materials used for capacitive energy storage.

  18. Implementation and student perceptions of e-assessment in a Chemical Engineering module

    NASA Astrophysics Data System (ADS)

    Sorensen, Eva

    2013-05-01

    This paper describes work carried out at the Department of Chemical Engineering at UCL into the use of e-assessment in a second year module and, in particular, the student perceptions of this mode of assessment. Three quizzes were implemented in Moodle, the first two as formative assessment and the final quiz as summative assessment. The results were very encouraging and practically all students engaged with the process. An online survey was delivered to all students after the module, which showed that the students felt that e-assessment added value to their learning and they would like to see it implemented in other modules. The quizzes were intended to be mainly beneficial to the weaker students as it gave them an opportunity to go over key aspects of the material in their own time. Interestingly, the stronger students were even more in favour of e-learning than the weaker students, for whom the quizzes were originally designed.

  19. Monitoring of the Physical and Chemical Properties of a Gasoline Engine Oil during Its Usage.

    PubMed

    Rahimi, Behnam; Semnani, Abolfazl; Nezamzadeh-Ejhieh, Alireza; Shakoori Langeroodi, Hamid; Hakim Davood, Massoud

    2012-01-01

    Physicochemical properties of a mineral-based gasoline engine oil have been monitored at 0, 500, 1000, 2000, 3500, 6000, 8500, and 11500 kilometer of operation. Tracing has been performed by inductively coupled plasma and some other techniques. At each series of measurements, the concentrations of twenty four elements as well as physical properties such as: viscosity at 40 and 100°C; viscosity index; flash point; pour point; specific gravity; color; total acid and base numbers; water content have been determined. The results are indicative of the decreasing trend in concentration of additive elements and increasing in concentration for wear elements. Different trends have been observed for various physical properties. The possible reasons for variations in physical and chemical properties have been discussed.

  20. Econophysics and bio-chemical engineering thermodynamics: The exergetic analysis of a municipality

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2016-11-01

    Exergy is a fundamental quantity because it allows us to obtain information on the useful work obtainable in a process. The analyses of irreversibility are important not only in the design and development of the industrial devices, but also in fundamental thermodynamics and in the socio-economic analysis of municipality. Consequently, the link between entropy and exergy is discussed in order to link econophysics to the bio-chemical engineering thermodynamics. Last, this link holds to the fundamental role of fluxes and to the exergy exchanged in the interaction between the system and its environment. The result consists in a thermodynamic approach to the analysis of the unavailability of the economic, productive or social systems. The unavailability is what the system cannot use in relation to its internal processes. This quantity result is interesting also as a support to public manager for economic decisions. Here, the Alessandria Municipality is analyzed in order to highlight the application of the theoretical results.

  1. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties.

    PubMed

    Mueller, Charles J; Cannella, William J; Bays, J Timothy; Bruno, Thomas J; DeFabio, Kathy; Dettman, Heather D; Gieleciak, Rafal M; Huber, Marcia L; Kweon, Chol-Bum; McConnell, Steven S; Pitz, William J; Ratcliff, Matthew A

    2016-02-18

    The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the four surrogate fuels, an approximately 30 L batch was blended, and a number of the physical and chemical properties were measured. This work documents the surrogate-fuel creation process and the results of the property measurements.

  2. Chemical composition of selected core samples, Idaho National Engineering Laboratory, Idaho

    SciTech Connect

    Knobel, L.L.; Cecil, L.D.; Wood, T.R.

    1995-11-01

    This report presents chemical compositions determined from 84 subsamples and 5 quality-assurance split subsamples of basalt core from the eastern Snake River Plain. The 84 subsamples were collected at selected depths from 5 coreholes located on the Idaho National Engineering Laboratory, Idaho. This report was jointly prepared by Lockheed Idaho Technologies Company and the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, Idaho Operations Office. Ten major elements and as many as 32 trace elements were determined for each subsample either by wavelength dispersive X-ray fluorescence spectrometry, inductively coupled plasma mass spectrometry, or by both methods. Descriptive statistics for each element were calculated and tabulated by analytical method for each corehole.

  3. Monitoring of the Physical and Chemical Properties of a Gasoline Engine Oil during Its Usage

    PubMed Central

    Rahimi, Behnam; Semnani, Abolfazl; Nezamzadeh-Ejhieh, Alireza; Shakoori Langeroodi, Hamid; Hakim Davood, Massoud

    2012-01-01

    Physicochemical properties of a mineral-based gasoline engine oil have been monitored at 0, 500, 1000, 2000, 3500, 6000, 8500, and 11500 kilometer of operation. Tracing has been performed by inductively coupled plasma and some other techniques. At each series of measurements, the concentrations of twenty four elements as well as physical properties such as: viscosity at 40 and 100°C; viscosity index; flash point; pour point; specific gravity; color; total acid and base numbers; water content have been determined. The results are indicative of the decreasing trend in concentration of additive elements and increasing in concentration for wear elements. Different trends have been observed for various physical properties. The possible reasons for variations in physical and chemical properties have been discussed. PMID:22567569

  4. Band gap engineering in polymers through chemical doping and applied mechanical strain.

    PubMed

    Lanzillo, Nicholas A; Breneman, Curt M

    2016-08-17

    We report simulations based on density functional theory and many-body perturbation theory exploring the band gaps of common crystalline polymers including polyethylene, polypropylene and polystyrene. Our reported band gaps of 8.6 eV for single-chain polyethylene and 9.1 eV for bulk crystalline polyethylene are in excellent agreement with experiment. The effects of chemical doping along the polymer backbone and side-groups are explored, and the use mechanical strain as a means to modify the band gaps of these polymers over a range of several eV while leaving the dielectric constant unchanged is discussed. This work highlights some of the opportunities available to engineer the electronic properties of polymers with wide-reaching implications for polymeric dielectric materials used for capacitive energy storage.

  5. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties

    PubMed Central

    Mueller, Charles J.; Cannella, William J.; Bays, J. Timothy; Bruno, Thomas J.; DeFabio, Kathy; Dettman, Heather D.; Gieleciak, Rafal M.; Huber, Marcia L.; Kweon, Chol-Bum; McConnell, Steven S.; Pitz, William J.; Ratcliff, Matthew A.

    2016-01-01

    The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the four surrogate fuels, an approximately 30 L batch was blended, and a number of the physical and chemical properties were measured. This work documents the surrogate-fuel creation process and the results of the property measurements. PMID:27330248

  6. Total synthesis approaches to natural product derivatives based on the combination of chemical synthesis and metabolic engineering.

    PubMed

    Kirschning, Andreas; Taft, Florian; Knobloch, Tobias

    2007-10-21

    Secondary metabolites are an extremely diverse and important group of natural products with industrial and biomedical implications. Advances in metabolic engineering of both native and heterologous secondary metabolite producing organisms have allowed the directed synthesis of desired novel products by exploiting their biosynthetic potentials. Metabolic engineering utilises knowledge of cellular metabolism to alter biosynthetic pathways. An important technique that combines chemical synthesis with metabolic engineering is mutasynthesis (mutational biosynthesis; MBS), which advanced from precursor-directed biosynthesis (PDB). Both techniques are based on the cellular uptake of modified biosynthetic intermediates and their incorporation into complex secondary metabolites. Mutasynthesis utilises genetically engineered organisms in conjunction with feeding of chemically modified intermediates. From a synthetic chemist's point of view the concept of mutasynthesis is highly attractive, as the method combines chemical expertise with Nature's synthetic machinery and thus can be exploited to rapidly create small libraries of secondary metabolites. However, in each case, the method has to be critically compared with semi- and total synthesis in terms of practicability and efficiency. Recent developments in metabolic engineering promise to further broaden the scope of outsourcing chemically demanding steps to biological systems.

  7. ChemEngine: harvesting 3D chemical structures of supplementary data from PDF files.

    PubMed

    Karthikeyan, Muthukumarasamy; Vyas, Renu

    2016-01-01

    Digital access to chemical journals resulted in a vast array of molecular information that is now available in the supplementary material files in PDF format. However, extracting this molecular information, generally from a PDF document format is a daunting task. Here we present an approach to harvest 3D molecular data from the supporting information of scientific research articles that are normally available from publisher's resources. In order to demonstrate the feasibility of extracting truly computable molecules from PDF file formats in a fast and efficient manner, we have developed a Java based application, namely ChemEngine. This program recognizes textual patterns from the supplementary data and generates standard molecular structure data (bond matrix, atomic coordinates) that can be subjected to a multitude of computational processes automatically. The methodology has been demonstrated via several case studies on different formats of coordinates data stored in supplementary information files, wherein ChemEngine selectively harvested the atomic coordinates and interpreted them as molecules with high accuracy. The reusability of extracted molecular coordinate data was demonstrated by computing Single Point Energies that were in close agreement with the original computed data provided with the articles. It is envisaged that the methodology will enable large scale conversion of molecular information from supplementary files available in the PDF format into a collection of ready- to- compute molecular data to create an automated workflow for advanced computational processes. Software along with source codes and instructions available at https://sourceforge.net/projects/chemengine/files/?source=navbar.Graphical abstract.

  8. Engineering Rugged Field Assays to Detect Hazardous Chemicals Using Spore-Based Bacterial Biosensors.

    PubMed

    Wynn, Daniel; Deo, Sapna; Daunert, Sylvia

    2017-01-01

    Bacterial whole cell-based biosensors have been genetically engineered to achieve selective and reliable detection of a wide range of hazardous chemicals. Although whole-cell biosensors demonstrate many advantages for field-based detection of target analytes, there are still some challenges that need to be addressed. Most notably, their often modest shelf life and need for special handling and storage make them challenging to use in situations where access to reagents, instrumentation, and expertise are limited. These problems can be circumvented by developing biosensors in Bacillus spores, which can be engineered to address all of these concerns. In its sporulated state, a whole cell-based biosensor has a remarkably long life span and is exceptionally resistant to environmental insult. When these spores are germinated for use in analytical techniques, they show no loss in performance, even after long periods of storage under harsh conditions. In this chapter, we will discuss the development and use of whole cell-based sensors, their adaptation to spore-based biosensors, their current applications, and future directions in the field.

  9. Particle emissions from a marine engine: chemical composition and aromatic emission profiles under various operating conditions.

    PubMed

    Sippula, O; Stengel, B; Sklorz, M; Streibel, T; Rabe, R; Orasche, J; Lintelmann, J; Michalke, B; Abbaszade, G; Radischat, C; Gröger, T; Schnelle-Kreis, J; Harndorf, H; Zimmermann, R

    2014-10-07

    The chemical composition of particulate matter (PM) emissions from a medium-speed four-stroke marine engine, operated on both heavy fuel oil (HFO) and distillate fuel (DF), was studied under various operating conditions. PM emission factors for organic matter, elemental carbon (soot), inorganic species and a variety of organic compounds were determined. In addition, the molecular composition of aromatic organic matter was analyzed using a novel coupling of a thermal-optical carbon analyzer with a resonance-enhanced multiphoton ionization (REMPI) mass spectrometer. The polycyclic aromatic hydrocarbons (PAHs) were predominantly present in an alkylated form, and the composition of the aromatic organic matter in emissions clearly resembled that of fuel. The emissions of species known to be hazardous to health (PAH, Oxy-PAH, N-PAH, transition metals) were significantly higher from HFO than from DF operation, at all engine loads. In contrast, DF usage generated higher elemental carbon emissions than HFO at typical load points (50% and 75%) for marine operation. Thus, according to this study, the sulfur emission regulations that force the usage of low-sulfur distillate fuels will also substantially decrease the emissions of currently unregulated hazardous species. However, the emissions of soot may even increase if the fuel injection system is optimized for HFO operation.

  10. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals.

    PubMed

    Zeldes, Benjamin M; Keller, Matthew W; Loder, Andrew J; Straub, Christopher T; Adams, Michael W W; Kelly, Robert M

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  11. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals

    PubMed Central

    Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.; Straub, Christopher T.; Adams, Michael W. W.; Kelly, Robert M.

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  12. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review

    PubMed Central

    Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R.

    2015-01-01

    The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed. PMID:26109634

  13. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review.

    PubMed

    Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R

    2015-07-06

    The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed.

  14. Surface chemical immobilization of bioactive peptides on synthetic polymers for cardiac tissue engineering.

    PubMed

    Rosellini, Elisabetta; Cristallini, Caterina; Guerra, Giulio D; Barbani, Niccoletta

    2015-01-01

    The aim of this work was the development of new synthetic polymeric systems, functionalized by surface chemical modification with bioactive peptides, for myocardial tissue engineering. Polycaprolactone and a poly(ester-ether-ester) block copolymer synthesized in our lab, polycaprolactone-poly(ethylene oxide)-polycaprolactone (PCL-PEO-PCL), were used as the substrates to be modified. Two pentapeptides, H-Gly-Arg-Gly-Asp-Ser-OH (GRGDS) from fibronectin and H-Tyr-Ile-Gly-Ser-Arg-OH (YIGSR) from laminin, were used for the functionalization. Polymeric membranes were obtained by casting from solutions and then functionalized by means of alkaline hydrolysis and subsequent coupling of the bioactive molecules through 1-(3-dimethylaminopropyl)-3-ethylcarbodimide hydrochloride/N-hydroxysuccinimide chemistry. The hydrolysis conditions, in terms of hydrolysis time, temperature, and sodium hydroxide concentration, were optimized for the two materials. The occurrence of the coupling reaction was demonstrated by infrared spectroscopy, as the presence on the functionalized materials of the absorption peaks typical of the two peptides. The peptide surface density was determined by chromatographic analysis and the distribution was studied by infrared chemical imaging. The results showed a nearly homogeneous peptide distribution, with a density above the minimum value necessary to promote cell adhesion. Preliminary in vitro cell culture studies demonstrated that the introduction of the bioactive molecules had a positive effect on improving C2C12 myoblasts growth on the synthetic materials.

  15. Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering.

    PubMed

    Brüggemann, O

    2001-08-01

    Molecular imprinting is a way of creating polymers bearing artificial receptors. It allows the fabrication of highly selective plastics by polymerizing monomers in the presence of a template. This technique primarily had been developed for the generation of biomimetic materials to be used in chromatographic separation, in extraction approaches and in sensors and assays. Beyond these applications, in the past few years molecular imprinting has become a tool for producing new kinds of catalysts. For catalytic applications, the template must be chosen, so that it is structurally comparable with the transition state (a transition state analogue, TSA) of a reaction, or with the product or substrate. The advantage of using these polymeric catalysts is obvious: the backbone withstands more aggressive conditions than a bio material could ever survive. Results are presented showing the applicability of a molecularly imprinted catalyst in different kinds of chemical reactors. It is demonstrated that the catalysts can be utilized not only in batch but also in continuously driven reactors and that their performance can be improved by means of chemical reaction engineering.

  16. Towards efficient chemical synthesis via engineering enzyme catalysis in biomimetic nanoreactors.

    PubMed

    Liu, Jia; Yang, Qihua; Li, Can

    2015-09-18

    Biocatalysis with immobilized enzymes as catalysts holds enormous promise in developing more efficient and sustainable processes for the synthesis of fine chemicals, chiral pharmaceuticals and biomass feedstocks. Despite the appealing potentials, nowadays the industrial-scale application of biocatalysts is still quite modest in comparison with that of traditional chemical catalysts. A critical issue is that the catalytic performance of enzymes, the sophisticated and vulnerable catalytic machineries, strongly depends on their intracellular working environment; however the working circumstances provided by the support matrix are radically different from those in cells. This often leads to various adverse consequences on enzyme conformation and dynamic properties, consequently decreasing the overall performance of immobilized enzymes with regard to their activity, selectivity and stability. Engineering enzyme catalysis in support nanopores by mimicking the physiological milieu of enzymes in vivo and investigating how the interior microenvironment of nanopores imposes an influence on enzyme behaviors in vitro are of paramount significance to modify and improve the catalytic functions of immobilized enzymes. In this feature article, we have summarized the recent advances in mimicking the working environment and working patterns of intracellular enzymes in nanopores of mesoporous silica-based supports. Especially, we have demonstrated that incorporation of polymers into silica nanopores could be a valuable approach to create the biomimetic microenvironment for enzymes in the immobilized state.

  17. Thermal and Chemical Analyses of Silicone Polymers for Component Engineering Lifetime Assessments

    SciTech Connect

    Balazs, B; Maxwell, R S

    2002-05-14

    Accurate predictions of a polymer component's functional lifetime at best arc tenuous when one has only relatively short term chemical or mechanical property data to extrapolate. We have analyzed a series of silica-filled siloxanes to determine the chemical and microstructural signatures of aging, and we are incorporating these data into rational methodologies for assessing a component's lifetime measured against as-designed engineering properties. We are monitoring changes in mechanical properties, crystallization kinetics, cross-link density changes, and motional dynamics with a variety of analysis methods: Modulated DSC, Dynamic Mechanical Analysis, and Solid-state Nuclear Magnetic Resonance. Previous work has shown that the addition of phenyl side groups to polydimethylsiloxane (PDMS) polymer chains reduces the rate and extent of crystallization of the co-polymer compared to that of pure PDMS. Crystallization has been observed in copolymer systems up to 6.5 mol % phenyl composition by DSC and up to 8 mol % phenyl by XRD. The PDMS-PDPS-silica composite materials studied here are silica reinforced random block copolymers consisting of dimethyl and diphenyl monomer units with 11.2 mol. % polydiphenylsiloxane. Based on this previous work, it is not expected that this material would exhibit crystallization in the polymer network; however, these silicones do, in fact, exhibit crystallization phenomena. This report focuses primarily on our efforts to assess the information content of the crystallization phenomena with respect to aging signatures and mechanisms that may be limiting the functional lifetime of the composite materials.

  18. Acceptance Test Plan.

    DTIC Science & Technology

    2014-09-26

    7 RD-Ai507 154 CCEPTANCE TEST PLN(U) WESTINGHOUSE DEFENSE ND i/i ELECTRO ICS CENTER BALTIMORE MD DEVELOPMENT AND OPERATIONS DIY D C KRRiJS 28 JUN...Ln ACCEPTANCE TEST PLAN FOR SPECIAL RELIABILITY TESTS FOR BROADBAND MICROWAVE AMPLIFIER PANEL David C. Kraus, Reliability Engineer WESTINGHOUSE ...ORGANIZATION b. OFFICE SYMBOL 7g& NAME OF MONITORING ORGANIZATION tIf appdeg ble) WESTINGHOUSE ELECTRIC CORP. - NAVAL RESEARCH LABORATORY e. AOORES$ (Ci7t

  19. Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors

    SciTech Connect

    Blanquart, G.; Pepiot-Desjardins, P.; Pitsch, H.

    2009-03-15

    This article presents a chemical mechanism for the high temperature combustion of a wide range of hydrocarbon fuels ranging from methane to iso-octane. The emphasis is placed on developing an accurate model for the formation of soot precursors for realistic fuel surrogates for premixed and diffusion flames. Species like acetylene (C{sub 2}H{sub 2}), propyne (C{sub 3}H{sub 4}), propene (C{sub 3}H{sub 6}), and butadiene (C{sub 4}H{sub 6}) play a major role in the formation of soot as their decomposition leads to the production of radicals involved in the formation of Polycyclic Aromatic Hydrocarbons (PAH) and the further growth of soot particles. A chemical kinetic mechanism is developed to represent the combustion of these molecules and is validated against a series of experimental data sets including laminar burning velocities and ignition delay times. To correctly predict the formation of soot precursors from the combustion of engine relevant fuels, additional species should be considered. One normal alkane (n-heptane), one ramified alkane (iso-octane), and two aromatics (benzene and toluene) were chosen as chemical species representative of the components typically found in these fuels. A sub-mechanism for the combustion of these four species has been added, and the full mechanism has been further validated. Finally, the mechanism is supplemented with a sub-mechanism for the formation of larger PAH molecules up to cyclo[cd]pyrene. Laminar premixed and counterflow diffusion flames are simulated to assess the ability of the mechanism to predict the formation of soot precursors in flames. The final mechanism contains 149 species and 1651 reactions (forward and backward reactions counted separately). The mechanism is available with thermodynamic and transport properties as supplemental material. (author)

  20. GEOSAT Follow-On (GFO) Altimeter Document Series, Volume 8: GFO Altimeter Engineering Assessment Report Update:The First 109 Cycles Since Acceptance November 29, 2000 to December 26, 2005. Version 1, Volume 8

    NASA Technical Reports Server (NTRS)

    Conger, A. M.; Hancock, D. W., III; Hayne, G. S.; Brooks, R. L.

    2006-01-01

    The purpose of this document is to present and document GFO performance analyses and results. This is the fifth Assessment Report since the initial report. This report extends the performance assessment since acceptance to 26 December 2005. The initial GFO Altimeter Engineering Assessment Report, March 2001 (NASA/TM-2001-209984/Ver.1/Vol.1) covered the GFO performance from Launch to Acceptance (10 February 1998 to 29 November 2000). The second of the series covered the performance from Acceptance to the end of Cycle 20 (29 November 2000 to 21 November 2001). The third of the series covered the performance from Acceptance to the end of Cycle 42 (29 November 2000 to 30 November 2002). The fourth of the series covered the performance from Acceptance to the end of Cycle 64 (29 November 2000 to 17 December 2003). The fifth of the series covered performance from Acceptance to the end of Cycle 86 (29 November 2000 to 17 December 2004). Since launch, we have performed a variety of GFO performance studies; an accumulative index of those studies is provided in Appendix A.

  1. Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement

    NASA Astrophysics Data System (ADS)

    Srinivas, Niranjan

    Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry. In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive. Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for

  2. Converting STEM Doctoral Dissertations into Patent Applications: A Study of Chemistry, Physics, Mathematics, and Chemical Engineering Dissertations from CIC Institutions

    ERIC Educational Resources Information Center

    Butkovich, Nancy J.

    2015-01-01

    Doctoral candidates may request short-term embargoes on the release of their dissertations in order to apply for patents. This study examines how often inventions described in dissertations in chemical engineering, chemistry, physics, and mathematics are converted into U.S. patent applications, as well as the relationship between dissertation…

  3. Specific and Optional Curriculum: An Experience in the Undergraduate Program of Chemical Engineering in Cienfuegos University, Cuba

    ERIC Educational Resources Information Center

    Martínez, Yolanda García; Velázquez, Claudia Alvarado; Castillo, Rolando Delgado

    2016-01-01

    This paper pursues to define the pillars for designing the specific (SC) and optional curricula (OC) of Unit Operations and Processes (UOP) Discipline in the Chemical Engineering Program. To achieve this objective a methodology was developed, which was characterized by the participation of every member in the educational process: professors,…

  4. Distributive Learning in Introductory Chemical Engineering: University Students' Learning, Motivation, and Attitudes Using a CD-ROM

    ERIC Educational Resources Information Center

    Greene, Barbara A.; Dillon, Connie; Crynes, Billy

    2003-01-01

    This article reports a study in which student performance and approaches to study in a CD-ROM version of a chemical engineering course were examined. The study consists of three phases. The purpose of phase 1 was to evaluate of the efficacy of CD-ROM for this content and student population. Therefore, we compared the performance of students who…

  5. Integrating Environmental Management in Chemical Engineering Education by Introducing an Environmental Management System in the Student's Laboratory

    ERIC Educational Resources Information Center

    Montanes, Maria T.; Palomares, Antonio E.

    2008-01-01

    In this work we show how specific challenges related to sustainable development can be integrated into chemical engineering education by introducing an environmental management system in the laboratory where the students perform their experimental lessons. It is shown how the system has been developed and implemented in the laboratory, what role…

  6. Integrating Academic and Mentoring Support for the Development of First-Year Chemical Engineering Students in Hong Kong

    ERIC Educational Resources Information Center

    Ko, Edmond I.; Chau, Ying

    2010-01-01

    An academic and professional development course has been introduced to help first-year chemical engineering students to deal proactively with the transition from secondary school to university and to develop professional skills. The course uses the Myers-Briggs Type Indicator (MBTI) as a personality model to facilitate skills development and many…

  7. Pilot-Scale Laboratory Instruction for Chemical Engineering: The Specific Case of the Pilot-Unit Leading Group

    ERIC Educational Resources Information Center

    Billet, Anne-Marie; Camy, Severine; Coufort-Saudejaud, Carole

    2010-01-01

    This paper presents an original approach for Chemical Engineering laboratory teaching that is currently applied at INP-ENSIACET (France). This approach, referred to as "pilot-unit leading group" is based on a partial management of the laboratories by the students themselves who become temporarily in charge of one specific laboratory. In…

  8. A Survey of the Role of Thermodynamics and Transport Properties in Chemical Engineering University Education in Europe and the USA

    ERIC Educational Resources Information Center

    Ahlstrom, Peter; Aim, Karel; Dohrn, Ralf; Elliott, J. Richard; Jackson, George; Jaubert, Jean-Noel; Macedo, Eugenia A.; Pokki, Juha-Pekka; Reczey, Kati; Victorov, Alexey; Zilnik, Ljudmila Fele; Economou, Ioannis G.

    2010-01-01

    A survey on the teaching of thermodynamics and transport phenomena in chemical engineering curricula in European and US Universities was performed and results are presented here. Overall, 136 universities and colleges responded to the survey, out of which 81 from Europe and 55 from the USA. In most of the institutions responding at least two…

  9. Pressure for Fun: A Course Module for Increasing Chemical Engineering Students' Excitement and Interest in Mechanical Parts

    ERIC Educational Resources Information Center

    Scarbrough, Will J.; Case, Jennifer M.

    2006-01-01

    A new module in a first year mechanical drawing course was designed with the primary goal of exciting chemical engineering students about mechanical things. Other goals included increasing student ability and confidence to explain how things work. A variety of high intensity, hands-on, facilitated group activities using pumps and valves were…

  10. The Navy/NASA Engine Program (NNEP89): Interfacing the program for the calculation of complex Chemical Equilibrium Compositions (CEC)

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford

    1991-01-01

    The NNEP is a general computer program for calculating aircraft engine performance. NNEP has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, however, there has been increased interest in applications for which NNEP is not capable of simulating, such as the use of alternate fuels including cryogenic fuels and the inclusion of chemical dissociation effects at high temperatures. To overcome these limitations, NNEP was extended by including a general chemical equilibrium method. This permits consideration of any propellant system and the calculation of performance with dissociation effects. The new extended program is referred to as NNEP89.

  11. Macedonian journal of chemistry and chemical engineering: open journal systems--editor's perspective.

    PubMed

    Zdravkovski, Zoran

    2014-01-01

    The development and availability of personal computers and software as well as printing techniques in the last twenty years have made a profound change in the publication of scientific journals. Additionally, the Internet in the last decade has revolutionized the publication process to the point of changing the basic paradigm of printed journals. The Macedonian Journal of Chemistry and Chemical Engineering in its 40-year history has adopted and adapted to all these transformations. In order to keep up with the inevitable changes, as editor-in-chief I felt my responsibility was to introduce an electronic editorial managing of the journal. The choice was between commercial and open source platforms, and because of the limited funding of the journal we chose the latter. We decided on Open Journal Systems, which provided online submission and management of all content, had flexible configuration--requirements, sections, review process, etc., had options for comprehensive indexing, offered various reading tools, had email notification and commenting ability for readers, had an option for thesis abstracts and was installed locally. However, since there is limited support it requires a moderate computer knowledge/skills and effort in order to set up. Overall, it is an excellent editorial platform and a convenient solution for journals with a low budget or journals that do not want to spend their resources on commercial platforms or simply support the idea of open source software.

  12. Terminal alkenes as versatile chemical reporter groups for metabolic oligosaccharide engineering.

    PubMed

    Späte, Anne-Katrin; Schart, Verena F; Schöllkopf, Sophie; Niederwieser, Andrea; Wittmann, Valentin

    2014-12-08

    The Diels-Alder reaction with inverse electron demand (DAinv reaction) of 1,2,4,5-tetrazines with electron rich or strained alkenes was proven to be a bioorthogonal ligation reaction that proceeds fast and with high yields. An important application of the DAinv reaction is metabolic oligosaccharide engineering (MOE) which allows the visualization of glycoconjugates in living cells. In this approach, a sugar derivative bearing a chemical reporter group is metabolically incorporated into cellular glycoconjugates and subsequently derivatized with a probe by means of a bioorthogonal ligation reaction. Here, we investigated a series of new mannosamine and glucosamine derivatives with carbamate-linked side chains of varying length terminated by alkene groups and their suitability for labeling cell-surface glycans. Kinetic investigations showed that the reactivity of the alkenes in DAinv reactions increases with growing chain length. When applied to MOE, one of the compounds, peracetylated N-butenyloxycarbonylmannosamine, was especially well suited for labeling cell-surface glycans. Obviously, the length of its side chain represents the optimal balance between incorporation efficiency and speed of the labeling reaction. Sialidase treatment of the cells before the bioorthogonal labeling reaction showed that this sugar derivative is attached to the glycans in form of the corresponding sialic acid derivative and not epimerized to another hexosamine derivative to a considerable extent.

  13. Manipulation of Optoelectronic Properties and Band Structure Engineering of Ultrathin Te Nanowires by Chemical Adsorption.

    PubMed

    Roy, Ahin; Amin, Kazi Rafsanjani; Tripathi, Shalini; Biswas, Sangram; Singh, Abhishek K; Bid, Aveek; Ravishankar, N

    2017-01-13

    Band structure engineering is a powerful technique both for the design of new semiconductor materials and for imparting new functionalities to existing ones. In this article, we present a novel and versatile technique to achieve this by surface adsorption on low dimensional systems. As a specific example, we demonstrate, through detailed experiments and ab initio simulations, the controlled modification of band structure in ultrathin Te nanowires due to NO2 adsorption. Measurements of the temperature dependence of resistivity of single ultrathin Te nanowire field-effect transistor (FET) devices exposed to increasing amounts of NO2 reveal a gradual transition from a semiconducting to a metallic state. Gradual quenching of vibrational Raman modes of Te with increasing concentration of NO2 supports the appearance of a metallic state in NO2 adsorbed Te. Ab initio simulations attribute these observations to the appearance of midgap states in NO2 adsorbed Te nanowires. Our results provide fundamental insights into the effects of ambient on the electronic structures of low-dimensional materials and can be exploited for designing novel chemical sensors.

  14. Materials Engineering and Scale Up of Fluid Phase Chemical Hydrogen Storage for Automotive Applications

    SciTech Connect

    Westman, Matthew P.; Chun, Jaehun; Choi, Young Joon; Ronnebro, Ewa

    2016-01-25

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high hydrogen content of 14-16 wt% below 200°C and high volumetric density. In our previous paper, we selected AB in silicone oil as a role model for a slurry hydrogen storage system. Materials engineering properties were optimized by increasing solid loading by using an ultra-sonic process. In this paper, we proceeded to scale up to liter size batches with solid loadings up to 50 wt% (8 wt% H2) with dynamic viscosities less than 1000cP at 25°C. The use of a non-ionic surfactant, Triton X-15, shows significant promise in controlling the level of foaming produced during the thermal dehydrogenation of the AB. Through the development of new and efficient processing techniques and the ability to adequately control the foaming, stable homogenous slurries of high solid loading have been demonstrated as a viable hydrogen delivery source.

  15. Adsorption laboratory experiment for undergraduate chemical engineering: Introducing kinetic, equilibrium and thermodynamic concepts

    NASA Astrophysics Data System (ADS)

    Muryanto, S.; Djatmiko Hadi, S.

    2016-11-01

    Adsorption laboratory experiment for undergraduate chemical engineering program is discussed. The experiment demonstrated adsorption of copper ions commonly found in wastewater using bio-sorbent, i.e. agricultural wastes. The adsorption was performed in a batch mode under various parameters: adsorption time (up to 120 min), initial pH (2 to 6), adsorbent dose (2.0 to 12.0 g L-1), adsorbent size (50 to 170 mesh), initial Cu2+ concentration (25 to 100 ppm) and temperatures (room temp to 40°C). The equilibrium and kinetic data of the experiments were calculated using the two commonly used isotherms: Langmuir and Lagergren pseudo-first-order kinetics. The maximum adsorption capacity for Cu2+ was found as 94.34 mg g-1. Thermodynamically, the adsorption process was spontaneous and endothermic. The calculated activation energy for the adsorption was observed as high as 127.94 kJ mol-1. Pedagogically, the experiment was assumed to be important in increasing student understanding of kinetic, equilibrium and thermodynamic concepts.

  16. Chemical and engineering properties of fired bricks containing 50 weight percent of class F fly ash

    USGS Publications Warehouse

    Chou, I.-Ming; Patel, V.; Laird, C.J.; Ho, K.K.

    2001-01-01

    The generation of fly ash during coal combustion represents a considerable solid waste disposal problem in the state of Illinois and nationwide. In fact, the majority of the three million tons of fly ash produced from burning Illinois bituminous coals is disposed of in landfills. The purpose of this study was to obtain a preliminary assessment of the technical feasibility of mitigating this solid waste problem by making fired bricks with the large volume of fly ash generated from burning Illinois coals. Test bricks were produced by the extrusion method with increasing amounts (20-50% by weight) of fly ash as a replacement for conventional raw materials. The chemical characteristics and engineering properties of the test bricks produced with and without 50 wt% of fly ash substitutions were analyzed and compared. The properties of the test bricks containing fly ash were at least comparable to, if not better than, those of standard test bricks made without fly ash and met the commercial specifications for fired bricks. The positive results of this study suggest that further study on test bricks with fly ash substitutions of greater than 50wt% is warranted. Successful results could have an important impact in reducing the waste disposal problem related to class F fly ash while providing the brick industry with a new low cost raw material. Copyright ?? 2001 Taylor & Francis.

  17. Load-Dependent Emission Factors and Chemical Characteristics of IVOCs from a Medium-Duty Diesel Engine.

    PubMed

    Cross, Eben S; Sappok, Alexander G; Wong, Victor W; Kroll, Jesse H

    2015-11-17

    A detailed understanding of the climate and air quality impacts of mobile-source emissions requires the characterization of intermediate-volatility organic compounds (IVOCs), relatively-low-vapor-pressure gas-phase species that may generate secondary organic aerosol with high yields. Due to challenges associated with IVOC detection and quantification, IVOC emissions remain poorly understood at present. Here, we describe measurements of the magnitude and composition of IVOC emissions from a medium-duty diesel engine. Measurements are made on an engine dynamometer and utilize a new mass-spectrometric instrument to characterize the load dependence of the emissions in near-real-time. Results from steady-state engine operation indicate that IVOC emissions are highly dependent on engine power, with highest emissions at engine idle and low-load operation (≤25% maximum rated power) with a chemical composition dominated by saturated hydrocarbon species. Results suggest that unburned fuel components are the dominant IVOCs emitted at low loads. As engine load increases, IVOC emissions decline rapidly and become increasingly characterized by unsaturated hydrocarbons and oxygenated organics, newly formed from incomplete combustion processes at elevated engine temperatures and pressures. Engine transients, including a cold-start ignition and engine acceleration, show IVOC emission profiles that are different in amount or composition compared to steady-state combustion, underscoring the utility of characterizing IVOC emissions with high time resolution across realistic engine operating conditions. We find possible evidence for IVOC losses on unheated dilution and sampling surfaces, which need to be carefully accounted for in IVOC emission studies.

  18. Chemical Engineering of Enzymes: Altered Catalytic Activity, Predictable Selectivity and Exceptional Stability of the Semisynthetic Peroxidase Seleno-Subtilisin

    NASA Astrophysics Data System (ADS)

    Häring, Dietmar; Schreier, Peter

    The increasing demand for enzymes as highly selective, mild, and environmentally benign catalysts is often limited by the lack of an enzyme with the desired catalytic activity or substrate selectivity and by their instability in biotechnological processes. The previous answers to these problems comprised genetically engineered enzymes and several classes of enzyme mimics. Here we describe the potential of chemical enzyme engineering: native enzymes can be modified by merely chemical means and basic equipment yielding so-called semisynthetic enzymes. Thus, the high substrate selectivity of the enzymatic peptide framework is combined with the catalytic versatility of a synthetic active site. We illustrate the potential of chemically engineered enzymes with the conception of the semisynthetic peroxidase seleno-subtilisin. First, the serine endoprotease subtilisin was crystallized and cross-linked with glutaraldehyde to give cross-linked enzyme crystals which were found to be insoluble in water or organic solvents and highly stable. Second, serine 221 in the active site (Enz-OH) was chemically converted into an oxidized derivative of selenocystein (Enz-SeO2H). As a consequence, the former proteolytic enzyme gained peroxidase activity and catalyzed the selective reduction of hydroperoxides. Due to the identical binding sites of the semisynthetic peroxidase and the protease, the substrate selectivity of seleno-subtilisin was predictable in view of the well-known selectivity of subtilisin.

  19. Introducing the Regulatory Process into the Chemical Engineering Curriculum: A Painless Method.

    ERIC Educational Resources Information Center

    King, Franklin G.; Chawla, Ramesh C.

    1984-01-01

    The Educating Prospective Engineers for Public Policy project is designed to provide future engineers with tools to contribute professionally to resolving technically intensive public policy issues. Describes the project, focusing on: Washington Internship for Students of Engineering, development of case studies, and regional faculty workshops to…

  20. Solar-to-chemical and solar-to-fuel production from CO2 by metabolically engineered microorganisms.

    PubMed

    Woo, Han Min

    2017-01-11

    Recent development of carbon capture utilization (CCU) for reduction of greenhouse gas emission are reviewed. In the case of CO2 utilization, I describe development of solar-to-chemical and solar-to-fuel technology that refers to the use of solar energy to convert CO2 to desired chemicals and fuels. Photoautotrophic cyanobacterial platforms have been extensively developed on this principle, producing a diverse range of alcohols, organic acids, and isoprenoids directly from CO2. Recent breakthroughs in the metabolic engineering of cyanobacteria were reviewed. In addition, adoption of the light harvesting mechanisms from nature, photovoltaics-derived water splitting technologies have recently been integrated with microbial biotechnology to produce desired chemicals. Studies on the integration of electrode material with next-generation microbes are showcased for alternative solar-to-chemical and solar-to-fuel platforms.

  1. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications.

    PubMed

    Sokolov, Anatoliy N; Tee, Benjamin C-K; Bettinger, Christopher J; Tok, Jeffrey B-H; Bao, Zhenan

    2012-03-20

    Skin is the body's largest organ and is responsible for the transduction of a vast amount of information. This conformable material simultaneously collects signals from external stimuli that translate into information such as pressure, pain, and temperature. The development of an electronic material, inspired by the complexity of this organ is a tremendous, unrealized engineering challenge. However, the advent of carbon-based electronics may offer a potential solution to this long-standing problem. In this Account, we describe the use of an organic field-effect transistor (OFET) architecture to transduce mechanical and chemical stimuli into electrical signals. In developing this mimic of human skin, we thought of the sensory elements of the OFET as analogous to the various layers and constituents of skin. In this fashion, each layer of the OFET can be optimized to carry out a specific recognition function. The separation of multimodal sensing among the components of the OFET may be considered a "divide and conquer" approach, where the electronic skin (e-skin) can take advantage of the optimized chemistry and materials properties of each layer. This design of a novel microstructured gate dielectric has led to unprecedented sensitivity for tactile pressure events. Typically, pressure-sensitive components within electronic configurations have suffered from a lack of sensitivity or long mechanical relaxation times often associated with elastomeric materials. Within our method, these components are directly compatible with OFETs and have achieved the highest reported sensitivity to date. Moreover, the tactile sensors operate on a time scale comparable with human skin, making them ideal candidates for integration as synthetic skin devices. The methodology is compatible with large-scale fabrication and employs simple, commercially available elastomers. The design of materials within the semiconductor layer has led to the incorporation of selectivity and sensitivity within

  2. Acceptance speech.

    PubMed

    Yusuf, C K

    1994-01-01

    I am proud and honored to accept this award on behalf of the Government of Bangladesh, and the millions of Bangladeshi children saved by oral rehydration solution. The Government of Bangladesh is grateful for this recognition of its commitment to international health and population research and cost-effective health care for all. The Government of Bangladesh has already made remarkable strides forward in the health and population sector, and this was recognized in UNICEF's 1993 "State of the World's Children". The national contraceptive prevalence rate, at 40%, is higher than that of many developed countries. It is appropriate that Bangladesh, where ORS was discovered, has the largest ORS production capacity in the world. It was remarkable that after the devastating cyclone in 1991, the country was able to produce enough ORS to meet the needs and remain self-sufficient. Similarly, Bangladesh has one of the most effective, flexible and efficient control of diarrheal disease and epidemic response program in the world. Through the country, doctors have been trained in diarrheal disease management, and stores of ORS are maintained ready for any outbreak. Despite grim predictions after the 1991 cyclone and the 1993 floods, relatively few people died from diarrheal disease. This is indicative of the strength of the national program. I want to take this opportunity to acknowledge the contribution of ICDDR, B and the important role it plays in supporting the Government's efforts in the health and population sector. The partnership between the Government of Bangladesh and ICDDR, B has already borne great fruit, and I hope and believe that it will continue to do so for many years in the future. Thank you.

  3. Detection of hormone active chemicals using genetically engineered yeast cells and microfluidic devices with interdigitated array electrodes.

    PubMed

    Ino, Kosuke; Kitagawa, Yusuke; Watanabe, Tsuyoshi; Shiku, Hitoshi; Koide, Masahiro; Itayama, Tomoaki; Yasukawa, Tomoyuki; Matsue, Tomokazu

    2009-10-01

    Endocrine disruptors that act like hormones in the endocrine system might have toxic effects. Therefore, it is important to develop a portable device that can detect hormone active chemicals in samples rapidly and easily. In this study, a microfluidic device was developed for the detection of hormone active chemicals using genetically engineered yeast cells. The yeast cells were used as biosensors since they were genetically engineered to respond to the presence of hormone active chemicals by synthesizing beta-galactosidase (beta-gal). For achieving further sensitivity, we incorporated interdigitated array (IDA) electrodes (width, 1.2 microm; gap, 0.8 microm) with 40 electrode fingers into the analytical chamber of the microfluidic device. The yeast cells precultured with a hormone active chemical, 17beta-estradiol (E2), were trapped from the main channel of the device to the analytical camber by electrophoresis. After trapping in the analytical chamber, we performed electrochemical detection of beta-gal induced in the yeast cells with the IDA electrodes. Actually, electrochemical detection was performed on p-aminophenol that was converted from p-aminophenyl-beta-D-galactopyranoside with beta-gal. The electrochemical signals from the yeast cells precultured with 17beta-estradiol were successfully detected with the device. Furthermore, the inhibitory effects of antagonists such as tamoxifen were also detected electrochemically by using the device. Thus, the present microfluidic device can be used for highly sensitive detection of hormone active chemicals.

  4. Polarity engineering of conjugated polymers by variation of chemical linkages connecting conjugated backbones.

    PubMed

    Yun, Hui-Jun; Choi, Hyun Ho; Kwon, Soon-Ki; Kim, Yun-Hi; Cho, Kilwon

    2015-03-18

    The fine tuning of the dominant polarity in polymer semiconductors is a key issue for high-performance organic complementary circuits. In this paper, we demonstrate a new methodology for addressing this issue in terms of molecular design. In an alternating conjugated donor-acceptor copolymer system, we systematically engineered the chemical linkages that connect the aromatic units in donor moieties. Three donor moieties, thiophene-vinylene-thiophene (TVT), thiophene-acetylene-thiophene (TAT), and thiophene-cyanovinylene-thiophene (TCNT), were combined with an acceptor moiety, thienoisoindigo (TIID), and finally, three novel TIID-based copolymers were synthesized: PTIID-TVT, PTIID-TAT, and PTIID-TCNT. We found that the vinylene, acetylene, and cyanovinylene linkages decisively affect the energy structure, molecular orbital delocalization, microstructure, and, most importantly, the dominant polarity of the polymers. The vinylene-linked PTIID-TVT field-effect transistors (FETs) exhibited intrinsic hole and electron mobilities of 0.12 and 1.5 × 10(-3) cm(2) V(-1 )s(-1), respectively. By contrast, the acetylene-linked PTIID-TAT FETs exhibited significantly improved intrinsic hole and electron mobilities of 0.38 and 0.03 cm(2) V(-1) s(-1), respectively. Interestingly, cyanovinylene-linked PTIID-TCNT FETs exhibited reverse polarity, with hole and electron mobilities of 0.07 and 0.19 cm(2) V(-1) s(-1). As a result, the polarity balance, which is quantified as the electron/hole mobility ratio, was dramatically tuned from 0.01 to 2.7. Our finding demonstrates a new methodology for the molecular design of high-performance organic complementary circuits.

  5. Multi-criteria optimisation problems for chemical engineering systems and algorithms for their solution based on fuzzy mathematical methods.

    PubMed

    Orazbayev, B B; Orazbayeva, K N; Kurmangaziyeva, L T; Makhatova, V E

    2015-01-01

    Mathematical equations for the multi-criteria task of the optimisation of chemical engineering systems, for example for the optimisation of working regimes for industrial installations for benzene production, have been formulated and developed, and based on fuzzy mathematical methods, algorithms for their solution have been developed. Since the chemical engineering system, which is being researched, is characterised by multiple criteria and often functions in conditions of uncertainty, the presenting problem is formulated in the form of multi-criteria equations for fuzzy mathematical programming. New mathematical formulations for the problems being solved in a fuzzy environment and heuristic algorithms for their solution have been developed by the modification of various optimisation principles based on fuzzy mathematical methods.

  6. Protein-based biorefining: metabolic engineering for production of chemicals and fuel with regeneration of nitrogen fertilizers.

    PubMed

    Wernick, David G; Liao, James C

    2013-02-01

    Threats to stable oil supplies and concerns over environmental emissions have pushed for renewable biofuel developments to minimize dependence on fossil resources. Recent biofuel progress has moved towards fossil resource-independent carbon cycles, but environmental issues regarding use of nitrogen fertilizers have not been addressed on a global scale. The recently demonstrated conversion of waste protein biomass into advanced biofuels and renewable chemicals, while recycling nitrogen fertilizers, offers a glimpse of the efforts needed to balance the nitrogen cycle at scale. In general, the catabolism of protein into biofuels is challenging because of physiological regulation and thermodynamic limitations. This conversion became possible with metabolic engineering around ammonia assimilation, intracellular nitrogen flux, and quorum sensing. This review highlights the metabolic engineering solutions in transforming those cellular processes into driving forces for the high yield of chemical products from protein.

  7. Multi-criteria optimisation problems for chemical engineering systems and algorithms for their solution based on fuzzy mathematical methods

    PubMed Central

    Orazbayev, B. B.; Orazbayeva, K. N.; Kurmangaziyeva, L. T.; Makhatova, V.E.

    2015-01-01

    Mathematical equations for the multi-criteria task of the optimisation of chemical engineering systems, for example for the optimisation of working regimes for industrial installations for benzene production, have been formulated and developed, and based on fuzzy mathematical methods, algorithms for their solution have been developed. Since the chemical engineering system, which is being researched, is characterised by multiple criteria and often functions in conditions of uncertainty, the presenting problem is formulated in the form of multi-criteria equations for fuzzy mathematical programming. New mathematical formulations for the problems being solved in a fuzzy environment and heuristic algorithms for their solution have been developed by the modification of various optimisation principles based on fuzzy mathematical methods. PMID:28275318

  8. Physical and chemical properties of the products of in situ vitrification engineering tests 5, 6, and 7

    SciTech Connect

    Loehr, C.A.; Weidner, J.R.

    1991-12-01

    In situ vitrification (ISV) is an in situ thermal treatment process that is being investigated by the Idaho National Engineering Laboratory (INEL) for application to buried waste sites. ISV is a thermal treatment process that converts contaminated soil into a chemically inert and stable glass and crystalline product. The INEL is evaluating whether the treatment process is a viable one for remediating a buried mixed transuranic waste site at the INEL Subsurface Disposal Area (SDA). The SDA is a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site. As part of the INEL investigation, a series of tests have been performed that address issues associated with vitrification of buried waste. Two pilot ISV tests and four tests at laboratory scale, formerly called engineering scale, were performed in 1990 to support the INEL investigation. The chemical composition and leaching of the produce glass is described.

  9. Emissions from diesel versus biodiesel fuel used in a CRDI SUV engine: PM mass and chemical composition.

    PubMed

    Gangwar, Jitendra; Gupta, Tarun; Gupta, Sudhir; Agarwal, Avinash K

    2011-07-01

    The diesel tailpipe emissions typically undergo substantial physical and chemical transformations while traveling through the tailpipe, which tend to modify the original characteristics of the diesel exhaust. Most of the health-related attention for diesel exhaust has focused on the carcinogenic potential of inhaled exhaust components, particularly the highly respirable diesel particulate matter (DPM). In the current study, parametric investigations were made using a modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at constant engine speed (2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from karanja oil. A partial flow dilution tunnel was employed to measure the mass of the primary particulates from diesel and biodiesel blend on a 47-mm quartz substrate. This was followed by chemical analysis of the particulates collected on the substrate for benzene-soluble organic fraction (BSOF) (marker of toxicity). BSOF results showed decrease in its level with increasing engine load for both diesel and biodiesel. In addition, real-time measurements for organic carbon/elemental carbon (OC/EC), and polycyclic aromatic hydrocarbons (PAHs) (marker of toxicity) were carried out on the diluted primary exhaust coming out of the partial flow dilution tunnel. PAH concentrations were found to be the maximum at 20% rated engine load for both the fuels. The collected particulates from diesel and biodiesel-blend exhaust were also analyzed for concentration of trace metals (marker of toxicity), which revealed some interesting results.

  10. Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine diesel engine at various load conditions.

    PubMed

    Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F

    2010-05-15

    Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions.

  11. Chemical analysis of diesel engine nanoparticles using a nano-DMA/thermal desorption particle beam mass spectrometer.

    PubMed

    Tobias, H J; Beving, D E; Ziemann, P J; Sakurai, H; Zuk, M; McMurry, P H; Zarling, D; Waytulonis, R; Kittelson, D B

    2001-06-01

    Diesel engines are known to emit high number concentrations of nanoparticles (diameter < 50 nm), but the physical and chemical mechanisms by which they form are not understood. Information on chemical composition is lacking because the small size, low mass concentration, and potential for contamination of samples obtained by standard techniques make nanoparticles difficult to analyze. A nano-differential mobility analyzer was used to size-select nanoparticles (mass median diameter approximately 25-60 nm) from diesel engine exhaust for subsequent chemical analysis by thermal desorption particle beam mass spectrometry. Mass spectra were used to identify and quantify nanoparticle components, and compound molecular weights and vapor pressures were estimated from calibrated desorption temperatures. Branched alkanes and alkyl-substituted cycloalkanes from unburned fuel and/or lubricating oil appear to contribute most of the diesel nanoparticle mass. The volatility of the organic fraction of the aerosol increases as the engine load decreases and as particle size increases. Sulfuric acid was also detected at estimated concentrations of a few percent of the total nanoparticle mass. The results are consistent with a mechanism of nanoparticle formation involving nucleation of sulfuric acid and water, followed by particle growth by condensation of organic species.

  12. Vicher: A Virtual Reality Based Educational Module for Chemical Reaction Engineering.

    ERIC Educational Resources Information Center

    Bell, John T.; Fogler, H. Scott

    1996-01-01

    A virtual reality application for undergraduate chemical kinetics and reactor design education, Vicher (Virtual Chemical Reaction Model) was originally designed to simulate a portion of a modern chemical plant. Vicher now consists of two programs: Vicher I that models catalyst deactivation and Vicher II that models nonisothermal effects in…

  13. Effects of ionizing irradiation and hydrostatic pressure on Escherichia coli O157:H7 inactivation, chemical composition, and sensory acceptability of ground beef patties.

    PubMed

    Schilling, M W; Yoon, Y; Tokarskyy, O; Pham, A J; Williams, R C; Marshall, D L

    2009-04-01

    A randomized complete block design with three replications was utilized to determine the effects of ionizing irradiation and hydrostatic pressure on the inactivation of Escherichia coli O157:H7, volatile composition, and consumer acceptability (n=155) of frozen ground beef patties. E-beam and X-ray irradiation (2kGy) inactivated E. coli O157:H7 below the limit of detection, while hydrostatic pressure treatment (300mPa for 5min at 4°C) did not inactivate this pathogen. Solid-phase microextraction (SPME) was used to extract volatile compounds from treated ground beef patties. Irradiation and hydrostatic pressure altered the volatile composition (P<0.05) of the ground beef patties in respect to radiolytic products. However, results were inconclusive on whether these differences were great enough to use this method to differentiate between irradiated and non-irradiated samples in a commercial setting. Irradiation did not affect (P>0.05) consumer acceptability of ground beef patties when compared to untreated samples, but hydrostatic pressure caused decreased acceptability (P<0.05) when compared to other treatments.

  14. Development of a Systems Engineering Model of the Chemical Separations Process

    SciTech Connect

    Sun, Lijian; Li, Jianhong; Chen, Yitung; Clarksean, Randy; Ladler, Jim; Vandergrift, George

    2002-07-01

    Work is being performed to develop a general-purpose systems engineering model for the AAA separation process. The work centers on the development of a new user interface for the AMUSE code and on the specification of a systems engineering model. This paper presents background information and an overview of work completed to date. (authors)

  15. Carbon Dioxide Extraction from the Atmosphere Through Engineered Chemical Sinkage: Enabling Energy and Environmental Security

    NASA Astrophysics Data System (ADS)

    Dubey, M. K.; Ziock, H.; Rueff, G.; Smith, W. S.; Colman, J.; Elliott, S.; Lackner, K.; Johnston, N. A.

    2002-05-01

    We present the case for carbon dioxide (CO2) extraction from air using engineered chemical sinks as a means of sustaining fossil energy use by avoiding climate change. Existing carbon sequestration strategies such as CO2 injection into geologic formations or the deep ocean and mineral carbonation, require a pure stream of concentrated CO2 to be viable. Furthermore, current emphasis on reducing the global CO2 emissions is on large centralized power plants. However, more than half of all emissions are from the transportation sector and small, distributed sources such as home heating, etc. Most solutions for dealing with these sources explicitly or implicitly entail completely overhauling the existing infrastructure. To solve these problems, Los Alamos National Laboratory has conceived a novel approach for directly extracting CO2 from the atmosphere. Direct extraction converts the dilute CO2 (370 parts per million) in the atmosphere into a pure CO2 stream ready for permanent sequestration. It provides the following advantages: (1) Preserves our existing energy use and fuel distribution systems, which represent a large investment, (2) Indirectly captures CO2 from the myriad of small, distributed, and mobile sources that otherwise are not accessible to sequestration, (3) Allows atmospheric CO2 levels to be restored to their pre-industrial age value, (4) Provides free transport of CO2 to suitable sequestration sites by using natural atmospheric circulation, and (5) Is relatively compact and therefore inexpensive when compared to renewable concepts. Our concept harnesses atmospheric circulation to transport CO2 to sites where the CO2 is extracted by binding it to an adsorbent. The bound CO2 is then recovered as pure gas by heating together with the solid adsorbent that is recycled. As a proof of concept, we show that an aqueous Ca(OH)2 solution efficiently converts CO2 to a CaCO3 solid that can be heated to obtain pure CO2 and recover the CaO. Even with recycling costs

  16. Geochemistry and stratigraphic correlation of basalt lavas beneath the Idaho Chemical Processing Plant, Idaho National Engineering Laboratory

    USGS Publications Warehouse

    Reed, M.F.; Bartholomay, R.C.; Hughes, S.S.

    1997-01-01

    Thirty-nine samples of basaltic core were collected from wells 121 and 123, located approximately 1.8 km apart north and south of the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Samples were collected from depths ranging from 15 to 221 m below land surface for the purpose of establishing stratigraphic correlations between these two wells. Elemental analyses indicate that the basalts consist of three principal chemical types. Two of these types are each represented by a single basalt flow in each well. The third chemical type is represented by many basalt flows and includes a broad range of chemical compositions that is distinguished from the other two types. Basalt flows within the third type were identified by hierarchical K-cluster analysis of 14 representative elements: Fe, Ca, K, Na, Sc, Co, La, Ce, Sm, Eu, Yb, Hf, Ta, and Th. Cluster analyses indicate correlations of basalt flows between wells 121 and 123 at depths of approximately 38-40 m, 125-128 m, 131-137 m, 149-158 m, and 183-198 m. Probable correlations also are indicated for at least seven other depth intervals. Basalt flows in several depth intervals do not correlate on the basis of chemical compositions, thus reflecting possible flow margins in the sequence between the wells. Multi-element chemical data provide a useful method for determining stratigraphic correlations of basalt in the upper 1-2 km of the eastern Snake River Plain.

  17. Chemical analysis and biological testing of a polar fraction of ambient air, diesel engine, and gasoline engine particulate extracts.

    PubMed Central

    Strandell, M; Zakrisson, S; Alsberg, T; Westerholm, R; Winquist, L; Rannug, U

    1994-01-01

    Extracts of gasoline and diesel vehicle exhaust and ambient air particles were fractionated into five fractions according to polarity on a silica gel column. Two medium polar fractions showing high genotoxic activity in the Ames test were further subfractionated, using normal-phase high-performance liquid chromatography. Chemical analyses were performed by means of gas chromatography combined with mass spectrometry and flame ionization and detection. The crude extracts, fractions, and subfractions were assayed with the Ames test, with and without S9, and the most abundant compounds in the subfractions are reported. PMID:7529708

  18. Correlation Study of Laboratory Physical and Chemical Data with Dynamometer Engine Sequence Performance Testing of Engine Lubricating Oils.

    DTIC Science & Technology

    1978-12-01

    and chemical data and dynamomet er and field perfo rmance. The initial stud y produced internal and group correlations among the data and suggests a...sm all (a corre lation of I .0 i~ ~~r kct cor rela t ion ’, Prin cip al comp onent .iii,il ~ 515 Was enmp lo~ ed to stud ~ lhe iner al l re hi t i...Additive ) K = Potassium (Addit ive) V N = Nitr ogen (Additive ) . V Mg = Magnesium (Additive ) B = Boron (Additive ) Other = To include wear and

  19. Modeling of coupled differential equations for cellular chemical signaling pathways: Implications for assay protocols utilized in cellular engineering.

    PubMed

    O'Clock, George D

    2016-08-01

    Cellular engineering involves modification and control of cell properties, and requires an understanding of fundamentals and mechanisms of action for cellular derived product development. One of the keys to success in cellular engineering involves the quality and validity of results obtained from cell chemical signaling pathway assays. The accuracy of the assay data cannot be verified or assured if the effect of positive feedback, nonlinearities, and interrelationships between cell chemical signaling pathway elements are not understood, modeled, and simulated. Nonlinearities and positive feedback in the cell chemical signaling pathway can produce significant aberrations in assay data collection. Simulating the pathway can reveal potential instability problems that will affect assay results. A simulation, using an electrical analog for the coupled differential equations representing each segment of the pathway, provides an excellent tool for assay validation purposes. With this approach, voltages represent pathway enzyme concentrations and operational amplifier feedback resistance and input resistance values determine pathway gain and rate constants. The understanding provided by pathway modeling and simulation is strategically important in order to establish experimental controls for assay protocol structure, time frames specified between assays, and assay concentration variation limits; to ensure accuracy and reproducibility of results.

  20. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  1. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs

    PubMed Central

    Hudson, Brian D.; Christiansen, Elisabeth; Tikhonova, Irina G.; Grundmann, Manuel; Kostenis, Evi; Adams, David R.; Ulven, Trond; Milligan, Graeme

    2012-01-01

    When it is difficult to develop selective ligands within a family of related G-protein-coupled receptors (GPCRs), chemically engineered receptors activated solely by synthetic ligands (RASSLs) are useful alternatives for probing receptor function. In the present work, we explored whether a RASSL of the free fatty acid receptor 2 (FFA2) could be developed on the basis of pharmacological variation between species orthologs. For this, bovine FFA2 was characterized, revealing distinct ligand selectivity compared with human FFA2. Homology modeling and mutational analysis demonstrated a single mutation in human FFA2 of C4.57G resulted in a human FFA2 receptor with ligand selectivity similar to the bovine receptor. This was exploited to generate human FFA2-RASSL by the addition of a second mutation at a known orthosteric ligand interaction site, H6.55Q. The resulting FFA2-RASSL displayed a >100-fold loss of activity to endogenous ligands, while responding to the distinct ligand sorbic acid with pEC50 values for inhibition of cAMP, 5.83 ± 0.11; Ca2+ mobilization, 4.63 ± 0.05; ERK phosphorylation, 5.61 ± 0.06; and dynamic mass redistribution, 5.35 ± 0.06. This FFA2-RASSL will be useful in future studies on this receptor and demonstrates that exploitation of pharmacological variation between species orthologs is a powerful method to generate novel chemically engineered GPCRs.—Hudson, B. D., Christiansen, E., Tikhonova, I. G., Grundmann, M., Kostenis, E., Adams, D. R., Ulven, T., Milligan, G. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. PMID:22919070

  2. A photochemical crosslinking technology for tissue engineering: enhancement of the physico-chemical properties of collagen-based scaffolds

    NASA Astrophysics Data System (ADS)

    Chan, Barbara P.

    2005-04-01

    Collagen gel is a natural biomaterial commonly used in tissue engineering because of its close resemblance to nature, negligible immunogenecity and excellent biocompatibility. However, unprocessed collagen gel is mechanically weak, highly water binding and vulnerable to chemical and enzymatic attacks that limits its use in tissue engineering in particular tissues for weight-bearing purposes. The current project aimed to strengthen and stabilize collagen scaffolds using a photochemical crosslinking technique. Photochemical crosslinking is rapid, efficient, non-thermal and does not involve toxic chemicals, comparing with other crosslinking methods such as glutaraldehyde and gamma irradiation. Collagen scaffolds were fabricated using rat-tail tendon collagen. An argon laser was used to process the collagen gel after equilibrating with a photosensitizing reagent. Scanning electronic microscope was used to characterize the surface and cross-sectional morphology of the membranes. Physico-chemical properties of the collagen scaffolds such as water-binding capacity, mechanical properties and thermostability were studied. Photochemical crosslinking significantly reduced the water-binding capacity, a parameter inversely proportional to the extent of crosslinking, of collagen scaffolds. Photochemical crosslinking also significantly increased the ultimate stress and tangent modulus at 90% of the rupture strain of the collagen scaffolds. Differential scanning calorimetry analysis showed a significantly higher shrinkage temperature and absence of the denaturation peak during the thermoscan comparing with the controls. This means greater thermostability in the photochemically crosslinked collagen scaffolds. This study demonstrates that the photochemical crosslinking technology is able to enhance the physicochemical propterties of collagen scaffolds by strengthening, stabilizing and controlling the swelling ratio of the collagen scaffolds so as to enable their use for tissue

  3. Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions.

    PubMed

    Gao, Wen-Yang; Chen, Yao; Niu, Youhong; Williams, Kia; Cash, Lindsay; Perez, Pastor J; Wojtas, Lukasz; Cai, Jianfeng; Chen, Yu-Sheng; Ma, Shengqian

    2014-03-03

    Crystal engineering of the nbo metal-organic framework (MOF) platform MOF-505 with a custom-designed azamacrocycle ligand (1,4,7,10-tetrazazcyclododecane-N,N',N'',N'''-tetra-p-methylbenzoic acid) leads to a high density of well-oriented Lewis active sites within the cuboctahedral cage in MMCF-2, [Cu2(Cu-tactmb)(H2O)3(NO3)2]. This MOF demonstrates high catalytic activity for the chemical fixation of CO2 into cyclic carbonates at room temperature under 1 atm pressure.

  4. Crystal Engineering of an nbo Topology Metal-Organic Framework for Chemical Fixation of CO₂ under Ambient Conditions

    SciTech Connect

    Gao, Wen-Yang; Chen, Yao; Niu, Youhong; Williams, Kia; Cash, Lindsay; Perez, Pastor J.; Wojtas, Lukasz; Cai, Jianfeng; Chen, Yu-Sheng; Ma, Shengqian

    2015-02-20

    Crystal engineering of the nbo metal–organic framework (MOF) platform MOF-505 with a custom-designed azamacrocycle ligand (1,4,7,10-tetrazazcyclododecane-N,N',N'',N'''-tetra-p-methylbenzoic acid) leads to a high density of well-oriented Lewis active sites within the cuboctahedral cage in MMCF-2, [Cu₂(Cu-tactmb)(H₂O)₃(NO₃)₂]. This MOF demonstrates high catalytic activity for the chemical fixation of CO₂ into cyclic carbonates at room temperature under 1 atm pressure.

  5. Implementation of a cooperative methodology to develop organic chemical engineering skills

    NASA Astrophysics Data System (ADS)

    Arteaga, J. F.; Díaz Blanco, M. J.; Toscano Fuentes, C.; Martín Alfonso, J. E.

    2013-08-01

    The objective of this work is to investigate how most of the competences required by engineering students may be developed through an active methodology based on cooperative learning/evaluation. Cooperative learning was employed by the University of Huelva's third-year engineering students. The teaching methodology pretends to create some of the most relevant engineering skills required nowadays such as the ability to cooperate finding appropriate information; the ability to solve problems through critical and creative thinking; and the ability to make decisions and to communicate effectively. The statistical study carried out supports the hypothesis that comprehensive and well-defined protocols in the development of the subject, the rubric and cooperative evaluation allow students to acquire a successful learning.

  6. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    SciTech Connect

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

  7. The 5th World Congress of chemical engineering: Technologies critical to a changing World. Volume II: Agriculture, food biotechnology biomedical electric power process safety

    SciTech Connect

    1996-12-31

    Volume 2 of the proceedings from the 5th World Congress of Chemical Engineering covers four major topic areas from which papers were selected for the database: Agriculture, Food; Biotechnology; Electric Power, and Process Safety. Pertinent subtopics include: Renewable Resource Engineering; Special Processes in the Food Industry; Advances in Metabolite Production; Advances in Fermentation and Cell Culture Engineering; Coal and Nuclear Central Station Power Plants; Large Natural Gas Fired Power Stations; Distributed Generation; Potential Impact of Biomass Energy; and Chemical Hazards in Plant Design. 29 papers were selected from Volume 1 for the database.

  8. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Beck, Michael W.; Derrick, Jeffrey S.; Kerr, Richard A.; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C.; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D.; Kim, Kwang S.; Lee, Joo-Yong; Ruotolo, Brandon T.; Lim, Mi Hee

    2016-10-01

    The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal-Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.

  9. Using an APK-051 analyzer in a chemical engineering monitoring system

    NASA Astrophysics Data System (ADS)

    Kiet, S. V.; Voronov, V. N.; Bushuev, E. N.

    2009-07-01

    The capabilities of an APK-051 automatic analyzer for directly measuring the standardized indicators used for automatic chemical monitoring and indirectly determining the concentration of ammonia in water coolant are described.

  10. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease.

    PubMed

    Beck, Michael W; Derrick, Jeffrey S; Kerr, Richard A; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D; Kim, Kwang S; Lee, Joo-Yong; Ruotolo, Brandon T; Lim, Mi Hee

    2016-10-13

    The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal-Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.

  11. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease

    PubMed Central

    Beck, Michael W.; Derrick, Jeffrey S.; Kerr, Richard A.; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C.; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D.; Kim, Kwang S.; Lee, Joo-Yong; Ruotolo, Brandon T.; Lim, Mi Hee

    2016-01-01

    The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal–Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs. PMID:27734843

  12. Development and Testing of Dry Chemicals in Advanced Extinguishing Systems for Jet Engine Nacelle Fires.

    DTIC Science & Technology

    1983-02-01

    to thermal dilution (heat capacity effects pertaining to crystal structure changes. chemical decomposi- tion, phase change phenomena, and thermal...difficult to distinguish purely physical phenomena such as crystal decrepitation and subsequent thermal reservoir effects produced by chemical...for fire control, and this compound was also included in the list of potential agents. d. Forest fire control has, in the past, used borax (sodium

  13. A comparison of chemical structures of soot precursor nanoparticles from liquid fuel combustion in flames and engine

    NASA Astrophysics Data System (ADS)

    Paul, Bireswar; Datta, Amitava; Datta, Aparna; Saha, Abhijit

    2013-04-01

    A comparative study of the chemical structures of soot precursor nanoparticles from the liquid fuel flame and engine exhaust has been performed in this work to establish an association between the particles from both the sources. Different ex-situ measurement techniques have been used to characterize the nanoparticles in samples collected from the laboratory petrol/air and iso-octane/air flames, as well as from a gasoline engine. The TEM images of the sampled material along with the EDS spectra corroborate the existence of carbonaceous nanoparticles. The nature of the UV absorption and fluorescence spectra of the samples from the iso-octane flame environment further confirms the sampled materials to be soot precursor nanoparticles. The DLS size distribution of the particles shows them to be below 10 nm size. FTIR spectrum of the precursor nanoparticles collected form the non-sooting zone of the flame and that of fully grown soot particles show few similarities and dissimilarities among them. The soot particles are found to be much more aromatized as compared to its precursor nanoparticles. The presence of carbonyl functional group (C=O) at around 1,720 cm-1 has been observed in soot precursor nanoparticles, while such oxygenated functional groups are not prominent in soot structure. The absorption (UV and IR) and fluorescence spectra of the carbonaceous material collected from the gasoline engine exhaust show many resemblances with those of soot precursor nanoparticles from flames. These spectroscopic resemblances of the soot precursor nanoparticles from the flame environment and engine exhaust gives the evidence that the in-cylinder combustion is the source of these particles in the engine exhaust.

  14. Teaching Chemical Engineering Thermodynamics at Three Levels--Experience from the Technical University of Denmark (DTU)

    ERIC Educational Resources Information Center

    Kontogeorgis, Georgios M.; Michelsen, Michael L.; Clement, Karsten H.

    2009-01-01

    According to so-called "Bologna model," many technical universities in Europe have divided their educations into separate 3-year Bachelor and 2-year Master programs (followed by an optional Ph.D. study). Following the "Bologna model," DTU has recently transformed its 5-year engineering education into a 3-year Bachelor (B.Sc.)…

  15. Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydroccarbon Biorefineries

    SciTech Connect

    none,

    2008-03-01

    This roadmap to “Next Generation Hydrocarbon Biorefineries” outlines a number of novel process pathways for biofuels production based on sound scientific and engineering proofs of concept demonstrated in laboratories around the world. This report was based on the workshop of the same name held June 25-26, 2007 in Washington, DC.

  16. Chemical Science and Technology I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Ballinger, Jack T.; Wolf, Lawrence J.

    This study guide is part of an interdisciplinary program of studies entitled the Science and Engineering Technician (SET) Curriculum. This curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic…

  17. The Chemical Engineer's Toolbox: A Glass Box Approach to Numerical Problem Solving

    ERIC Educational Resources Information Center

    Coronell, Daniel G.; Hariri, M. Hossein

    2009-01-01

    Computer programming in undergraduate engineering education all too often begins and ends with the freshman programming course. Improvements in computer technology and curriculum revision have improved this situation, but often at the expense of the students' learning due to the use of commercial "black box" software. This paper describes the…

  18. Process/Engineering Co-Simulation of Oxy-Combustion and Chemical Looping Combustion

    SciTech Connect

    Sloan, David

    2013-03-01

    Over the past several years, the DOE has sponsored various funded programs, collectively referred to as Advanced Process Engineering Co-Simulator (APECS) programs, which have targeted the development of a steady-state simulator for advanced power plants. The simulator allows the DOE and its contractors to systematically evaluate various power plant concepts, either for preliminary conceptual design or detailed final design.

  19. Chemical Engineers Go to the Movies (Stimulating Problems for the Contemporary Undergraduate Student)

    ERIC Educational Resources Information Center

    Smart, Jimmy L.

    2007-01-01

    In this article, the author presents five problems that are representative of some of the "movie problems" that he has used on tests in various courses, including reactor design, heat transfer, mass transfer, engineering economics, and fluid mechanics. These problems tend to be open-ended. They can be challenging and can often be worked a variety…

  20. Chemical Science and Technology II. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Ballinger, Jack T.; Wolf, Lawrence J.

    This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed to provide a framework for training technicians in the use of electronic instruments and their applications. This interdisciplinary course of study integrates elements from the disciplines of chemistry, physics, mathematics,…

  1. Building an Understanding of Heat Transfer Concepts in Undergraduate Chemical Engineering Courses

    ERIC Educational Resources Information Center

    Nottis, Katharyn E. K.; Prince, Michael J.; Vigeant, Margot A.

    2010-01-01

    Understanding the distinctions among heat, energy and temperature can be difficult for students at all levels of instruction, including those in engineering. Misconceptions about heat transfer have been found to persist, even after students successfully complete relevant coursework. New instructional methods are needed to address these…

  2. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    SciTech Connect

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  3. What Are Acceptable Limits of Radiation?

    NASA Video Gallery

    Brad Gersey, lead research scientist at the Center for Radiation Engineering and Science for Space Exploration, or CRESSE, at Prairie View A&M University, describes the legal and acceptable limits ...

  4. Biosynthetic hydrogels--studies on chemical and physical characteristics on long-term cellular response for tissue engineering.

    PubMed

    Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan

    2014-07-01

    Biosynthetic hydrogels can meet the drawbacks caused by natural and synthetic ones for biomedical applications. In the current article we present a novel biosynthetic alginate-poly(propylene fumarate) copolymer based chemically crosslinked hydrogel scaffolds for cardiac tissue engineering applications. Partially crosslinked PA hydrogel and fully cross linked PA-A hydrogel scaffolds were prepared. The influence of chemical and physical (morphology and architecture of hydrogel) characteristics on the long term cellular response was studied. Both these hydrogels were cytocompatible and showed no genotoxicity upon contact with fibroblast cells. Both PA and PA-A were able to resist deleterious effects of reactive oxygen species and sustain the viability of L929 cells. The hydrogel incubated oxidative stress induced cells were capable of maintaining the intra cellular reduced glutathione (GSH) expression to the normal level confirmed their protective effect. Relatively the PA hydrogel was found to be unstable in the cell culture medium. The PA-A hydrogel was able to withstand appreciable cyclic stretching. The cyclic stretching introduced complex macro and microarchitectural features with interconnected pores and more structured bound water which would provide long-term viability of around 250% after the 24th day of culture. All these qualities make PA-A hydrogel form a potent candidate for cardiac tissue engineering.

  5. Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli.

    PubMed

    Menendez-Bravo, Simón; Comba, Santiago; Sabatini, Martín; Arabolaza, Ana; Gramajo, Hugo

    2014-07-01

    Microbial fatty acid (FA)-derived molecules have emerged as promising alternatives to petroleum-based chemicals for reducing dependence on fossil hydrocarbons. However, native FA biosynthetic pathways often yield limited structural diversity, and therefore restricted physicochemical properties, of the end products by providing only a limited variety of usually linear hydrocarbons. Here we have engineered into Escherichia coli a mycocerosic polyketide synthase-based biosynthetic pathway from Mycobacterium tuberculosis and redefined its biological role towards the production of multi-methyl-branched-esters (MBEs) with novel chemical structures. Expression of FadD28, Mas and PapA5 enzymes enabled the biosynthesis of multi-methyl-branched-FA and their further esterification to an alcohol. The high substrate tolerance of these enzymes towards different FA and alcohol moieties resulted in the biosynthesis of a broad range of MBE. Further metabolic engineering of the MBE producer strain coupled this system to long-chain-alcohol biosynthetic pathways resulting in de novo production of branched wax esters following addition of only propionate.

  6. Chemical exposures of rocket-engine test-stand personnel and cancer mortality in a cohort of aerospace workers.

    PubMed

    Ritz, B; Morgenstern, H; Froines, J; Moncau, J

    1999-10-01

    We conducted a retrospective cohort study of 6107 aerospace workers to examine whether exposure to chemicals--primarily hydrazine fuels--during rocket-engine fueling and testing affects cancer mortality. When conditional logistic regression analysis was applied and adjusted for confounding variables, the estimated rate ratio for lung cancer mortality, comparing exposed to unexposed workers from the same facility, ranged from 1.68 (95% confidence interval, 1.12 to 2.52) to 2.10 (95% confidence interval, 1.36 to 3.25), depending on job-duration threshold (6 or 24 months) and lag (0 to 15 years). Similar results were obtained for hemato- and lymphopoietic cancer and for bladder and kidney cancer mortality, but estimates for these cancers were imprecise. We concluded that occupational exposure to hydrazine or other chemicals associated with rocket-engine testing jobs increased the risk of dying from lung cancer, and possibly other cancers, in this population of aerospace workers; however, our results need to be replicated in other populations.

  7. Recent advances in engineering propionyl-CoA metabolism for microbial production of value-added chemicals and biofuels.

    PubMed

    Srirangan, Kajan; Bruder, Mark; Akawi, Lamees; Miscevic, Dragan; Kilpatrick, Shane; Moo-Young, Murray; Chou, C Perry

    2016-08-25

    Diminishing fossil fuel reserves and mounting environmental concerns associated with petrochemical manufacturing practices have generated significant interests in developing whole-cell biocatalytic systems for the production of value-added chemicals and biofuels. Although acetyl-CoA is a common natural biogenic precursor for the biosynthesis of numerous metabolites, propionyl-CoA is unpopular and non-native to most organisms. Nevertheless, with its C3-acyl moiety as a discrete building block, propionyl-CoA can serve as another key biogenic precursor to several biological products of industrial importance. As a result, engineering propionyl-CoA metabolism, particularly in genetically tractable hosts with the use of inexpensive feedstocks, has paved an avenue for novel biomanufacturing. Herein, we present a systematic review on manipulation of propionyl-CoA metabolism as well as relevant genetic and metabolic engineering strategies for microbial production of value-added chemicals and biofuels, including odd-chain alcohols and organic acids, bio(co)polymers and polyketides. [Formula: see text].

  8. The bacterial nanorecorder: engineering E. coli to function as a chemical recording device.

    PubMed

    Bhomkar, Prasanna; Materi, Wayne; Wishart, David S

    2011-01-01

    Synthetic biology is an emerging branch of molecular biology that uses synthetic genetic constructs to create man-made cells or organisms that are capable of performing novel and/or useful applications. Using a synthetic chemically sensitive genetic toggle switch to activate appropriate fluorescent protein indicators (GFP, RFP) and a cell division inhibitor (minC), we have created a novel E. coli strain that can be used as a highly specific, yet simple and inexpensive chemical recording device. This biological "nanorecorder" can be used to determine both the type and the time at which a brief chemical exposure event has occurred. In particular, we show that the short-term exposure (15-30 min) of cells harboring this synthetic genetic circuit to small molecule signals (anhydrotetracycline or IPTG) triggered long-term and uniform cell elongation, with cell length being directly proportional to the time elapsed following a brief chemical exposure. This work demonstrates that facile modification of an existing genetic toggle switch can be exploited to generate a robust, biologically-based "nanorecorder" that could potentially be adapted to detect, respond and record a wide range of chemical stimuli that may vary over time and space.

  9. GFO Altimeter Engineering Assessment Report. Update: The First 65 Cycles Since Acceptance, November 29, 2000 to December 9, 2003, Version 1

    NASA Technical Reports Server (NTRS)

    Hancock, D. W., III; Hayne, G. S.; Lockwood, D. W.; Brooks, R. L.

    2004-01-01

    The U.S. Navy's Geosat Follow-On (GFO) Mission, launched February 10, 1998, is one of a series of altimetric satellites which include Seasat, Geosat, ERS-1, and TOPEX/POSEIDON (T/P). The purpose of this report is to document the GFO altimeter performance determined from the analyses and results performed by NASA's GSFC and Wallops altimeter calibration team. It is the fourth of an anticipated series of NASA's GSFC and Wallops GFO performance documents, each of which will update assessment results. This report covers the performance from instrument acceptance by the Navy on November 29, 2000, to the end of Cycle 65 on December 9, 2003. Data derived from GFO will lead to improvements in the knowledge of ocean circulation, ice sheet topography, and climate change. In order to capture the maximum amount of information from the GFO data, accurate altimeter calibrations are required for the civilian data set which NOAA will produce. Wallops Flight Facility has provided similar products for the Geosat and T/P missions and is doing the same for GFO.

  10. GFO Altimeter Engineering Assessment Report. Update: The First 43 Cycles Since Acceptance, November 29, 2000 to November 30, 2002, Version 1

    NASA Technical Reports Server (NTRS)

    Hancock, D. W., III; Hayne, G. S.; Lockwood, D. W.; Brooks, R. L.

    2003-01-01

    The U.S. Navy's Geosat Follow-On (GFO) Mission, launched on February 20, 1998, is one of a series of altimetric satellites which include Seasat, Geosat, ERS-1, and TOPEX/POSEIDON (T/P). The purpose of this report is to document the GFO altimeter performance determined from the analyses and results performed by NASA's GSFC and Wallops altimeter, calibration team. It is the third of an anticipated series of NASA's GSFC and Wallops GFO performance documents, each of which will update assessment results. This report covers the performance from instrument acceptance by the Navy on November 29, 2000, to the end of Cycle 42 on November 30, 2002. Data derived from GFO will lead to improvements in the knowledge of ocean circulation, ice sheet topography, and climate change. In order to capture the maximum amount of information from the GFO data, accurate altimeter calibrations are required for the civilian data set which NOAA will produce. Wallops Flight Facility has provided similar products for the Geosat and T/P missions and is doing the same for GFO.

  11. Reverse engineering life: physical and chemical mimetics for controlled stem cell differentiation into cardiomyocytes.

    PubMed

    Skuse, Gary R; Lamkin-Kennard, Kathleen A

    2013-01-01

    Our ability to manipulate stem cells in order to induce differentiation along a desired developmental pathway has improved immeasurably in recent years. That is in part because we have a better understanding of the intracellular and extracellular signals that regulate differentiation. However, there has also been a realization that stem cell differentiation is not regulated only by chemical signals but also by the physical milieu in which a particular stem cell exists. In this regard we are challenged to mimic both chemical and physical environments. Herein we describe a method to induce stem cell differentiation into cardiomyocytes using a combination of chemical and physical cues. This method can be applied to produce differentiated cells for research and potentially for cell-based therapy of cardiomyopathies.

  12. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  13. Chemical Kinetics in the expansion flow field of a rotating detonation-wave engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2014-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. A key step towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release.

  14. Chemical characterisation of dredged sediments in relation to their potential use in civil engineering.

    PubMed

    Zuliani, Tea; Mladenovič, Ana; Ščančar, Janez; Milačič, Radmila

    2016-04-01

    During capital and/or maintenance dredging operations, large amounts of material are produced. Instead of their discharge, dredged sediments may be a valuable natural resource if not contaminated. One of the possible areas of application is civil engineering. In the present work, the environmental status of seaport dredged sediment was evaluated in order to investigate its potential applicability as a secondary raw material. Sediments were analysed for element concentrations in digested samples, aqueous extracts and fractions from sequential extraction; for fluoride, chloride and sulphate concentrations in aqueous extracts; and for tributyltin (TBT). Granulometric and mineralogical compositions were also analysed. The elemental impact was evaluated by calculation of the enrichment factors. The total element concentrations determined showed moderate contamination of the dredged sediments as was confirmed also by their moderate enrichment factors, presumably as a result of industrial and port activities. Elemental concentrations in the aqueous extract were very low and therefore do not represent any hazard for the environment. The water-soluble element concentrations were under the threshold levels set by the EU Directive on the landfill of waste, on the basis of which the applicability of dredged sediments in civil engineering is evaluated, while the content of chloride and sulphate were above the threshold levels. It was found out that due to the large amounts of sediment available, civil engineering applications such as the construction of embankments and backfilling is the most beneficial recycling solution at present.

  15. Toward a Modern Secondary Information System for Chemistry and Chemical Engineering

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1975

    1975-01-01

    Describes the information processing system employed by Chemical Abstracts Service which utilizes computers to organize material from the data base, convert it to the appropriate type face and format, and photocompose it in a form suitable for conversion to offset printing plates. (GS)

  16. On the Use of Interactive Texts in Undergraduate Chemical Reaction Engineering Courses: A Pedagogical Experience

    ERIC Educational Resources Information Center

    Asensio, Daniela A.; Barassi, Francisca J.; Zambon, Mariana T.; Mazza, Germán D.

    2010-01-01

    This paper describes the results of a pedagogical experience carried out at the University of Comahue, Argentina, with an interactive text (IT) concerning Homogeneous Chemical Reactors Analysis. The IT was built on the frame of the "Mathematica" software with the aim of providing students with a robust computational tool. Students'…

  17. Grand Challenges and Chemical Engineering Curriculum--Developments at TU Dortmund University

    ERIC Educational Resources Information Center

    Kockmann, Norbert; Lutze, Philip; Gorak, Andrzej

    2016-01-01

    Chemical processing industry is progressively focusing their research activities and product placements in the areas of Grand Challenges (or Global Megatrends) such as mobility, energy, communication, or health care and food. Innovation in all these fields requires solving high complex problems, rapid product development as well as dealing with…

  18. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering.

    PubMed

    Jiang, Wei-Cheng; Cheng, Yu-Hao; Yen, Meng-Hua; Chang, Yin; Yang, Vincent W; Lee, Oscar K

    2014-04-01

    Liver transplantation is the ultimate treatment for severe hepatic failure to date. However, the limited supply of donor organs has severely hampered this treatment. So far, great potentials of using mesenchymal stem cells (MSCs) to replenish the hepatic cell population have been shown; nevertheless, there still is a lack of an optimal three-dimensional scaffold for generation of well-transplantable hepatic tissues. In this study, we utilized a cryo-chemical decellularization method which combines physical and chemical approach to generate acellular liver scaffolds (ALS) from the whole liver. The produced ALS provides a biomimetic three-dimensional environment to support hepatic differentiation of MSCs, evidenced by expression of hepatic-associated genes and marker protein, glycogen storage, albumin secretion, and urea production. It is also found that hepatic differentiation of MSCs within the ALS is much more efficient than two-dimensional culture in vitro. Importantly, the hepatic-like tissues (HLT) generated by repopulating ALS with MSCs are able to act as functional grafts and rescue lethal hepatic failure after transplantation in vivo. In summary, the cryo-chemical method used in this study is suitable for decellularization of liver and create acellular scaffolds that can support hepatic differentiation of MSCs and be used to fabricate functional tissue-engineered liver constructs.

  19. Dynamics of catalytic tubular microjet engines: Dependence on geometry and chemical environment

    NASA Astrophysics Data System (ADS)

    LiJ. X. L.; G. S. H. Contributed Equally To This Work., Jinxing; Huang, Gaoshan; Ye, Mengmeng; Li, Menglin; Liu, Ran; Mei, Yongfeng

    2011-12-01

    Strain-engineered tubular microjet engines with various geometric dimensions hold interesting autonomous motions in an aqueous fuel solution when propelled by catalytic decomposition of hydrogen peroxide to oxygen and water. The catalytically-generated oxygen bubbles expelled from microtubular cavities propel the microjet step by step in discrete increments. We focus on the dynamics of our tubular microjets in one step and build up a body deformation model to elucidate the interaction between tubular microjets and the bubbles they produce. The average microjet velocity is calculated analytically based on our model and the obtained results demonstrate that the velocity of the microjet increases linearly with the concentration of hydrogen peroxide. The geometric dimensions of the microjet, such as length and radius, also influence its dynamic characteristics significantly. A close consistency between experimental and calculated results is achieved despite a small deviation due to the existence of an approximation in the model. The results presented in this work improve our understanding regarding catalytic motions of tubular microjets and demonstrate the controllability of the microjet which may have potential applications in drug delivery and biology.Strain-engineered tubular microjet engines with various geometric dimensions hold interesting autonomous motions in an aqueous fuel solution when propelled by catalytic decomposition of hydrogen peroxide to oxygen and water. The catalytically-generated oxygen bubbles expelled from microtubular cavities propel the microjet step by step in discrete increments. We focus on the dynamics of our tubular microjets in one step and build up a body deformation model to elucidate the interaction between tubular microjets and the bubbles they produce. The average microjet velocity is calculated analytically based on our model and the obtained results demonstrate that the velocity of the microjet increases linearly with the

  20. Bioelectrocatalysts: engineered oxidoreductase system for utilization of fumarate reductase in chemical synthesis, detection, and fuel cells.

    PubMed

    Park, Doo Hyun; Vieille, C; Zeikus, J G

    2003-10-01

    Fumarate reductase was used as a model oxidoreductase to demonstrate continuous electrical cofactor reduction-oxidation during the bioelectrochemical synthesis and detection of chemicals. The enzyme preparation was immobilized onto a graphite felt electrode that was modified with carboxymethylcellulose (CMC). Nicotinamide adenine dinucleotide (NAD), neutral red, and fumarate reductase (which contained menaquinone) were covalently linked by peptide bonds to the CMC. The electron mediator neutral red allowed NAD and menaquinone to be recycled electrically during enzymatic chemical synthesis. Succinate detection by the bioelectrocatalyst was linear from 5 microM to 10 mM succinate. Fumarate synthesis using this bioelectrode was dependent on succinate utilization and resulted in proportional production of electricity and fumarate. Succinate synthesis using this bioelectrocatalyst was dependent on current and fumarate concentration. This bioelectrocatalyst system may enhance the utility of menaquinone- and/or pyridine nucleotide-linked oxidoreductases in diverse enzymatic fuel cells and sensors. It may also enhance the utility of oxidoreductase-based chemical synthesis systems because it eliminates the problem of cofactor recycling.

  1. EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING

    SciTech Connect

    Brown, A.

    2014-04-27

    One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was a significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.

  2. Predictive Synthesis of Freeform Carbon Nanotube Microarchitectures by Strain-Engineered Chemical Vapor Deposition.

    PubMed

    Park, Sei Jin; Zhao, Hangbo; Kim, Sanha; De Volder, Michael; John Hart, A

    2016-08-01

    High-throughput fabrication of microstructured surfaces with multi-directional, re-entrant, or otherwise curved features is becoming increasingly important for applications such as phase change heat transfer, adhesive gripping, and control of electromagnetic waves. Toward this goal, curved microstructures of aligned carbon nanotubes (CNTs) can be fabricated by engineered variation of the CNT growth rate within each microstructure, for example by patterning of the CNT growth catalyst partially upon a layer which retards the CNT growth rate. This study develops a finite-element simulation framework for predictive synthesis of complex CNT microarchitectures by this strain-engineered growth process. The simulation is informed by parametric measurements of the CNT growth kinetics, and the anisotropic mechanical properties of the CNTs, and predicts the shape of CNT microstructures with impressive fidelity. Moreover, the simulation calculates the internal stress distribution that results from extreme deformation of the CNT structures during growth, and shows that delamination of the interface between the differentially growing segments occurs at a critical shear stress. Guided by these insights, experiments are performed to study the time- and geometry-depended stress development, and it is demonstrated that corrugating the interface between the segments of each microstructure mitigates the interface failure. This study presents a methodology for 3D microstructure design based on "pixels" that prescribe directionality to the resulting microstructure, and show that this framework enables the predictive synthesis of more complex architectures including twisted and truss-like forms.

  3. A newly developed chemically crosslinked dextran-poly(ethylene glycol) hydrogel for cartilage tissue engineering.

    PubMed

    Jukes, Jojanneke M; van der Aa, Leonardus J; Hiemstra, Christine; van Veen, Theun; Dijkstra, Pieter J; Zhong, Zhiyuan; Feijen, Jan; van Blitterswijk, Clemens A; de Boer, Jan

    2010-02-01

    Cartilage tissue engineering, in which chondrogenic cells are combined with a scaffold, is a cell-based approach to regenerate damaged cartilage. Various scaffold materials have been investigated, among which are hydrogels. Previously, we have developed dextran-based hydrogels that form under physiological conditions via a Michael-type addition reaction. Hydrogels can be formed in situ by mixing a thiol-functionalized dextran with a tetra-acrylated star poly(ethylene glycol) solution. In this article we describe how the degradation time of dextran-poly(ethylene glycol) hydrogels can be varied from 3 to 7 weeks by changing the degree of substitution of thiol groups on dextran. The degradation times increased slightly after encapsulation of chondrocytes in the gels. The effect of the gelation reaction on cell viability and cartilage formation in the hydrogels was investigated. Chondrocytes or embryonic stem cells were mixed in the aqueous dextran solution, and we confirmed that the cells survived gelation. After a 3-week culturing period, chondrocytes and embryonic stem cell-derived embryoid bodies were still viable and both cell types produced cartilaginous tissue. Our data demonstrate the potential of dextran hydrogels for cartilage tissue engineering strategies.

  4. Dynamics of catalytic tubular microjet engines: dependence on geometry and chemical environment.

    PubMed

    Li, Jinxing; Huang, Gaoshan; Ye, Mengmeng; Li, Menglin; Liu, Ran; Mei, Yongfeng

    2011-12-01

    Strain-engineered tubular microjet engines with various geometric dimensions hold interesting autonomous motions in an aqueous fuel solution when propelled by catalytic decomposition of hydrogen peroxide to oxygen and water. The catalytically-generated oxygen bubbles expelled from microtubular cavities propel the microjet step by step in discrete increments. We focus on the dynamics of our tubular microjets in one step and build up a body deformation model to elucidate the interaction between tubular microjets and the bubbles they produce. The average microjet velocity is calculated analytically based on our model and the obtained results demonstrate that the velocity of the microjet increases linearly with the concentration of hydrogen peroxide. The geometric dimensions of the microjet, such as length and radius, also influence its dynamic characteristics significantly. A close consistency between experimental and calculated results is achieved despite a small deviation due to the existence of an approximation in the model. The results presented in this work improve our understanding regarding catalytic motions of tubular microjets and demonstrate the controllability of the microjet which may have potential applications in drug delivery and biology.

  5. Chemical and toxicological properties of emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies

    NASA Astrophysics Data System (ADS)

    Yoon, Seungju; Hu, Shaohua; Kado, Norman Y.; Thiruvengadam, Arvind; Collins, John F.; Gautam, Mridul; Herner, Jorn D.; Ayala, Alberto

    2014-02-01

    Chemical and toxicological properties of emissions from compressed natural gas (CNG) fueled transit buses with stoichiometric combustion engines and three-way catalyst (TWC) exhaust control systems were measured using a chassis dynamometer testing facility and compared to the data from earlier CNG engine and exhaust control technologies. Gaseous and particulate matter emissions from buses with stoichiometric engines and TWC were significantly lower than the emissions from buses with lean-burn engines. Carbonyls and volatile organic compounds (VOCs) from buses with stoichiometric engines and TWC were lower by more than 99% compared to buses with lean-burn engines. Elemental and organic carbons (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and trace elements from buses with stoichiometric engines and TWC were effectively controlled and significantly lower than the emissions from buses with lean-burn engines. Potential mutagenicity measured using a microsuspension modification of the Salmonella/microsome assay was lower by more than 99% for buses with stoichiometric engines and TWC, compared to buses with lean-burn engines and OxC.

  6. 3-D simulation of soot formation in a direct-injection diesel engine based on a comprehensive chemical mechanism and method of moments

    NASA Astrophysics Data System (ADS)

    Zhong, Bei-Jing; Dang, Shuai; Song, Ya-Na; Gong, Jing-Song

    2012-02-01

    Here, we propose both a comprehensive chemical mechanism and a reduced mechanism for a three-dimensional combustion simulation, describing the formation of polycyclic aromatic hydrocarbons (PAHs), in a direct-injection diesel engine. A soot model based on the reduced mechanism and a method of moments is also presented. The turbulent diffusion flame and PAH formation in the diesel engine were modelled using the reduced mechanism based on the detailed mechanism using a fixed wall temperature as a boundary condition. The spatial distribution of PAH concentrations and the characteristic parameters for soot formation in the engine cylinder were obtained by coupling a detailed chemical kinetic model with the three-dimensional computational fluid dynamic (CFD) model. Comparison of the simulated results with limited experimental data shows that the chemical mechanisms and soot model are realistic and correctly describe the basic physics of diesel combustion but require further development to improve their accuracy.

  7. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.

    PubMed

    Whitaker, William B; Sandoval, Nicholas R; Bennett, Robert K; Fast, Alan G; Papoutsakis, Eleftherios T

    2015-06-01

    Synthetic methylotrophy is the development of non-native methylotrophs that can utilize methane and methanol as sole carbon and energy sources or as co-substrates with carbohydrates to produce metabolites as biofuels and chemicals. The availability of methane (from natural gas) and its oxidation product, methanol, has been increasing, while prices have been decreasing, thus rendering them as attractive fermentation substrates. As they are more reduced than most carbohydrates, methane and methanol, as co-substrates, can enhance the yields of biologically produced metabolites. Here we discuss synthetic biology and metabolic engineering strategies based on the native biology of aerobic methylotrophs for developing synthetic strains grown on methanol, with Escherichia coli as the prototype.

  8. A Chemical Kinetic Modeling Study of the Effects of Oxygenated Hydrocarbons on Soot Emissions from Diesel Engines

    SciTech Connect

    Westbrook, C K; Pitz, W J; Curran, H J

    2005-11-14

    A detailed chemical kinetic modeling approach is used to examine the phenomenon of suppression of sooting in diesel engines by addition of oxygenated hydrocarbon species to the fuel. This suppression, which has been observed experimentally for a few years, is explained kinetically as a reduction in concentrations of soot precursors present in the hot products of a fuel-rich diesel ignition zone when oxygenates are included. Oxygenates decrease the overall equivalence ratio of the igniting mixture, producing higher ignition temperatures and more radical species to consume more soot precursor species, leading to lower soot production. The kinetic model is also used to show how different oxygenates, ester structures in particular, can have different soot-suppression efficiencies due to differences in molecular structure of the oxygenated species.

  9. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes.

    PubMed

    Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2013-12-01

    The development of synthetic biology has transformed microbes into useful factories for producing valuable polymers and/or their precursors from renewable biomass. Recent progress at the interface of chemistry and biology has enabled the production of a variety of new biopolymers with properties that substantially differ from their petroleum-derived counterparts. This review touches on recent trials and achievements in the field of biopolymer synthesis, including chemo-enzymatically synthesized aliphatic polyesters, wholly biosynthesized lactate-based polyesters, polyhydroxyalkanoates and other unusual bacterially synthesized polyesters. The expanding diversities in structure and the material properties of biopolymers are key for exploring practical applications. The enzyme and metabolic engineering approaches toward this goal are discussed by shedding light on the successful case studies.

  10. Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine

    PubMed Central

    2013-01-01

    Background The stabilizing and function-preserving effects of ectoines have attracted considerable biotechnological interest up to industrial scale processes for their production. These rely on the release of ectoines from high-salinity-cultivated microbial producer cells upon an osmotic down-shock in rather complex processor configurations. There is growing interest in uncoupling the production of ectoines from the typical conditions required for their synthesis, and instead design strains that naturally release ectoines into the medium without the need for osmotic changes, since the use of high-salinity media in the fermentation process imposes notable constraints on the costs, design, and durability of fermenter systems. Results Here, we used a Corynebacterium glutamicum strain as a cellular chassis to establish a microbial cell factory for the biotechnological production of ectoines. The implementation of a mutant aspartokinase enzyme ensured efficient supply of L-aspartate-beta-semialdehyde, the precursor for ectoine biosynthesis. We further engineered the genome of the basic C. glutamicum strain by integrating a codon-optimized synthetic ectABCD gene cluster under expressional control of the strong and constitutive C. glutamicum tuf promoter. The resulting recombinant strain produced ectoine and excreted it into the medium; however, lysine was still found as a by-product. Subsequent inactivation of the L-lysine exporter prevented the undesired excretion of lysine while ectoine was still exported. Using the streamlined cell factory, a fed-batch process was established that allowed the production of ectoine with an overall productivity of 6.7 g L-1 day-1 under growth conditions that did not rely on the use of high-salinity media. Conclusions The present study describes the construction of a stable microbial cell factory for recombinant production of ectoine. We successfully applied metabolic engineering strategies to optimize its synthetic production in the

  11. Physico-chemical properties and degradability of non-woven hyaluronan benzylic esters as tissue engineering scaffolds.

    PubMed

    Milella, E; Brescia, E; Massaro, C; Ramires, P A; Miglietta, M R; Fiori, V; Aversa, P

    2002-02-01

    The development of biocompatible materials which can be processed into three-dimensional scaffolds and the design of appropriate configurations in order to enable the cellular infiltration and proliferation is a major issue in the tissue engineering. The hyaluronan total benzyl ester (Hyaff 11) has been found to be suitable substrate to grow a variety of cell types. Since structural, physical, chemical and biological data can help for tailoring appropriate scaffold for tissue engineering, information on chemicophysical properties on degradability of hyaluronan total benzyl ester non-woven has been obtained. The thermal analysis, the evaluation of the surface chemical composition, the morphology, the mechanical behaviour and the swelling tests were carried out on these materials. The hyaluronan total benzyl ester non-woven showed a thermal stability up to 220 degrees C and the surface composition differed from that of the bulk for C-O and C-C contribution. No contaminant were detected. The non-woven swelled in culture medium. Moreover the mechanical tests showed that when submitted to a press treatment, the samples have best mechanical properties. The pressed Hyaff 11 non-woven undergoes degradation when exposed to DMEM. The frying and breaking of the fibres, a decrease of the mechanical properties and a molecular weight loss have been observed. First, the ester bond of the Hyaff 11 non-woven is hydrolysed and the benzylic alcohol is released and the low molecular weight values indicate that a cleavage of the polymer is promoted by the components of the culture medium. After 11 days, some fragments, constituted by hyaluronic acid with a molecular weight of 23,000 Da became soluble in the medium. No oligomer was detected.

  12. Engineering specific chemical modification sites into a collagen-like protein from Streptococcus pyogenes.

    PubMed

    Stoichevska, Violet; Peng, Yong Y; Vashi, Aditya V; Werkmeister, Jerome A; Dumsday, Geoff J; Ramshaw, John A M

    2017-03-01

    Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is generally not easily achieved. Thus, inclusion of unusual amino acids, cyclic peptides, sugars, lipids, and other complex functions generally needs to be achieved chemically after synthesis and extraction. In the present study, we have illustrated that bacterial collagens that have had their sequences modified to include cysteine residue(s), which are not normally present in bacterial collagen-like sequences, enable a range of specific chemical modification reactions to be produced. Various model reactions were shown to be effective for modifying the collagens. The ability to include alkyne (or azide) functions allows the extensive range of substitutions that are available via "click" chemistry to be accessed. When bifunctional reagents were used, some crosslinking occurred to give higher molecular weight polymeric proteins, but gels were not formed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 806-813, 2017.

  13. Chemical hydrogels based on a hyaluronic acid-graft-α-elastin derivative as potential scaffolds for tissue engineering.

    PubMed

    Palumbo, Fabio Salvatore; Pitarresi, Giovanna; Fiorica, Calogero; Rigogliuso, Salvatrice; Ghersi, Giulio; Giammona, Gaetano

    2013-07-01

    In this work hyaluronic acid (HA) functionalized with ethylenediamine (EDA) has been employed to graft α-elastin. In particular a HA-EDA derivative bearing 50 mol% of pendant amino groups has been successfully employed to produce the copolymer HA-EDA-g-α-elastin containing 32% w/w of protein. After grafting with α-elastin, remaining free amino groups reacted with ethylene glycol diglycidyl ether (EGDGE) for producing chemical hydrogels, proposed as scaffolds for tissue engineering. Swelling degree, resistance to chemical and enzymatic hydrolysis, as well as preliminary biological properties of HA-EDA-g-α-elastin/EGDGE scaffold have been evaluated and compared with a HA-EDA/EGDGE scaffold. The presence of α-elastin grafted to HA-EDA improves attachment, viability and proliferation of primary rat dermal fibroblasts and human umbilical artery smooth muscle cells. Biological performance of HA-EDA-g-α-elastin/EGDGE scaffold resulted comparable to that of a commercial collagen type I sponge (Antema®), chosen as a positive control.

  14. Chemically engineered sulfated glucans from rice bran exert strong antiviral activity at the stage of viral entry.

    PubMed

    Ray, Bimalendu; Hutterer, Corina; Bandyopadhyay, Shruti S; Ghosh, Kanika; Chatterjee, Udipta R; Ray, Sayani; Zeitträger, Isabel; Wagner, Sabrina; Marschall, Manfred

    2013-12-27

    Attachment and entry of many viruses are mediated by their affinity for polysaccharides present on the surface of target cells. In this paper, we demonstrate that sulfated glucans isolated from rice (Oryza sativa) can be utilized as experimental drugs exerting strong antiviral activity. In particular, oleum-DMF-based extraction is described as a procedure for the generation of chemically engineered glucans from commercially available rice bran. The one-step procedure has the potential to provide a spectrum of related glucans with varying molecular masses and modifications, including sulfation. The sulfated glucans P444, P445, and P446 possess increased antiviral activity compared to a previously described glucan (S1G). P444, P445, and P446 were highly active against human cytomegalovirus (HCMV), moderately active against other members of the family Herpesviridae, while not active against unrelated viruses. Specific experimentation with HCMV-infected cells provided evidence that antiviral activity was based on inhibition of viral entry and that inhibition occurred in the absence of drug-induced cytotoxicity. These findings underline the high potential of sulfated glucans for antiviral research and drug development. In addition, the procedure described for the efficient transformation of glucan hydroxy groups to sulfate groups may be similarly beneficial for the chemical alteration of other natural products.

  15. Mesenchymal stem cell and gelatin microparticle encapsulation in thermally and chemically gelling injectable hydrogels for tissue engineering.

    PubMed

    Tzouanas, Stephanie N; Ekenseair, Adam K; Kasper, F Kurtis; Mikos, Antonios G

    2014-05-01

    In this work, we investigated the viability and osteogenic differentiation of mesenchymal stem cells encapsulated with gelatin microparticles (GMPs) in an injectable, chemically and thermally gelling hydrogel system combining poly(N-isopropylacrylamide)-based thermogelling macromers containing pendant epoxy rings with polyamidoamine-based hydrophilic and degradable diamine crosslinking macromers. Specifically, we studied how the parameters of GMP size and loading ratio affected the viability and differentiation of cells encapsulated within the hydrogel. We also examined the effects of cell and GMP co-encapsulation on hydrogel mineralization. Cells demonstrated long-term viability within the hydrogels, which was shown to depend on GMP size and loading ratio. In particular, increased interaction of cells and GMPs through greater available GMP surface area, use of an epoxy-based chemical gelation mechanism, and the tunable high water content of the thermogelled hydrogels led to favorable long-term cell viability. Compared with cellular hydrogels without GMPs, hydrogels co-encapsulating cells and GMPs demonstrated greater production of alkaline phosphatase by cells at all time-points and a transient early enhancement of hydrogel mineralization for larger GMPs at higher loading ratios. Such injectable, in situ forming hydrogels capable of delivering and maintaining populations of encapsulated mesenchymal stem cells and promoting mineralization in vitro offer promise as novel therapies for applications in tissue engineering and regenerative medicine.

  16. Annette Bunge: developing the principles in percutaneous absorption using chemical engineering principles.

    PubMed

    Stinchcomb, A L

    2013-01-01

    Annette Bunge and her research group have had the central theme of mathematically modeling the dermal absorption process. Most of the research focus has been on estimating dermal absorption for the purpose of risk assessment, for exposure scenarios in the environment and in the occupational setting. Her work is the basis for the United States Environmental Protection Agency's estimations for dermal absorption from contaminated water. It is also the basis of the dermal absorption estimates used in determining if chemicals should be assigned a 'skin notation' for potential systemic toxicity following occupational skin exposure. The work is truly translational in that it started with mathematical theory, is validated with preclinical and human experiments, and then is used in guidelines to protect human health. Her valued research has also extended into the topical drug bioavailability and bioequivalence assessment field.

  17. Engineering catalyst microenvironments for metal-catalyzed hydrogenation of biologically derived platform chemicals.

    PubMed

    Schwartz, Thomas J; Johnson, Robert L; Cardenas, Javier; Okerlund, Adam; Da Silva, Nancy A; Schmidt-Rohr, Klaus; Dumesic, James A

    2014-11-17

    It is shown that microenvironments formed around catalytically active sites mitigate catalyst deactivation by biogenic impurities that are present during the production of biorenewable chemicals from biologically derived species. Palladium and ruthenium catalysts are inhibited by the presence of sulfur-containing amino acids; however, these supported metal catalysts are stabilized by overcoating with poly(vinyl alcohol) (PVA), which creates a microenvironment unfavorable for biogenic impurities. Moreover, deactivation of Pd catalysts by carbon deposition from the decomposition of highly reactive species is suppressed by the formation of bimetallic PdAu nanoparticles. Thus, a PVA-overcoated PdAu catalyst was an order of magnitude more stable than a simple Pd catalyst in the hydrogenation of triacetic acid lactone, which is the first step in the production of biobased sorbic acid. A PVA-overcoated Ru catalyst showed a similar improvement in stability during lactic acid hydrogenation to propylene glycol in the presence of methionine.

  18. Mathematical modeling in chemical engineering: from lab-scale to field studies

    NASA Astrophysics Data System (ADS)

    Pushpavanam, S.

    2010-10-01

    In this work we discuss four different problems where mathematical modeling gives us insight into system behavior. Most chemical plants are characterized by an upstream reactor coupled to a downstream separator unit via a recycle stream. The steady state behavior of a representative system is analyzed for the maximum number of steady states which are admissible Different flow regimes in single and two phase-flows are discussed with a view to understanding mixing phenomena in micro-fluidics. In single phase flows Deans vortices cause mixing while in two phase slugs the mixing is caused by internal circulations. Bubble column reactors are heterogeneous systems characterized by turbulent flows. Flow fields are measured experimentally using PIV and these can be validated using computational fluid dynamics. In the context of Air Quality monitoring, field data are analyzed using statistical methods. This is used to predict source contributions to air quality levels in a region and to evaluate different control options.

  19. ECM-incorporated hydrogels cross-linked via native chemical ligation to engineer stem cell microenvironments.

    PubMed

    Jung, Jangwook P; Sprangers, Anthony J; Byce, John R; Su, Jing; Squirrell, Jayne M; Messersmith, Phillip B; Eliceiri, Kevin W; Ogle, Brenda M

    2013-09-09

    Limiting the precise study of the biochemical impact of whole molecule extracellular matrix (ECM) proteins on stem cell differentiation is the lack of 3D in vitro models that can accommodate many different types of ECM. Here we sought to generate such a system while maintaining consistent mechanical properties and supporting stem cell survival. To this end, we used native chemical ligation to cross-link poly(ethylene glycol) macromonomers under mild conditions while entrapping ECM proteins (termed ECM composites) and stem cells. Sufficiently low concentrations of ECM were used to maintain constant storage moduli and pore size. Viability of stem cells in composites was maintained over multiple weeks. ECM of composites encompassed stem cells and directed the formation of distinct structures dependent on ECM type. Thus, we introduce a powerful approach to study the biochemical impact of multiple ECM proteins (either alone or in combination) on stem cell behavior.

  20. Chemical functionalization of surfaces for building three-dimensional engineered biosensors

    NASA Astrophysics Data System (ADS)

    Marques, Marco E.; Mansur, Alexandra A. P.; Mansur, Herman S.

    2013-06-01

    This study presents a new approach for developing biosensors based on enzymatic systems with designed three-dimensional structures. Silica glass slides were chemically functionalized at surfaces by reacting with organosilanes, 3-mercaptopropyltriethoxysilane (MPTES), and 3-aminopropyltriethoxysilane (APTES), using sol-gel process at room temperature. The functionalization of the supports was characterized by contact angle measurements and FTIR spectroscopy. The first enzyme layer was covalently immobilized to the support by a bi-functional linker (glutaraldehyde). The second enzyme layer was deposited using the protein conjugation method based on the high affinity "avidin-biotin" interactions. Each enzyme was biotinylated before being added to the nanostructured system and avidin was used as the binder between consecutive enzyme layers. The biochemical response was assayed at all stages to certify that the enzymatic bioactivity was retained throughout the entire layer-by-layer (LBL) process. The model of building 3D-enzymatic systems was evaluated using the enzymatic structure with glucose oxidase (GOx) and horseradish peroxidase (HRP). It was verified that the amino-modified support presented the highest bioactivity response compared to the other chemical functionalities. Moreover, the bienzyme nanostructure demonstrated relevant biochemical activity upon injecting the glucose substrate into the system. Finally, as a proof of concept, the bienzyme systems were assayed using real samples of regular and sugar-free soft drinks where they effectively behaved as structured biosensor for glucose with the built-in 3D hybrid architecture. Based on the results, it can be foreseen the development of promising new nanomaterials for several analytical applications such as monitoring the quality of food and beverages for nutrition purposes.

  1. KCN Chemical Etch for Interface Engineering in Cu2ZnSnSe4 Solar Cells.

    PubMed

    Buffière, Marie; Brammertz, Guy; Sahayaraj, Sylvester; Batuk, Maria; Khelifi, Samira; Mangin, Denis; El Mel, Abdel-Aziz; Arzel, Ludovic; Hadermann, Joke; Meuris, Marc; Poortmans, Jef

    2015-07-15

    The removal of secondary phases from the surface of the kesterite crystals is one of the major challenges to improve the performances of Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells. In this contribution, the KCN/KOH chemical etching approach, originally developed for the removal of CuxSe phases in Cu(In,Ga)(S,Se)2 thin films, is applied to CZTSe absorbers exhibiting various chemical compositions. Two distinct electrical behaviors were observed on CZTSe/CdS solar cells after treatment: (i) the improvement of the fill factor (FF) after 30 s of etching for the CZTSe absorbers showing initially a distortion of the electrical characteristic; (ii) the progressive degradation of the FF after long treatment time for all Cu-poor CZTSe solar cell samples. The first effect can be attributed to the action of KCN on the absorber, that is found to clean the absorber free surface from most of the secondary phases surrounding the kesterite grains (e.g., Se0, CuxSe, SnSex, SnO2, Cu2SnSe3 phases, excepting the ZnSe-based phases). The second observation was identified as a consequence of the preferential etching of Se, Sn, and Zn from the CZTSe surface by the KOH solution, combined with the modification of the alkali content of the absorber. The formation of a Cu-rich shell at the absorber/buffer layer interface, leading to the increase of the recombination rate at the interface, and the increase in the doping of the absorber layer after etching are found to be at the origin of the deterioration of the FF of the solar cells.

  2. EXTRACTION OF CARBON DIOXIDE FROM THE ATMOSPHERE THROUGH ENGINEERED CHEMICAL SINKAGE.

    SciTech Connect

    Dubey, M. K.; Ziock, H. J.; Rueff, G.; Elliott, S. M.; Smith, W. S.; Lackner, K. S.; Johnston, N. A.

    2001-01-01

    We present the case for C02 extraction from air as a means of sustaining fossil energy use by avoiding climate change. Our concept harnesses atmospheric circulation to transport C02 to sites where the C02 is extracted by binding it to an adsorbent. As a proof of concept, we show that an aqueous Ca(OH)2 solution efficiently converts C02 to a CaC03 solid that can be heated to obtain pure C02 and recover the CaO. Even with recycling costs, C02 extraction from air blown by wind through a 1 m2 aperture could eliminate the greenhouse gas impact of 100 kW gasoline engine, making it more favorable than renewable sources as solar, wind, or bio-mass. In addition it collects C02 from dispersed sources, preserves the energy infrastructure, can yield negative emissions, and provide free C02 transport to sequestration sites. We report economic and scaling arguments, atmospheric simulations and experiments that support pursuing air-extraction as an advanced C02 capture technology. This method could process today's world output of C02 with many collection units with a net area of 103-104 km2 at costs of -5/liter of gasoline, a manageable scale for this massive undertaking.

  3. EXTRACTION OF CARBON DIOXIDE FROM THE ATMOSPHERE THROUGH ENGINEERED CHEMICAL SINKAGE

    SciTech Connect

    M. K. DUBEY; H. ZIOCK; ET AL

    2001-11-01

    We present the case for CO{sub 2} extraction from air as a means of sustaining fossil energy use by avoiding climate change. Our concept harnesses atmospheric circulation to transport CO{sub 2} to sites where the CO{sub 2} is extracted by binding it to an adsorbent. As a proof of concept, we show that an aqueous Ca(OH){sub 2} solution efficiently converts CO{sub 2} to a CaCO{sub 3} solid that can be heated to obtain pure CO{sub 2} and recover the CaO. Even with recycling costs, CO{sub 2} extraction from air blown by wind through a 1 m{sup 2} aperture could eliminate the greenhouse gas impact of 100 kW gasoline engine, making it more favorable than renewable sources as solar, wind, or bio-mass. In addition it collects CO{sub 2} from dispersed sources, preserves the energy infrastructure, can yield negative emissions, and provide free CO{sub 2} transport to sequestration sites. We report economic and scaling arguments, atmospheric simulations and experiments that support pursuing air-extraction as an advanced CO{sub 2} capture technology. This method could process today's world output of CO{sub 2} with many collection units with a net area of 10{sup 3}-10{sup 4} km{sup 2} at costs of {approx} 5{cents}/liter of gasoline, a manageable scale for this massive undertaking.

  4. A Chemically Polymerized Electrically Conducting Composite of Polypyrrole Nanoparticles and Polyurethane for Tissue Engineering

    PubMed Central

    Broda, Christopher R.; Lee, Jae Y.; Sirivisoot, Sirinrath; Schmidt, Christine E.; Harrison, Benjamin S.

    2011-01-01

    A variety of cell types respond to electrical stimuli, accordingly many conducting polymers (CPs) have been used as tissue engineering (TE) scaffolds, one such CP is polypyrrole (PPy). PPy is a well studied biomaterial with potential TE applications due to its electrical conductivity and many other beneficial properties. Combining its characteristics with an elastomeric material, such as polyurethane (PU), may yield a hybrid scaffold with electrical activity and significant mechanical resilience. Pyrrole was in situ polymerized within a PU emulsion mixture in weight ratios of 1:100, 1:20, 1:10 and 1:5, respectively. Morphology, electrical conductivity, mechanical properties and cytocompatibility with C2C12 myoblast cells were characterized. The polymerization resulted in a composite with a principle base of PU interspersed with an electrically percolating network of PPy nanoparticles. As the mass ratio of PPy to PU increased so did electrical conductivity of the composites. In addition, as the mass ratio of PPy to PU increased, stiffness of the composite increased while maximum elongation length decreased. Ultimate tensile strength was reduced by approximately 47% across all samples with the addition of PPy to the PU base. Cytocompatibility assay data indicated no significant cytotoxic effect from the composites. Static cellular seeding of C2C12 cells and subsequent differentiation showed myotube formation on the composite materials. PMID:21681943

  5. Dopant's chemical coordination: a path for engineering high performance thermoelectric sodium cobaltate

    NASA Astrophysics Data System (ADS)

    Assadi, M. Hussein N.; Katayama-Yoshida, Hiroshi

    2014-03-01

    Engineered Na0.75CoO2 is considered a prime candidate to achieve high efficiency thermoelectric systems to generate electricity from waste heat. Our recent experiments on Mg doped Na0.75CoO2 demonstrated 50% enhancement in power factor at ambient. This motivated us to theoretically analyze the mechanisms behind simultaneous improvement of interdependent Seebeck coefficient and electrical conductivity. For this, we comprehensively studied the electronic and crystallographic structure of Na0.75CoO2 doped with 5 elements Mg, Sb, Zn, Ni and Eu. These elements represent wide variety of electronic configurations such as open d and f shells, closed d and s shells, combined with great variation in atomic mass. Systematic density functional calculations showed that the Ni and Zn were more stable when substituting Co with formation energy 2.35 eV, 2.08 eV. While Eu and Mg and Sb are more stable when it substitutes Na. In the case of Mg these results are consistent with Raman scattering measurement. This suggests that the doped Mg ions immobilize Na ions, reducing the resistivity by improving the mobility of carriers and thus enhancing the thermo-power. This work was supported by JSPS and Intersect.

  6. Physico-chemical characterization of engineered metal oxide nanoparticles: the critical role of microscopy

    NASA Astrophysics Data System (ADS)

    La Fontaine, A.; Coleman, V. A.; Jämting, A. K.; Lawn, M.; Herrmann, J.; Miles, J. R.

    2010-06-01

    Three different methods for extracting zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles from commercially available sunscreen were investigated to determine the most appropriate route for producing a sample suitable for measuring the primary particle size. Direct dilution of the formulation, centrifugal methods and chemical washing were trialed in combination with ultrasonic processing and surfactant addition to generate samples that are suitable for particle size analysis. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to monitor the extraction and re-dispersion process. Washing with hexane, methanol and water to remove the formulation, in combination with pulsed high-powered ultrasonication and the addition of a charge-stabilizing surfactant was found to be the most efficient way of producing de-agglomerated samples. DLS measurements gave average hydrodynamic particle diameters of 87 nm for ZnO and 76 nm for TiO2, compared to equivalent spherical particle diameters of 21 +/- 12 nm for ZnO (81 particles) and 19 +/- 14 nm for TiO2 (81 particles) obtained from TEM analysis.

  7. Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering.

    PubMed

    Lee, Bora; Jiao, Alex; Yu, Seungjung; You, Jae Bem; Kim, Deok-Ho; Im, Sung Gap

    2013-08-01

    Poly(N-vinylcaprolactam) (PNVCL) is a thermoresponsive polymer known to be nontoxic, water soluble and biocompatible. Here, PNVCL homopolymer was successfully synthesized for the first time by use of a one-step vapor-phase process, termed initiated chemical vapor deposition (iCVD). Fourier transform infrared spectroscopy results showed that radical polymerization took place from N-vinylcaprolactam monomers without damaging the functional caprolactam ring. A sharp lower critical solution temperature transition was observed at 31°C from the iCVD poly(N-vinylcaprolactam) (PNVCL) film. The thermoresponsive PNVCL surface exhibited a hydrophilic/hydrophobic alteration with external temperature change, which enabled the thermally modulated attachment and detachment of cells. The conformal coverage of PNVCL film on various substrates with complex topography, including fabrics and nanopatterns, was successfully demonstrated, which can further be utilized to fabricate cell sheets with aligned cell morphology. The advantage of this system is that cells cultured on such thermoresponsive surfaces could be recovered as an intact cell sheet by simply lowering the temperature, eliminating the need for conventional enzymatic treatments.

  8. Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic–Inorganic Halide Perovskites

    PubMed Central

    2015-01-01

    The performance of solar cells based on hybrid halide perovskites has seen an unparalleled rate of progress, while our understanding of the underlying physical chemistry of these materials trails behind. Superficially, CH3NH3PbI3 is similar to other thin-film photovoltaic materials: a semiconductor with an optical band gap in the optimal region of the electromagnetic spectrum. Microscopically, the material is more unconventional. Progress in our understanding of the local and long-range chemical bonding of hybrid perovskites is discussed here, drawing from a series of computational studies involving electronic structure, molecular dynamics, and Monte Carlo simulation techniques. The orientational freedom of the dipolar methylammonium ion gives rise to temperature-dependent dielectric screening and the possibility for the formation of polar (ferroelectric) domains. The ability to independently substitute on the A, B, and X lattice sites provides the means to tune the optoelectronic properties. Finally, ten critical challenges and opportunities for physical chemists are highlighted. PMID:25838846

  9. Offer/Acceptance Ratio.

    ERIC Educational Resources Information Center

    Collins, Mimi

    1997-01-01

    Explores how human resource professionals, with above average offer/acceptance ratios, streamline their recruitment efforts. Profiles company strategies with internships, internal promotion, cooperative education programs, and how to get candidates to accept offers. Also discusses how to use the offer/acceptance ratio as a measure of program…

  10. Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering

    PubMed Central

    2014-01-01

    Background Shikimic acid (SA) produced from the seeds of Chinese star anise (Illicium verum) is a key intermediate for the synthesis of neuraminidase inhibitors such as oseltamivir (Tamiflu®), an anti-influenza drug. However, plants cannot deliver a stable supply of SA. To avoid the resulting shortages and price fluctuations, a stable source of affordable SA is required. Although recent achievements in metabolic engineering of Escherichia coli strains have significantly increased SA productivity, commonly-used plasmid-based expression systems are prone to genetic instability and require constant selective pressure to ensure plasmid maintenance. Cofactors also play an important role in the biosynthesis of different fermentation products. In this study, we first constructed an E. coli SA production strain that carries no plasmid or antibiotic marker. We then investigated the effect of endogenous NADPH availability on SA production. Results The pps and csrB genes were first overexpressed by replacing their native promoter and integrating an additional copy of the genes in a double gene knockout (aroK and aroL) of E. coli. The aroG fbr , aroB, aroE and tktA gene cluster was integrated into the above E. coli chromosome by direct transformation. The gene copy number was then evolved to the desired value by triclosan induction. The resulting strain, E. coli SA110, produced 8.9-fold more SA than did the parental strain E. coli (ΔaroKΔaroL). Following qRT-PCR analysis, another copy of the tktA gene under the control of the 5Ptac promoter was inserted into the chromosome of E. coli SA110 to obtain the more productive strain E. coli SA110. Next, the NADPH availability was increased by overexpressing the pntAB or nadK genes, which further enhanced SA production. The final strain, E. coli SA116, produced 3.12 g/L of SA with a yield on glucose substrate of 0.33 mol/mol. Conclusion An SA-producing E. coli strain that carries neither a plasmid nor an antibiotic marker was

  11. Germanium-on-Silicon Strain Engineered Materials for Improved Device Performance Grown by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Bharathan, Jayesh Moorkoth

    The primary goal of this research is to develop a chemical vapor deposition process for growing epitaxial films of germanium on silicon (001) substrates with two-dimensional (2-D) morphology, and a low density of threading dislocations. Growth was carried out in a reduced-pressure chemical vapor deposition (RPCVD) system by a two-step growth technique. An accurate knowledge of elastic constants of thin films is important in understanding the effect of strain on material properties. Residual thermal strain was used to measure the Poisson ratio of Ge films grown on Si(001) substrates, by the sin2Psi method and highresolution x-ray diffraction. The Poisson ratio of the Ge films was measured to be 0.25, compared to the bulk value of 0.27. The result was found to be independent of film thickness and defect density, which confirmed that the strain is associated with the elastic response of the film. The study showed that the use of Poisson ratio instead of bulk compliance values yields a more accurate description of the state of in-plane strain present in the film. The experimentally measured in-plane strain in Ge films was found to be lower than the theoretical calculations based on the differential thermal expansion coefficients of Si and Ge. The mechanism of thermal misfit strain relaxation in epitaxial Ge films grown on Si(001) substrates was investigated by x-ray diffraction, and transmission electron microscopy. Lattice misfit strain associated with Ge/(001)Si mismatched epitaxy is relieved by a network of Lomer edge misfit dislocations during the first step of the growth technique. However, thermal misfit strain energy during growth is relieved by interdiffusion mechanism at the heterointerface. Two SiGe compositions containing 0.5 and 6.0 atomic percent Si were detected that relieve the thermal mismatch strain associated with the two steps of the growth process. This study discusses the importance of interdiffusion mechanism in relieving small misfit strains

  12. Chemical Engineering Division fuel cycle programs. Quarterly progress report, October-December 1978

    SciTech Connect

    Steindler, M J; Ader, M; Barletta, R E

    1980-01-01

    In the program on pyrochemical and dry processing methods (PDPM) for nuclear fuel, tungsten crucibles were successfully spun for use in laboratory-scale experiments. Corrosion testing of refractory metals and alloys in PDPM environments was done. Ceramic substrates were successfully coated with tungsten. Solubility measurements were made to determine Cd/Mg alloy composition and temperature at which dissolved Th will precipitate. Experiments were started to study the reduction of high-fired ThO/sub 2/ with Ca in a molten metal-molten salt system. Work on the fused salt electrolysis of CaO was started. Equipment for determining phase diagrams for U-Cu-Mg system was set up. The reaction of UO/sub 2/ with molten equimolar NaNO/sub 3/-KNO/sub 3/ was studied as part of a project to identify chemically feasible nonaqueous fuel reprocessing methods. Work was continued on development of a flowsheet for reprocessing actinide oxides by extracting actinides into ammonium chloro-aluminate (and alternative salts) from a bismuth solution. Preparation of Th, U, and Pu nitrides after dissolution of spent fuel elements in molten tin is being studied. Leach rates of glass beads, pulverized beads, and beads encapsulated in a lead matrix with no protective envelope were studied. A method (employing no pressure or vacuum systems) of encapsulating various solid wastes in a lead metal matrix was developed and tested. A preliminary integration was made of earlier data on effects of impacts on metal-matrix waste forms.Leach migration experiments were compared with conventional infiltration experiments as methods of evaluating geologic formations as barriers to nuclide migration. The effect of the streaming potential on the rates of transport of radioactive I/sup -/ and Na/sup +/ through kaolinite columns was measured, as well as adsorption of iodide and iodate by several compounds; implications of the results upon the disposal of radioactive iodine are discussed.

  13. 14 CFR 21.502 - Acceptance of articles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Acceptance of articles. 21.502 Section 21... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Acceptance of Aircraft Engines, Propellers, and Articles for Import § 21.502 Acceptance of articles. An article (including an article produced under a letter of...

  14. 14 CFR 21.502 - Acceptance of articles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Acceptance of articles. 21.502 Section 21... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Acceptance of Aircraft Engines, Propellers, and Articles for Import § 21.502 Acceptance of articles. An article (including an article produced under a letter of...

  15. 14 CFR 21.502 - Acceptance of articles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Acceptance of articles. 21.502 Section 21... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Acceptance of Aircraft Engines, Propellers, and Articles for Import § 21.502 Acceptance of articles. An article (including an article produced under a letter of...

  16. 14 CFR 21.502 - Acceptance of articles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Acceptance of articles. 21.502 Section 21... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Acceptance of Aircraft Engines, Propellers, and Articles for Import § 21.502 Acceptance of articles. An article (including an article produced under a letter of...

  17. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals.

    PubMed

    Park, Si Jae; Kim, Eun Young; Noh, Won; Park, Hye Min; Oh, Young Hoon; Lee, Seung Hwan; Song, Bong Keun; Jegal, Jonggeon; Lee, Sang Yup

    2013-03-01

    5-Aminovalerate (5AVA) is the precursor of valerolactam, a potential building block for producing nylon 5, and is a C5 platform chemical for synthesizing 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. Escherichia coli was metabolically engineered for the production of 5-aminovalerate (5AVA) and glutarate. When the recombinant E. coli WL3110 strain expressing the Pseudomonas putidadavAB genes encoding delta-aminovaleramidase and lysine 2-monooxygenase, respectively, were cultured in a medium containing 20g/L of glucose and 10g/L of L-lysine, 3.6g/L of 5AVA was produced by converting 7g/L of L-lysine. When the davAB genes were introduced into recombinant E. coli strainXQ56allowing enhanced L-lysine synthesis, 0.27 and 0.5g/L of 5AVA were produced directly from glucose by batch and fed-batch cultures, respectively. Further conversion of 5AVA into glutarate could be demonstrated by expression of the P. putida gabTD genes encoding 5AVA aminotransferase and glutarate semialdehyde dehydrogenase. When recombinant E. coli WL3110 strain expressing the davAB and gabTD genes was cultured in a medium containing 20g/L glucose, 10g/L L-lysine and 10g/L α-ketoglutarate, 1.7g/L of glutarate was produced.

  18. Engineering highly organized and aligned single walled carbon nanotube networks for electronic device applications: Interconnects, chemical sensor, and optoelectronics

    NASA Astrophysics Data System (ADS)

    Kim, Young Lae

    For 20 years, single walled carbon nanotubes (SWNTs) have been studied actively due to their unique one-dimensional nanostructure and superior electrical, thermal, and mechanical properties. For these reasons, they offer the potential to serve as building blocks for future electronic devices such as field effect transistors (FETs), electromechanical devices, and various sensors. In order to realize these applications, it is crucial to develop a simple, scalable, and reliable nanomanufacturing process that controllably places aligned SWNTs in desired locations, orientations, and dimensions. Also electronic properties (semiconducting/metallic) of SWNTs and their organized networks must be controlled for the desired performance of devices and systems. These fundamental challenges are significantly limiting the use of SWNTs for future electronic device applications. Here, we demonstrate a strategy to fabricate highly controlled micro/nanoscale SWNT network structures and present the related assembly mechanism to engineer the SWNT network topology and its electrical transport properties. A method designed to evaluate the electrical reliability of such nano- and microscale SWNT networks is also presented. Moreover, we develop and investigate a robust SWNT based multifunctional selective chemical sensor and a range of multifunctional optoelectronic switches, photo-transistors, optoelectronic logic gates and complex optoelectronic digital circuits.

  19. Chemical vapor deposition of yttria-stabilized zirconia as a thermal barrier coating for gas turbine engines

    NASA Astrophysics Data System (ADS)

    Varanasi, Venu Gopal

    The gas turbine engine uses an yttria-stabilized zirconia (YSZ) coating to provide thermal insulation for its turbine blades. This YSZ coating must be tetragonal in crystal structure, columnar in microstructure, and be 100--250 mum thick to provide for adequate protection for the turbine blades in the severe engine environment. Currently, YSZ coatings are fabricated by electron-beam physical vapor deposition (EB-PVD), but this fabrication method is cost intensive. Chemical vapor deposition (CVD) is a more commercially viable processing method and a possible alternative to EB-PVD. The deposition of tetragonal YSZ from gaseous metal and oxidation sources were studied. A chemical equilibrium analysis modeled the feasibility of depositing tetragonal YSZ for both chloride CVD (Zr-Y-C-O-Cl-H-Inert system) and metal-organic CVD (MOCVD) (Zr-Y-C-O-H system). Pure thermochemical properties and the assessed YSZ phase diagram were used in this analysis. Using the molar input of metals ((nY + nZr) and ( nY/(nY + nZr ) = 0.08)) as bases, equilibrium calculations showed that tetragonal YSZ formation was feasible. Tetragonal YSZ formation was feasible with high oxygen content (nO/(nY + nZr) > 8) and high temperature (T > 100°C) in the case of chloride CVD (Zr-Y-C-O-Cl-H-Inert). Tetragonal YSZ formation was feasible with high oxygen content (nO/( nY + nZr) > 5) and high temperature (T > 950°C) in the case of MOCVD (Zr-Y-C-O-H). Although solid carbon formation did not appear in chloride CVD, additional oxygen (nO/( nY + nZr) > 32) and low hydrogen content relative to carbon (nH/nC < 2) were required to avoid solid carbon formation in MOCVD. Coatings were deposited using a set of base conditions derived from the chemical equilibrium analysis. In chloride CVD, YCl3 was not included because of its low vapor pressure, thus, ZrCl4 was oxidized with the H2-CO2 gas mixture. Monoclinic ZrO2 coatings were deposited at the thermochemically optimized conditions (n O/(nY + nZr) > 8, T > 1004

  20. LIMS user acceptance testing.

    PubMed

    Klein, Corbett S

    2003-01-01

    Laboratory Information Management Systems (LIMS) play a key role in the pharmaceutical industry. Thorough and accurate validation of such systems is critical and is a regulatory requirement. LIMS user acceptance testing is one aspect of this testing and enables the user to make a decision to accept or reject implementation of the system. This paper discusses key elements in facilitating the development and execution of a LIMS User Acceptance Test Plan (UATP).

  1. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3.

    PubMed

    Kinsey, J S; Hays, M D; Dong, Y; Williams, D C; Logan, R

    2011-04-15

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM) generated by commercial aviation engines. The exhaust plumes of seven turbofan engine models were sampled as part of the three test campaigns of the Aircraft Particle Emissions eXperiment (APEX). In these experiments, continuous measurements of black carbon (BC) and particle surface-bound polycyclic aromatic compounds (PAHs) were conducted. In addition, time-integrated sampling was performed for bulk elemental composition, water-soluble ions, organic and elemental carbon (OC and EC), and trace semivolatile organic compounds (SVOCs). The continuous BC and PAH monitoring showed a characteristic U-shaped curve of the emission index (EI or mass of pollutant/mass of fuel burned) vs fuel flow for the turbofan engines tested. The time-integrated EIs for both elemental composition and water-soluble ions were heavily dominated by sulfur and SO(4)(2-), respectively, with a ∼2.4% median conversion of fuel S(IV) to particle S(VI). The corrected OC and EC emission indices obtained in this study ranged from 37 to 83 mg/kg and 21 to 275 mg/kg, respectively, with the EC/OC ratio ranging from ∼0.3 to 7 depending on engine type and test conditions. Finally, the particle SVOC EIs varied by as much as 2 orders of magnitude with distinct variations in chemical composition observed for different engine types and operating conditions.

  2. On Maximum FODO Acceptance

    SciTech Connect

    Batygin, Yuri Konstantinovich

    2014-12-24

    This note illustrates maximum acceptance of FODO quadrupole focusing channel. Acceptance is the largest Floquet ellipse of a matched beam: A = $\\frac{a^2}{β}$$_{max}$ where a is the aperture of the channel and βmax is the largest value of beta-function in the channel. If aperture of the channel is restricted by a circle of radius a, the s-s acceptance is available for particles oscillating at median plane, y=0. Particles outside median plane will occupy smaller phase space area. In x-y plane, cross section of the accepted beam has a shape of ellipse with truncated boundaries.

  3. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies

    PubMed Central

    Schreiber, Frank; Wunderlin, Pascal; Udert, Kai M.; Wells, George F.

    2012-01-01

    Nitrous oxide (N2O) is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO) production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH) or the reduction of nitrite (NO−2) to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO−2 to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria (AOB). In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO−2, NH2OH, and nitroxyl (HNO). Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser absorption spectroscopy (QCLAS). In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build

  4. Some Physical, Chemical, and Biological Parameters of Samples of Scleractinium Coral Aquaculture Skeleton Used for Reconstruction/Engineering of the Bone Tissue.

    PubMed

    Popov, A A; Sergeeva, N S; Britaev, T A; Komlev, V S; Sviridova, I K; Kirsanova, V A; Akhmedova, S A; Dgebuadze, P Yu; Teterina, A Yu; Kuvshinova, E A; Schanskii, Ya D

    2015-08-01

    Physical and chemical (phase and chemical composition, dynamics of resorption, and strength properties), and biological (cytological compatibility and scaffold properties of the surface) properties of samples of scleractinium coral skeletons from aquacultures of three types and corresponding samples of natural coral skeletons (Pocillopora verrucosa, Acropora formosa, and Acropora nobilis) were studied. Samples of scleractinium coral aquaculture skeleton of A. nobilis, A. formosa, and P. verrucosa met the requirements (all study parameters) to materials for osteoplasty and 3D-scaffolds for engineering of bone tissue.

  5. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1992 through 1995

    SciTech Connect

    Bartholomay, R.C.; Tucker, B.J.; Ackerman, D.J.; Liszewski, M.J.

    1997-04-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The US Geological Survey, in cooperation with the US Department of Energy, maintains a monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1992--95.

  6. Technician Career Opportunities in Engineering Technology.

    ERIC Educational Resources Information Center

    Engineers' Council for Professional Development, New York, NY.

    Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…

  7. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products.

    PubMed

    Becker, Judith; Wittmann, Christoph

    2015-03-09

    Corynebacterium glutamicum, Escherichia coli, and Saccharomyces cerevisiae in particular, have become established as important industrial workhorses in biotechnology. Recent years have seen tremendous progress in their advance into tailor-made producers, driven by the upcoming demand for sustainable processes and renewable raw materials. Here, the diversity and complexity of nature is simultaneously a challenge and a benefit. Harnessing biodiversity in the right manner through synergistic progress in systems metabolic engineering and chemical synthesis promises a future innovative bio-economy.

  8. Systematic engineering of TCA cycle for optimal production of a four-carbon platform chemical 4-hydroxybutyric acid in Escherichia coli.

    PubMed

    Choi, Sol; Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2016-11-01

    To address climate change and environmental problems, it is becoming increasingly important to establish biorefineries for the production of chemicals from renewable non-food biomass. Here we report the development of Escherichia coli strains capable of overproducing a four-carbon platform chemical 4-hybroxybutyric acid (4-HB). Because 4-HB production is significantly affected by aeration level, genome-scale metabolic model-based engineering strategies were designed under aerobic and microaerobic conditions with emphasis on oxidative/reductive TCA branches and glyoxylate shunt. Several different metabolic engineering strategies were employed to develop strains suitable for fermentation both under aerobic and microaerobic conditions. It was found that microaerobic condition was more efficient than aerobic condition in achieving higher titer and productivity of 4-HB. The final engineered strain produced 103.4g/L of 4-HB by microaerobic fed-batch fermentation using glycerol. The aeration-dependent optimization strategy of TCA cycle will be useful for developing microbial strains producing other reduced derivative chemicals of TCA cycle intermediates.

  9. Chemicals for worldwide aquaculture

    USGS Publications Warehouse

    Schnick, R.A.

    1991-01-01

    Regulations and therapeutants or other safe chemicals that are approved or acceptable for use in the aquaculture industry in the US, Canada, Europe and Japan are presented, discussing also compounds that are unacceptable for aquaculture. Chemical use practices that could affect public health are considered and details given regarding efforts to increase the number of registered and acceptable chemicals.

  10. Newbery Medal Acceptance.

    ERIC Educational Resources Information Center

    Freedman, Russell

    1988-01-01

    Presents the Newbery Medal acceptance speech of Russell Freedman, writer of children's nonfiction. Discusses the place of nonfiction in the world of children's literature, the evolution of children's biographies, and the author's work on "Lincoln." (ARH)

  11. Student Chemical Engineering Reflective ePortfolios--ChE Student Perceptions of Learning from Reflective ePortfolio Creation

    ERIC Educational Resources Information Center

    Cherrstrom, Catherine A.; Raisor, Cindy; Fowler, Debra

    2015-01-01

    Engineering educators and employers value and prioritize communication skills, but developing and assessing such skills in engineering programs is challenging. Reflective ePortfolios provide opportunities to enhance communication skills. The purpose of this three-­year qualitative case study was to investigate the use of reflective ePortfolios in…

  12. A perspective on the potential development of environmentally acceptable light-duty diesel vehicles.

    PubMed

    Hammerle, R; Schuetzle, D; Adams, W

    1994-10-01

    Between 1979 and 1985, an international technical focus was placed upon potential human health effects associated with exposure to diesel emissions. A substantial data base was developed on the composition of diesel emissions; the fate of these emissions in the atmosphere; and the effects of whole particles and their chemical constituents on microorganisms, cells, and animals. Since that time, a number of significant developments have been made in diesel engine technology that require a new look at the future acceptability of introducing significant numbers of light-duty diesel automobiles into the European and American markets. Significant engineering improvements have been made in engine design, catalysts, and traps. As a result, particle emissions and particle associated organic emissions have been reduced by about 10 and 30 times, respectively, during the past 10 years. Research studies to help assess the environmental acceptability of these fuel-efficient engines include the development of an emissions data base for current and advanced diesel engines, the effect of diesel emissions on urban ozone formation and atmospheric particle concentrations, the effect of fuel composition, e.g., lower sulfur and additives on emissions, animal inhalation toxicology studies, and fundamental molecular biology studies.

  13. Identification of volatile and semivolatile compounds in chemical ionization GC-MS using a mass-to-structure (MTS) Search Engine with integral isotope pattern ranking.

    PubMed

    Liao, Wenta; Draper, William M

    2013-02-21

    The mass-to-structure or MTS Search Engine is an Access 2010 database containing theoretical molecular mass information for 19,438 compounds assembled from common sources such as the Merck Index, pesticide and pharmaceutical compilations, and chemical catalogues. This database, which contains no experimental mass spectral data, was developed as an aid to identification of compounds in atmospheric pressure ionization (API)-LC-MS. This paper describes a powerful upgrade to this database, a fully integrated utility for filtering or ranking candidates based on isotope ratios and patterns. The new MTS Search Engine is applied here to the identification of volatile and semivolatile compounds including pesticides, nitrosoamines and other pollutants. Methane and isobutane chemical ionization (CI) GC-MS spectra were obtained from unit mass resolution mass spectrometers to determine MH(+) masses and isotope ratios. Isotopes were measured accurately with errors of <4% and <6%, respectively, for A + 1 and A + 2 peaks. Deconvolution of interfering isotope clusters (e.g., M(+) and [M - H](+)) was required for accurate determination of the A + 1 isotope in halogenated compounds. Integrating the isotope data greatly improved the speed and accuracy of the database identifications. The database accurately identified unknowns from isobutane CI spectra in 100% of cases where as many as 40 candidates satisfied the mass tolerance. The paper describes the development and basic operation of the new MTS Search Engine and details performance testing with over 50 model compounds.

  14. Application of a Genetic Algorithm to the Optimization of Rate Constants in Chemical Kinetic Models for Combustion Simulation of HCCI Engines

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Kyu; Ito, Kazuma; Yoshihara, Daisuke; Wakisaka, Tomoyuki

    For numerically predicting the combustion processes in homogeneous charge compression ignition (HCCI) engines, practical chemical kinetic models have been explored. A genetic algorithm (GA) has been applied to the optimization of the rate constants in detailed chemical kinetic models, and a detailed kinetic model (592 reactions) for gasoline reference fuels with arbitrary octane number between 60 and 100 has been obtained from the detailed reaction schemes for iso-octane and n-heptane proposed by Golovitchev. The ignition timing in a gasoline HCCI engine has been predicted reasonably well by zero-dimensional simulation using the CHEMKIN code with this detailed kinetic model. An original reduced reaction scheme (45 reactions) for dimethyl ether (DME) has been derived from Curran’s detailed scheme, and the combustion process in a DME HCCI engine has been predicted reasonably well in a practical computation time by three-dimensional simulation using the authors’ GTT code, which has been linked to the CHEMKIN subroutines with the proposed reaction scheme and also has adopted a modified eddy dissipation combustion model.

  15. Accepting space radiation risks.

    PubMed

    Schimmerling, Walter

    2010-08-01

    The human exploration of space inevitably involves exposure to radiation. Associated with this exposure are multiple risks, i.e., probabilities that certain aspects of an astronaut's health or performance will be degraded. The management of these risks requires that such probabilities be accurately predicted, that the actual exposures be verified, and that comprehensive records be maintained. Implicit in these actions is the fact that, at some point, a decision has been made to accept a certain level of risk. This paper examines ethical and practical considerations involved in arriving at a determination that risks are acceptable, roles that the parties involved may play, and obligations arising out of reliance on the informed consent paradigm seen as the basis for ethical radiation risk acceptance in space.

  16. Metabolic Engineering X Conference

    SciTech Connect

    Flach, Evan

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  17. 105-KE Isolation Barrier Leak Rate Acceptance Test Report

    SciTech Connect

    McCracken, K.J.

    1995-06-14

    This Acceptance Test Report (ATR) contains the completed and signed Acceptance Procedure (ATP) for the 105-KE Isolations Barrier Leak Rate Test. The Test Engineer`s log, the completed sections of the ATP in the Appendix for Repeat Testing (Appendix K), the approved WHC J-7s (Appendix H), the data logger files (Appendices T and U), and the post test calibration checks (Appendix V) are included.

  18. Why was Relativity Accepted?

    NASA Astrophysics Data System (ADS)

    Brush, S. G.

    Historians of science have published many studies of the reception of Einstein's special and general theories of relativity. Based on a review of these studies, and my own research on the role of the light-bending prediction in the reception of general relativity, I discuss the role of three kinds of reasons for accepting relativity (1) empirical predictions and explanations; (2) social-psychological factors; and (3) aesthetic-mathematical factors. According to the historical studies, acceptance was a three-stage process. First, a few leading scientists adopted the special theory for aesthetic-mathematical reasons. In the second stage, their enthusiastic advocacy persuaded other scientists to work on the theory and apply it to problems currently of interest in atomic physics. The special theory was accepted by many German physicists by 1910 and had begun to attract some interest in other countries. In the third stage, the confirmation of Einstein's light-bending prediction attracted much public attention and forced all physicists to take the general theory of relativity seriously. In addition to light-bending, the explanation of the advance of Mercury's perihelion was considered strong evidence by theoretical physicists. The American astronomers who conducted successful tests of general relativity became defenders of the theory. There is little evidence that relativity was `socially constructed' but its initial acceptance was facilitated by the prestige and resources of its advocates.

  19. UGV acceptance testing

    NASA Astrophysics Data System (ADS)

    Kramer, Jeffrey A.; Murphy, Robin R.

    2006-05-01

    With over 100 models of unmanned vehicles now available for military and civilian safety, security or rescue applications, it is important to for agencies to establish acceptance testing. However, there appears to be no general guidelines for what constitutes a reasonable acceptance test. This paper describes i) a preliminary method for acceptance testing by a customer of the mechanical and electrical components of an unmanned ground vehicle system, ii) how it has been applied to a man-packable micro-robot, and iii) discusses the value of testing both to ensure that the customer has a workable system and to improve design. The test method automated the operation of the robot to repeatedly exercise all aspects and combinations of components on the robot for 6 hours. The acceptance testing process uncovered many failures consistent with those shown to occur in the field, showing that testing by the user does predict failures. The process also demonstrated that the testing by the manufacturer can provide important design data that can be used to identify, diagnose, and prevent long-term problems. Also, the structured testing environment showed that sensor systems can be used to predict errors and changes in performance, as well as uncovering unmodeled behavior in subsystems.

  20. Approaches to acceptable risk

    SciTech Connect

    Whipple, C.

    1997-04-30

    Several alternative approaches to address the question {open_quotes}How safe is safe enough?{close_quotes} are reviewed and an attempt is made to apply the reasoning behind these approaches to the issue of acceptability of radiation exposures received in space. The approaches to the issue of the acceptability of technological risk described here are primarily analytical, and are drawn from examples in the management of environmental health risks. These include risk-based approaches, in which specific quantitative risk targets determine the acceptability of an activity, and cost-benefit and decision analysis, which generally focus on the estimation and evaluation of risks, benefits and costs, in a framework that balances these factors against each other. These analytical methods tend by their quantitative nature to emphasize the magnitude of risks, costs and alternatives, and to downplay other factors, especially those that are not easily expressed in quantitative terms, that affect acceptance or rejection of risk. Such other factors include the issues of risk perceptions and how and by whom risk decisions are made.

  1. Radiochemical and chemical constituents in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area, Idaho, 1996

    SciTech Connect

    Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

    1997-06-01

    The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 19 sites as part of the fourth round of a long-term project to monitor water quality of the Snake river Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radiochemical and chemical constituents. The samples were collected from nine irrigation wells, three domestic wells, two dairy wells, two springs, one commercial well, one stock well, and one observation well. Two quality-assurance samples also were collected and analyzed. Additional sampling at six sites was done to complete the third round of sampling. None of the radiochemical or chemical constituents exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide- and inorganic-constituent concentrations were greater than their respective reporting levels.

  2. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  3. Three-stage autoignition of gasoline in an HCCI engine: An experimental and chemical kinetic modeling investigation

    SciTech Connect

    Machrafi, Hatim; Cavadias, Simeon

    2008-12-15

    The alternative HCCI combustion mode presents a possible means for decreasing the pollution with respect to conventional gasoline or diesel engines, while maintaining the efficiency of a diesel engine or even increasing it. This paper investigates the possibility of using gasoline in an HCCI engine and analyzes the autoignition of gasoline in such an engine. The compression ratio that has been used is 13.5, keeping the inlet temperature at 70 C, varying the equivalence ratio from 0.3 to 0.54, and the EGR (represented by N{sub 2}) ratio from 0 to 37 vol%. For comparison, a PRF95 and a surrogate containing 11 vol% n-heptane, 59 vol% iso-octane, and 30 vol% toluene are used. A previously validated kinetic surrogate mechanism is used to analyze the experiments and to yield possible explanations to kinetic phenomena. From this work, it seems quite possible to use the high octane-rated gasoline for autoignition purposes, even under lean inlet conditions. Furthermore, it appeared that gasoline and its surrogate, unlike PRF95, show a three-stage autoignition. Since the PRF95 does not contain toluene, it is suggested by the kinetic mechanism that the benzyl radical, issued from toluene, causes this so-defined ''obstructed preignition'' and delaying thereby the final ignition for gasoline and its surrogate. The results of the kinetic mechanism supporting this explanation are shown in this paper. (author)

  4. Acceptability of human risk.

    PubMed

    Kasperson, R E

    1983-10-01

    This paper has three objectives: to explore the nature of the problem implicit in the term "risk acceptability," to examine the possible contributions of scientific information to risk standard-setting, and to argue that societal response is best guided by considerations of process rather than formal methods of analysis. Most technological risks are not accepted but are imposed. There is also little reason to expect consensus among individuals on their tolerance of risk. Moreover, debates about risk levels are often at base debates over the adequacy of the institutions which manage the risks. Scientific information can contribute three broad types of analyses to risk-setting deliberations: contextual analysis, equity assessment, and public preference analysis. More effective risk-setting decisions will involve attention to the process used, particularly in regard to the requirements of procedural justice and democratic responsibility.

  5. Acceptability of human risk.

    PubMed Central

    Kasperson, R E

    1983-01-01

    This paper has three objectives: to explore the nature of the problem implicit in the term "risk acceptability," to examine the possible contributions of scientific information to risk standard-setting, and to argue that societal response is best guided by considerations of process rather than formal methods of analysis. Most technological risks are not accepted but are imposed. There is also little reason to expect consensus among individuals on their tolerance of risk. Moreover, debates about risk levels are often at base debates over the adequacy of the institutions which manage the risks. Scientific information can contribute three broad types of analyses to risk-setting deliberations: contextual analysis, equity assessment, and public preference analysis. More effective risk-setting decisions will involve attention to the process used, particularly in regard to the requirements of procedural justice and democratic responsibility. PMID:6418541

  6. Age and Acceptance of Euthanasia.

    ERIC Educational Resources Information Center

    Ward, Russell A.

    1980-01-01

    Study explores relationship between age (and sex and race) and acceptance of euthanasia. Women and non-Whites were less accepting because of religiosity. Among older people less acceptance was attributable to their lesser education and greater religiosity. Results suggest that quality of life in old age affects acceptability of euthanasia. (Author)

  7. Learning in style: Investigation of factors impacting student success in chemical engineering at individual and team-levels with a focus on student learning styles

    NASA Astrophysics Data System (ADS)

    Miskioglu, Elif Eda

    Our three studies examine the factors of learning styles, student self-efficacy, collective (team) efficacy, attitudes, perceptions, and performance at individual and team levels. Each study addresses a different environment: (i) Individual Level-we are interested in how variability in learning styles engaged by specific exam problems may correlate with student learning styles, self-efficacy, and performance in our introductory chemical engineering course, Process Fundamentals (i.e., mass and energy or material balances); (ii) Team Level-we are interested in understanding how team composition with respect to learning styles (homogeneous vs. heterogeneous teams) may influence these factors in the upper level Unit Operations course; (iii) Combinatorial Level-we are interested in understanding how collective efficacy may influence individual self-efficacy and again if there are any correlations with learning styles and performance in the senior level Process Design and Development course. Some of the most interesting results of these studies have stemmed from the study on individual students, which has shown correlations between learning style preferences and performance in specific instances. Even more interesting, evaluating and characterizing the learning styles that exam problems engage has shown strong variations in problem types by instructor. This presents new questions regarding how these variations may affect student understanding and subsequent performance. Also included are details regarding a course developed in Technical and Professional Communication (for Chemical Engineers) that was offered Spring 2014 and Spring 2015.

  8. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    SciTech Connect

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injection strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant

  9. High acceptance recoil polarimeter

    SciTech Connect

    The HARP Collaboration

    1992-12-05

    In order to detect neutrons and protons in the 50 to 600 MeV energy range and measure their polarization, an efficient, low-noise, self-calibrating device is being designed. This detector, known as the High Acceptance Recoil Polarimeter (HARP), is based on the recoil principle of proton detection from np[r arrow]n[prime]p[prime] or pp[r arrow]p[prime]p[prime] scattering (detected particles are underlined) which intrinsically yields polarization information on the incoming particle. HARP will be commissioned to carry out experiments in 1994.

  10. Baby-Crying Acceptance

    NASA Astrophysics Data System (ADS)

    Martins, Tiago; de Magalhães, Sérgio Tenreiro

    The baby's crying is his most important mean of communication. The crying monitoring performed by devices that have been developed doesn't ensure the complete safety of the child. It is necessary to join, to these technological resources, means of communicating the results to the responsible, which would involve the digital processing of information available from crying. The survey carried out, enabled to understand the level of adoption, in the continental territory of Portugal, of a technology that will be able to do such a digital processing. It was used the TAM as the theoretical referential. The statistical analysis showed that there is a good probability of acceptance of such a system.

  11. Chemical Equilibrium And Transport (CET)

    NASA Technical Reports Server (NTRS)

    Mcbride, B. J.

    1991-01-01

    Powerful, machine-independent program calculates theoretical thermodynamic properties of chemical systems. Aids in design of compressors, turbines, engines, heat exchangers, and chemical processing equipment.

  12. Engineering a Chemical Switch into the Light-driven Proton Pump Proteorhodopsin by Cysteine Mutagenesis and Thiol Modification.

    PubMed

    Harder, Daniel; Hirschi, Stephan; Ucurum, Zöhre; Goers, Roland; Meier, Wolfgang; Müller, Daniel J; Fotiadis, Dimitrios

    2016-07-25

    For applications in synthetic biology, for example, the bottom-up assembly of biomolecular nanofactories, modules of specific and controllable functionalities are essential. Of fundamental importance in such systems are energizing modules, which are able to establish an electrochemical gradient across a vesicular membrane as an energy source for powering other modules. Light-driven proton pumps like proteorhodopsin (PR) are excellent candidates for efficient energy conversion. We have extended the versatility of PR by implementing an on/off switch based on reversible chemical modification of a site-specifically introduced cysteine residue. The position of this cysteine residue in PR was identified by structure-based cysteine mutagenesis combined with a proton-pumping assay using E. coli cells overexpressing PR and PR proteoliposomes. The identified PR mutant represents the first light-driven proton pump that can be chemically switched on/off depending on the requirements of the molecular system.

  13. Investigation of the chemical stability of the laser-induced fluorescence tracers acetone, diethylketone, and toluene under IC engine conditions using Raman spectroscopy.

    PubMed

    Trost, Johannes; Zigan, Lars; Eichmann, Simone C; Seeger, Thomas; Leipertz, Alfred

    2013-09-01

    This paper reports on an investigation of the chemical stability of the common laser-induced fluorescence (LIF) tracers acetone, diethylketone, and toluene. Stability is analyzed using linear Raman spectroscopy inside a heated pressure cell with optical access, which is used for the LIF calibration of these tracers. The measurements examine the influence of temperature, pressure, and residence time on tracer oxidation, which occurs without a rise in temperature or pressure inside the cell, highlighting the need for optical detection. A comparison between the three different tracers shows large differences, with diethylketone having the lowest and toluene by far the highest stability. An analysis of the sensitivity of the measurement shows that the detection limit of the oxidized tracer is well below 3% molar fraction, which is typical for LIF applications in combustion devices such as internal combustion (IC) engines. Furthermore, the effect on the LIF signal intensity is examined in an isothermal turbulent mixing study.

  14. Re-engineering nalidixic acid's chemical scaffold: A step towards the development of novel anti-tubercular and anti-bacterial leads for resistant pathogens.

    PubMed

    Peraman, Ramalingam; Varma, Raghu Veer; Reddy, Y Padmanabha

    2015-10-01

    Occurrence of antibacterial and antimycobacterial resistance stimulated a thrust to discover new drugs for infectious diseases. Herein we report the work on re-engineering nalidixic acid's chemical scaffold for newer leads. Stepwise clubbing of quinoxaline, 1,2,4-triazole/1,3,4-oxadiazole with nalidixic acid yielded better compounds. Compounds were screened against ciprofloxacin resistant bacteria and Mycobacterium tuberculosis H37Rv species. Results were obtained as minimum inhibitory concentration, it was evident that molecule with quinoxaline linked azide as side chain served as antitubercular lead (<6.25 μg/ml) whilst molecule with oxadiazole or triazole linked quinoxaline side chain served as anti-bacterial lead. Few compounds were significantly active against Escherichia coli and Proteus vulgaris with MIC less than 0.06 μg/ml and relatively potent than ciprofloxacin. No true compound was potentially active against Salmonella species as compared to amoxicillin.

  15. Chemical Processes with Supercritical CO2 in Engineered Geologic Systems: Significance, Previous Study, and Path Forward (Invited)

    NASA Astrophysics Data System (ADS)

    Xu, T.; Pruess, K.

    2009-12-01

    Chemical reactions with dissolved CO2 in the aqueous phase have long been considered in fundamental geosciences and practical applications. Recently, studies on geologic carbon sequestration and enhanced geothermal systems using CO2 as heat transmission fluid have brought new interests in chemical reaction processes directly with supercritical CO2 (scCO2, or gas phase). In the vicinity of a CO2 injection well, the aqueous fluid initially present in a geological formation would be quickly removed by dissolution (evaporation) into the flowing gas stream and by immiscible displacement by the scCO2, creating a gas phase dominant zone. In this zone, the water evaporation could cause formation dry-out and precipitation of salt near the injection well, reducing formation porosity, permeability, and injectivity. The scCO2 may directly attack well construction materials such as cement. Over time, the gas phase will tend to migrate upwards towards the caprock because the density of the scCO2 is lower than that of the aqueous phase. In the upper portions of the reservoir, the scCO2 will directly react with caprock minerals and alter the hydrological properties and mechanical strength. On the other hand, the scCO2 phase will maintain the dissolution into the aqueous phase, lowering pH, inducing mineral dissolution, complexing with dissolved cations, increasing CO2 solubility, increasing the density of the aqueous phase, and promoting “convective mixing”. Chemical processes are quite different in the scCO2 dominant geologic systems. The absence of an aqueous phase poses unique questions, as little is presently known about the chemistry of non-aqueous systems. Additional issues arise from the reactivity of water that is dissolved in the ScCO2 phase. In this presentation, the author will discuss the importance, state of the studies performed, and future research directions.

  16. New Directions for Biomedical Engineering

    ERIC Educational Resources Information Center

    Plonsey, Robert

    1973-01-01

    Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)

  17. Crystal engineering of energetic materials: co-crystals of Ethylenedinitramine (EDNA) with modified performance and improved chemical stability.

    PubMed

    Aakeröy, Christer B; Wijethunga, Tharanga K; Desper, John

    2015-07-27

    In the area of energetic materials, co-crystallization is emerging as a new technology for modifying or enhancing the properties of existing energetic substances. Ethylenedinitramine (EDNA) is a known energetic material which requires attention partly due to its chemical instability originating with its two highly acidic protons. In order to stabilize EDNA, a co-crystallization approach targeting the acidic protons using a series of co-crystallizing agents with suitable hydrogen-bond acceptors was employed. Fifteen attempted co-crystallizations resulted in eight successful outcomes and six of these were crystallographically characterized and all showed evidence of hydrogen bonds to the intended protons. Calculated detonation properties and experimental thermal and impact data for the co-crystals were obtained and compared with those of pure EDNA. The co-crystal of EDNA and 1,2-bis(4-pyridyl)ethylene was recognized as a more thermally stable alternative to EDNA while the co-crystal of EDNA and pyrazine N,N'-dioxide showed comparable detonation strengths (and much improved chemical stability) compared with that of EDNA. The co-crystals EDNA:4,4'-bipyridine and EDNA:pyrazine N,N'-dioxide were found to be about 50 % less impact sensitive than EDNA, all of which illustrate how co-crystallizations can be utilized for successfully modifying specific aspects of energetic materials.

  18. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    DOE PAGES

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still

  19. Engineering evaluation/cost analysis for the proposed management of 15 nonprocess buildings (15 series) at the Weldon Spring Site Chemical Plant, Weldon Spring, Missouri

    SciTech Connect

    MacDonell, M M; Peterson, J M

    1989-05-01

    The US Department of Energy, under its Surplus Facilities Management Program (SFMP), is responsible for cleanup activities at the Weldon-Spring site, located near Weldon Spring, Missouri. The site consists of two noncontiguous areas: (1) a raffinate pits and chemical plant area and (2) a quarry. This engineering evaluation/cost analysis (EE/CA) report has been prepared to support a proposed removal action to manage 15 nonprocess buildings, identified as the 15 Series buildings, at the chemical plant on the Weldon Spring site. These buildings have been nonoperational for more than 20 years, and the deterioration that has occurred during this time has resulted in a potential threat to site workers, the general public, and the environment. The EE/CA documentation of this proposed action is consistent with guidance from the US Environmental Protection Agency (EPA) that addresses removal actions at sites subject to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act of 1986. Actions at the Weldon Spring site are subject to CERCLA requirements because the site is on the EPA`s National Priorities List. The objectives of this report are to (1) identify alternatives for management of the nonprocess buildings; (2) document the selection of response activities that will mitigate the potential threat to workers, the public, and the environment associated with these buildings; and (3) address environmental impacts associated with the proposed action.

  20. Engineering Chemically Active Defects in Monolayer MoS2 Transistors via Ion-Beam Irradiation and Their Healing via Vapor Deposition of Alkanethiols.

    PubMed

    Bertolazzi, Simone; Bonacchi, Sara; Nan, Guangjun; Pershin, Anton; Beljonne, David; Samorì, Paolo

    2017-03-01

    Irradiation of 2D sheets of transition metal dichalcogenides with ion beams has emerged as an effective approach to engineer chemically active defects in 2D materials. In this context, argon-ion bombardment has been utilized to introduce sulfur vacancies in monolayer molybdenum disulfide (MoS2 ). However, a detailed understanding of the effects of generated defects on the functional properties of 2D MoS2 is still lacking. In this work, the correlation between critical electronic device parameters and the density of sulfur vacancies is systematically investigated through the fabrication and characterization of back-gated monolayer MoS2 field-effect transistors (FETs) exposed to a variable fluence of low-energy argon ions. The electrical properties of pristine and ion-irradiated FETs can be largely improved/recovered by exposing the devices to vapors of short linear thiolated molecules. Such a solvent-free chemical treatment-carried out strictly under inert atmosphere-rules out secondary healing effects induced by oxygen or oxygen-containing molecules. The results provide a guideline to design monolayer MoS2 optoelectronic devices with a controlled density of sulfur vacancies, which can be further exploited to introduce ad hoc molecular functionalities by means of thiol chemistry approaches.

  1. Carbon Nanostructures in Bone Tissue Engineering

    PubMed Central

    Perkins, Brian Lee; Naderi, Naghmeh

    2016-01-01

    Background: Recent advances in developing biocompatible materials for treating bone loss or defects have dramatically changed clinicians’ reconstructive armory. Current clinically available reconstructive options have certain advantages, but also several drawbacks that prevent them from gaining universal acceptance. A wide range of synthetic and natural biomaterials is being used to develop tissue-engineered bone. Many of these materials are currently in the clinical trial stage. Methods: A selective literature review was performed for carbon nanostructure composites in bone tissue engineering. Results: Incorporation of carbon nanostructures significantly improves the mechanical properties of various biomaterials to mimic that of natural bone. Recently, carbon-modified biomaterials for bone tissue engineering have been extensively investigated to potentially revolutionize biomaterials for bone regeneration. Conclusion: This review summarizes the chemical and biophysical properties of carbon nanostructures and discusses their functionality in bone tissue regeneration. PMID:28217212

  2. Sonic boom acceptability studies

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P.; Sullivan, Brenda M.; Leatherwood, Jack D.; Mccurdy, David A.

    1992-01-01

    The determination of the magnitude of sonic boom exposure which would be acceptable to the general population requires, as a starting point, a method to assess and compare individual sonic booms. There is no consensus within the scientific and regulatory communities regarding an appropriate sonic boom assessment metric. Loudness, being a fundamental and well-understood attribute of human hearing was chosen as a means of comparing sonic booms of differing shapes and amplitudes. The figure illustrates the basic steps which yield a calculated value of loudness. Based upon the aircraft configuration and its operating conditions, the sonic boom pressure signature which reaches the ground is calculated. This pressure-time history is transformed to the frequency domain and converted into a one-third octave band spectrum. The essence of the loudness method is to account for the frequency response and integration characteristics of the auditory system. The result of the calculation procedure is a numerical description (perceived level, dB) which represents the loudness of the sonic boom waveform.

  3. Engineering of a Synthetic Metabolic Pathway for the Assimilation of (d)-Xylose into Value-Added Chemicals.

    PubMed

    Cam, Yvan; Alkim, Ceren; Trichez, Debora; Trebosc, Vincent; Vax, Amélie; Bartolo, François; Besse, Philippe; François, Jean Marie; Walther, Thomas

    2016-07-15

    A synthetic pathway for (d)-xylose assimilation was stoichiometrically evaluated and implemented in Escherichia coli strains. The pathway proceeds via isomerization of (d)-xylose to (d)-xylulose, phosphorylation of (d)-xylulose to obtain (d)-xylulose-1-phosphate (X1P), and aldolytic cleavage of the latter to yield glycolaldehyde and DHAP. Stoichiometric analyses showed that this pathway provides access to ethylene glycol with a theoretical molar yield of 1. Alternatively, both glycolaldehyde and DHAP can be converted to glycolic acid with a theoretical yield that is 20% higher than for the exclusive production of this acid via the glyoxylate shunt. Simultaneous expression of xylulose-1 kinase and X1P aldolase activities, provided by human ketohexokinase-C and human aldolase-B, respectively, restored growth of a (d)-xylulose-5-kinase mutant on xylose. This strain produced ethylene glycol as the major metabolic endproduct. Metabolic engineering provided strains that assimilated the entire C2 fraction into the central metabolism or that produced 4.3 g/L glycolic acid at a molar yield of 0.9 in shake flasks.

  4. Engineering chemically exfoliated dispersions of two-dimensional graphite and molybdenum disulphide for ink-jet printing

    NASA Astrophysics Data System (ADS)

    Michel, Monica; Desai, Jay A.; Biswas, Chandan; Kaul, Anupama B.

    2016-12-01

    Stable ink dispersions of two-dimensional-layered-materials (2DLMs) MoS2 and graphite are successfully obtained in organic solvents exhibiting a wide range of polarities and surface energies. The role of sonication time, ink viscosity and surface tension is explored in the context of dispersion stability using these solvents, which include N-methyl-2-pyrrolidone (NMP), N,N-Dimethylacetamide (DMA), dimethylformamide (DMF), Cyclohexanone (C), as well as less-toxic and more environmentally friendly Isopropanol (IPA) and Terpineol (T). The ink viscosity is engineered through the addition of Ethyl-Cellulose (EC) which has been shown to optimize the jettability of the dispersions. In contrast to prior work, the addition of EC after sonication—instead of prior to it—is noted to be effective in generating a high-density dispersion, yielding a uniform film morphology. High-quality inks are obtained using C/T and NMP as solvents for MoS2 and graphite, respectively, as gauged through optical absorption spectroscopy. Electronic transport data on the solution-cast inks is gathered at room temperature. Arrays of 2D graphite-rod based inks are printed on rigid Si, as well as flexible and transparent polyethylene terephthalate (PET) substrates. The results clearly show the promise of ink-jet printing for casting 2DLMs into hierarchically assembled structures over a range of substrates for flexible and printed-electronics applications.

  5. An experimental and numerical investigation on the influence of external gas recirculation on the HCCI autoignition process in an engine: Thermal, diluting, and chemical effects

    SciTech Connect

    Machrafi, Hatim; Cavadias, Simeon; Guibert, Philippe

    2008-11-15

    In order to contribute to the solution of controlling the autoignition in a homogeneous charge compression ignition (HCCI) engine, parameters linked to external gas recirculation (EGR) seem to be of particular interest. Experiments performed with EGR present some difficulties in interpreting results using only the diluting and thermal aspect of EGR. Lately, the chemical aspect of EGR is taken more into consideration, because this aspect causes a complex interaction with the dilution and thermal aspects of EGR. This paper studies the influence of EGR on the autoignition process and particularly the chemical aspect of EGR. The diluents present in EGR are simulated by N{sub 2} and CO{sub 2}, with dilution factors going from 0 to 46 vol%. For the chemically active species that could be present in EGR, the species CO, NO, and CH{sub 2}O are used. The initial concentration in the inlet mixture of CO and NO is varied between 0 and 170 ppm, while that of CH{sub 2}O alters between 0 and 1400 ppm. For the investigation of the effect of the chemical species on the autoignition, a fixed dilution factor of 23 vol% and a fixed EGR temperature of 70 C are maintained. The inlet temperature is held at 70 C, the equivalence ratios between 0.29 and 0.41, and the compression ratio at 10.2. The fuels used for the autoignition are n-heptane and PRF40. It appeared that CO, in the investigated domain, did not influence the ignition delays, while NO had two different effects. At concentrations up until 45 ppm, NO advanced the ignition delays for the PRF40 and at higher concentrations, the ignition delayed. The influence of NO on the autoignition of n-heptane seemed to be insignificant, probably due to the higher burn rate of n-heptane. CH{sub 2}O seemed to delay the ignition. The results suggested that especially the formation of OH radicals or their consumption by the chemical additives determines how the reactivity of the autoignition changed. (author)

  6. 14 CFR 151.123 - Procedures: Offer; amendment; acceptance; advance planning agreement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Procedures: Offer; amendment; acceptance... Planning and Engineering Proposals § 151.123 Procedures: Offer; amendment; acceptance; advance planning.... FAA's offer and the sponsor's acceptance constitute an advance planning grant agreement between...

  7. Mechanistic understanding of the cysteine capping modifications of antibodies enables selective chemical engineering in live mammalian cells.

    PubMed

    Zhong, Xiaotian; He, Tao; Prashad, Amar S; Wang, Wenge; Cohen, Justin; Ferguson, Darren; Tam, Amy S; Sousa, Eric; Lin, Laura; Tchistiakova, Lioudmila; Gatto, Scott; D'Antona, Aaron; Luan, Yen-Tung; Ma, Weijun; Zollner, Richard; Zhou, Jing; Arve, Bo; Somers, Will; Kriz, Ronald

    2017-03-11

    Protein modifications by intricate cellular machineries often redesign the structure and function of existing proteins to impact biological networks. Disulfide bond formation between cysteine (Cys) pairs is one of the most common modifications found in extracellularly-destined proteins, key to maintaining protein structure. Unpaired surface cysteines on secreted mammalian proteins are also frequently found disulfide-bonded with free Cys or glutathione (GSH) in circulation or culture, the mechanism for which remains unknown. Here we report that these so-called Cys-capping modifications take place outside mammalian cells, not in the endoplasmic reticulum (ER) where oxidoreductase-mediated protein disulfide formation occurs. Unpaired surface cysteines of extracellularly-arrived proteins such as antibodies are uncapped upon secretion before undergoing disulfide exchange with cystine or oxidized GSH in culture medium. This observation has led to a feasible way to selectively modify the nucleophilic thiol side-chain of cell-surface or extracellular proteins in live mammalian cells, by applying electrophiles with a chemical handle directly into culture medium. These findings provide potentially an effective approach for improving therapeutic conjugates and probing biological systems.

  8. Crystal Engineering for Low Defect Density and High Efficiency Hybrid Chemical Vapor Deposition Grown Perovskite Solar Cells.

    PubMed

    Ng, Annie; Ren, Zhiwei; Shen, Qian; Cheung, Sin Hang; Gokkaya, Huseyin Cem; So, Shu Kong; Djurišić, Aleksandra B; Wan, Yangyang; Wu, Xiaojun; Surya, Charles

    2016-12-07

    Synthesis of high quality perovskite absorber is a key factor in determining the performance of the solar cells. We demonstrate that hybrid chemical vapor deposition (HCVD) growth technique can provide high level of versatility and repeatability to ensure the optimal conditions for the growth of the perovskite films as well as potential for batch processing. It is found that the growth ambient and degree of crystallization of CH3NH3PbI3 (MAPI) have strong impact on the defect density of MAPI. We demonstrate that HCVD process with slow postdeposition cooling rate can significantly reduce the density of shallow and deep traps in the MAPI due to enhanced material crystallization, while a mixed O2/N2 carrier gas is effective in passivating both shallow and deep traps. By careful control of the perovskite growth process, a champion device with power conversion efficiency of 17.6% is achieved. Our work complements the existing theoretical studies on different types of trap states in MAPI and fills the gap on the theoretical analysis of the interaction between deep levels and oxygen. The experimental results are consistent with the theoretical predictions.

  9. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci.

    PubMed

    Schardl, Christopher L; Young, Carolyn A; Hesse, Uljana; Amyotte, Stefan G; Andreeva, Kalina; Calie, Patrick J; Fleetwood, Damien J; Haws, David C; Moore, Neil; Oeser, Birgitt; Panaccione, Daniel G; Schweri, Kathryn K; Voisey, Christine R; Farman, Mark L; Jaromczyk, Jerzy W; Roe, Bruce A; O'Sullivan, Donal M; Scott, Barry; Tudzynski, Paul; An, Zhiqiang; Arnaoudova, Elissaveta G; Bullock, Charles T; Charlton, Nikki D; Chen, Li; Cox, Murray; Dinkins, Randy D; Florea, Simona; Glenn, Anthony E; Gordon, Anna; Güldener, Ulrich; Harris, Daniel R; Hollin, Walter; Jaromczyk, Jolanta; Johnson, Richard D; Khan, Anar K; Leistner, Eckhard; Leuchtmann, Adrian; Li, Chunjie; Liu, JinGe; Liu, Jinze; Liu, Miao; Mace, Wade; Machado, Caroline; Nagabhyru, Padmaja; Pan, Juan; Schmid, Jan; Sugawara, Koya; Steiner, Ulrike; Takach, Johanna E; Tanaka, Eiji; Webb, Jennifer S; Wilson, Ella V; Wiseman, Jennifer L; Yoshida, Ruriko; Zeng, Zheng

    2013-01-01

    The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the

  10. Applications of a morphological scene change detection (MSCD) for visual leak and failure identification in process and chemical engineering

    NASA Astrophysics Data System (ADS)

    Tickle, Andrew J.; Harvey, Paul K.; Smith, Jeremy S.

    2010-10-01

    Morphological Scene Change Detection (MSCD) is a process typically tasked at detecting relevant changes in a guarded environment for security applications. This can be implemented on a Field Programmable Gate Array (FPGA) by a combination of binary differences based around exclusive-OR (XOR) gates, mathematical morphology and a crucial threshold setting. The additional ability to set up the system in virtually any location due to the FPGA makes it ideal for insertion into an autonomous mobile robot for patrol duties. However, security is not the only potential of this robust algorithm. This paper details how such a system can be used for the detection of leaks in piping for use in the process and chemical industries and could be deployed as stated in the above manner. The test substance in this work was water, which was pumped either as a liquid or as low pressure steam through a simple pipe configuration with holes at set points to simulate the leaks. These holes were situated randomly at either the center of a pipe (in order to simulate an impact to it) or at a joint or corner (to simulate a failed weld). Imagery of the resultant leaks, which were visualised as drips or the accumulation of steam, which where analysed using MATLAB to determine their pixel volume in order to calibrate the trigger for the MSCD. The triggering mechanism is adaptive to make it possible in theory for the type of leak to be determined by the number of pixels in the threshold of the image and a numerical output signal to state which of the leak situations is being observed. The system was designed using the DSP Builder package from Altera so that its graphical nature is easily comprehensible to the non-embedded system designer. Furthermore, all the data from the DSP Builder simulation underwent verification against MATLAB comparisons using the image processing toolbox in order to validate the results.

  11. Plant-Symbiotic Fungi as Chemical Engineers: Multi-Genome Analysis of the Clavicipitaceae Reveals Dynamics of Alkaloid Loci

    PubMed Central

    Schardl, Christopher L.; Young, Carolyn A.; Hesse, Uljana; Amyotte, Stefan G.; Andreeva, Kalina; Calie, Patrick J.; Fleetwood, Damien J.; Haws, David C.; Moore, Neil; Oeser, Birgitt; Panaccione, Daniel G.; Schweri, Kathryn K.; Voisey, Christine R.; Farman, Mark L.; Jaromczyk, Jerzy W.; Roe, Bruce A.; O'Sullivan, Donal M.; Scott, Barry; Tudzynski, Paul; An, Zhiqiang; Arnaoudova, Elissaveta G.; Bullock, Charles T.; Charlton, Nikki D.; Chen, Li; Cox, Murray; Dinkins, Randy D.; Florea, Simona; Glenn, Anthony E.; Gordon, Anna; Güldener, Ulrich; Harris, Daniel R.; Hollin, Walter; Jaromczyk, Jolanta; Johnson, Richard D.; Khan, Anar K.; Leistner, Eckhard; Leuchtmann, Adrian; Li, Chunjie; Liu, JinGe; Liu, Jinze; Liu, Miao; Mace, Wade; Machado, Caroline; Nagabhyru, Padmaja; Pan, Juan; Schmid, Jan; Sugawara, Koya; Steiner, Ulrike; Takach, Johanna E.; Tanaka, Eiji; Webb, Jennifer S.; Wilson, Ella V.; Wiseman, Jennifer L.; Yoshida, Ruriko; Zeng, Zheng

    2013-01-01

    The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the

  12. Physico-chemical and optical properties of combustion-generated particles from coal-fired power plant, automobile and ship engine and charcoal kiln.

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin

    2015-04-01

    Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low

  13. GEOSAT Follow-on (GFO) Altimeter Document Series. Volume 1; GFO Altimeter Engineering Assessment Report: From Launch to Acceptance, 10 February 1998 to 29 November 2000; 1.0

    NASA Technical Reports Server (NTRS)

    Hancock, David W., III; Hayne, George S.; Brooks, Ronald L.; Lockwood, Dennis W.

    2001-01-01

    The US Navy's Geosat Follow-On (GFO) Mission, launched on February 10, 1998, is the latest in a series of altimetric satellites which include Seasat, Geosat, ERS-1, and TOPEX/POSEIDON (T/P). The purpose of this report is to document the GFO altimeter performance determined from the analyses and results performed by the NASA/GSFC/Wallops altimeter calibration team. It is the first of an anticipated series of NASA/GSFC/Wallops' GFO performance documents, each of which will update assessment results. This report covers the performance from launch to instrument acceptance by the Navy on November 29, 2000. Data derived from GFO will lead to improvements in the knowledge of ocean circulation, ice sheet topography, and climate change. In order to capture the maximum amount of information from the GFO data, accurate altimeter calibrations are required for the civilian data set which NOAA will produce. Wallops Flight Facility has provided similar products for the Geosat and T/P missions and is doing the same for GFO.

  14. Identification, design and synthesis of oxygenated hydrocarbon-based carbon dioxide-soluble polymers for chemical and petroleum engineering applications

    NASA Astrophysics Data System (ADS)

    Hong, Lei

    Over the past two decades the use of sub/supercritical CO2 has received much attention as a green alternative to organic solvents for chemical processes because of its pressure-tunable physicochemical properties and economic advantages. However the advantages are diminished because of a relative narrow range of CO2-soluble materials. The goal of this work is to identify, design and synthesize oxygenated hydrocarbon-based CO 2-soluble polymers that are able to serve as construction blocks for copolymers, dispersants, surfactants, and thickeners. Without concerning on the cost and the environmental persistence like fluorinated materials, the inexpensive and environmentally benign materials would significantly enhance the viability of sub/supercritical CO2-based technology. Based on both experimental heuristics and ab initio simulation of molecular modeling (performed by Dr. Johnson's group), we proposed specific new polymer structures: poly (3-acetoxy oxetane) (PAO), poly (vinyl methoxymethyl ether) (PVMME), poly (vinyl 1-methoxyethyl ether) (PVMEE), and cellulose triacetate (CTA) oligomers. Phase behavior studies were also performed with novel CO 2-philic compounds containing vinyl acetate, propylene glycol, or multiple tert-butyl groups. PAO, PVMME and PVMME were soluble in CO2, but not as soluble as poly (vinyl acetate). Oligomers of cellulose triacetate with as many as four repeat units solubilized into dense CO2 less than 14 MPa in the concentration range of 1-5 wt%. Phase behaviors of more than twenty compounds in dense CO2 were studied in this project. A new type of phase behavior for solid CO2-philes that melt and dissolve in CO 2 was detailed using a model binary mixture of beta-D-maltose octaacetate and CO2. Copolymers of tetrafluoroethylene (TFE) and vinyl acetate (VAc) exhibited lower miscibility pressures than either of the homopolymers, probably due to quadradentate binding configurations with CO 2. Phase behavior investigation of poly (propylene glycol

  15. Acceptance of tinnitus: validation of the tinnitus acceptance questionnaire.

    PubMed

    Weise, Cornelia; Kleinstäuber, Maria; Hesser, Hugo; Westin, Vendela Zetterqvist; Andersson, Gerhard

    2013-01-01

    The concept of acceptance has recently received growing attention within tinnitus research due to the fact that tinnitus acceptance is one of the major targets of psychotherapeutic treatments. Accordingly, acceptance-based treatments will most likely be increasingly offered to tinnitus patients and assessments of acceptance-related behaviours will thus be needed. The current study investigated the factorial structure of the Tinnitus Acceptance Questionnaire (TAQ) and the role of tinnitus acceptance as mediating link between sound perception (i.e. subjective loudness of tinnitus) and tinnitus distress. In total, 424 patients with chronic tinnitus completed the TAQ and validated measures of tinnitus distress, anxiety, and depression online. Confirmatory factor analysis provided support to a good fit of the data to the hypothesised bifactor model (root-mean-square-error of approximation = .065; Comparative Fit Index = .974; Tucker-Lewis Index = .958; standardised root mean square residual = .032). In addition, mediation analysis, using a non-parametric joint coefficient approach, revealed that tinnitus-specific acceptance partially mediated the relation between subjective tinnitus loudness and tinnitus distress (path ab = 5.96; 95% CI: 4.49, 7.69). In a multiple mediator model, tinnitus acceptance had a significantly stronger indirect effect than anxiety. The results confirm the factorial structure of the TAQ and suggest the importance of a general acceptance factor that contributes important unique variance beyond that of the first-order factors activity engagement and tinnitus suppression. Tinnitus acceptance as measured with the TAQ is proposed to be a key construct in tinnitus research and should be further implemented into treatment concepts to reduce tinnitus distress.

  16. Acceptance test procedure for the 105-KW isolation barrier leak rate

    SciTech Connect

    McCracken, K.J.

    1995-05-19

    This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals. This Acceptance Test Procedure (ATP) has been prepared in accordance with CM-6-1 EP 4.2, Standard Engineering Practices.

  17. Cone penetrometer acceptance test report

    SciTech Connect

    Boechler, G.N.

    1996-09-19

    This Acceptance Test Report (ATR) documents the results of acceptance test procedure WHC-SD-WM-ATR-151. Included in this report is a summary of the tests, the results and issues, the signature and sign- off ATP pages, and a summarized table of the specification vs. ATP section that satisfied the specification.

  18. Using the peptide BP100 as a cell-penetrating tool for the chemical engineering of actin filaments within living plant cells.

    PubMed

    Eggenberger, Kai; Mink, Christian; Wadhwani, Parvesh; Ulrich, Anne S; Nick, Peter

    2011-01-03

    The delivery of externally applied macromolecules or nanoparticles into living cells still represents a critically limiting step before the full capabilities of chemical engineering can be explored. Molecular transporters such as cell-penetrating peptides, peptoids, and other mimetics can be used to carry cargo across the cellular membrane, but it is still difficult to find suitable sequences that operate efficiently for any particular type of cell. Here we report that BP100 (KKLFKKILKYL-amide), originally designed as an antimicrobial peptide against plant pathogens, can be employed as a fast and efficient cell-penetrating agent to transport fluorescent test cargoes into the cytosol of walled plant cells. The uptake of BP100 proceeds slightly more slowly than the endocytosis of fluorescent dextranes, but BP100 accumulates more efficiently and to much higher levels (by an order of magnitude). The entry of BP100 can be efficiently blocked by latrunculin B; this suggests that actin filaments are essential to the uptake mechanism. To test whether this novel transporter can also be used to deliver functional cargoes, we designed a fusion construct of BP100 with the actin-binding Lifeact peptide (MGVADLIKKFESISKEE). We demonstrated that the short BP100 could transport the attached 17-residue sequence quickly and efficiently into tobacco cells. The Lifeact construct retained its functionality as it successfully labeled the actin bundles that tether the nucleus in the cell center.

  19. Technical and Engineering Feasibility Study of the Vitrification of Plutonium-Bearing Sludges at the Krasnoyarsk Mining and Chemical Combine by Means of Microwave Heating

    SciTech Connect

    Revenko, Y.A.; Kudinov, K.G.; Tretyakov, A.A.; Vassilyev, A.V.; Borisov, G.B.; Nazarov, A.V.; Aloy, A.S.; Shvedov, A.A.; Gusakov, B.V.; Jardine, L.J.

    2000-03-03

    This engineering feasibility study compared three possible technical options and their economic viability of processing plutonium-bearing sludges containing 0.6 MT of weapons-grade Pu accumulated at the Mining and Chemical Combine (MCC) at Krasnoyarsk. In Option 1, the baseline, the sludges are processed by extraction and purification of plutonium for storage using existing technologies, and the non-soluble radioactive residues generated in these processes undergo subsequent solidification by cementation. Options 2 and 3 involve the direct immobilization of plutonium-bearing sludges into a solid matrix (without any Pu extraction) using a microwave solidification process in a metal crucible to produce a glass, which is boron-silicate in Option 2 and phosphate glass in Option 3. In all three options, the solid radioactive waste end products will be placed in storage for eventual geologic disposal. Immobilization of residual plutonium into glass-like matrices provides both safer storage over the lifetime of the radionuclides and greater security against unauthorized access to stored materials than does the extraction and concentration of PuO{sub 2}, supporting our efforts toward non-proliferation of fissile materials. Although immobilization in boron-silicate glass appears now to be marginally preferable compared to the phosphate glass option, a number of technical issues remain to be assessed by further study to determine the preferable immobilization option.

  20. Chemical constituents in water from wells in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho, 1991--93

    SciTech Connect

    Tucker, B.J.; Knobel, L.L.; Bartholomay, R.C.

    1995-11-01

    The US Geological Survey, in response to a request from the US Department of Energy`s Pittsburgh Naval Reactors Office, Idaho Branch Office, sampled 14 wells during 1991--93 as part of a long-term project to monitor water quality of the Snake River Plain aquifer in the vicinity of the Naval Reactors Facility, Idaho National Engineering Laboratory, Idaho. Water samples were analyzed for manmade contaminants and naturally occurring constituents. One hundred sixty-one samples were collected from 10 ground-water monitoring wells and 4 production wells. Twenty-one quality-assurance samples also were collected and analyzed; 2 were blank samples and 19 were replicate samples. The two blank samples contained concentrations of six inorganic constituents that were slightly greater than the laboratory reporting levels (the smallest measured concentration of a constituent that can be reported using a given analytical method). Concentrations of other constituents in the blank samples were less than their respective reporting levels. The 19 replicate samples and their respective primary samples generated 614 pairs of analytical results for a variety of chemical and radiochemical constituents. Of the 614 data pairs, 588 were statistically equivalent at the 95% confidence level; about 96% of the analytical results were in agreement. Two pairs of turbidity measurements were not evaluated because of insufficient information and one primary sample collected in January 1992 contained tentatively identified organic compounds when the replicate sample did not.

  1. Effects of debittering on grapefruit juice acceptance.

    PubMed

    Sami, P S; Toma, R B; Nelson, D B; Frank, G C

    1997-07-01

    This study was conducted to assess the acceptance of grapefruit juice which has undergone a debittering process. The sensory effect of debittering and the sensory attributes of sourness, sweetness, bitterness, and aftertaste were appraised, and the correlation between chemical and sensory analyses of the debittered juice were identified. The effect of added grapefruit flavor on perception of sweetness and sourness was statistically significant. Both the level of bitterness and storage duration of grapefruit were shown to influence the way judges perceived bitterness and sweetness. Storage study showed no difference in aftertaste, which may increase consumers buying interest in debittered juice with a high level of bitterness (450 ppm).

  2. Chemical Transformation System: Cloud Based ...

    EPA Pesticide Factsheets

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not contain the proprietary chemicals that environmental regulators must consider. We are building the Chemical Transformation System (CTS) to facilitate model parameterization and analysis. CTS integrates a number of physicochemical property calculators into the system including EPI Suite, SPARC, TEST and ChemAxon. The calculators are heterogeneous in their scientific methodologies, technology implementations and deployment stacks. CTS also includes a chemical transformation processing engine that has been loaded with reaction libraries for human biotransformation, abiotic reduction and abiotic hydrolysis. CTS implements a common interface for the disparate calculators accepting molecular identifiers (SMILES, IUPAC, CAS#, user-drawn molecule) before submission for processing. To make the system as accessible as possible and provide a consistent programmatic interface, we wrapped the calculators in a standardized RESTful Application Programming Interface (API) which makes it capable of servicing a much broader spectrum of clients without constraints to interoperability such as operating system or programming language. CTS is hosted in a shared cloud environment, the Quantitative Environmental

  3. Extending the Technology Acceptance Model: Policy Acceptance Model (PAM)

    NASA Astrophysics Data System (ADS)

    Pierce, Tamra

    There has been extensive research on how new ideas and technologies are accepted in society. This has resulted in the creation of many models that are used to discover and assess the contributing factors. The Technology Acceptance Model (TAM) is one that is a widely accepted model. This model examines people's acceptance of new technologies based on variables that directly correlate to how the end user views the product. This paper introduces the Policy Acceptance Model (PAM), an expansion of TAM, which is designed for the analysis and evaluation of acceptance of new policy implementation. PAM includes the traditional constructs of TAM and adds the variables of age, ethnicity, and family. The model is demonstrated using a survey of people's attitude toward the upcoming healthcare reform in the United States (US) from 72 survey respondents. The aim is that the theory behind this model can be used as a framework that will be applicable to studies looking at the introduction of any new or modified policies.

  4. 46 CFR 64.57 - Acceptance of pressure relief devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Acceptance of pressure relief devices. 64.57 Section 64.57 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs §...

  5. 46 CFR 64.57 - Acceptance of pressure relief devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Acceptance of pressure relief devices. 64.57 Section 64.57 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs §...

  6. 46 CFR 64.57 - Acceptance of pressure relief devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Acceptance of pressure relief devices. 64.57 Section 64.57 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs §...

  7. 46 CFR 64.57 - Acceptance of pressure relief devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Acceptance of pressure relief devices. 64.57 Section 64.57 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs §...

  8. 46 CFR 64.57 - Acceptance of pressure relief devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Acceptance of pressure relief devices. 64.57 Section 64.57 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs §...

  9. Market Acceptance of Smart Growth

    EPA Pesticide Factsheets

    This report finds that smart growth developments enjoy market acceptance because of stability in prices over time. Housing resales in smart growth developments often have greater appreciation than their conventional suburban counterparts.

  10. L-286 Acceptance Test Record

    SciTech Connect

    HARMON, B.C.

    2000-01-14

    This document provides a detailed account of how the acceptance testing was conducted for Project L-286, ''200E Area Sanitary Water Plant Effluent Stream Reduction''. The testing of the L-286 instrumentation system was conducted under the direct supervision

  11. High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment

    SciTech Connect

    Not Available

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

  12. Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Three - Appendix F

    SciTech Connect

    Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

    1999-04-01

    This appendix supports the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-13711/V1. This volume contains Appendix F. Appendix F is essentially a photocopy of the ORNL researchers' laboratory notebooks from the Environmental Sciences Division (ESD) and the Radioactive Materials Analytical Laboratory (RMAL).

  13. Chemical Characterization and Quality Control for an Adhesive.

    DTIC Science & Technology

    ADHESIVES, *IDENTIFICATION, *CHEMICAL ANALYSIS, *QUALITY CONTROL, PHYSICOCHEMICAL PROPERTIES, ACCEPTANCE TESTS, CLASSIFICATION, VIABILITY, TEST METHODS, ANALYTICAL CHEMISTRY, PROCESSING, PRODUCTION CONTROL , AIRCRAFT .

  14. Overview of rocket engine control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Musgrave, Jeffrey L.

    1991-01-01

    The issues of Chemical Rocket Engine Control are broadly covered. The basic feedback information and control variables used in expendable and reusable rocket engines, such as Space Shuttle Main Engine, are discussed. The deficiencies of current approaches are considered and a brief introduction to Intelligent Control Systems for rocket engines (and vehicles) is presented.

  15. A new cascade-less engine operated from subsonic to hypersonic conditions: designed by computational fluid dynamics of compressible turbulence with chemical reactions

    NASA Astrophysics Data System (ADS)

    Naitoh, Ken; Nakamura, Kazushi; Emoto, Takehiro

    2010-12-01

    By using our computational fluid dynamic models, a new type of single engine capable of operating over a wide range of Mach numbers from subsonic to hypersonic regimes is proposed for airplanes, whereas traditional piston engines, turbojet engines, and scram engines work only under a narrower range of operating conditions. The new engine has no compressors or turbines such as those used in conventional turbojet engines. An important point is its system of super multijets that collide to compress gas for the transonic regime. Computational fluid dynamics is applied to clarify the potential of this engine. The peak pressure at the combustion center is over 2.5 MPa, while that just before ignition is over 1.0 MPa. The maximum power of this engine will be sufficient for actual use. Under the conditions of higher Mach numbers, the main intake passage located in front of the super multijet nozzles, takes in air more. That results in a ram or scramjet engine for supersonic and hypersonic conditions.

  16. A Course in... Biochemical Engineering.

    ERIC Educational Resources Information Center

    Ng, Terry K-L.; And Others

    1988-01-01

    Describes a chemical engineering course for senior undergraduates and first year graduate students in biochemical engineering. Discusses five experiments used in the course: aseptic techniques, dissolved oxygen measurement, oxygen uptake by yeast, continuous sterilization, and cultivation of microorganisms. (MVL)

  17. From requirements to acceptance tests

    NASA Technical Reports Server (NTRS)

    Baize, Lionel; Pasquier, Helene

    1993-01-01

    From user requirements definition to accepted software system, the software project management wants to be sure that the system will meet the requirements. For the development of a telecommunication satellites Control Centre, C.N.E.S. has used new rules to make the use of tracing matrix easier. From Requirements to Acceptance Tests, each item of a document must have an identifier. A unique matrix traces the system and allows the tracking of the consequences of a change in the requirements. A tool has been developed, to import documents into a relational data base. Each record of the data base corresponds to an item of a document, the access key is the item identifier. Tracing matrix is also processed, providing automatically links between the different documents. It enables the reading on the same screen of traced items. For example one can read simultaneously the User Requirements items, the corresponding Software Requirements items and the Acceptance Tests.

  18. Defining acceptable conditions in wilderness

    NASA Astrophysics Data System (ADS)

    Roggenbuck, J. W.; Williams, D. R.; Watson, A. E.

    1993-03-01

    The limits of acceptable change (LAC) planning framework recognizes that forest managers must decide what indicators of wilderness conditions best represent resource naturalness and high-quality visitor experiences and how much change from the pristine is acceptable for each indicator. Visitor opinions on the aspects of the wilderness that have great impact on their experience can provide valuable input to selection of indicators. Cohutta, Georgia; Caney Creek, Arkansas; Upland Island, Texas; and Rattlesnake, Montana, wilderness visitors have high shared agreement that littering and damage to trees in campsites, noise, and seeing wildlife are very important influences on wilderness experiences. Camping within sight or sound of other people influences experience quality more than do encounters on the trails. Visitors’ standards of acceptable conditions within wilderness vary considerably, suggesting a potential need to manage different zones within wilderness for different clientele groups and experiences. Standards across wildernesses, however, are remarkably similar.

  19. Green Engineering Textbook and Training Modules

    EPA Pesticide Factsheets

    EPA's Green Engineering textbook, Green Engineering: Environmentally Conscious Design of Chemical Processes, is a college senior-to-graduate-level engineering textbook. The primary authors are Dr. David Allen and Dr. David Shonnard.

  20. Computing Equilibrium Chemical Compositions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.