Tao, Donghua
2008-01-01
This study extended the Technology Acceptance Model (TAM) by examining the roles of two aspects of e-resource characteristics, namely, information quality and system quality, in predicting public health students’ intention to use e-resources for completing research paper assignments. Both focus groups and a questionnaire were used to collect data. Descriptive analysis, data screening, and Structural Equation Modeling (SEM) techniques were used for data analysis. The study found that perceived usefulness played a major role in determining students’ intention to use e-resources. Perceived usefulness and perceived ease of use fully mediated the impact that information quality and system quality had on behavior intention. The research model enriches the existing technology acceptance literature by extending TAM. Representing two aspects of e-resource characteristics provides greater explanatory information for diagnosing problems of system design, development, and implementation. PMID:18999300
ERIC Educational Resources Information Center
Liu, Xun
2010-01-01
This study extended the technology acceptance model and empirically tested the new model with wikis, a new type of educational technology. Based on social cognitive theory and the theory of planned behavior, three new variables, wiki self-efficacy, online posting anxiety, and perceived behavioral control, were added to the original technology…
Predicting Innovation Acceptance by Simulation in Virtual Environments (Theoretical Foundations)
NASA Astrophysics Data System (ADS)
León, Noel; Duran, Roberto; Aguayo, Humberto; Flores, Myrna
This paper extends the current development of a methodology for Computer Aided Innovation. It begins with a presentation of concepts related to the perceived capabilities of virtual environments in the Innovation Cycle. The main premise establishes that it is possible to predict the acceptance of a new product in a specific market, by releasing an early prototype in a virtual scenario to quantify its general reception and to receive early feedback from potential customers. The paper continues to focus this research on a synergistic extension of techniques that have their origins in optimization and innovation disciplines. TRIZ (Theory of Inventive Problem Solving), extends the generation of variants with Evolutionary Algorithms (EA) and finally to present the designer and the intended customer, creative and innovative alternatives. All of this developed on a virtual software interface (Virtual World). The work continues with a general description of the project as a step forward to improve the overall strategy.
A Distributive Model of Treatment Acceptability
ERIC Educational Resources Information Center
Carter, Stacy L.
2008-01-01
A model of treatment acceptability is proposed that distributes overall treatment acceptability into three separate categories of influence. The categories are comprised of societal influences, consultant influences, and influences associated with consumers of treatments. Each of these categories are defined and their inter-relationships within…
Integrated Model for E-Learning Acceptance
NASA Astrophysics Data System (ADS)
Ramadiani; Rodziah, A.; Hasan, S. M.; Rusli, A.; Noraini, C.
2016-01-01
E-learning is not going to work if the system is not used in accordance with user needs. User Interface is very important to encourage using the application. Many theories had discuss about user interface usability evaluation and technology acceptance separately, actually why we do not make it correlation between interface usability evaluation and user acceptance to enhance e-learning process. Therefore, the evaluation model for e-learning interface acceptance is considered important to investigate. The aim of this study is to propose the integrated e-learning user interface acceptance evaluation model. This model was combined some theories of e-learning interface measurement such as, user learning style, usability evaluation, and the user benefit. We formulated in constructive questionnaires which were shared at 125 English Language School (ELS) students. This research statistics used Structural Equation Model using LISREL v8.80 and MANOVA analysis.
Model of aircraft passenger acceptance
NASA Technical Reports Server (NTRS)
Jacobson, I. D.
1978-01-01
A technique developed to evaluate the passenger response to a transportation system environment is described. Reactions to motion, noise, temperature, seating, ventilation, sudden jolts and descents are modeled. Statistics are presented for the age, sex, occupation, and income distributions of the candidates analyzed. Values are noted for the relative importance of system variables such as time savings, on-time arrival, convenience, comfort, safety, the ability to read and write, and onboard services.
Do I Have to Learn Something New? Mental Models and the Acceptance of Replacement Technologies
ERIC Educational Resources Information Center
Zhang, Wei; Xu, Peng
2011-01-01
Few studies in technology acceptance have explicitly addressed the acceptance of replacement technologies, technologies that replace legacy ones that have been in use. This article explores this issue through the theoretical lens of mental models. We contend that accepting replacement technologies entails both mental model maintenance and mental…
ERIC Educational Resources Information Center
Afari-Kumah, Eben; Achampong, Akwasi Kyere
2010-01-01
This study aims to examine the computer usage intentions of Ghanaian Tertiary Students. The Technology Acceptance Model was adopted as the theoretical framework to ascertain whether it could help explain behavioral intentions of individuals to accept and use technology. Factor analysis was used to assess the construct validity of the initial…
Theoretical Foundation for Weld Modeling
NASA Technical Reports Server (NTRS)
Traugott, S.
1986-01-01
Differential equations describe physics of tungsten/inert-gas and plasma-arc welding in aluminum. Report collects and describes necessary theoretical foundation upon which numerical welding model is constructed for tungsten/inert gas or plasma-arc welding in aluminum without keyhole. Governing partial differential equations for flow of heat, metal, and current given, together with boundary conditions relevant to welding process. Numerical estimates for relative importance of various phenomena and required properties of 2219 aluminum included
Theoretical Models of Generalized Quasispecies.
Wagner, Nathaniel; Atsmon-Raz, Yoav; Ashkenasy, Gonen
2016-01-01
Theoretical modeling of quasispecies has progressed in several directions. In this chapter, we review the works of Emmanuel Tannenbaum, who, together with Eugene Shakhnovich at Harvard University and later with colleagues and students at Ben-Gurion University in Beersheva, implemented one of the more useful approaches, by progressively setting up various formulations for the quasispecies model and solving them analytically. Our review will focus on these papers that have explored new models, assumed the relevant mathematical approximations, and proceeded to analytically solve for the steady-state solutions and run stochastic simulations . When applicable, these models were related to real-life problems and situations, including changing environments, presence of chemical mutagens, evolution of cancer and tumor cells , mutations in Escherichia coli, stem cells , chromosomal instability (CIN), propagation of antibiotic drug resistance , dynamics of bacteria with plasmids , DNA proofreading mechanisms, and more. PMID:26373410
Theoretical model of ``fuzz'' growth
NASA Astrophysics Data System (ADS)
Krasheninnikov, Sergei; Smirnov, Roman
2012-10-01
Recent more detailed experiments on tungsten irradiation with low energy helium plasma, relevant to the near-wall plasma conditions in magnetic fusion reactor like ITER, demonstrated (e.g. see Ref. 1) a very dramatic change in both surface morphology and near surface material structure of the samples. In particular, it was shown that a long (mm-scale) and thin (nm-scale) fiber-like structures filled with nano-bubbles, so-called ``fuzz,'' start to grow. In this work theoretical model of ``fuzz'' growth [2] describing the main features observed in experiments is presented. This model, based on the assumption of enhancement of creep of tungsten containing significant fraction of helium atoms and clusters. The results of the MD simulations [3] support this idea and demonstrate a strong reduction of the yield strength for all temperature range. They also show that the ``flow'' of tungsten strongly facilitates coagulation of helium clusters and the formation of nano-bubbles.[4pt] [1] M. J. Baldwin, et al., J. Nucl. Mater. 390-391 (2009) 885;[0pt] [2] S. I. Krasheninnikov, Physica Scripta T145 (2011) 014040;[0pt] [3] R. D. Smirnov and S. I. Krasheninnikov, submitted to J. Nucl. Materials.
ERIC Educational Resources Information Center
Kirmizi, Özkan
2014-01-01
The aim of this study is to investigate technology acceptance of prospective English teachers by using Technology Acceptance Model (TAM) in Turkish context. The study is based on Structural Equation Model (SEM). The participants of the study from English Language Teaching Departments of Hacettepe, Gazi and Baskent Universities. The participants…
49 CFR 41.120 - Acceptable model codes.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 1 2014-10-01 2014-10-01 false Acceptable model codes. 41.120 Section 41.120 Transportation Office of the Secretary of Transportation SEISMIC SAFETY § 41.120 Acceptable model codes. (a) This... of this part. (b)(1) The following are model codes which have been found to provide a level...
49 CFR 41.120 - Acceptable model codes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 1 2010-10-01 2010-10-01 false Acceptable model codes. 41.120 Section 41.120 Transportation Office of the Secretary of Transportation SEISMIC SAFETY § 41.120 Acceptable model codes. (a) This... of this part. (b)(1) The following are model codes which have been found to provide a level...
Technological Diffusion within Educational Institutions: Applying the Technology Acceptance Model.
ERIC Educational Resources Information Center
Wolski, Stacy; Jackson, Sally
Expectancy models of behavior such as the Theory of Reasoned Action (TRA) and the Technology Acceptance Model (TAM) offer guidelines that aid efforts to facilitate use of new technology. These models remind us that both acceptance of and resistance to technology use are grounded in beliefs and norms regarding the technology. Although TAM is widely…
NASA Astrophysics Data System (ADS)
Chu, Hsing-Hui; Lu, Ta-Jung; Wann, Jong-Wen
The purpose of this research is to explore enterprises' acceptance of Audience Response System (ARS) using Technology Acceptance Model (TAM). The findings show that (1) IT characteristics and facilitating conditions could be external variables of TAM. (2) The degree of E-business has positive significant correlation with behavioral intention of employees. (3) TAM is a good model to predict and explain IT acceptance. (4) Demographic variables, industry and firm characteristics have no significant correlation with ARS acceptance. The results provide useful information to managers and ARS providers that (1) ARS providers should focus more on creating different usages to enhance interactivity and employees' using intention. (2) Managers should pay attention to build sound internal facilitating conditions for introducing IT. (3) According to the degree of E-business, managers should set up strategic stages of introducing IT. (4) Providers should increase product promotion and also leverage academic and government to promote ARS.
APPRENTICESHIP--A THEORETICAL MODEL.
ERIC Educational Resources Information Center
DUFTY, NORMAN F.
AN INQUIRY INTO RECRUITMENT OF APPRENTICES TO SKILLED TRADES IN WESTERN AUSTRALIA INDICATED LITTLE CORRELATION BETWEEN THE NUMBER OF NEW APPRENTICES AND THE LEVEL OF INDUSTRIAL EMPLOYMENT OR THE TOTAL NUMBER OF APPRENTICES. THIS ARTICLE ATTEMPTS TO OUTLINE A MATHEMATICAL MODEL OF AN APPRENTICESHIP SYSTEM AND DISCUSS ITS IMPLICATIONS. THE MODEL, A…
Theoretical Modelling of Hot Stars
NASA Astrophysics Data System (ADS)
Najarro, F.; Hillier, D. J.; Figer, D. F.; Geballe, T. R.
1999-06-01
Recent progress towards model atmospheres for hot stars is discussed. A new generation of NLTE wind blanketed models, together with high S/N spectra of the hot star population in the central parsec, which are currently being obtained, will allow metal abundance determinations (Fe, Si, Mg, Na, etc). Metallicity studies of hot stars in the IR will provide major constraints not only on the theory of evolution of massive stars but also on our efforts to solve the puzzle of the central parsecs of the Galaxy. Preliminary results suggest that the metallicity of the Pistol Star is 3 times solar, thus indicating strong chemical enrichment of the gas in the Galactic Center.
Theoretical Modeling of Interstellar Chemistry
NASA Technical Reports Server (NTRS)
Charnley, Steven
2009-01-01
The chemistry of complex interstellar organic molecules will be described. Gas phase processes that may build large carbon-chain species in cold molecular clouds will be summarized. Catalytic reactions on grain surfaces can lead to a large variety of organic species, and models of molecule formation by atom additions to multiply-bonded molecules will be presented. The subsequent desorption of these mixed molecular ices can initiate a distinctive organic chemistry in hot molecular cores. The general ion-molecule pathways leading to even larger organics will be outlined. The predictions of this theory will be compared with observations to show how possible organic formation pathways in the interstellar medium may be constrained. In particular, the success of the theory in explaining trends in the known interstellar organics, in predicting recently-detected interstellar molecules, and, just as importantly, non-detections, will be discussed.
Theoretical models of helicopter rotor noise
NASA Technical Reports Server (NTRS)
Hawkings, D. L.
1978-01-01
For low speed rotors, it is shown that unsteady load models are only partially successful in predicting experimental levels. A theoretical model is presented which leads to the concept of unsteady thickness noise. This gives better agreement with test results. For high speed rotors, it is argued that present models are incomplete and that other mechanisms are at work. Some possibilities are briefly discussed.
ERIC Educational Resources Information Center
Park, Eunil; Kim, Ki Joon
2013-01-01
Purpose: The aim of this paper is to propose an integrated path model in order to explore user acceptance of long-term evolution (LTE) services by examining potential causal relationships between key psychological factors and user intention to use the services. Design/methodology/approach: Online survey data collected from 1,344 users are analysed…
ERIC Educational Resources Information Center
Yousif, Wael K.
2010-01-01
This causal and correlational study was designed to extend the Technology Acceptance Model (TAM) and to test its applicability to Valencia Community College (VCC) Engineering and Technology students as the target user group when investigating the factors influencing their decision to adopt and to utilize VMware as the target technology. In…
User Acceptance of YouTube for Procedural Learning: An Extension of the Technology Acceptance Model
ERIC Educational Resources Information Center
Lee, Doo Young; Lehto, Mark R.
2013-01-01
The present study was framed using the Technology Acceptance Model (TAM) to identify determinants affecting behavioral intention to use YouTube. Most importantly, this research emphasizes the motives for using YouTube, which is notable given its extrinsic task goal of being used for procedural learning tasks. Our conceptual framework included two…
Dimensions of Black Suicide: A Theoretical Model.
ERIC Educational Resources Information Center
Davis, Robert; Short, James F., Jr.
This paper develops a theoretical model of sucide, based on the theory of "external restraints" proposed by previous researchers, A.F. Henry and J.F. Short, Jr., and applies the model to a study of black suicides in Orleans Parish, Louisiana. The focus of the study is on the complexity of relationships between dimensions of black suicide and the…
Hybrid quantum teleportation: A theoretical model
Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; Yoshikawa, Jun-ichi; Yonezawa, Hidehiro; Furusawa, Akira
2014-12-04
Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.
THE TECHNOLOGY ACCEPTANCE MODEL: ITS PAST AND ITS FUTURE IN HEALTH CARE
HOLDEN, RICHARD J.; KARSH, BEN-TZION
2009-01-01
Increasing interest in end users’ reactions to health information technology (IT) has elevated the importance of theories that predict and explain health IT acceptance and use. This paper reviews the application of one such theory, the Technology Acceptance Model (TAM), to health care. We reviewed 16 data sets analyzed in over 20 studies of clinicians using health IT for patient care. Studies differed greatly in samples and settings, health ITs studied, research models, relationships tested, and construct operationalization. Certain TAM relationships were consistently found to be significant, whereas others were inconsistent. Several key relationships were infrequently assessed. Findings show that TAM predicts a substantial portion of the use or acceptance of health IT, but that the theory may benefit from several additions and modifications. Aside from improved study quality, standardization, and theoretically motivated additions to the model, an important future direction for TAM is to adapt the model specifically to the health care context, using beliefs elicitation methods. PMID:19615467
Hybrid rocket engine, theoretical model and experiment
NASA Astrophysics Data System (ADS)
Chelaru, Teodor-Viorel; Mingireanu, Florin
2011-06-01
The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.
Determinants of Social Networking Software Acceptance: A Multi-Theoretical Approach
ERIC Educational Resources Information Center
Shittu, Ahmed Tajudeen; Madarsha, Kamal Basha; AbduRahman, Nik Suryani Nik; Ahmad, Tunku Badariah Tunku
2013-01-01
Understanding reasons why students use social media has become a major preoccupation of researchers in recent time due to the rate of its adoption among the present generation of students. Some of the few study on social media phenomenon employed a single theory as a framework in order to understand the factors that influence the acceptance of it…
Theoretical models of neural circuit development.
Simpson, Hugh D; Mortimer, Duncan; Goodhill, Geoffrey J
2009-01-01
Proper wiring up of the nervous system is critical to the development of organisms capable of complex and adaptable behaviors. Besides the many experimental advances in determining the cellular and molecular machinery that carries out this remarkable task precisely and robustly, theoretical approaches have also proven to be useful tools in analyzing this machinery. A quantitative understanding of these processes can allow us to make predictions, test hypotheses, and appraise established concepts in a new light. Three areas that have been fruitful in this regard are axon guidance, retinotectal mapping, and activity-dependent development. This chapter reviews some of the contributions made by mathematical modeling in these areas, illustrated by important examples of models in each section. For axon guidance, we discuss models of how growth cones respond to their environment, and how this environment can place constraints on growth cone behavior. Retinotectal mapping looks at computational models for how topography can be generated in populations of neurons based on molecular gradients and other mechanisms such as competition. In activity-dependent development, we discuss theoretical approaches largely based on Hebbian synaptic plasticity rules, and how they can generate maps in the visual cortex very similar to those seen in vivo. We show how theoretical approaches have substantially contributed to the advancement of developmental neuroscience, and discuss future directions for mathematical modeling in the field. PMID:19427515
Simple theoretical models for composite rotor blades
NASA Technical Reports Server (NTRS)
Valisetty, R. R.; Rehfield, L. W.
1984-01-01
The development of theoretical rotor blade structural models for designs based upon composite construction is discussed. Care was exercised to include a member of nonclassical effects that previous experience indicated would be potentially important to account for. A model, representative of the size of a main rotor blade, is analyzed in order to assess the importance of various influences. The findings of this model study suggest that for the slenderness and closed cell construction considered, the refinements are of little importance and a classical type theory is adequate. The potential of elastic tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in the cell wall is needed to exploit this opportunity.
Theoretical modeling for the stereo mission
NASA Astrophysics Data System (ADS)
Aschwanden, Markus J.; Burlaga, L. F.; Kaiser, M. L.; Ng, C. K.; Reames, D. V.; Reiner, M. J.; Gombosi, T. I.; Lugaz, N.; Manchester, W.; Roussev, I. I.; Zurbuchen, T. H.; Farrugia, C. J.; Galvin, A. B.; Lee, M. A.; Linker, J. A.; Mikić, Z.; Riley, P.; Alexander, D.; Sandman, A. W.; Cook, J. W.; Howard, R. A.; Odstrčil, D.; Pizzo, V. J.; Kóta, J.; Liewer, P. C.; Luhmann, J. G.; Inhester, B.; Schwenn, R. W.; Solanki, S. K.; Vasyliunas, V. M.; Wiegelmann, T.; Blush, L.; Bochsler, P.; Cairns, I. H.; Robinson, P. A.; Bothmer, V.; Kecskemety, K.; Llebaria, A.; Maksimovic, M.; Scholer, M.; Wimmer-Schweingruber, R. F.
2008-04-01
We summarize the theory and modeling efforts for the STEREO mission, which will be used to interpret the data of both the remote-sensing (SECCHI, SWAVES) and in-situ instruments (IMPACT, PLASTIC). The modeling includes the coronal plasma, in both open and closed magnetic structures, and the solar wind and its expansion outwards from the Sun, which defines the heliosphere. Particular emphasis is given to modeling of dynamic phenomena associated with the initiation and propagation of coronal mass ejections (CMEs). The modeling of the CME initiation includes magnetic shearing, kink instability, filament eruption, and magnetic reconnection in the flaring lower corona. The modeling of CME propagation entails interplanetary shocks, interplanetary particle beams, solar energetic particles (SEPs), geoeffective connections, and space weather. This review describes mostly existing models of groups that have committed their work to the STEREO mission, but is by no means exhaustive or comprehensive regarding alternative theoretical approaches.
Propagation studies using a theoretical ionosphere model
NASA Technical Reports Server (NTRS)
Lee, M.
1973-01-01
The mid-latitude ionospheric and neutral atmospheric models are coupled with an advanced three dimensional ray tracing program to see what success would be obtained in predicting the wave propagation conditions and to study to what extent the use of theoretical ionospheric models is practical. The Penn State MK 1 ionospheric model, the Mitra-Rowe D region model, and the Groves' neutral atmospheric model are used throughout this work to represent the real electron densities and collision frequencies. The Faraday rotation and differential Doppler velocities from satellites, the propagation modes for long distance high frequency propagation, the group delays for each mode, the ionospheric absorption, and the spatial loss are all predicted.
Theoretical models for polarimetric radar clutter
NASA Technical Reports Server (NTRS)
Borgeaud, M.; Shin, R. T.; Kong, J. A.
1987-01-01
The Mueller matrix and polarization covariance matrix are described for polarimetric radar systems. The clutter is modeled by a layer of random permittivity, described by a three-dimensional correlation function, with variance, and horizontal and vertical correlation lengths. This model is applied, using the wave theory with Born approximations carried to the second order, to find the backscattering elements of the polarimetric matrices. It is found that 8 out of 16 elements of the Mueller matrix are identically zero, corresponding to a covariance matrix with four zero elements. Theoretical predictions are matched with experimental data for vegetation fields.
ERIC Educational Resources Information Center
Cheung, Ronnie; Vogel, Doug
2013-01-01
Collaborative technologies support group work in project-based environments. In this study, we enhance the technology acceptance model to explain the factors that influence the acceptance of Google Applications for collaborative learning. The enhanced model was empirically evaluated using survey data collected from 136 students enrolled in a…
Ketikidis, Panayiotis; Dimitrovski, Tomislav; Lazuras, Lambros; Bath, Peter A
2012-06-01
The response of health professionals to the use of health information technology (HIT) is an important research topic that can partly explain the success or failure of any HIT application. The present study applied a modified version of the revised technology acceptance model (TAM) to assess the relevant beliefs and acceptance of HIT systems in a sample of health professionals (n = 133). Structured anonymous questionnaires were used and a cross-sectional design was employed. The main outcome measure was the intention to use HIT systems. ANOVA was employed to examine differences in TAM-related variables between nurses and medical doctors, and no significant differences were found. Multiple linear regression analysis was used to assess the predictors of HIT usage intentions. The findings showed that perceived ease of use, but not usefulness, relevance and subjective norms directly predicted HIT usage intentions. The present findings suggest that a modification of the original TAM approach is needed to better understand health professionals' support and endorsement of HIT. Perceived ease of use, relevance of HIT to the medical and nursing professions, as well as social influences, should be tapped by information campaigns aiming to enhance support for HIT in healthcare settings. PMID:22733680
Theoretical models for supercritical fluid extraction.
Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan
2012-08-10
For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. PMID:22560346
Models in Educational Administration: Revisiting Willower's "Theoretically Oriented" Critique
ERIC Educational Resources Information Center
Newton, Paul; Burgess, David; Burns, David P.
2010-01-01
Three decades ago, Willower (1975) argued that much of what we take to be theory in educational administration is in fact only theoretically oriented. If we accept Willower's assessment of the field as true, what implications does this statement hold for the academic study and practical application of the theoretically oriented aspects of our…
A Theoretical Model of Water and Trade
NASA Astrophysics Data System (ADS)
Dang, Q.; Konar, M.; Reimer, J.; Di Baldassarre, G.; Lin, X.; Zeng, R.
2015-12-01
Water is an essential factor of agricultural production. Agriculture, in turn, is globalized through the trade of food commodities. In this paper, we develop a theoretical model of a small open economy that explicitly incorporates water resources. The model emphasizes three tradeoffs involving water decision-making that are important yet not always considered within the existing literature. One tradeoff focuses on competition for water among different sectors when there is a shock to one of the sectors only, such as trade liberalization and consequent higher demand for the product. A second tradeoff concerns the possibility that there may or may not be substitutes for water, such as increased use of sophisticated irrigation technology as a means to increase crop output in the absence of higher water availability. A third tradeoff explores the possibility that the rest of the world can be a source of supply or demand for a country's water-using products. A number of propositions are proven. For example, while trade liberalization tends to increase water use, increased pressure on water supplies can be moderated by way of a tax that is derivable with observable economic phenomena. Another example is that increased riskiness of water availability tends to cause water users to use less water than would be the case under profit maximization. These theoretical model results generate hypotheses that can be tested empirically in future work.
Requirements for theoretical models of outflows
NASA Technical Reports Server (NTRS)
Linsky, Jeffrey L.
1988-01-01
Recent observational and theoretical investigations of astrophysical mass outflows are reviewed, with a focus on the basic physical principles. Specific limitations on the observational data and their interpretation are listed and discussed. Modeling problems considered include the role of the critical point in determining the mass-loss rate and terminal velocity, the physical processes controlling density at the critical point, the possible coexistence of multiple mass-loss mechanisms, time scales, instabilities and phase changes, multiphase atmospheres and winds, the definition of geometries, the role of the environment, explosive transient events, stochastic phenomena, mode-mode coupling and damping processes, departures from ionization equilibrium, and nonthermal phenomena.
2012-01-01
Background Technology-enhanced learning (TEL) gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience. Methods 42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation) questionnaire for the evaluation of courses given at universities. Results Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course. The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course. The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group. Conclusions It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired. However, technology
A theoretical model of water and trade
NASA Astrophysics Data System (ADS)
Dang, Qian; Konar, Megan; Reimer, Jeffrey J.; Di Baldassarre, Giuliano; Lin, Xiaowen; Zeng, Ruijie
2016-03-01
Water is an essential input for agricultural production. Agriculture, in turn, is globalized through the trade of agricultural commodities. In this paper, we develop a theoretical model that emphasizes four tradeoffs involving water-use decision-making that are important yet not always considered in a consistent framework. One tradeoff focuses on competition for water among different economic sectors. A second tradeoff examines the possibility that certain types of agricultural investments can offset water use. A third tradeoff explores the possibility that the rest of the world can be a source of supply or demand for a country's water-using commodities. The fourth tradeoff concerns how variability in water supplies influences farmer decision-making. We show conditions under which trade liberalization affect water use. Two policy scenarios to reduce water use are evaluated. First, we derive a target tax that reduces water use without offsetting the gains from trade liberalization, although important tradeoffs exist between economic performance and resource use. Second, we show how subsidization of water-saving technologies can allow producers to use less water without reducing agricultural production, making such subsidization an indirect means of influencing water use decision-making. Finally, we outline conditions under which riskiness of water availability affects water use. These theoretical model results generate hypotheses that can be tested empirically in future work.
Theoretical Models of the Galactic Bulge
NASA Astrophysics Data System (ADS)
Shen, Juntai; Li, Zhao-Yu
Near infrared images from the COBE satellite presented the first clear evidence that our Milky Way galaxy contains a boxy shaped bulge. Recent years have witnessed a gradual paradigm shift in the formation and evolution of the Galactic bulge. Bulges were commonly believed to form in the dynamical violence of galaxy mergers. However, it has become increasingly clear that the main body of the Milky Way bulge is not a classical bulge made by previous major mergers, instead it appears to be a bar seen somewhat end-on. The Milky Way bar can form naturally from a precursor disc and thicken vertically by the internal firehose/buckling instability, giving rise to the boxy appearance. This picture is supported by many lines of evidence, including the asymmetric parallelogram shape, the strong cylindrical rotation (i.e., nearly constant rotation regardless of the height above the disc plane), the existence of an intriguing X-shaped structure in the bulge, and perhaps the metallicity gradients. We review the major theoretical models and techniques to understand the Milky Way bulge. Despite the progresses in recent theoretical attempts, a complete bulge formation model that explains the full kinematics and metallicity distribution is still not fully understood. Upcoming large surveys are expected to shed new light on the formation history of the Galactic bulge.
Modeling of the charge acceptance of lead-acid batteries
NASA Astrophysics Data System (ADS)
Thele, M.; Schiffer, J.; Karden, E.; Surewaard, E.; Sauer, D. U.
This paper presents a model for flooded and VRLA batteries that is parameterized by impedance spectroscopy and includes the overcharging effects to allow charge-acceptance simulations (e.g. for regenerative-braking drive-cycle profiles). The full dynamic behavior and the short-term charge/discharge history is taken into account. This is achieved by a detailed modeling of the sulfate crystal growth and modeling of the internal gas recombination cycle. The model is applicable in the full realistic temperature and current range of automotive applications. For model validation, several load profiles (covering the dynamics and the current range appearing in electrically assisted or hybrid cars) are examined and the charge-acceptance limiting effects are elaborately discussed. The validation measurements have been performed for different types of lead-acid batteries (flooded and VRLA). The model is therefore an important tool for the development of automotive power nets, but it also allows to analyze different charging strategies and energy gains which can be achieved during regenerative-braking.
A Theoretical Model of Water and Trade
NASA Astrophysics Data System (ADS)
Dang, Qian; Zeng, Ruije; Ling, Xiaowen; Di Baldassarre, Giuliano; Konar, Megan
2014-05-01
Water is an essential factor of agricultural production. Agriculture, in turn, is globalized through the trade of food commodities. There is an extensive literature detailing the direct and local relationships between water and agricultural production. Here, we expand upon this important literature to understand how the globalized food economy interacts with water resources. In particular, we seek to understand the following questions: What is the impact of agricultural trade on water resources? How do water resources impact agricultural trade? Thus, we aim to explore the bidirectional feedbacks between water resources and food trade, using a socio-hydrologic framework. To do this, we develop a theoretical model of international trade that explicitly incorporates water resources.
Explaining Facial Imitation: A Theoretical Model
Meltzoff, Andrew N.; Moore, M. Keith
2013-01-01
A long-standing puzzle in developmental psychology is how infants imitate gestures they cannot see themselves perform (facial gestures). Two critical issues are: (a) the metric infants use to detect cross-modal equivalences in human acts and (b) the process by which they correct their imitative errors. We address these issues in a detailed model of the mechanisms underlying facial imitation. The model can be extended to encompass other types of imitation. The model capitalizes on three new theoretical concepts. First, organ identification is the means by which infants relate parts of their own bodies to corresponding ones of the adult’s. Second, body babbling (infants’ movement practice gained through self-generated activity) provides experience mapping movements to the resulting body configurations. Third, organ relations provide the metric by which infant and adult acts are perceived in commensurate terms. In imitating, infants attempt to match the organ relations they see exhibited by the adults with those they feel themselves make. We show how development restructures the meaning and function of early imitation. We argue that important aspects of later social cognition are rooted in the initial cross-modal equivalence between self and other found in newborns. PMID:24634574
Information-Theoretic Perspectives on Geophysical Models
NASA Astrophysics Data System (ADS)
Nearing, Grey
2016-04-01
practice of science (except by Gong et al., 2013, whose fundamental insight is the basis for this talk), and here I offer two examples of practical methods that scientists might use to approximately measure ontological information. I place this practical discussion in the context of several recent and high-profile experiments that have found that simple out-of-sample statistical models typically (vastly) outperform our most sophisticated terrestrial hydrology models. I offer some perspective on several open questions about how to use these findings to improve our models and understanding of these systems. Cartwright, N. (1983) How the Laws of Physics Lie. New York, NY: Cambridge Univ Press. Clark, M. P., Kavetski, D. and Fenicia, F. (2011) 'Pursuing the method of multiple working hypotheses for hydrological modeling', Water Resources Research, 47(9). Cover, T. M. and Thomas, J. A. (1991) Elements of Information Theory. New York, NY: Wiley-Interscience. Cox, R. T. (1946) 'Probability, frequency and reasonable expectation', American Journal of Physics, 14, pp. 1-13. Csiszár, I. (1972) 'A Class of Measures of Informativity of Observation Channels', Periodica Mathematica Hungarica, 2(1), pp. 191-213. Davies, P. C. W. (1990) 'Why is the physical world so comprehensible', Complexity, entropy and the physics of information, pp. 61-70. Gong, W., Gupta, H. V., Yang, D., Sricharan, K. and Hero, A. O. (2013) 'Estimating Epistemic & Aleatory Uncertainties During Hydrologic Modeling: An Information Theoretic Approach', Water Resources Research, 49(4), pp. 2253-2273. Jaynes, E. T. (2003) Probability Theory: The Logic of Science. New York, NY: Cambridge University Press. Nearing, G. S. and Gupta, H. V. (2015) 'The quantity and quality of information in hydrologic models', Water Resources Research, 51(1), pp. 524-538. Popper, K. R. (2002) The Logic of Scientific Discovery. New York: Routledge. Van Horn, K. S. (2003) 'Constructing a logic of plausible inference: a guide to cox's theorem
ERIC Educational Resources Information Center
Hashim, Junaidah
2008-01-01
Companies in Malaysia are beginning to use web-based training to reduce the cost of training and to provide employees with greater access to instruction. However, some people are uncomfortable with technology and prefer person-to-person methods of training. This study examines the acceptance of web-based training among a convenience sample of 261…
The History of UTAUT Model and Its Impact on ICT Acceptance and Usage by Academicians
ERIC Educational Resources Information Center
Oye, N. D.; Iahad, N. A.; Rahim, N. Ab.
2014-01-01
This paper started with the review of the history of technology acceptance model from TRA to UTAUT. The expected contribution is to bring to lime light the current development stage of the technology acceptance model. Based on this, the paper examined the impact of UTAUT model on ICT acceptance and usage in HEIs. The UTAUT model theory was…
ERIC Educational Resources Information Center
Wong, Kung-Teck; Teo, Timothy; Russo, Sharon
2012-01-01
The purpose of this study is to validate the technology acceptance model (TAM) in an educational context and explore the role of gender and computer teaching efficacy as external variables. From the literature, it appeared that only limited studies had developed models to explain statistically the chain of influence of computer teaching efficacy…
Assessing a Theoretical Model on EFL College Students
ERIC Educational Resources Information Center
Chang, Yu-Ping
2011-01-01
This study aimed to (1) integrate relevant language learning models and theories, (2) construct a theoretical model of college students' English learning performance, and (3) assess the model fit between empirically observed data and the theoretical model proposed by the researchers of this study. Subjects of this study were 1,129 Taiwanese EFL…
Theoretical Models of Parental HIV Disclosure: A Critical Review
Qiao, Shan; Li, Xiaoming; Stanton, Bonita
2012-01-01
This review critically examined three major theoretical models related to parental HIV disclosure (i.e., the Four-Phase Model, the Disclosure Decision Making Model, and the Disclosure Process Model), and the existing studies that could provide empirical support to these models or their components. For each model, we briefly reviewed its theoretical background, described its components and or mechanisms, and discussed its strengths and limitations. The existing empirical studies supported most theoretical components in these models. However, hypotheses related to the mechanisms proposed in the models have not yet tested due to a lack of empirical evidence. This review also synthesized alternative theoretical perspectives and new issues in disclosure research and clinical practice that may challenge the existing models. The current review underscores the importance of including components related to social and cultural contexts in theoretical frameworks, and calls for more adequately designed empirical studies in order to test and refine existing theories and to develop new ones. PMID:22866903
Theoretical Models and QSRR in Retention Modeling of Eight Aminopyridines.
Tumpa, Anja; Kalinić, Marko; Jovanović, Predrag; Erić, Slavica; Rakić, Tijana; Jančić-Stojanović, Biljana; Medenica, Mirjana
2016-03-01
In this article, retention modeling of eight aminopyridines (synthesized and characterized at the Faculty of Pharmacy) in reversed-phase high performance liquid chromatography (RP-HPLC) was performed. No data related to their retention in the RP-HPLC system were found. Knowing that, it was recognized as very important to describe their retention behavior. The influences of pH of the mobile phase and the organic modifier content on the retention factors were investigated. Two theoretical models for the dependence of retention factor of organic modifier content were tested. Then, the most reliable and accurate prediction of log k was created, testing multiple linear regression model-quantitative structure-retention relationships (MLR-QSRR) and support vector regression machine-quantitative structure-retention relationships (SVM-QSRR). Initially, 400 descriptors were calculated, but four of them (POM, log D, M-SZX/RZX and m-RPCG) were included in the models. SVM-QSRR performed significantly better than the MLR model. Apart from aminopyridines, four structurally similar substances (indapamide, gliclazide, sulfamethoxazole and furosemide) were followed in the same chromatographic system. They were used as external validation set for the QSRR model (it performed well within its applicability domain, which was defined using a bounding box approach). After having described retention of eight aminopyridines with both theoretical and QSRR models, further investigations in this field can be conducted. PMID:26590237
Modeling eBook acceptance: A study on mathematics teachers
NASA Astrophysics Data System (ADS)
Jalal, Azlin Abd; Ayub, Ahmad Fauzi Mohd; Tarmizi, Rohani Ahmad
2014-12-01
The integration and effectiveness of eBook utilization in Mathematics teaching and learning greatly relied upon the teachers, hence the need to understand their perceptions and beliefs. The eBook, an individual laptop completed with digitized textbook sofwares, were provided for each students in line with the concept of 1 student:1 laptop. This study focuses on predicting a model on the acceptance of the eBook among Mathematics teachers. Data was collected from 304 mathematics teachers in selected schools using a survey questionnaire. The selection were based on the proportionate stratified sampling. Structural Equation Modeling (SEM) were employed where the model was tested and evaluated and was found to have a good fit. The variance explained for the teachers' attitude towards eBook is approximately 69.1% where perceived usefulness appeared to be a stronger determinant compared to perceived ease of use. This study concluded that the attitude of mathematics teachers towards eBook depends largely on the perception of how useful the eBook is on improving their teaching performance, implying that teachers should be kept updated with the latest mathematical application and sofwares to use with the eBook to ensure positive attitude towards using it in class.
User Acceptance of Information Technology: Theories and Models.
ERIC Educational Resources Information Center
Dillon, Andrew; Morris, Michael G.
1996-01-01
Reviews literature in user acceptance and resistance to information technology design and implementation. Examines innovation diffusion, technology design and implementation, human-computer interaction, and information systems. Concentrates on the determinants of user acceptance and resistance and emphasizes how researchers and developers can…
Nurses' self-relation--becoming theoretically competent: the SAUC model for confirming nursing.
Gustafsson, Barbro; Willman, Ania M
2003-07-01
The purpose of this study was to acquire an understanding of how nurses' self-relation (view of themselves as nurses) was influenced in connection with implementation of a nursing theory, the sympathy-acceptance-understanding-competence model for confirming nursing. This model was developed by Gustafsson and Pörn. Twenty-two nurses' written statements evaluating mentoring during the six-month implementation process in elder care, were analyzed hermeneutically with the hypothetic-deductive method. An action-theoretic and confirmatory approach was used for facilitating theoretically specified hypotheses. The nurses increased their ability to describe nursing theoretically and gained a foundation of common nursing values. The results provided an understanding of how nurses' self-relation was strengthened by becoming theoretically competent. PMID:12876885
Empathy and Child Neglect: A Theoretical Model
ERIC Educational Resources Information Center
De Paul, Joaquin; Guibert, Maria
2008-01-01
Objective: To present an explanatory theory-based model of child neglect. This model does not address neglectful behaviors of parents with mental retardation, alcohol or drug abuse, or severe mental health problems. In this model parental behavior aimed to satisfy a child's need is considered a helping behavior and, as a consequence, child neglect…
A theoretical model to study melting of metals under pressure
NASA Astrophysics Data System (ADS)
Kholiya, Kuldeep; Chandra, Jeewan
2015-10-01
On the basis of the thermal equation-of-state a simple theoretical model is developed to study the pressure dependence of melting temperature. The model is then applied to compute the high pressure melting curve of 10 metals (Cu, Mg, Pb, Al, In, Cd, Zn, Au, Ag and Mn). It is found that the melting temperature is not linear with pressure and the slope dTm/dP of the melting curve decreases continuously with the increase in pressure. The results obtained with the present model are also compared with the previous theoretical and experimental data. A good agreement between theoretical and experimental result supports the validity of the present model.
Information-Theoretic Perspectives on Geophysical Models
NASA Astrophysics Data System (ADS)
Nearing, Grey
2016-04-01
To test any hypothesis about any dynamic system, it is necessary to build a model that places that hypothesis into the context of everything else that we know about the system: initial and boundary conditions and interactions between various governing processes (Hempel and Oppenheim, 1948, Cartwright, 1983). No hypothesis can be tested in isolation, and no hypothesis can be tested without a model (for a geoscience-related discussion see Clark et al., 2011). Science is (currently) fundamentally reductionist in the sense that we seek some small set of governing principles that can explain all phenomena in the universe, and such laws are ontological in the sense that they describe the object under investigation (Davies, 1990 gives several competing perspectives on this claim). However, since we cannot build perfect models of complex systems, any model that does not also contain an epistemological component (i.e., a statement, like a probability distribution, that refers directly to the quality of of the information from the model) is falsified immediately (in the sense of Popper, 2002) given only a small number of observations. Models necessarily contain both ontological and epistemological components, and what this means is that the purpose of any robust scientific method is to measure the amount and quality of information provided by models. I believe that any viable philosophy of science must be reducible to this statement. The first step toward a unified theory of scientific models (and therefore a complete philosophy of science) is a quantitative language that applies to both ontological and epistemological questions. Information theory is one such language: Cox' (1946) theorem (see Van Horn, 2003) tells us that probability theory is the (only) calculus that is consistent with Classical Logic (Jaynes, 2003; chapter 1), and information theory is simply the integration of convex transforms of probability ratios (integration reduces density functions to scalar
Theoretical Modeling of Amphiphilic Self-Assembly
NASA Astrophysics Data System (ADS)
Gunn, John Robert
1992-01-01
Mixtures of oil, water, and surfactant exhibit a number of complex phases and interesting properties. In an effort to provide a detailed statistical mechanical understanding of these systems, the following models have been developed. A microscopic model of lyotropic systems is presented in which amphiphile and water molecules are described by simple intermolecular potentials which correctly include important excluded volume effects and the relative energy scales in the system. A constant-temperature molecular dynamics study in which the divergence of the pressure tensor is constrained to zero is discussed. Preliminary calculations on the order parameters and dynamical observables of the model are reported. To explore the phase diagram further, a three -component lattice model with unit-vector orientations at the lattice sites is introduced. The model describes ternary mixtures of oil, water, and amphiphile, and in particular the microemulsion phase. The phase diagram of the model is derived using mean-field theory and simulation. It is shown that the results of Monte Carlo simulations of sufficiently large systems show remarkable agreement with experiment. In particular, the present model reproduces the mesoscopic order of the microemulsion phase. The structure of the microemulsion is understood in terms of the liquid -crystalline phases adjacent to it on the phase diagram, and the nature of the phase transitions that occur between them. The behaviour of the system when the ratio of oil to water is changed is investigated and the percolation threshold is described. The amphiphilic film is also discussed in the context of a simple surface model. We then present an algorithm for carrying out time-dependent canonical Monte Carlo simulations using this model. Sample calculations are carried out for the 2-dimensional Ising model for which the exact partition function is known. Our method reproduces the results of standard Monte Carlo simulations with comparable accuracy
THEORETICAL BASIS FOR MODELING ELEMENT CYCLING
A biophysical basis for modeling element cycling is described. The scheme consists of element cycles, organisms necessary to completely catalyze all the component reactions, and higher organisms as structurally complex systems and as subsystems of more complex ecosystems, all to ...
Electrochemical phase formation: classical and atomistic theoretical models.
Milchev, Alexander
2016-08-01
The process of electrochemical phase formation at constant thermodynamic supersaturation is considered in terms of classical and atomistic nucleation theories. General theoretical expressions are derived for important thermodynamic and kinetic quantities commenting also upon the correlation between the existing theoretical models and experimental results. Progressive and instantaneous nucleation and growth of multiple clusters of the new phase are briefly considered, too. PMID:27108683
Theoretical outdoor noise propagation models: Application to practical predictions
NASA Astrophysics Data System (ADS)
Tuominen, H. T.; Lahti, T.
1982-02-01
The theoretical calculation approaches for outdoor noise propagation are reviewed. Possibilities for their application to practical engineering calculations are outlined. A calculation procedure, which is a combination and extension of several theoretical models, is described. Calculation examples are compared with the results of some propagation studies.
A Theoretical Framework for Physics Education Research: Modeling Student Thinking
ERIC Educational Resources Information Center
Redish, Edward F.
2004-01-01
Education is a goal-oriented field. But if we want to treat education scientifically so we can accumulate, evaluate, and refine what we learn, then we must develop a theoretical framework that is strongly rooted in objective observations and through which different theoretical models of student thinking can be compared. Much that is known in the…
The Adult Roles Models Program: Feasibility, Acceptability, and Initial Outcomes
Silver, Ellen Johnson; Dean, Randa; Perez, Amanda; Rivera, Angelic
2014-01-01
We present the feasibility and acceptability of a parent sexuality education program led by peer educators in community settings. We also report the results of an outcome evaluation with 71 parents who were randomized to the intervention or a control group, and surveyed one month prior to and six months after the 4-week intervention. The program was highly feasible and acceptable to participants, and the curriculum was implemented with a high level of fidelity and facilitator quality. Pilot data show promising outcomes for increasing parental knowledge, communication, and monitoring of their adolescent children. PMID:24883051
A theoretical model for airborne radars
NASA Astrophysics Data System (ADS)
Faubert, D.
1989-11-01
This work describes a general theory for the simulation of airborne (or spaceborne) radars. It can simulate many types of systems including Airborne Intercept and Airborne Early Warning radars, airborne missile approach warning systems etc. It computes the average Signal-to-Noise ratio at the output of the signal processor. In this manner, one obtains the average performance of the radar without having to use Monte Carlo techniques. The model has provision for a waveform without frequency modulation and one with linear frequency modulation. The waveform may also have frequency hopping for Electronic Counter Measures or for clutter suppression. The model can accommodate any type of encounter including air-to-air, air-to-ground (look-down) and rear attacks. It can simulate systems with multiple phase centers on receive for studying advanced clutter or jamming interference suppression techniques. An Airborne Intercept radar is investigated to demonstrate the validity and the capability of the model.
Theoretical models of synaptic short term plasticity
Hennig, Matthias H.
2013-01-01
Short term plasticity is a highly abundant form of rapid, activity-dependent modulation of synaptic efficacy. A shared set of mechanisms can cause both depression and enhancement of the postsynaptic response at different synapses, with important consequences for information processing. Mathematical models have been extensively used to study the mechanisms and roles of short term plasticity. This review provides an overview of existing models and their biological basis, and of their main properties. Special attention will be given to slow processes such as calcium channel inactivation and the effect of activation of presynaptic autoreceptors. PMID:23626536
Theoretical Model for Nanoporous Carbon Supercapacitors
Sumpter, Bobby G; Meunier, Vincent; Huang, Jingsong
2008-01-01
The unprecedented anomalous increase in capacitance of nanoporous carbon supercapacitors at pore sizes smaller than 1 nm [Science 2006, 313, 1760.] challenges the long-held presumption that pores smaller than the size of solvated electrolyte ions do not contribute to energy storage. We propose a heuristic model to replace the commonly used model for an electric double-layer capacitor (EDLC) on the basis of an electric double-cylinder capacitor (EDCC) for mesopores (2 {50 nm pore size), which becomes an electric wire-in-cylinder capacitor (EWCC) for micropores (< 2 nm pore size). Our analysis of the available experimental data in the micropore regime is confirmed by 1st principles density functional theory calculations and reveals significant curvature effects for carbon capacitance. The EDCC (and/or EWCC) model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size. The new model not only explains the experimental data, but also offers a practical direction for the optimization of the properties of carbon supercapacitors through experiments.
Theoretical Tinnitus Framework: A Neurofunctional Model
Ghodratitoostani, Iman; Zana, Yossi; Delbem, Alexandre C. B.; Sani, Siamak S.; Ekhtiari, Hamed; Sanchez, Tanit G.
2016-01-01
Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the “sourceless” sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be
Theoretical Tinnitus Framework: A Neurofunctional Model.
Ghodratitoostani, Iman; Zana, Yossi; Delbem, Alexandre C B; Sani, Siamak S; Ekhtiari, Hamed; Sanchez, Tanit G
2016-01-01
Subjective tinnitus is the conscious (attended) awareness perception of sound in the absence of an external source and can be classified as an auditory phantom perception. Earlier literature establishes three distinct states of conscious perception as unattended, attended, and attended awareness conscious perception. The current tinnitus development models depend on the role of external events congruently paired with the causal physical events that precipitate the phantom perception. We propose a novel Neurofunctional Tinnitus Model to indicate that the conscious (attended) awareness perception of phantom sound is essential in activating the cognitive-emotional value. The cognitive-emotional value plays a crucial role in governing attention allocation as well as developing annoyance within tinnitus clinical distress. Structurally, the Neurofunctional Tinnitus Model includes the peripheral auditory system, the thalamus, the limbic system, brainstem, basal ganglia, striatum, and the auditory along with prefrontal cortices. Functionally, we assume the model includes presence of continuous or intermittent abnormal signals at the peripheral auditory system or midbrain auditory paths. Depending on the availability of attentional resources, the signals may or may not be perceived. The cognitive valuation process strengthens the lateral-inhibition and noise canceling mechanisms in the mid-brain, which leads to the cessation of sound perception and renders the signal evaluation irrelevant. However, the "sourceless" sound is eventually perceived and can be cognitively interpreted as suspicious or an indication of a disease in which the cortical top-down processes weaken the noise canceling effects. This results in an increase in cognitive and emotional negative reactions such as depression and anxiety. The negative or positive cognitive-emotional feedbacks within the top-down approach may have no relation to the previous experience of the patients. They can also be
Hybrid E-Learning Acceptance Model: Learner Perceptions
ERIC Educational Resources Information Center
Ahmed, Hassan M. Selim
2010-01-01
E-learning tools and technologies have been used to supplement conventional courses in higher education institutions creating a "hybrid" e-learning module that aims to enhance the learning experiences of students. Few studies have addressed the acceptance of hybrid e-learning by learners and the factors affecting the learners'…
Theoretical models of possible compact nucleosome structures.
Besker, Neva; Anselmi, Claudio; De Santis, Pasquale
2005-04-01
Chromatin structure seems related to the DNA linker length. This paper presents a systematic search of the possible chromatin structure as a function of the linker lengths, starting from three different low-resolution molecular models of the nucleosome. Gay-Berne potential was used to evaluate the relative nucleosome packing energy. Results suggest that linker DNAs, which bridges and orientate nucleosomes, affect both the geometry and the rigidity of the global chromatin structure. PMID:15752596
A theoretical model for whole genome alignment.
Belal, Nahla A; Heath, Lenwood S
2011-05-01
We present a graph-based model for representing two aligned genomic sequences. An alignment graph is a mixed graph consisting of two sets of vertices, each representing one of the input sequences, and three sets of edges. These edges allow the model to represent a number of evolutionary events. This model is used to perform sequence alignment at the level of nucleotides. We define a scoring function for alignment graphs. We show that minimizing the score is NP-complete. However, we present a dynamic programming algorithm that solves the minimization problem optimally for a certain class of alignments, called breakable arrangements. Algorithms for analyzing breakable arrangements are presented. We also present a greedy algorithm that is capable of representing reversals. We present a dynamic programming algorithm that optimally aligns two genomic sequences, when one of the input sequences is a breakable arrangement of the other. Comparing what we define as breakable arrangements to alignments generated by other algorithms, it is seen that many already aligned genomes fall into the category of being breakable. Moreover, the greedy algorithm is shown to represent reversals, besides rearrangements, mutations, and other evolutionary events. PMID:21210739
Theoretical model for plasma opening switch
Baker, L.
1980-07-01
The theory of an explosive plasma switch is developed and compared with the experimental results of Pavlovskii and work at Sandia. A simple analytic model is developed, which predicts that such switches may achieve opening times of approximately 100 ns. When the switching time is limited by channel mixing it scales as t = C(m d/sub 0/)/sup 1/2/P/sub 0//sup 2/P/sub e//sup -5/2/ where m is the foil mass per unit area, d/sub 0/ the channel thickness and P/sub 0/ the channel pressure (at explosive breakout), P/sub e/ the explosive pressure, C a constant of order 10 for c.g.s. units. Thus faster switching times may be achieved by minimizing foil mass and channel pressure, or increasing explosive product pressure, with the scaling exponents as shown suggesting that changes in pressures would be more effective.
Theoretical modelling of epigenetically modified DNA sequences.
Carvalho, Alexandra Teresa Pires; Gouveia, Maria Leonor; Raju Kanna, Charan; Wärmländer, Sebastian K T S; Platts, Jamie; Kamerlin, Shina Caroline Lynn
2015-01-01
We report herein a set of calculations designed to examine the effects of epigenetic modifications on the structure of DNA. The incorporation of methyl, hydroxymethyl, formyl and carboxy substituents at the 5-position of cytosine is shown to hardly affect the geometry of CG base pairs, but to result in rather larger changes to hydrogen-bond and stacking binding energies, as predicted by dispersion-corrected density functional theory (DFT) methods. The same modifications within double-stranded GCG and ACA trimers exhibit rather larger structural effects, when including the sugar-phosphate backbone as well as sodium counterions and implicit aqueous solvation. In particular, changes are observed in the buckle and propeller angles within base pairs and the slide and roll values of base pair steps, but these leave the overall helical shape of DNA essentially intact. The structures so obtained are useful as a benchmark of faster methods, including molecular mechanics (MM) and hybrid quantum mechanics/molecular mechanics (QM/MM) methods. We show that previously developed MM parameters satisfactorily reproduce the trimer structures, as do QM/MM calculations which treat bases with dispersion-corrected DFT and the sugar-phosphate backbone with AMBER. The latter are improved by inclusion of all six bases in the QM region, since a truncated model including only the central CG base pair in the QM region is considerably further from the DFT structure. This QM/MM method is then applied to a set of double-stranded DNA heptamers derived from a recent X-ray crystallographic study, whose size puts a DFT study beyond our current computational resources. These data show that still larger structural changes are observed than in base pairs or trimers, leading us to conclude that it is important to model epigenetic modifications within realistic molecular contexts. PMID:26448859
2012-01-01
Background For effective health promotion using health information technology (HIT), it is mandatory that health consumers have the behavioral intention to measure, store, and manage their own health data. Understanding health consumers’ intention and behavior is needed to develop and implement effective and efficient strategies. Objective To develop and verify the extended Technology Acceptance Model (TAM) in health care by describing health consumers’ behavioral intention of using HIT. Methods This study used a cross-sectional descriptive correlational design. We extended TAM by adding more antecedents and mediating variables to enhance the model’s explanatory power and to make it more applicable to health consumers’ behavioral intention. Additional antecedents and mediating variables were added to the hypothetical model, based on their theoretical relevance, from the Health Belief Model and theory of planned behavior, along with the TAM. We undertook structural equation analysis to examine the specific nature of the relationship involved in understanding consumers’ use of HIT. Study participants were 728 members recruited from three Internet health portals in Korea. Data were collected by a Web-based survey using a structured self-administered questionnaire. Results The overall fitness indices for the model developed in this study indicated an acceptable fit of the model. All path coefficients were statistically significant. This study showed that perceived threat, perceived usefulness, and perceived ease of use significantly affected health consumers’ attitude and behavioral intention. Health consumers’ health status, health belief and concerns, subjective norm, HIT characteristics, and HIT self-efficacy had a strong indirect impact on attitude and behavioral intention through the mediators of perceived threat, perceived usefulness, and perceived ease of use. Conclusions An extended TAM in the HIT arena was found to be valid to describe health
Neighbor intervention: a game-theoretic model.
Mesterton-Gibbons, Mike; Sherratt, Tom N
2009-01-21
It has long been argued that a resident may benefit from helping its neighbor defend a territory against a challenger to avoid renegotiating its boundaries with a new and potentially stronger individual. We quantify this theory by exploring games involving challengers, residents and potential allies. In a simplified discrete game with zero variation of fighting strength, helping neighbors is part of an evolutionarily stable strategy (ESS) only if fighting costs are low relative to those of renegotiation. However, if relative fighting costs are high then an interventional ESS remains possible with finite variation of strength. Under these conditions, neighbors may help residents fight off intruders, but only when the resident does not stand a reliable chance of winning alone. We show that neighbor intervention is more likely with low home advantage to occupying a territory, strengths combining synergistically or low probability that an ally will be usurped, amongst other factors. Our parameterized model readily explains occasional intervention in the Australian fiddler crab, including why the ally tended to be larger than both the assisted neighbor and the intruder. Reciprocity is not necessary for this type of cooperation to persist, but also it is by no means inevitable in territorial species. PMID:18977365
A theoretical model of asymmetric wave ripples
Blondeaux, P.; Foti, E.; Vittori, G.
2015-01-01
The time development of ripples under sea waves is investigated by means of the weakly nonlinear stability analysis of a flat sandy bottom subjected to the viscous oscillatory flow that is present in the boundary layer at the bottom of propagating sea waves. Second-order effects in the wave steepness are considered, to take into account the presence of the steady drift generated by the surface waves. Hence, the work of Vittori & Blondeaux (1990 J. Fluid Mech. 218, 19–39 (doi:10.1017/S002211209000091X)) is extended by considering steeper waves and/or less deep waters. As shown by the linear analysis of Blondeaux et al. (2000 Eur. J. Mech. B 19, 285–301 (doi:10.1016/S0997-7546(90)00106-I)), because of the presence of a steady velocity component in the direction of wave propagation, ripples migrate at a constant rate that depends on sediment and wave characteristics. The weakly nonlinear analysis shows that the ripple profile is no longer symmetric with respect to ripple crests and troughs and the symmetry index is computed as a function of the parameters of the problem. In particular, a relationship is determined between the symmetry index and the strength of the steady drift. A fair agreement between model results and laboratory data is obtained, albeit further data and analyses are necessary to determine the behaviour of vortex ripples and to be conclusive. PMID:25512587
A theoretical model of asymmetric wave ripples.
Blondeaux, P; Foti, E; Vittori, G
2015-01-28
The time development of ripples under sea waves is investigated by means of the weakly nonlinear stability analysis of a flat sandy bottom subjected to the viscous oscillatory flow that is present in the boundary layer at the bottom of propagating sea waves. Second-order effects in the wave steepness are considered, to take into account the presence of the steady drift generated by the surface waves. Hence, the work of Vittori & Blondeaux (1990 J. Fluid Mech. 218, 19-39 (doi:10.1017/S002211209000091X)) is extended by considering steeper waves and/or less deep waters. As shown by the linear analysis of Blondeaux et al. (2000 Eur. J. Mech. B 19, 285-301 (doi:10.1016/S0997-7546(90)00106-I)), because of the presence of a steady velocity component in the direction of wave propagation, ripples migrate at a constant rate that depends on sediment and wave characteristics. The weakly nonlinear analysis shows that the ripple profile is no longer symmetric with respect to ripple crests and troughs and the symmetry index is computed as a function of the parameters of the problem. In particular, a relationship is determined between the symmetry index and the strength of the steady drift. A fair agreement between model results and laboratory data is obtained, albeit further data and analyses are necessary to determine the behaviour of vortex ripples and to be conclusive. PMID:25512587
Theoretical and numerical modelling of shocks in dusty plasmas
Eliasson, B.; Shukla, P.K.
2005-10-31
The formation of dust acoustic (DA) and dust ion-acoustic (DIA) shocks are are studied theoretically and numerically by means of simple-wave solutions and a comparison between fluid and kinetic model for DIA waves. A fluid model admits sharp discontinuities at the shock front while the kinetic model involves Landau-damping of the the shock front.
The Psychopathological Model of Mental Retardation: Theoretical and Therapeutic Considerations.
ERIC Educational Resources Information Center
La Malfa, Giampaolo; Campigli, Marco; Bertelli, Marco; Mangiapane, Antonio; Cabras, Pier Luigi
1997-01-01
Describes a new integrated bio-psycho-social model of etiology for mental retardation. Discusses the problems with current models and the ability of the "universe line" model to integrate data from different research areas, especially cognitive and psychopathologic indicators. Addresses implications of this theoretical approach. (Author/CR)
Dynamics in Higher Education Politics: A Theoretical Model
ERIC Educational Resources Information Center
Kauko, Jaakko
2013-01-01
This article presents a model for analysing dynamics in higher education politics (DHEP). Theoretically the model draws on the conceptual history of political contingency, agenda-setting theories and previous research on higher education dynamics. According to the model, socio-historical complexity can best be analysed along two dimensions: the…
Opposition Surge: Lab Studies and Theoretical Models
NASA Astrophysics Data System (ADS)
Nelson, R. M.; Hapke, B. W.; Smythe, W. D.; Hale, A. S.; Piatek, J. L.; Green, J.
The opposition effect, a non-linear intensity increase in the reflectance phase curve with decreasing phase angle, has long been observed in solar system bodies and in laboratory investigations of the angular scattering properties of particulate media[1]. It has been attributed to two processes. One, shadow hiding, is the elimination of shadows mutually cast between the regolith grains as the phase angle decreases[2]. The other is coherent constructive interference between rays of light traveling along identical but opposite paths in multiply scattering media (CBOE). [3,4,5,6]. We report the results of an investigation into the opposition surge of particulate materials of the same particle size and packing density but of differing reflectance. The measurements were made on the long arm goniometer at JPL. The phase angle studied varied from 0.05 to 5o. Samples of Al2O3, diamond, Si4C, and B4C were presented with linearly and circularly polarized light from a laser of wavelength 0.633 µm. The uncompressed, 22-24 µm samples differed widely in reflectance. Many published models of CBOE suggest that as the materials become more absorbing the shape of the phase curve should become more rounded near 0o [7,8 9, 10, 11,12,13]. We find that, regardless of reflectance, the phase curve exhibits increasing slope with decreasing phase angle down to the angular limit of our measurement. It becomes more sharply peaked and does not become rounded. Our measurements of powdered materials, including lunar regolith samples[14,15,16], do not agree with current models of coherent backscatter, which predict a rounding and truncation of the opposition effect peak near zero phase. This lack of rounding is consistent with the hypothesis that very long light paths contribute to the CBOE of particulate materials including planetary regoliths. This work was performed at NASA's JPL under a grant from NASA's Planetary Geology / Geophysics program. References: [1] T. Gehrels, Astrrophys. J. 123
Testing a Theoretical Model of Immigration Transition and Physical Activity.
Chang, Sun Ju; Im, Eun-Ok
2015-01-01
The purposes of the study were to develop a theoretical model to explain the relationships between immigration transition and midlife women's physical activity and test the relationships among the major variables of the model. A theoretical model, which was developed based on transitions theory and the midlife women's attitudes toward physical activity theory, consists of 4 major variables, including length of stay in the United States, country of birth, level of acculturation, and midlife women's physical activity. To test the theoretical model, a secondary analysis with data from 127 Hispanic women and 123 non-Hispanic (NH) Asian women in a national Internet study was used. Among the major variables of the model, length of stay in the United States was negatively associated with physical activity in Hispanic women. Level of acculturation in NH Asian women was positively correlated with women's physical activity. Country of birth and level of acculturation were significant factors that influenced physical activity in both Hispanic and NH Asian women. The findings support the theoretical model that was developed to examine relationships between immigration transition and physical activity; it shows that immigration transition can play an essential role in influencing health behaviors of immigrant populations in the United States. The NH theoretical model can be widely used in nursing practice and research that focus on immigrant women and their health behaviors. Health care providers need to consider the influences of immigration transition to promote immigrant women's physical activity. PMID:26502554
NASA Astrophysics Data System (ADS)
Vanini, Seyed Ali Sadough; Abolghasemzadeh, Mohammad; Assadi, Abbas
2013-07-01
Functionally graded steels with graded ferritic and austenitic regions including bainite and martensite intermediate layers produced by electroslag remelting have attracted much attention in recent years. In this article, an empirical model based on the Zener-Hollomon (Z-H) constitutive equation with generalized material constants is presented to investigate the effects of temperature and strain rate on the hot working behavior of functionally graded steels. Next, a theoretical model, generalized by strain compensation, is developed for the flow stress estimation of functionally graded steels under hot compression based on the phase mixture rule and boundary layer characteristics. The model is used for different strains and grading configurations. Specifically, the results for αβγMγ steels from empirical and theoretical models showed excellent agreement with those of experiments of other references within acceptable error.
Acceptance and Commitment Therapy as a Unified Model of Behavior Change
ERIC Educational Resources Information Center
Hayes, Steven C.; Pistorello, Jacqueline; Levin, Michael E.
2012-01-01
The present article summarizes the assumptions, model, techniques, evidence, and diversity/social justice commitments of Acceptance and Commitment Therapy (ACT). ACT focused on six processes (acceptance, defusion, self, now, values, and action) that bear on a single overall target (psychological flexibility). The ACT model of behavior change has…
Theoretical models for the conformations and the protonation of triacetonamine.
Navajas, C C; Montero, L A; La Serna, B
1990-12-01
In this paper we propose theoretical models for the conformations of triacetonamine and protonated triacetonamine (Vincubine, an anticancer chemotherapeutic agent) developed by quantum and molecular mechanics techniques. We discuss the theoretical factors which are involved in the stabilization of the conformations calculated by the MNDO, MM2 and COPEANE methods and show the relative percent abundance of each molecular shape. Graphic representations of the conformers are depicted. PMID:1965442
Culture and Developmental Trajectories: A Discussion on Contemporary Theoretical Models
ERIC Educational Resources Information Center
de Carvalho, Rafael Vera Cruz; Seidl-de-Moura, Maria Lucia; Martins, Gabriela Dal Forno; Vieira, Mauro Luís
2014-01-01
This paper aims to describe, compare and discuss the theoretical models proposed by Patricia Greenfield, Çigdem Kagitçibasi and Heidi Keller. Their models have the common goal of understanding the developmental trajectories of self based on dimensions of autonomy and relatedness that are structured according to specific cultural and environmental…
Theoretical models on prediction of thermal property of nanofluids
NASA Astrophysics Data System (ADS)
Shalimba, Veikko; Skočilasová, Blanka
2014-08-01
This paper deals with theoretical models on prediction of thermo physical properties of iron nanoparticles in base fluid. A high performance of heat transfer fluid has a great influence on the size, weight and cost of heat transfer systems, therefore a high performance heat transfer fluid is very important in many industries. Over the last decades nanofluids have been developed. According to many researchers and publications on nanofluids it is evident that nanofluids are found to exhibit enhanced thermal properties i.e. thermal conductivity etc. Theoretical models for predicting enhanced thermal conductivity have been established. The underlying mechanisms for the enhancement are still debated and not fully understood. In this paper, theoretical analytical models on prediction of thermal conductivity of iron nano particle in base Jatropha oil are discussed. The work arises from the projects which were realized at UJEP, FPTM, department of Machines and Mechanics with cooperation with Polytechnic of Namibia, department of Mechanical Engineering.
A control theoretic model for piloted approach to landing.
NASA Technical Reports Server (NTRS)
Kleinman, D. L.; Baron, S.
1972-01-01
Using manned vehicle systems analysis, a model for manual approach to landing is developed. This model is developed and applied in the specific context of a problem of analytical evaluation of a pictorial display for longitudinal control of glide path errors. This makes it possible to discuss the model in concrete terms, and the availability of experimental data provides opportunities for checking the theoretical results obtained.
Empirical and theoretical models of terrestrial trapped radiation
Panasyuk, M.I.
1996-07-01
A survey of current Skobeltsyn Institute of Nuclear Physics, Moscow State University (INP MSU) empirical and theoretical models of particles (electrons, protons and heavier irons) of the Earth{close_quote}s radiation belts developed to date is presented. Results of intercomparison of the different models as well as comparison with experimental data are reported. Aspects of further development of radiation condition modelling in near-Earth space are discussed. {copyright} {ital 1996 American Institute of Physics.}
Expectancies Underlying the Acceptability of Handicaps: The Pervasiveness of the Medical Model
ERIC Educational Resources Information Center
Abroms, Kippy; Kodera, Thomas L.
1978-01-01
Two groups of undergraduate students with diverse backgrounds ranked the acceptability of 15 handicapping conditions of which some were medical disorders and others were sociopsychological or functional impairments. Students adhered to the medical model, basing their judgments of acceptability on the amenability of a given handicap to medical…
Tsai, Chung-Hung
2014-01-01
Telehealth has become an increasingly applied solution to delivering health care to rural and underserved areas by remote health care professionals. This study integrated social capital theory, social cognitive theory, and the technology acceptance model (TAM) to develop a comprehensive behavioral model for analyzing the relationships among social capital factors (social capital theory), technological factors (TAM), and system self-efficacy (social cognitive theory) in telehealth. The proposed framework was validated with 365 respondents from Nantou County, located in Central Taiwan. Structural equation modeling (SEM) was used to assess the causal relationships that were hypothesized in the proposed model. The finding indicates that elderly residents generally reported positive perceptions toward the telehealth system. Generally, the findings show that social capital factors (social trust, institutional trust, and social participation) significantly positively affect the technological factors (perceived ease of use and perceived usefulness respectively), which influenced usage intention. This study also confirmed that system self-efficacy was the salient antecedent of perceived ease of use. In addition, regarding the samples, the proposed model fitted considerably well. The proposed integrative psychosocial-technological model may serve as a theoretical basis for future research and can also offer empirical foresight to practitioners and researchers in the health departments of governments, hospitals, and rural communities. PMID:24810577
Theoretical aspects of an electricity marginal cost model
Oyama, T.
1986-01-01
A separable programming model has been built to estimate electricity marginal costs. The model can be solved by applying linear programming techniques, hence marginal costs are obtained from shadow prices of model's optimal solution. In order to obtain more accurate and more detailed composition of electricity marginal costs, shadow prices are mathematically explained rigorously from model's structural points of view. Theoretical aspects of our electricity marginal cost model are investigated by applying theory of linear programming. Furthermore, various types of mathematical expression are also shown with their interpretation in the real power system.
Theoretical aspects of an electricity marginal cost model
Oyama, T.
1987-05-01
A separable programming model has been built to estimate electricity marginal costs. The model can be solved by applying linear programming techniques, hence marginal costs are obtained from shadow prices of model's optimal solution. In order to obtain more accurate and more detailed composition of electricity marginal costs, shadow prices are mathematically explained rigorously from model's structural points of view. Theoretical aspects of our electricity marginal cost model are investigated by applying theory of linear programming. Furthermore, various types of mathematical expression are also shown with their interpretation in the real power system.
The Theoretical Basis of the Effective School Improvement Model (ESI)
ERIC Educational Resources Information Center
Scheerens, Jaap; Demeuse, Marc
2005-01-01
This article describes the process of theoretical reflection that preceded the development and empirical verification of a model of "effective school improvement". The focus is on basic mechanisms that could be seen as underlying "getting things in motion" and change in education systems. Four mechanisms are distinguished: synoptic rational…
Healing from Childhood Sexual Abuse: A Theoretical Model
ERIC Educational Resources Information Center
Draucker, Claire Burke; Martsolf, Donna S.; Roller, Cynthia; Knapik, Gregory; Ross, Ratchneewan; Stidham, Andrea Warner
2011-01-01
Childhood sexual abuse is a prevalent social and health care problem. The processes by which individuals heal from childhood sexual abuse are not clearly understood. The purpose of this study was to develop a theoretical model to describe how adults heal from childhood sexual abuse. Community recruitment for an ongoing broader project on sexual…
Organizational Learning and Product Design Management: Towards a Theoretical Model.
ERIC Educational Resources Information Center
Chiva-Gomez, Ricardo; Camison-Zornoza, Cesar; Lapiedra-Alcami, Rafael
2003-01-01
Case studies of four Spanish ceramics companies were used to construct a theoretical model of 14 factors essential to organizational learning. One set of factors is related to the conceptual-analytical phase of the product design process and the other to the creative-technical phase. All factors contributed to efficient product design management…
Modelling acceptance of sunlight in high and low photovoltaic concentration
Leutz, Ralf
2014-09-26
A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV.
A Generalized Information Theoretical Model for Quantum Secret Sharing
NASA Astrophysics Data System (ADS)
Bai, Chen-Ming; Li, Zhi-Hui; Xu, Ting-Ting; Li, Yong-Ming
2016-07-01
An information theoretical model for quantum secret sharing was introduced by H. Imai et al. (Quantum Inf. Comput. 5(1), 69-80 2005), which was analyzed by quantum information theory. In this paper, we analyze this information theoretical model using the properties of the quantum access structure. By the analysis we propose a generalized model definition for the quantum secret sharing schemes. In our model, there are more quantum access structures which can be realized by our generalized quantum secret sharing schemes than those of the previous one. In addition, we also analyse two kinds of important quantum access structures to illustrate the existence and rationality for the generalized quantum secret sharing schemes and consider the security of the scheme by simple examples.
Electromechanical properties of smart aggregate: theoretical modeling and experimental validation
NASA Astrophysics Data System (ADS)
Wang, Jianjun; Kong, Qingzhao; Shi, Zhifei; Song, Gangbing
2016-09-01
Smart aggregate (SA), as a piezoceramic-based multi-functional device, is formed by sandwiching two lead zirconate titanate (PZT) patches with copper shielding between a pair of solid-machined cylindrical marble blocks with epoxy. Previous researches have successfully demonstrated the capability and reliability of versatile SAs to monitor the structural health of concrete structures. However, the previous works concentrated mainly on the applications of SAs in structural health monitoring; no reasonable theoretical model of SAs was proposed. In this paper, electromechanical properties of SAs were investigated using a proposed theoretical model. Based on one dimensional linear theory of piezo-elasticity, the dynamic solutions of a SA subjected to an external harmonic voltage were solved. Further, the electric impedance of the SA was computed, and the resonance and anti-resonance frequencies were calculated based on derived equations. Numerical analysis was conducted to discuss the effects of the thickness of epoxy layer and the dimension of PZT patch on the fundamental resonance and anti-resonance frequencies as well as the corresponding electromechanical coupling factor. The dynamic solutions based on the proposed theoretical model were further experimentally verified with two SA samples. The fundamental resonance and anti-resonance frequencies of SAs show good agreements in both theoretical and experimental results. The presented analysis and results contribute to the overall understanding of SA properties and help to optimize the working frequencies of SAs in structural health monitoring of civil structures.
Elizur, Y; Ziv, M
2001-01-01
While heterosexist family undermining has been demonstrated to be a developmental risk factor in the life of persons with same-gender orientation, the issue of protective family factors is both controversial and relatively neglected. In this study of Israeli gay males (N = 114), we focused on the interrelations of family support, family acceptance and family knowledge of gay orientation, and gay male identity formation, and their effects on mental health and self-esteem. A path model was proposed based on the hypotheses that family support, family acceptance, family knowledge, and gay identity formation have an impact on psychological adjustment, and that family support has an effect on gay identity formation that is mediated by family acceptance. The assessment of gay identity formation was based on an established stage model that was streamlined for cross-cultural practice by defining three basic processes of same-gender identity formation: self-definition, self-acceptance, and disclosure (Elizur & Mintzer, 2001). The testing of our conceptual path model demonstrated an excellent fit with the data. An alternative model that hypothesized effects of gay male identity on family acceptance and family knowledge did not fit the data. Interpreting these results, we propose that the main effect of family support/acceptance on gay identity is related to the process of disclosure, and that both general family support and family acceptance of same-gender orientation play a significant role in the psychological adjustment of gay men. PMID:11444052
Makri-Botsari, Evi
2015-08-01
The purpose of this study was to detect gender specific patterns in the network of relations between unconditionality of parental and teacher acceptance in the form of unconditional positive regard and a range of educational outcomes, as indexed by academic self-perception, academic intrinsic motivation, and academic achievement. To test the role of gender as a moderator, a multi-group analysis was employed within the framework of structural equation modelling with increasing restrictions placed on the structural paths across genders. The results on a sample of 427 adolescents in grades 7-9 showed that conditionality of acceptance undermined level of perceived acceptance for both social agents. Moreover, unconditionality of teacher acceptance exerted stronger influences on students' educational outcomes than unconditionality of parental acceptance, with effect sizes being larger for girls than for boys. PMID:26057875
A sequential decision-theoretic model for medical diagnostic system.
Li, Aiping; Jin, Songchang; Zhang, Lumin; Jia, Yan
2015-01-01
Although diagnostic expert systems using a knowledge base which models decision-making of traditional experts can provide important information to non-experts, they tend to duplicate the errors made by experts. Decision-Theoretic Model (DTM) is therefore very useful in expert system since they prevent experts from incorrect reasoning under uncertainty. For the diagnostic expert system, corresponding DTM and arithmetic are studied and a sequential diagnostic decision-theoretic model based on Bayesian Network is given. In the model, the alternative features are categorized into two classes (including diseases features and test features), then an arithmetic for prior of test is provided. The different features affect other features weights are also discussed. Bayesian Network is adopted to solve uncertainty presentation and propagation. The model can help knowledge engineers model the knowledge involved in sequential diagnosis and decide evidence alternative priority. A practical example of the models is also presented: at any time of the diagnostic process the expert is provided with a dynamically updated list of suggested tests in order to support him in the decision-making problem about which test to execute next. The results show it is better than the traditional diagnostic model which is based on experience. PMID:26410326
A theoretical model for lunar surface material thermal conductivity.
NASA Technical Reports Server (NTRS)
Khader, M. S.; Vachon, R. I.
1973-01-01
This paper presents a theoretical thermal conductivity model for the uppermost layer of lunar surface material under the lunar vacuum environment. The model assumes that the lunar soil can be simulated by spherical particles in contact with each other and that the effective thermal conductivity is a function of depth, temperature, porosity, particle dimension, and mechanical-thermal properties of the solid particles. Two modes of heat transport are considered, conduction and radiation - with emphasis on the contact resistance between particles. The model gives effective conductivity values that compare favorably with the experimental data from lunar surface samples obtained on Apollo 11 and 12 missions.
Structure of plant photosystem I revealed by theoretical modeling.
Jolley, Craig; Ben-Shem, Adam; Nelson, Nathan; Fromme, Petra
2005-09-30
Photosystem (PS) I is a large membrane protein complex vital for oxygenic photosynthesis, one of the most important biological processes on the planet. We present an "atomic" model of higher plant PSI, based on theoretical modeling using the recent 4.4 angstroms x-ray crystal structure of PSI from pea. Because of the lack of information on the amino acid side chains in the x-ray structural model and the high cofactor content in this system, novel modeling techniques were developed. Our model reveals some important structural features of plant PSI that were not visible in the crystal structure, and our model sheds light on the evolutionary relationship between plant and cyanobacterial PSI. PMID:15955818
A proposed model of factors influencing hydrogen fuel cell vehicle acceptance
NASA Astrophysics Data System (ADS)
Imanina, N. H. Noor; Kwe Lu, Tan; Fadhilah, A. R.
2016-03-01
Issues such as environmental problem and energy insecurity keep worsening as a result of energy use from household to huge industries including automotive industry. Recently, a new type of zero emission vehicle, hydrogen fuel cell vehicle (HFCV) has received attention. Although there are argues on the feasibility of hydrogen as the future fuel, there is another important issue, which is the acceptance of HFCV. The study of technology acceptance in the early stage is a vital key for a successful introduction and penetration of a technology. This paper proposes a model of factors influencing green vehicle acceptance, specifically HFCV. This model is built base on two technology acceptance theories and other empirical studies of vehicle acceptance. It aims to provide a base for finding the key factors influencing new sustainable energy fuelled vehicle, HFCV acceptance which is achieved by explaining intention to accept HFCV. Intention is influenced by attitude, subjective norm and perceived behavioural control from Theory of Planned Behaviour and personal norm from Norm Activation Theory. In the framework, attitude is influenced by perceptions of benefits and risks, and social trust. Perceived behavioural control is influenced by government interventions. Personal norm is influenced by outcome efficacy and problem awareness.
A Multivariate Model for the Study of Parental Acceptance-Rejection and Child Abuse.
ERIC Educational Resources Information Center
Rohner, Ronald P.; Rohner, Evelyn C.
This paper proposes a multivariate strategy for the study of parental acceptance-rejection and child abuse and describes a research study on parental rejection and child abuse which illustrates the advantages of using a multivariate, (rather than a simple-model) approach. The multivariate model is a combination of three simple models used to study…
Utilizing the health belief model to assess vaccine acceptance of patients on hemodialysis.
Adams, Angela; Hall, Mellisa; Fulghum, Janis
2014-01-01
Vaccine rates in patients on hemodialysis are substantially lower than the Healthy People 2020 targets. The purpose of this study is to utilize the perceptions and cues for action constructs of the Health Belief Model (HBM) to assess the attitudes of patients receiving outpatient hemodialysis regarding acceptance of the seasonal influenza, pneumococcal, and hepatitis B virus vaccines. Vaccine acceptance is defined as receiving the vaccine. Study findings suggest age, perceived susceptibility, and perceived severity increase the odds of getting some vaccines. Findings have implications for the development of patient education materials, interdisciplinary team assessments, and plan of care strategies to increase vaccine acceptance. PMID:25244894
A theoretical model for smoking prevention studies in preteen children.
McGahee, T W; Kemp, V; Tingen, M
2000-01-01
The age of the onset of smoking is on a continual decline, with the prime age of tobacco use initiation being 12-14 years. A weakness of the limited research conducted on smoking prevention programs designed for preteen children (ages 10-12) is a well-defined theoretical basis. A theoretical perspective is needed in order to make a meaningful transition from empirical analysis to application of knowledge. Bandura's Social Cognitive Theory (1977, 1986), the Theory of Reasoned Action (Ajzen & Fishbein, 1980), and other literature linking various concepts to smoking behaviors in preteens were used to develop a model that may be useful for smoking prevention studies in preteen children. PMID:12026266
Theoretical model for plasma expansion generated by hypervelocity impact
Ju, Yuanyuan; Zhang, Qingming Zhang, Dongjiang; Long, Renrong; Chen, Li; Huang, Fenglei; Gong, Zizheng
2014-09-15
The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4 mm on LY12 aluminum target thickness of 23 mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3 km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T{sub e}, n{sub e}) ∝ v{sub p}{sup 3}. Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data.
A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids
Dai, Fu-Zhi; Zhou, Yanchun
2016-01-01
Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials. PMID:27604165
A Modified Theoretical Model of Intrinsic Hardness of Crystalline Solids.
Dai, Fu-Zhi; Zhou, Yanchun
2016-01-01
Super-hard materials have been extensively investigated due to their practical importance in numerous industrial applications. To stimulate the design and exploration of new super-hard materials, microscopic models that elucidate the fundamental factors controlling hardness are desirable. The present work modified the theoretical model of intrinsic hardness proposed by Gao. In the modification, we emphasize the critical role of appropriately decomposing a crystal to pseudo-binary crystals, which should be carried out based on the valence electron population of each bond. After modification, the model becomes self-consistent and predicts well the hardness values of many crystals, including crystals composed of complex chemical bonds. The modified model provides fundamental insights into the nature of hardness, which can facilitate the quest for intrinsic super-hard materials. PMID:27604165
Theoretical models for Mars and their seismic properties
NASA Technical Reports Server (NTRS)
Okal, E. A.; Anderson, D. L.
1978-01-01
Theoretical seismic properties of the planet Mars are investigated on the basis of the various models which have been proposed for the internal composition of the planet. The latest interpretation of gravity-field data, assuming a lower value of the moment of inertia, would require a less dense mantle and a larger core than previous models. If Mars is chondritic in composition, the most reasonable models are an incompletely differentiated H-chondrite or a mixture of H-chondrites and carbonaceous chondrites. Seismic profiles, travel times, and free oscillation periods are computed for various models, with the aim of establishing which seismic data is crucial for deciding among the alternatives. A detailed discussion is given of the seismic properties which could - in principle - help answer the questions of whether Mars' core is liquid or solid and whether Mars has a partially molten asthenosphere in its upper mantle.
Theoretical consideration of a microcontinuum model of graphene
NASA Astrophysics Data System (ADS)
Yang, Gang; Huang, Zaixing; Gao, Cun-Fa; Zhang, Bin
2016-05-01
A microcontinuum model of graphene is proposed based on micromorphic theory, in which the planar Bravais cell of graphene crystal is taken as the basal element of finite size. Governing equations including the macro-displacements and the micro-deformations of the basal element are modified and derived in global coordinates. Since independent freedom degrees of the basal element are closely related to the modes of phonon dispersions, the secular equations in micromorphic form are obtained by substituting the assumed harmonic wave equations into the governing equations, and simplified further according to the properties of phonon dispersion relations of two-dimensional (2D) crystals. Thus, the constitutive equations of the microcontinuum model are confirmed, in which the constitutive constants are determined by fitting the data of experimental and theoretical phonon dispersion relations in literature respectively. By employing the 2D microcontinuum model, we obtained sound velocities, Rayleigh velocity and elastic moduli of graphene, which show good agreements with available experimental or theoretical values, indicating that the current model would be another efficient and reliable methodology to study the mechanical behaviors of graphene.
Healing from Childhood Sexual Abuse: A Theoretical Model
Draucker, Claire Burke; Martsolf, Donna S.; Roller, Cynthia; Knapik, Gregory; Ross, Ratchneewan; Stidham, Andrea Warner
2014-01-01
Childhood sexual abuse (CSA) is a prevalent social and healthcare problem. The processes by which individuals heal from CSA are not clearly understood. The purpose of this study was to develop a theoretical model to describe how adults heal from CSA. Community recruitment for an on-going, broader project on sexual violence throughout the lifespan, referred to as the Sexual Violence Study, yielded a subsample of 48 women and 47 men who had experienced CSA. During semi-structured, open-ended interviews, they were asked to describe their experiences with healing from CSA and other victimization throughout their lives. Constructivist grounded theory methods were used with these data to develop constructs and hypotheses about healing. For the Sexual Violence Study, frameworks were developed to describe the participants' life patterns, parenting experiences, disclosures about sexual violence, spirituality, and altruism. Several analytic techniques were used to synthesize the findings of these frameworks to develop an overarching theoretical model that describes healing from CSA. The model includes four stages of healing, five domains of functioning, and six enabling factors that facilitate movement from one stage to the next. The findings indicate that healing is a complex and dynamic trajectory. The model can be used to alert clinicians to a variety of processes and enabling factors that facilitate healing in several domains and to guide discussions on important issues related to healing from CSA. PMID:21812546
Melas, Christos D; Zampetakis, Leonidas A; Dimopoulou, Anastasia; Moustakis, Vassilis
2011-08-01
Recent empirical research has utilized the Technology Acceptance Model (TAM) to advance the understanding of doctors' and nurses' technology acceptance in the workplace. However, the majority of the reported studies are either qualitative in nature or use small convenience samples of medical staff. Additionally, in very few studies moderators are either used or assessed despite their importance in TAM based research. The present study focuses on the application of TAM in order to explain the intention to use clinical information systems, in a random sample of 604 medical staff (534 physicians) working in 14 hospitals in Greece. We introduce physicians' specialty as a moderator in TAM and test medical staff's information and communication technology (ICT) knowledge and ICT feature demands, as external variables. The results show that TAM predicts a substantial proportion of the intention to use clinical information systems. Findings make a contribution to the literature by replicating, explaining and advancing the TAM, whereas theory is benefited by the addition of external variables and medical specialty as a moderator. Recommendations for further research are discussed. PMID:21292029
Game-Theoretic Models of Information Overload in Social Networks
NASA Astrophysics Data System (ADS)
Borgs, Christian; Chayes, Jennifer; Karrer, Brian; Meeder, Brendan; Ravi, R.; Reagans, Ray; Sayedi, Amin
We study the effect of information overload on user engagement in an asymmetric social network like Twitter. We introduce simple game-theoretic models that capture rate competition between celebrities producing updates in such networks where users non-strategically choose a subset of celebrities to follow based on the utility derived from high quality updates as well as disutility derived from having to wade through too many updates. Our two variants model the two behaviors of users dropping some potential connections (followership model) or leaving the network altogether (engagement model). We show that under a simple formulation of celebrity rate competition, there is no pure strategy Nash equilibrium under the first model. We then identify special cases in both models when pure rate equilibria exist for the celebrities: For the followership model, we show existence of a pure rate equilibrium when there is a global ranking of the celebrities in terms of the quality of their updates to users. This result also generalizes to the case when there is a partial order consistent with all the linear orders of the celebrities based on their qualities to the users. Furthermore, these equilibria can be computed in polynomial time. For the engagement model, pure rate equilibria exist when all users are interested in the same number of celebrities, or when they are interested in at most two. Finally, we also give a finite though inefficient procedure to determine if pure equilibria exist in the general case of the followership model.
ERIC Educational Resources Information Center
Chow, Meyrick; Herold, David Kurt; Choo, Tat-Ming; Chan, Kitty
2012-01-01
Learners need to have good reasons to engage and accept e-learning. They need to understand that unless they do, the outcomes will be less favourable. The technology acceptance model (TAM) is the most widely recognized model addressing why users accept or reject technology. This study describes the development and evaluation of a virtual…
Information-Theoretic Benchmarking of Land Surface Models
NASA Astrophysics Data System (ADS)
Nearing, Grey; Mocko, David; Kumar, Sujay; Peters-Lidard, Christa; Xia, Youlong
2016-04-01
Benchmarking is a type of model evaluation that compares model performance against a baseline metric that is derived, typically, from a different existing model. Statistical benchmarking was used to qualitatively show that land surface models do not fully utilize information in boundary conditions [1] several years before Gong et al [2] discovered the particular type of benchmark that makes it possible to *quantify* the amount of information lost by an incorrect or imperfect model structure. This theoretical development laid the foundation for a formal theory of model benchmarking [3]. We here extend that theory to separate uncertainty contributions from the three major components of dynamical systems models [4]: model structures, model parameters, and boundary conditions describe time-dependent details of each prediction scenario. The key to this new development is the use of large-sample [5] data sets that span multiple soil types, climates, and biomes, which allows us to segregate uncertainty due to parameters from the two other sources. The benefit of this approach for uncertainty quantification and segregation is that it does not rely on Bayesian priors (although it is strictly coherent with Bayes' theorem and with probability theory), and therefore the partitioning of uncertainty into different components is *not* dependent on any a priori assumptions. We apply this methodology to assess the information use efficiency of the four land surface models that comprise the North American Land Data Assimilation System (Noah, Mosaic, SAC-SMA, and VIC). Specifically, we looked at the ability of these models to estimate soil moisture and latent heat fluxes. We found that in the case of soil moisture, about 25% of net information loss was from boundary conditions, around 45% was from model parameters, and 30-40% was from the model structures. In the case of latent heat flux, boundary conditions contributed about 50% of net uncertainty, and model structures contributed
Testing a developmental cascade model of emotional and social competence and early peer acceptance
Blandon, Alysia Y.; Calkins, Susan D.; Grimm, Kevin J.; Keane, Susan P.; O’Brien, Marion
2011-01-01
A developmental cascade model of early emotional and social competence predicting later peer acceptance was examined in a community sample of 440 children across the ages of 2 to 7. Children’s externalizing behavior, emotion regulation, social skills within the classroom and peer acceptance were examined utilizing a multitrait-multimethod approach. A series of longitudinal cross-lag models that controlled for shared rater variance were fit using structural equation modeling. Results indicated there was considerable stability in children’s externalizing behavior problems and classroom social skills over time. Contrary to expectations, there were no reciprocal influences between externalizing behavior problems and emotion regulation, though higher levels of emotion regulation were associated with decreases in subsequent levels of externalizing behaviors. Finally, children’s early social skills also predicted later peer acceptance. Results underscore the complex associations among emotional and social functioning across early childhood. PMID:20883578
Naturalness of unknown physics: Theoretical models and experimental signatures
NASA Astrophysics Data System (ADS)
Kilic, Can
In the last few decades collider experiments have not only spectacularly confirmed the predictions of the Standard Model but also have not revealed any direct evidence for new physics beyond the SM, which has led theorists to devise numerous models where the new physics couples weakly to the SM or is simply beyond the reach of past experiments. While phenomenologically viable, many such models appear finely tuned, even contrived. This work illustrates three attempts at coming up with explanations to fine-tunings we observe in the world around us, such as the gauge hierarchy problem or the cosmological constant problem, emphasizing both the theoretical aspects of model building as well as possible experimental signatures. First we investigate the "Little Higgs" mechanism and work on a specifical model, the "Minimal Moose" to highlight its impact on precision observables in the SM, and illustrate that it does not require implausible fine-tuning. Next we build a supersymmetric model, the "Fat Higgs", with an extended gauge structure which becomes confining. This model, aside from naturally preserving the unification of the SM gauge couplings at high energies, also makes it possible to evade the bounds on the lightest Higgs boson mass which are quite restrictive in minimal SUSY scenarios. Lastly we take a look at a possible resolution of the cosmological constant problem through the mechanism of "Ghost Condensation" and dwell on astrophysical observables from the Lorentz Violating sector in this model. We use current experimental data to constrain the coupling of this sector to the SM.
Theoretical models for coronary vascular biomechanics: progress & challenges.
Waters, Sarah L; Alastruey, Jordi; Beard, Daniel A; Bovendeerd, Peter H M; Davies, Peter F; Jayaraman, Girija; Jensen, Oliver E; Lee, Jack; Parker, Kim H; Popel, Aleksander S; Secomb, Timothy W; Siebes, Maria; Sherwin, Spencer J; Shipley, Rebecca J; Smith, Nicolas P; van de Vosse, Frans N
2011-01-01
A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies. PMID:21040741
Theoretical models for coronary vascular biomechanics: Progress & challenges
Waters, Sarah L.; Alastruey, Jordi; Beard, Daniel A.; Bovendeerd, Peter H.M.; Davies, Peter F.; Jayaraman, Girija; Jensen, Oliver E.; Lee, Jack; Parker, Kim H.; Popel, Aleksander S.; Secomb, Timothy W.; Siebes, Maria; Sherwin, Spencer J.; Shipley, Rebecca J.; Smith, Nicolas P.; van de Vosse, Frans N.
2013-01-01
A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies. PMID:21040741
Accuracy Analysis of a Box-wing Theoretical SRP Model
NASA Astrophysics Data System (ADS)
Wang, Xiaoya; Hu, Xiaogong; Zhao, Qunhe; Guo, Rui
2016-07-01
For Beidou satellite navigation system (BDS) a high accuracy SRP model is necessary for high precise applications especially with Global BDS establishment in future. The BDS accuracy for broadcast ephemeris need be improved. So, a box-wing theoretical SRP model with fine structure and adding conical shadow factor of earth and moon were established. We verified this SRP model by the GPS Block IIF satellites. The calculation was done with the data of PRN 1, 24, 25, 27 satellites. The results show that the physical SRP model for POD and forecast for GPS IIF satellite has higher accuracy with respect to Bern empirical model. The 3D-RMS of orbit is about 20 centimeters. The POD accuracy for both models is similar but the prediction accuracy with the physical SRP model is more than doubled. We tested 1-day 3-day and 7-day orbit prediction. The longer is the prediction arc length, the more significant is the improvement. The orbit prediction accuracy with the physical SRP model for 1-day, 3-day and 7-day arc length are 0.4m, 2.0m, 10.0m respectively. But they are 0.9m, 5.5m and 30m with Bern empirical model respectively. We apply this means to the BDS and give out a SRP model for Beidou satellites. Then we test and verify the model with Beidou data of one month only for test. Initial results show the model is good but needs more data for verification and improvement. The orbit residual RMS is similar to that with our empirical force model which only estimate the force for along track, across track direction and y-bias. But the orbit overlap and SLR observation evaluation show some improvement. The remaining empirical force is reduced significantly for present Beidou constellation.
The theoretical aspects of UrQMD & AMPT models
NASA Astrophysics Data System (ADS)
Saini, Abhilasha; Bhardwaj, Sudhir
2016-05-01
The field of high energy physics is very challenging in carrying out theories and experiments to unlock the secrets of heavy ion collisions and still not cracked and solved completely. There are many theoretical queries; some may be due to the inherent causes like the non-perturbative nature of QCD in the strong coupling limit, also due to the multi-particle production and evolution during the heavy ion collisions which increase the complexity of the phenomena. So for the purpose of understanding the phenomena, variety of theories and ideas are developed which are usually implied in the form of Monte-Carlo codes. The UrQMD model and the AMPT model are discussed here in detail. These methods are useful in modeling the nuclear collisions.
Theoretical Modeling of Mechanical-Electrical Coupling of Carbon Nanotubes
Lu, Jun-Qiang; Jiang, Hanqiang
2008-01-01
Carbon nanotubes have been studied extensively due to their unique properties, ranging from electrical, mechanical, optical, to thermal properties. The coupling between the electrical and mechanical properties of carbon nanotubes has emerged as a new field, which raises both interesting fundamental problems and huge application potentials. In this article, we will review our recently work on the theoretical modeling on mechanical-electrical coupling of carbon nanotubes subject to various loading conditions, including tension/compression, torsion, and squashing. Some related work by other groups will be also mentioned.
Theoretical Models and Operational Frameworks in Public Health Ethics
Petrini, Carlo
2010-01-01
The article is divided into three sections: (i) an overview of the main ethical models in public health (theoretical foundations); (ii) a summary of several published frameworks for public health ethics (practical frameworks); and (iii) a few general remarks. Rather than maintaining the superiority of one position over the others, the main aim of the article is to summarize the basic approaches proposed thus far concerning the development of public health ethics by describing and comparing the various ideas in the literature. With this in mind, an extensive list of references is provided. PMID:20195441
NMR relaxation induced by iron oxide particles: testing theoretical models.
Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L
2016-04-15
Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water. PMID:26933908
NMR relaxation induced by iron oxide particles: testing theoretical models
NASA Astrophysics Data System (ADS)
Gossuin, Y.; Orlando, T.; Basini, M.; Henrard, D.; Lascialfari, A.; Mattea, C.; Stapf, S.; Vuong, Q. L.
2016-04-01
Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.
NASA Astrophysics Data System (ADS)
Yang, Wen; Fung, Richard Y. K.
2014-06-01
This article considers an order acceptance problem in a make-to-stock manufacturing system with multiple demand classes in a finite time horizon. Demands in different periods are random variables and are independent of one another, and replenishments of inventory deviate from the scheduled quantities. The objective of this work is to maximize the expected net profit over the planning horizon by deciding the fraction of the demand that is going to be fulfilled. This article presents a stochastic order acceptance optimization model and analyses the existence of the optimal promising policies. An example of a discrete problem is used to illustrate the policies by applying the dynamic programming method. In order to solve the continuous problems, a heuristic algorithm based on stochastic approximation (HASA) is developed. Finally, the computational results of a case example illustrate the effectiveness and efficiency of the HASA approach, and make the application of the proposed model readily acceptable.
Not Available
1980-03-01
The literature on Schottky and MIS diodes has been thoroughly reviewed. Underlying the accepted theoretical models for MIS devices, a major weakness in the handling of current flow through the insulating layer was identified. An alternate model, presently only partially developed quantitatively is presented.
Sampling artifact in volume weighted velocity measurement. I. Theoretical modeling
NASA Astrophysics Data System (ADS)
Zhang, Pengjie; Zheng, Yi; Jing, Yipeng
2015-02-01
Cosmology based on large scale peculiar velocity prefers volume weighted velocity statistics. However, measuring the volume weighted velocity statistics from inhomogeneously distributed galaxies (simulation particles/halos) suffers from an inevitable and significant sampling artifact. We study this sampling artifact in the velocity power spectrum measured by the nearest particle velocity assignment method by Zheng et al., [Phys. Rev. D 88, 103510 (2013).]. We derive the analytical expression of leading and higher order terms. We find that the sampling artifact suppresses the z =0 E -mode velocity power spectrum by ˜10 % at k =0.1 h /Mpc , for samples with number density 10-3 (Mpc /h )-3 . This suppression becomes larger for larger k and for sparser samples. We argue that this source of systematic errors in peculiar velocity cosmology, albeit severe, can be self-calibrated in the framework of our theoretical modelling. We also work out the sampling artifact in the density-velocity cross power spectrum measurement. A more robust evaluation of related statistics through simulations will be presented in a companion paper by Zheng et al., [Sampling artifact in volume weighted velocity measurement. II. Detection in simulations and comparison with theoretical modelling, arXiv:1409.6809.]. We also argue that similar sampling artifact exists in other velocity assignment methods and hence must be carefully corrected to avoid systematic bias in peculiar velocity cosmology.
Inference of Mix from Experimental Data and Theoretical Mix Models
Welser-Sherrill, L.; Haynes, D. A.; Cooley, J. H.; Mancini, R. C.; Haan, S. W.; Golovkin, I. E.
2007-08-02
The mixing between fuel and shell materials in Inertial Confinement Fusion implosion cores is a topic of great interest. Mixing due to hydrodynamic instabilities can affect implosion dynamics and could also go so far as to prevent ignition. We have demonstrated that it is possible to extract information on mixing directly from experimental data using spectroscopic arguments. In order to compare this data-driven analysis to a theoretical framework, two independent mix models, Youngs' phenomenological model and the Haan saturation model, have been implemented in conjunction with a series of clean hydrodynamic simulations that model the experiments. The first tests of these methods were carried out based on a set of indirect drive implosions at the OMEGA laser. We now focus on direct drive experiments, and endeavor to approach the problem from another perspective. In the current work, we use Youngs' and Haan's mix models in conjunction with hydrodynamic simulations in order to design experimental platforms that exhibit measurably different levels of mix. Once the experiments are completed based on these designs, the results of a data-driven mix analysis will be compared to the levels of mix predicted by the simulations. In this way, we aim to increase our confidence in the methods used to extract mixing information from the experimental data, as well as to study sensitivities and the range of validity of the mix models.
Development of theoretical models of integrated millimeter wave antennas
NASA Technical Reports Server (NTRS)
Yngvesson, K. Sigfrid; Schaubert, Daniel H.
1991-01-01
Extensive radiation patterns for Linear Tapered Slot Antenna (LTSA) Single Elements are presented. The directivity of LTSA elements is predicted correctly by taking the cross polarized pattern into account. A moment method program predicts radiation patterns for air LTSAs with excellent agreement with experimental data. A moment method program was also developed for the task LTSA Array Modeling. Computations performed with this program are in excellent agreement with published results for dipole and monopole arrays, and with waveguide simulator experiments, for more complicated structures. Empirical modeling of LTSA arrays demonstrated that the maximum theoretical element gain can be obtained. Formulations were also developed for calculating the aperture efficiency of LTSA arrays used in reflector systems. It was shown that LTSA arrays used in multibeam systems have a considerable advantage in terms of higher packing density, compared with waveguide feeds. Conversion loss of 10 dB was demonstrated at 35 GHz.
Theoretical light curves for deflagration models of type Ia supernova
NASA Astrophysics Data System (ADS)
Blinnikov, S. I.; Röpke, F. K.; Sorokina, E. I.; Gieseler, M.; Reinecke, M.; Travaglio, C.; Hillebrandt, W.; Stritzinger, M.
2006-07-01
Aims.We present synthetic bolometric and broad-band UBVRI light curves of SNe Ia for four selected 3D deflagration models of thermonuclear supernovae. Methods: .The light curves are computed with the 1D hydro code stella, which models (multi-group time-dependent) non-equilibrium radiative transfer inside SN ejecta. Angle-averaged results from 3D hydrodynamical explosion simulations with the composition determined in a nucleosynthetic postprocessing step served as the input to the radiative transfer model. Results: .The predicted model {UBV} light curves do agree reasonably well with the observed ones for SNe Ia in the range of low to normal luminosities, although the underlying hydrodynamical explosion models produced only a modest amount of radioactive {}56Ni(i.e. 0.24-0.42 M⊙) and relatively low kinetic energy in the explosion (less than 0.7 × 1051 erg). The evolution of predicted B and V fluxes in the model with a {}56Nimass of 0.42 M⊙ follows the observed decline rate after the maximum very well, although the behavior of fluxes in other filters deviates somewhat from observations, and the bolometric decline rate is a bit slow. The material velocity at the photospheric level is on the order of 104 km s-1 for all models. Using our models, we check the validity of Arnett's rule, relating the peak luminosity to the power of the deposited radioactive heating, and we also check the accuracy of the procedure for extracting the {}56Nimass from the observed light curves. Conclusions: .We find that the comparison between theoretical light curves and observations provides a useful tool to validate SN Ia models. The steps necessary for improving the agreement between theory and observations are set out.
24 CFR 200.926c - Model code provisions for use in partially accepted code jurisdictions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Model code provisions for use in partially accepted code jurisdictions. 200.926c Section 200.926c Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR...
ERIC Educational Resources Information Center
Chang, Chi-Cheng; Yan, Chi-Fang; Tseng, Ju-Shih
2012-01-01
Since convenience is one of the features for mobile learning, does it affect attitude and intention of using mobile technology? The technology acceptance model (TAM), proposed by David (1989), was extended with perceived convenience in the present study. With regard to English language mobile learning, the variables in the extended TAM and its…
Extended TAM Model: Impacts of Convenience on Acceptance and Use of Moodle
ERIC Educational Resources Information Center
Hsu, Hsiao-hui; Chang, Yu-ying
2013-01-01
The increasing online access to courses, programs, and information has shifted the control and responsibility of learning process from instructors to learners. Learners' perceptions of and attitudes toward e-learning constitute a critical factor to the success of such system. The purpose of this study is to take TAM (technology acceptance model)…
ERIC Educational Resources Information Center
Nworji, Alexander O.
2013-01-01
Most organizations spend millions of dollars due to the impact of improperly implemented database application systems as evidenced by poor data quality problems. The purpose of this quantitative study was to use, and extend, the technology acceptance model (TAM) to assess the impact of information quality and technical quality factors on database…
24 CFR 200.926c - Model code provisions for use in partially accepted code jurisdictions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Model code provisions for use in partially accepted code jurisdictions. 200.926c Section 200.926c Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT...
ERIC Educational Resources Information Center
Fusilier, Marcelline; Durlabhji, Subhash; Cucchi, Alain
2008-01-01
National background of users may influence the process of technology acceptance. The present study explored this issue with the new, integrated technology use model proposed by Sun and Zhang (2006). Data were collected from samples of college students in India, Mauritius, Reunion Island, and United States. Questionnaire methodology and…
24 CFR 200.926c - Model code provisions for use in partially accepted code jurisdictions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Model code provisions for use in partially accepted code jurisdictions. 200.926c Section 200.926c Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT...
ERIC Educational Resources Information Center
Wong, Kung-Teck; Osman, Rosma bt; Goh, Pauline Swee Choo; Rahmat, Mohd Khairezan
2013-01-01
This study sets out to validate and test the Technology Acceptance Model (TAM) in the context of Malaysian student teachers' integration of their technology in teaching and learning. To establish factorial validity, data collected from 302 respondents were tested against the TAM using confirmatory factor analysis (CFA), and structural equation…
Merkatz, Ruth B.; Plagianos, Marlena; Hoskin, Elena; Cooney, Michael; Hewett, Paul C; Mensch, Barbara S.
2015-01-01
Objectives Develop and test a theoretical acceptability model for the Nestorone®/ethinyl estradiol (NES/EE) contraceptive vaginal ring (CVR); explore whether domains of use within the model predict satisfaction, method adherence and CVR continuation. Study Design Four domains of use were considered relative to outcome markers of acceptability, i.e. method satisfaction, adherence, and continuation. A questionnaire to evaluate subjects’ experiences relative to the domains, their satisfaction (Likert scale), and adherence to instructions for use was developed and administered to 1036 women enrolled in a 13-cycle Phase 3 trial. Method continuation was documented from the trial database. Stepwise logistic regression (LR) analysis was conducted and odds ratios calculated to assess associations of satisfaction with questions from the 4 domains. Fisher’s exact test was used to determine the association of satisfaction with outcome measures. Results A final acceptability model was developed based on the following determinants of CVR satisfaction: ease of use, side effects, expulsions/feeling the CVR, and sexual activity including physical effects during intercourse. Satisfaction was high (89%) and related to higher method adherence [OR 2.6(1.3,5.2)] and continuation [OR5.5(3.5, 8.4)]. According to the LR analysis, attributes of CVR use representing items from the 4 domains — finding it easy to remove, not complaining of side effects, not feeling the CVR while wearing it, and experiencing no change or an increase in sexual pleasure and/or frequency — were associated with higher odds of satisfaction. Conclusion Hypothesized domains of CVR use were related to satisfaction, which was associated with adherence and continuation. Results provide a scientific basis for introduction and future research. PMID:24993487
Theoretical model for the wetting of a rough surface.
Hay, K M; Dragila, M I; Liburdy, J
2008-09-15
Many applications would benefit from an understanding of the physical mechanism behind fluid movement on rough surfaces, including the movement of water or contaminants within an unsaturated rock fracture. Presented is a theoretical investigation of the effect of surface roughness on fluid spreading. It is known that surface roughness enhances the effects of hydrophobic or hydrophilic behavior, as well as allowing for faster spreading of a hydrophilic fluid. A model is presented based on the classification of the regimes of spreading that occur when fluid encounters a rough surface: microscopic precursor film, mesoscopic invasion of roughness and macroscopic reaction to external forces. A theoretical relationship is developed for the physical mechanisms that drive mesoscopic invasion, which is used to guide a discussion of the implications of the theory on spreading conditions. Development of the analytical equation is based on a balance between capillary forces and frictional resistive forces. Chemical heterogeneity is ignored. The effect of various methods for estimating viscous dissipation is compared to available data from fluid rise on roughness experiments. Methods that account more accurately for roughness shape better explain the data as they account for more surface friction; the best fit was found for a hydraulic diameter approximation. The analytical solution implies the existence of a critical contact angle that is a function of roughness geometry, below which fluid will spread and above which fluid will resist spreading. The resulting equation predicts movement of a liquid invasion front with a square root of time dependence, mathematically resembling a diffusive process. PMID:18586259
Group theoretical modeling of thermal explosion with reactant consumption
NASA Astrophysics Data System (ADS)
Ibragimov, Ranis N.; Dameron, Michael
2012-09-01
Today engineering and science researchers routinely confront problems in mathematical modeling involving nonlinear differential equations. Many mathematical models formulated in terms of nonlinear differential equations can be successfully treated and solved by Lie group methods. Lie group analysis is especially valuable in investigating nonlinear differential equations, for its algorithms act as reliably as for linear cases. The aim of this article is to provide the group theoretical modeling of the symmetrical heating of an exothermally reacting medium with approximations to the body's temperature distribution similar to those made by Thomas [17] and Squire [15]. The quantitative results were found to be in a good agreement with Adler and Enig in [1], where the authors were comparing the integral curves corresponding to the critical conditions for the first-order reaction. Further development of the modeling by including the critical temperature is proposed. Overall, it is shown, in particular, that the application of Lie group analysis allows one to extend the previous analytic results for the first order reactions to nth order ones.
Theoretical model for calculation of helicity in solar active regions
NASA Astrophysics Data System (ADS)
Chatterjee, P.
We (Choudhuri, Chatterjee and Nandy, 2005) calculate helicities of solar active regions based on the idea of Choudhuri (2003) that poloidal flux lines get wrapped around a toroidal flux tube rising through the convection zone, thereby giving rise to the helicity. Rough estimates based on this idea compare favourably with the observed magnitude of helicity. We use our solar dynamo model based on the Babcock--Leighton α-effect to study how helicity varies with latitude and time. At the time of solar maximum, our theoretical model gives negative helicity in the northern hemisphere and positive helicity in the south, in accordance with observed hemispheric trends. However, we find that, during a short interval at the beginning of a cycle, helicities tend to be opposite of the preferred hemispheric trends. Next we (Chatterjee, Choudhuri and Petrovay 2006) use the above idea along with the sunspot decay model of Petrovay and Moreno-Insertis, (1997) to estimate the distribution of helicity inside a flux tube as it keeps collecting more azimuthal flux during its rise through the convection zone and as turbulent diffusion keeps acting on it. By varying parameters over reasonable ranges in our simple 1-d model, we find that the azimuthal flux penetrates the flux tube to some extent instead of being confined to a narrow sheath outside.
Modeling of a Parabolic Trough Solar Field for Acceptance Testing: A Case Study
Wagner, M. J.; Mehos, M. S.; Kearney, D. W.; McMahan, A. C.
2011-01-01
As deployment of parabolic trough concentrating solar power (CSP) systems ramps up, the need for reliable and robust performance acceptance test guidelines for the solar field is also amplified. Project owners and/or EPC contractors often require extensive solar field performance testing as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guaranties between the involved parties. Performance test code work is currently underway at the National Renewable Energy Laboratory (NREL) in collaboration with the SolarPACES Task-I activity, and within the ASME PTC-52 committee. One important aspect of acceptance testing is the selection of a robust technology performance model. NREL1 has developed a detailed parabolic trough performance model within the SAM software tool. This model is capable of predicting solar field, sub-system, and component performance. It has further been modified for this work to support calculation at subhourly time steps. This paper presents the methodology and results of a case study comparing actual performance data for a parabolic trough solar field to the predicted results using the modified SAM trough model. Due to data limitations, the methodology is applied to a single collector loop, though it applies to larger subfields and entire solar fields. Special consideration is provided for the model formulation, improvements to the model formulation based on comparison with the collected data, and uncertainty associated with the measured data. Additionally, this paper identifies modeling considerations that are of particular importance in the solar field acceptance testing process and uses the model to provide preliminary recommendations regarding acceptable steady-state testing conditions at the single-loop level.
Modeling of rolling element bearing mechanics. Theoretical manual
NASA Technical Reports Server (NTRS)
Merchant, David H.; Greenhill, Lyn M.
1994-01-01
This report documents the theoretical basis for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings; duplex angular contact ball bearings; and cylindrical roller bearings. The model includes the effects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program; and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. A companion report addresses the input instructions for and features of the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.
Modeling an Application's Theoretical Minimum and Average Transactional Response Times
Paiz, Mary Rose
2015-04-01
The theoretical minimum transactional response time of an application serves as a ba- sis for the expected response time. The lower threshold for the minimum response time represents the minimum amount of time that the application should take to complete a transaction. Knowing the lower threshold is beneficial in detecting anomalies that are re- sults of unsuccessful transactions. On the converse, when an application's response time falls above an upper threshold, there is likely an anomaly in the application that is causing unusual performance issues in the transaction. This report explains how the non-stationary Generalized Extreme Value distribution is used to estimate the lower threshold of an ap- plication's daily minimum transactional response time. It also explains how the seasonal Autoregressive Integrated Moving Average time series model is used to estimate the upper threshold for an application's average transactional response time.
Theoretical model for forming limit diagram predictions without initial inhomogeneity
NASA Astrophysics Data System (ADS)
Gologanu, Mihai; Comsa, Dan Sorin; Banabic, Dorel
2013-05-01
We report on our attempts to build a theoretical model for determining forming limit diagrams (FLD) based on limit analysis that, contrary to the well-known Marciniak and Kuczynski (M-K) model, does not assume the initial existence of a region with material or geometrical inhomogeneity. We first give a new interpretation based on limit analysis for the onset of necking in the M-K model. Considering the initial thickness defect along a narrow band as postulated by the M-K model, we show that incipient necking is a transition in the plastic mechanism from one of plastic flow in both the sheet and the band to another one where the sheet becomes rigid and all plastic deformation is localized in the band. We then draw on some analogies between the onset of necking in a sheet and the onset of coalescence in a porous bulk body. In fact, the main advance in coalescence modeling has been based on a similar limit analysis with an important new ingredient: the evolution of the spatial distribution of voids, due to the plastic deformation, creating weaker regions with higher porosity surrounded by sound regions with no voids. The onset of coalescence is precisely the transition from a mechanism of plastic deformation in both regions to another one, where the sound regions are rigid. We apply this new ingredient to a necking model based on limit analysis, for the first quadrant of the FLD and a porous sheet. We use Gurson's model with some recent extensions to model the porous material. We follow both the evolution of a homogeneous sheet and the evolution of the distribution of voids. At each moment we test for a potential change of plastic mechanism, by comparing the stresses in the uniform region to those in a virtual band with a larger porosity. The main difference with the coalescence of voids in a bulk solid is that the plastic mechanism for a sheet admits a supplementary degree of freedom, namely the change in the thickness of the virtual band. For strain ratios close to
Computational Graph Theoretical Model of the Zebrafish Sensorimotor Pathway
NASA Astrophysics Data System (ADS)
Peterson, Joshua M.; Stobb, Michael; Mazzag, Bori; Gahtan, Ethan
2011-11-01
Mapping the detailed connectivity patterns of neural circuits is a central goal of neuroscience and has been the focus of extensive current research [4, 3]. The best quantitative approach to analyze the acquired data is still unclear but graph theory has been used with success [3, 1]. We present a graph theoretical model with vertices and edges representing neurons and synaptic connections, respectively. Our system is the zebrafish posterior lateral line sensorimotor pathway. The goal of our analysis is to elucidate mechanisms of information processing in this neural pathway by comparing the mathematical properties of its graph to those of other, previously described graphs. We create a zebrafish model based on currently known anatomical data. The degree distributions and small-world measures of this model is compared to small-world, random and 3-compartment random graphs of the same size (with over 2500 nodes and 160,000 connections). We find that the zebrafish graph shows small-worldness similar to other neural networks and does not have a scale-free distribution of connections.
Ross, Victoria L; Fielding, Kelly S; Louis, Winnifred R
2014-05-01
Faced with a severe drought, the residents of the regional city of Toowoomba, in South East Queensland, Australia were asked to consider a potable wastewater reuse scheme to supplement drinking water supplies. As public risk perceptions and trust have been shown to be key factors in acceptance of potable reuse projects, this research developed and tested a social-psychological model of trust, risk perceptions and acceptance. Participants (N = 380) were surveyed a few weeks before a referendum was held in which residents voted against the controversial scheme. Analysis using structural equation modelling showed that the more community members perceived that the water authority used fair procedures (e.g., consulting with the community and providing accurate information), the greater their sense of shared identity with the water authority. Shared social identity in turn influenced trust via increased source credibility, that is, perceptions that the water authority is competent and has the community's interest at heart. The findings also support past research showing that higher levels of trust in the water authority were associated with lower perceptions of risk, which in turn were associated with higher levels of acceptance, and vice versa. The findings have a practical application for improving public acceptance of potable recycled water schemes. PMID:24603028
The acceptance of in silico models for REACH: Requirements, barriers, and perspectives
2011-01-01
In silico models have prompted considerable interest and debate because of their potential value in predicting the properties of chemical substances for regulatory purposes. The European REACH legislation promotes innovation and encourages the use of alternative methods, but in practice the use of in silico models is still very limited. There are many stakeholders influencing the regulatory trajectory of quantitative structure-activity relationships (QSAR) models, including regulators, industry, model developers and consultants. Here we outline some of the issues and challenges involved in the acceptance of these methods for regulatory purposes. PMID:21982269
ERIC Educational Resources Information Center
Lee, Yi-Hsuan; Hsieh, Yi-Chuan; Hsu, Chia-Ning
2011-01-01
This study intends to investigate factors affecting business employees' behavioral intentions to use the e-learning system. Combining the innovation diffusion theory (IDT) with the technology acceptance model (TAM), the present study proposes an extended technology acceptance model. The proposed model was tested with data collected from 552…
ERIC Educational Resources Information Center
Seiverling, Laura; Harclerode, Whitney; Williams, Keith
2014-01-01
The purpose of this study was to examine if sequential presentation with feeder modeling would lead to an increase in bites accepted of new foods compared to sequential presentation without feeder modeling in a typically developing 4-year-old boy with food selectivity. The participant's acceptance of novel foods increased both in the modeling and…
Theoretical conditions for the stationary reproduction of model protocells.
Mavelli, Fabio; Ruiz-Mirazo, Kepa
2013-02-01
In previous works we have explored the dynamics of chemically reacting proto-cellular systems, under different experimental conditions and kinetic parameters, by means of our stochastic simulation platform 'ENVIRONMENT'. In this paper we, somehow, turn the question around: accepting some broad modeling assumptions, we investigate the conditions under which simple protocells will spontaneously settle into a stationary reproducing regime, characterized by a regular growth/division cycle and the maintenance of a certain standard size and chemical composition across generations. In the first part, starting from purely geometric considerations, the condition for stationary reproduction of a protocell will be expressed in terms of a growth control coefficient (γ). Then, an explicit relationship, the osmotic synchronization condition, will be analytically derived under a set of kinetic simplifications and taking into account the osmotic pressure balance operating across the protocell membrane. In the second part of the paper, this general condition that constrains different molecular/kinetic parameters and features of the system (reaction rates, permeability coefficients, metabolite concentrations, system volume) will be applied to different cases of self-producing vesicles, predicting the stationary protocell size or lifetime. Finally, in order to test the validity of our analytic results and predictions, the case study is contrasted with data obtained through both stochastic and deterministic computational algorithms. PMID:23233152
Graph theoretic modeling of large-scale semantic networks.
Bales, Michael E; Johnson, Stephen B
2006-08-01
During the past several years, social network analysis methods have been used to model many complex real-world phenomena, including social networks, transportation networks, and the Internet. Graph theoretic methods, based on an elegant representation of entities and relationships, have been used in computational biology to study biological networks; however they have not yet been adopted widely by the greater informatics community. The graphs produced are generally large, sparse, and complex, and share common global topological properties. In this review of research (1998-2005) on large-scale semantic networks, we used a tailored search strategy to identify articles involving both a graph theoretic perspective and semantic information. Thirty-one relevant articles were retrieved. The majority (28, 90.3%) involved an investigation of a real-world network. These included corpora, thesauri, dictionaries, large computer programs, biological neuronal networks, word association networks, and files on the Internet. Twenty-two of the 28 (78.6%) involved a graph comprised of words or phrases. Fifteen of the 28 (53.6%) mentioned evidence of small-world characteristics in the network investigated. Eleven (39.3%) reported a scale-free topology, which tends to have a similar appearance when examined at varying scales. The results of this review indicate that networks generated from natural language have topological properties common to other natural phenomena. It has not yet been determined whether artificial human-curated terminology systems in biomedicine share these properties. Large network analysis methods have potential application in a variety of areas of informatics, such as in development of controlled vocabularies and for characterizing a given domain. PMID:16442849
Electron Scale Solar Wind Turbulence: Cluster Observations and Theoretical Modeling
Sahraoui, F.; Goldstein, M. L.
2011-01-04
Turbulence at MagnetoHydroDynamics (MHD) scales of the solar wind has been studied for more than three decades, using data analyzes, theoretical and numerical modeling. However smaller scales have not been explored until very recently. Here, we review recent results on the first observation of cascade and dissipation of the solar wind turbulence at the electron scales. Thanks to the high resolution magnetic and electric field data of the Cluster spacecraft, we computed the spectra of turbulence up to {approx}100 Hz (in the spacecraft reference frame) and found two distinct breakpoints in the magnetic spectrum at 0.4 Hz and 35 Hz, which correspond, respectively, to the Doppler-shifted proton and electron gyroscales, f{sub {rho}p} and f{sub {rho}e}. Below f{sub {rho}p} the spectrum follows a Kolmogorov scaling f{sup -1.62}, typical of spectra observed at 1 AU. Above f{sub {rho}p} a second inertial range is formed with a scaling f{sup -2.3} down to f{sub {rho}e}. Above f{sub {rho}e} the spectrum has a steeper power law {approx}f{sup -4.1} down to the noise level of the instrument. Solving numerically the linear Maxwell-Vlasov equations combined with recent theoretical predictions of the Gyro-Kinetic theory, we show that the present results are fully consistent with a scenario of a quasi-two-dimensional cascade into Kinetic Alfven modes (KAW).
Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling
Danon, Yaron; Nazarewicz, Witold; Talou, Patrick
2013-02-18
This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implement innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.
Posttraumatic Stress Disorder: A Theoretical Model of the Hyperarousal Subtype
Weston, Charles Stewart E.
2014-01-01
Posttraumatic stress disorder (PTSD) is a frequent and distressing mental disorder, about which much remains to be learned. It is a heterogeneous disorder; the hyperarousal subtype (about 70% of occurrences and simply termed PTSD in this paper) is the topic of this article, but the dissociative subtype (about 30% of occurrences and likely involving quite different brain mechanisms) is outside its scope. A theoretical model is presented that integrates neuroscience data on diverse brain regions known to be involved in PTSD, and extensive psychiatric findings on the disorder. Specifically, the amygdala is a multifunctional brain region that is crucial to PTSD, and processes peritraumatic hyperarousal on grounded cognition principles to produce hyperarousal symptoms. Amygdala activity also modulates hippocampal function, which is supported by a large body of evidence, and likewise amygdala activity modulates several brainstem regions, visual cortex, rostral anterior cingulate cortex (rACC), and medial orbitofrontal cortex (mOFC), to produce diverse startle, visual, memory, numbing, anger, and recklessness symptoms. Additional brain regions process other aspects of peritraumatic responses to produce further symptoms. These contentions are supported by neuroimaging, neuropsychological, neuroanatomical, physiological, cognitive, and behavioral evidence. Collectively, the model offers an account of how responses at the time of trauma are transformed into an extensive array of the 20 PTSD symptoms that are specified in the Diagnostic and Statistical Manual of Mental Disorders, Fifth edition. It elucidates the neural mechanisms of a specific form of psychopathology, and accords with the Research Domain Criteria framework. PMID:24772094
A theoretical model for the Lorentz force particle analyzer
NASA Astrophysics Data System (ADS)
Moreau, René; Tao, Zhen; Wang, Xiaodong
2016-07-01
In a previous paper [X. Wang et al., J. Appl. Phys. 120, 014903 (2016)], several experimental devices have been presented, which demonstrate the efficiency of electromagnetic techniques for detecting and sizing electrically insulating particles entrained in the flow of a molten metal. In each case, a non-uniform magnetic field is applied across the flow of the electrically conducting liquid, thereby generating a braking Lorentz force on this moving medium and a reaction force on the magnet, which tends to be entrained in the flow direction. The purpose of this letter is to derive scaling laws for this Lorentz force from an elementary theoretical model. For simplicity, as in the experiments, the flowing liquid is modeled as a solid body moving with a uniform velocity U. The eddy currents in the moving domain are derived from the classic induction equation and Ohm's law, and expressions for the Lorentz force density j ×B and for its integral over the entire moving domain follow. The insulating particles that are eventually present and entrained with this body are then treated as small disturbances in a classic perturbation analysis, thereby leading to scaling laws for the pulses they generate in the Lorentz force. The purpose of this letter is both to illustrate the eddy currents without and with insulating particles in the electrically conducting liquid and to derive a key relation between the pulses in the Lorentz force and the main parameters (particle volume and dimensions of the region subjected to the magnetic field).
A game theoretic model of drug launch in India.
Bhaduri, Saradindu; Ray, Amit Shovon
2006-01-01
There is a popular belief that drug launch is delayed in developing countries like India because of delayed transfer of technology due to a 'post-launch' imitation threat through weak intellectual property rights (IPR). In fact, this belief has been a major reason for the imposition of the Trade Related Intellectual Property Rights regime under the WTO. This construct undermines the fact that in countries like India, with high reverse engineering capabilities, imitation can occur even before the formal technology transfer, and fails to recognize the first mover advantage in pharmaceutical markets. This paper argues that the first mover advantage is important and will vary across therapeutic areas, especially in developing countries with diverse levels of patient enlightenment and quality awareness. We construct a game theoretic model of incomplete information to examine the delay in drug launch in terms of costs and benefits of first move, assumed to be primarily a function of the therapeutic area of the new drug. Our model shows that drug launch will be delayed only for external (infective/communicable) diseases, while drugs for internal, non-communicable diseases (accounting for the overwhelming majority of new drug discovery) will be launched without delay. PMID:18634701
Theoretical model of prion propagation: a misfolded protein induces misfolding.
Małolepsza, Edyta; Boniecki, Michal; Kolinski, Andrzej; Piela, Lucjan
2005-05-31
There is a hypothesis that dangerous diseases such as bovine spongiform encephalopathy, Creutzfeldt-Jakob, Alzheimer's, fatal familial insomnia, and several others are induced by propagation of wrong or misfolded conformations of some vital proteins. If for some reason the misfolded conformations were acquired by many such protein molecules it might lead to a "conformational" disease of the organism. Here, a theoretical model of the molecular mechanism of such a conformational disease is proposed, in which a metastable (or misfolded) form of a protein induces a similar misfolding of another protein molecule (conformational autocatalysis). First, a number of amino acid sequences composed of 32 aa have been designed that fold rapidly into a well defined native-like alpha-helical conformation. From a large number of such sequences a subset of 14 had a specific feature of their energy landscape, a well defined local energy minimum (higher than the global minimum for the alpha-helical fold) corresponding to beta-type structure. Only one of these 14 sequences exhibited a strong autocatalytic tendency to form a beta-sheet dimer capable of further propagation of protofibril-like structure. Simulations were done by using a reduced, although of high resolution, protein model and the replica exchange Monte Carlo sampling procedure. PMID:15911770
Theoretical model of prion propagation: A misfolded protein induces misfolding
Małolepsza, Edyta; Boniecki, Michał; Kolinski, Andrzej; Piela, Lucjan
2005-01-01
There is a hypothesis that dangerous diseases such as bovine spongiform encephalopathy, Creutzfeldt-Jakob, Alzheimer's, fatal familial insomnia, and several others are induced by propagation of wrong or misfolded conformations of some vital proteins. If for some reason the misfolded conformations were acquired by many such protein molecules it might lead to a “conformational” disease of the organism. Here, a theoretical model of the molecular mechanism of such a conformational disease is proposed, in which a metastable (or misfolded) form of a protein induces a similar misfolding of another protein molecule (conformational autocatalysis). First, a number of amino acid sequences composed of 32 aa have been designed that fold rapidly into a well defined native-like α-helical conformation. From a large number of such sequences a subset of 14 had a specific feature of their energy landscape, a well defined local energy minimum (higher than the global minimum for the α-helical fold) corresponding to β-type structure. Only one of these 14 sequences exhibited a strong autocatalytic tendency to form a β-sheet dimer capable of further propagation of protofibril-like structure. Simulations were done by using a reduced, although of high resolution, protein model and the replica exchange Monte Carlo sampling procedure. PMID:15911770
2015-01-01
Background Today, people use the Internet to satisfy health-related information and communication needs. In Malaysia, Internet use for health management has become increasingly significant due to the increase in the incidence of chronic diseases, in particular among urban women and their desire to stay healthy. Past studies adopted the Technology Acceptance Model (TAM) and Health Belief Model (HBM) independently to explain Internet use for health-related purposes. Although both the TAM and HBM have their own merits, independently they lack the ability to explain the cognition and the related mechanism in which individuals use the Internet for health purposes. Objective This study aimed to examine the influence of perceived health risk and health consciousness on health-related Internet use based on the HBM. Drawing on the TAM, it also tested the mediating effects of perceived usefulness of the Internet for health information and attitude toward Internet use for health purposes for the relationship between health-related factors, namely perceived health risk and health consciousness on health-related Internet use. Methods Data obtained for the current study were collected using purposive sampling; the sample consisted of women in Malaysia who had Internet access. The partial least squares structural equation modeling method was used to test the research hypotheses developed. Results Perceived health risk (β=.135, t 1999=2.676) and health consciousness (β=.447, t 1999=9.168) had a positive influence on health-related Internet use. Moreover, perceived usefulness of the Internet and attitude toward Internet use for health-related purposes partially mediated the influence of health consciousness on health-related Internet use (β=.025, t 1999=3.234), whereas the effect of perceived health risk on health-related Internet use was fully mediated by perceived usefulness of the Internet and attitude (β=.029, t 1999=3.609). These results suggest the central role of
An Empirical Assessment of a Technology Acceptance Model for Apps in Medical Education.
Briz-Ponce, Laura; García-Peñalvo, Francisco José
2015-11-01
The evolution and the growth of mobile applications ("apps") in our society is a reality. This general trend is still upward and the app use has also penetrated the medical education community. However, there is a lot of unawareness of the students' and professionals' point of view about introducing "apps" within Medical School curriculum. The aim of this research is to design, implement and verify that the Technology Acceptance Model (TAM) can be employed to measure and explain the acceptance of mobile technology and "apps" within Medical Education. The methodology was based on a survey distributed to students and medical professionals from University of Salamanca. This model explains 46.7% of behavioral intention to use mobile devise or "apps" for learning and will help us to justify and understand the current situation of introducing "apps" into the Medical School curriculum. PMID:26411928
Empirical STORM-E Model. [I. Theoretical and Observational Basis
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M., III
2013-01-01
Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented
Martian weathering processes: Terrestrial analog and theoretical modeling studies
NASA Astrophysics Data System (ADS)
McAdam, Amy Catherine
2008-06-01
Understanding the role of water in the Martian near-surface, and its implications for possible habitable environments, is among the highest priorities of NASA's Mars Exploration Program. Characterization of alteration signatures in surface materials provides the best opportunity to assess the role of water on Mars. This dissertation investigates Martian alteration processes through analyses of Antarctic analogs and numerical modeling of mineral-fluid interactions. Analog work involved studying an Antarctic diabase, and associated soils, as Mars analogs to understand weathering processes in cold, dry environments. The soils are dominated by primary basaltic minerals, but also contain phyllosilicates, salts, iron oxides/oxyhydroxides, and zeolites. Soil clay minerals and zeolites, formed primarily during deuteric or hydrothermal alteration of the parent rock, were subsequently transferred to the soil by physical rock weathering. Authigenic soil iron oxides/oxyhydroxides and small amounts of poorly-ordered secondary silicates indicate some contributions from low-temperature aqueous weathering. Soil sulfates, which exhibit a sulfate- aerosol-derived mass-independent oxygen isotope signature, suggest contributions from acid aerosol-rock interactions. The complex alteration history of the Antarctic materials resulted in several similarities to Martian materials. The processes that affected the analogs, including deuteric/ hydrothermal clay formation, may be important in producing Martian surface materials. Theoretical modeling focused on investigating the alteration of Martian rocks under acidic conditions and using modeling results to interpret Martian observations. Kinetic modeling of the dissolution of plagioclase-pyroxene mineral mixtures under acidic conditions suggested that surfaces with high plagioclase/pyroxene, such as several northern regions, could have experienced some preferential dissolution of pyroxenes at a pH less than approximately 3-4. Modeling of the
Ciolek, J.T. Jr.
1993-10-01
The Rocky Flats Plant, located approximately 26 km northwest of downtown Denver, Colorado, has developed an emergency response atmospheric dispersion model for complex terrain applications. Plant personnel would use the model, known as the Terrain-Responsive Atmospheric Code (TRAC) (Hodgin 1985) to project plume impacts and provide off-site protective action recommendations to the State of Colorado should a hazardous material release occur from the facility. The Colorado Department of Health (CDH) entered into an interagency agreement with the Rocky Flats Plant prime contractor, EG&G Rocky Flats, and the US Department of Energy to evaluate TRAC as an acceptable emergency response tool. After exhaustive research of similar evaluation processes from other emergency response and regulatory organizations, the interagency committee devised a formal acceptance process. The process contains an evaluation protocol (Hodgin and Smith 1992), descriptions of responsibilities, an identified experimental data set to use in the evaluation, and judgment criteria for model acceptance. The evaluation protocol is general enough to allow for different implementations. This paper explains one implementation, shows protocol results for a test case, and presents results of a comparison between versions of TRAC with different wind Field codes: a two dimensional mass consistent code called WINDS (Fosberg et al. 1976) that has been extended to three dimensions, and a fully 3 dimensional mass conserving code called NUATMOS (Ross and Smith 1987, Ross et al. 1988).
Sequence design in lattice models by graph theoretical methods
NASA Astrophysics Data System (ADS)
Sanjeev, B. S.; Patra, S. M.; Vishveshwara, S.
2001-01-01
A general strategy has been developed based on graph theoretical methods, for finding amino acid sequences that take up a desired conformation as the native state. This problem of inverse design has been addressed by assigning topological indices for the monomer sites (vertices) of the polymer on a 3×3×3 cubic lattice. This is a simple design strategy, which takes into account only the topology of the target protein and identifies the best sequence for a given composition. The procedure allows the design of a good sequence for a target native state by assigning weights for the vertices on a lattice site in a given conformation. It is seen across a variety of conformations that the predicted sequences perform well both in sequence and in conformation space, in identifying the target conformation as native state for a fixed composition of amino acids. Although the method is tested in the framework of the HP model [K. F. Lau and K. A. Dill, Macromolecules 22, 3986 (1989)] it can be used in any context if proper potential functions are available, since the procedure derives unique weights for all the sites (vertices, nodes) of the polymer chain of a chosen conformation (graph).
Thermophotonic heat pump—a theoretical model and numerical simulations
NASA Astrophysics Data System (ADS)
Oksanen, Jani; Tulkki, Jukka
2010-05-01
We have recently proposed a solid state heat pump based on photon mediated heat transfer between two large-area light emitting diodes coupled by the electromagnetic field and enclosed in a semiconductor structure with a nearly homogeneous refractive index. Ideally the thermophotonic heat pump (THP) allows heat transfer at Carnot efficiency but in reality there are several factors that limit the efficiency. The efficient operation of the THP is based on the following construction factors and operational characteristics: (1) broad area semiconductor diodes to enable operation at optimal carrier density and high efficiency, (2) recycling of the energy of the emitted photons, (3) elimination of photon extraction losses by integrating the emitting and the absorbing diodes within a single semiconductor structure, and (4) eliminating the reverse thermal conduction by a nanometer scale vacuum layer between the diodes. In this paper we develop a theoretical model for the THP and study the fundamental physical limitations and potential of the concept. The results show that even when the most important losses of the THPs are accounted for, the THP has potential to outperform the thermoelectric coolers especially for heat transfer across large temperature differences and possibly even to compete with conventional small scale compressor based heat pumps.
A Game-Theoretic Model of Marketing Skin Whiteners.
Mendoza, Roger Lee
2015-01-01
Empirical studies consistently find that people in less developed countries tend to regard light or "white" skin, particularly among women, as more desirable or superior. This is a study about the marketing of skin whiteners in these countries, where over 80 percent of users are typically women. It proceeds from the following premises: a) Purely market or policy-oriented approaches toward the risks and harms of skin whitening are cost-inefficient; b) Psychosocial and informational factors breed uninformed and risky consumer choices that favor toxic skin whiteners; and c) Proliferation of toxic whiteners in a competitive buyer's market raises critical supplier accountability issues. Is intentional tort a rational outcome of uncooperative game equilibria? Can voluntary cooperation nonetheless evolve between buyers and sellers of skin whiteners? These twin questions are key to addressing the central paradox in this study: A robust and expanding buyer's market, where cheap whitening products abound at a high risk to personal and societal health and safety. Game-theoretic modeling of two-player and n-player strategic interactions is proposed in this study for both its explanatory and predictive value. Therein also lie its practical contributions to the economic literature on skin whitening. PMID:26565686
Network-theoretic approach to model vortex interactions
NASA Astrophysics Data System (ADS)
Nair, Aditya; Taira, Kunihiko
2014-11-01
We present a network-theoretic approach to describe a system of point vortices in two-dimensional flow. By considering the point vortices as nodes, a complete graph is constructed with edges connecting each vortex to every other vortex. The interactions between the vortices are captured by the graph edge weights. We employ sparsification techniques on these graph representations based on spectral theory to construct sparsified models of the overall vortical interactions. The edge weights are redistributed through spectral sparsification of the graph such that the sum of the interactions associated with each vortex is maintained constant. In addition, sparse configurations maintain similar spectral properties as the original setup. Through the reduction in the number of interactions, key vortex interactions can be highlighted. Identification of vortex structures based on graph sparsification is demonstrated with an example of clusters of point vortices. We also evaluate the computational performance of sparsification for large collection of point vortices. Work supported by US Army Research Office (W911NF-14-1-0386) and US Air Force Office of Scientific Research (YIP: FA9550-13-1-0183).
Information theoretic aspects of the two-dimensional Ising model.
Lau, Hon Wai; Grassberger, Peter
2013-02-01
We present numerical results for various information theoretic properties of the square lattice Ising model. First, using a bond propagation algorithm, we find the difference 2H(L)(w)-H(2L)(w) between entropies on cylinders of finite lengths L and 2L with open end cap boundaries, in the limit L→∞. This essentially quantifies how the finite length correction for the entropy scales with the cylinder circumference w. Secondly, using the transfer matrix, we obtain precise estimates for the information needed to specify the spin state on a ring encircling an infinitely long cylinder. Combining both results, we obtain the mutual information between the two halves of a cylinder (the "excess entropy" for the cylinder), where we confirm with higher precision but for smaller systems the results recently obtained by Wilms et al., and we show that the mutual information between the two halves of the ring diverges at the critical point logarithmically with w. Finally, we use the second result together with Monte Carlo simulations to show that also the excess entropy of a straight line of n spins in an infinite lattice diverges at criticality logarithmically with n. We conjecture that such logarithmic divergence happens generically for any one-dimensional subset of sites at any two-dimensional second-order phase transition. Comparing straight lines on square and triangular lattices with square loops and with lines of thickness 2, we discuss questions of universality. PMID:23496480
Information theoretic aspects of the two-dimensional Ising model
NASA Astrophysics Data System (ADS)
Lau, Hon Wai; Grassberger, Peter
2013-02-01
We present numerical results for various information theoretic properties of the square lattice Ising model. First, using a bond propagation algorithm, we find the difference 2HL(w)-H2L(w) between entropies on cylinders of finite lengths L and 2L with open end cap boundaries, in the limit L→∞. This essentially quantifies how the finite length correction for the entropy scales with the cylinder circumference w. Secondly, using the transfer matrix, we obtain precise estimates for the information needed to specify the spin state on a ring encircling an infinitely long cylinder. Combining both results, we obtain the mutual information between the two halves of a cylinder (the “excess entropy” for the cylinder), where we confirm with higher precision but for smaller systems the results recently obtained by Wilms , and we show that the mutual information between the two halves of the ring diverges at the critical point logarithmically with w. Finally, we use the second result together with Monte Carlo simulations to show that also the excess entropy of a straight line of n spins in an infinite lattice diverges at criticality logarithmically with n. We conjecture that such logarithmic divergence happens generically for any one-dimensional subset of sites at any two-dimensional second-order phase transition. Comparing straight lines on square and triangular lattices with square loops and with lines of thickness 2, we discuss questions of universality.
ERIC Educational Resources Information Center
Wu, Xiaoyu; Gao, Yuan
2011-01-01
This paper applies the extended technology acceptance model (exTAM) in information systems research to the use of clickers in student learning. The technology acceptance model (TAM) posits that perceived ease of use and perceived usefulness of technology influence users' attitudes toward using and intention to use technology. Research subsequent…
ERIC Educational Resources Information Center
Augustus-Horvath, Casey L.; Tylka, Tracy L.
2011-01-01
The acceptance model of intuitive eating (Avalos & Tylka, 2006) posits that body acceptance by others helps women appreciate their body and resist adopting an observer's perspective of their body, which contribute to their eating intuitively/adaptively. We extended this model by integrating body mass index (BMI) into its structure and…
Theoretical model for electrophilic oxygen atom insertion into hydrocarbons
Bach, R.D.; Su, M.D. ); Andres, J.L. Wayne State Univ., Detroit, MI ); McDouall, J.J.W. )
1993-06-30
A theoretical model suggesting the mechanistic pathway for the oxidation of saturated-alkanes to their corresponding alcohols and ketones is described. Water oxide (H[sub 2]O-O) is employed as a model singlet oxygen atom donor. Molecular orbital calculations with the 6-31G basis set at the MP2, QCISD, QCISD(T), CASSCF, and MRCI levels of theory suggest that oxygen insertion by water oxide occurs by the interaction of an electrophilic oxygen atom with a doubly occupied hydrocarbon fragment orbital. The electrophilic oxygen approaches the hydrocarbon along the axis of the atomic carbon p orbital comprising a [pi]-[sub CH(2)] or [pi]-[sub CHCH(3)] fragment orbital to form a carbon-oxygen [sigma] bond. A concerted hydrogen migration to an adjacent oxygen lone pair of electrons affords the alcohol insertion product in a stereoselective fashion with predictable stereochemistry. Subsequent oxidation of the alcohol to a ketone (or aldehyde) occurs in a similar fashion and has a lower activation barrier. The calculated (MP4/6-31G*//MP2/6-31G*) activation barriers for oxygen atom insertion into the C-H bonds of methane, ethane, propane, butane, isobutane, and methanol are 10.7, 8.2, 3.9, 4.8, 4.5, and 3.3 kcal/mol, respectively. We use ab initio molecular orbital calculations in support of a frontier MO theory that provides a unique rationale for both the stereospecificity and the stereoselectivity of insertion of electrophilic oxygen and related electrophiles into the carbon-hydrogen bond. 13 refs., 7 figs., 2 tabs.
Theoretical Modeling of the Discharge-Pumped Xenon - Excimer Laser.
NASA Astrophysics Data System (ADS)
Zhu, Sheng-Bai
The present dissertation is dedicated to a theoretical study of the discharge pumped XeCl excimer laser. For a better description of our system, Two modelings which supplement each other from different angles have been successfully developed. The first one, a comprehensive kinetics model which can be applied to the detailed simulations of the temporal behavior of the discharge characteristics and laser performance, is constructed by a set of coupled first -order differential equations, such as the rate equations, the Boltzmann equation, the external electric circuit equations, the energy balance equation, and the equations of optical resonator. The starting and termination of the discharge are taken into deliberation for the first time, especially for the Blumlein case. Some 70 kinetic processes and 23 chemical species are included. Such a problem can only be numerically solved by means of an elaborate computer code. Another model, on the other hand, pays attention to the quasi-steady-state to facilitate parametric study. A group of rate coefficients for the kinetic processes involving free electrons are approximated by analytic expressions using numerical results compiled from computer code calculations. Explicit expressions of the number densities for all relevant chemical species are obtained. Among them, HCI(O), H, and Cl can never reach steady-state population. Time history of the concentrations for these species are computed instead. With the discussions about the effect of vibrational relaxation and state-to-state transfer in the upper energy level, and the discussions about the rotational structure, collisional broadening, and dissociation of the diatomic ground state, we have extensively investigated the spontaneous emission spectra, the small-signal gain, the non-saturable absorption, the steady-state laser output power, and various efficiencies. Saturation effects in laser oscillators and laser amplifiers are discussed as well. These topics relate to the
ERIC Educational Resources Information Center
Markon, Kristian E.; Krueger, Robert F.
2006-01-01
Distinguishing between discrete and continuous latent variable distributions has become increasingly important in numerous domains of behavioral science. Here, the authors explore an information-theoretic approach to latent distribution modeling, in which the ability of latent distribution models to represent statistical information in observed…
An, Ji-Young; Hayman, Laura L; Panniers, Teresa; Carty, Barbara
2007-01-01
About 110 million American adults are looking for health information and services on the Internet. Identification of the factors influencing healthcare consumers' technology acceptance is requisite to understanding their acceptance and usage behavior of online health information and related services. The purpose of this article is to describe the development of the Information and Communication Technology Acceptance Model (ICTAM). From the literature reviewed, ICTAM was developed with emphasis on integrating multidisciplinary perspectives from divergent frameworks and empirical findings into a unified model with regard to healthcare consumers' acceptance and usage behavior of information and services on the Internet. PMID:17703115
ERIC Educational Resources Information Center
Tarhini, Ali; Hone, Kate; Liu, Xiaohui
2014-01-01
The success of an e-learning intervention depends to a considerable extent on student acceptance and use of the technology. Therefore, it has become imperative for practitioners and policymakers to understand the factors affecting the user acceptance of e-learning systems in order to enhance the students' learning experience. Based on an extended…
String Theoretic Toy Models of the Big Bang
NASA Astrophysics Data System (ADS)
Michelson, Jeremy
2006-03-01
Recently, examples of toy cosmologies have been found that are exact solutions of String Theory. These solutions have the feature that the theoretical framework permits reliable calculation arbitrarily close to the big bang singularity. Thus one can understand both the big bang, and late time physics. I will describe these toy cosmologies, and how they fit into String Theory's chains of equivalences between gravitational and nongravitational theories. These equivalences are the means by which one theoretically probes the big bang.
Kloeckner, Frederik; Farkas, Robert; Franken, Tobias; Schmitz-Rode, Thomas
2014-04-01
Documentation of research data plays a key role in the biomedical engineering innovation processes. It makes an important contribution to the protection of intellectual property, the traceability of results and fulfilling the regulatory requirement. Because of the increasing digitalization in laboratories, an electronic alternative to the commonly-used paper-bound notebooks could contribute to the production of sophisticated documentation. However, compared to in an industrial environment, the use of electronic laboratory notebooks is not widespread in academic laboratories. Little is known about the acceptance of an electronic documentation system and the underlying reasons for this. Thus, this paper aims to establish a prediction model on the potential preference and acceptance of scientists either for paper-based or electronic documentation. The underlying data for the analysis originate from an online survey of 101 scientists in industrial, academic and clinical environments. Various parameters were analyzed to identify crucial factors for the system preference using binary logistic regression. The analysis showed significant dependency between the documentation system preference and the supposed workload associated with the documentation system (p<0.006; odds ratio=58.543) and an additional personal component. Because of the dependency of system choice on specific parameters it is possible to predict the acceptance of an electronic laboratory notebook before implementation. PMID:24225123
Computational model of collective nest selection by ants with heterogeneous acceptance thresholds
Masuda, Naoki; O'shea-Wheller, Thomas A.; Doran, Carolina; Franks, Nigel R.
2015-01-01
Collective decision-making is a characteristic of societies ranging from ants to humans. The ant Temnothorax albipennis is known to use quorum sensing to collectively decide on a new home; emigration to a new nest site occurs when the number of ants favouring the new site becomes quorate. There are several possible mechanisms by which ant colonies can select the best nest site among alternatives based on a quorum mechanism. In this study, we use computational models to examine the implications of heterogeneous acceptance thresholds across individual ants in collective nest choice behaviour. We take a minimalist approach to develop a differential equation model and a corresponding non-spatial agent-based model. We show, consistent with existing empirical evidence, that heterogeneity in acceptance thresholds is a viable mechanism for efficient nest choice behaviour. In particular, we show that the proposed models show speed–accuracy trade-offs and speed–cohesion trade-offs when we vary the number of scouts or the quorum threshold. PMID:26543578
Computational model of collective nest selection by ants with heterogeneous acceptance thresholds.
Masuda, Naoki; O'shea-Wheller, Thomas A; Doran, Carolina; Franks, Nigel R
2015-06-01
Collective decision-making is a characteristic of societies ranging from ants to humans. The ant Temnothorax albipennis is known to use quorum sensing to collectively decide on a new home; emigration to a new nest site occurs when the number of ants favouring the new site becomes quorate. There are several possible mechanisms by which ant colonies can select the best nest site among alternatives based on a quorum mechanism. In this study, we use computational models to examine the implications of heterogeneous acceptance thresholds across individual ants in collective nest choice behaviour. We take a minimalist approach to develop a differential equation model and a corresponding non-spatial agent-based model. We show, consistent with existing empirical evidence, that heterogeneity in acceptance thresholds is a viable mechanism for efficient nest choice behaviour. In particular, we show that the proposed models show speed-accuracy trade-offs and speed-cohesion trade-offs when we vary the number of scouts or the quorum threshold. PMID:26543578
An Investigation of Employees' Use of E-Learning Systems: Applying the Technology Acceptance Model
ERIC Educational Resources Information Center
Lee, Yi-Hsuan; Hsieh, Yi-Chuan; Chen, Yen-Hsun
2013-01-01
The purpose of this study is to apply the technology acceptance model to examine the employees' attitudes and acceptance of electronic learning (e-learning) systems in organisations. This study examines four factors (organisational support, computer self-efficacy, prior experience and task equivocality) that are believed to influence…
ERIC Educational Resources Information Center
Lee, Woong-Kyu
2012-01-01
The principal objective of this study was to gain insight into attitude changes occurring during IT acceptance from the perspective of elaboration likelihood model (ELM). In particular, the primary target of this study was the process of IT acceptance through an education program. Although the Internet and computers are now quite ubiquitous, and…
ERIC Educational Resources Information Center
Fusilier, Marcelline; Durlabhji, Subhash
2005-01-01
Purpose: The purpose of this paper is to explore behavioral processes involved in internet technology acceptance and use with a sample in India, a developing country that can potentially benefit from greater participation in the web economy. Design/methodology/approach - User experience was incorporated into the technology acceptance model (TAM)…
A theoretical model of grainsize evolution during deformation
NASA Astrophysics Data System (ADS)
Ricard, Y.; Bercovici, D.; Rozel, A.
2007-12-01
Lithospheric shear localization, as occurs in the formation of tectonic plate boundaries, is often associated with diminished grainsize (e.g., mylonites). Grainsize reduction is typically attributed to dynamic recrystallization; however, theoretical models of shear-localization arising from this hypothesis are problematic since (1) they require the simultaneous action of two exclusive creep mechanisms (diffusion and dislocation creep), and (2) the grain-growth ("healing") laws employed by these models are derived from static grain-growth or coarsening theory, although the shear-localization setting itself is far from static equilibrium. We present a new first-principles grained-continuum theory which accounts for both coarsening and damage-induced grainsize reduction. Damage per se is the generic process for generation of microcracks, defects, dislocations (including recrystallization), subgrains, nucleii and cataclastic breakdown of grains. The theory contains coupled statistical grain-scale and continuum macroscopic components. The grain-scale element of the theory prescribes both the evolution of the grainsize distribution, and a phenomenological grain-growth law derived from non-equilibrium thermodynamics; grain-growth thus incorporates the free energy differences between grains, including both grain-boundary surface energy (which controls coarsening) and the contribution of deformational work to these free energiesconservation and positivity of entropy production provide the phenomenological law for the statistical grain-growth law. We identify four potential mechanisms that affect the distribution of grainsize; two of them conserve the number of grains but change their relative masses and two of them change the number of grains by sticking them together or breaking them. In the limit of static equilibrium, only the two mechanisms that increase the average grainsize are allowed by the second law of thermodynamics. The first one is a diffusive mass transport
A theoretical microbial contamination model for a human Mars mission
NASA Astrophysics Data System (ADS)
Lupisella, Mark Lewis
Contamination from a human presence on Mars could significantly compromise the search for extraterrestrial life. In particular, the difficulties in controlling microbial contamination, the potential for terrestrial microbes to grow, evolve, compete, and modify the Martian environment, and the likely microbial nature of putative Martian life, make microbial contamination worthy of focus as we begin to plan for a human mission to Mars. This dissertation describes a relatively simple theoretical model that can be used to explore how microbial contamination from a human Mars mission might survive and grow in the Martian soil environment surrounding a habitat. A user interface has been developed to allow a general practitioner to choose values and functions for almost all parameters ranging from the number of astronauts to the half-saturation constants for microbial growth. Systematic deviations from a baseline set of parameter values are explored as potential plausible scenarios for the first human Mars missions. The total viable population and population density are the primary state variables of interest, but other variables such as the total number of births and total dead and viable microbes are also tracked. The general approach was to find the most plausible parameter value combinations that produced a population density of 1 microbe/cm3 or greater, a threshold that was used to categorize the more noteworthy populations for subsequent analysis. Preliminary assessments indicate that terrestrial microbial contamination resulting from leakage from a limited human mission (perhaps lasting up to 5 months) will not likely become a problematic population in the near-term as long as reasonable contamination control measures are implemented (for example, a habitat leak rate no greater than 1% per hour). However, there appear to be plausible, albeit unlikely, scenarios that could cause problematic populations, depending in part on (a) the initial survival fraction and
Presenting a Theoretical Model of Four Conceptions of Civic Education
ERIC Educational Resources Information Center
Cohen, Aviv
2010-01-01
This conceptual study will question the ways different epistemological conceptions of citizenship and education influence the characteristics of civic education. While offering a new theoretical framework, the different undercurrent conceptions that lay at the base of the civic education process shall be brought forth. With the use of the method…
Trinkoff, A.M.; Storr, C.L.; Wilson, M.L.; Gurses, A.P.
2015-01-01
Summary Background To our knowledge, no evidence is available on health care professionals’ use of electronic personal health records (ePHRs) for their health management. We therefore focused on nurses’ personal use of ePHRs using a modified technology acceptance model. Objectives To examine (1) the psychometric properties of the ePHR acceptance model, (2) the associations of perceived usefulness, ease of use, data privacy and security protection, and perception of self as health-promoting role models to nurses’ own ePHR use, and (3) the moderating influences of age, chronic illness and medication use, and providers’ use of electronic health record (EHRs) on the associations between the ePHR acceptance constructs and ePHR use. Methods A convenience sample of registered nurses, those working in one of 12 hospitals in the Maryland and Washington, DC areas and members of the nursing informatics community (AMIA and HIMSS), were invited to respond to an anonymous online survey; 847 responded. Multiple logistic regression identified associations between the model constructs and ePHR use, and the moderating effect. Results Overall, ePHRs were used by 47%. Sufficient reliability for all scales was found. Three constructs were significantly related to nurses’ own ePHR use after adjusting for covariates: usefulness, data privacy and security protection, and health-promoting role model. Nurses with providers that used EHRs who perceived a higher level of data privacy and security protection had greater odds of ePHR use than those whose providers did not use EHRs. Older nurses with a higher self-perception as health-promoting role models had greater odds of ePHR use than younger nurses. Conclusions Nurses who use ePHRs for their personal health might promote adoption by the general public by serving as health-promoting role models. They can contribute to improvements in patient education and ePHR design, and serve as crucial resources when working with their
Nalli, Nicholas R; Minnett, Peter J; van Delst, Paul
2008-07-20
Although published sea surface infrared (IR) emissivity models have gained widespread acceptance for remote sensing applications, discrepancies have been identified against field observations obtained from IR Fourier transform spectrometers at view angles approximately > 40 degrees. We therefore propose, in this two-part paper, an alternative approach for calculating surface-leaving IR radiance that treats both emissivity and atmospheric reflection in a systematic yet practical manner. This first part presents the theoretical basis, development, and computations of the proposed model. PMID:18641735
2016-01-01
Background The future of health care delivery is becoming more citizen centered, as today’s user is more active, better informed, and more demanding. Worldwide governments are promoting online health services, such as electronic health record (EHR) patient portals and, as a result, the deployment and use of these services. Overall, this makes the adoption of patient-accessible EHR portals an important field to study and understand. Objective The aim of this study is to understand the factors that drive individuals to adopt EHR portals. Methods We applied a new adoption model using, as a starting point, Ventkatesh's Unified Theory of Acceptance and Use of Technology in a consumer context (UTAUT2) by integrating a new construct specific to health care, a new moderator, and new relationships. To test the research model, we used the partial least squares (PLS) causal modelling approach. An online questionnaire was administrated. We collected 360 valid responses. Results The statistically significant drivers of behavioral intention are performance expectancy (beta=.200; t=3.619), effort expectancy (beta=.185; t=2.907), habit (beta=.388; t=7.320), and self-perception (beta=.098; t=2.285). The predictors of use behavior are habit (beta=0.206; t=2.752) and behavioral intention (beta=0.258; t=4.036). The model explained 49.7% of the variance in behavioral intention and 26.8% of the variance in use behavior. Conclusions Our research helps to understand the desired technology characteristics of EHR portals. By testing an information technology acceptance model, we are able to determine what is more valued by patients when it comes to deciding whether to adopt EHR portals or not. The inclusion of specific constructs and relationships related to the health care consumer area also had a significant impact on understanding the adoption of EHR portals. PMID:26935646
Modelling dose distribution in tubing and cable using CYLTRAN and ACCEPT Monte Carlo simulation code
Weiss, D.E.; Kensek, R.P.
1993-12-31
One of the difficulties in the irradiation of non-slab geometries, such as a tube, is the uneven penetration of the electrons. A simple model of the distribution of dose in a tube or cable in relationship to voltage, composition, wall thickness and diameter can be mapped using the cylinder geometry provided for in the ITS/CYLTRAN code, complete with automatic subzoning. The reality of more complex 3D geometry to include effects of window foil, backscattering fixtures and beam scanning angles can be more completely accounted for by using the ITS/ACCEPT code with a line source update and a system of intersecting wedges to define input zones for mapping dose distributions in a tube. Thus, all of the variables that affect dose distribution can be modelled without the need to run time consuming and costly factory experiments. The effects of composition changes on dose distribution can also be anticipated.
Calabrò, Paolo S; Orsi, Sirio; Gentili, Emiliano; Carlo, Meoni
2011-12-01
This paper presents the results of the modelling of the biogas extraction in a full-scale Italian landfill by the USEPA LandGEM model and the Andreottola-Cossu approach. The landfill chosen for this research ('Il Fossetto' plant, Monsummano Terme, Italy) had accepted mixed municipal raw waste for about 15 years. In the year 2003 a mechanical biological treatment (MBT) was implemented and starting from the end of the year 2006, the recirculation in the landfill of the concentrated leachate coming from the internal membrane leachate treatment plant was put into practice. The USEPA LandGEM model and the Andreottola-Cossu approach were chosen since they require only input data routinely acquired during landfill management (waste amount and composition) and allow a simplified calibration, therefore they are potentially useful for practical purposes such as landfill gas management. The results given by the models are compared with measured data and analysed in order to verify the impact of MBT on biogas production; moreover, the possible effects of the recirculation of the concentrated leachate are discussed. The results clearly show how both models can adequately fit measured data even after MBT implementation. Model performance was significantly reduced for the period after the beginning of recirculation of concentrated leachate when the probable inhibition of methane production, due to the competition between methanogens and sulfate-reducing bacteria, significantly influenced the biogas production and composition. PMID:21930528
Ruiz, Francisco J; Odriozola-González, Paula
2015-01-01
This study analyzed the interrelationships between key constructs of cognitive therapy (CT; depressogenic schemas), metacognitive therapy (MCT; dysfunctional metacognitive beliefs), and acceptance and commitment therapy (ACT; psychological inflexibility) in the prediction of depressive symptoms. With a lapse of nine months, 106 nonclinical participants responded twice to an anonymous online survey containing the following questionnaires: the Depression subscale of the Depression Anxiety and Stress Scales (DASS), the Dysfunctional Attitude Scale Revised (DAS-R), the Positive beliefs, Negative beliefs and Need to control subscales of the Metacognitions Questionnaire-30 (MCQ-30), and the Acceptance and Action Questionnaire - II (AAQ-II). Results showed that when controlling for baseline levels of depressive symptoms and demographic variables, psychological inflexibility longitudinally mediated the effect of depressogenic schemas (path ab = .023, SE = .010; 95% BC CI [.008, .048]) and dysfunctional metacognitive beliefs on depressive symptoms (positive metacognitive beliefs: path ab = .052, SE = .031; 95% BC CI [.005, .134]; negative metacognitive beliefs: path ab = .087, SE = .049; 95% BC CI [.016, .214]; need to control: path ab = .087, SE = .051; 95% BC CI [.013, .220]). Results are discussed emphasizing the role of psychological inflexibility in the CT and MCT models of depression. PMID:26076977
ERIC Educational Resources Information Center
Dziedziewicz, Dorota; Karwowski, Maciej
2015-01-01
This paper presents a new theoretical model of creative imagination and its applications in early education. The model sees creative imagination as composed of three inter-related components: vividness of images, their originality, and the level of transformation of imageries. We explore the theoretical and practical consequences of this new…
A theoretical model of phase changes of a klystron due to variation of operating parameters
NASA Technical Reports Server (NTRS)
Kupiszewski, A.
1980-01-01
A mathematical model for phase changes of the VA-876 CW klystron amplifier output is presented and variations of several operating parameters are considered. The theoretical approach to the problem is based upon a gridded gap modeling with inclusion of a second order correction term so that actual gap geometry is reflected in the formulation. Physical measurements are contrasted to theoretical calculations.
A Model of Resource Allocation in Public School Districts: A Theoretical and Empirical Analysis.
ERIC Educational Resources Information Center
Chambers, Jay G.
This paper formulates a comprehensive model of resource allocation in a local public school district. The theoretical framework specified could be applied equally well to any number of local public social service agencies. Section 1 develops the theoretical model describing the process of resource allocation. This involves the determination of the…
Hayes, Steven C.; Levin, Michael E.; Plumb-Vilardaga, Jennifer; Villatte, Jennifer L.; Pistorello, Jacqueline
2012-01-01
A number of recent authors have compared acceptance and commitment therapy (ACT) and traditional cognitive behavior therapy (CBT). The present article describes ACT as a distinct and unified model of behavior change, linked to a specific strategy of scientific development, which we term “contextual behavioral science.” We outline the empirical progress of ACT and describe its distinctive development strategy. A contextual behavioral science approach is an inductive attempt to build more adequate psychological systems based on philosophical clarity; the development of basic principles and theories; the development of applied theories linked to basic ones; techniques and components linked to these processes and principles; measurement of theoretically key processes; an emphasis on mediation and moderation in the analysis of applied impact; an interest in effectiveness, dissemination, and training; empirical testing of the research program across a broad range of areas and levels of analysis; and the creation of a more effective scientific and clinical community. We argue that this is a reasonable approach, focused on long-term progress, and that in broad terms it seems to be working. ACT is not hostile to traditional CBT, and is not directly buoyed by whatever weaknesses traditional CBT may have. ACT should be measured at least in part against its own goals as specified by its own developmental strategy. PMID:23611068
NASA Astrophysics Data System (ADS)
Guo, Bin; Zhou, Shasha
2016-05-01
This study attempts to re-examine the role of attitude in voluntary information system (IS) acceptance and usage, which has often been discounted in the previous technology acceptance research. We extend the unidimensional view of attitude into a bidimensional one, because of the simultaneous existence of both positive and negative evaluation towards IS in technology acceptance behaviour. In doing so, attitude construct is divided into two components: satisfaction as the positive attitudinal component and dissatisfaction as the negative attitudinal component. We argue that satisfaction and dissatisfaction will interactively affect technology usage intention. Besides, we explore the predictors of satisfaction and dissatisfaction based on the disconfirmation theory. Empirical results from a longitudinal study on bulletin board system (BBS) usage confirm the interaction effect of satisfaction and dissatisfaction on usage intention. Moreover, perceived task-related value has a significant effect on satisfaction, while perceived personal value has a significant effect on dissatisfaction. We also discuss the theoretical and managerial implications of our findings.
Huffman, Jeff C.; DuBois, Christina M.; Millstein, Rachel A.; Celano, Christopher M.; Wexler, Deborah
2015-01-01
Most patients with type 2 diabetes (T2D) have suboptimal adherence to recommended diet, physical activity, and/or medication. Current approaches to improve health behaviors in T2D have been variably effective, and successful interventions are often complex and intensive. It is therefore vital to develop interventions that are simple, well-accepted, and applicable to a wide range of patients who suffer from T2D. One approach may be to boost positive psychological states, such as positive affect or optimism, as these constructs have been prospectively and independently linked to improvements in health behaviors. Positive psychology (PP) interventions, which utilize systematic exercises to increase optimism, well-being, and positive affect, consistently increase positive states and are easily delivered to patients with chronic illnesses. However, to our knowledge, PP interventions have not been formally tested in T2D. In this paper, we review a theoretical model for the use of PP interventions to target health behaviors in T2D, describe the structure and content of a PP intervention for T2D patients, and describe baseline data from a single-arm proof-of-concept (N = 15) intervention study in T2D patients with or without depression. We also discuss how PP interventions could be combined with motivational interviewing (MI) interventions to provide a blended psychological-behavioral approach. PMID:26064980
On theoretical and experimental modeling of metabolism forming in prebiotic systems
NASA Astrophysics Data System (ADS)
Bartsev, S. I.; Mezhevikin, V. V.
Recently searching for extraterrestrial life attracts more and more attention However the searching hardly can be effective without sufficiently universal concept of life origin which incidentally tackles a problem of origin of life on the Earth A concept of initial stages of life origin including origin of prebiotic metabolism is stated in the paper Suggested concept eliminates key difficulties in the problem of life origin and allows experimental verification of it According to the concept the predecessor of living beings has to be sufficiently simple to provide non-zero probability of self-assembling during short in geological or cosmic scale time In addition the predecessor has to be capable of autocatalysis and further complication evolution A possible scenario of initial stage of life origin which can be realized both on other planets and inside experimental facility is considered In the scope of the scenario a theoretical model of multivariate oligomeric autocatalyst coupled with phase-separated particle is presented Results of computer simulation of possible initial stage of chemical evolution are shown Conducted estimations show the origin of autocatalytic oligomeric phase-separated system is possible at reasonable values of kinetic parameters of involved chemical reactions in a small-scale flow reactor Accepted statements allowing to eliminate key problems of life origin imply important consequence -- organisms emerged out of the Earth or inside a reactor have to be based on another different from terrestrial biochemical
Consumer acceptance and stability of spray dried betanin in model juices.
Kaimainen, Mika; Laaksonen, Oskar; Järvenpää, Eila; Sandell, Mari; Huopalahti, Rainer
2015-11-15
Spray dried beetroot powder was used to colour model juices, and the consumer acceptance of the juices and stability of the colour during storage at 60 °C, 20 °C, 4 °C, and -20 °C were studied. The majority of the consumers preferred the model juices coloured with anthocyanins or beetroot extract over model juices coloured with spray dried beetroot powder. The consumers preferred more intensely coloured samples over lighter samples. Spray dried betanin samples were described as 'unnatural' and 'artificial' whereas the colour of beetroot extract was described more 'natural' and 'real juice'. No beetroot-derived off-odours or off-flavours were perceived in the model juices coloured with beetroot powder. Colour stability in model juices was greatly dependent on storage temperature with better stability at lower temperatures. Colour stability in the spray dried powder was very good at 20 °C. Betacyanins from beetroot could be a potential colourant for food products that are stored cold. PMID:25977043
Information-theoretic model comparison unifies saliency metrics
Kümmerer, Matthias; Wallis, Thomas S. A.; Bethge, Matthias
2015-01-01
Learning the properties of an image associated with human gaze placement is important both for understanding how biological systems explore the environment and for computer vision applications. There is a large literature on quantitative eye movement models that seeks to predict fixations from images (sometimes termed “saliency” prediction). A major problem known to the field is that existing model comparison metrics give inconsistent results, causing confusion. We argue that the primary reason for these inconsistencies is because different metrics and models use different definitions of what a “saliency map” entails. For example, some metrics expect a model to account for image-independent central fixation bias whereas others will penalize a model that does. Here we bring saliency evaluation into the domain of information by framing fixation prediction models probabilistically and calculating information gain. We jointly optimize the scale, the center bias, and spatial blurring of all models within this framework. Evaluating existing metrics on these rephrased models produces almost perfect agreement in model rankings across the metrics. Model performance is separated from center bias and spatial blurring, avoiding the confounding of these factors in model comparison. We additionally provide a method to show where and how models fail to capture information in the fixations on the pixel level. These methods are readily extended to spatiotemporal models of fixation scanpaths, and we provide a software package to facilitate their use. PMID:26655340
Theoretical model-based quantitative optimisation of numerical modelling for eddy current NDT
NASA Astrophysics Data System (ADS)
Yu, Yating; Li, Xinhua; Simm, Anthony; Tian, Guiyun
2011-06-01
Eddy current (EC) nondestructive testing (NDT) is one of the most widely used NDT methods. Numerical modelling of NDT methods has been used as an important investigative approach alongside experimental and theoretical studies. This paper investigates the set-up of numerical modelling using finite-element method in terms of the optimal selection of element mesh size in different regions within the model based on theoretical analysis of EC NDT. The modelling set-up is refined and evaluated through numerical simulation, balancing both computation time and simulation accuracy. A case study in the optimisation of the modelling set-up of the EC NDT system with a cylindrical probe coil is carried out to verify the proposed optimisation approach. Here, the mesh size of the simulation model is set based on the geometries of the coil and the magnetic sensor, as well as on the skin depth in the sample; so the optimised modelling set-up can be useful even when the geometry of EC system, the excitation frequency or the pulsed width is changed in multi-frequency EC, sweep-frequency EC or system and pulsed EC. Furthermore, this optimisation approach can be used to improve the trade-off between accuracy and the computation time in other more complex EC NDT simulations.
O'Connell, Heather A
2015-09-01
I contribute to understandings of how context is related to individual outcomes by assessing the added value of combining multilevel and spatial modeling techniques. This methodological approach leads to substantive contributions to the smoking literature, including improved clarity on the central contextual factors and the examination of one manifestation of the social acceptability hypothesis. For this analysis I use restricted-use natality data from the Vital Statistics, and county-level data from the 2005-9 ACS. Critically, the results suggest that spatial considerations are still relevant in a multilevel framework. In addition, I argue that spatial processes help explain the relationships linking racial/ethnic minority concentration to lower overall odds of smoking. PMID:26188587
O’Connell, Heather A.
2015-01-01
I contribute to understandings of how context is related to individual outcomes by assessing the added value of combining multilevel and spatial modeling techniques. This methodological approach leads to substantive contributions to the smoking literature, including improved clarity on the central contextual factors and the examination of one manifestation of the social acceptability hypothesis. For this analysis I use restricted-use natality data from the Vital Statistics, and county-level data from the 2005–9 ACS. Critically, the results suggest that spatial considerations are still relevant in a multilevel framework. In addition, I argue that spatial processes help explain the relationships linking racial/ethnic minority concentration to lower overall odds of smoking. PMID:26188587
College Students Solving Chemistry Problems: A Theoretical Model of Expertise
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Glynn, Shawn M.
2009-01-01
A model of expertise in chemistry problem solving was tested on undergraduate science majors enrolled in a chemistry course. The model was based on Anderson's "Adaptive Control of Thought-Rational" (ACT-R) theory. The model shows how conceptualization, self-efficacy, and strategy interact and contribute to the successful solution of quantitative,…
ERIC Educational Resources Information Center
Kim, Young Rae
2013-01-01
A theoretical model of metacognition in complex modeling activities has been developed based on existing frameworks, by synthesizing the re-conceptualization of metacognition at multiple levels by looking at the three sources that trigger metacognition. Using the theoretical model as a framework, this study was designed to explore how students'…
Theoretical modelling of the semiconductor-electrolyte interface
NASA Astrophysics Data System (ADS)
Schelling, Patrick Kenneth
We have developed tight-binding models of transition metal oxides. In contrast to many tight-binding models, these models include a description of electron-electron interactions. After parameterizing to bulk first-principles calculations, we demonstrated the transferability of the model by calculating atomic and electronic structure of rutile surfaces, which compared well with experiment and first-principles calculations. We also studied the structure of twist grain boundaries in rutile. Molecular dynamics simulations using the model were also carried out to describe polaron localization. We have also demonstrated that tight-binding models can be constructed to describe metallic systems. The computational cost tight-binding simulations was greatly reduced by incorporating O(N) electronic structure methods. We have also interpreted photoluminesence experiments on GaAs electrodes in contact with an electrolyte using drift-diffusion models. Electron transfer velocities were obtained by fitting to experimental results.
A graph theoretical perspective of a drug abuse epidemic model
NASA Astrophysics Data System (ADS)
Nyabadza, F.; Mukwembi, S.; Rodrigues, B. G.
2011-05-01
A drug use epidemic can be represented by a finite number of states and transition rules that govern the dynamics of drug use in each discrete time step. This paper investigates the spread of drug use in a community where some users are in treatment and others are not in treatment, citing South Africa as an example. In our analysis, we consider the neighbourhood prevalence of each individual, i.e., the proportion of the individual’s drug user contacts who are not in treatment amongst all of his or her contacts. We introduce parameters α∗, β∗ and γ∗, depending on the neighbourhood prevalence, which govern the spread of drug use. We examine how changes in α∗, β∗ and γ∗ affect the system dynamics. Simulations presented support the theoretical results.
A Type-Theoretic Framework for Certified Model Transformations
NASA Astrophysics Data System (ADS)
Calegari, Daniel; Luna, Carlos; Szasz, Nora; Tasistro, Álvaro
We present a framework based on the Calculus of Inductive Constructions (CIC) and its associated tool the Coq proof assistant to allow certification of model transformations in the context of Model-Driven Engineering (MDE). The approached is based on a semi-automatic translation process from metamodels, models and transformations of the MDE technical space into types, propositions and functions of the CIC technical space. We describe this translation and illustrate its use in a standard case study.
NASA Technical Reports Server (NTRS)
Kuhlthau, A. R.; Jacobson, I. D.
1977-01-01
Meaningful criteria and methodology for assessing, particularly in the area of ride quality, the potential acceptability to the traveling public of present and future transportation systems were investigated. Ride quality was found to be one of the important variables affecting the decision of users of air transportation, and to be influenced by several environmental factors, especially motion, noise, pressure, temperature, and seating. Models were developed to quantify the relationship of subjective comfort to all of these parameters and then were exercised for a variety of situations. Passenger satisfaction was found to be strongly related to ride quality and was so modeled. A computer program was developed to assess the comfort and satisfaction levels of passengers on aircraft subjected to arbitrary flight profiles over arbitrary terrain. A model was deduced of the manner in which passengers integrate isolated segments of a flight to obtain an overall trip comfort rating. A method was established for assessing the influence of other links (e.g., access, terminal conditions) in the overall passenger trip.
THEORETICAL MODEL OF SOILING OF SURFACES BY AIRBORNE PARTICLES
A model is developed which can be used to predict the change in reflectance from a surface as a function of time. Reflectance change is a measure of soiling caused by the deposition of particles on a surface. The major inputs to the model are the parameters to a bimodal distribut...
Experimental observations and theoretical models for beam-beam phenomena
Kheifets, S.
1981-03-01
The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.
Psychosocial stress and prostate cancer: a theoretical model.
Ellison, G L; Coker, A L; Hebert, J R; Sanderson, S M; Royal, C D; Weinrich, S P
2001-01-01
African-American men are more likely to develop and die from prostate cancer than are European-American men; yet, factors responsible for the racial disparity in incidence and mortality have not been elucidated. Socioeconomic disadvantage is more prevalent among African-American than among European-American men. Socioeconomic disadvantage can lead to psychosocial stress and may be linked to negative lifestyle behaviors. Regardless of socioeconomic position, African-American men routinely experience racism-induced stress. We propose a theoretical framework for an association between psychosocial stress and prostate cancer. Within the context of history and culture, we further propose that psychosocial stress may partially explain the variable incidence of prostate cancer between these diverse groups. Psychosocial stress may negatively impact the immune system leaving the individual susceptible to malignancies. Behavioral responses to psychosocial stress are amenable to change. If psychosocial stress is found to negatively impact prostate cancer risk, interventions may be designed to modify reactions to environmental demands. PMID:11572415
Theoretical Tools in Modeling Communication and Language Dynamics
NASA Astrophysics Data System (ADS)
Loreto, Vittorio
Statistical physics has proven to be a very fruitful framework to describe phenomena outside the realm of traditional physics. In social phenomena, the basic constituents are not particles but humans and every individual interacts with a limited number of peers, usually negligible compared to the total number of people in the system. In spite of that, human societies are characterized by stunning global regularities that naturally call for a statistical physics approach to social behavior, i.e., the attempt to understand regularities at large scale as collective effects of the interaction among single individuals, considered as relatively simple entities. This is the paradigm of Complex Systems: an assembly of many interacting (and simple) units whose collective behavior is not trivially deducible from the knowledge of the rules governing their mutual interactions. In this chapter we review the main theoretical concepts and tools that physics can borrow to socially-motivated problems. Despite their apparent diversity, most research lines in social dynamics are actually closely connected from the point of view of both the methodologies employed and, more importantly, of the general phenomenological questions, e.g., what are the fundamental interaction mechanisms leading to the emergence of consensus on an issue, a shared culture, a common language or a collective motion?
Ion Implantation into Presolar Grains: A Theoretical Model
NASA Astrophysics Data System (ADS)
Verchovsky, A. B.; Wright, I. P.; Pillinger, C. T.
A numerical model for ion implantation into spherical grains in free space has been developed. It can be applied to single grains or collections of grains with known grain-size distributions. Ion-scattering effects were taken into account using results of computer simulations. Possible isotope and element fractionation of the implanted species was investigated using this model. The astrophysical significance of the model lies in the possible identification of energetically different components (such as noble gases) implanted into presolar grains (such as diamond and SiC) and in establishing implantation energies of the components.
NASA Astrophysics Data System (ADS)
Hauser, H.; Melikhov, Y.; Jiles, D. C.
2007-10-01
Two recent theoretical hysteresis models (Jiles-Atherton model and energetic model) are examined with respect to their capability to describe the dependence of the magnetization on magnetic field, microstructure, and anisotropy. It is shown that the classical Rayleigh law for the behavior of magnetization at low fields and the Stoner-Wohlfarth theory of domain magnetization rotation in noninteracting magnetic single domain particles can be considered as limiting cases of a more general theoretical treatment of hysteresis in ferromagnetism.
Theoretical model of impact damage in structural ceramics
NASA Technical Reports Server (NTRS)
Liaw, B. M.; Kobayashi, A. S.; Emery, A. G.
1984-01-01
This paper presents a mechanistically consistent model of impact damage based on elastic failures due to tensile and shear overloading. An elastic axisymmetric finite element model is used to determine the dynamic stresses generated by a single particle impact. Local failures in a finite element are assumed to occur when the primary/secondary principal stresses or the maximum shear stress reach critical tensile or shear stresses, respectively. The succession of failed elements thus models macrocrack growth. Sliding motions of cracks, which closed during unloading, are resisted by friction and the unrecovered deformation represents the 'plastic deformation' reported in the literature. The predicted ring cracks on the contact surface, as well as the cone cracks, median cracks, radial cracks, lateral cracks, and damage-induced porous zones in the interior of hot-pressed silicon nitride plates, matched those observed experimentally. The finite element model also predicted the uplifting of the free surface surrounding the impact site.
Theoretical models for duct acoustic propagation and radiation
NASA Technical Reports Server (NTRS)
Eversman, Walter
1991-01-01
The development of computational methods in acoustics has led to the introduction of analysis and design procedures which model the turbofan inlet as a coupled system, simultaneously modeling propagation and radiation in the presence of realistic internal and external flows. Such models are generally large, require substantial computer speed and capacity, and can be expected to be used in the final design stages, with the simpler models being used in the early design iterations. Emphasis is given to practical modeling methods that have been applied to the acoustical design problem in turbofan engines. The mathematical model is established and the simplest case of propagation in a duct with hard walls is solved to introduce concepts and terminologies. An extensive overview is given of methods for the calculation of attenuation in uniform ducts with uniform flow and with shear flow. Subsequent sections deal with numerical techniques which provide an integrated representation of duct propagation and near- and far-field radiation for realistic geometries and flight conditions.
Learning models of PTSD: Theoretical accounts and psychobiological evidence.
Lissek, Shmuel; van Meurs, Brian
2015-12-01
Learning abnormalities have long been centrally implicated in posttraumatic psychopathology. Indeed, of all anxiety disorders, PTSD may be most clearly attributable to discrete, aversive learning events. In PTSD, such learning is acquired during the traumatic encounter and is expressed as both conditioned fear to stimuli associated with the event and more general over-reactivity-or failure to adapt-to intense, novel, or fear-related stimuli. The relatively straightforward link between PTSD and these basic, evolutionarily old, learning processes of conditioning, sensitization, and habituation affords models of PTSD comprised of fundamental, experimentally tractable mechanisms of learning that have been well characterized across a variety of mammalian species including humans. Though such learning mechanisms have featured prominently in explanatory models of psychological maladjustment to trauma for at least 90years, much of the empirical testing of these models has occurred only in the past two decades. The current review delineates the variety of theories forming this longstanding tradition of learning-based models of PTSD, details empirical evidence for such models, attempts an integrative account of results from this literature, and specifies limitations of, and future directions for, studies testing learning models of PTSD. PMID:25462219
Design theoretic analysis of three system modeling frameworks.
McDonald, Michael James
2007-05-01
This paper analyzes three simulation architectures from the context of modeling scalability to address System of System (SoS) and Complex System problems. The paper first provides an overview of the SoS problem domain and reviews past work in analyzing model and general system complexity issues. It then identifies and explores the issues of vertical and horizontal integration as well as coupling and hierarchical decomposition as the system characteristics and metrics against which the tools are evaluated. In addition, it applies Nam Suh's Axiomatic Design theory as a construct for understanding coupling and its relationship to system feasibility. Next it describes the application of MATLAB, Swarm, and Umbra (three modeling and simulation approaches) to modeling swarms of Unmanned Flying Vehicle (UAV) agents in relation to the chosen characteristics and metrics. Finally, it draws general conclusions for analyzing model architectures that go beyond those analyzed. In particular, it identifies decomposition along phenomena of interaction and modular system composition as enabling features for modeling large heterogeneous complex systems.
Theoretical and computational models of biological ion channels
NASA Astrophysics Data System (ADS)
Roux, Benoit
2004-03-01
A theoretical framework for describing ion conduction through biological molecular pores is established and explored. The framework is based on a statistical mechanical formulation of the transmembrane potential (1) and of the equilibrium multi-ion potential of mean forces through selective ion channels (2). On the basis of these developments, it is possible to define computational schemes to address questions about the non-equilibrium flow of ions through ion channels. In the case of narrow channels (gramicidin or KcsA), it is possible to characterize the ion conduction in terms of the potential of mean force of the ions along the channel axis (i.e., integrating out the off-axis motions). This has been used for gramicidin (3) and for KcsA (4,5). In the case of wide pores (i.e., OmpF porin), this is no longer a good idea, but it is possible to use a continuum solvent approximations. In this case, a grand canonical monte carlo brownian dynamics algorithm was constructed for simulating the non-equilibrium flow of ions through wide pores. The results were compared with those from the Poisson-Nernst-Planck mean-field electrodiffusion theory (6-8). References; 1. B. Roux, Biophys. J. 73:2980-2989 (1997); 2. B. Roux, Biophys. J. 77, 139-153 (1999); 3. Allen, Andersen and Roux, PNAS (2004, in press); 4. Berneche and Roux. Nature, 414:73-77 (2001); 5. Berneche and Roux. PNAS, 100:8644-8648 (2003); 6. W. Im and S. Seefeld and B. Roux, Biophys. J. 79:788-801 (2000); 7. W. Im and B. Roux, J. Chem. Phys. 115:4850-4861 (2001); 8. W. Im and B. Roux, J. Mol. Biol. 322:851-869 (2002).
Ray-theoretical modeling of secondary microseism P-waves
NASA Astrophysics Data System (ADS)
Farra, V.; Stutzmann, E.; Gualtieri, L.; Schimmel, M.; Ardhuin, F.
2016-06-01
Secondary microseism sources are pressure fluctuations close to the ocean surface. They generate acoustic P-waves that propagate in water down to the ocean bottom where they are partly reflected, and partly transmitted into the crust to continue their propagation through the Earth. We present the theory for computing the displacement power spectral density of secondary microseism P-waves recorded by receivers in the far field. In the frequency domain, the P-wave displacement can be modeled as the product of (1) the pressure source, (2) the source site effect that accounts for the constructive interference of multiply reflected P-waves in the ocean, (3) the propagation from the ocean bottom to the stations, (4) the receiver site effect. Secondary microseism P-waves have weak amplitudes, but they can be investigated by beamforming analysis. We validate our approach by analyzing the seismic signals generated by Typhoon Ioke (2006) and recorded by the Southern California Seismic Network. Back projecting the beam onto the ocean surface enables to follow the source motion. The observed beam centroid is in the vicinity of the pressure source derived from the ocean wave model WAVEWATCH IIIR. The pressure source is then used for modeling the beam and a good agreement is obtained between measured and modeled beam amplitude variation over time. This modeling approach can be used to invert P-wave noise data and retrieve the source intensity and lateral extent.
Ray-theoretical modeling of secondary microseism P waves
NASA Astrophysics Data System (ADS)
Farra, V.; Stutzmann, E.; Gualtieri, L.; Schimmel, M.; Ardhuin, F.
2016-09-01
Secondary microseism sources are pressure fluctuations close to the ocean surface. They generate acoustic P waves that propagate in water down to the ocean bottom where they are partly reflected and partly transmitted into the crust to continue their propagation through the Earth. We present the theory for computing the displacement power spectral density of secondary microseism P waves recorded by receivers in the far field. In the frequency domain, the P-wave displacement can be modeled as the product of (1) the pressure source, (2) the source site effect that accounts for the constructive interference of multiply reflected P waves in the ocean, (3) the propagation from the ocean bottom to the stations and (4) the receiver site effect. Secondary microseism P waves have weak amplitudes, but they can be investigated by beamforming analysis. We validate our approach by analysing the seismic signals generated by typhoon Ioke (2006) and recorded by the Southern California Seismic Network. Backprojecting the beam onto the ocean surface enables to follow the source motion. The observed beam centroid is in the vicinity of the pressure source derived from the ocean wave model WAVEWATCH IIIR. The pressure source is then used for modeling the beam and a good agreement is obtained between measured and modeled beam amplitude variation over time. This modeling approach can be used to invert P-wave noise data and retrieve the source intensity and lateral extent.
Theoretical modeling of electron mobility in superfluid 4He
NASA Astrophysics Data System (ADS)
Aitken, Frédéric; Bonifaci, Nelly; von Haeften, Klaus; Eloranta, Jussi
2016-07-01
The Orsay-Trento bosonic density functional theory model is extended to include dissipation due to the viscous response of superfluid 4He present at finite temperatures. The viscous functional is derived from the Navier-Stokes equation by using the Madelung transformation and includes the contribution of interfacial viscous response present at the gas-liquid boundaries. This contribution was obtained by calibrating the model against the experimentally determined electron mobilities from 1.2 K to 2.1 K along the saturated vapor pressure line, where the viscous response is dominated by thermal rotons. The temperature dependence of ion mobility was calculated for several different solvation cavity sizes and the data are rationalized in the context of roton scattering and Stokes limited mobility models. Results are compared to the experimentally observed "exotic ion" data, which provides estimates for the corresponding bubble sizes in the liquid. Possible sources of such ions are briefly discussed.
Theoretical modeling of electron mobility in superfluid (4)He.
Aitken, Frédéric; Bonifaci, Nelly; von Haeften, Klaus; Eloranta, Jussi
2016-07-28
The Orsay-Trento bosonic density functional theory model is extended to include dissipation due to the viscous response of superfluid (4)He present at finite temperatures. The viscous functional is derived from the Navier-Stokes equation by using the Madelung transformation and includes the contribution of interfacial viscous response present at the gas-liquid boundaries. This contribution was obtained by calibrating the model against the experimentally determined electron mobilities from 1.2 K to 2.1 K along the saturated vapor pressure line, where the viscous response is dominated by thermal rotons. The temperature dependence of ion mobility was calculated for several different solvation cavity sizes and the data are rationalized in the context of roton scattering and Stokes limited mobility models. Results are compared to the experimentally observed "exotic ion" data, which provides estimates for the corresponding bubble sizes in the liquid. Possible sources of such ions are briefly discussed. PMID:27475346
A control theoretic model of driver steering behavior
NASA Technical Reports Server (NTRS)
Donges, E.
1977-01-01
A quantitative description of driver steering behavior such as a mathematical model is presented. The steering task is divided into two levels: (1) the guidance level involving the perception of the instantaneous and future course of the forcing function provided by the forward view of the road, and the response to it in an anticipatory open-loop control mode; (2) the stabilization level whereby any occuring deviations from the forcing function are compensated for in a closed-loop control mode. This concept of the duality of the driver's steering activity led to a newly developed two-level model of driver steering behavior. Its parameters are identified on the basis of data measured in driving simulator experiments. The parameter estimates of both levels of the model show significant dependence on the experimental situation which can be characterized by variables such as vehicle speed and desired path curvature.
Flavor symmetry based MSSM: Theoretical models and phenomenological analysis
NASA Astrophysics Data System (ADS)
Babu, K. S.; Gogoladze, Ilia; Raza, Shabbar; Shafi, Qaisar
2014-09-01
We present a class of supersymmetric models in which symmetry considerations alone dictate the form of the soft SUSY breaking Lagrangian. We develop a class of minimal models, denoted as sMSSM—for flavor symmetry-based minimal supersymmetric standard model—that respect a grand unified symmetry such as SO(10) and a non-Abelian flavor symmetry H which suppresses SUSY-induced flavor violation. Explicit examples are constructed with the flavor symmetry being gauged SU(2)H and SO(3)H with the three families transforming as 2+1 and 3 representations, respectively. A simple solution is found in the case of SU(2)H for suppressing the flavor violating D-terms based on an exchange symmetry. Explicit models based on SO(3)H without the D-term problem are developed. In addition, models based on discrete non-Abelian flavor groups are presented which are automatically free from D-term issues. The permutation group S3 with a 2+1 family assignment, as well as the tetrahedral group A4 with a 3 assignment are studied. In all cases, a simple solution to the SUSY CP problem is found, based on spontaneous CP violation leading to a complex quark mixing matrix. We develop the phenomenology of the resulting sMSSM, which is controlled by seven soft SUSY breaking parameters for both the 2+1 assignment and the 3 assignment of fermion families. These models are special cases of the phenomenological MSSM (pMSSM), but with symmetry restrictions. We discuss the parameter space of sMSSM compatible with LHC searches, B-physics constraints and dark matter relic abundance. Fine-tuning in these models is relatively mild, since all SUSY particles can have masses below about 3 TeV.
Some theoretical and computational aspects of a simplified subchannel model
Neil, C.H.
1983-01-01
Some recently obtained results are presented concerning the qualitative behavior of solutions to equations governing a simplified subchannel model for reactor hydrodynamics. The model describes time-independent flow of an incompressible fluid in two parallel, interconnected channels, subject to axial and lateral pressure drops defined by a Darcy friction factor. The phase portrait for the system of ordinary differential equations is presented, a solution to a boundary-value problem describing flow blockage is discussed, and the effect of the qualitative behavior of solutions on their numerical approximation is examined. The study was undertaken to determine the cause of numerical difficulty in approximating solutions to problems.
Preservice Teachers' Acceptance of ICT Integration in the Classroom: Applying the UTAUT Model
ERIC Educational Resources Information Center
Birch, A.; Irvine, V.
2009-01-01
In this study, the researchers explore the factors that influence preservice teachers' acceptance of information and communication technology (ICT) integration in the classroom. The Unified Theory of Acceptance and Use of Technology (UTAUT) was developed by Venkatesh et al. ["MIS Quarterly, 27"(3), 425-478] in 2003 and shown to outperform eight…
Determinants of Intention to Use eLearning Based on the Technology Acceptance Model
ERIC Educational Resources Information Center
Punnoose, Alfie Chacko
2012-01-01
The purpose of this study was to find some of the predominant factors that determine the intention of students to use eLearning in the future. Since eLearning is not just a technology acceptance decision but also involves cognition, this study extended its search beyond the normal technology acceptance variables into variables that could affect…
ERIC Educational Resources Information Center
Butler, Rory
2013-01-01
Internet-enabled mobile devices have increased the accessibility of learning content for students. Given the ubiquitous nature of mobile computing technology, a thorough understanding of the acceptance factors that impact a learner's intention to use mobile technology as an augment to their studies is warranted. Student acceptance of mobile…
Aging and Interdependence: A Theoretical Model for Close Relationships.
ERIC Educational Resources Information Center
Blieszner, Rosemary
This paper demonstrates the utility of interdependence theory for understanding older persons' social relationships. Using friendship as an exemplary case, a model of expectations for and reactions to social exchanges is described. Exchanges which are perceived to be motivated by obligation are distinguished from those which are perceived to…
Testing Theoretical Models of Magnetic Damping Using an Air Track
ERIC Educational Resources Information Center
Vidaurre, Ana; Riera, Jaime; Monsoriu, Juan A.; Gimenez, Marcos H.
2008-01-01
Magnetic braking is a long-established application of Lenz's law. A rigorous analysis of the laws governing this problem involves solving Maxwell's equations in a time-dependent situation. Approximate models have been developed to describe different experimental results related to this phenomenon. In this paper we present a new method for the…
Interpreting Unfamiliar Graphs: A Generative, Activity Theoretic Model
ERIC Educational Resources Information Center
Roth, Wolff-Michael; Lee, Yew Jin
2004-01-01
Research on graphing presents its results as if knowing and understanding were something stored in peoples' minds independent of the situation that they find themselves in. Thus, there are no models that situate interview responses to graphing tasks. How, then, we question, are the interview texts produced? How do respondents begin and end…
[Theoretical model for rocky desertification control in karst area].
Liang, Liang; Liu, Zhi-Xiao; Zhang, Dai-Gui; Deng, Kai-Dong; Zhang, You-Xiang
2007-03-01
Based on the basic principles of restoration ecology, the trigger-action model for rocky desertification control was proposed, i. e. , the ability that an ecosystem enables itself to develop was called dominant force, and the interfering factor resulting in the deviation of the climax of ecological succession from its preconcerted status was called trigger factor. The ultimate status of ecological succession was determined by the interaction of dominant force and trigger factor. Rocky desertification was the result of serious malignant triggers, and its control was the process of benign triggers in using the ecological restoration method of artificial designs to activate the natural designing ability of an ecosystem. The ecosystem of Karst rocky desertification in Fenghuang County with restoration measures was taken as a case to test the model, and the results showed that the restoration measures based on trigger-action model markedly improved the physical and chemical properties of soil and increased the diversity of plant. There was a benign trigger between the restoration measures and the Karst area. The rationality of the trigger-action model was primarily tested by the results in practice. PMID:17552199
SBS mitigation with 'two-tone' amplification: a theoretical model
NASA Astrophysics Data System (ADS)
Bronder, T. J.; Shay, T. M.; Dajani, I.; Gavrielides, A.; Robin, C. A.; Lu, C. A.
2008-02-01
A new technique for mitigating stimulated Brillouin scattering (SBS) effects in narrow-linewidth Yb-doped fiber amplifiers is demonstrated with a model that reduces to solving an 8×8 system of coupled nonlinear equations with the gain, SBS, and four-wave mixing (FMW) incorporated into the model. This technique uses two seed signals, or 'two-tones', with each tone reaching its SBS threshold almost independently and thus increasing the overall threshold for SBS in the fiber amplifier. The wavelength separation of these signals is also selected to avoid FWM, which in this case possesses the next lowest nonlinear effects threshold. This model predicts an output power increase of 86% (at SBS threshold with no signs of FWM) for a 'two-tone' amplifier with seed signals at 1064nm and 1068nm, compared to a conventional fiber amplifier with a single 1064nm seed. The model is also used to simulate an SBS-suppressing fiber amplifier to test the regime where FWM is the limiting factor. In this case, an optimum wavelength separation of 3nm to 10nm prevents FWM from reaching threshold. The optimum ratio of the input power for the two seed signals in 'two-tone' amplification is also tested. Future experimental verification of this 'two-tone' technique is discussed.
Multiaxial cyclic ratcheting in coiled tubing -- Part 1: Theoretical modeling
Rolovic, R.; Tipton, S.M.
2000-04-01
Coiled tubing is a long, continuous string of steel tubing that is used in the oil well drilling and servicing industry. Bending strains imposed on coiled tubing as it is deployed and retrieved from a well are considerably into the plastic regime and can be as high as 3%. Progressive growth of tubing diameter occurs when tubing is cyclically bent-straightened under constant internal pressure, regardless of the fact that the hoop stress imposed by typical pressure levels is well below the material's yield strength. A new incremental plasticity model is proposed in this study that can predict multiaxial cyclic ratcheting in coiled tubing more accurately than the conventional plasticity models. A new hardening rule is presented based on published experimental observations. The model also implements a new plastic modulus function. The predictions based on the new theory correlate well with experimental results presented in Part 2 of this paper. Some previously unexpected trends in coiled tubing deformation behavior were observed and correctly predicted using the proposed model.
Photoabsorption spectrum of helium trimer cation—Theoretical modeling
NASA Astrophysics Data System (ADS)
Kalus, René; Karlický, František; Lepetit, Bruno; Paidarová, Ivana; Gadea, Florent Xavier
2013-11-01
The photoabsorption spectrum of He_3^+ is calculated for two semiempirical models of intracluster interactions and compared with available experimental data reported in the middle UV range [H. Haberland and B. von Issendorff, J. Chem. Phys. 102, 8773 (1995)]. Nuclear delocalization effects are investigated via several approaches comprising quantum samplings using either exact or approximate (harmonic) nuclear wavefunctions, as well as classical samplings based on the Monte Carlo methodology. Good agreement with the experiment is achieved for the model by Knowles et al., [Mol. Phys. 85, 243 (1995); Knowles et al., Mol. Phys. 87, 827 (1996)] whereas the model by Calvo et al., [J. Chem. Phys. 135, 124308 (2011)] exhibits non-negligible deviations from the experiment. Predictions of far UV absorption spectrum of He_3^+, for which no experimental data are presently available, are reported for both models and compared to each other as well as to the photoabsorption spectrum of He_2^+. A simple semiempirical point-charge approximation for calculating transition probabilities is shown to perform well for He_3^+.
Photoabsorption spectrum of helium trimer cation--theoretical modeling.
Kalus, René; Karlický, František; Lepetit, Bruno; Paidarová, Ivana; Gadea, Florent Xavier
2013-11-28
The photoabsorption spectrum of He3(+) is calculated for two semiempirical models of intracluster interactions and compared with available experimental data reported in the middle UV range [H. Haberland and B. von Issendorff, J. Chem. Phys. 102, 8773 (1995)]. Nuclear delocalization effects are investigated via several approaches comprising quantum samplings using either exact or approximate (harmonic) nuclear wavefunctions, as well as classical samplings based on the Monte Carlo methodology. Good agreement with the experiment is achieved for the model by Knowles et al., [Mol. Phys. 85, 243 (1995); Mol. Phys. 87, 827 (1996)] whereas the model by Calvo et al., [J. Chem. Phys. 135, 124308 (2011)] exhibits non-negligible deviations from the experiment. Predictions of far UV absorption spectrum of He3(+), for which no experimental data are presently available, are reported for both models and compared to each other as well as to the photoabsorption spectrum of He2(+). A simple semiempirical point-charge approximation for calculating transition probabilities is shown to perform well for He3(+). PMID:24289357
Photoabsorption spectrum of helium trimer cation—Theoretical modeling
Kalus, René; Karlický, František; Lepetit, Bruno; Paidarová, Ivana; Gadea, Florent Xavier
2013-11-28
The photoabsorption spectrum of He{sub 3}{sup +} is calculated for two semiempirical models of intracluster interactions and compared with available experimental data reported in the middle UV range [H. Haberland and B. von Issendorff, J. Chem. Phys. 102, 8773 (1995)]. Nuclear delocalization effects are investigated via several approaches comprising quantum samplings using either exact or approximate (harmonic) nuclear wavefunctions, as well as classical samplings based on the Monte Carlo methodology. Good agreement with the experiment is achieved for the model by Knowles et al., [Mol. Phys. 85, 243 (1995); Mol. Phys. 87, 827 (1996)] whereas the model by Calvo et al., [J. Chem. Phys. 135, 124308 (2011)] exhibits non-negligible deviations from the experiment. Predictions of far UV absorption spectrum of He{sub 3}{sup +}, for which no experimental data are presently available, are reported for both models and compared to each other as well as to the photoabsorption spectrum of He{sub 2}{sup +}. A simple semiempirical point-charge approximation for calculating transition probabilities is shown to perform well for He{sub 3}{sup +}.
Toward a Theoretical Model of Employee Turnover: A Human Resource Development Perspective
ERIC Educational Resources Information Center
Peterson, Shari L.
2004-01-01
This article sets forth the Organizational Model of Employee Persistence, influenced by traditional turnover models and a student attrition model. The model was developed to clarify the impact of organizational practices on employee turnover from a human resource development (HRD) perspective and provide a theoretical foundation for research on…
Theoretical transport modeling of Ohmic cold pulse experiments
NASA Astrophysics Data System (ADS)
Kinsey, J. E.; Waltz, R. E.; St. John, H. E.
1998-11-01
The response of several theory-based transport models in Ohmically heated tokamak discharges to rapid edge cooling due to trace impurity injection is studied. Results are presented for the Institute for Fusion Studies—Princeton Plasma Physics Laboratory (IFS/PPPL), gyro-Landau-fluid (GLF23), Multi-mode (MM), and the Itoh-Itoh-Fukuyama (IIF) transport models with an emphasis on results from the Texas Experimental Tokamak (TEXT) [K. W. Gentle, Nucl. Technol./Fusion 1, 479 (1981)]. It is found that critical gradient models containing a strong ion and electron temperature ratio dependence can exhibit behavior that is qualitatively consistent with experimental observation while depending solely on local parameters. The IFS/PPPL model yields the strongest response and demonstrates both rapid radial pulse propagation and a noticeable increase in the central electron temperature following a cold edge temperature pulse (amplitude reversal). Furthermore, the amplitude reversal effect is predicted to diminish with increasing electron density and auxiliary heating in agreement with experimental data. An Ohmic pulse heating effect due to rearrangement of the current profile is shown to contribute to the rise in the core electron temperature in TEXT, but not in the Joint European Tokamak (JET) [A. Tanga and the JET Team, in Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 65] and the Tokamak Fusion Test Reactor (TFTR) [R. J. Hawryluk, V. Arunsalam, M. G. Bell et al., in Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 51]. While this phenomenon is not necessarily a unique signature of a critical gradient, there is sufficient evidence suggesting that the apparent plasma response to edge cooling may not require any underlying nonlocal mechanism and may be explained within the context of the intrinsic properties of electrostatic drift
ERIC Educational Resources Information Center
Kilic, Eylem; Güler, Çetin; Çelik, H. Eray; Tatli, Cemal
2015-01-01
Purpose: The purpose of this study is to investigate the factors which might affect the intention to use interactive whiteboards (IWBs) by university students, using Technology Acceptance Model by the structural equation modeling approach. The following hypothesis guided the current study: H1. There is a positive relationship between IWB…
A differential game theoretical analysis of mechanistic models for territoriality.
Hamelin, Frédéric M; Lewis, Mark A
2010-11-01
In this paper, elements of differential game theory are used to analyze a spatially explicit home range model for interacting wolf packs when movement behavior is uncertain. The model consists of a system of partial differential equations whose parameters reflect the movement behavior of individuals within each pack and whose steady-state solutions describe the patterns of space-use associated to each pack. By controlling the behavioral parameters in a spatially-dynamic fashion, packs adjust their patterns of movement so as to find a Nash-optimal balance between spreading their territory and avoiding conflict with hostile neighbors. On the mathematical side, we show that solving a nonzero-sum differential game corresponds to finding a non-invasible function-valued trait. From the ecological standpoint, when movement behavior is uncertain, the resulting evolutionarily stable equilibrium gives rise to a buffer-zone, or a no-wolf's land where deer are known to find refuge. PMID:20033174
Theoretical model for morphogenesis and cell sorting in Dictyostelium discoideum
NASA Astrophysics Data System (ADS)
Umeda, T.; Inouye, K.
1999-02-01
The morphogenetic movement and cell sorting in cell aggregates from the mound stage to the migrating slug stage of the cellular slime mold Dictyostelium discoideum were studied using a mathematical model. The model postulates that the motive force generated by the cells is in equilibrium with the internal pressure and mechanical resistance. The moving boundary problem derived from the force balance equation and the continuity equation has stationary solutions in which the aggregate takes the shape of a spheroid (or an ellipse in two-dimensional space) with the pacemaker at one of its foci, moving at a constant speed. Numerical calculations in two-dimensional space showed that an irregularly shaped aggregate changes its shape to become an ellipse as it moves. Cell aggregates consisting of two cell types differing in motive force exhibit cell sorting and become elongated, suggesting the importance of prestalk/prespore differentiation in the morphogenesis of Dictyostelium.
Automata-theoretic models of mutation and alignment
Searls, D.B.; Murphy, K.P.
1995-12-31
Finite-state automata called transducers, which have both input and output, can be used to model simple mechanisms of biological mutation. We present a methodology whereby numerically-weighted versions of such specifications can be mechanically adapted to create string edit machines that are essentially equivalent to recurrence relations of the sort that characterize dynamic programming alignment algorithms. Based on this, we have developed a visual programming system for designing new alignment algorithms in a rapid-prototyping fashion.
A Theoretical Model for the Associative Nature of Conference Participation.
Smiljanić, Jelena; Chatterjee, Arnab; Kauppinen, Tomi; Mitrović Dankulov, Marija
2016-01-01
Participation in conferences is an important part of every scientific career. Conferences provide an opportunity for a fast dissemination of latest results, discussion and exchange of ideas, and broadening of scientists' collaboration network. The decision to participate in a conference depends on several factors like the location, cost, popularity of keynote speakers, and the scientist's association with the community. Here we discuss and formulate the problem of discovering how a scientist's previous participation affects her/his future participations in the same conference series. We develop a stochastic model to examine scientists' participation patterns in conferences and compare our model with data from six conferences across various scientific fields and communities. Our model shows that the probability for a scientist to participate in a given conference series strongly depends on the balance between the number of participations and non-participations during his/her early connections with the community. An active participation in a conference series strengthens the scientist's association with that particular conference community and thus increases the probability of future participations. PMID:26859404
Modeling postpartum depression in rats: theoretic and methodological issues
Ming, LI; Shinn-Yi, CHOU
2016-01-01
The postpartum period is when a host of changes occur at molecular, cellular, physiological and behavioral levels to prepare female humans for the challenge of maternity. Alteration or prevention of these normal adaptions is thought to contribute to disruptions of emotion regulation, motivation and cognitive abilities that underlie postpartum mental disorders, such as postpartum depression. Despite the high incidence of this disorder, and the detrimental consequences for both mother and child, its etiology and related neurobiological mechanisms remain poorly understood, partially due to the lack of appropriate animal models. In recent decades, there have been a number of attempts to model postpartum depression disorder in rats. In the present review, we first describe clinical symptoms of postpartum depression and discuss known risk factors, including both genetic and environmental factors. Thereafter, we discuss various rat models that have been developed to capture various aspects of this disorder and knowledge gained from such attempts. In doing so, we focus on the theories behind each attempt and the methods used to achieve their goals. Finally, we point out several understudied areas in this field and make suggestions for future directions. PMID:27469254
A dynamic game-theoretic model of parental care.
Mcnamara, J M; Székely, T; Webb, J N; Houston, A I
2000-08-21
We present a model in which members of a mated pair decide whether to care for their offspring or desert them. There is a breeding season of finite length during which it is possible to produce and raise several batches of offspring. On deserting its offspring, an individual can search for a new mate. The probability of finding a mate depends on the number of individuals of each sex that are searching, which in turn depends upon the previous care and desertion decisions of all population members. We find the evolutionarily stable pattern of care over the breeding season. The feedback between behaviour and mating opportunity can result in a pattern of stable oscillations between different forms of care over the breeding season. Oscillations can also arise because the best thing for an individual to do at a particular time in the season depends on future behaviour of all population members. In the baseline model, a pair splits up after a breeding attempt, even if they both care for the offspring. In a version of the model in which a pair stays together if they both care, the feedback between behaviour and mating opportunity can lead to more than one evolutionarily stable form of care. PMID:10931755
Modeling postpartum depression in rats: theoretic and methodological issues.
Li, Ming; Chou, Shinn-Yi
2016-07-18
The postpartum period is when a host of changes occur at molecular, cellular, physiological and behavioral levels to prepare female humans for the challenge of maternity. Alteration or prevention of these normal adaptions is thought to contribute to disruptions of emotion regulation, motivation and cognitive abilities that underlie postpartum mental disorders, such as postpartum depression. Despite the high incidence of this disorder, and the detrimental consequences for both mother and child, its etiology and related neurobiological mechanisms remain poorly understood, partially due to the lack of appropriate animal models. In recent decades, there have been a number of attempts to model postpartum depression disorder in rats. In the present review, we first describe clinical symptoms of postpartum depression and discuss known risk factors, including both genetic and environmental factors. Thereafter, we discuss various rat models that have been developed to capture various aspects of this disorder and knowledge gained from such attempts. In doing so, we focus on the theories behind each attempt and the methods used to achieve their goals. Finally, we point out several understudied areas in this field and make suggestions for future directions. PMID:27469254
A Theoretical Model for the Associative Nature of Conference Participation
Smiljanić, Jelena; Chatterjee, Arnab; Kauppinen, Tomi; Mitrović Dankulov, Marija
2016-01-01
Participation in conferences is an important part of every scientific career. Conferences provide an opportunity for a fast dissemination of latest results, discussion and exchange of ideas, and broadening of scientists’ collaboration network. The decision to participate in a conference depends on several factors like the location, cost, popularity of keynote speakers, and the scientist’s association with the community. Here we discuss and formulate the problem of discovering how a scientist’s previous participation affects her/his future participations in the same conference series. We develop a stochastic model to examine scientists’ participation patterns in conferences and compare our model with data from six conferences across various scientific fields and communities. Our model shows that the probability for a scientist to participate in a given conference series strongly depends on the balance between the number of participations and non-participations during his/her early connections with the community. An active participation in a conference series strengthens the scientist’s association with that particular conference community and thus increases the probability of future participations. PMID:26859404
BL Herculis stars - Theoretical models for field variables
NASA Technical Reports Server (NTRS)
Carson, R.; Stothers, R.
1982-01-01
Type II Cepheids with periods between 1 and 3 days, commonly designated as Bl Herculis stars, have been modeled here with the aim of interpreting the wide variety of light curves observed among the field variables. Previously modeled globular cluster members are used as standard calibration objects. The major finding is that only a small range of luminosities is capable of generating a large variety of light curve types at a given period. For a mass of approximately 0.60 solar mass, the models are able to reproduce the observed mean luminosities, dispersion of mean luminosities, periods, light amplitudes, light asymmetries, and phases of secondary features in the light curves of known BL Her stars. It is possible that the metal-rich variables (which are found only in the field) have luminosities lower than those of most metal-poor variables. The present revised mass for BL Her, a metal-rich object, is not significantly different from the mean mass of the metal-poor variables.
Imitative Modeling as a Theoretical Base for Instructing Language-Disordered Children
ERIC Educational Resources Information Center
Courtright, John A.; Courtright, Illene C.
1976-01-01
A modification of A. Bandura's social learning theory (imitative modeling) was employed as a theoretical base for language instruction with eight language disordered children (5 to 10 years old). (Author/SBH)
Technology Transfer Automated Retrieval System (TEKTRAN)
Selection for disease resistance is a contemporary topic with developing approaches for genetic improvement. Merging the sciences of genetic selection and epidemiology is essential to identify selection schemes to enhance disease resistance. Epidemiological models can identify theoretical opportuni...
Theoretical models for the emergence of biomolecular homochirality
NASA Astrophysics Data System (ADS)
Walker, Sara Imari
Little is known about the emergence of life from nonliving precursors. A key missing-piece is the origin of homochirality: nearly all life is characterized by exclusively dextrorotary sugars and levorotary amino acids. The research presented in this thesis addresses the challenge of uncovering mechanisms for chiral symmetry breaking in a prebiotic environment and implications for the origin of life on Earth. Expanding on a well-known model for chiral selection through polymerization, and modeling the spatiotemporal dynamics starting from near-racemic initial conditions, it is demonstrated that the net chirality of molecular building blocks grows with the longest polymer in the reaction network (of length N) with critical behavior for the onset of chiral asymmetry determined by the value of N. This surprising result indicates that significant chiral asymmetry occurs only for systems which permit growth of long polymers. Expanding on this work, the effects of environmental disturbances on the evolution of chirality in prebiotic reaction-diffusion networks are studied via the implementation of a stochastic spatiotemporal Langevin equation. The results show that environmental interactions can have significant impact on the evolution of prebiotic chirality: the history of prebiotic chirality is therefore interwoven with the Earths early environmental history in a mechanism we call punctuated chirality. This result establishes that the onset of homochirality is not an isolated phenomenon: chiral selection must occur in tandem with the transition from chemistry to biology, otherwise the prebiotic soup is unstable to environmental events. Addressing the challenge of understanding the role of chirality in the transition from non-life to life, the diffusive slowdown of reaction networks induced, for example, through tidal cycles or evaporating pools, is modeled. The results of this study demonstrate that such diffusive slowdown leads to the stabilization of homochiral
GSTARS computer models and their applications, part I: theoretical development
Yang, C.T.; Simoes, F.J.M.
2008-01-01
GSTARS is a series of computer models developed by the U.S. Bureau of Reclamation for alluvial river and reservoir sedimentation studies while the authors were employed by that agency. The first version of GSTARS was released in 1986 using Fortran IV for mainframe computers. GSTARS 2.0 was released in 1998 for personal computer application with most of the code in the original GSTARS revised, improved, and expanded using Fortran IV/77. GSTARS 2.1 is an improved and revised GSTARS 2.0 with graphical user interface. The unique features of all GSTARS models are the conjunctive use of the stream tube concept and of the minimum stream power theory. The application of minimum stream power theory allows the determination of optimum channel geometry with variable channel width and cross-sectional shape. The use of the stream tube concept enables the simulation of river hydraulics using one-dimensional numerical solutions to obtain a semi-two- dimensional presentation of the hydraulic conditions along and across an alluvial channel. According to the stream tube concept, no water or sediment particles can cross the walls of stream tubes, which is valid for many natural rivers. At and near sharp bends, however, sediment particles may cross the boundaries of stream tubes. GSTARS3, based on FORTRAN 90/95, addresses this phenomenon and further expands the capabilities of GSTARS 2.1 for cohesive and non-cohesive sediment transport in rivers and reservoirs. This paper presents the concepts, methods, and techniques used to develop the GSTARS series of computer models, especially GSTARS3. ?? 2008 International Research and Training Centre on Erosion and Sedimentation and the World Association for Sedimentation and Erosion Research.
A theoretical model of sheath fold morphology in simple shear
NASA Astrophysics Data System (ADS)
Reber, Jacqueline E.; Dabrowski, Marcin; Galland, Olivier; Schmid, Daniel W.
2013-04-01
Sheath folds are highly non-cylindrical structures often associated with shear zones. The geometry of sheath folds, especially cross-sections perpendicular to the stretching direction that display eye-patterns, have been used in the field to deduce kinematic information such as shear sense and bulk strain type. However, how sheath folds form and how they evolve with increasing strain is still a matter of debate. We investigate the formation of sheath folds around a weak inclusion acting as a slip surface in simple shear by means of an analytical model. We systematically vary the slip surface orientation and shape and evaluate the impact on the evolving eye-pattern. In addition we compare our results to existing classifications. Based on field observations it has been suggested that the shear sense of a shear zone can be determined by knowing the position of the center of an eye-pattern and the closing direction of the corresponding sheath fold. In our modeled sheath folds we can observe for a given strain that the center of the eye-structure is subject to change in height with respect to the upper edge of the outermost closed contour for different cross-sections perpendicular to the shear direction. This results in a large variability in layer thickness, questioning the usefulness of sheath folds as shear sense indicators. The location of the center of the eye structure, however, is largely invariant to the initial configurations of the slip surface as well as to strain. It has been suggested that the ratio of the aspect ratio of the innermost and outermost closed contour in eye-patterns could be linked to the bulk strain type based on filed observations. We apply this classification to our modeled sheath folds and we observe that the values of the aspect ratios of the closed contours within the eye-pattern are dependent on the strain and the cross-section location. The ratio (R') of the aspect ratios of the outermost closed contour (Ryz) and the innermost closed
A predictive theoretical model for electron tunneling pathways in proteins
NASA Technical Reports Server (NTRS)
Onuchic, Jose Nelson; Beratan, David N.
1990-01-01
A practical method is presented for calculating the dependence of electron transfer rates on details of the protein medium intervening between donor and acceptor. The method takes proper account of the relative energetics and mutual interactions of the donor, acceptor, and peptide groups. It also provides a quantitative search scheme for determining the important tunneling pathways (specific sequences of localized bonding and antibonding orbitals of the protein which dominate the donor-acceptor electronic coupling) in native and tailored proteins, a tool for designing new proteins with prescribed electron transfer rates, and a consistent description of observed electron transfer rates in existing redox labeled metalloproteins and small molecule model compounds.
Theoretical Modeling of Various Spectroscopies for Cuprates and Topological Insulators
NASA Astrophysics Data System (ADS)
Basak, Susmita
Spectroscopies resolved highly in momentum, energy and/or spatial dimensions are playing an important role in unraveling key properties of wide classes of novel materials. However, spectroscopies do not usually provide a direct map of the underlying electronic spectrum, but act as a complex 'filter' to produce a 'mapping' of the underlying energy levels, Fermi surfaces (FSs) and excitation spectra. The connection between the electronic spectrum and the measured spectra is described as a generalized 'matrix element effect'. The nature of the matrix element involved differs greatly between different spectroscopies. For example, in angle-resolved photoemission (ARPES) an incoming photon knocks out an electron from the sample and the energy and momentum of the photoemitted electron is measured. This is quite different from what happens in K-edge resonant inelastic X-ray scattering (RIXS), where an X-ray photon is scattered after inducing electronic transitions near the Fermi energy through an indirect second order process, or in Compton scattering where the incident X-ray photon is scattered inelastically from an electron transferring energy and momentum to the scattering electron. For any given spectroscopy, the matrix element is, in general, a complex function of the phase space of the experiment, e.g. energy/polarization of the incoming photon and the energy/momentum/spin of the photoemitted electron in the case of ARPES. The matrix element can enhance or suppress signals from specific states, or merge signals of groups of states, making a good understanding of the matrix element effects important for not only a robust interpretation of the spectra, but also for ascertaining optimal regions of the experimental phase space for zooming in on states of the greatest interest. In this thesis I discuss a comprehensive scheme for modeling various highly resolved spectroscopies of the cuprates and topological insulators (TIs) where effects of matrix element, crystal
Polarimetric Signatures of Sea Ice. Part 1; Theoretical Model
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.
1995-01-01
Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarimetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies for interpretation of sea ice polarimetric signatures.
Polarimetric signatures of sea ice. 1: Theoretical model
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.
1995-01-01
Physical, structral, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarmetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies to interpretation of sea ice polarimetric signatures.
Theoretical model of electroosmotic flow for capillary zone electrophoresis
Tavares, M.F.M.; McGuffin, V.L.
1995-10-15
A mathematical model of electroosmotic flow in capillary zone electrophoresis has been developed by taking into consideration of the ion-selective properties of silica surfaces. The electroosmotic velocity was experimentally determined, underboth constant voltage and constant current conditions, by using the resistance-monitoring method. A detailed study of electroosmotic flow characteristics in solutions of singly charged, strong electrolytes (NaCl, LiCl, KCl, NaBr, NaI, NaNO{sub 3}, and NaClO{sub 4}), as well as the phosphate buffer system, revealed a linear correlation between the {Zeta} potential and the logarithm of the cation activity. These results suggest that the capillary surface behaves as an ion-selective electrode. Consequently, the {Zeta} potential can be calculated as a function of the composition and pH of the solution with the corresponding modified Nernst equation for ion-selective electrodes. If the viscosity and dielectric constant of the solution are known, the electroosmotic velocity can then be accurately predicted by means of the Helmholtz-Smoluchowski equation. The proposed model has been successfully applied to phosphate buffer solutions in the range of pH from 4 to 10, containing sodium chloride from 5 to 15 mM, resulting in nearly 3% error in the estimation of the electroosmotic velocity. 53 refs., 8 figs., 2 tabs.
Smith, Steven M; Hasan, Michaela; Huebschmann, Amy G; Penaloza, Richard; Schorr-Ratzlaff, Wagner; Sieja, Amber; Roscoe, Nicholai; Trinkley, Katy E
2015-09-01
Physician-pharmacist collaborative care (PPCC) is effective in improving blood pressure (BP) control, but primary care provider (PCP) engagement in such models has not been well-studied. The authors analyzed data from PPCC referrals to 108 PCPs, for patients with uncontrolled hypertension, assessing the proportion of referral requests approved, disapproved, and not responded to, and reasons for disapproval. Of 2232 persons with uncontrolled hypertension, PPCC referral requests were sent for 1516 (67.9%): 950 (62.7%) were approved, 406 (26.8%) were disapproved, and 160 (10.6%) received no response. Approval rates differed widely by PCP with a median approval rate of 75% (interquartile range, 41%-100%). The most common reasons for disapproval were: PCP prefers to manage hypertension (19%), and BP controlled per PCP (18%); 8% of cases were considered too complex for PPCC. Provider acceptance of a PPCC hypertension clinic was generally high and sustained but varied widely among PCPs. No single reason for disapproval predominated. PMID:26032586
A Theoretical Light-Curve Model for the 1999 Outburst of U Scorpii
NASA Astrophysics Data System (ADS)
Hachisu, Izumi; Kato, Mariko; Kato, Taichi; Matsumoto, Katsura
2000-01-01
A theoretical light curve for the 1999 outburst of U Scorpii is presented in order to obtain various physical parameters of the recurrent nova. Our U Sco model consists of a very massive white dwarf (WD) with an accretion disk and a lobe-filling, slightly evolved, main-sequence star (MS). The model includes a reflection effect by the companion and the accretion disk together with a shadowing effect on the companion by the accretion disk. The early visual light curve (with a linear phase of t~1-15 days after maximum) is well reproduced by a thermonuclear runaway model on a very massive WD close to the Chandrasekhar limit (MWD=1.37+/-0.01 Msolar), in which optically thick winds blowing from the WD play a key role in determining the nova duration. The ensuing plateau phase (t~15-30 days) is also reproduced by the combination of a slightly irradiated MS and a fully irradiated flaring-up disk with a radius ~1.4 times the Roche lobe size. The cooling phase (t~30-40 days) is consistent with a low-hydrogen content of X~0.05 of the envelope for the 1.37 Msolar WD. The best-fit parameters are the WD mass of MWD~1.37 Msolar, the companion mass of MMS~1.5 Msolar (0.8-2.0 Msolar is acceptable), the inclination angle of the orbit (i~80deg), and the flaring-up edge, the vertical height of which is ~0.30 times the accretion disk radius. The duration of the strong wind phase (t~0-17 days) is very consistent with the BeppoSAX supersoft X-ray detection at t~19-20 days because supersoft X-rays are self-absorbed by the massive wind. The envelope mass at the peak is estimated to be ~3×10-6 Msolar, which is indicates an average mass accretion rate of ~2.5×10-7 Msolar yr-1 during the quiescent phase between 1987 and 1999. These quantities are exactly the same as those predicted in a new progenitor model of Type Ia supernovae.
A Measurement-Theoretic Analysis of the Fuzzy Logic Model of Perception.
ERIC Educational Resources Information Center
Crowther, Court S.; And Others
1995-01-01
The fuzzy logic model of perception (FLMP) is analyzed from a measurement-theoretic perspective. The choice rule of FLMP is shown to be equivalent to a version of the Rasch model. In fact, FLMP can be reparameterized as a simple two-category logit model. (SLD)
2015-01-01
The scope of this study was to evaluate whether the adoption of e-learning in two universities, and in particular, the relationship between the perception of external control and perceived ease of use, is different because of gender differences. The study was carried out with participating students in two different universities, one in Chile and one in Spain. The Technology Acceptance Model was used as a theoretical framework for the study. A multi-group analysis method in partial least squares was employed to relate differences between groups. The four main conclusions of the study are: (1) a version of the Technology Acceptance Model has been successfully used to explain the process of adoption of e-learning at an undergraduate level of study; (2) the finding of a strong and significant relationship between perception of external control and perception of ease of use of the e-learning platform; (3) a significant relationship between perceived enjoyment and perceived ease of use and between results demonstrability and perceived usefulness is found; (4) the study indicates a few statistically significant differences between males and females when adopting an e-learning platform, according to the tested model. PMID:26465895
Ramírez-Correa, Patricio E; Arenas-Gaitán, Jorge; Rondán-Cataluña, F Javier
2015-01-01
The scope of this study was to evaluate whether the adoption of e-learning in two universities, and in particular, the relationship between the perception of external control and perceived ease of use, is different because of gender differences. The study was carried out with participating students in two different universities, one in Chile and one in Spain. The Technology Acceptance Model was used as a theoretical framework for the study. A multi-group analysis method in partial least squares was employed to relate differences between groups. The four main conclusions of the study are: (1) a version of the Technology Acceptance Model has been successfully used to explain the process of adoption of e-learning at an undergraduate level of study; (2) the finding of a strong and significant relationship between perception of external control and perception of ease of use of the e-learning platform; (3) a significant relationship between perceived enjoyment and perceived ease of use and between results demonstrability and perceived usefulness is found; (4) the study indicates a few statistically significant differences between males and females when adopting an e-learning platform, according to the tested model. PMID:26465895
A beginner's guide to writing the nursing conceptual model-based theoretical rationale.
Gigliotti, Eileen; Manister, Nancy N
2012-10-01
Writing the theoretical rationale for a study can be a daunting prospect for novice researchers. Nursing's conceptual models provide excellent frameworks for placement of study variables, but moving from the very abstract concepts of the nursing model to the less abstract concepts of the study variables is difficult. Similar to the five-paragraph essay used by writing teachers to assist beginning writers to construct a logical thesis, the authors of this column present guidelines that beginners can follow to construct their theoretical rationale. This guide can be used with any nursing conceptual model but Neuman's model was chosen here as the exemplar. PMID:23087334
ERIC Educational Resources Information Center
Teo, Timothy; Tan, Lynde
2012-01-01
This study applies the theory of planned behavior (TPB), a theory that is commonly used in commercial settings, to the educational context to explain pre-service teachers' technology acceptance. It is also interested in examining its validity when used for this purpose. It has found evidence that the TPB is a valid model to explain pre-service…
ERIC Educational Resources Information Center
Ndubisi, Nelson
2006-01-01
Organisational investments in information technologies have increased significantly in the past few decades. All around the globe and in Malaysia particularly, a number of educational institutions are experimenting with e-learning. Adopting the theory of planned behaviour (TPB) and the technology acceptance model (TAM) this article tries to…
Single Droplet on Micro Square-Post Patterned Surfaces – Theoretical Model and Numerical Simulation
Zu, Y. Q.; Yan, Y. Y.
2016-01-01
In this study, the wetting behaviors of single droplet on a micro square-post patterned surface with different geometrical parameters are investigated theoretically and numerically. A theoretical model is proposed for the prediction of wetting transition from the Cassie to Wenzel regimes. In addition, due to the limitation of theoretical method, a numerical simulation is performed, which helps get a view of dynamic contact lines, detailed velocity fields, etc., even if the droplet size is comparable with the scale of the surface micro-structures. It is found that the numerical results of the liquid drop behaviours on the square-post patterned surface are in good agreement with the predicted values by the theoretical model. PMID:26775561
Experimental and Simulational Studies on the Theoretical Model of the Plasma Absorption Probe
NASA Astrophysics Data System (ADS)
Li, Bin; Li, Hong; Chen, Zhipeng; Xie, Jinlin; Feng, Guangyao; Liu, Wandong
2010-10-01
Plasma absorption probe (PAP) was developed for measuring the electron density in plasmas processing based on the surface-wave characteristics. In order to diagnose the plasma with lower density and higher pressure, a sensitive PAP was also developed. Both types of PAP were analyzed theoretically under the quasi-static approximation, which is highly problematic when a conductor exists in the resonance region of the probe. For this reason, a theoretical model for the PAP is presented in this paper. The model is derived from the electromagnetic wave equation. Its principle is then verified via experiments and numerical simulations. Both experimental and numerical results show that the electromagnetic theoretical model is valid as compared with the quasi-static model. Consequently, a new type of PAP, named as the electromagnetic PAP, is thus proposed for the measurement of electron density.
Brown, Roger L; Scanlon, Matthew C; Karsh, Ben-Tzion
2012-01-01
Objective To identify predictors of nurses' acceptance of bar coded medication administration (BCMA). Design Cross-sectional survey of registered nurses (N=83) at an academic pediatric hospital that recently implemented BCMA. Methods Surveys assessed seven BCMA-related perceptions: ease of use; usefulness for the job; social influence from non-specific others to use BCMA; training; technical support; usefulness for patient care; and social influence from patients/families. An all possible subset regression procedure with five goodness-of-fit indicators was used to identify which set of perceptions best predicted BCMA acceptance (intention to use, satisfaction). Results Nurses reported a moderate perceived ease of use and low perceived usefulness of BCMA. Nurses perceived moderate-or-higher social influence to use BCMA and had moderately positive perceptions of BCMA-related training and technical support. Behavioral intention to use BCMA was high, but satisfaction was low. Behavioral intention to use was best predicted by perceived ease of use, perceived social influence from non-specific others, and perceived usefulness for patient care (56% of variance explained). Satisfaction was best predicted by perceived ease of use, perceived usefulness for patient care, and perceived social influence from patients/families (76% of variance explained). Discussion Variation in and low scores on ease of use and usefulness are concerning, especially as these variables often correlate with acceptance, as found in this study. Predicting acceptance benefited from using a broad set of perceptions and adapting variables to the healthcare context. Conclusion Success with BCMA and other technologies can benefit from assessing end-user acceptance and elucidating the factors promoting acceptance and use. PMID:22661559
Bousbahi, Fatiha; Alrazgan, Muna Saleh
2015-01-01
To enhance instruction in higher education, many universities in the Middle East have chosen to introduce learning management systems (LMS) to their institutions. However, this new educational technology is not being used at its full potential and faces resistance from faculty members. To investigate this phenomenon, we conducted an empirical research study to uncover factors influencing faculty members' acceptance of LMS. Thus, in the Fall semester of 2014, Information Technology faculty members were surveyed to better understand their perceptions of the incorporation of LMS into their courses. The results showed that personal factors such as motivation, load anxiety, and organizational support play important roles in the perception of the usefulness of LMS among IT faculty members. These findings suggest adding these constructs in order to extend the Technology acceptance model (TAM) for LMS acceptance, which can help stakeholders of the university to implement the use of this system. This may assist in planning and evaluating the use of e-learning. PMID:26491712
Bousbahi, Fatiha; Alrazgan, Muna Saleh
2015-01-01
To enhance instruction in higher education, many universities in the Middle East have chosen to introduce learning management systems (LMS) to their institutions. However, this new educational technology is not being used at its full potential and faces resistance from faculty members. To investigate this phenomenon, we conducted an empirical research study to uncover factors influencing faculty members' acceptance of LMS. Thus, in the Fall semester of 2014, Information Technology faculty members were surveyed to better understand their perceptions of the incorporation of LMS into their courses. The results showed that personal factors such as motivation, load anxiety, and organizational support play important roles in the perception of the usefulness of LMS among IT faculty members. These findings suggest adding these constructs in order to extend the Technology acceptance model (TAM) for LMS acceptance, which can help stakeholders of the university to implement the use of this system. This may assist in planning and evaluating the use of e-learning. PMID:26491712
Simple control-theoretic models of human steering activity in visually guided vehicle control
NASA Technical Reports Server (NTRS)
Hess, Ronald A.
1991-01-01
A simple control theoretic model of human steering or control activity in the lateral-directional control of vehicles such as automobiles and rotorcraft is discussed. The term 'control theoretic' is used to emphasize the fact that the model is derived from a consideration of well-known control system design principles as opposed to psychological theories regarding egomotion, etc. The model is employed to emphasize the 'closed-loop' nature of tasks involving the visually guided control of vehicles upon, or in close proximity to, the earth and to hypothesize how changes in vehicle dynamics can significantly alter the nature of the visual cues which a human might use in such tasks.
Achievement Goals and Discrete Achievement Emotions: A Theoretical Model and Prospective Test
ERIC Educational Resources Information Center
Pekrun, Reinhard; Elliot, Andrew J.; Maier, Markus A.
2006-01-01
A theoretical model linking achievement goals to discrete achievement emotions is proposed. The model posits relations between the goals of the trichotomous achievement goal framework and 8 commonly experienced achievement emotions organized in a 2 (activity/outcome focus) x 2 (positive/negative valence) taxonomy. Two prospective studies tested…
A Theoretical Model for Thin Film Ferroelectric Coupled Microstripline Phase Shifters
NASA Technical Reports Server (NTRS)
Romanofsky, R. R.; Quereshi, A. H.
2000-01-01
Novel microwave phase shifters consisting of coupled microstriplines on thin ferroelectric films have been demonstrated recently. A theoretical model useful for predicting the propagation characteristics (insertion phase shift, dielectric loss, impedance, and bandwidth) is presented here. The model is based on a variational solution for line capacitance and coupled strip transmission line theory.
REGIONAL SCALE (1000 KM) MODEL OF PHOTOCHEMICAL AIR POLLUTION. PART 1. THEORETICAL FORMULATION
A theoretical framework for a multi-day 1000 km scale simulation model of photochemical oxidant is developed. It is structured in a highly modular form so that eventually the model can be applied through straightforward modifications to simulations of particulates, visibility and...
Game Object Model Version II: A Theoretical Framework for Educational Game Development
ERIC Educational Resources Information Center
Amory, Alan
2007-01-01
Complex computer and video games may provide a vehicle, based on appropriate theoretical concepts, to transform the educational landscape. Building on the original game object model (GOM) a new more detailed model is developed to support concepts that educational computer games should: be relevant, explorative, emotive, engaging, and include…
ERIC Educational Resources Information Center
Hsieh, Pei-Hsuan; Sullivan, Jeremy R.; Sass, Daniel A.; Guerra, Norma S.
2012-01-01
Research has identified factors associated with academic success by evaluating relations among psychological and academic variables, although few studies have examined theoretical models to understand the complex links. This study used structural equation modeling to investigate whether the relation between test anxiety and final course grades was…
Engaging Dialogue in Our Diverse Social Work Student Body: A Multilevel Theoretical Process Model
ERIC Educational Resources Information Center
Rozas, Lisa Werkmeister
2007-01-01
This article presents a theoretical process model for students engaging in dialogic learning about issues of race and anti-oppression. The model identifies conditions present in the dialogue process and demonstrates how these conditions, when coordinated with certain interventions and strategies, help to create particular outcomes for…
The theoretical basis, physical structure, and preliminary evaluation of the U.S. Environmental Protection Agency's Complex Terrain Dispersion Model (CTDM) are described. CTDM is a point-source plume model designed primarily to estimate windward-side surface concentrations on dis...
NASA Astrophysics Data System (ADS)
Grünkorn, Juliane; Belzen, Annette Upmeier zu; Krüger, Dirk
2014-07-01
Research in the field of students' understandings of models and their use in science describes different frameworks concerning these understandings. Currently, there is no conjoint framework that combines these structures and so far, no investigation has focused on whether it reflects students' understandings sufficiently (empirical evaluation). Therefore, the purpose of this article is to present the results of an empirical evaluation of a conjoint theoretical framework. The theoretical framework integrates relevant research findings and comprises five aspects which are subdivided into three levels each: nature of models, multiple models, purpose of models, testing, and changing models. The study was conducted with a sample of 1,177 seventh to tenth graders (aged 11-19 years) using open-ended items. The data were analysed by identifying students' understandings of models (nature of models and multiple models) and their use in science (purpose of models, testing, and changing models), and comparing as well as assigning them to the content of the theoretical framework. A comprehensive category system of students' understandings was thus developed. Regarding the empirical evaluation, the students' understandings of the nature and the purpose of models were sufficiently described by the theoretical framework. Concerning the understandings of multiple, testing, and changing models, additional initial understandings (only one model possible, no testing of models, and no change of models) need to be considered. This conjoint and now empirically tested framework for students' understandings can provide a common basis for future science education research. Furthermore, evidence-based indications can be provided for teachers and their instructional practice.
ERIC Educational Resources Information Center
Davis, Theresa M.
2013-01-01
Background: There is little evidence that technology acceptance is well understood in healthcare. The hospital environment is complex and dynamic creating a challenge when new technology is introduced because it impacts current processes and workflows which can significantly affect patient care delivery and outcomes. This study tested the effect…
ERIC Educational Resources Information Center
Liu, Yi Chun; Huang, Yong-Ming
2015-01-01
The teaching of translation has received considerable attention in recent years. Research on translation in collaborative learning contexts, however, has been less studied. In this study, we use a tool of synchronous collaboration to assist students in experiencing a peer translation process. Afterward, the unified theory of acceptance and use of…
ERIC Educational Resources Information Center
Sanchez-Franco, Manuel J.
2010-01-01
Perceived affective quality is an attractive area of research in Information System. Specifically, understanding the intrinsic and extrinsic individual factors and interaction effects that influence Information and Communications Technology (ICT) acceptance and adoption--in higher education--continues to be a focal interest in learning research.…
ERIC Educational Resources Information Center
Padilla-Melendez, Antonio; del Aguila-Obra, Ana Rosa; Garrido-Moreno, Aurora
2013-01-01
The importance of technology for education is increasing year-by-year at all educational levels and particularly for Universities. This paper reexamines one important determinant of technology acceptance and use, such as perceived playfulness in the context of a blended learning setting and reveals existing gender differences. After a literature…
ERIC Educational Resources Information Center
Iqbal, Shakeel; Bhatti, Zeeshan Ahmed
2015-01-01
M-learning is learning delivered via mobile devices and mobile technology. The research indicates that this medium of learning has potential to enhance formal as well as informal learning. However, acceptance of m-learning greatly depends upon the personal attitude of students towards this medium; therefore this study focuses only on the…
Exploring Students' Intention to Use LINE for Academic Purposes Based on Technology Acceptance Model
ERIC Educational Resources Information Center
Van De Bogart, Willard; Wichadee, Saovapa
2015-01-01
The LINE application is often conceived as purely social space; however, the authors of this paper wanted to determine if it could be used for academic purposes. In this study, we examined how undergraduate students accepted LINE in terms of using it for classroom-related activities (e.g., submit homework, follow up course information queries,…
Adult Role Models: Feasibility, Acceptability, and Initial Outcomes for Sex Education
ERIC Educational Resources Information Center
Colarossi, Lisa; Silver, Ellen Johnson; Dean, Randa; Perez, Amanda; Rivera, Angelic
2014-01-01
The authors present the feasibility and acceptability of a parent sexuality education program led by peer educators in community settings. They also report the results of an outcome evaluation with 71 parents who were randomized to the intervention or a control group and surveyed one month prior to and six months after the four-week intervention.…
Cusack, Lynette; Smith, Morgan; Hegney, Desley; Rees, Clare S.; Breen, Lauren J.; Witt, Regina R.; Rogers, Cath; Williams, Allison; Cross, Wendy; Cheung, Kin
2016-01-01
Building nurses' resilience to complex and stressful practice environments is necessary to keep skilled nurses in the workplace and ensuring safe patient care. A unified theoretical framework titled Health Services Workplace Environmental Resilience Model (HSWERM), is presented to explain the environmental factors in the workplace that promote nurses' resilience. The framework builds on a previously-published theoretical model of individual resilience, which identified the key constructs of psychological resilience as self-efficacy, coping and mindfulness, but did not examine environmental factors in the workplace that promote nurses' resilience. This unified theoretical framework was developed using a literary synthesis drawing on data from international studies and literature reviews on the nursing workforce in hospitals. The most frequent workplace environmental factors were identified, extracted and clustered in alignment with key constructs for psychological resilience. Six major organizational concepts emerged that related to a positive resilience-building workplace and formed the foundation of the theoretical model. Three concepts related to nursing staff support (professional, practice, personal) and three related to nursing staff development (professional, practice, personal) within the workplace environment. The unified theoretical model incorporates these concepts within the workplace context, linking to the nurse, and then impacting on personal resilience and workplace outcomes, and its use has the potential to increase staff retention and quality of patient care. PMID:27242567
Cusack, Lynette; Smith, Morgan; Hegney, Desley; Rees, Clare S; Breen, Lauren J; Witt, Regina R; Rogers, Cath; Williams, Allison; Cross, Wendy; Cheung, Kin
2016-01-01
Building nurses' resilience to complex and stressful practice environments is necessary to keep skilled nurses in the workplace and ensuring safe patient care. A unified theoretical framework titled Health Services Workplace Environmental Resilience Model (HSWERM), is presented to explain the environmental factors in the workplace that promote nurses' resilience. The framework builds on a previously-published theoretical model of individual resilience, which identified the key constructs of psychological resilience as self-efficacy, coping and mindfulness, but did not examine environmental factors in the workplace that promote nurses' resilience. This unified theoretical framework was developed using a literary synthesis drawing on data from international studies and literature reviews on the nursing workforce in hospitals. The most frequent workplace environmental factors were identified, extracted and clustered in alignment with key constructs for psychological resilience. Six major organizational concepts emerged that related to a positive resilience-building workplace and formed the foundation of the theoretical model. Three concepts related to nursing staff support (professional, practice, personal) and three related to nursing staff development (professional, practice, personal) within the workplace environment. The unified theoretical model incorporates these concepts within the workplace context, linking to the nurse, and then impacting on personal resilience and workplace outcomes, and its use has the potential to increase staff retention and quality of patient care. PMID:27242567
A simple theoretical model for ⁶³Ni betavoltaic battery.
Zuo, Guoping; Zhou, Jianliang; Ke, Guotu
2013-12-01
A numerical simulation of the energy deposition distribution in semiconductors is performed for ⁶³Ni beta particles. Results show that the energy deposition distribution exhibits an approximate exponential decay law. A simple theoretical model is developed for ⁶³Ni betavoltaic battery based on the distribution characteristics. The correctness of the model is validated by two literature experiments. Results show that the theoretical short-circuit current agrees well with the experimental results, and the open-circuit voltage deviates from the experimental results in terms of the influence of the PN junction defects and the simplification of the source. The theoretical model can be applied to ⁶³Ni and ¹⁴⁷Pm betavoltaic batteries. PMID:23974307
Hvid, Marianne; Wang, August G
2009-01-01
Repetition after attempted suicide is high with only limited research been put into effect studies. The Baerum-model from Norway offers a practical and affordable intervention. Our aim was to study the acceptability and effectiveness of a Baerum-model like intervention after attempted suicide using a quasi-experimental design. During a period in 2004, attempted suicide patients were offered follow-up care by a rapid-response outreach programme, an intervention lasting 6 months; a control group was established prospectively from a similar period in 2002. The design was an intent-to-treat analysis. The outcome was measured by: 1) participation by acceptance and adherence, 2) repetition of suicide attempt and suicide, and 3) including the number of repetitive acts in 1 year after the attempted suicide episode. Follow-up period was 1 year. Participation was 70%. There was a significant lower repetition rate in the intervention group, where the proportion of repetitive patients fell from 34% to 14%. There were also fewer suicidal acts, in total 37 acts in 58 patients in the control group and 22 acts in 93 patients for the intervention group. We have concluded that the outreach programme has a good feasibility because of high acceptability and adherence, and has an acceptable effectiveness in the follow up period of 1 year. We have therefore initiated a similar study using a randomization design in order to study efficacy. PMID:19016074
Webb, Haley J; Zimmer-Gembeck, Melanie J; Mastro, Shawna
2016-09-01
This study examined the bidirectional (conjoint) longitudinal pathways linking adolescents' body dysmorphic disorder (BDD) symptoms with self- and peer-reported social functioning. Participants were 367 Australian students (45.5% boys, mean age=12.01 years) who participated in two waves of a longitudinal study with a 12-month lag between assessments. Participants self-reported their symptoms characteristic of BDD, and perception of peer acceptance. Classmates reported who was popular and victimized in their grade, and rated their liking (acceptance) of their classmates. In support of both stress exposure and stress generation models, T1 victimization was significantly associated with more symptoms characteristic of BDD at T2 relative to T1, and higher symptom level at T1 was associated with lower perceptions of peer acceptance at T2 relative to T1. These results support the hypothesized bidirectional model, whereby adverse social experiences negatively impact symptoms characteristic of BDD over time, and symptoms also exacerbate low perceptions of peer-acceptance. PMID:27236472
ERIC Educational Resources Information Center
Johnson, Marcus L.; Taasoobshirazi, Gita; Kestler, Jessica L.; Cordova, Jackie R.
2015-01-01
We tested a theoretical model of college students' ratings of messengers of resilience and models of resilience, students' own perceived resilience, regulatory strategy use and achievement. A total of 116 undergraduates participated in this study. The results of a path analysis indicated that ratings of models of resilience had a direct effect on…
NASA Technical Reports Server (NTRS)
Shimazaki, T.; Wuebbles, D. J.
1973-01-01
Calculations based on an improved, time-dependent theoretical model for the vertical ozone density distribution in the upper atmosphere are shown to clarify the cause and determine the appearance precondition for the depression at the 70-85 km altitude region in the ozone density distribution suggested by several theoretical models and only sometimes experimentally observed. It is concluded that the depression develops at night through the effects of hydrogen-oxygen and nitrogen-oxygen reactions, as well as those of eddy diffusion transports.
ERIC Educational Resources Information Center
Ho, Li-Hsing; Hung, Chang-Liang; Chen, Hui-Chun
2013-01-01
Student academic performance and social competence are influenced positively by parent involvement; effective parent-teacher communication not builds parent reliance on a school, it enhances parent knowledge of raising children. As information technology develops rapidly, it is already a trend that e-communication is replacing traditional paper…
Haeufle, D F B; Günther, M; Blickhan, R; Schmitt, S
2011-01-01
Recently, the hyperbolic Hill-type force-velocity relation was derived from basic physical components. It was shown that a contractile element CE consisting of a mechanical energy source (active element AE), a parallel damper element (PDE), and a serial element (SE) exhibits operating points with hyperbolic force-velocity dependency. In this paper, the contraction dynamics of this CE concept were analyzed in a numerical simulation of quick release experiments against different loads. A hyperbolic force-velocity relation was found. The results correspond to measurements of the contraction dynamics of a technical prototype. Deviations from the theoretical prediction could partly be explained by the low stiffness of the SE, which was modeled analog to the metal spring in the hardware prototype. The numerical model and hardware prototype together, are a proof of this CE concept and can be seen as a well-founded starting point for the development of Hill-type artificial muscles. This opens up new vistas for the technical realization of natural movements with rehabilitation devices. PMID:22275541
Theoretical Modeling and Experimental High-Speed Imaging of Elongated Vocal Folds
Zhang, Yu; Regner, Michael F.; Jiang, Jack J.
2014-01-01
In this paper, the role of vocal fold elongation in governing glottal movement dynamics was theoretically and experimentally investigated. A theoretical model was first proposed to incorporate vocal fold elongation into the two-mass model. This model predicted the direct and nondirect components of the glottal time series as a function of vocal fold elongation. Furthermore, high-speed digital imaging was applied in excised larynx experiments to visualize vocal fold vibrations with variable vocal fold elongation from –10% to 50% and subglottal pressures of 18- and 24-cm H2O. Comparison between theoretical model simulations and experimental observations showed good agreement. A relative maximum was seen in the nondirect component of glottal area, suggesting that an optimal elongation could maximize the vocal fold vibratory power. However, sufficiently large vocal fold elongations caused the nondirect component to approach zero and the direct component to approach a constant. These results showed that vocal fold elongation plays an important role in governing the dynamics of glottal area movement and validated the applicability of the proposed theoretical model and high-speed imaging to investigate laryngeal activity. PMID:21118763
Theoretical modeling and experimental high-speed imaging of elongated vocal folds.
Zhang, Yu; Regner, Michael F; Jiang, Jack J
2011-10-01
In this paper, the role of vocal fold elongation in governing glottal movement dynamics was theoretically and experimentally investigated. A theoretical model was first proposed to incorporate vocal fold elongation into the two-mass model. This model predicted the direct and nondirect components of the glottal time series as a function of vocal fold elongation. Furthermore, high-speed digital imaging was applied in excised larynx experiments to visualize vocal fold vibrations with variable vocal fold elongation from -10% to 50% and subglottal pressures of 18- and 24-cm H(2)O. Comparison between theoretical model simulations and experimental observations showed good agreement. A relative maximum was seen in the nondirect component of glottal area, suggesting that an optimal elongation could maximize the vocal fold vibratory power. However, sufficiently large vocal fold elongations caused the nondirect component to approach zero and the direct component to approach a constant. These results showed that vocal fold elongation plays an important role in governing the dynamics of glottal area movement and validated the applicability of the proposed theoretical model and high-speed imaging to investigate laryngeal activity. PMID:21118763
Theoretical results on the tandem junction solar cell based on its Ebers-Moll transistor model
NASA Technical Reports Server (NTRS)
Goradia, C.; Vaughn, J.; Baraona, C. R.
1980-01-01
A one-dimensional theoretical model of the tandem junction solar cell (TJC) with base resistivity greater than about 1 ohm-cm and under low level injection has been derived. This model extends a previously published conceptual model which treats the TJC as an npn transistor. The model gives theoretical expressions for each of the Ebers-Moll type currents of the illuminated TJC and allows for the calculation of the spectral response, I(sc), V(oc), FF and eta under variation of one or more of the geometrical and material parameters and 1MeV electron fluence. Results of computer calculations based on this model are presented and discussed. These results indicate that for space applications, both a high beginning of life efficiency, greater than 15% AM0, and a high radiation tolerance can be achieved only with thin (less than 50 microns) TJC's with high base resistivity (greater than 10 ohm-cm).
How parents choose to use CAM: a systematic review of theoretical models
Lorenc, Ava; Ilan-Clarke, Yael; Robinson, Nicola; Blair, Mitch
2009-01-01
Background Complementary and Alternative Medicine (CAM) is widely used throughout the UK and the Western world. CAM is commonly used for children and the decision-making process to use CAM is affected by numerous factors. Most research on CAM use lacks a theoretical framework and is largely based on bivariate statistics. The aim of this review was to identify a conceptual model which could be used to explain the decision-making process in parental choice of CAM. Methods A systematic search of the literature was carried out. A two-stage selection process with predetermined inclusion/exclusion criteria identified studies using a theoretical framework depicting the interaction of psychological factors involved in the CAM decision process. Papers were critically appraised and findings summarised. Results Twenty two studies using a theoretical model to predict CAM use were included in the final review; only one examined child use. Seven different models were identified. The most commonly used and successful model was Andersen's Sociobehavioural Model (SBM). Two papers proposed modifications to the SBM for CAM use. Six qualitative studies developed their own model. Conclusion The SBM modified for CAM use, which incorporates both psychological and pragmatic determinants, was identified as the best conceptual model of CAM use. This model provides a valuable framework for future research, and could be used to explain child CAM use. An understanding of the decision making process is crucial in promoting shared decision making between healthcare practitioners and parents and could inform service delivery, guidance and policy. PMID:19386106
A Physically Based Theoretical Model of Spore Deposition for Predicting Spread of Plant Diseases.
Isard, Scott A; Chamecki, Marcelo
2016-03-01
A physically based theory for predicting spore deposition downwind from an area source of inoculum is presented. The modeling framework is based on theories of turbulence dispersion in the atmospheric boundary layer and applies only to spores that escape from plant canopies. A "disease resistance" coefficient is introduced to convert the theoretical spore deposition model into a simple tool for predicting disease spread at the field scale. Results from the model agree well with published measurements of Uromyces phaseoli spore deposition and measurements of wheat leaf rust disease severity. The theoretical model has the advantage over empirical models in that it can be used to assess the influence of source distribution and geometry, spore characteristics, and meteorological conditions on spore deposition and disease spread. The modeling framework is refined to predict the detailed two-dimensional spatial pattern of disease spread from an infection focus. Accounting for the time variations of wind speed and direction in the refined modeling procedure improves predictions, especially near the inoculum source, and enables application of the theoretical modeling framework to field experiment design. PMID:26595112
ERIC Educational Resources Information Center
Tran, Khanh Ngo Nhu
2016-01-01
This study examines factors that determine the attitudes of learners toward a blended e-learning system (BELS) using data collected by questionnaire from a sample of 396 students involved in a BELS environment in Vietnam. A theoretical model is derived from previous studies and is analyzed and developed using structural equation modeling…
ERIC Educational Resources Information Center
Zecca, Mark S.
2010-01-01
Business managers who look for ways to cut costs face difficult questions about the efficiency and effectiveness of software engineering practices that are used to complete projects on time, on specification, and within budget (Johnson, 1995; Lindstrom & Jeffries, 2004). Theoretical models such as the Theory of Reasoned Action (TRA) have linked…
Measured Model, Theoretical Model and Represented Model: the So-Called Arch of Drusus in Rome
NASA Astrophysics Data System (ADS)
Canciani, M.; Maestri, D.; Spadafora, G.; Manacorda, D.; Di Cola, V.
2011-09-01
The Arch of Drusus is a complex building, stratified over time. It isn't possible to advance only one hypothesis about its origin, but its several transformations may be given some interpretations. The difficulty lies in the coexistence of two structures, typologically and chronologically different, in a single monument: an original structure which can be related to a commemorative travertine arch sheathed in marble, dating back to the Imperial Age, which probably had three fornices and a later structure reused in the III century as an aque- duct arch and monumentalized again with the application of decorated architectural elements on the southern façade. In order to provide a graphic description as much accurate as possible from the metric-dimensional point of view and as much detailed as possible in all the elements which form the building, a new survey methodology has been tested. It uses different kinds of systems - instrumental, topographic and GPS, photogrammetric and direct traditional - which complement each other, in order to render a three-dimensional computerized reference model. The analysis process of the monument, made from what emerged from the archaeological analysis, thanks to the carrying out of dif- ferent navigable models, has been developed making, in the early stage, a represented model subsequently detailed on the basis of the incongruities detected in the survey.
E-Learning Systems Support of Collaborative Agreements: A Theoretical Model
ERIC Educational Resources Information Center
Aguirre, Sandra; Quemada, Juan
2012-01-01
This paper introduces a theoretical model for developing integrated degree programmes through e-learning systems as stipulated by a collaboration agreement signed by two universities. We have analysed several collaboration agreements between universities at the national, European, and transatlantic level as well as various e-learning frameworks. A…
ERIC Educational Resources Information Center
Briggs, Michele Kielty; Shoffner, Marie F.
2006-01-01
Overall spiritual wellness, as well as 4 individual components of spiritual wellness, has been theoretically and empirically linked with depression. Prior to this investigation, no study has examined the relationship between spiritual wellness and depression by using a 4-component measurement model of spiritual wellness. In this study of older…
Unconscious Determinants of Career Choice and Burnout: Theoretical Model and Counseling Strategy.
ERIC Educational Resources Information Center
Malach-Pines, Ayala; Yafe-Yanai, Oreniya
2001-01-01
Proposes a psychodynamic-existential perspective as a theoretical model that explains career burnout and serves as a basis for a counseling strategy. According to existential theory, the root of career burnout lies in people's need to find existential significance in their life and their sense that their work does not provide it. (Contains 40…
A Game-Theoretic Model of Grounding for Referential Communication Tasks
ERIC Educational Resources Information Center
Thompson, William
2009-01-01
Conversational grounding theory proposes that language use is a form of rational joint action, by which dialog participants systematically and collaboratively add to their common ground of shared knowledge and beliefs. Following recent work applying "game theory" to pragmatics, this thesis develops a game-theoretic model of grounding that…
Suggestion for a Theoretical Model for Secondary-Tertiary Transition in Mathematics
ERIC Educational Resources Information Center
Clark, Megan; Lovric, Miroslav
2008-01-01
One of most notable features of existing body of research in transition seems to be the absence of a theoretical model. The suggestion we present in this paper--to view and understand the high school to university transition in mathematics as a modern-day rite of passage--is an attempt at defining such framework. Although dominantly reflecting…
Validation of a Theoretical Model of Diagnostic Classroom Assessment: A Mixed Methods Study
ERIC Educational Resources Information Center
Koh, Nancy
2012-01-01
The purpose of the study was to validate a theoretical model of diagnostic, formative classroom assessment called, "Proximal Assessment for Learner Diagnosis" (PALD). To achieve its purpose, the study employed a two-stage, mixed-methods design. The study utilized multiple data sources from 11 elementary level mathematics teachers who…
ERIC Educational Resources Information Center
Newman, Tim A.
2012-01-01
This study described the current state of principal salaries in South Carolina and compared the salaries of similar size schools by specific report card performance and demographic variables. Based on the findings, theoretical models were proposed, and comparisons were made with current salary data. School boards, human resource personnel and…
Falling Chains as Variable-Mass Systems: Theoretical Model and Experimental Analysis
ERIC Educational Resources Information Center
de Sousa, Celia A.; Gordo, Paulo M.; Costa, Pedro
2012-01-01
In this paper, we revisit, theoretically and experimentally, the fall of a folded U-chain and of a pile-chain. The model calculation implies the division of the whole system into two subsystems of variable mass, allowing us to explore the role of tensional contact forces at the boundary of the subsystems. This justifies, for instance, that the…
The Practice-Theory-Practice Model: The Establishment of the Theoretical Bases of a Case Study.
ERIC Educational Resources Information Center
Michael, Robert O.; Barbe, Richard H.
The Practice-Theory-Practice Model (PTPM), a method designed to infuse theoretical perspectives into case study materials and to serve as a guide for examining chance processes in institutions of higher education, is described. The PTPM considers the historical and experiential environment that acts upon an institution, its practices and its…
Models of the Bilingual Lexicon and Their Theoretical Implications for CLIL
ERIC Educational Resources Information Center
Heine, Lena
2014-01-01
Although many advances have been made in recent years concerning the theoretical dimensions of content and language integrated learning (CLIL), research still has to meet the necessity to come up with integrative models that adequately map the interrelation between content and language learning in CLIL contexts. This article will suggest that…
ERIC Educational Resources Information Center
Balmer, Dorene F.; Richards, Boyd F.; Varpio, Lara
2015-01-01
Using Bourdieu's theoretical model as a lens for analysis, we sought to understand how students experience the undergraduate medical education (UME) milieu, focusing on how they navigate transitions from the preclinical phase, to the major clinical year (MCY), and to the preparation for residency phase. Twenty-two medical students participated in…
Factors that Contribute to Talented Performance: A Theoretical Model from a Chinese Perspective
ERIC Educational Resources Information Center
Wu, Echo H.
2005-01-01
This paper examines the Chinese literature on giftedness and talented performance (TP) and compares its dominant theoretical features with some influential models to be found in the North American literature. One significant feature to emerge from the Chinese literature is a deemphasis on giftedness as an innate ability and an emphasis on the…
A Study of the Model of Mastery as a Theoretical Framework for Coaching Teachers Writing Workshop
ERIC Educational Resources Information Center
Kimbrell, Jennifer L.
2010-01-01
The study investigated a coach's use of a theoretical framework called the Model of Mastery to assist three teachers in becoming self-regulated in the teaching of writing workshop by moving them through three settings: acquisition, consolidation, and consultation. The goal of the coach was to assist teachers in developing expertise in procedural,…
Characterization of Titan 3-D acoustic pressure spectra by least-squares fit to theoretical model
NASA Astrophysics Data System (ADS)
Hartnett, E. B.; Carleen, E.
1980-01-01
A theoretical model for the acoustic spectra of undeflected rocket plumes is fitted to computed spectra of a Titan III-D at varying times after ignition, by a least-squares method. Tests for the goodness of the fit are made.
Theoretical values of various parameters in the Gummel-Poon model of a bipolar junction transistor
NASA Technical Reports Server (NTRS)
Benumof, R.; Zoutendyk, J.
1986-01-01
Various parameters in the Gummel-Poon model of a bipolar junction transistor are expressed in terms of the basic structure of a transistor. A consistent theoretical approach is used which facilitates an understanding of the foundations and limitations of the derived formulas. The results enable one to predict how changes in the geometry and composition of a transistor would affect performance.
ERIC Educational Resources Information Center
Chen, Ang; Hancock, Gregory R.
2006-01-01
Adolescent physical inactivity has risen to an alarming rate. Several theoretical frameworks (models) have been proposed and tested in school-based interventions. The results are mixed, indicating a similar weakness as that observed in community-based physical activity interventions (Baranowski, Lin, Wetter, Resnicow, & Hearn, 1997). The…
On the Grammar and Model-Theoretic Semantics of Children's Noun Phrases.
ERIC Educational Resources Information Center
Suppes, Patrick
The paper shows informally how model-theoretical semantics may be used by a computer to give a straight-forward analysis of the meaning of children's language. This approach to semantics grows out of the main thrust of work in mathematical logic. It is discussed in the framework of generative grammar and is based on the application of the…
NASA Astrophysics Data System (ADS)
Han, Q. K.; Chu, F. L.
2015-07-01
Fault diagnosis of localized bearing defects under non-weight-dominant conditions is studied in this paper. A theoretical model with eight degrees of freedom is established, considering two transverse vibrations of the rotor and bearing raceway and one high-frequency resonant degree of freedom. Both the Hertzian contact between rolling elements and raceways, bearing clearance, unbalance force and self-weight of rotor are taken into account in the model. The localized defects in both inner and outer raceways are modeled as half sinusoidal waves. Then, the theoretical model is solved numerically and the vibrational responses are obtained. Through envelope analysis, the fault characteristic frequencies of inner/outer raceway defects for various conditions, including the weight-dominant condition and non-weight-dominant condition, are presented and compared with each other.
NASA Technical Reports Server (NTRS)
Mccluney, W. R.
1974-01-01
The development is considered of procedures for measuring a number of subsurface oceanographic parameters using remotely sensed ocean color data. It is proposed that the first step in this effort should be the development of adequate theoretical models relating the desired oceanographic parameters to the upwelling radiances to be observed. A portion of a contributory theoretical model is shown to be described by a modified single scattering approach based upon a simple treatment of multiple scattering. The resulting quasi-single scattering model can be used to predict the upwelling distribution of spectral radiance emerging from the sea. The shape of the radiance spectrum predicted by this model for clear ocean water shows encouraging agreement with measurments made at the edge of the Sargasso Sea off Cape Hatteras.
Rational Design of Lanthanoid Single-Ion Magnets: Predictive Power of the Theoretical Models.
Baldoví, José J; Duan, Yan; Morales, Roser; Gaita-Ariño, Alejandro; Ruiz, Eliseo; Coronado, Eugenio
2016-09-12
We report two new single-ion magnets (SIMs) of a family of oxydiacetate lanthanide complexes with D3 symmetry to test the predictive capabilities of complete active space ab initio methods (CASSCF and CASPT2) and the semiempirical radial effective charge (REC) model. Comparison of the theoretical predictions of the energy levels, wave functions and magnetic properties with detailed spectroscopic and magnetic characterisation is used to critically discuss the limitations of these theoretical approaches. The need for spectroscopic information for a reliable description of the properties of lanthanide SIMs is emphasised. PMID:27465352
NASA Technical Reports Server (NTRS)
Zender, George W
1956-01-01
The experimental deflections and stresses of six plastic multicell-wing models of unswept, delta, and swept plan form are presented and compared with previously published theoretical results obtained by the electrical analog method. The comparisons indicate that the theory is reliable except for the evaluation of stresses in the vicinity of the leading edge of delta wings and the leading and trailing edges of swept wings. The stresses in these regions are questionable, apparently because of simplifications employed in idealizing the actual structure for theoretical purposes and because of local effects of concentrated loads.
Saunders, James A
2015-03-01
Fundamental Christianity and psychology are frequently viewed as incompatible pursuits. However, proponents of the integrationist movement posit that pastoral counselors can utilize principles from psychology if they adopt the premise that all truth is God's truth. Assuming this perspective, Cognitive-Existential Family Therapy (CEFT) - a theoretical integration model compatible with Christian fundamentalism - is proposed. The philosophical assumptions and models of personality, health, and abnormality are explored. Additionally, the article provides an overview of the therapeutic process. PMID:26162205
Error control in the GCF: An information-theoretic model for error analysis and coding
NASA Technical Reports Server (NTRS)
Adeyemi, O.
1974-01-01
The structure of data-transmission errors within the Ground Communications Facility is analyzed in order to provide error control (both forward error correction and feedback retransmission) for improved communication. Emphasis is placed on constructing a theoretical model of errors and obtaining from it all the relevant statistics for error control. No specific coding strategy is analyzed, but references to the significance of certain error pattern distributions, as predicted by the model, to error correction are made.
Experiments to test theoretical models of the polarization of light by rough surfaces
NASA Technical Reports Server (NTRS)
Geake, J. E.; Geake, M.; Zellner, B. H.
1984-01-01
A number of attempts have been made to provide theoretical models of the physical processes involved in the polarization of light scattered by a rough surface, such as the regolith of an atmosphereless planet. Some laboratory experiments designed to test different aspects of these models are described. It is concluded that double Fresnel reflection is usually the dominant process in producing negative polarization, but that diffraction effects may play a significant part in double events involving small-scale surface features.
Decision support models for solid waste management: Review and game-theoretic approaches
Karmperis, Athanasios C.; Aravossis, Konstantinos; Tatsiopoulos, Ilias P.; Sotirchos, Anastasios
2013-05-15
Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decision support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.
NASA Astrophysics Data System (ADS)
Sharma, S. K.
2012-12-01
A number of experimental elastic light scattering studies have been performed in the past few years with the aim of developing automated in vivo tools for differentiating a healthy red blood cell from a Plasmodium falciparum infected cell. This paper examines some theoretical aspects of the problem. An attempt has been made to simulate the scattering patterns of healthy as well as infected individual red blood cells. Two models, namely, a homogeneous sphere model and a coated sphere model have been considered. The scattering patterns predicted by these models are examined. A possible method for discriminating infected red blood cells from healthy ones has been suggested.
Refinement and validation of two digital Microwave Landing System (MLS) theoretical models
NASA Technical Reports Server (NTRS)
Duff, W. G.; Guarino, C. R.
1975-01-01
Two digital microwave landing system theoretical models are considered which are generic models for the Doppler and scanning-beam frequency reference versions of the MLS. These models represent errors resulting from both system noise and discrete multipath. The data used for the validation effort were obtained from the Texas Instrument conventional scanning beam and the Hazeltine Doppler feasibility hardware versions of the MLS. Topics discussed include tape read software, time history plots, computation of power spectral density, smoothed power spectra, best-fit models, different equations for digital simulation, and discrete multipath errors.
Establishment and validation for the theoretical model of the vehicle airbag
NASA Astrophysics Data System (ADS)
Zhang, Junyuan; Jin, Yang; Xie, Lizhe; Chen, Chao
2015-05-01
The current design and optimization of the occupant restraint system (ORS) are based on numerous actual tests and mathematic simulations. These two methods are overly time-consuming and complex for the concept design phase of the ORS, though they're quite effective and accurate. Therefore, a fast and directive method of the design and optimization is needed in the concept design phase of the ORS. Since the airbag system is a crucial part of the ORS, in this paper, a theoretical model for the vehicle airbag is established in order to clarify the interaction between occupants and airbags, and further a fast design and optimization method of airbags in the concept design phase is made based on the proposed theoretical model. First, the theoretical expression of the simplified mechanical relationship between the airbag's design parameters and the occupant response is developed based on classical mechanics, then the momentum theorem and the ideal gas state equation are adopted to illustrate the relationship between airbag's design parameters and occupant response. By using MATLAB software, the iterative algorithm method and discrete variables are applied to the solution of the proposed theoretical model with a random input in a certain scope. And validations by MADYMO software prove the validity and accuracy of this theoretical model in two principal design parameters, the inflated gas mass and vent diameter, within a regular range. This research contributes to a deeper comprehension of the relation between occupants and airbags, further a fast design and optimization method for airbags' principal parameters in the concept design phase, and provides the range of the airbag's initial design parameters for the subsequent CAE simulations and actual tests.
Theoretical modeling of the catch-slip bond transition in biological adhesion
NASA Astrophysics Data System (ADS)
Gunnerson, Kim; Pereverzev, Yuriy; Prezhdo, Oleg
2006-05-01
The mechanism by which leukocytes leave the blood stream and enter inflamed tissue is called extravasation. This process is facilitated by the ability of selectin proteins, produced by the endothelial cells of blood vessels, to form transient bonds with the leukocytes. In the case of P-selectin, the protein bonds with P-selectin glycoprotein ligands (PSGL-1) produced by the leukocyte. Recent atomic force microscopy and flow chamber analyses of the binding of P-selectin to PSGL-1 provide evidence for an unusual biphasic catch-bond/slip-bond behavior in response to the strength of exerted force. This biphasic process is not well-understood. There are several theoretical models for describing this phenomenon. These models use different profiles for potential energy landscapes and how they change under forces. We are exploring these changes using molecular dynamics. We will present a simple theoretical model as well as share some of our early MD results for describing this phenomenon.
NASA Astrophysics Data System (ADS)
Dirba, I.; Kleperis, J.
2011-01-01
Analytical and numerical modelling is performed for the linear actuator of a parallel path magnet motor. In the model based on finite-element analysis, the 3D problem is reduced to a 2D problem, which is sufficiently precise in a design aspect and allows modelling the principle of a parallel path motor. The paper also describes a relevant numerical model and gives comparison with experimental results. The numerical model includes all geometrical and physical characteristics of the motor components. The magnetic flux density and magnetic force are simulated using FEMM 4.2 software. An experimental model has also been developed and verified for the core of switchable magnetic flux linear actuator and motor. The results of experiments are compared with those of theoretical/analytical and numerical modelling.
NASA Technical Reports Server (NTRS)
Holley, W. R.; Chatterjee, A.
1996-01-01
We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the
Holley, W R; Chatterjee, A
1996-02-01
We have developed a general theoretical model for the interaction of ionizing radiation with chromatin. Chromatin is modeled as a 30-nm-diameter solenoidal fiber comprised of 20 turns of nucleosomes, 6 nucleosomes per turn. Charged-particle tracks are modeled by partitioning the energy deposition between primary track core, resulting from glancing collisions with 100 eV or less per event, and delta rays due to knock-on collisions involving energy transfers >100 eV. A Monte Carlo simulation incorporates damages due to the following molecular mechanisms: (1) ionization of water molecules leading to the formation of OH, H, eaq, etc.; (2) OH attack on sugar molecules leading to strand breaks: (3) OH attack on bases; (4) direct ionization of the sugar molecules leading to strand breaks; (5) direct ionization of the bases. Our calculations predict significant clustering of damage both locally, over regions up to 40 bp and over regions extending to several kilobase pairs. A characteristic feature of the regional damage predicted by our model is the production of short fragments of DNA associated with multiple nearby strand breaks. The shapes of the spectra of DNA fragment lengths depend on the symmetries or approximate symmetries of the chromatin structure. Such fragments have subsequently been detected experimentally and are reported in an accompanying paper (B. Rydberg, Radiat, Res. 145, 200-209, 1996) after exposure to both high- and low-LET radiation. The overall measured yields agree well quantitatively with the theoretical predictions. Our theoretical results predict the existence of a strong peak at about 85 bp, which represents the revolution period about the nucleosome. Other peaks at multiples of about 1,000 bp correspond to the periodicity of the particular solenoid model of chromatin used in these calculations. Theoretical results in combination with experimental data on fragmentation spectra may help determine the consensus or average structure of the
Theoretical Modeling of Gpr Reflection from Vadose Zone in Silty Soils
NASA Astrophysics Data System (ADS)
Halabe, Udaya B.
2008-02-01
Ground Penetrating Radar (GPR) is routinely being used for subsurface investigations including detection of water table and contaminant flow pattern. Past laboratory studies on water table detection in silty soils has shown that GPR actually detects reflection from within the unsaturated capillary (vadose) zone, which is just above the water table. While this phenomenon has been observed from experimental studies, no attempt has been made so far to explain the theoretical basis for the occurrence of GPR reflection within the vadose zone above the water table and not at the level of the actual water table. Understanding this phenomenon from a theoretical stand point requires modeling of GPR reflection from the vadose zone where the moisture content varies with depth. This paper describes the theoretical model which includes discretization of the vadose zone into a number of thin layers with different moisture contents. The model also includes the dry soil above the vadose zone and the underlying fully saturated zone. The GPR waveforms are generated from this model by utilizing frequency domain synthesis algorithm which accounts for all the multiple reflections within the thin layers. These synthetic waveforms have been used to explain the phenomenon of GPR reflection from the vadose zone.
Theoretical model of the interaction of glycine with hydrogenated amorphous carbon (HAC).
Timón, Vicente; Gálvez, Óscar; Maté, Belén; Tanarro, Isabel; Herrero, Víctor J; Escribano, Rafael
2015-11-21
A theoretical model of hydrogenated amorphous carbon (HAC) is developed and applied to study the interaction of glycine with HAC surfaces at astronomical temperatures. Two models with different H content are tried for the HAC surface. The theory is applied at the Density Functional Theory (DFT) level, including a semiempirical dispersion correlation potential, d-DFT or Grimme DFT-D2. The level of theory is tested on glycine adsorption on a Si(001) surface. Crystalline glycine is also studied in its two stable phases, α and β, and the metastable γ phase. For the adsorption on Si or HAC surfaces, molecular glycine is introduced in the neutral and zwitterionic forms, and the most stable configurations are searched. All theoretical predictions are checked against experimental observations. HAC films are prepared by plasma enhanced vapor deposition at room temperature. Glycine is deposited at 20 K into a high vacuum, cold temperature chamber, to simulate astronomical conditions. Adsorption takes place through the acidic group COO(-) and when several glycine molecules are present, they form H-bond chains among them. Comparison between experiments and predictions suggests that a possible way to improve the theoretical model would require the introduction of aliphatic chains or a polycyclic aromatic core. The lack of previous models to study the interaction of amino-acids with HAC surfaces provides a motivation for this work. PMID:26456640
Marrella, Alessandra; Aiello, Maurizio; Quarto, Rodolfo; Scaglione, Silvia
2016-10-01
Porous multiphase scaffolds have been proposed in different tissue engineering applications because of their potential to artificially recreate the heterogeneous structure of hierarchically complex tissues. Recently, graded scaffolds have been also realized, offering a continuum at the interface among different phases for an enhanced structural stability of the scaffold. However, their internal architecture is often obtained empirically and the architectural parameters rarely predetermined. The aim of this work is to offer a theoretical model as tool for the design and fabrication of functional and structural complex graded scaffolds with predicted morphological and chemical features, to overcome the time-consuming trial and error experimental method. This developed mathematical model uses laws of motions, Stokes equations, and viscosity laws to describe the dependence between centrifugation speed and fiber/particles sedimentation velocity over time, which finally affects the fiber packing, and thus the total porosity of the 3D scaffolds. The efficacy of the theoretical model was tested by realizing engineered graded grafts for osteochondral tissue engineering applications. The procedure, based on combined centrifugation and freeze-drying technique, was applied on both polycaprolactone (PCL) and collagen-type-I (COL) to test the versatility of the entire process. A functional gradient was combined to the morphological one by adding hydroxyapatite (HA) powders, to mimic the bone mineral phase. Results show that 3D bioactive morphologically and chemically graded grafts can be properly designed and realized in agreement with the theoretical model. Biotechnol. Bioeng. 2016;113: 2286-2297. © 2016 Wiley Periodicals, Inc. PMID:27093435
A note on Black-Scholes pricing model for theoretical values of stock options
NASA Astrophysics Data System (ADS)
Edeki, S. O.; Ugbebor, O. O.; Owoloko, E. A.
2016-02-01
In this paper, we consider some conditions that transform the classical Black-Scholes Model for stock options valuation from its partial differential equation (PDE) form to an equivalent ordinary differential equation (ODE) form. In addition, we propose a relatively new semi-analytical method for the solution of the transformed Black-Scholes model. The obtained solutions via this method can be used to find the theoretical values of the stock options in relation to their fair prices. In considering the reliability and efficiency of the models, we test some cases and the results are in good agreement with the exact solution.
Field-theoretic model of inhomogeneous supramolecular polymer networks and gels
NASA Astrophysics Data System (ADS)
Mohan, Aruna; Elliot, Richard; Fredrickson, Glenn H.
2010-11-01
We present a field-theoretic model of the gelation transition in inhomogeneous reversibly bonding systems and demonstrate that our model reproduces the classical Flory-Stockmayer theory of gelation in the homogeneous limit. As an illustration of our model in the context of inhomogeneous gelation, we analyze the mean-field behavior of an equilibrium system of reacting trifunctional units in a good solvent confined within a slit bounded by parallel, repulsive walls. Our results indicate higher conversions and, consequently, higher concentrations of gel following the gelation transition near the center of the slit relative to the edges.
A theoretical model to predict tensile deformation behavior of balloon catheter.
Todo, Mitsugu; Yoshiya, Keiji; Matsumoto, Takuya
2016-09-01
In this technical note, a simple theoretical model was proposed to express the tensile deformation and fracture of balloon catheter tested by the ISO standard using piece-wise linear force-displacement relations. The model was then validated by comparing with the tensile force-displacement behaviors of two types of typical balloon catheters clinically used worldwide. It was shown that the proposed model can effectively be used to express the tensile deformation behavior and easily be handled by physicians who are not familiar with mechanics of materials. PMID:27214691
Field-theoretic model of inhomogeneous supramolecular polymer networks and gels.
Mohan, Aruna; Elliot, Richard; Fredrickson, Glenn H
2010-11-01
We present a field-theoretic model of the gelation transition in inhomogeneous reversibly bonding systems and demonstrate that our model reproduces the classical Flory-Stockmayer theory of gelation in the homogeneous limit. As an illustration of our model in the context of inhomogeneous gelation, we analyze the mean-field behavior of an equilibrium system of reacting trifunctional units in a good solvent confined within a slit bounded by parallel, repulsive walls. Our results indicate higher conversions and, consequently, higher concentrations of gel following the gelation transition near the center of the slit relative to the edges. PMID:21054065
Ribeiro, M C; Bertolozzi, M R
1999-01-01
Considering the side effects of environmental changes over the population's health, a theoretical model is proposed in this study in order to incorporate ecologic matters into the nursing practices. The reference for this work is the eco-socialist-marxist theory. The model is based on the analysis of the capitalist economic process, its production technologies and consumption. It is known that this economic model generates ecoinequalities and anthropogenic impacts that rebound on the health-disease profile of the population. The nursing action, permeated by ecological awareness, can prevent and also combat ecoinequalities and destructive human actions on the environment. PMID:12138633
Prevedini, Anna Bianca; Presti, Giovambattista; Rabitti, Elisa; Miselli, Giovanni; Moderato, Paolo
2011-01-01
Nowadays, treatment of chronic illnesses, such as stroke, cancer, chronic heart and respiratory diseases, osteoarthritis, diabetes, and so forth, account for the largest part of expenses in western countries national health systems. Moreover, these diseases are by far the leading causes of mortality in the world, representing 60% of all deaths. Any treatment aimed at targeting them might engage an individual for a large portion of his/her life so that personal and environmental factors can play a crucial role in modulating the person's quality of life and functioning, on top of any medical cure. Anxiety, depression, and distress for examples are not rare in patients with chronic diseases. Therefore, Cognitive and Behavior Therapy research has largely contributed in the last decades in identifying and programming interventions on such aspects as real and perceived social and family support, coping abilities, locus of control, self-efficacy that might help patients living with their chronic disease. More recently, third generation Cognitive-Behavior-Therapies, such as Dialectical Behavioral Therapy (DBT), Mindfulness Based Cognitive Therapy (MBCT), Functional Analytic Psychotherapy (FAP) and Acceptance, and Commitment Therapy (ACT) focused their attention and research efforts on developing intervention models targeting the needs of patients with a chronic disease. This paper has three aims. First is to briefly introduce ACT epistemological (Functional Contextualism) and theoretical (Relational Frame Theory) foundations as a stand point for understanding the peculiarity of ACT as a modern form of Clinical Behavior Analysis. The second aim is to introduce ACT clinical model and its six core processes (acceptance, defusion, present moment, self as a context, values and committed action) as both accountable, in their continuum, for psychological flexibility and inflexibility. Third, to present a brief overview of studies and outcomes of ACT intervention protocols and
ERIC Educational Resources Information Center
Awuah, Lawrence J.
2012-01-01
Understanding citizens' adoption of electronic-government (e-government) is an important topic, as the use of e-government has become an integral part of governance. Success of such initiatives depends largely on the efficient use of e-government services. The unified theory of acceptance and use of technology (UTAUT) model has provided a…
An information-theoretic model for link prediction in complex networks
NASA Astrophysics Data System (ADS)
Zhu, Boyao; Xia, Yongxiang
2015-09-01
Various structural features of networks have been applied to develop link prediction methods. However, because different features highlight different aspects of network structural properties, it is very difficult to benefit from all of the features that might be available. In this paper, we investigate the role of network topology in predicting missing links from the perspective of information theory. In this way, the contributions of different structural features to link prediction are measured in terms of their values of information. Then, an information-theoretic model is proposed that is applicable to multiple structural features. Furthermore, we design a novel link prediction index, called Neighbor Set Information (NSI), based on the information-theoretic model. According to our experimental results, the NSI index performs well in real-world networks, compared with other typical proximity indices.
An information-theoretic model for link prediction in complex networks
Zhu, Boyao; Xia, Yongxiang
2015-01-01
Various structural features of networks have been applied to develop link prediction methods. However, because different features highlight different aspects of network structural properties, it is very difficult to benefit from all of the features that might be available. In this paper, we investigate the role of network topology in predicting missing links from the perspective of information theory. In this way, the contributions of different structural features to link prediction are measured in terms of their values of information. Then, an information-theoretic model is proposed that is applicable to multiple structural features. Furthermore, we design a novel link prediction index, called Neighbor Set Information (NSI), based on the information-theoretic model. According to our experimental results, the NSI index performs well in real-world networks, compared with other typical proximity indices. PMID:26335758
Sharma, Suresh C.; Gupta, Neha
2015-12-15
A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, number density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations.
Comparison of selected theoretical models of bubble formation and experimental results
NASA Astrophysics Data System (ADS)
Rząsa, Mariusz R.
2014-06-01
Designers of all types of equipment applied in oxygenation and aeration need to get to know the mechanism behind the gas bubble formation. This paper presents a measurement method used for determination of parameters of bubbles forming at jet attachment from which the bubles are displaced upward. The measuring system is based on an optical tomograph containing five projections. An image from the tomograph contains shapes of the forming bubbles and determine their volumes and formation rate. Additionally, this paper presents selected theoretical models known from literature. The measurement results have been compared with simple theoretical models predictions. The paper also contains a study of the potential to apply the presented method for determination of bubble structures and observation of intermediate states.
A theoretical model for the cross spectra between pressure and temperature downstream of a combustor
NASA Technical Reports Server (NTRS)
Miles, J. H.; Krejsa, E. A.
1984-01-01
A theoretical model developed to calculate pressure-temperature cross spectra, pressure spectra, temperature spectra and pressure cross spectra in a ducted combustion system is presented. The model assumes the presence of a fluctuating-volumetric-heat-release-rate disk source and takes into account the spatial distribution of the steady-state volumetric-heat flux. Using the model, pressure, velocity, and temperature perturbation relationships can be obtained. The theoretical results show that, at a given air mass flow rate, the calculated pressure-temperature cross spectra phase angle at the combustor exit depends on the model selected for the steady-state volumetric-heat flux in the combustor. Using measurements of the phase angle, an appropriate source region model was selected. The model calculations are compared with the data. The comparison shows good agreement and indicates that with the use of this model the pressure-temperature cross spectra measurements provide useful information on the physical mechanisms active at the combustion noise source.
Control Theoretic Modeling and Generated Flow Patterns of a Fish-Tail Robot
NASA Astrophysics Data System (ADS)
Massey, Brian; Morgansen, Kristi; Dabiri, Dana
2003-11-01
Many real-world engineering problems involve understanding and manipulating fluid flows. One of the challenges to further progress in the area of active flow control is the lack of appropriate models that are amenable to control-theoretic studies and algorithm design and also incorporate reasonably realistic fluid dynamic effects. We focus here on modeling and model-verification of bio-inspired actuators (fish-fin type structures) used to control fluid dynamic artifacts that will affect speed, agility, and stealth of Underwater Autonomous Vehicles (UAVs). Vehicles using fish-tail type systems are more maneuverable, can turn in much shorter and more constrained spaces, have lower drag, are quieter and potentially more efficient than those using propellers. We will present control-theoretic models for a simple prototype coupled fluid and mechanical actuator where fluid effects are crudely modeled by assuming only lift, drag, and added mass, while neglecting boundary effects. These models will be tested with different control input parameters on an experimental fish-tail robot with the resulting flow captured with DPIV. Relations between the model, the control function choices, the obtained thrust and drag, and the corresponding flow patterns will be presented and discussed.
Analysis of a theoretical model for anisotropic enzyme membranes application to enzyme electrodes.
Pedersen, H; Chotani, G K
1981-12-01
A theoretical model of diffusion and reaction in an anisotropic enzyme membrane is presented with particular emphasis on the application of such membranes in enzyme electrodes. The dynamic response of systems in which the kinetics are linear, which comprises the practical operating regime for enzyme electrodes in analysis, is investigated via an analytic solution of the governing differential equations. The response is presented as a function of a single dimensionless group, Μ, that is the membrane modulus. PMID:24233978
Dynamical gap generation in graphene nanoribbons: An effective relativistic field theoretical model
Chaves, A. J.; Paula, W. de; Frederico, T.; Lima, G. D.; Cordeiro, C. E.; Delfino, A.
2011-04-15
We show that the assumption of a nontrivial zero band gap for a graphene sheet within an effective relativistic field theoretical model description of interacting Dirac electrons on the surface of graphene describes the experimental band gap of graphene nanoribbons for a wide range of widths. The graphene band gap is dynamically generated, corresponding to a nontrivial gapless solution, found in the limit of an infinitely wide graphene ribbon. The nanoribbon band gap is determined by the experimental graphene work function.
Meta-Theoretical Contributions to the Constitution of a Model-Based Didactics of Science
NASA Astrophysics Data System (ADS)
Ariza, Yefrin; Lorenzano, Pablo; Adúriz-Bravo, Agustín
2016-07-01
There is nowadays consensus in the community of didactics of science (i.e. science education understood as an academic discipline) regarding the need to include the philosophy of science in didactical research, science teacher education, curriculum design, and the practice of science education in all educational levels. Some authors have identified an ever-increasing use of the concept of `theoretical model', stemming from the so-called semantic view of scientific theories. However, it can be recognised that, in didactics of science, there are over-simplified transpositions of the idea of model (and of other meta-theoretical ideas). In this sense, contemporary philosophy of science is often blurred or distorted in the science education literature. In this paper, we address the discussion around some meta-theoretical concepts that are introduced into didactics of science due to their perceived educational value. We argue for the existence of a `semantic family', and we characterise four different versions of semantic views existing within the family. In particular, we seek to contribute to establishing a model-based didactics of science mainly supported in this semantic family.
NASA Astrophysics Data System (ADS)
Anderson, D. N.; Anghel, A.; Eccles, V.; Valladares, C.; Chau, J.; Veliz, O.
2004-05-01
In the low latitude, ionospheric F region, the primary transport mechanism that determines the electron and ion density distributions is the magnitude of the daytime, upward ExB drift velocity. During the geomagnetic storms on Oct. 29 and 30, 2003, we have inferred these upward ExB drift velocities from ground-based magnetometer observations at Jicamarca and Piura, Peru as a function of local time (0700 - 1700LT). On both days these ExB drifts exceeded 80 m/sec which is about four times greater than the normal, quiet time value of 20 m/sec. We study the ionospheric response in the Peruvian longitude sector to these large upward drifts by theoretically-calculating electron and ion densities as a function of altitude, latitude and local time using the time-dependent Low-Latitude Ionospheric Sector model (LLIONS). This is a single sector ionosphere model capable of incorporating data-determined drivers. Initial results indicate that the large, upward ExB drift velocities on Oct. 29 produce equatorial anomaly crests in ionization at +/- 22° dip latitude rather than the usual +/- 16° dip latitude. We compare the theoretically-calculated results with a variety of ground-based and satellite observations for Oct. 28, 29, 30 and 31 and discuss the implications of these comparisons as they relate to the capabilities of current theoretical models and our ability to infer ionospheric drivers such as ExB drifts.
Grace, J.B.; Bollen, K.A.
2008-01-01
Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest. ?? Springer Science+Business Media, LLC 2007.
Kek, Siok Peng; Chin, Nyuk Ling; Yusof, Yus Aniza
2014-12-01
Modelling studies of guava drying and quality are presented using theoretical and statistical models by varying temperature from 55 to 75 °C and slice thickness from 3 to 9 mm. The quality of dried fruit was measured for its water activity, colour, vitamin C, and texture. The superposition technique with Midilli-Kucuk model showed efficiency in modelling the drying process with R (2) = 0.9991. The second-order polynomial equations adequately described the quality of dried guava with regression coefficient, R (2) > 0.7. Drying time was a good function of temperature and thickness (P < 0.001); water activity, colour and vitamin C showed strong dependence on temperature (P < 0.1); while texture was mainly influenced by its thickness (P < 0.005). The optimum drying temperature of 70 °C at slice thickness of 6 mm was determined using the desirability function method. Simultaneous modelling using the theoretical and statistical drying models provides information on water diffusion and evaporation with the drying responses and factors. PMID:25477628
NASA Astrophysics Data System (ADS)
Czeck, Dyanna M.; Hudleston, Peter J.
2003-06-01
Theory predicts that stretching lineations in an ideal vertical transpressional zone should be either vertical or horizontal. Many field descriptions of transpressional zones, however, indicate a range of lineation orientations between these extremes. Several theoretical models have been developed to explain such departures from expected lineation orientation, and we discuss these in the context of a field example from the Archean Superior Province in the North American craton. Existing models are insufficient to explain obliquely plunging lineations in this example because: (1) obliquely plunging lineations cannot be accounted for by shear zone boundary effects imposed by a no-slip condition, (2) foliations and lineations vary independently, (3) the vorticity-normal section is subhorizontal, limiting possibilities for inclined simple shear, (4) high vorticity is needed for finite strains and lineations to match previously proposed triclinic models, but vorticity is relatively low, and (5) juxtaposed east and west plunging lineations are unlikely in the previously proposed triclinic models. Because existing theoretical models are not applicable to our field example, we contemplate a new model to explain obliquely plunging lineations within quasi homogeneous transpression.
Gheribi, Aïmen E; Chartrand, Patrice
2016-02-28
A theoretical model for the description of thermal conductivity of molten salt mixtures as a function of composition and temperature is presented. The model is derived by considering the classical kinetic theory and requires, for its parametrization, only information on thermal conductivity of pure compounds. In this sense, the model is predictive. For most molten salt mixtures, no experimental data on thermal conductivity are available in the literature. This is a hindrance for many industrial applications (in particular for thermal energy storage technologies) as well as an obvious barrier for the validation of the theoretical model. To alleviate this lack of data, a series of equilibrium molecular dynamics (EMD) simulations has been performed on several molten chloride systems in order to determine their thermal conductivity in the entire range of composition at two different temperatures: 1200 K and 1300 K. The EMD simulations are first principles type, as the potentials used to describe the interactions have been parametrized on the basis of first principle electronic structure calculations. In addition to the molten chlorides system, the model predictions are also compared to a recent similar EMD study on molten fluorides and with the few reliable experimental data available in the literature. The accuracy of the proposed model is within the reported numerical and/or experimental errors. PMID:26931711
ERIC Educational Resources Information Center
Olsson, Ulf Henning; Troye, Sigurd Villads; Howell, Roy D.
1999-01-01
Used simulation to compare the ability of maximum likelihood (ML) and generalized least-squares (GLS) estimation to provide theoretic fit in models that are parsimonious representations of a true model. The better empirical fit obtained for GLS, compared with ML, was obtained at the cost of lower theoretic fit. (Author/SLD)
ERIC Educational Resources Information Center
Hansson, Lena; Hansson, Örjan; Juter, Kristina; Redfors, Andreas
2015-01-01
This article discusses the role of mathematics during physics lessons in upper-secondary school. Mathematics is an inherent part of theoretical models in physics and makes powerful predictions of natural phenomena possible. Ability to use both theoretical models and mathematics is central in physics. This paper takes as a starting point that the…
Theoretic aspects of the identification of the parameters in the optimal control model
NASA Technical Reports Server (NTRS)
Vanwijk, R. A.; Kok, J. J.
1977-01-01
The identification of the parameters of the optimal control model from input-output data of the human operator is considered. Accepting the basic structure of the model as a cascade of a full-order observer and a feedback law, and suppressing the inherent optimality of the human controller, the parameters to be identified are the feedback matrix, the observer gain matrix, and the intensity matrices of the observation noise and the motor noise. The identification of the parameters is a statistical problem, because the system and output are corrupted by noise, and therefore the solution must be based on the statistics (probability density function) of the input and output data of the human operator. However, based on the statistics of the input-output data of the human operator, no distinction can be made between the observation and the motor noise, which shows that the model suffers from overparameterization.
Stanley, Barbara; Brown, Gregory; Brent, David; Wells, Karen; Poling, Kim; Curry, John; Kennard, Betsy D.; Wagner, Ann; Cwik, Mary; Klomek, Anat Brunstein; Goldstein, Tina; Vitiello, Benedetto; Barnett, Shannon; Daniel, Stephanie; Hughes, Jennifer
2009-01-01
Objective To describe the elements of a manualized cognitive behavior psychotherapy for suicide prevention (CBT-SP) and to report its feasibility in preventing the recurrence of suicidal behavior in adolescents who have recently attempted suicide. Method CBT-SP was developed using a risk reduction, relapse prevention approach and theoretically grounded in principles of cognitive behavior therapy, dialectical behavioral therapy and targeted therapies for suicidal, depressed youth. CBT-SP consists of acute and continuation phases, each lasting about 12 sessions, and includes a chain analysis of the suicidal event, safety plan development, skill building, psychoeducation, family intervention, and relapse prevention. Results CBT-SP was administered to 110 depressed, recent suicide attempters aged 13–19 years (mean 15.8±1.6) across five academic sites. Twelve or more sessions were completed by 72.4% of the sample. Conclusions A specific intervention for adolescents at high risk for repeated suicide attempts has been developed and manualized, and further testing of its efficacy appears feasible. PMID:19730273
Empirical, theoretical, and practical advantages of the HEXACO model of personality structure.
Ashton, Michael C; Lee, Kibeom
2007-05-01
The authors argue that a new six-dimensional framework for personality structure--the HEXACO model--constitutes a viable alternative to the well-known Big Five or five-factor model. The new model is consistent with the cross-culturally replicated finding of a common six-dimensional structure containing the factors Honesty-Humility (H), Emotionality (E), eExtraversion (X), Agreeableness (A), Conscientiousness (C), and Openness to Experience (O). Also, the HEXACO model predicts several personality phenomena that are not explained within the B5/FFM, including the relations of personality factors with theoretical biologists' constructs of reciprocal and kin altruism and the patterns of sex differences in personality traits. In addition, the HEXACO model accommodates several personality variables that are poorly assimilated within the B5/FFM. PMID:18453460
NASA Astrophysics Data System (ADS)
Flynn, Lawrence E.; Labow, Gordon J.; Beach, Robert A.; Rawlins, Michael A.; Flittner, David E.
1996-10-01
Inexpensive devices to measure solar UV irradiance are available to monitor atmospheric ozone, for example, total ozone portable spectroradiometers (TOPS instruments). A procedure to convert these measurements into ozone estimates is examined. For well-characterized filters with 7-nm FWHM bandpasses, the method provides ozone values (from 304- and 310-nm channels) with less than 0.4 error attributable to inversion of the theoretical model. Analysis of sensitivity to model assumptions and parameters yields estimates of 3 bias in total ozone results with dependence on total ozone and path length. Unmodeled effects of atmospheric constituents and instrument components can result in additional 2 errors.
Theoretical modelling of the feedback stabilization of external MHD modes in toroidal geometry
NASA Astrophysics Data System (ADS)
Chance, M. S.; Chu, M. S.; Okabayashi, M.; Turnbull, A. D.
2002-03-01
A theoretical framework for understanding the feedback mechanism for stabilization of external MHD modes has been formulated. Efficient computational tools - the GATO stability code coupled with a substantially modified VACUUM code - have been developed to effectively design viable feedback systems against these modes. The analysis assumed a thin resistive shell and a feedback coil structure accurately modelled in θ and phi, albeit with only a single harmonic variation in phi. Time constants and induced currents in the enclosing resistive shell are calculated. An optimized configuration based on an idealized model has been computed for the DIII-D device. Up to 90% of the effectiveness of an ideal wall can be achieved.
Dong, Ren G.; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.
2015-01-01
While simulations of the measured biodynamic responses of the whole human body or body segments to vibration are conventionally interpreted as summaries of biodynamic measurements, and the resulting models are considered quantitative, this study looked at these simulations from a different angle: model calibration. The specific aims of this study are to review and clarify the theoretical basis for model calibration, to help formulate the criteria for calibration validation, and to help appropriately select and apply calibration methods. In addition to established vibration theory, a novel theorem of mechanical vibration is also used to enhance the understanding of the mathematical and physical principles of the calibration. Based on this enhanced understanding, a set of criteria was proposed and used to systematically examine the calibration methods. Besides theoretical analyses, a numerical testing method is also used in the examination. This study identified the basic requirements for each calibration method to obtain a unique calibration solution. This study also confirmed that the solution becomes more robust if more than sufficient calibration references are provided. Practically, however, as more references are used, more inconsistencies can arise among the measured data for representing the biodynamic properties. To help account for the relative reliabilities of the references, a baseline weighting scheme is proposed. The analyses suggest that the best choice of calibration method depends on the modeling purpose, the model structure, and the availability and reliability of representative reference data. PMID:26740726
NASA Astrophysics Data System (ADS)
Dong, Ren G.; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.
2015-11-01
While simulations of the measured biodynamic responses of the whole human body or body segments to vibration are conventionally interpreted as summaries of biodynamic measurements, and the resulting models are considered quantitative, this study looked at these simulations from a different angle: model calibration. The specific aims of this study are to review and clarify the theoretical basis for model calibration, to help formulate the criteria for calibration validation, and to help appropriately select and apply calibration methods. In addition to established vibration theory, a novel theorem of mechanical vibration is also used to enhance the understanding of the mathematical and physical principles of the calibration. Based on this enhanced understanding, a set of criteria was proposed and used to systematically examine the calibration methods. Besides theoretical analyses, a numerical testing method is also used in the examination. This study identified the basic requirements for each calibration method to obtain a unique calibration solution. This study also confirmed that the solution becomes more robust if more than sufficient calibration references are provided. Practically, however, as more references are used, more inconsistencies can arise among the measured data for representing the biodynamic properties. To help account for the relative reliabilities of the references, a baseline weighting scheme is proposed. The analyses suggest that the best choice of calibration method depends on the modeling purpose, the model structure, and the availability and reliability of representative reference data.
Phenomenological and theoretical models of dark matter density profiles of galaxy clusters
NASA Astrophysics Data System (ADS)
Silva, Leandro Beraldo e.; Sodre, Laerte; Lima, Marcos
2015-08-01
We use the stacked gravitational lensing mass profile of four high-mass (M ≳ 1015 Msun) galaxy clusters around z ≈ 0.3 from Umetsu et al. to fit density profiles of phenomenological [Navarro-Frenk-White (NFW), Einasto, Sérsic, Stadel, Baltz-Marshall-Oguri (BMO) and Hernquist] and theoretical (non-singular Isothermal Sphere, DARKexp and Kang & He) models of the dark matter distribution. We account for large-scale structure effects, including a two-halo term in the analysis. We find that the BMO model provides the best fit to the data as measured by the reduced chi2. It is followed by the Stadel profile, the generalized NFW profile with a free inner slope and by the Einasto profile. The NFW model provides the best fit if we neglect the two-halo term, in agreement with results from Umetsu et al. Among the theoretical profiles, the DARKexp model with a single form parameter has the best performance, very close to that of the BMO profile. This may indicate a connection between this theoretical model and the phenomenology of dark matter haloes, shedding light on the dynamical basis of empirical profiles which emerge from numerical simulations. We also propose an association between the phase-space mixing level of a self-gravitating system and the indistinguishability of its constituents (stars or dark matter particles). This represents a refinement in the study of systems exhibiting incomplete violent relaxation. Within a combinatorial analysis similar to that of Lynden-Bell, we make use of this association to obtain a distribution function that deviates from the Maxwell-Boltzmann distribution, leading to a new non-singular density profile for the dark matter of halos in equilibrium.
Experimental verification of a theoretical model of an active cladding optical fiber fluorosensor
NASA Technical Reports Server (NTRS)
Albin, Sacharia; Briant, Alvin L.; Egalon, Claudio O.; Rogowski, Robert S.; Nankung, Juock S.
1993-01-01
Experiments were conducted to verify a theoretical model on the injection efficiency of sources in the cladding of an optical fiber. The theoretical results predicted an increase in the injection efficiency for higher differences in refractive indices between the core and cladding. The experimental apparatus used consisted of a glass rod 50 cm long, coated at one end with a thin film of fluorescent substance. The fluorescent substance was excited with side illumination, perpendicular to the rod axis, using a 476 nm Argon-ion laser. Part of the excited fluorescence was injected into the core and guided to a detector. The signal was measured for several different cladding refractive indices. The cladding consisted of sugar dissolved in water and the refractive index was changed by varying the sugar concentration in the solution. The results indicate that the power injected into the rod, due to evanescent wave injection, increases with the difference in refractive index which is in qualitative agreement with theory.
High density monolayers of plasmid protein on latex particles: experiments and theoretical modeling
NASA Astrophysics Data System (ADS)
Kujda, Marta; Adamczyk, Zbigniew; Cieśla, Michał; Adamczyk, Małgorzata
2015-04-01
Monolayers obtained by adsorption of the plasmid protein KfrA on negatively charged polystyrene latex particles under diffusion-controlled conditions at pH 3.5 were interpreted in terms of the random sequential adsorption (RSA) model. A quantitative agreement of the theoretical results derived from these calculations with experimental data was attained for the ionic strength from 0.15 up to 10-2 M. This confirmed the adsorption mechanism of KfrA molecules on latex in the form of tetramers up to 10-2 M. On the other hand, for the ionic strength of 10-3 M the experimental coverage agreed with theoretical predictions under the assumption that screening of electrostatic interaction is enhanced by the presence of counterions and negatively charged polymer chains stemming from latex particles.
Theoretical spectral properties of PAHs: towards a detailed model of their photophysics in the ISM
NASA Astrophysics Data System (ADS)
Malloci, Giuliano; Mulas, Giacomo; Porceddu, Ignazio
2005-01-01
In the framework of density functional theory (DFT) we computed the spectral properties of a total of about 20 polycyclic aromatic hydrocarbons (PAHs) in different charge states. From our complete atlas of PAHs, ranging in size from naphthalene (C10H8) to dicoronylene (C48H20), we present here a sample of results concerning both ground state and excited state properties. Our theoretical results are in reasonable agreement with the available experimental data. This makes them particularly precious when the latter are not easily obtainable, as is often the case for the highly reactive radicals and ions of such species. In another paper (Mulas et al., same volume) we show that our theoretical results can be reliably used to model the behaviour of these molecules in astrophysical environments.
ERIC Educational Resources Information Center
Engberg, Mark E.; Hurtado, Sylvia; Smith, Gilia C.
2007-01-01
This study proposes an empirically based model with a strong theoretical foundation in higher education and social psychology to better understand how the college experience influences the development of attitudes of acceptance towards lesbian, gay, and bisexual (LGB) persons. Our results demonstrated that students develop more accepting attitudes…
A thematic analysis of theoretical models for translational science in nursing: mapping the field.
Mitchell, Sandra A; Fisher, Cheryl A; Hastings, Clare E; Silverman, Leanne B; Wallen, Gwenyth R
2010-01-01
The quantity and diversity of conceptual models in translational science may complicate rather than advance the use of theory. This paper offers a comparative thematic analysis of the models available to inform knowledge development, transfer, and utilization. Literature searches identified 47 models for knowledge translation. Four thematic areas emerged: (1) evidence-based practice and knowledge transformation processes, (2) strategic change to promote adoption of new knowledge, (3) knowledge exchange and synthesis for application and inquiry, and (4) designing and interpreting dissemination research. This analysis distinguishes the contributions made by leaders and researchers at each phase in the process of discovery, development, and service delivery. It also informs the selection of models to guide activities in knowledge translation. A flexible theoretical stance is essential to simultaneously develop new knowledge and accelerate the translation of that knowledge into practice behaviors and programs of care that support optimal patient outcomes. PMID:21074646
Constraints on field theoretical models for variation of the fine structure constant
NASA Astrophysics Data System (ADS)
Steinhardt, Charles L.
2005-02-01
Recent theoretical ideas and observational claims suggest that the fine structure constant α may be variable. We examine a spectrum of models in which α is a function of a scalar field. Specifically, we consider three scenarios: oscillating α, monotonic time variation of α, and time-independent α that is spatially varying. We examine the constraints imposed upon these theories by cosmological observations, particle detector experiments, and “fifth force” experiments. These constraints are very strong on models involving oscillation but cannot compete with bounds from the Oklo subnuclear reactor on models with monotonic timelike variation of α. One particular model with spatial variation is consistent with all current experimental and observational measurements, including those from two seemingly conflicting measurements of the fine structure constant using the many multiplet method on absorption lines.
A Thematic Analysis of Theoretical Models for Translational Science in Nursing: Mapping the Field
Mitchell, Sandra A.; Fisher, Cheryl A.; Hastings, Clare E.; Silverman, Leanne B.; Wallen, Gwenyth R.
2010-01-01
Background The quantity and diversity of conceptual models in translational science may complicate rather than advance the use of theory. Purpose This paper offers a comparative thematic analysis of the models available to inform knowledge development, transfer, and utilization. Method Literature searches identified 47 models for knowledge translation. Four thematic areas emerged: (1) evidence-based practice and knowledge transformation processes; (2) strategic change to promote adoption of new knowledge; (3) knowledge exchange and synthesis for application and inquiry; (4) designing and interpreting dissemination research. Discussion This analysis distinguishes the contributions made by leaders and researchers at each phase in the process of discovery, development, and service delivery. It also informs the selection of models to guide activities in knowledge translation. Conclusions A flexible theoretical stance is essential to simultaneously develop new knowledge and accelerate the translation of that knowledge into practice behaviors and programs of care that support optimal patient outcomes. PMID:21074646
ERIC Educational Resources Information Center
Fletcher, Jordan L.
2013-01-01
Developing nations are poised to spend billions on information and communication technology (ICT) innovation in 2020. A study of the historical adoption of ICT in developing nations has indicated that their adoption patterns do not follow typical technology innovation adoption models. This study addressed the weaknesses found in existing…
Theoretical Hill-type muscle and stability: numerical model and application.
Schmitt, S; Günther, M; Rupp, T; Bayer, A; Häufle, D
2013-01-01
The construction of artificial muscles is one of the most challenging developments in today's biomedical science. The application of artificial muscles is focused both on the construction of orthotics and prosthetics for rehabilitation and prevention purposes and on building humanoid walking machines for robotics research. Research in biomechanics tries to explain the functioning and design of real biological muscles and therefore lays the fundament for the development of functional artificial muscles. Recently, the hyperbolic Hill-type force-velocity relation was derived from simple mechanical components. In this contribution, this theoretical yet biomechanical model is transferred to a numerical model and applied for presenting a proof-of-concept of a functional artificial muscle. Additionally, this validated theoretical model is used to determine force-velocity relations of different animal species that are based on the literature data from biological experiments. Moreover, it is shown that an antagonistic muscle actuator can help in stabilising a single inverted pendulum model in favour of a control approach using a linear torque generator. PMID:24319495
A comprehensive theoretical model for on-chip microring-based photonic fractional differentiators
Jin, Boyuan; Yuan, Jinhui; Wang, Kuiru; Sang, Xinzhu; Yan, Binbin; Wu, Qiang; Li, Feng; Zhou, Xian; Zhou, Guiyao; Yu, Chongxiu; Lu, Chao; Yaw Tam, Hwa; Wai, P. K. A.
2015-01-01
Microring-based photonic fractional differentiators play an important role in the on-chip all-optical signal processing. Unfortunately, the previous works do not consider the time-reversal and the time delay characteristics of the microring-based fractional differentiator. They also do not include the effect of input pulse width on the output. In particular, it cannot explain why the microring-based differentiator with the differentiation order n > 1 has larger output deviation than that with n < 1, and why the microring-based differentiator cannot reproduce the three-peak output waveform of an ideal differentiator with n > 1. In this paper, a comprehensive theoretical model is proposed. The critically-coupled microring resonator is modeled as an ideal first-order differentiator, while the under-coupled and over-coupled resonators are modeled as the time-reversed ideal fractional differentiators. Traditionally, the over-coupled microring resonators are used to form the differentiators with 1 < n < 2. However, we demonstrate that smaller fitting error can be obtained if the over-coupled microring resonator is fitted by an ideal differentiator with n < 1. The time delay of the differentiator is also considered. Finally, the influences of some key factors on the output waveform and deviation are discussed. The proposed theoretical model is beneficial for the design and application of the microring-based fractional differentiators. PMID:26381934
Theoretical Hill-Type Muscle and Stability: Numerical Model and Application
Schmitt, S.; Günther, M.; Rupp, T.; Bayer, A.; Häufle, D.
2013-01-01
The construction of artificial muscles is one of the most challenging developments in today's biomedical science. The application of artificial muscles is focused both on the construction of orthotics and prosthetics for rehabilitation and prevention purposes and on building humanoid walking machines for robotics research. Research in biomechanics tries to explain the functioning and design of real biological muscles and therefore lays the fundament for the development of functional artificial muscles. Recently, the hyperbolic Hill-type force-velocity relation was derived from simple mechanical components. In this contribution, this theoretical yet biomechanical model is transferred to a numerical model and applied for presenting a proof-of-concept of a functional artificial muscle. Additionally, this validated theoretical model is used to determine force-velocity relations of different animal species that are based on the literature data from biological experiments. Moreover, it is shown that an antagonistic muscle actuator can help in stabilising a single inverted pendulum model in favour of a control approach using a linear torque generator. PMID:24319495
Blissett, Jackie; Bennett, Carmel; Fogel, Anna; Harris, Gillian; Higgs, Suzanne
2016-02-14
Few children consume the recommended portions of fruit or vegetables. This study examined the effects of parental physical prompting and parental modelling in children's acceptance of a novel fruit (NF) and examined the role of children's food-approach and food-avoidance traits on NF engagement and consumption. A total of 120 caregiver-child dyads (fifty-four girls, sixty-six boys) participated in this study. Dyads were allocated to one of the following three conditions: physical prompting but no modelling, physical prompting and modelling or a modelling only control condition. Dyads ate a standardised meal containing a portion of a fruit new to the child. Parents completed measures of children's food approach and avoidance. Willingness to try the NF was observed, and the amount of the NF consumed was measured. Physical prompting but no modelling resulted in greater physical refusal of the NF. There were main effects of enjoyment of food and food fussiness on acceptance. Food responsiveness interacted with condition such that children who were more food responsive had greater NF acceptance in the prompting and modelling conditions in comparison with the modelling only condition. In contrast, children with low food responsiveness had greater acceptance in the modelling control condition than in the prompting but no modelling condition. Physical prompting in the absence of modelling is likely to be detrimental to NF acceptance. Parental use of physical prompting strategies, in combination with modelling of NF intake, may facilitate acceptance of NF, but only in food-responsive children. Modelling consumption best promotes acceptance in children with low food responsiveness. PMID:26603382
The coupled effects of carbon and nitrogen on soil decomposition: A theoretical model
NASA Astrophysics Data System (ADS)
Darby, B.; Finzi, A.
2013-12-01
Soil organic matter (SOM) plays a crucial role in the carbon (C) cycle, holding 2.5 times more carbon than plant biomass. Ecosystem models predict that climate warming will stimulate decomposition of soil carbon stocks, in turn leading to positive feedbacks on warming. Recent empirical studies and modeling work has revealed the importance of microbial physiology and exoenzyme kinetics in driving SOM decomposition. Existing mathematical models describe the microbial processes and biophysics involved in the decomposition. However, although decomposition by nitrogen-degrading enzymes is included in some models, nitrogen (N) does not drive model behavior and there are no reaction kinetics associated with the depolymerization or uptake of N. Additionally, very few empirically measured kinetic values exist for N-degrading enzymes or the uptake of N by microbes. This study proposes a theoretical model of SOM decomposition based on the principles of exoenzyme kinetics and microbial biophysics that explicitly links C and N through microbial uptake and SOM decomposition kinetics and by placing stoichiometric constraints on microbial growth and exoenzyme production. After constructing the model framework, the model was then used to test soil-carbon responses to warming, and to explore the importance of N uptake and depolymerization kinetics in driving decomposition. The model predictions suggest that the response of kinetics to temperature are more important than microbial responses in determining decomposition rates. Additionally, variations in the kinetics of N depolymerization affected decomposition rates, whereas N uptake kinetics and their effect on enzyme production had almost no effect. The model outputs were also compared to a C-only model framework in order to assess the effects of N on model behavior. The incorporation of N into a SOM decomposition model produced different, and in some cases, contradictory results as compared to a C-only model. Overall, these
NASA Astrophysics Data System (ADS)
Boutaghane, A.; Bouhadef, K.; Valensi, F.; Pellerin, S.; Benkedda, Y.
2011-04-01
This paper presents results of theoretical and experimental investigation of the welding arc in Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW) processes. A theoretical model consisting in simultaneous resolution of the set of conservation equations for mass, momentum, energy and current, Ohm's law and Maxwell equation is used to predict temperatures and current density distribution in argon welding arcs. A current density profile had to be assumed over the surface of the cathode as a boundary condition in order to make the theoretical calculations possible. In stationary GTAW process, this assumption leads to fair agreement with experimental results reported in literature with maximum arc temperatures of ~21 000 K. In contrast to the GTAW process, in GMAW process, the electrode is consumable and non-thermionic, and a realistic boundary condition of the current density is lacking. For establishing this crucial boundary condition which is the current density in the anode melting electrode, an original method is setup to enable the current density to be determined experimentally. High-speed camera (3000 images/s) is used to get geometrical dimensions of the welding wire used as anode. The total area of the melting anode covered by the arc plasma being determined, the current density at the anode surface can be calculated. For a 330 A arc, the current density at the melting anode surface is found to be of 5 × 107 A m-2 for a 1.2 mm diameter welding electrode.
Schiffelers, Marie-Jeanne W A; Blaauboer, Bas J; Bakker, Wieger E; Beken, Sonja; Hendriksen, Coenraad F M; Koëter, Herman B W M; Krul, Cyrille
2014-06-01
Pharmaceuticals and chemicals are subjected to regulatory safety testing accounting for approximately 25% of laboratory animal use in Europe. This testing meets various objections and has led to the development of a range of 3R models to Replace, Reduce or Refine the animal models. However, these models must overcome many barriers before being accepted for regulatory risk management purposes. This paper describes the barriers and drivers and options to optimize this acceptance process as identified by two expert panels, one on pharmaceuticals and one on chemicals. To untangle the complex acceptance process, the multilevel perspective on technology transitions is applied. This perspective defines influences at the micro-, meso- and macro level which need alignment to induce regulatory acceptance of a 3R model. This paper displays that there are many similar mechanisms within both sectors that prevent 3R models from becoming accepted for regulatory risk assessment and management. Shared barriers include the uncertainty about the value of the new 3R models (micro level), the lack of harmonization of regulatory requirements and acceptance criteria (meso level) and the high levels of risk aversion (macro level). In optimizing the process commitment, communication, cooperation and coordination are identified as critical drivers. PMID:24534000
Theoretically modeling the low-latitude, ionospheric response to large geomagnetic storms
NASA Astrophysics Data System (ADS)
Anderson, D.; Anghel, A.; Araujo, E.; Eccles, V.; Valladares, C.; Lin, C.
2006-10-01
In the low-latitude, ionospheric F region, the primary transport mechanism that determines the electron and ion density distributions is the magnitude of the daytime, upward E × B drift velocity. During large geomagnetic storms, penetration of high-latitude electric fields to low latitudes can often produce daytime, vertical E × B drift velocities in excess of 50 m/s. Employing a recently developed technique, we can infer these daytime, upward E × B drift velocities from ground-based magnetometer observations at Jicamarca and Piura, Peru, as a function of local time (0700-1700 LT). We study the ionospheric response in the Peruvian longitude sector to these large upward drifts by theoretically calculating electron and ion densities as a function of altitude, latitude, and local time using the time-dependent Low-Latitude Ionospheric Sector (LLIONS) model. This is a single-sector ionosphere model capable of incorporating data-determined drivers, such as E × B drift velocities. For this study, we choose three large storms in 2003 (29 and 30 October and 20 November) when daytime E × B drift velocities approached or exceeded 50 m/s. Initial results indicate that the large, upward E × B drift velocities on 29 October produced equatorial anomaly crests in ionization at ±20° dip latitude rather than the usual ±16° dip latitude. We compare the theoretically calculated results with a variety of ground-based and satellite observations for these three periods and discuss the implications of these comparisons as they relate to the capabilities of current theoretical models and our ability to infer ionospheric drivers such as E × B drifts (Anderson et al., 2002).
NASA Astrophysics Data System (ADS)
Hyer, E. J.; Reid, J. S.; Schmidt, C. C.; Giglio, L.; Prins, E.
2009-12-01
The diurnal cycle of fire activity is crucial for accurate simulation of atmospheric effects of fire emissions, especially at finer spatial and temporal scales. Estimating diurnal variability in emissions is also a critical problem for construction of emissions estimates from multiple sensors with variable coverage patterns. An optimal diurnal emissions estimate will use as much information as possible from satellite fire observations, compensate known biases in those observations, and use detailed theoretical models of the diurnal cycle to fill in missing information. As part of ongoing improvements to the Fire Location and Monitoring of Burning Emissions (FLAMBE) fire monitoring system, we evaluated several different methods of integrating observations with different temporal sampling. We used geostationary fire detections from WF_ABBA, fire detection data from MODIS, empirical diurnal cycles from TRMM, and simple theoretical diurnal curves based on surface heating. Our experiments integrated these data in different combinations to estimate the diurnal cycles of emissions for each location and time. Hourly emissions estimates derived using these methods were tested using an aerosol transport model. We present results of this comparison, and discuss the implications of our results for the broader problem of multi-sensor data fusion in fire emissions modeling.
NASA Astrophysics Data System (ADS)
Weber, Jeffrey K.; Pande, Vijay S.
2013-09-01
The protein folding problem has long represented a "holy grail" in statistical physics due to its physical complexity and its relevance to many human diseases. While past theoretical work has yielded apt descriptions of protein folding landscapes, recent large-scale simulations have provided insights into protein folding that were impractical to obtain from early theories. In particular, the role that non-native contacts play in protein folding, and their relation to the existence of misfolded, β-sheet rich trap states on folding landscapes, has emerged as a topic of interest in the field. In this paper, we present a modified model of heteropolymer freezing that includes explicit secondary structural characteristics which allow observations of "intramolecular amyloid" states to be probed from a theoretical perspective. We introduce a variable persistence length-based energy penalty to a model Hamiltonian, and we illustrate how this modification alters the phase transitions present in the theory. We find, in particular, that inclusion of this variable persistence length increases both generic freezing and folding temperatures in the model, allowing both folding and glass transitions to occur in a more highly optimized fashion. We go on to discuss how these changes might relate to protein evolution, misfolding, and the emergence of intramolecular amyloid states.
Theoretical model for the evaporation loss of PM2.5 during filter sampling
NASA Astrophysics Data System (ADS)
Liu, Chun-Nan; Lin, Sih-Fan; Tsai, Chuen-Jinn; Wu, Yueh-Chuen; Chen, Chung-Fang
2015-05-01
The evaporation losses of PM2.5 particles in eight different size ranges corresponding to the 4th-10th stages and after filter of the MOUDI were calculated theoretically and then integrated to obtain the total PM2.5 evaporation loss. Results show that when PM2.5 particles are nearly neutral with pH in the range of 7-8, the evaporated concentrations predicted by the present model agree well with the experimental data with an average absolute difference of 20.2 ± 11.1%. When PM2.5 aerosols are acidic with pH less than 3.5, additional loss of nitrate and chloride can occur due to chemical interactions between collected particles and strong acids which are not considered in the present model. Under pH neutral conditions, the theoretical model was then used to examine the effect of PM2.5 concentration, gas-to-particle ratio, ambient temperature and relative humidity on the extent of evaporation loss. Results show that evaporated PM2.5 concentration increases with increasing temperature and decreasing relative humidity, PM2.5 concentration and gas-to-particle ratio.
The neural mediators of kindness-based meditation: a theoretical model.
Mascaro, Jennifer S; Darcher, Alana; Negi, Lobsang T; Raison, Charles L
2015-01-01
Although kindness-based contemplative practices are increasingly employed by clinicians and cognitive researchers to enhance prosocial emotions, social cognitive skills, and well-being, and as a tool to understand the basic workings of the social mind, we lack a coherent theoretical model with which to test the mechanisms by which kindness-based meditation may alter the brain and body. Here, we link contemplative accounts of compassion and loving-kindness practices with research from social cognitive neuroscience and social psychology to generate predictions about how diverse practices may alter brain structure and function and related aspects of social cognition. Contingent on the nuances of the practice, kindness-based meditation may enhance the neural systems related to faster and more basic perceptual or motor simulation processes, simulation of another's affective body state, slower and higher-level perspective-taking, modulatory processes such as emotion regulation and self/other discrimination, and combinations thereof. This theoretical model will be discussed alongside best practices for testing such a model and potential implications and applications of future work. PMID:25729374
The neural mediators of kindness-based meditation: a theoretical model
Mascaro, Jennifer S.; Darcher, Alana; Negi, Lobsang T.; Raison, Charles L.
2015-01-01
Although kindness-based contemplative practices are increasingly employed by clinicians and cognitive researchers to enhance prosocial emotions, social cognitive skills, and well-being, and as a tool to understand the basic workings of the social mind, we lack a coherent theoretical model with which to test the mechanisms by which kindness-based meditation may alter the brain and body. Here, we link contemplative accounts of compassion and loving-kindness practices with research from social cognitive neuroscience and social psychology to generate predictions about how diverse practices may alter brain structure and function and related aspects of social cognition. Contingent on the nuances of the practice, kindness-based meditation may enhance the neural systems related to faster and more basic perceptual or motor simulation processes, simulation of another’s affective body state, slower and higher-level perspective-taking, modulatory processes such as emotion regulation and self/other discrimination, and combinations thereof. This theoretical model will be discussed alongside best practices for testing such a model and potential implications and applications of future work. PMID:25729374
The nature of voids - I. Watershed void finders and their connection with theoretical models
NASA Astrophysics Data System (ADS)
Nadathur, S.; Hotchkiss, S.
2015-12-01
The statistical study of voids in the matter distribution promises to be an important tool for precision cosmology, but there are known discrepancies between theoretical models of voids and the voids actually found in large simulations or galaxy surveys. The empirical properties of observed voids are also not well understood. In this paper, we study voids in an N-body simulation, using the ZOBOV watershed algorithm. As in other studies, we use sets of subsampled dark matter particles as tracers to identify voids, but we use the full-resolution simulation output to measure dark matter densities at the identified locations. Voids span a wide range of sizes and densities, but there is a clear trend towards larger voids containing deeper density minima, a trend which is expected for all watershed void finders. We also find that the tracer density at void locations is usually smaller than the true density, and that this relationship depends on the sampling density of tracers. We show that fits given in the literature fail to match the observed density profiles of voids. The average enclosed density contrast within watershed voids varies widely with both the size of the void and the minimum density within it, but is always far from the shell-crossing threshold expected from theoretical models. Voids with deeper density minima also show much broader density profiles. We discuss the implications of these results for the excursion set approach to modelling such voids.
A theoretical model of speed-dependent steering torque for rolling tyres
NASA Astrophysics Data System (ADS)
Wei, Yintao; Oertel, Christian; Liu, Yahui; Li, Xuebing
2016-04-01
It is well known that the tyre steering torque is highly dependent on the tyre rolling speed. In limited cases, i.e. parking manoeuvre, the steering torque approaches the maximum. With the increasing tyre speed, the steering torque decreased rapidly. Accurate modelling of the speed-dependent behaviour for the tyre steering torque is a key factor to calibrate the electric power steering (EPS) system and tune the handling performance of vehicles. However, no satisfactory theoretical model can be found in the existing literature to explain this phenomenon. This paper proposes a new theoretical framework to model this important tyre behaviour, which includes three key factors: (1) tyre three-dimensional transient rolling kinematics with turn-slip; (2) dynamical force and moment generation; and (3) the mixed Lagrange-Euler method for contact deformation solving. A nonlinear finite-element code has been developed to implement the proposed approach. It can be found that the main mechanism for the speed-dependent steering torque is due to turn-slip-related kinematics. This paper provides a theory to explain the complex mechanism of the tyre steering torque generation, which helps to understand the speed-dependent tyre steering torque, tyre road feeling and EPS calibration.
Theoretical analysis of electronic absorption spectra of vitamin B12 models
NASA Astrophysics Data System (ADS)
Andruniow, Tadeusz; Kozlowski, Pawel M.; Zgierski, Marek Z.
2001-10-01
Time-dependent density-functional theory (TD-DFT) is applied to analyze the electronic absorption spectra of vitamin B12. To accomplish this two model systems were considered: CN-[CoIII-corrin]-CN (dicyanocobinamide, DCC) and imidazole-[CoIII-corrin]-CN (cyanocobalamin, ImCC). For both models 30 lowest excited states were calculated together with transition dipole moments. When the results of TD-DFT calculations were directly compared with experiment it was found that the theoretical values systematically overestimate experimental data by approximately 0.5 eV. The uniform adjustment of the calculated transition energies allowed detailed analysis of electronic absorption spectra of vitamin B12 models. All absorption bands in spectral range 2.0-5.0 eV were readily assigned. In particular, TD-DFT calculations were able to explain the origin of the shift of the lowest absorption band caused by replacement of the-CN axial ligand by imidazole.
Al-Asadi, H A; Al-Mansoori, M H; Ajiya, M; Hitam, S; Saripan, M I; Mahdi, M A
2010-10-11
We develop a theoretical model that can be used to predict stimulated Brillouin scattering (SBS) threshold in optical fibers that arises through the effect of Brillouin pump recycling technique. Obtained simulation results from our model are in close agreement with our experimental results. The developed model utilizes single mode optical fiber of different lengths as the Brillouin gain media. For 5-km long single mode fiber, the calculated threshold power for SBS is about 16 mW for conventional technique. This value is reduced to about 8 mW when the residual Brillouin pump is recycled at the end of the fiber. The decrement of SBS threshold is due to longer interaction lengths between Brillouin pump and Stokes wave. PMID:20941134
NASA Astrophysics Data System (ADS)
Mardinoglu, Adil; Cregg, P. J.; Murphy, Kieran; Curtin, Maurice; Prina-Mello, Adriele
2011-02-01
The magnetisable stent assisted magnetic targeted drug delivery system in a physiologically stretched vessel is considered theoretically. The changes in the mechanical behaviour of the vessel are analysed under the influence of mechanical forces generated by blood pressure. In this 2D mathematical model a ferromagnetic, coiled wire stent is implanted to aid collection of magnetic drug carrier particles in an elastic tube, which has similar mechanical properties to the blood vessel. A cyclic mechanical force is applied to the elastic tube to mimic the mechanical stress and strain of both the stent and vessel while in the body due to pulsatile blood circulation. The magnetic dipole-dipole and hydrodynamic interactions for multiple particles are included and agglomeration of particles is also modelled. The resulting collection efficiency of the mathematical model shows that the system performance can decrease by as much as 10% due to the effects of the pulsatile blood circulation.
B → K∗ ℓ + ℓ - decays at large recoil in the Standard Model: a theoretical reappraisal
NASA Astrophysics Data System (ADS)
Ciuchini, Marco; Fedele, Marco; Franco, Enrico; Mishima, Satoshi; Paul, Ayan; Silvestrini, Luca; Valli, Mauro
2016-06-01
We critically reassess the theoretical uncertainties in the Standard Model calculation of the B → K ∗ ℓ + ℓ - observables, focusing on the low q 2 region. We point out that even optimized observables are affected by sizable uncertainties, since hadronic contributions generated by current-current operators with charm are difficult to estimate, especially for q 2 ˜ 4 m c 2 ≃ 6.8 GeV2. We perform a detailed numerical analysis and present both predictions and results from the fit obtained using most recent data. We find that non-factorizable power corrections of the expected order of magnitude are sufficient to give a good description of current experimental data within the Standard Model. We discuss in detail the q 2 dependence of the corrections and their possible interpretation as shifts of the Standard Model Wilson coefficients.
Theoretical models of interstellar shocks. I - Radiative transfer and UV precursors
NASA Technical Reports Server (NTRS)
Shull, J. M.; Mckee, C. F.
1979-01-01
Theoretical models of interstellar radiative shocks are constructed, with special attention to the transfer of ionizing radiation. These models are 'self-consistent' in the sense that the emergent ionizing radiation (the UV precursor) is coupled with the ionization state of H, He, and the metals in the preshock gas. For shock velocities of at least 110 km/s the shocks generate sufficient UV radiation for complete preionization of H and He, the latter to He(+). At lower velocities the preionization can be much smaller, with important consequences for the cooling function, the shock structure, and the emission. For models with shock velocities of 40 to 130 km/s the intensities of the strongest emission lines in the UV, optical, and infrared are tabulated, as well as postshock column densities of metal ions potentially observable by UV absorption spectroscopy. Possible applications to supernova remnants and high-velocity interstellar gas are assessed.
Inference of ICF Implosion Core Mix using Experimental Data and Theoretical Mix Modeling
Welser-Sherrill, L; Haynes, D A; Mancini, R C; Cooley, J H; Tommasini, R; Golovkin, I E; Sherrill, M E; Haan, S W
2008-04-30
The mixing between fuel and shell materials in Inertial Confinement Fusion (ICF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model performed well in predicting trends in the width of the mix layer. With these results, we have contributed to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increased our confidence in the methods used to extract mixing information from experimental data.
Inference of ICF implosion core mix using experimental data and theoretical mix modeling
Sherrill, Leslie Welser; Haynes, Donald A; Cooley, James H; Sherrill, Manolo E; Mancini, Roberto C; Tommasini, Riccardo; Golovkin, Igor E; Haan, Steven W
2009-01-01
The mixing between fuel and shell materials in Inertial Confinement Fusion (lCF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model predicted trends in the width of the mix layer as a function of initial shell thickness. These results contribute to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increasing confidence in the methods used to extract mixing information from experimental data.
Theoretical shell-model signatures in heavy-ion, coherent pion production
NASA Technical Reports Server (NTRS)
Maung, Khin M.; Deutchman, P. A.; Buvel, R. L.
1992-01-01
A comprehensive summary of a many-body, microscopic, particle-hole formalism is presented that describes coherent, subthreshold, pion production in peripheral, heavy-ion collisions. The formalism uses a new separable model transition interaction that produces Delta-hole states in either the projectile or target nucleus. Shell-model states described by harmonic oscillator functions are used in the calculation of Delta formation and decay and Lorentz-contraction effects of the nucleus not at rest are included. An analytical expression to lowest multipole order for the differential cross section is examined. The sensitivity of the theoretical results to the shell-model states is determined with preliminary shape results compared with data. The effects of higher multipoles are examined with attention paid to the second-order multipole value.
NASA Technical Reports Server (NTRS)
Avrett, E. H.
1984-01-01
Models and spectra of sunspots were studied, because they are important to energy balance and variability discussions. Sunspot observations in the ultraviolet region 140 to 168 nn was obtained by the NRL High Resolution Telescope and Spectrograph. Extensive photometric observations of sunspot umbrae and prenumbrae in 10 chanels covering the wavelength region 387 to 3800 nm were made. Cool star opacities and model atmospheres were computed. The Sun is the first testcase, both to check the opacity calculations against the observed solar spectrum, and to check the purely theoretical model calculation against the observed solar energy distribution. Line lists were finally completed for all the molecules that are important in computing statistical opacities for energy balance and for radiative rate calculations in the Sun (except perhaps for sunspots). Because many of these bands are incompletely analyzed in the laboratory, the energy levels are not well enough known to predict wavelengths accurately for spectrum synthesis and for detailed comparison with the observations.
Microscopic theoretical model study of band gap opening in AA-stacked bi-layer graphene
NASA Astrophysics Data System (ADS)
Sahu, Sivabrata; Parashar, S. K. S.; Rout, G. C.
2016-05-01
We address here a tight-binding theoretical model calculation for AA-stacked bi-layer graphene taking into account of a biased potential between two layers to study the density of states and the band dispersion within the total Brillouin zone. We have calculated the electronic Green's function for electron operator corresponding to A and B sub lattices by Zubarev's Green's function technique from which the electronic density of states and the electron band energy dispersion are calculated. The numerically computed density of states and band energy dispersions are investigated by tuning the biased potential to exhibit the band gap by varying the different physical parameters.
Zerón-Gutiérrez, Lydia Estela; Lifshitz, Alberto; Ramiro H, Manuel; Abreu-Hernández, Luis Felipe; Reyes-Lagunes, Isabel
2012-01-01
The structure of the change process on medical professionalization has not being studied enough. The physicians are made aware of the necessity of changing their medical practice in ways that also affect their personal life. A change involves the need to plan, evaluate possibilities and resources with efficacy and outline competencies. The aim is to contribute in the design of educational strategies that promote professional change and an understanding of change, as an evolution; we describe a theoretical-schematic model based on five consecutive ordained scopes: background, intentions, planning and making decisions, carrying out decisions and achieving the goal. PMID:23331751
Theoretical model study of dynamic ferromagnetic susceptibility in mono-layer graphene
NASA Astrophysics Data System (ADS)
Sahu, Sivabrata; Parashar, S. K. S.; Rout, G. C.
2016-04-01
We report here a microscopic theoretical study of dynamic ferromagnetic spin susceptibility of electrons for graphene systems, which deal with a tight-binding model Hamiltonian consisting of the hopping of electrons up to third-nearest-neighbors, impurity and substrate effects besides Coulomb interaction of electrons at A-and B- sub- lattices. The spin susceptibility involves four two-particle Green's functions, which are calculated by Zubarev's Green's function technique. The up and down electron occupancies at A and B sub-lattices are computed numerically and self-consistently. The temperature dependent susceptibility shows a pronounced peak at Curie temperature for critical Coulomb interaction Uc = 2.2t1.
Multimode cavity QED 2: Parameter dependence and limitations through theoretical modeling
NASA Astrophysics Data System (ADS)
Groszkowski, Peter; Leung, Nelson; Naik, Ravi; Chakram, Srivatsan; Schuster, David; Koch, Jens
Superconducting circuits are well-established as promising building blocks for future quantum information processing devices. While in recent years gate and readout fidelities have improved significantly, superconducting qubits can still benefit greatly from added intrinsic robustness and improved error resilience. In this talk, we present results for qubits based on the modes of a 1d resonator array, where qubit manipulation and readout are achieved by interaction with a parametrically driven superconducting transmon. Through theoretical modeling, we provide insight into mode addressability as well as crosstalk, and their dependence on the system's size in various parameter regimes.
NASA Astrophysics Data System (ADS)
Gromalova, N. A.; Eremin, N. N.; Dorokhova, G. I.; Urusov, V. S.
2012-07-01
A morphological analysis of chrysoberyl and alexandrite crystals obtained by flux crystallization has been performed. Seven morphological types of crystals are selected. The surface energies of the faces of chrysoberyl and alexandrite crystals and their isostructural analogs, BeCr2O4 and BeFe2O4, have been calculated by atomistic computer modeling using the Metadise program. A "combined" approach is proposed which takes into account both the structural geometry and the surface energy of the faces and thus provides better agreement between the theoretical and experimentally observed faceting of chrysoberyl and alexandrite crystals.
(A whistle-stop tour of) theoretical models of diffraction in DIS
NASA Astrophysics Data System (ADS)
McDermott, M. F.
1997-04-01
The purpose of this talk was to present a very brief overview of theoretical models of diffraction in deep inelastic scattering (DIS). In particular, predictions for the behaviour of the diffractive structure functions F2D, RD are presented. The measurement of these functions at both small and high values of the variable β and their evolution with Q2 is expected to reveal crucial information concerning the underlying dynamics. This talk is based on the more extensive review [1] which also discusses expectations for charm in diffraction and contains a more complete list of references.
B(s,d)→ℓ(+)ℓ(-) in the standard model with reduced theoretical uncertainty.
Bobeth, Christoph; Gorbahn, Martin; Hermann, Thomas; Misiak, Mikołaj; Stamou, Emmanuel; Steinhauser, Matthias
2014-03-14
We combine our new results for the O(αem) and O(αs2) corrections to Bs,d→ℓ+ℓ-, and present updated branching ratio predictions for these decays in the standard model. Inclusion of the new corrections removes major theoretical uncertainties of perturbative origin that have just begun to dominate over the parametric ones. For the recently observed muonic decay of the Bs meson, our calculation gives B¯(Bs→μ+μ-)=(3.65±0.23)×10-9. PMID:24679279
Bs,d→ℓ+ℓ- in the Standard Model with Reduced Theoretical Uncertainty
NASA Astrophysics Data System (ADS)
Bobeth, Christoph; Gorbahn, Martin; Hermann, Thomas; Misiak, Mikołaj; Stamou, Emmanuel; Steinhauser, Matthias
2014-03-01
We combine our new results for the O(αem) and O(αs2) corrections to Bs,d→ℓ+ℓ-, and present updated branching ratio predictions for these decays in the standard model. Inclusion of the new corrections removes major theoretical uncertainties of perturbative origin that have just begun to dominate over the parametric ones. For the recently observed muonic decay of the Bs meson, our calculation gives B¯(Bs→μ+μ-)=(3.65±0.23)×10-9.
Hill, T L; Eisenberg, E; Chalovich, J M
1981-01-01
Recent theoretical work on the cooperative equilibrium binding of myosin subfragment-1-ADP to regulated actin, as influenced by Ca2+, is extended here to the cooperative steady-state ATPase activity of myosin subfragment-1 on regulated actin. Exact solution of the general steady-state problem will require Monte Carlo calculations. Three interrelated special cases are discussed in some detail and sample computer (not Monte Carlo) solutions are given. The eventual objective is to apply these considerations to in vitro experimental data and to in vivo muscle models. PMID:6455170
Stanley, T.R.; Burnham, K.P.
1998-01-01
Specification of an appropriate model is critical to valid stalistical inference. Given the "true model" for the data is unknown, the goal of model selection is to select a plausible approximating model that balances model bias and sampling variance. Model selection based on information criteria such as AIC or its variant AICc, or criteria like CAIC, has proven useful in a variety of contexts including the analysis of open-population capture-recapture data. These criteria have not been intensively evaluated for closed-population capture-recapture models, which are integer parameter models used to estimate population size (N), and there is concern that they will not perform well. To address this concern, we evaluated AIC, AICc, and CAIC model selection for closed-population capture-recapture models by empirically assessing the quality of inference for the population size parameter N. We found that AIC-, AICc-, and CAIC-selected models had smaller relative mean squared errors than randomly selected models, but that confidence interval coverage on N was poor unless unconditional variance estimates (which incorporate model uncertainty) were used to compute confidence intervals. Overall, AIC and AICc outperformed CAIC, and are preferred to CAIC for selection among the closed-population capture-recapture models we investigated. A model averaging approach to estimation, using AIC. AICc, or CAIC to estimate weights, was also investigated and proved superior to estimation using AIC-, AICc-, or CAIC-selected models. Our results suggested that, for model averaging, AIC or AICc. should be favored over CAIC for estimating weights.
Tylka, Tracy L; Homan, Kristin J
2015-09-01
The acceptance model of intuitive eating posits that body acceptance by others facilitates body appreciation and internal body orientation, which contribute to intuitive eating. Two domains of exercise motives (functional and appearance) may also be linked to these variables, and thus were integrated into the model. The model fit the data well for 406 physically active U.S. college students, although some pathways were stronger for women. Body acceptance by others directly contributed to higher functional exercise motives and indirectly contributed to lower appearance exercise motives through higher internal body orientation. Functional exercise motives positively, and appearance exercise motives inversely, contributed to body appreciation. Whereas body appreciation positively, and appearance exercise motives inversely, contributed to intuitive eating for women, only the latter association was evident for men. To benefit positive body image and intuitive eating, efforts should encourage body acceptance by others and emphasize functional and de-emphasize appearance exercise motives. PMID:26281958
Game Theoretic Modeling of Water Resources Allocation Under Hydro-Climatic Uncertainty
NASA Astrophysics Data System (ADS)
Brown, C.; Lall, U.; Siegfried, T.
2005-12-01
Typical hydrologic and economic modeling approaches rely on assumptions of climate stationarity and economic conditions of ideal markets and rational decision-makers. In this study, we incorporate hydroclimatic variability with a game theoretic approach to simulate and evaluate common water allocation paradigms. Game Theory may be particularly appropriate for modeling water allocation decisions. First, a game theoretic approach allows economic analysis in situations where price theory doesn't apply, which is typically the case in water resources where markets are thin, players are few, and rules of exchange are highly constrained by legal or cultural traditions. Previous studies confirm that game theory is applicable to water resources decision problems, yet applications and modeling based on these principles is only rarely observed in the literature. Second, there are numerous existing theoretical and empirical studies of specific games and human behavior that may be applied in the development of predictive water allocation models. With this framework, one can evaluate alternative orderings and rules regarding the fraction of available water that one is allowed to appropriate. Specific attributes of the players involved in water resources management complicate the determination of solutions to game theory models. While an analytical approach will be useful for providing general insights, the variety of preference structures of individual players in a realistic water scenario will likely require a simulation approach. We propose a simulation approach incorporating the rationality, self-interest and equilibrium concepts of game theory with an agent-based modeling framework that allows the distinct properties of each player to be expressed and allows the performance of the system to manifest the integrative effect of these factors. Underlying this framework, we apply a realistic representation of spatio-temporal hydrologic variability and incorporate the impact of
Harloff, G.J.
1985-09-01
A theoretical aerodynamic model of lift and drag forces on a flat plate at angle of attack and at hypersonic speeds is presented. Real gas effects and friction drag are accounted for. Theoretical results are presented as a function of the viscous interaction parameter. The performance for two geometries is presented. 3 refs., 8 figs., 4 tabs.
ERIC Educational Resources Information Center
Dodd, Bucky J.
2013-01-01
Online course design is an emerging practice in higher education, yet few theoretical models currently exist to explain or predict how the diffusion of innovations occurs in this space. This study used a descriptive, quantitative survey research design to examine theoretical relationships between decision-making style and resistance to change…
Biglino, Giovanni; Capelli, Claudio; Wray, Jo; Schievano, Silvia; Leaver, Lindsay-Kay; Khambadkone, Sachin; Giardini, Alessandro; Derrick, Graham; Jones, Alexander; Taylor, Andrew M
2015-01-01
Objectives To assess the communication potential of three-dimensional (3D) patient-specific models of congenital heart defects and their acceptability in clinical practice for cardiology consultations. Design This was a questionnaire-based study in which participants were randomised into two groups: the ‘model group’ received a 3D model of the cardiac lesion(s) being discussed during their appointment, while the ‘control group’ had a routine visit. Setting Outpatient clinic, cardiology follow-up visits. Participants 103 parents of children with congenital heart disease were recruited (parental age: 43±8 years; patient age: 12±6 years). In order to have a 3D model made, patients needed to have a recent cardiac MRI examination; this was the crucial inclusion criterion. Interventions Questionnaires were administered to the participants before and after the visits and an additional questionnaire was administered to the attending cardiologist. Main outcome measures Rating (1–10) for the liking of the 3D model, its usefulness and the clarity of the explanation received were recorded, as well as rating (1–10) of the parental understanding and their engagement according to the cardiologist. Furthermore, parental knowledge was assessed by asking them to mark diagrams, tick keywords and provide free text answers. The duration of consultations was recorded and parent feedback collected. Results Parents and cardiologists both found the models to be very useful and helpful in engaging the parents in discussing congenital heart defects. Parental knowledge was not associated with their level of education (p=0.2) and did not improve following their visit. Consultations involving 3D models lasted on average 5 min longer (p=0.02). Conclusions Patient-specific models can enhance engagement with parents and improve communication between cardiologists and parents, potentially impacting on parent and patient psychological adjustment following treatment. However, in
Daegling, D J; Hylander, W L
2000-08-01
Experimental studies and mathematical models are disparate approaches for inferring the stress and strain environment in mammalian jaws. Experimental designs offer accurate, although limited, characterization of biomechanical behavior, while mathematical approaches (finite element modeling in particular) offer unparalleled precision in depiction of strain magnitudes, directions, and gradients throughout the mandible. Because the empirical (experimental) and theoretical (mathematical) perspectives differ in their initial assumptions and their proximate goals, the two methods can yield divergent conclusions about how masticatory stresses are distributed in the dentary. These different sources of inference may, therefore, tangibly influence subsequent biological interpretation. In vitro observation of bone strain in primate mandibles under controlled loading conditions offers a test of finite element model predictions. Two issues which have been addressed by both finite element models and experimental approaches are: (1) the distribution of torsional shear strains in anthropoid jaws and (2) the dissipation of bite forces in the human alveolar process. Not surprisingly, the experimental data and mathematical models agree on some issues, but on others exhibit discordance. Achieving congruence between these methods is critical if the nature of the relationship of masticatory stress to mandibular form is to be intelligently assessed. A case study of functional/mechanical significance of gnathic morphology in the hominid genus Paranthropus offers insight into the potential benefit of combining theoretical and experimental approaches. Certain finite element analyses claim to have identified a biomechanical problem unrecognized in previous comparative work, which, in essence, is that the enlarged transverse dimensions of the postcanine corpus may have a less important role in resisting torsional stresses than previously thought. Experimental data have identified
Theoretical model atmosphere spectra used for the calibration of infrared instruments
NASA Astrophysics Data System (ADS)
Decin, L.; Eriksson, K.
2007-09-01
Context: One of the key ingredients in establishing the relation between input signal and output flux from a spectrometer is accurate determination of the spectrophotometric calibration. In the case of spectrometers onboard satellites, the accuracy of this part of the calibration pedigree is ultimately linked to the accuracy of the set of reference spectral energy distributions (SEDs) that the spectrophotometric calibration is built on. Aims: In this paper, we deal with the spectrophotometric calibration of infrared (IR) spectrometers onboard satellites in the 2 to 200 μm wavelength range. We aim at comparing the different reference SEDs used for the IR spectrophotometric calibration. The emphasis is on the reference SEDs of stellar standards with spectral type later than A0, with special focus on the theoretical model atmosphere spectra. Methods: Using the MARCS model atmosphere code, spectral reference SEDs were constructed for a set of IR stellar standards (A dwarfs, solar analogs, G9-M0 giants). A detailed error analysis was performed to estimate proper uncertainties on the predicted flux values. Results: It is shown that the uncertainty on the predicted fluxes can be as high as 10%, but in case high-resolution observational optical or near-IR data are available, and IR excess can be excluded, the uncertainty on medium-resolution SEDs can be reduced to 1-2% in the near-IR, to ~3% in the mid-IR, and to ~5% in the far-IR. Moreover, it is argued that theoretical stellar atmosphere spectra are at the moment the best representations for the IR fluxes of cool stellar standards. Conclusions: When aiming at a determination of the spectrophotometric calibration of IR spectrometers better than 3%, effort should be put into constructing an appropriate set of stellar reference SEDs based on theoretical atmosphere spectra for some 15 standard stars with spectral types between A0 V and M0 III.
Cavagnaro, Joy; Silva Lima, Beatriz
2015-07-15
The utility of animal models of disease for assessing the safety of novel therapeutic modalities has become an increasingly important topic of discussion as research and development efforts focus on improving the predictive value of animal studies to support accelerated clinical development. Medicines are approved for marketing based upon a determination that their benefits outweigh foreseeable risks in specific indications, specific populations, and at specific dosages and regimens. No medicine is 100% safe. A medicine is less safe if the actual risks are greater than the predicted risks. The purpose of preclinical safety assessment is to understand the potential risks to aid clinical decision-making. Ideally preclinical studies should identify potential adverse effects and design clinical studies that will minimize their occurrence. Most regulatory documents delineate the utilization of conventional "normal" animal species to evaluate the safety risk of new medicines (i.e., new chemical entities and new biological entities). Animal models of human disease are commonly utilized to gain insight into the pathogenesis of disease and to evaluate efficacy but less frequently utilized in preclinical safety assessment. An understanding of the limitations of the animal disease models together with a better understanding of the disease and how toxicity may be impacted by the disease condition should allow for a better prediction of risk in the intended patient population. Importantly, regulatory authorities are becoming more willing to accept and even recommend data from experimental animal disease models that combine efficacy and safety to support clinical development. PMID:25814257
Shemesh, Tom; Luini, Alberto; Malhotra, Vivek; Burger, Koert N. J.; Kozlov, Michael M.
2003-01-01
Membrane transport within mammalian cells is mediated by small vesicular as well as large pleiomorphic transport carriers (TCs). A major step in the formation of TCs is the creation and subsequent narrowing of a membrane neck connecting the emerging carrier with the initial membrane. In the case of small vesicular TCs, neck formation may be directly induced by the coat proteins that cover the emerging vesicle. However, the mechanism underlying the creation and narrowing of a membrane neck in the generation of large TCs remains unknown. We present a theoretical model for neck formation based on the elastic model of membranes. Our calculations suggest a lipid-driven mechanism with a central role for diacylglycerol (DAG). The model is applied to a well-characterized in vitro system that reconstitutes TC formation from the Golgi complex, namely the pearling and fission of Golgi tubules induced by CtBP/BARS, a protein that catalyzes the conversion of lysophosphatidic acid into phosphatidic acid. In view of the importance of a PA-DAG cycle in the formation of Golgi TCs, we assume that the newly formed phosphatidic acid undergoes rapid dephosphorylation into DAG. DAG possesses a unique molecular shape characterized by an extremely large negative spontaneous curvature, and it redistributes rapidly between the membrane monolayers and along the membrane surface. Coupling between local membrane curvature and local lipid composition results, by mutual enhancement, in constrictions of the tubule into membrane necks, and a related inhomogeneous lateral partitioning of DAG. Our theoretical model predicts the exact dimensions of the constrictions observed in the pearling Golgi tubules. Moreover, the model is able to explain membrane neck formation by physiologically relevant mole fractions of DAG. PMID:14645071
Acceptance, values, and probability.
Steel, Daniel
2015-10-01
This essay makes a case for regarding personal probabilities used in Bayesian analyses of confirmation as objects of acceptance and rejection. That in turn entails that personal probabilities are subject to the argument from inductive risk, which aims to show non-epistemic values can legitimately influence scientific decisions about which hypotheses to accept. In a Bayesian context, the argument from inductive risk suggests that value judgments can influence decisions about which probability models to accept for likelihoods and priors. As a consequence, if the argument from inductive risk is sound, then non-epistemic values can affect not only the level of evidence deemed necessary to accept a hypothesis but also degrees of confirmation themselves. PMID:26386533
ERIC Educational Resources Information Center
Teo, Timothy
2012-01-01
This study examined pre-service teachers' self-reported intention to use technology. One hundred fifty-seven participants completed a survey questionnaire measuring their responses to six constructs from a research model that integrated the Technology Acceptance Model (TAM) and Theory of Planned Behavior (TPB). Structural equation modeling was…
NASA Astrophysics Data System (ADS)
Queloz, Pierre; Carraro, Luca; Benettin, Paolo; Botter, Gianluca; Rinaldo, Andrea; Bertuzzo, Enrico
2015-04-01
A theoretical analysis of transport in a controlled hydrologic volume, inclusive of two willow trees and forced by erratic water inputs, is carried out contrasting the experimental data described in a companion paper. The data refer to the hydrologic transport in a large lysimeter of different fluorobenzoic acids seen as tracers. Export of solute is modeled through a recently developed framework which accounts for nonstationary travel time distributions where we parameterize how output fluxes (namely, discharge and evapotranspiration) sample the available water ages in storage. The relevance of this work lies in the study of hydrologic drivers of the nonstationary character of residence and travel time distributions, whose definition and computation shape this theoretical transport study. Our results show that a large fraction of the different behaviors exhibited by the tracers may be charged to the variability of the hydrologic forcings experienced after the injection. Moreover, the results highlight the crucial, and often overlooked, role of evapotranspiration and plant uptake in determining the transport of water and solutes. This application also suggests that the ways evapotranspiration selects water with different ages in storage can be inferred through model calibration contrasting only tracer concentrations in the discharge. A view on upscaled transport volumes like hillslopes or catchments is maintained throughout the paper.
Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future
Berjano, Enrique J
2006-01-01
Radiofrequency ablation is an interventional technique that in recent years has come to be employed in very different medical fields, such as the elimination of cardiac arrhythmias or the destruction of tumors in different locations. In order to investigate and develop new techniques, and also to improve those currently employed, theoretical models and computer simulations are a powerful tool since they provide vital information on the electrical and thermal behavior of ablation rapidly and at low cost. In the future they could even help to plan individual treatment for each patient. This review analyzes the state-of-the-art in theoretical modeling as applied to the study of radiofrequency ablation techniques. Firstly, it describes the most important issues involved in this methodology, including the experimental validation. Secondly, it points out the present limitations, especially those related to the lack of an accurate characterization of the biological tissues. After analyzing the current and future benefits of this technique it finally suggests future lines and trends in the research of this area. PMID:16620380
A New Theoretical Model of Big-Bang Evidence as a Consequence of Global Symmetry Breakdown
NASA Astrophysics Data System (ADS)
Avetissian, Ara K.
2007-08-01
Problems and hardships in identification and understanding of physical quintessence of several phenomena in Cosmology such are Big-Bang of tremendously dense and hot matter with Baryons' asymmetry, Hubble's expansion Law, Cosmic Microwave Radiation, Dark Energy and Dark Matter, obviously require alternative investigations of additional theoretical aspects and corresponding models of early Universe both for Radiation and Baryonic periods. According to this aspiration and taking into consideration results from Wilkinson Microwave Anisotropy Probe one postulate an assumption of possibility of baryons (may be also antibaryons!) Bose-Einstein condensation in the early Universe due to their Cooper-pairing. The thermodynamical equilibrium between extrahigh energy photons and Bose-condensed baryonic matter is consider and evaluate the macro-parameters of the possible hydrostatic stable baryonic configuration of Universal scale. A new theoretical model of Big-Bang evidence is predicted as a consequence of Global Symmetry breakdown from the Bose-Einstein statistics to Fermi-Dirac one when the matter pressure due to Pauli exclusion principle spasmodically increasing outside more than 2.5×10^5 times.
Theoretical modeling of single-molecule fluorescence with complicated photon statistics
NASA Astrophysics Data System (ADS)
Osad'ko, I. S.; Naumov, A. V.; Eremchev, I. Yu.; Vainer, Yu. G.; Kador, L.
2012-11-01
The use of techniques for analyzing the fluorescence photon statistics of a single molecule for modeling single-emitter dynamics is demonstrated. The photon distribution function measured in the fluorescence of a single tetra-tert-butylterrylene molecule embedded in polyisobutylene is used to devise a theoretical model for single emitters with complicated fluorescence photon statistics. Our analysis was carried out with the theoretical approach developed by Osad'ko and co-workers [J. Chem. Phys.JCPSA60021-960610.1063/1.3055287 130, 064904 (2009); J. Phys. Chem. C10.1021/jp1014093 114, 10349 (2010)] for photon distribution functions. Although the experimental data were obtained at cryogenic temperature where narrow zero-phonon lines are present, the method is based on a purely statistical approach and does not require spectrally resolved data. It can also be applied to the analysis of broad fluorescence bands as measured at room temperature. Therefore, the method has prospects for revealing the quantum dynamics of single biological objects and other single quantum emitters in ambient conditions.
Theoretical study on the inverse modeling of deep body temperature measurement.
Huang, Ming; Chen, Wenxi
2012-03-01
We evaluated the theoretical aspects of monitoring the deep body temperature distribution with the inverse modeling method. A two-dimensional model was built based on anatomical structure to simulate the human abdomen. By integrating biophysical and physiological information, the deep body temperature distribution was estimated from cutaneous surface temperature measurements using an inverse quasilinear method. Simulations were conducted with and without the heat effect of blood perfusion in the muscle and skin layers. The results of the simulations showed consistently that the noise characteristics and arrangement of the temperature sensors were the major factors affecting the accuracy of the inverse solution. With temperature sensors of 0.05 °C systematic error and an optimized 16-sensor arrangement, the inverse method could estimate the deep body temperature distribution with an average absolute error of less than 0.20 °C. The results of this theoretical study suggest that it is possible to reconstruct the deep body temperature distribution with the inverse method and that this approach merits further investigation. PMID:22370094
Theoretical model of adaptive fiber tip positioner based on flexible hinges and levers
NASA Astrophysics Data System (ADS)
Zhi, Dong; Ma, Yan-xing; Wang, Xiao-lin; Zhou, Pu; Si, Lei
2015-10-01
In this manuscript, we establish a model and theoretically investigate the novel structure of AFTP designed by ourselves. We analyze each sub-structure of the new type of AFTP and firstly use the software of ANSYS to simulate the deformation of the flexible hinge under the external force. The result shows that the deformation of the flexible hinge is mainly from and almost linear to the middle part. Further, after considering the influence of the levers and piezoelectric actuators, we setup the theoretical model in which the displacement is only relative to the ratio of the lever R. With the optimal value of R, we can get the relative largest displacement of the end cap when the other parameters are confirmed. As the maximal voltage applied on the piezoelectric stacks actuators (PSA) is finite, the largest displacement of the end cap is restricted. Neglecting the influence of the effective friction force (Ff) of inner-system, the relationship between the largest displacement of the end cap and the ratio (R) is derived numerically. From the calculated results, we get the largest displacement is about 67 μm with R of 6.9. This work provides a reference for structure optimization of AFTP based on flexible hinges and levers.
Bacaita, E S; Agop, M
2016-08-21
In this paper, we propose a new approach for the dynamics of drug delivery systems, assimilated to complex systems, an approach based on concepts like fractality, non-differentiability, and multiscale evolution. The main advantage of using these concepts is the possibility of eliminating the approximations used in the standard approach by replacing complexity with fractality, that imposes, in mathematical terms, the mandatory use of the non-differential character of defined physical quantities. The theoretical model presented, validated for other physical systems, demonstrates its functionality also for drug delivery systems, highlighting, in addition, new insights into the complexity of this system. The spatio-temporal scales of system evolution are characterized through the fractality degree, as a measure of the complexity of the phenomena occurring at each scale. Numerical analysis of the experiment showed that the overall drug release kinetics can be obtained by composing "smaller release kinetics" occurring at scales appropriate for each phase of the drug release mechanism, phases whose expansion depends on the system density. Moreover, the uncertainties in establishing the exact limits of the phases were removed by applying the principle of scale superposition, resulting in a global fractality degree corresponding to the entire release kinetics. Even if the theoretical model is perfectible by identifying constants specific to each delivery system, this paper is intended to be the beginning of an alternative approach to drug delivery mechanisms. PMID:27436760
NASA Technical Reports Server (NTRS)
Hess, R. A.; Wheat, L. W.
1975-01-01
A control theoretic model of the human pilot was used to analyze a baseline electronic cockpit display in a helicopter landing approach task. The head down display was created on a stroke written cathode ray tube and the vehicle was a UH-1H helicopter. The landing approach task consisted of maintaining prescribed groundspeed and glideslope in the presence of random vertical and horizontal turbulence. The pilot model was also used to generate and evaluate display quickening laws designed to improve pilot vehicle performance. A simple fixed base simulation provided comparative tracking data.
Dynamics of basaltic plumbing systems - a theoretical model of eruptive output and timescales
NASA Astrophysics Data System (ADS)
Blake, S.; Gunn, L. S.
2011-12-01
Eruptions of basaltic volcanoes are the culmination of magma transport processes within a plumbing system that extends from the mantle to the surface. We present a versatile model of this system and compare model output with the historical record of selected basaltic volcanoes. Components of the model system include a deep storage region from which magma escapes at a rate determined by magma buoyancy, viscosity, conduit dimensions and viscous collapse of ductile country rocks, and a shallow chamber from which dense magma erupts at a rate determined by viscosity, conduit dimensions and elastic relaxation of initially over-pressured magma and country rock. The volumes of the chambers are also important variables. Model systems built from these components connected to each other and/or the surface encapsulate the controls on eruption intensity and duration in several scenarios. Using appropriate ranges of input parameter values, Monte Carlo modelling generates synthetic distributions of eruption volume and duration whose characteristics are compared with the distributions derived from historic eruption data from various basaltic volcanoes. Our results provide probabilistic forecasts of eruption durations, theoretical models of the course of given eruptions, and insights on the contrasting behaviours of volcanoes fed from shallow upper crustal chambers or from chambers situated in the deep crust or mantle.
2011-01-01
Physician-researchers are bound by professional obligations stemming from both the role of the physician and the role of the researcher. Currently, the dominant models for understanding the relationship between physician-researchers' clinical duties and research duties fit into three categories: the similarity position, the difference position and the middle ground. The law may be said to offer a fourth "model" that is independent from these three categories. These models frame the expectations placed upon physician-researchers by colleagues, regulators, patients and research participants. This paper examines the extent to which the data from semi-structured interviews with 30 physician-researchers at three major pediatric hospitals in Canada reflect these traditional models. It seeks to determine the extent to which existing models align with the described lived experience of the pediatric physician-researchers interviewed. Ultimately, we find that although some physician-researchers make references to something like the weak version of the similarity position, the pediatric-researchers interviewed in this study did not describe their dual roles in a way that tightly mirrors any of the existing theoretical frameworks. We thus conclude that either physician-researchers are in need of better training regarding the nature of the accountability relationships that flow from their dual roles or that models setting out these roles and relationships must be altered to better reflect what we can reasonably expect of physician-researchers in a real-world environment. PMID:21974866
Mesterton-Gibbons, Mike; Sherratt, Tom N
2016-04-01
While the first individuals to discover and maintain territories are generally respected as owners, under some conditions there may be ambiguity as to who got there first. Here we attempt to understand the evolutionary consequences of this ambiguity by developing a pair of game-theoretic models in which we explicitly consider rival residency-based claims to ownership. Following earlier qualitative explanations for residency effects, we assume that either the value of the territory (Model A) or an interloper׳s self-belief that it is the owner (Model B) increases with duration of residency. Model A clearly demonstrates that if the value of a territory increases to a resident over time, so should its motivation to fight in terms of the effort it invests in fighting. Indeed, only a small increase in territory value with residency duration can be sufficient for longer established residents to win disputes, even without any arbitrary convention or other form of priority effect. Likewise, Model B shows that the observed increase in fighting persistence with residency duration can be readily explained as a consequence of increasing confidence on behalf of the interloper that it is the rightful owner. Collectively, the models help to explain some general findings long observed by empiricists, and shed light on the nature of conflicts that can arise when individuals do not have complete information about rival claims to ownership. PMID:26807804
NASA Astrophysics Data System (ADS)
Yang, H.-Y. Karen; Sutter, P. M.; Ricker, Paul M.
2012-12-01
Cosmological constraints derived from galaxy clusters rely on accurate predictions of cluster observable properties, in which feedback from active galactic nuclei (AGN) is a critical component. In order to model the physical effects due to supermassive black holes (SMBH) on cosmological scales, subgrid modelling is required, and a variety of implementations have been developed in the literature. However, theoretical uncertainties due to model and parameter variations are not yet well understood, limiting the predictive power of simulations including AGN feedback. By performing a detailed parameter-sensitivity study in a single cluster using several commonly adopted AGN accretion and feedback models with FLASH, we quantify the model uncertainties in predictions of cluster integrated properties. We find that quantities that are more sensitive to gas density have larger uncertainties (˜20 per cent for Mgas and a factor of ˜2 for LX at R500), whereas TX, YSZ and YX are more robust (˜10-20 per cent at R500). To make predictions beyond this level of accuracy would require more constraints on the most relevant parameters: the accretion model, mechanical heating efficiency and size of feedback region. By studying the impact of AGN feedback on the scaling relations, we find that an anti-correlation exists between Mgas and TX, which is another reason why YSZ and YX are excellent mass proxies. This anti-correlation also implies that AGN feedback is likely to be an important source of intrinsic scatter in the Mgas-TX and LX-TX relations.
Toward a unifying model of identification with groups: integrating theoretical perspectives.
Roccas, Sonia; Sagiv, Lilach; Schwartz, Shalom; Halevy, Nir; Eidelson, Roy
2008-08-01
Building on the contributions of diverse theoretical approaches, the authors present a multidimensional model of group identification. Integrating conceptions from the social identity perspective with those from research on individualism-collectivism, nationalism- patriotism, and identification with organizations, we propose four conceptually distinct modes of identification: importance (how much I view the group as part of who I am), commitment (how much I want to benefit the group), superiority (how much I view my group as superior to other groups), and deference (how much I honor, revere, and submit to the group's norms, symbols, and leaders). We present an instrument for assessing the four modes of identification and review initial empirical findings that validate the proposed model and show its utility in understanding antecedents and consequences of identification. PMID:18641386
NASA Astrophysics Data System (ADS)
Vasiliadou, I. A.; Katzourakis, V. E.; Syngouna, V. I.; Chrysikopoulos, C. V.
2012-04-01
This study is focused on the transport of Pseudomonas (P.) putida bacterial cells in a three-dimensional model aquifer. The pilot-scale aquifer consisted of a rectangular glass tank with internal dimensions: 120 cm length, 48 cm width, and 50 cm height, carefully packed with well-characterized quartz sand. The P. putida attachment onto the aquifer sand was determined with batch experiments, and was adequately described by a linear isotherm. Transport experiments with a conservative tracer and P. putida were conducted to characterize the aquifer and to investigate the bacterial behavior during transport in water saturated porous media. A three-dimensional, finite-difference numerical model for bacterial transport in saturated, homogeneous porous media was developed and was used to successfully fit the experimental data. Furthermore, theoretical interaction energy calculations suggested that the extended DLVO theory seems to predict bacteria attachment onto the aquifer sand better than the classical DLVO theory.
NASA Astrophysics Data System (ADS)
Jänkälä, Kari
2013-03-01
Calculation of the behaviour of photoelectron angular anisotropy in valence ionization of initially neutral NaX (X = 34-58) clusters is provided. The calculations are carried out for 1p, 1d and 1g jellium orbitals as a function of photon energy. The adapted theoretical framework is spherical jellium model using Woods-Saxon potential, which is modified to account for the long-range Coulomb tail in the final state. We discuss on the observed dramatic variations of the angular anisotropy parameter β as a function incident photon energy. It is shown that the behaviour is connected to the oscillation of the valence photoionization cross sections, that is a specific interference property of such metallic clusters whose valence structure can be described using the jellium model. ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters, edited by Kristiaan Temst, Margriet J. Van Bael, Ewald Janssens, H.-G. Boyen and Françoise Remacle.
ERIC Educational Resources Information Center
Hunt, David E.; And Others
The Conceptual Level (CL) matching model describes the differential reaction of students varying in CL to educational environments varying in degree of structure. Models of teaching describe environments systematically varying in structure and therefore provide a specific basis for coordinated investigation of differential effects. The effects of…
Transport-theoretic model for the electron-proton-hydrogen atom aurora. I. Theory
Basu, B.; Jasperse, J.R; Strickland, D.J.
1993-12-01
The first self-consistent transport-theoretic model for the combined electron-proton-hydrogen atom aurora is presented. This is needed for accurate modeling of the diffuse aurora, particularly in the midnight sector, for which a statistical study indicates that the proton contribution to the total auroral energy flux is (on the average) about 20 to 25% of that of the electrons. As a result, the ionization yield as well as the yields of many emission features will be underestimated (on the average) by about the same percentage if the proton-hydrogen atom contributions are neglected. The model presented here can also be used to study a pure electron aurora or a pure proton-hydrogen atom aurora by choosing the appropriate boundary conditions, namely, by setting the incident flux of one or the other particle population equal to zero. In the latter case, the new feature of the present model is the rigorous transport-theoretic treatment of the contributions to ionization rates and to emission rates and yields from the secondary electrons produced by protons and hydrogen atoms. A coupled set of three linear transport equations is presented. Protons and hydrogen atoms are coupled only to each other through charge-changing (charge exchange and stripping) collisions, while the electrons are coupled to both protons and hydrogen atoms through the secondary electrons that they produce. Source functions for the secondary electrons produced by the three primary particle populations are compared and contrasted, and the numerical methods for solving the coupled transport equations are described. Finally, formulas for calculating pertinent aurora-related quantities from the particle fluxes are given. 66 refs., 9 figs., 2 tabs.
Hwang, Ji Young; Kim, Ki Young
2014-01-01
Abstract Objective: The aim of the study was to verify the effects of patient factors perceived by emergency medical technicians (EMTs) as well as their social and organizational factors on prehospital telemetry use intention based on the technology use intention and elaboration likelihood models. Materials and Methods: This is a retrospective empirical study. Questionnaires were developed on the basis of clinical factors of 72,907 patients assessed by prehospital telemetry from January 1, 2009 to April 30, 2012 by reviewing their prehospital medical care records and in-hospital medical records. Questionnaires regarding the social and organizational factors of EMTs were created on the basis of a literature review. To verify which factors affect the utilization of telemetry, we developed a partial least-squares route model on the basis of each characteristic. In total, 136 EMTs who had experience in using prehospital telemetry were surveyed from April 1 to April 7, 2013. Reliability, validity, hypotheses, and the model goodness of fit of the study tools were tested. Results: The clinical factors of the patients (path coefficient=−0.12; t=2.38), subjective norm (path coefficient=0.18; t=2.63), and job fit (path coefficient=0.45; t=5.29) positively affected the perceived usefulness (p<0.010). Meanwhile, the clinical factors of the patients (path coefficients=−0.19; t=4.46), subjective norm (path coefficient=0.08; t=1.97), loyalty incentives (path coefficient=−0.17; t=3.83), job fit (path coefficient=−0.32; t=7.06), organizational facilitations (path coefficient=0.08; t=1.99), and technical factors (i.e., usefulness and ease of use) positively affected attitudes (path coefficient=0.10, 0.58; t=2.62, 5.81; p<0.010). Attitudes and perceived usefulness significantly positively affected use intention. Conclusions: Factors that influence the use of telemetry by EMTs in ambulances included patients' clinical factors, as well as complex organizational and
NASA Astrophysics Data System (ADS)
Brush, S. G.
Historians of science have published many studies of the reception of Einstein's special and general theories of relativity. Based on a review of these studies, and my own research on the role of the light-bending prediction in the reception of general relativity, I discuss the role of three kinds of reasons for accepting relativity (1) empirical predictions and explanations; (2) social-psychological factors; and (3) aesthetic-mathematical factors. According to the historical studies, acceptance was a three-stage process. First, a few leading scientists adopted the special theory for aesthetic-mathematical reasons. In the second stage, their enthusiastic advocacy persuaded other scientists to work on the theory and apply it to problems currently of interest in atomic physics. The special theory was accepted by many German physicists by 1910 and had begun to attract some interest in other countries. In the third stage, the confirmation of Einstein's light-bending prediction attracted much public attention and forced all physicists to take the general theory of relativity seriously. In addition to light-bending, the explanation of the advance of Mercury's perihelion was considered strong evidence by theoretical physicists. The American astronomers who conducted successful tests of general relativity became defenders of the theory. There is little evidence that relativity was `socially constructed' but its initial acceptance was facilitated by the prestige and resources of its advocates.
NASA Astrophysics Data System (ADS)
Cogné, N.; Gallagher, K.; Cobbold, P. R.
2012-04-01
We performed a new thermochronological study (fission track analysis and (U-Th)/He dating on apatite) in SE Brazil and integrate those data with inverse and forward modelling via QTQt software (Gallagher, 2012) to obtain thermal histories. The inversion results were used to characterize the general thermal histories and the associated uncertainties. For most of the samples we had a first phase of cooling during Late Cretaceous or Early Tertiary with subsequent reheating followed by Neogene cooling. The inverse modelling does not provide a unique solution and the associated uncertainties can be quite significant. Moreover the Tertiary parts of thermal histories were usually near the accepted resolution of the thermochronometric methods (~50-40°C). Therefore we performed deterministic forward modelling within the range of uncertainties to assess which solution is the most consistent with the data and independent geological information. These results are always conditional on the assumed kinetics for fission track annealing and diffusion of He, so we do not test the validity of that aspect. However, we can look at the range of predictions for the different forward models tested. This apporach implies that the reheating is required only for the samples around onshore Tertiary basins. For other samples we cannot conclude but geological information are against this hypothesis. However the Neogene cooling is required for all the samples.The combination of forward and inverse modelling allows us to better constrain the thermal histories for each sample in exploring the range of uncertainties and to reconcile a range of possible thermal histories with independent geological information. It also provides new information on the contrasting thermal evolution between different regions of the onshore SE Brazilian margin. Gallagher, K. 2012, Transdimensional Inverse thermal history modeling for quantitative thermochronology, Journal of Geophysical Research, in press.
NASA Astrophysics Data System (ADS)
Roulier, S.; Jarvis, N.
2003-12-01
Macropore flow is a key factor for determining chemical transport in unsaturated soils, but the description of the complex processes involved in macropore flow requires several parameters that cannot be easily measured. Inverse modeling procedures are increasingly used for model calibration, because they are objective and reproducible. But this is only true when the problem is well-posed: an ill-posed problem leads to parameter nonuniqueness, and thus contributes to poor model performance, like error and/or uncertainty in model predictions. Factors linked to nonuniqueness are most often related to sensitivity issues and/or correlation among two or several parameters. This study focused on the use of inverse techniques to estimate parameters controlling macropore flow, transport, and transformation processes in the dual porosity/dual-permeability model of water flow and solute transport MACRO. MACRO was used together with the inverse modeling package SUFI. The Bayesian (global) approach followed by SUFI is stable, converging, and robust. Moreover, the procedure also predicts a posterior uncertainty domain for the estimated parameters. A theoretical study was carried out to test the inverse modeling tool SUFI/MACRO. Generated "dummy" data set were used for this purpose, representing transient leaching experiment for tracers and reactive solutes in small soil columns (20 cm height). General issues related to inverse modeling such as internal correlation and sensitivity were investigated, with the help of response surface analysis, as well as the influence of the choice of the goal function used in the inverse procedure. Attention was also focused on the most appropriate experimental design necessary for a reliable parameter estimation. The procedure was then applied to real data, obtained from tracer leaching experiments carried out on microlysimeters. Based on calculated model efficiencies, MACRO/SUFI gave good predictions of water movement and tracer transport. This
Bryan, Angela; Kagee, Ashraf; Broaddus, Michelle R
2006-07-01
We developed and tested models of intentions and behavior among adolescents from Cape Town, South Africa. Data from 261 participants who completed an initial measure of attitudes, beliefs, and prior behavior were used to develop a model of intentions to use condoms based on the Theory of Planned Behavior (TPB) and additional constructs found to be important in previous research with adolescents. Of the initial sample, 227 (87%) completed a behavioral follow-up 4 months later, and approximately one-third of those (n=72; 44 boys and 30 girls) reported having had sex in the prior 4 months. Data from this smaller sample were used to develop a model of condom use behavior based on intentions (as per the TPB) and the additional sub-population relevant constructs. Analyses generally supported the validity of the TPB in this context for predicting intentions and behavior. HIV knowledge and positive outlook (self-esteem and future optimism) were significantly related to TPB predictors of intentions. Intentions, acceptance of sexuality, and gender were significant predictors of behavior. Implications for the status of the TPB and the design of interventions for South African adolescents are discussed. PMID:16636891
Jones-Farrand, D. Todd; Fearer, Todd M.; Thogmartin, Wayne E.; Thompson, Frank R., III; Nelson, Mark D.; Tirpak, John M.
2011-01-01
Selection of a modeling approach is an important step in the conservation planning process, but little guidance is available. We compared two statistical and three theoretical habitat modeling approaches representing those currently being used for avian conservation planning at landscape and regional scales: hierarchical spatial count (HSC), classification and regression tree (CRT), habitat suitability index (HSI), forest structure database (FS), and habitat association database (HA). We focused our comparison on models for five priority forest-breeding species in the Central Hardwoods Bird Conservation Region: Acadian Flycatcher, Cerulean Warbler, Prairie Warbler, Red-headed Woodpecker, and Worm-eating Warbler. Lacking complete knowledge on the distribution and abundance of each species with which we could illuminate differences between approaches and provide strong grounds for recommending one approach over another, we used two approaches to compare models: rank correlations among model outputs and comparison of spatial correspondence. In general, rank correlations were significantly positive among models for each species, indicating general agreement among the models. Worm-eating Warblers had the highest pairwise correlations, all of which were significant (P , 0.05). Red-headed Woodpeckers had the lowest agreement among models, suggesting greater uncertainty in the relative conservation value of areas within the region. We assessed model uncertainty by mapping the spatial congruence in priorities (i.e., top ranks) resulting from each model for each species and calculating the coefficient of variation across model ranks for each location. This allowed identification of areas more likely to be good targets of conservation effort for a species, those areas that were least likely, and those in between where uncertainty is higher and thus conservation action incorporates more risk. Based on our results, models developed independently for the same purpose
NASA Astrophysics Data System (ADS)
Branicki, Michal; Majda, Andrew J.
2015-06-01
This work focuses on elucidating issues related to an increasingly common technique of multi-model ensemble (MME) forecasting. The MME approach is aimed at improving the statistical accuracy of imperfect time-dependent predictions by combining information from a collection of reduced-order dynamical models. Despite some operational evidence in support of the MME strategy for mitigating the prediction error, the mathematical framework justifying this approach has been lacking. Here, this problem is considered within a probabilistic/stochastic framework which exploits tools from information theory to derive a set of criteria for improving probabilistic MME predictions relative to single-model predictions. The emphasis is on a systematic understanding of the benefits and limitations associated with the MME approach, on uncertainty quantification, and on the development of practical design principles for constructing an MME with improved predictive performance. The conditions for prediction improvement via the MME approach stem from the convexity of the relative entropy which is used here as a measure of the lack of information in the imperfect models relative to the resolved characteristics of the truth dynamics. It is also shown how practical guidelines for MME prediction improvement can be implemented in the context of forced response predictions from equilibrium with the help of the linear response theory utilizing the fluctuation-dissipation formulas at the unperturbed equilibrium. The general theoretical results are illustrated using exactly solvable stochastic non-Gaussian test models.
Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models.
Rao, Nageswara S V; Poole, Stephen W; Ma, Chris Y T; He, Fei; Zhuang, Jun; Yau, David K Y
2016-04-01
The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities, expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical subinfrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein their components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures, are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. The analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures. PMID:25847370
Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows
NASA Astrophysics Data System (ADS)
Aloufi, Badr; Behdinan, Kamran; Zu, Jean
2016-06-01
In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.
Theoretical model of internally cooled interstitial ultrasound applicators for thermal therapy
NASA Astrophysics Data System (ADS)
Tyréus, Per Daniel; Diederich, Chris J.
2002-04-01
Interstitial ultrasound applicators for high-temperature thermal therapy are currently being developed for treating cancerous and benign disease. Internally cooled, direct-coupled (ICDC) applicators, composed of a segmented array of cylindrical ultrasound transducers, have demonstrated capabilities of producing controllable and conformal heating distributions along the applicator length and angular orientation. In this study, 2D transient acoustic and biothermal models of ICDC applicators were developed using a mixed implicit and explicit finite difference solution with variable node spacing in cylindrical coordinates for enhanced speed, stability and accuracy. The model incorporates dynamic behaviour of acoustic parameters and blood perfusion as a function of temperature and thermal dose. Acoustic intensity distributions were modelled as a composite of measured and theoretical intensity distributions. The shape and time evolution of temperature contours and thermal lesions for 90°, 200° and 360° angularly directional applicators and multi-transducer applicators were modelled for heating durations between 1 and 5 min. Model parameters were selected to match previously reported ex vivo and in vivo studies of 2.2 mm diameter ICDC devices in thigh muscle and liver (15-30 W cm-2 applied power density, 0.5-5 min treatment times, 2.8-3.6 cm diameter thermal lesions). The temperatures and lethal thermal dose (600 EM43 °C) contours calculated using the models were in excellent agreement with temperatures and thermal lesion dimensions (visible coagulation) determined experimentally. The differences between maximum radial depths of coagulation calculated using the r-z and r-θ models were small, less than ~2 mm for 10-15 mm lesions. There was a strong correlation between the calculated 50 °C contour and the radial, angular and axial lesion dimensions obtained for 3-5 min heating protocols. The models developed in this study have significant application in design studies
Jones, Matt; Love, Bradley C
2011-08-01
The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls
Pathways in coal thermolysis: a theoretical and experimental study with model compounds
Ekpenyong, I.A.; Virk, P.S.
1982-01-01
Fundamental aspects of coal thermolysis were investigated, including how the chemical structures of aromatics, hydroaromatics, and alcohols affect their reactivities as hydrogen donors and acceptors in coal processing. The susceptibilities of substructural entities in coals to fragmentation via a number of thermal pericyclic and free radical mechanisms were probed, as were the factors governing relative reactivities within series of such coal model compounds. The theoretical part of the work applied perturbation molecular orbital (PMO) and frontier orbital theories, in conjunction with ..pi..- and pseudo-..pi.. MO's, to the study of model compound reactivity. This enabled prediction of reactivity patterns of H-donors, H-acceptors and coal-like structures as functions of their ..pi..- and sigma-bond configurations, including heteroatomic effects. Experimentally, the liquid phase reactions of the coal model compound PhOCH/sub 2/Ph (Benzyl phenyl ether, BPE) were detailed for the first time in each of four hydronaphthalene H-donor solvents in the temperature range 220/sup 0/ to 300/sup 0/C. The thermolysis of BPE exhibited a pronounced dependence on solvent structure, both with respect to product selectivities and reaction kinetics. BPE thermolysis pathways were delineated as involving (a) rearrangement, leading to isomerization, (b) hydrogenations, leading ultimately to PhOH and PhCH/sub 3/ products, and (c) addition reactions, engendering heavy products. Pathways (b) and (c) are competitive and, in each, self-reactions of BPE-derivatives vie against reactions between these and the donor solvent. Of the detailed free radical and pericyclic reaction mechanisms postulated, the latter rationalized many more facets of the BPE results than the former. The theoretical and experimental results were appraised against previous coal thermolysis literature.
A theoretical model for flow boiling CHF from short concave heaters
Galloway, J.E.; Mudawar, I.
1995-08-01
Experiments were performed to enable the development of a new theoretical mode for the enhancement in CHF commonly observed with flow boiling on concave heater as compared to straight heaters. High-speed video imaging and photomicrography were employed to capture the trigger mechanism for CHF each type heater. A wavy vapor layer was observed to engulf the heater surface in each case, permitting liquid access to the surface only in regions where depressions (troughs) in the liquid vapor interface made contact with the surface. CHF in each case occurred when the pressure force exerted upon the wavy vapor-liquid inter ace in the contact region could no longer overcome the momentum of the vapor produced in these regional. Shorter interfacial wavelengths with greater curvature were measured on the curve, heater than on the straight heater, promoting a greater pressure force on the wave interface and a corresponding increase in CHF for the curved heater. A theoretics. CHF model is developed from these observations, based upon a new theory for hydrodynamic instability, along a curved interface. CHF data are predicted with good accuracy for both heaters. 23 refs., 9 figs.
Laboratory and theoretical models of planetary-scale instabilities and waves
NASA Technical Reports Server (NTRS)
Hart, John E.
1993-01-01
Research work is proceeding in theoretical, numerical, and experimental geophysical fluid dynamics leading up to a reflight of the GFFC (Geophysical Fluid Flow Cell Experiment) on USML-2. The work is intended not only to generate ideas for future space experiments, but to provide fundamental results concerned with nonlinear and chaotic properties of thermal convection and baroclinic waves in terrestrial and planetary atmospheres. The major efforts are focussed on thermal convection in a rapidly rotating annulus relevant to Jovian atmospheric dynamics, and on the chaotic behavior of baroclinic waves relevant to the Earth's atmosphere. The approach, in preparation for USML-2, is primarily theoretical and numerical. Mechanistic process models are solved numerically in order to identify physical mechanisms that may be observed in the GFFC, and which are important in real geophysical applications. The results from numerical simulations of geophysical fluid flow (subject to rotation and stratification) are compared with previous GFFC experiments on Spacelab-3 and with existing and proposed terrestrial laboratory experiments of various types. Pattern recognition algorithms have been employed to generate low-dimensional descriptions of the highly nonlinear and turbulent numerical simulations. Such empirically truncated descriptions provide for simplified but robust physical interpretations of the dynamics, as well as yielding highly efficient computations of these chaotic flows.
Ferguson, Eamonn
2013-01-01
This paper sets out the case that personality traits are central to health psychology. To achieve this, three aims need to be addressed. First, it is necessary to show that personality influences a broad range of health outcomes and mechanisms. Second, the simple descriptive account of Aim 1 is not sufficient, and a theoretical specification needs to be developed to explain the personality-health link and allow for future hypothesis generation. Third, once Aims 1 and 2 are met, it is necessary to demonstrate the clinical utility of personality. In this review I make the case that all three Aims are met. I develop a theoretical framework to understand the links between personality and health drawing on current theorising in the biology, evolution, and neuroscience of personality. I identify traits (i.e., alexithymia, Type D, hypochondriasis, and empathy) that are of particular concern to health psychology and set these within evolutionary cost-benefit analysis. The literature is reviewed within a three-level hierarchical model (individual, group, and organisational) and it is argued that health psychology needs to move from its traditional focus on the individual level to engage group and organisational levels. PMID:23772230
Nowicki, A; Kowalewski, T; Secomski, W; Wójcik, J
1998-02-01
An approximate solution for the streaming velocity generated by flat and weakly focused transducers was derived by directly solving the Dirichlet boundary conditions for the Poisson equation, the solution of the Navier-Stokes equation for the axial components of the streaming velocity. The theoretical model was verified experimentally using a 32 MHz pulsed Doppler unit. The experimental acoustical fields were produced by three different 4 mm diameter flat and focused transducers driven by the transmitter generating the average acoustic power within the range from 1 microW to 6 mW. The streaming velocity was measured along the ultrasonic beam from 0 to 2 cm. Streaming was induced in a solution of water and corn starch. The experimental results showed that for a given acoustic power the streaming velocity was independent of the starch density in water, changed from 0.3 to 40 grams of starch in 1 l of distilled water. For applied acoustic powers, the streaming velocity changed linearly from 0.2 to 40 mm/s. Both, the theoretical solutions for plane and focused waves and the experimental results were in good agreement. The streaming velocity field was also visualised using the particle image velocimetry (PIV) and two different evaluation methods. The first based on the FFT-based cross-correlation analysis between small sections for each pair of images and the second employing the algorithm of searching for local displacements between several images. PMID:9614292
NASA Astrophysics Data System (ADS)
Zheng, Yi; Zhang, Pengjie; Jing, Yipeng
2015-02-01
Measuring the volume weighted velocity power spectrum suffers from a severe systematic error due to imperfect sampling of the velocity field from the inhomogeneous distribution of dark matter particles/halos in simulations or galaxies with velocity measurement. This "sampling artifact" depends on both the mean particle number density n¯P and the intrinsic large scale structure (LSS) fluctuation in the particle distribution. (1) We report robust detection of this sampling artifact in N -body simulations. It causes ˜12 % underestimation of the velocity power spectrum at k =0.1 h /Mpc for samples with n¯ P=6 ×10-3 (Mpc /h )-3 . This systematic underestimation increases with decreasing n¯P and increasing k . Its dependence on the intrinsic LSS fluctuations is also robustly detected. (2) All of these findings are expected based upon our theoretical modeling in paper I [P. Zhang, Y. Zheng, and Y. Jing, Sampling artifact in volume weighted velocity measurement. I. Theoretical modeling, arXiv:1405.7125.]. In particular, the leading order theoretical approximation agrees quantitatively well with the simulation result for n¯ P≳6 ×10-4 (Mpc /h )-3 . Furthermore, we provide an ansatz to take high order terms into account. It improves the model accuracy to ≲1 % at k ≲0.1 h /Mpc over 3 orders of magnitude in n¯P and over typical LSS clustering from z =0 to z =2 . (3) The sampling artifact is determined by the deflection D field, which is straightforwardly available in both simulations and data of galaxy velocity. Hence the sampling artifact in the velocity power spectrum measurement can be self-calibrated within our framework. By applying such self-calibration in simulations, it is promising to determine the real large scale velocity bias of 1013M⊙ halos with ˜1 % accuracy, and that of lower mass halos with better accuracy. (4) In contrast to suppressing the velocity power spectrum at large scale, the sampling artifact causes an overestimation of the velocity
NASA Astrophysics Data System (ADS)
Martins, Tiago; de Magalhães, Sérgio Tenreiro
The baby's crying is his most important mean of communication. The crying monitoring performed by devices that have been developed doesn't ensure the complete safety of the child. It is necessary to join, to these technological resources, means of communicating the results to the responsible, which would involve the digital processing of information available from crying. The survey carried out, enabled to understand the level of adoption, in the continental territory of Portugal, of a technology that will be able to do such a digital processing. It was used the TAM as the theoretical referential. The statistical analysis showed that there is a good probability of acceptance of such a system.
NASA Astrophysics Data System (ADS)
Mégnin, Charles; Romanowicz, Barbara
1999-08-01
Most global tomographic models to date are derived using a combination of surface wave (or normal-mode) data and body wave traveltime data. The traveltime approach limits the number of phases available for inversion by requiring them to be isolated on the seismogram. This may ultimately result in limiting the resolution of 3-D structure, at least in some depth ranges in the mantle. In a previous study, we successfully derived a degree 12 whole-mantle SH-velocity tomographic model (SAW12D) using exclusively waveform data. In that inversion, a normal-mode formalism suitable for body waveforms, the non-linear asymptotic coupling theory (NACT), was combined with a body wave windowing scheme, referred to as the `individual wavepacket' (IW) technique, which allows one to assign individual weights to different body wave energy packets. We here compare the relative merits of this choice of theoretical formalism and windowing scheme at different depth ranges in the mantle. Choosing as the reference a model obtained using 7500 transverse-component body wave and 8000 surface wave seismograms and the NACT and IW approaches, we discuss the relative performance of the path average approximation (PAVA), a zeroth-order theoretical approximation appropriate for single-mode surface waves, relative to NACT, and compare the IW windowing scheme with a more standard `full window' (FW) approach, in which a single time window is considered from the first body wave arrival to the fundamental-mode surface waves. The combination PAVA/FW is often used in global tomography to supplement the traveltime data. We show that although the quality of the image derived under the PAVA/FW formalism is very similar to that derived under NACT/IW in the first 300 km of the upper mantle, where the resolution is dominated by surface waves, it deteriorates at greater depths. Images of the lower mantle are shown to be strongly sensitive to the theoretical formalism. In contrast, the resolution of structure
Carpenter, M
1994-01-01
In Bangladesh, the assistant administrator of USAID gave an acceptance speech at an awards ceremony on the occasion of the 25th anniversary of oral rehydration solution (ORS). The ceremony celebrated the key role of the International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B) in the discovery of ORS. Its research activities over the last 25 years have brought ORS to every village in the world, preventing more than a million deaths each year. ORS is the most important medical advance of the 20th century. It is affordable and client-oriented, a true appropriate technology. USAID has provided more than US$ 40 million to ICDDR,B for diarrheal disease and measles research, urban and rural applied family planning and maternal and child health research, and vaccine development. ICDDR,B began as the relatively small Cholera Research Laboratory and has grown into an acclaimed international center for health, family planning, and population research. It leads the world in diarrheal disease research. ICDDR,B is the leading center for applied health research in South Asia. It trains public health specialists from around the world. The government of Bangladesh and the international donor community have actively joined in support of ICDDR,B. The government applies the results of ICDDR,B research to its programs to improve the health and well-being of Bangladeshis. ICDDR,B now also studies acute respiratory diseases and measles. Population and health comprise 1 of USAID's 4 strategic priorities, the others being economic growth, environment, and democracy, USAID promotes people's participation in these 4 areas and in the design and implementation of development projects. USAID is committed to the use and improvement of ORS and to complementary strategies that further reduce diarrhea-related deaths. Continued collaboration with a strong user perspective and integrated services will lead to sustainable development. PMID:12345470
Yusuf, C K
1994-01-01
I am proud and honored to accept this award on behalf of the Government of Bangladesh, and the millions of Bangladeshi children saved by oral rehydration solution. The Government of Bangladesh is grateful for this recognition of its commitment to international health and population research and cost-effective health care for all. The Government of Bangladesh has already made remarkable strides forward in the health and population sector, and this was recognized in UNICEF's 1993 "State of the World's Children". The national contraceptive prevalence rate, at 40%, is higher than that of many developed countries. It is appropriate that Bangladesh, where ORS was discovered, has the largest ORS production capacity in the world. It was remarkable that after the devastating cyclone in 1991, the country was able to produce enough ORS to meet the needs and remain self-sufficient. Similarly, Bangladesh has one of the most effective, flexible and efficient control of diarrheal disease and epidemic response program in the world. Through the country, doctors have been trained in diarrheal disease management, and stores of ORS are maintained ready for any outbreak. Despite grim predictions after the 1991 cyclone and the 1993 floods, relatively few people died from diarrheal disease. This is indicative of the strength of the national program. I want to take this opportunity to acknowledge the contribution of ICDDR, B and the important role it plays in supporting the Government's efforts in the health and population sector. The partnership between the Government of Bangladesh and ICDDR, B has already borne great fruit, and I hope and believe that it will continue to do so for many years in the future. Thank you. PMID:12345479
Taylor, Mark J; Taylor, Natasha
2014-12-01
England and Wales are moving toward a model of 'opt out' for use of personal confidential data in health research. Existing research does not make clear how acceptable this move is to the public. While people are typically supportive of health research, when asked to describe the ideal level of control there is a marked lack of consensus over the preferred model of consent (e.g. explicit consent, opt out etc.). This study sought to investigate a relatively unexplored difference between the consent model that people prefer and that which they are willing to accept. It also sought to explore any reasons for such acceptance.A mixed methods approach was used to gather data, incorporating a structured questionnaire and in-depth focus group discussions led by an external facilitator. The sampling strategy was designed to recruit people with different involvement in the NHS but typically with experience of NHS services. Three separate focus groups were carried out over three consecutive days.The central finding is that people are typically willing to accept models of consent other than that which they would prefer. Such acceptance is typically conditional upon a number of factors, including: security and confidentiality, no inappropriate commercialisation or detrimental use, transparency, independent overview, the ability to object to any processing considered to be inappropriate or particularly sensitive.This study suggests that most people would find research use without the possibility of objection to be unacceptable. However, the study also suggests that people who would prefer to be asked explicitly before data were used for purposes beyond direct care may be willing to accept an opt out model of consent if the reasons for not seeking explicit consent are accessible to them and they trust that data is only going to be used under conditions, and with safeguards, that they would consider to be acceptable even if not preferable. PMID:26085451
Dumont, Grégory; Henry, Jacques; Tarniceriu, Carmen Oana
2016-10-01
Identifying the right tools to express the stochastic aspects of neural activity has proven to be one of the biggest challenges in computational neuroscience. Even if there is no definitive answer to this issue, the most common procedure to express this randomness is the use of stochastic models. In accordance with the origin of variability, the sources of randomness are classified as intrinsic or extrinsic and give rise to distinct mathematical frameworks to track down the dynamics of the cell. While the external variability is generally treated by the use of a Wiener process in models such as the Integrate-and-Fire model, the internal variability is mostly expressed via a random firing process. In this paper, we investigate how those distinct expressions of variability can be related. To do so, we examine the probability density functions to the corresponding stochastic models and investigate in what way they can be mapped one to another via integral transforms. Our theoretical findings offer a new insight view into the particular categories of variability and it confirms that, despite their contrasting nature, the mathematical formalization of internal and external variability is strikingly similar. PMID:27334547
Epithelial cell deformation during surfactant-mediated airway reopening: a theoretical model.
Naire, Shailesh; Jensen, Oliver E
2005-08-01
A theoretical model is presented describing the reopening by an advancing air bubble of an initially liquid-filled collapsed airway lined with deformable epithelial cells. The model integrates descriptions of flow-structure interaction (accounting for nonlinear deformation of the airway wall and viscous resistance of the airway liquid flow), surfactant transport around the bubble tip (incorporating physicochemical parameters appropriate for Infasurf), and cell deformation (due to stretching of the airway wall and airway liquid flows). It is shown how the pressure required to drive a bubble into a flooded airway, peeling apart the wet airway walls, can be reduced substantially by surfactant, although the effectiveness of Infasurf is limited by slow adsorption at high concentrations. The model demonstrates how the addition of surfactant can lead to the spontaneous reopening of a collapsed airway, depending on the degree of initial airway collapse. The effective elastic modulus of the epithelial layer is shown to be a key determinant of the relative magnitude of strains generated by flow-induced shear stresses and by airway wall stretch. The model also shows how epithelial-layer compressibility can mediate strains arising from flow-induced normal stresses and stress gradients. PMID:15802368
Theoretical aspects and practical implications of the heuristic drift SOL model
NASA Astrophysics Data System (ADS)
Goldston, R. J.
2015-08-01
The heuristic drift (HD) model for the tokamak power scrape-off layer width provides remarkable agreement in both absolute magnitude and scalings with the measured width of the exponential component of the heat flux at divertors targets, in low gas-puff H-Mode tokamaks. This motivates further exploration of its theoretical aspects and practical implications. The HD model requires a small non-ambipolar electron particle diffusivity ∼10-2 m2/s. It also implies large parallel heat flux in ITER and suggests that more radical approaches will be needed to handle the ∼20 GW/m2 parallel heat flux expected in Demo. Remarkably, the HD model is also in good agreement with recent near-SOL heat flux profiles measured in a number of limiter L-Mode experiments, implying ubiquity of the underlying mechanism. Finally, the HD model suggests that the H-Mode and more generally Greenwald density limit may be caused by MHD instability in the SOL, rather than originating in the core plasma or pedestal. If the SOL width in stellarators is set by magnetic topology rather than by drifts, this would be consistent with the absence of the Greenwald density limit in stellarators.
Cognitive and neural models of threat appraisal in psychosis: A theoretical integration.
Underwood, Raphael; Kumari, Veena; Peters, Emmanuelle
2016-05-30
Cognitive models of psychosis propose that maladaptive appraisals of anomalous experiences contribute to distress and disability in psychosis. Attentional, attributional and reasoning biases are hypothesised to drive these threat-based appraisals. Experimental and self-report data have provided support for the presence of these biases in psychosis populations, but recently there have been calls for neurobiological data to be integrated into these findings. Currently, little investigation has been conducted into the neural correlates of maladaptive appraisals. Experimental and neuroimaging research in social cognition employing threatening stimuli provide the closest equivalent of maladaptive appraisal in psychosis. Consequently, a rapprochement of these two literatures was attempted in order to identify neural networks relevant to threat appraisal in psychosis. This revealed overlapping models of aberrant emotion processing in anxiety and schizophrenia, encompassing the amygdala, insula, hippocampus, anterior cingulate cortex, and prefrontal cortex. These models posit that aberrant activity in these systems relates to altered emotional significance detection and affect regulation, providing a conceptual overlap with threat appraisal in psychosis, specifically attentional and attributional biases towards threat. It remains to be seen if direct examination of these biases using neuroimaging paradigms supports the theoretical integration of extant models of emotion processing and maladaptive appraisals in psychosis. PMID:27137974
By-product mutualism and the ambiguous effects of harsher environments - A game-theoretic model.
De Jaegher, Kris; Hoyer, Britta
2016-03-21
We construct two-player two-strategy game-theoretic models of by-product mutualism, where our focus lies on the way in which the probability of cooperation among players is affected by the degree of adversity facing the players. In our first model, cooperation consists of the production of a public good, and adversity is linked to the degree of complementarity of the players׳ efforts in producing the public good. In our second model, cooperation consists of the defense of a public, and/or a private good with by-product benefits, and adversity is measured by the number of random attacks (e.g., by a predator) facing the players. In both of these models, our analysis confirms the existence of the so-called boomerang effect, which states that in a harsh environment, the individual player has few incentives to unilaterally defect in a situation of joint cooperation. Focusing on such an effect in isolation leads to the "common-enemy" hypothesis that a larger degree of adversity increases the probability of cooperation. Yet, we also find that a sucker effect may simultaneously exist, which says that in a harsh environment, the individual player has few incentives to unilaterally cooperate in a situation of joint defection. Looked at in isolation, the sucker effect leads to the competing hypothesis that a larger degree of adversity decreases the probability of cooperation. Our analysis predicts circumstances in which the "common enemy" hypothesis prevails, and circumstances in which the competing hypothesis prevails. PMID:26780649
Laboratory and theoretical models of planetary-scale instabilities and waves
NASA Technical Reports Server (NTRS)
Hart, John E.; Toomre, Juri
1990-01-01
Meteorologists and planetary astronomers interested in large-scale planetary and solar circulations recognize the importance of rotation and stratification in determining the character of these flows. In the past it has been impossible to accurately model the effects of sphericity on these motions in the laboratory because of the invariant relationship between the uni-directional terrestrial gravity and the rotation axis of an experiment. Researchers studied motions of rotating convecting liquids in spherical shells using electrohydrodynamic polarization forces to generate radial gravity, and hence centrally directed buoyancy forces, in the laboratory. The Geophysical Fluid Flow Cell (GFFC) experiments performed on Spacelab 3 in 1985 were analyzed. Recent efforts at interpretation led to numerical models of rotating convection with an aim to understand the possible generation of zonal banding on Jupiter and the fate of banana cells in rapidly rotating convection as the heating is made strongly supercritical. In addition, efforts to pose baroclinic wave experiments for future space missions using a modified version of the 1985 instrument led to theoretical and numerical models of baroclinic instability. Rather surprising properties were discovered, which may be useful in generating rational (rather than artificially truncated) models for nonlinear baroclinic instability and baroclinic chaos.
An information theoretic model of target discrimination using hyperspectral and multisensor data
NASA Astrophysics Data System (ADS)
Wadströmer, Niclas; Renhorn, Ingmar
2008-04-01
We address the problem of target discrimination using hyperspektral and multisensor data. The problem is of significance to detection and classification of low signature targets such as landmines. The problem will be described with stochastic models and by using information theoretic concepts we will derive limits to system performance in terms of probability of false alarm and probablility of detection. The stochastic model is suitable to evaluate and optimize sensor parameters and sensor configurations. We will for example investigate how much information different combinations of spectral and spatial data will give. With the stochastic model sensors with different types of characteristics can be compared and the contribution of the different sensors and configurations can be evaluated. Besides the optimization of different sensor configurations with respect to specific applications, the stochastic model will be used to evaluate different anomaly detectors. The strength of our approach is shown by examples from an analysis of measurements on a natural scene with various objects using an electro-optical hyperspectral sensor and several other sensors. We expect that our approach will give significant indications on how to choose and configure sensors for efficient and reliable target discrimination.
Mackey, Dana; O'Reilly, Paul; Naydenova, Izabela
2016-05-01
This paper introduces an improved mathematical model for holographic grating formation in an acrylamide-based photopolymer, which consists of partial differential equations derived from physical laws. The model is based on the two-way diffusion theory of [Appl. Opt.43, 2900 (2004)10.1364/AO.43.002900APOPAI1559-128X], which assumes short polymer chains are free to diffuse, and generalizes a similar model presented in [J. Opt. Soc. Am. B27, 197 (2010)10.1364/JOSAB.27.000197JOBPDE0740-3224] by introducing an immobilization rate governed by chain growth and cross-linking. Numerical simulations were carried out in order to investigate the behavior of the photopolymer system for short and long exposures, with particular emphasis on the effect of recording parameters (such as illumination frequency and intensity), as well as material permeability, on refractive index modulation, refractive index profile, and grating distortion. The model reproduces many well-known experimental observations, such as the decrease of refractive index modulation at high spatial frequencies and appearance of higher harmonics in the refractive index profile when the diffusion rate is much slower than the polymerization rate. These properties are supported by a theoretical investigation which uses perturbation techniques to approximate the solution over various time scales. PMID:27140889
Theoretical model of the hydrogeology of a pull-apart basin
White, P.M.
1991-03-01
An accurate model of the hydrogeology of a basin is important in assessing the migration path of oil and its potential for remaining within a trap. Fluid flow in a basin is influenced by three driving forces: gravity, compaction, and density. The hydrogeology of most basins is affected by a combination of these three forces, but one is usually dominant. The hydrogeology of a pull-apart basin, such as the Los Angeles basin, is controlled by a combination of gravity and compaction forces. Tectonic movement within the Los Angeles basin has produced a number of small mountain ranges. These elevated features produce a large hydraulic head, driving groundwater into the basin. At the same time, the basin is undergoing compaction driving groundwater out of the basin. The complex interaction of these two forces has influenced the hydrogeologic flow within the Los Angeles basin. Oilgen, a computer modeling program, was used to develop a theoretical model for fluid flow within the Los Angeles basin. Extraction of oil in the early part of this century caused extensive subsidence in parts of the basin. To prevent further subsidence Long Beach established a water injection program in 1958. The water injection program has been successful in inhibiting subsidence and has even produced small, but measurable, amounts of rebound. Modeling was done both pre- and postinjection to allow the effects of the water injection on the hydrology of the basin to be evaluated.
Doinikov, Alexander A. Bouakaz, Ayache; Sheeran, Paul S.; Dayton, Paul A.
2014-10-15
Purpose: Perfluorocarbon (PFC) microdroplets, called phase-change contrast agents (PCCAs), are a promising tool in ultrasound imaging and therapy. Interest in PCCAs is motivated by the fact that they can be triggered to transition from the liquid state to the gas state by an externally applied acoustic pulse. This property opens up new approaches to applications in ultrasound medicine. Insight into the physics of vaporization of PFC droplets is vital for effective use of PCCAs and for anticipating bioeffects. PCCAs composed of volatile PFCs (with low boiling point) exhibit complex dynamic behavior: after vaporization by a short acoustic pulse, a PFC droplet turns into a vapor bubble which undergoes overexpansion and damped radial oscillation until settling to a final diameter. This behavior has not been well described theoretically so far. The purpose of our study is to develop an improved theoretical model that describes the vaporization dynamics of volatile PFC droplets and to validate this model by comparison with in vitro experimental data. Methods: The derivation of the model is based on applying the mathematical methods of fluid dynamics and thermodynamics to the process of the acoustic vaporization of PFC droplets. The used approach corrects shortcomings of the existing models. The validation of the model is carried out by comparing simulated results with in vitro experimental data acquired by ultrahigh speed video microscopy for octafluoropropane (OFP) and decafluorobutane (DFB) microdroplets of different sizes. Results: The developed theory allows one to simulate the growth of a vapor bubble inside a PFC droplet until the liquid PFC is completely converted into vapor, and the subsequent overexpansion and damped oscillations of the vapor bubble, including the influence of an externally applied acoustic pulse. To evaluate quantitatively the difference between simulated and experimental results, the L2-norm errors were calculated for all cases where the
LAF: Theoretical Model of Large Amplitude Folding of a Single Viscous Layer
NASA Astrophysics Data System (ADS)
Adamuszek, M.; Schmid, D. W.; Dabrowski, M.
2012-04-01
We present a theoretical model for Large Amplitude Folding (LAF) during buckling of a single, viscous layer. The model accurately predicts the evolution of geometrical fold parameters (amplitude, wavelength, and thickness) and is not restricted to any viscosity ratio or type of perturbation. The model employs two corrections to the formula of the initial growth rate of folds that is calculated using the thick-plate solution of Fletcher (Tectonophysics, 1977). The growth rate is modified by incorporating 1) the evolution of wavelength to thickness ratio, after Fletcher (American Journal of Science, 1974) and 2) the reduction of the growth rate, originally introduced by Schmalholz and Podladchikov (EPSL, 2000). The former correction is a consequence of the layer shortening and thickening. The latter modification is the result of using an effective rate of layer shortening as the driving force for fold growth, rather than the applied background shortening rate. The effective rate of the layer shortening is approximated by the rate of fold arclength shortening. In the model, we use an analytical expression derived based on the evolution of sinusoidal waveforms. These two modifications to the growth rate were already separately employed in previous studies. Through comparison with numerical models, we show that the simultaneous application of both corrections in LAF provides a better prediction of the evolution of the fold geometry parameters up to large amplitudes, compared to the models with only one correction. Our studies of the fold evolution from initial single and multiple (random noise, step and bell-shape function) waveforms show a remarkable fit between LAF and the numerical results. In the multiple waveform models, we predict a coupling between the components. In LAF, folds developed from initial random perturbations exhibit irregular but periodic shapes, characteristic for folds observed in nature. We also show that the evolution of folds from localized
Integrated Modeling in Earth and Space Sciences: An Information Theoretic Framework
NASA Astrophysics Data System (ADS)
Sharma, A. S.; Kalnay, E.
2011-12-01
Most natural phenomena exhibit multiscale behavior, which is an underlying reason for the challenges in modeling them. The recognition that the key problems, such as extreme events, natural hazards and climate change, require multi-disciplinary approaches to develop models that integrate many natural and anthropogenic phenomena, demand new approaches in the modeling of such systems. Information theory, which emphasizes the inherent features in observational data independent of modeling assumptions, can be used to develop a framework for multi-disciplinary models by integrating the data of the leading processes in multiple systems. An important measure of the inter-relationship among the different phenomena is the lead time among them. The widely used quantities such as the cross-correlation function represent the linear dependence among the variables and are limited in their ability to describe complex driven systems which are essentially nonlinear. The mutual information function, which represents the expectation of the average degree of dependence incorporating all orders of nonlinearity, provides the characteristic times inherent in the data and can be used as the first step to the development of integrated models. This function is used in two systems with widely separated time scales. The first case is the solar wind - magnetosphere interaction and the correlated data yield ~ 5 hr as the inherent time scale for the magnetospheric processes. The second case is a study of the inter-relationship between natural and anthropogenic phenomena and the mutual information functions were computed from the data of the global gross product, temperature and population. These functions show a time delay of ~15 yrs between the changes in global temperature and population as well as gross product, thus providing a measure of the interdependency among the variables underlying climate change. The results from studies of extreme events and an information theoretic modeling
ERIC Educational Resources Information Center
Fisher, Gary A.
2013-01-01
A mixed method study explored a theoretical model that employed, combined, and added to the theories of self-determination, the reading engagement perspective, and the four-phase model of interest to motivate adolescent struggling readers to read for pleasure. The model adds to the existing body of research because it specifies an instructional…
ERIC Educational Resources Information Center
Greene, Jeffrey Alan; Azevedo, Roger
2007-01-01
This theoretical review of Winne and Hadwin's model of self-regulated learning (SRL) seeks to highlight how the model sheds new light on current research as well as suggests interesting new directions for future work. The authors assert that the model's more complex cognitive architecture, inclusion of monitoring and control within each phase of…
A three-dimensional model of corotating streams in the solar wind. 1: Theoretical foundations
NASA Technical Reports Server (NTRS)
Pizzo, V. J.
1978-01-01
The theoretical and mathematical background pertinent to the study of steady, corotating solar wind structure in all three spatial dimensions (3-D) is discussed. The dynamical evolution of the plasma in interplanetary space (defined as the region beyond roughly 35 solar radii where the flow is supersonic) is approximately described by the nonlinear, single fluid, polytropic (magneto-) hydrodynamic equations. Efficient numerical techniques for solving this complex system of coupled, hyperbolic partial differential equations are outlined. The formulation is inviscid and nonmagnetic, but methods allow for the potential inclusion of both features with only modest modifications. One simple, highly idealized, hydrodynamic model stream is examined to illustrate the fundamental processes involved in the 3-D dynamics of stream evolution. Spatial variations in the rotational stream interaction mechanism were found to produce small nonradial flows on a global scale that lead to the transport of mass, energy, and momentum away from regions of relative compression and into regions of relative rarefaction.
Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets.
Dong, Ningning; Li, Yuanxin; Feng, Yanyan; Zhang, Saifeng; Zhang, Xiaoyan; Chang, Chunxia; Fan, Jintai; Zhang, Long; Wang, Jun
2015-01-01
Nonlinear optical property of transition metal dichalcogenide (TMDC) nanosheet dispersions, including MoS2, MoSe2, WS2, and WSe2, was performed by using Z-scan technique with ns pulsed laser at 1064 nm and 532 nm. The results demonstrate that the TMDC dispersions exhibit significant optical limiting response at 1064 nm due to nonlinear scattering, in contrast to the combined effect of both saturable absorption and nonlinear scattering at 532 nm. Selenium compounds show better optical limiting performance than that of the sulfides in the near infrared. A liquid dispersion system based theoretical modelling is proposed to estimate the number density of the nanosheet dispersions, the relationship between incident laser fluence and the size of the laser generated micro-bubbles, and hence the Mie scattering-induced broadband optical limiting behavior in the TMDC dispersions. PMID:26415562
Vazquez Villa, A.; Delgado Atencio, J. A.; Vazquez y Montiel, S.; Cunill Rodriguez, M.; Martinez Rodriguez, A. E.; Ramos, J. Castro; Villanueva, A.
2010-12-07
Optical coherence tomography (OCT) is a non-invasive low coherent interferometric technique that provides cross-sectional images of turbid media. OCT is based on the classical Michelson interferometer where the mirror of the reference arm is oscillating and the signal arm contains a biological sample. In this work, we analyzed theoretically the heterodyne optical signal adopting the so called extended Huygens-Fresnel principle (EHFP). We use simulated OCT images with known optical properties to test an algorithm developed by ourselves to recover the scattering coefficient and we recovered the scattering coefficient with a relative error less than 5% for noisy signals. In addition, we applied this algorithm to OCT images from phantoms of known optical properties; in this case curves were indistinguishable. A revision of the validity of the analytical model applied to our system should be done.
Diurnal and subdiurnal terms of nutation: a simple theoretical model for a nonrigid Earth.
NASA Astrophysics Data System (ADS)
Brzeziński, A.
This paper presents a simple theoretical description of the high frequency nutation. First we derive the equation describing the lunisolar excitation of polar motion. The underlying model of the Earth consists of the rotationally symmetrical elastic mantle and the liquid core, with no coupling between these two. Then, we give a systematic review of various components of the equatorial lunisolar torque and of the corresponding perturbation in Earth rotation. Our purpose is to find explicit analytical expressions involving both the parameters of geopotential and the tidal parameters, which gives us insight into the physical mechanism generating this minor, but not negligible, component of the lunisolar perturbation in Earth rotation and makes clear its geometry.
Observations, theoretical ideas and modeling of turbulent flows: Past, present and future
NASA Technical Reports Server (NTRS)
Chapman, G. T.; Tobak, M.
1985-01-01
Turbulence was analyzed in a historical context featuring the interactions between observations, theoretical ideas, and modeling within three successive movements. These are identified as predominantly statistical, structural and deterministic. The statistical movement is criticized for its failure to deal with the structural elements observed in turbulent flows. The structural movement is criticized for its failure to embody observed structural elements within a formal theory. The deterministic movement is described as having the potential of overcoming these deficiencies by allowing structural elements to exhibit chaotic behavior that is nevertheless embodied within a theory. Four major ideas of this movement are described: bifurcation theory, strange attractors, fractals, and the renormalization group. A framework for the future study of turbulent flows is proposed, based on the premises of the deterministic movement.
An Interacting Gauge Field Theoretic Model for Hodge Theory: Basic Canonical Brackets
NASA Astrophysics Data System (ADS)
R., Kumar; Gupta, S.; R. P., Malik
2014-06-01
We derive the basic canonical brackets amongst the creation and annihilation operators for a two (1 + 1)-dimensional (2D) gauge held theoretic model of an interacting Hodge theory where a U(1) gauge field (Aμ) is coupled with the fermionic Dirac fields (ψ and bar psi). In this derivation, we exploit the spin-statistics theorem, normal ordering and the strength of the underlying six infinitesimal continuous symmetries (and the concept of their generators) that are present in the theory. We do not use the definition of the canonical conjugate momenta (corresponding to the basic fields of the theory) anywhere in our whole discussion. Thus, we conjecture that our present approach provides an alternative to the canonical method of quantization for a class of gauge field theories that are physical examples of Hodge theory where the continuous symmetries (and corresponding generators) provide the physical realizations of the de Rham cohomological operators of differential geometry at the algebraic level.
Optical Limiting and Theoretical Modelling of Layered Transition Metal Dichalcogenide Nanosheets
Dong, Ningning; Li, Yuanxin; Feng, Yanyan; Zhang, Saifeng; Zhang, Xiaoyan; Chang, Chunxia; Fan, Jintai; Zhang, Long; Wang, Jun
2015-01-01
Nonlinear optical property of transition metal dichalcogenide (TMDC) nanosheet dispersions, including MoS2, MoSe2, WS2, and WSe2, was performed by using Z-scan technique with ns pulsed laser at 1064 nm and 532 nm. The results demonstrate that the TMDC dispersions exhibit significant optical limiting response at 1064 nm due to nonlinear scattering, in contrast to the combined effect of both saturable absorption and nonlinear scattering at 532 nm. Selenium compounds show better optical limiting performance than that of the sulfides in the near infrared. A liquid dispersion system based theoretical modelling is proposed to estimate the number density of the nanosheet dispersions, the relationship between incident laser fluence and the size of the laser generated micro-bubbles, and hence the Mie scattering-induced broadband optical limiting behavior in the TMDC dispersions. PMID:26415562
Theoretical analysis and design of a near-infrared broadband absorber based on EC model.
Zhang, Qing; Bai, Lihua; Bai, Zhengyuan; Hu, Pidong; Liu, Chengpu
2015-04-01
We theoretically introduced a design paradigm and tool by extending the circuit functionalities from radio frequency to near infrared domain, and its first usage to design a broadband near-infrared (1.5μm~3.5μm) absorber, is successfully demonstrated. After extracting the equivalent circuit (EC) model of the absorber structure, the formerly relatively complicated frequency response can be evaluated relatively easily based on classic circuit formulas. The feasibility is confirmed by its consistency with the rigorous FDTD calculation. The absorber is an array of truncated metal-dielectric multilayer composited pyramid unit structure, and the gradually modified square patch design makes the absorber be not sensitive to the incident angle and polarization of light. PMID:25968728
Sun, Jing; Zhang, Yan-ling; Gu, Hao; Wang, Yun
2015-08-01
Medicinal properties are specific attributes of traditional Chinese medicines(TCM). The medicinal property theory is an important principle for the compatibility of traditional Chinese medicines. In this paper, medicinal properties, flavors and meridian tropism were combined to represent TCM medicinal properties; and multiple medicinal properties were further combined into medicinal property combination modes. TCMs and medicinal property combination modes were divided according to their efficacies, which were regarded as the concept of inductive logic programming and finally got medicinal property combination and compatibility rules with different efficacies. These medicinal property combination and compatibility rules were used to form the theoretical model through the entity grammar system, realize the automatic reasoning process from the medicinal property combination and compatibility to the efficacies, verify the reasoning result and analyze their rationality and limitations, in order to provide new ideas for revealing the relations between the TCM compatibility rules and efficacies. PMID:26790316
A second gradient theoretical framework for hierarchical multiscale modeling of materials
Luscher, Darby J; Bronkhorst, Curt A; Mc Dowell, David L
2009-01-01
A theoretical framework for the hierarchical multiscale modeling of inelastic response of heterogeneous materials has been presented. Within this multiscale framework, the second gradient is used as a non local kinematic link between the response of a material point at the coarse scale and the response of a neighborhood of material points at the fine scale. Kinematic consistency between these scales results in specific requirements for constraints on the fluctuation field. The wryness tensor serves as a second-order measure of strain. The nature of the second-order strain induces anti-symmetry in the first order stress at the coarse scale. The multiscale ISV constitutive theory is couched in the coarse scale intermediate configuration, from which an important new concept in scale transitions emerges, namely scale invariance of dissipation. Finally, a strategy for developing meaningful kinematic ISVs and the proper free energy functions and evolution kinetics is presented.
Reynolds, Diane; O'Connell, Kathleen A
2012-12-01
Gardasil is the first vaccine developed to prevent cervical cancer and other diseases caused by certain types of genital human papillomavirus in females, but little is known about parental acceptance of this vaccine. The purpose of this study was to test a model that predicts intention to vaccinate that includes constructs from the health belief model and the theory of reasoned action. PMID:22020360
2014-01-01
Understanding phosphoryl and sulfuryl transfer is central to many biochemical processes. However, despite decades of experimental and computational studies, a consensus concerning the precise mechanistic details of these reactions has yet to be reached. In this work we perform a detailed comparative theoretical study of the hydrolysis of p-nitrophenyl phosphate, methyl phosphate and p-nitrophenyl sulfate, all of which have served as key model systems for understanding phosphoryl and sulfuryl transfer reactions, respectively. We demonstrate the existence of energetically similar but mechanistically distinct possibilities for phosphate monoester hydrolysis. The calculated kinetic isotope effects for p-nitrophenyl phosphate provide a means to discriminate between substrate- and solvent-assisted pathways of phosphate monoester hydrolysis, and show that the solvent-assisted pathway dominates in solution. This preferred mechanism for p-nitrophenyl phosphate hydrolysis is difficult to find computationally due to the limitations of compressing multiple bonding changes onto a 2-dimensional energy surface. This problem is compounded by the need to include implicit solvation to at least microsolvate the system and stabilize the highly charged species. In contrast, methyl phosphate hydrolysis shows a preference for a substrate-assisted mechanism. For p-nitrophenyl sulfate hydrolysis there is only one viable reaction pathway, which is similar to the solvent-assisted pathway for phosphate hydrolysis, and the substrate-assisted pathway is not accessible. Overall, our results provide a unifying mechanistic framework that is consistent with the experimentally measured kinetic isotope effects and reconciles the discrepancies between theoretical and experimental models for these biochemically ubiquitous classes of reaction. PMID:25423607
Theoretical models of mercury dissolution from dental amalgams in neutral and acidic flows
NASA Astrophysics Data System (ADS)
Keanini, Russell G.; Ferracane, Jack L.; Okabe, Toru
2001-06-01
This article reports an experimental and theoretical investigation of mercury dissolution from dental amalgams immersed in neutral (noncorrosive) and acidic (corrosive) flows. Atomic absorption spectrophotometric measurements of Hg loss indicate that in neutral flow, surface oxide films formed in air prior to immersion persist and effectively suppress significant mercury release. In acidic (pH 1) flows, by contrast, oxide films are unstable and dissolve; depending on the amalgam’s material composition, particularly its copper content, two distinct mercury release mechanisms are initiated. In low copper amalgam, high initial mercury release rates are observed and appear to reflect preferential mercury dissolution from unstable Sn8Hg ( γ 2) grains within the amalgam matrix. In high copper amalgam, mercury release rates are initially low, but increase with time. Microscopic examination suggests that this feature reflects corrosion of copper from grains of Cu6Sn5 ( η') and consequent exposure of Ag2Hg3 ( γ 1) grains; the latter serve as internal mercury release sites and become more numerous as corrosion proceeds. Three theoretical models are proposed in order to explain observed dissolution characteristics. Model I, applicable to high and low copper amalgams in neutral flow, assumes that mercury dissolution is mediated by solid diffusion within the amalgam, and that a thin oxide film persists on the amalgam’s surface and lumps diffusive in-film transport into an effective convective boundary condition. Model II, applicable to low copper amalgam in acidic flow, assumes that the amalgam’s external oxide film dissolves on a short time scale relative to the experimental observation period; it neglects corrosive suppression of mercury transport. Model III, applicable to high copper amalgam in acidic flow, assumes that internal mercury release sites are created by corrosion of copper in η' grains and that corrosion proceeds via an oxidation-reduction reaction